chapter 5 刚体的定轴转动2014

合集下载

大学物理 第5章刚体定轴转动

大学物理 第5章刚体定轴转动

赵 承 均
转动平面 某质点所在的圆周平面,称为转动平面。
参考线
转心 矢径
转动平面内任一过转轴的直线,如选 x 轴。
某质点所在的轨迹圆的圆心,称为转心。 某质点对其转心的位矢,称为该质点的矢径。
第一篇
力学
重 大 数 理 学 院
显然:转动刚体内所有点有相同的角量,故用角量描述刚体 的转动更方便,只需确定转动平面内任一点的角量即可。 1.角坐标— 描写刚体转动位臵的物理量。 角坐标 转动平面内刚体上任一点 P 到转轴 O 点的连线与 参考线间的夹角 。
赵 承 均
第二类问题:已知J和力矩M:求出运动情况和 b及 F 。
第三类问题:已知运动情况和力矩M,求刚体转动惯量 J 。
第一篇
力学
重 大 数 理 学 院
第一类问题:已知运动情况和 J ,确定运动学和动力学的联 系 例 :长为 l,质量为 m 的细杆,初始时的角速 度为 ωo ,由于细杆与 桌面的摩擦,经过时间 t 后杆静止,求摩擦力 矩 Mf 。
Fi cos i Fi cos i mi ain mi ri 2 法向:
e i


第一篇
力学
重 大 数 理 学 院
由于法向力的作用线穿过转轴,其力矩为零。可在切向 方程两边乘以 ri ,得到:
Fi e ri sin i Fi i r i sin i mi ri 2
4.角加速度— 描写角速度变化快慢和方向的物理量。 ⑴ 平均角加速度 t
即:刚体的角速度变化与发生变化所用的时间之比。
赵 承 均
⑵ 角加速度 ①用平均角加速度代替变化的角加速度; ②令 t 0 取极限;
d d lim 2 t 0 t dt dt

5-刚体的定轴转动

5-刚体的定轴转动

L1 L2
刚体定轴转动的角动量 L=?
z
v
ri mi
O
刚体 定轴
L Li mirivi
m iri(ri) ( miri2)
J M=0的原因,可能
1)F=0(不受外力) 2)外力作用于转轴上 3)外力作用线通过转轴
4)外力作用线与转轴平行
刚体定轴转动的角动量守恒
L1 L2
J11J22
位置,求它由此下摆角时的角速度。
解:如图建立坐标
x
杆受到的重力矩为:
O
M = gxd g m xdm
X
dm
据质心x定 d= m 义 mCx MmgxC
xc
1l 2
cos
M1mgclos
2
dmg
MJJdJ d d J d M dJd
dt d dt d
0 1 2mc go lds 0 Jd
mglsin
端点 o 且与桌面垂直的固定光滑轴转动,另有 一水平运动的质量 m2为的小滑块,从侧面垂直 与杆的另一端 A 相碰撞,设碰撞时间极短,已知 小滑块在碰撞前后的速度分别为 v1 和 v2 ,方 向如图所示,求碰撞后从细杆开始转动到停止 转动过程所需时间,(已知杆绕点 o 的转动惯 量 J= ml2/ 3 )
dLR J2J0m0d2 其中 Jo 12moR2
J J1J2 1 3m LL 21 2m oR 2m o(LR )2
2.对薄平板刚体的正交轴定理
z
Jz miri2
yi
xi
ri
y
m i(x2y2) m ix 2 m iy 2
x
Δmi
Jz JxJy
z
应用
例:已知圆盘

刚体的定轴转动

刚体的定轴转动

刚体的定轴转动一、刚体极其运动刚体——受力时不改变形状和体积的物体。

注:(1)刚体是固体物件的理想模型。

(2)刚体是一个特殊的质点系(各质点间的相对位置在运动中保持不变)。

刚体的运动分为平动和转动。

平动:刚体中所有点的运动轨迹都保持完全相同,或者说刚体内任意两点间的连线总是平行于它们的初始位置间的连线。

(用质点力学处理)转动:刚体中所有的点都绕同一直线做圆周运动. 转动又分定轴转动和非定轴转动。

二、刚体转动的角速度和角加速度刚体定轴转动时,由于各质元间的相对位置保持不变,因此描述各质元的角量是一样的。

角坐标:θ=θ(t)角位移:?θ=θ(t+?t)-θ(t) 角速度:?θdθ=?t→0?tdt角速度的方向:右手螺旋法则。

dω角加速度:α= dt定轴转动的特点:(1)每一质点均作圆周运动,圆面为转动平面;(2)任一质点运动?θ,ω,α均相同,但v,a不同;(3)运动描述仅需一个坐标。

三、匀变速转动公式匀变速转动------刚体绕定轴转动的角加速度为恒量。

刚体匀变速转动与质点匀变速直线运动公式对比匀变速转动匀变速直线运动v=v+at x=x0+v0t+at2212222v=v0+2a(x-x0)2ω=lim 匀四、角量与线量的关系v=rωaτ=rαan=rω24-2力矩转动定律转动惯量一、力矩设一质点系由n个质点组成,其中i质点受力为n-1j=1Fi外+∑fjin-1 Mi=ri?(Fi外+∑fji)现对i质点所受力的力矩:j=1对i求和,刚体所受力的力矩为n M=∑Mi=∑ri?Fi外ii=1(内力矩为零)二、刚体的转动定律组成刚体的各质点间无相对位移,所以刚体对给定轴的力矩为dω2 M=rma=(rm)α=J=Jα∑iz∑∑iiτiidtii即刚体定轴转动的转动定律:绕定轴转动的刚体的角加速度与作用于刚体上的合外力矩成正比,与刚体的转动惯量成反比。

它在定轴转动中的地位相当于牛顿第二定律在质点力学中的地位。

大学物理第5章刚体

大学物理第5章刚体
由转动定律:
l 3 mg 1 2 2 3g M 3 1 2 2 J 4l 2 ml 3
B
例2 如图,质量均为m的两物体A和B。A放在倾角 20 为a的光滑斜面上,通过绕在定滑轮上的细绳与B相 连,定滑轮是质量为m 半径为R的圆盘。求绳中张 力T1和T2以及A和B的加速度aA 、aB 。
解 受力 N , mg , 只有mg产生力矩
系统对0轴的力矩:
N
0
A
30
mg mg
L L M o M 0 A M 0 B mg mg sin 600 2 2 1 1 2 系统对O轴的J: J J A J B ml 2 ml 2 ml 2 3 3 3
F F F11
第一项的方向垂直于轴,对轴力矩为零:
10
将第二项的数值定义为力对轴的力矩,即
M轴
r F
方向平行于轴
二、刚体定轴转动定律 dL 由质点的角动量定理: M r F dt 刚体是 N 个质点组成的特殊质点系:
第 i个质点有
对 N 个质点求和
4. 线量与角量关系
ai
dvi d dri ai ri dt dt dt d ri ( ri ) dt dv d at ri ri 切向分量 dt dt v2 2 法向分量 an ri ri
注意:1.转动定律是力矩的瞬时作用规律,与牛顿第二 定律地位相当。 2.式中力矩、角加速度、转动惯量都是相对同一 转轴而言。
5.3 转动惯量的计算
一、转动惯量的定义 由 M 轴外 J 可知
13
在M相同的条件下,J 越大, 越小,转动状态越难改变。

大学物理第5章刚体的定轴转动

大学物理第5章刚体的定轴转动

d ctdt

对上式两边积分得
d c td t
0 0
t
1 2 ct 2
2 2 600π π 3 rad s 由给定条件, c 2 t 300 2 75
d π 2 由角速度的定义,则任意 t 时刻的角速度可写为: d t 150

得到: 转子转数:
A M d E K
a b
动能定理
动量定理
A F ds E K
动能定理 角动量定理 角动量 守恒
t 0Fdt P
t
动量守恒
F 0, P 0
t 0 M z dt Lz
t
M 0, L 0
§5.1 刚体、刚体运动
一、一般运动 二、刚体的定轴转动 三、解决刚体动力学问题的一般方法
基本方法: 加
质点系运动定理 刚体特性 平动:动量定理
刚体定轴转动的 动能定理 角动量定理
F mac
可以解决刚体的一般运动(平动加转动)
一、一般运动
1. 刚体 特殊的质点系, 形状和体积不变化 —— 理想化模型 在力作用下,组成物体的所有质点间的距离始终保持不变 2. 自由度 确定物体的位置所需要的独立坐标数 —— 物体的自由度数 z
刚体平面运动可看做刚体的平动与定轴转动的合成。 例如:车轮的滚动可以看成车轮随轮 轴的平动与绕轮轴的转动的组合。 描述刚体平面运动的自由度:3个
定点转动 刚体运动时,刚体上的一点固定不动,刚体绕过定点的一 瞬时转轴的转动,称作定点转动。
描述定点转动的自由度:3个
刚体的一般运动 质心的平动
+
绕质心的转动
z
描述刚体绕定轴转动的角量: 角坐标

力学第5章刚体的转动

力学第5章刚体的转动

3 g sinθ
L
解二:
M = J
=M
=
mg
L
2
cosθ
J
1 3
mL2
θ
L2
mg L 2
=
3
g cosθ 2L
=

dt
=


dθ dt



ωω
0

=
θβ 0

= θ 3gcosθ
0 2L

ω
=
3 g sinθ L
例某冲床上飞轮的转动惯量4.00×103kg·m2.当
它的转速达到 30 r/min时,它的转动动能是多少?
T 1=
m
1(2
m
2
+
m
2
m 1+m 2 +
m
2
)g
T 2=
m
2(2
m
1
+
m
2
m 1+m 2
+
m
2
)g
mr
T1
T2
m1
m2
提问:
若将m2g换成外力 F,且F=m2g,左边的 四个量还是同样的结 果吗?
§4 定轴转动中的功能关系= Fds cos
= Frdθ sinφ
r
F2
r ×F1 只能引起轴的
变形,对转动无贡献。
在定轴动问题中,如不加说明,所指的力 矩是指力在转动平面内的分力对转轴的力矩
二、转动定律
0
Fi 外力, f i 内力 ω
对Δ m i 质点应用牛二律:
fi
ri θ i Δ mi

第5章 刚体的定轴转动 习题解答

第5章 刚体的定轴转动 习题解答

对飞轮,由转动定律,有 式中负号表示摩擦力的力矩方向与角速度 方向相反。
联立解得

以 F 100 N 等代入上式,得
Fr R 2 (l1 l2 ) F J mRl1
5-1
第 5 章 刚体的定轴转动

2 0.40 (0.50 0.75) 40 100 rad s 2 60 0.25 0.50 3 t
由以上诸式求得角加速度

(2)
Rm1 rm2 g I m1 R 2 m2 r 2 0.2 2 0.1 2

1 1 10 0.202 4 0.102 2 0.202 2 0.102 2 2
9.8 6.13 rad s 2
T2 m2 r m2 g 2 0.10 6.13 2 9.8 20.8N T1 m1 g m1 R 2 9.8 2 0.2. 6.13 17.1N v 2a1h 2 Rh 2 6.13 0.2 2 2.21 m s 1
M M f J 1

t1
。移去力矩 M 后,根据转动定律,有
M f J 2
2
联立解得此转轮的转动惯量
0 t2
J
M 20 17.36 kg m 2 1 1 1 100 2 1 60 10 100 t1 t2
v0
6(2 3 3m M l J l 1M (1 2 ) (1 ) 2 ml 2 3m 12 m
(2) 由①式求得相碰时小球受到的冲量为:
I Fdt mv mv mv0
负号说明所受冲量的方向与初速度方向相反。

[理学]第5章 刚体的定轴转动_OK

[理学]第5章 刚体的定轴转动_OK

J 2
x 2dm l x2dx 1 ml 2
0
3
o
dx
dm
17 x
图(2)
记住几个典型的转动惯量:
*圆环(通过中心轴)………………… J = mR2
*圆盘、圆柱(通过中心轴)………… J 1 mR2 2
*细棒(端点垂直轴)…………………J A
1 3
m L2
*细棒(质心垂直轴)…………………J c
滑轮的角速度.
解:两重物加速度大小a相同,滑轮角加速度为
隔离物体分析力方向如图
由牛顿第二定律: m1g-T1=m1a T2-m2g=m2a
转动定律: (T1-T2)r=Jb 且有: a=rb
T1 T1 a m1 m1g
r T2
m2 T2 a
m2g
解方程组得:
m1 m2 gr m1 m2 r 2 J
转动平面: 取垂直于转轴 的平面为参考系, 称转动平面。,
转轴
Z 转动方向
vi
Δmi
转动平面
P
o θ
x
op r
2.定轴转动的角量描述
1.角位置θ
6
2.角位移
3.角速度: d 角速度是矢量 。dt
单位:rad/s
Zω 转动方向
v
方向与转动方向成 右手螺旋法则。
P点线速度 v r

o θ 转动平面 op r
第五章 刚体的定轴转动
转轴
1
一、力矩
复习
M rF
1. 大小:M = rFsinθ
2.方向:由右手螺旋定则确定。
Z F// F
O r F⊥ p
注意:上式中F指的是与转轴垂直平面(转动平面)上的力,

第五章 刚体的定轴转动

第五章 刚体的定轴转动
单位: 单位:rad / s 角速度
刚体定轴转动
ω
v 的方向按右手螺旋法则确定. 的方向按右手螺旋法则确定.
在定轴转动中, 在定轴转动中,角速度的方向 沿转轴方向. 沿转轴方向.
角加速度α 角加速度
v ω
2
ω dω d θ = = 2 α = lim t →0 t dt dt
单位: 单位:rad /s 2 角加速度也是矢量, 角加速度也是矢量,方向与角速度增量 的极限方向相同,在定轴转动中, 与 同向 的极限方向相同,在定轴转动中,α与ω同向 或反向. 或反向. 刚体的转动其转轴是可以改变的, 刚体的转动其转轴是可以改变的,为反映瞬时轴的方 向及其变化情况,引入角速度矢量和角加速度矢量. 向及其变化情况,引入角速度矢量和角加速度矢量. 注意 退化为代数量. :定轴转动时, ω,α退化为代数量. 定轴转动时, 退化为代数量
刚体的一般运动都可认为是平动和转动的结合. 刚体的一般运动都可认为是平动和转动的结合.
1. 用角量描述转动 (1) 角位移 θ : ) 时间内刚体转动角度. 在 t 时间内刚体转动角度. 单位: 单位:rad (2)角速度 ω : )
z θ
B A
θ dθ ω = lim = t →0 t dt

r2
转动惯量的定义: 转动惯量的定义:
J = ∑mi ri
2
对质量连续分布的刚体, 对质量连续分布的刚体,上式可写成积分形式
J = ∫ r dm
2
dm—质元的质量 质元的质量 r—质元到转轴的距离 质元到转轴的距离
线分布 dm = λdx 面分布 dm = σds 体分布 dm = ρdV
λ 是质量的线密度
F iz
ri = roi sinθ

第五章刚体的转动

第五章刚体的转动

34 第五章 刚体的转动§5-1、刚体定轴转动定律【基本内容】一、刚体的运动1、平动刚体平动的特征:刚体中的任一条直线,在刚体运动过程中始终保持平行。

刚体平动的研究方法:刚体作平动时,刚体各质点的运动情况相同,视为质点处理。

2、定轴转动刚体转动的特征:刚体上各点都绕同一固定的直线作半径不同的圆周运动,该直线称为刚体的转轴。

描述刚体转动的物理量角位移θ∆角速度ω角加速度β刚体匀变速转动公式βθωωβωωβωθ221202020=-+=+=tt t 二、刚体所受的力矩力矩是描述力对物体作用时产生转动效应和改变转动状态的物理量。

F r M ⨯= 式中F为力在转动平面的投影,r为轴指向力的作用点。

结论1 力矩是矢量,对于定轴,力矩的方向在转轴上; 结论2 力经过转轴和力平行于转轴,则力对此轴的力矩为0。

三、刚体定轴转动定律定轴转动的刚体,所受的合外力矩等于刚体的转动惯量与角加速度的乘积,即βJ M =四、转动惯量35定义:对于质点系∑=iii rm J 2对于刚体⎰=dm r J 2线分布:λλ,dx dm =是质量线密度。

面分布:σσ,dS dm =是质量面密度。

体分布:ρρ,dV dm =是质量体密度。

决定转动惯量的三个因素:刚体的质量、质量分布及转轴的位置。

【典型题例】【例5-1】 一轻绳跨过一定滑轮,滑轮可视为匀质圆盘,质量为m ,半径为r 。

绳的两端分别悬挂质量为m 1和m 2的物体,m 1<m 2,如图例2-4所示。

设滑轮轴所受的摩擦力矩为Mr ,绳与滑轮之间无相对滑动,试求运动物体的加速度和绳中的张力。

【解】 依题意,滑轮应视为一个有转动惯性的转动刚体,因此,在加速转动过程中,在图上必有T 2′>T 1′,而且,由于绳的质量可以忽略不计,还应有T 1=T 1′,T2=T 2′。

T 1、T 1′和T 2、T 2′都是绳中的张力。

绳与滑轮无相对滑动的条件,在绳不能伸长的情况下表示m 1与m 2有大小相同的加速度a ,且都等于滑轮边缘的切向加速度。

第5章_刚体的定轴转动(A_rigid_body_about_a fixed axis)

第5章_刚体的定轴转动(A_rigid_body_about_a  fixed axis)
dl
解:设圆柱体单位长度上的质量为λ
Z
o
在圆柱体上沿轴向取长为 dl 的 薄圆盘,该圆盘质量: 圆盘转动惯量为
圆柱体转动惯量为
R
l
河北经贸大学 陈玲
例 6 C60分子由60个碳原子组成。这些碳原子各位于一个球 形32面体的60个顶角上。此球体的直径为71nm。求按均匀球 面计算,求此球形分子对一个直径的转动惯量是多少? 解:设碳原子的质量为m,球体半径为R
河北经贸大学 陈玲
例6 如图一质量为M 长为l的匀质细杆,中间和右端各有一质量 皆为m的刚性小球,该系统可绕其左端且与杆垂直的水平轴转 动,若将该杆置于水平位置后由静止释放,求杆转到与水平方 向成θ角时,杆的角加速度是多少? 解:1设转轴垂直向里为正,系统对该转轴的转动惯量为 l θ 该系统所受的合力矩为 mg
、rn
Z
ω Fi oi ri
Δmi P
1 第 i 个质点对O点角动量
Li rio mi vi
vi
2 当质点受合外力Fi 时该力对O点的力矩 O
河北经贸大学 陈玲
rio
力矩定义: 实验发现,刚体做定轴转动时,其转动状态的改变与外力的大小 方 向及作用点均有关。(如开门) F//--表示力F在转轴方向的投影 F⊥--表示力F在转动平面内的投影 O-转轴与转动平面内的交点 r -- O点到力的作用点的矢径 Φ表示 F⊥与 r 的夹角 O r Z F// F F⊥ φ
即,合外力矩对刚体做定轴转动所作的功,等于刚体转动 动能的增量。
一、 概念 什么是刚体? 实际的固体在受力作用时总是要发生或大或 小的形状和体积的改变。如果在讨论一个固体的运动时,这种 形状或体积的改变可以忽略,我们就把这个固体当作刚体来处 理。 质元 1 刚体定义: 在受外力作用时不改变形状和体积的物体称刚体。 注意: Δmi (1)刚体是固体物件的理想化模型。 (2)刚体可以看作是由许多质点组成,每一个质点 r ij 叫做刚体的一个质元,刚体这个质点系的特点是, Δmj 河北经贸大学 陈玲 在外力作用下各质元之间的相对位置保持不变。

刚体的定轴转动

刚体的定轴转动
半径为R、质量为 m3的均质圆盘,忽略轴 的摩擦。求:(1) m1 、m2的加速度;(2)滑 轮的角加速度 及绳中的张力。(绳轻且
不可伸长)
R m3
m1
m2
24
R
m1
m2
解 对m1 、m2,滑轮作受力分析, m1 、 m2作平动,滑轮作转动,
(T1 T1,T2 T2)
m1g T1 m1a
T2 m2 g m2a
其一 此处滑轮质量不可忽略,大小不可忽略,所以要用到转动定律;
其二 绳与滑轮间无相对滑动,所以
;因a R
故滑轮两边绳之张力不相等。
26
例2-33 质量m=1.0kg、半径 r=0.6m 的匀质圆盘,可以绕通过其中心且垂直盘面的水
平光滑固定轴转动,对轴的转动惯量 I=mr2/2。圆盘边缘绕有绳子,绳子下端挂一质量
质量分布均匀而有一定几何形 状的刚体,质心的位置为它的 几何中心。
X
32
五、机械能守恒定律 若 A外 0 A内非 =0 (或只有保守力作功)
系统机械能守恒,即
1 2
mv2
1 2
I2
mghc
1 2
k x2
恒量
33
例2-35 一均匀细杆长为l,质量为m,垂直放置,o点着地。杆绕过o的光滑水平轴
m=1.0kg 的物体,如图所示。起初在圆盘上加一恒力矩使物体以速率 v0=0.6m/s 匀速上 升,如撤去所加力矩,问经历多少时间圆盘开始作反方向运动?
r
T
m、r
T
a
v0
mg
解;受力分析如图所示
mg T ma
Tr I
a r
v0 at 0
I 1 mr2 2
解得 a mgr mr I r 2g 3

大学物理教程第五章刚体的转动

大学物理教程第五章刚体的转动

⼤学物理教程第五章刚体的转动第五章刚体的转动§5-1 刚体的平动、转动和定轴转动⼀、刚体在外⼒作⽤下形状和⼤⼩都不变化的物体称为刚体.和这定义等价的另⼀定义是:如果物体在外⼒作⽤下它的任意两点之间的距离保持不变,则这物体称为刚体.刚体是⼀种理想模型,在⾃然界中是找不到的.实际上任何物体在外⼒作⽤下,它的形状和⼤⼩都或多或少要发⽣变化.但有许多物体,如果外⼒不甚⼤的话,它的形状和⼤⼩的改变不显著,这样的物体和刚体很接近,刚体⼒学中的结论对于这样的物体⼤致与经验符合.因此在实际问题中这样的物体可以当刚体来处理.⼆、平动和转动刚体的最简单的运动是平动和转动.在§1-3中关于参考系的平动的定义对刚体也适⽤.即如果刚体运动时,它⾥⾯任⼀直线的⽅位始终保持不变,则其运动称为平动.平动的特点是,任⼀时刻刚体中各点的速度和加速度都相等,任⼀点的运动都可以代表整个刚体的运动.刚体运动时,如果刚体中所有质点都绕着⼀条直线作圆周运动(如图5-1),则这刚体的运动称为转动,这条直线称为转轴.座钟的指针、CD 光碟、涡轮发电机的叶⽚和车辆的轮⼦的运动都是转动.转动刚体的转轴可以是固定的(例如涡轮叶⽚的转轴),也可以是运动的(例如车轮的转轴).转轴固定的转动称为定轴转动.可以证明,刚体的⼀般运动可以当作是由⼀平动和⼀绕瞬时轴的转动组合⽽成.例如车轮在地⾯上滚动(图5-2a),可以看成是由车轮随轮轴的平动以及车轮绕轮轴的转动组合⽽成.车轮上任⼀点P 的瞬时速度v ,等于轮轴的瞬时速度v 0与由于该点随车轮绕轮轴转动所具有的速度v r 的⽮量和,如图5-2(b)所⽰.三、定轴转动如图5-1,P 为刚体中⼀质点,当刚体绕定轴转动时,P 作圆周运动,圆⼼O 为转轴与圆平⾯的交点.由于刚体中任意两点之间的距离是固定不变的,刚体中各质点在同⼀时间Δt 内具有相同的⾓位移Δθ,因此在任⼀时刻各质点具有相同的⾓速度ω和⾓加速度α.所以我们可以⽤Δθ、ω和α作为描写刚体绕定轴转动的物理量,称为刚体的⾓位移、⾓速度和⾓加速度.我们在§1-4中讲过的⾓位移、⾓速度和⾓加速度等概念都适⽤于刚体的定轴转动.如果将⾓位移Δθ图5-1图5-2改为θ,则§1-4中公式θ = ωt ,ω = ω0 + αt 及θ = ω0t +21αt 2对刚体的定轴转动亦适⽤.⾄于刚体内各质点的速度和加速度则由于各质点到转轴的距离不同⽽各不相同,但这些线量与⾓量之间的关系仍然由(1-49)式、(1-51)式及(1-52)式表⽰.例题5-1 ⼀转速为1.80×103 r/min 的飞轮,因受制动⽽均匀地减速,经20.0s 停⽌转动.(1) 求⾓加速度和从制动开始到停⽌转动飞轮转过的转数;(2) 求制动开始后t = 10.0s 时飞轮的⾓速度;(3) 设飞轮半径为0.500m ,求在t = 10.0s 时飞轮边缘上⼀点的线速度和切向与法向加速度.解 (1) 设ω0为初⾓速度,由题意得rad/s π60rad/s 60101.80π2π230=??==n ω s 0.20 ,0==t ω因飞轮均匀减速,其转动为匀变速转动,由§1-4公式,⾓加速度为220rad/s π3rad/s 20.0π60-=-=-=t ωωα从开始制动到停⽌转动飞轮的⾓位移θ及转过的转数N 依次为rad π600rad 20.03π2120.0π6021220=??-=+=t t αωθ 300 2ππ600π2===θN (2) t = 10.0s 时飞轮的⾓速度为()rad/s π30rad/s 10.03ππ600=?-=+=t αωω(3) t = 10.0s 时,飞轮边缘上⼀点的线速度为m/s 1.47m/s 30π.5000=?==ωr v相应的切向加速度及法向加速度为22t m/s 71.4m/s 3π.5000-=?-==αr a()23222n m/s 1044.4m/s 30π.5000?=?==ωr a §5-2 ⼒矩转动定律转动惯量⼀、⼒对转轴的⼒矩根据经验,⼒可以使物体转动.但使物体转动的作⽤,不仅与⼒的⼤⼩有关,⽽且与⼒的⽅向以及⼒的作⽤线和转轴的距离有关.例如当我们⽤⼿关门时,⼒的作⽤线和门的转轴的距离越⼤,越容易把门关上.如果⼒的作⽤线通过门的转轴,或⼒的⽅向与转轴平⾏,则不论⽤多⼤的⼒也不能把门关上.⾸先讨论⼒在垂直于转轴的平⾯内的情形.图5-3为与转轴垂直的刚体的截⾯图,⼒F 在此平⾯内,⼒的作⽤线与转轴的距离为d ,d 称为⼒臂,⼒的⼤⼩F 与⼒臂d 的乘积称为⼒F 对转轴的⼒矩,⽤M 表⽰,则M = Fd (5-1)设r 为从转轴到⼒的作⽤点P 的径⽮,φ为r 与F 之间的夹⾓,由图5-3看出,d = r sin φ,故(5-1)式可写为r F Fr M ⊥==?sin (5—2)其中⊥F 为⼒F 在垂直于r ⽅向的分量.上式表⽰,只有⼒F 在垂直于r ⽅向的分量才对⼒矩有贡献.当φ = 0或φ =180°时M = 0,此时⼒的作⽤线通过转轴,0=⊥F ,d = 0.如果⼒F 不在垂直于转轴的平⾯内,则将F 分解为⼆分⼒F l 、F 2.F l 在垂直于转轴的平⾯内,F 2与转轴平⾏(图5-4).由于平⾏分⼒F 2对物体转动不起作⽤,可以不考虑,因此在⼒矩定义式(5-1)或式(5-2)中,F 应理解为外⼒在垂直于转轴的平⾯内的分⼒.⼒对定轴的⼒矩不但有⼤⼩,⽽且有转向.⼀般规定,如果⼒矩使刚体沿反时针⽅向转动,⼒矩为正;如果⼒矩使刚体沿顺时针⽅向转动,⼒矩为负.如果同时有⼏个⼒作⽤于刚体,则刚体所受的合⼒矩等于各个⼒对转轴的⼒矩的代数和.⼒对转轴的⼒矩与⼒对⼀点的⼒矩之间的关系如上所述,如果⼒F 与转轴不垂直,可将它分解为垂直于转轴的分⼒F l 和平⾏于转轴的分⼒F 2.设O 为通过⼒F 的作⽤点P ⽽垂直于转轴的平⾯与转轴的交点.r 为从O 点到P 点的径⽮(图5-4).则由(4-37)式得⼒F 对O 点的⼒矩为M = r × F = r × (F l + F 2) = r × F l + r × F 2将上式两边投影在转轴上.现在来看左右两边投影的意义.左边为⼒F 对O 点的⼒矩在转轴上的投影,右边r × F 2与转轴垂直,它在转轴上的投影为零.r × F l 与转轴平⾏,它在转轴上的投影等于F l r sin φ(图5-4).⽽后者等于⼒F 对转轴的⼒矩.故得结论:⼒F 对转轴的⼒矩等于⼒F 对O 点的⼒矩M 在转轴上的投影,其中O 为通过⼒F 的作⽤点P ⽽垂直于转轴的平⾯与转轴的交点.应当注意,⼒对⼀点的⼒矩是⽮量,⼒对转轴的⼒矩是标量.这是因为后者是前者的投影之故.⼆、转动定律刚体可看成是由⽆数质点组成,当刚体绕定轴转动时,各个质点都绕定轴作圆周运动,取质点P i 来考虑,设其质量为Δm i ,与转轴的距离为r i ,图5-5为经过P i ⽽垂直于转轴的刚体的截⾯图,作⽤于P i 的⼒有外⼒F i 及内⼒F ’i ,令F i t 及F ’i t 分别表⽰F i 及F ’i 沿切线⽅向的分量,则由切向运动⽅程得F i t + F ’i t = Δm i · r i α两边乘以r i :F i t r i + F ’i t r i = (Δm i r i 2)α将此式对刚体中⼀切质点求和得图5-3 图5-4∑∑∑='+ii i i ii i i i r m r F r F α)Δ(2t t (5-3) ∑'i ii r F t 为所有内⼒对转轴的⼒矩的代数和,即合内⼒矩.下⾯证明此合内⼒矩等于零.取刚体中两质点P i 及P j 来考虑.根据⽜顿第三定律,这两质点相互作⽤的⼒⼤⼩相等⽅向相反,且在同⼀直线上(图5-6),此⼆⼒有相同的⼒臂d ,但因⼆⼒⽅向相反,故其对转轴的合⼒矩为零.⼜因内⼒总是成对的,每⼀对内⼒的合⼒矩既然等于零,所以所有内⼒的合⼒矩亦必等于零,即0t ='∑iii r F 因此,(5-3)式化为∑∑=ii i i i i r m r F α)Δ(2t (5-4)∑iii r F t 为所有外⼒对转轴的⼒矩的代数和,即合外⼒矩,⽤M 表⽰,则上式化为∑=ii i r m M α)Δ(2 (5-5)对于⼀定刚体及⼀定转轴来说,上式中∑ii i r m 2Δ为⼀恒量,称为刚体对该转轴的转动惯量,⽤J 表⽰,即∑=ii i r m J 2Δ (5-6)这样(5-5)式便化为αJ M = (5-7)此式表⽰,刚体的⾓加速度与它所受的合外⼒矩成正⽐,与刚体的转动惯量成反⽐,这⼀关系称为转动定律.这是刚体绕定轴转动的基本定律.刚体绕定轴转动的其他定律都可以由这条定律导出.值得注意,这条定律是从⽜顿第⼆、第三定律推出的.三、转动惯量把转动定律αJ M =与⽜顿第⼆定律F = ma ⽐较,可以看出,这两个式⼦⼗分相似,M 对应于F ,α对应于a ,J 对应于m .我们知道,物体的质量m 是物体的平动惯性⼤⼩的量度,与此类似,物体的转动惯量J 是物体的转动惯性⼤⼩的量度.这可以从转动定律αJ M =看出.转动惯量不同的两个刚体,在相同的图5-5 图5-6外⼒矩作⽤下,转动惯量⼤的刚体⾓加速度⼩,就是它的⾓速度难于改变,也就是转动惯性⼤;反之,转动惯量⼩的刚体,它的转动惯性⼩.根据转动惯量定义:∑=ii i r m J 2Δ如果刚体是由若⼲个质量为m 1,m 2,m 3,…的质点组成,在(5-6)式中Δm i 应代以m i ,得+++=233222211r m r m r m J (5-8)如果刚体的质量连续分布在⼀体积内,(5-6)式中总和式应代以积分式,Δm 应代以d m (刚体中的质量元),得==VV V r m r J d d 22ρ(5-9)其中d V 为刚体的体积元,ρ为体积元d V 处的质量体密度,此积分遍及于刚体的整个体积V .(5-9)式可推求如下:将刚体划分为许许多多⼩部分,每⼀部分的线度极⼩,使它可以看成⼀质点.设各⼩部分的质量为Δm 1,Δm 2,…,Δm i ,…,与转轴的距离依次为r 1,r 2,…,r i ,…,按照(5-6)式,刚体的转动惯量J 近似地等于∑i i m r Δ2,即∑≈ii i m r J Δ2设λ为各⼩部分的线度的最⼤值,λ越⼩,每⼀⼩部分越接近于⼀质点,因此和数∑i i m r Δ2越接近于J ,所以当0→λ时,和数∑i i m r Δ2的极限值便完全等于J 了,即∑→=ii i m r J Δlim 20λ按照⾼等数学,上式中右式就是定积分?Vm r d 2,于是得 ??==VV V r m r J d d 22ρ这就是(5-9)式如果刚体的质量连续分布在⼀⾯上或⼀细线上,则需引⽤质量⾯密度或线密度概念,计算转动惯量公式与上式相同,只需将体密度换为⾯密度或线密度,将体积元换为⾯积元或线元即可.参看例题5-2及5-3.在国际单位制中转动惯量单位为千克平⽅⽶,符号为kg·m 2,转动惯量的量纲为ML 2.⼏何形状简单的刚体,其转动惯量可⽤积分法算出,见表5-1.表5-1 质量分布均匀的⼏种刚体的转动惯量a) 细棒(转轴通过中⼼与棒垂直) b) 细棒(转轴过棒的⼀端与棒垂直) 2121ml J = 231ml J =c) 圆柱体(转轴沿⼏何轴) d) 球体(转轴沿球的任⼀直径)221mR J = 252mR J =e) 薄圆筒(转轴沿⼏何轴) f ) 圆筒(转轴沿⼏何轴)2mR J = )(212221R R m J +=例题5-2 求质量为m 、板长为l 的均匀细棒对于通过棒的中点⽽与棒垂直的轴的转动惯量.解在棒上取与轴OO ’距离为x 、长为d x 的⼀⼩段来考虑(图5-7),这⼀⼩段的质量为d m = λd x .其中λ为棒的质量线密度.根据转动惯量定义,棒对轴OO ’的转动惯量为32222121d d l x x m x J l l -λλ===?? 棒的质量线密度lm =λ,代⼊上式得 2121ml J = 例题5-3 求质量为m 、半径为r 的匀质圆盘对于通过圆⼼⽽垂直于圆平⾯的轴的转动惯量.解在圆盘上取⼀半径为x ,宽为d x 的圆环来考虑(图5-8),这圆环的⾯积为2πx d x ,质量为d m = 2πσx d x ,其中σ为圆盘的质量⾯密度.根据转动惯量定义,圆盘对通过圆⼼O ⽽垂直圆平⾯的轴的转动惯量为4032π21d π2d r x x m x J r σσ===?? 圆盘的质量⾯密度2πrm =σ,代⼊上式得 221mr J = 上式对匀质圆柱体对于它的⼏何轴的转动惯量亦适⽤.决定刚体的转动惯量J 的⼤⼩因素有三:①刚体的质量;②刚体质量分布情况;③刚体的转轴的位置.例如质量均匀、⼤⼩相同的铅球和铜球,由于铅球质量较⼤,所以对于位置相同的轴来说,铅球的J 较⼤.⼜如有两个圆柱体,外径相等,质量也相等,但其中⼀个为实⼼,另⼀个为空⼼(质量分布不同),则对于它们的⼏何轴来说空⼼的圆柱体的J 较⼤.⼜如同⼀根棒对于通过棒的中⼼与棒垂直的轴与对于通过棒的⼀端与棒垂直的轴的J 不相同.例题 5-4 在半径分别为R 1、R 2的阶梯形滑轮上反向绕有两根轻绳,各悬挂质量为m 1、m 2的物体,如图5-9所⽰.若滑轮与轴间的摩擦忽略不计,滑轮的转动惯量为J ,求滑轮的⾓加速度α及各绳中张⼒F T1、F T2.解分析各物体的受⼒情况,如图5-9右图,对于滑轮,重⼒和轴的⽀承⼒通过轴⼼,其⼒矩为零.由于是轻绳,应有F T1 = F’T1,F T2 = F ’T2.先假设物体运动⽅向为:m 1的加速度a 1向下,m 2的加速度a 2向上,滑轮沿顺时针⽅向转动.选取物体运动⽅向为坐标轴正向,根据⽜顿第⼆定律和转动定律可得111T 1a m F g m =- 2222T a m g m F =- αJ R F R F =-22T 11T 滑轮边缘的切向加速度等于物体的加速度:αα2211 ,R a R a == 解以上各式得 g R m R m J R m R m 2222112211++-=α g m R m R m J R R m R m J R g m F 1222211212222111T )(???? ?++++=-=α图5-7 图5-8图5-9gm R m R m J R R m R m J R g m F 2222211211211222T )(???? ?++++=+=α讨论:1) 当m 1gR 1 > m 2gR 2 时,物体运动⽅向与原假定⽅向相同.2) 当m 1gR 1 = m 2gR 2 时,α = 0,滑轮作匀速转动或静⽌,运动状态或⽅向由初时刻条件决定.3) 当m 1gR 1 < m 2gR 2时,物体运动⽅向与原假定⽅向相反,即m 1向上,m 2向下,滑轮沿反时针⽅向转动.§5-3 转动动能⼒矩的功⼀、转动动能如图5-10,设刚体绕通过O 点⽽垂直于图平⾯的定轴转动,⾓速度为ω.当刚体转动时,刚体中各质点都绕定轴作圆周运动,因⽽都有动能.刚体的转动动能等于刚体中所有质点的动能之和.设各质点的质量为Δm 1,Δm 2,Δm 3,…,与转轴的距离为r 1,r 2,r 3,…,线速度为v 1 = r 1ω,v 2 = r 2ω,v 3 = r 3ω,…,则刚体的转动动能为22223322222211k Δ21 Δ21Δ21Δ21ωωωω??=+++=∑i i i r m r m r m r m E 但J r m ii i =∑2Δ为刚体的转动惯量,故E k ⼜可写为2k 21ωJ E =(5-10)即刚体的转动动能等于刚体的转动惯量与⾓速度的平⽅的乘积的⼀半,(5-10)式与平动动能公式2k 21v m E =形式相似,⽽且量纲也相同.⼆、⼒矩的功如图5-11,设绕定轴转动的刚体在外⼒F 作⽤下有⼀⾓位移d θ,⼒F 在垂直于转轴的平⾯上,从转轴到⼒的作⽤点的径⽮为r ,则⼒的作⽤点的位移d r 的⼤⼩为d s = r d θ.根据定义,⼒F 在位移d r 中的功为d W = F · d r = F cos α d s因α与φ互为余⾓,cos α = sin φ,故上式可写为d W = Fr sin φd θ⼜由(5-2)式Fr sin φ = M 为⼒F 对转轴的⼒矩,故⼜可写为图5-10 图5-11d W = M d θ(5-11)这就是⼒矩M 在微⼩⾓位移d θ中的功的公式.当刚体在⼒矩M 作⽤下产⽣⼀有限⾓位移θ时,⼒矩的功等于(5-11)式的积分:=θθ0d M W (5-12)如果⼒矩M 为常量,则θθθθθM M M W ===??00d d (5-13)如果刚体同时受到⼏个⼒作⽤,则(5-11)及(5-12)式中M 应理解为这⼏个⼒的合⼒矩.当外⼒矩对刚体作功时,刚体的转动动能就要变化,下⾯我们来求⼒矩的功与刚体转动动能的变化之间的关系.由转动定律tJ J M d d ωα== 其中M 为作⽤于刚体的合外⼒矩,在d t 时间内刚体的⾓位移为d θ = ωd t ,合外⼒矩的功为ωωωωθd d d d d d J t t J M W =??== 当刚体的⾓速度由ω1变为ω2时,合外⼒矩对刚体所作的功等于上式的积分,即21222121d 21ωωωωωωJ J J W -==? (5-14)上式指出,合外⼒矩对刚体所作的功等于刚体的转动动能的增量.例题5-5 ⼀长为l 质量为m 的均匀细长杆OA ,绕通过其⼀端点O 的⽔平轴在铅垂⾯内⾃由摆动.已知另⼀端点A 过最低点时的速率为v 0,杆对通过端点O ⽽垂直于杆长的轴的转动惯量231ml J =,若空⽓阻⼒及轴上的摩擦⼒都可以忽略不计,求杆摆动时A 点升⾼的最⼤⾼度h .解作⽤于杆的⼒有重⼒m g 及轴对杆的⽀承⼒F N ,⽀承⼒F N 通过O 点,其⼒矩为零.重⼒m g 作⽤于杆的质⼼C ,⼒矩为θsin 2l mg ,当杆沿升⾼⽅向有⾓位移d θ时,由于重⼒矩与⾓位移转向相反.其元功为θθd sin 2d l mg W -= 设θm 为杆的最⼤⾓位移,当杆从平衡位置转到最⼤⾓位移θm 位置时,重⼒矩所作的总功为)cos 1(2d sin 2d m 0m θθθθ--=-==??l mg l mg W W 由图5-12看出,h = l (1-cos θm ),代⼊上式得图5-12mgh W 21-= 杆在平衡位置时的⾓速度l00v =ω,在⾓位移最⼤时的⾓速度0m =ω.由于合外⼒矩的功等于转动动能的增量,故得 20220220613121 21021v v m l m l J m gh W -=??-=-=-=ω由此得 gh 320v = §5-4 绕定轴转动的刚体的⾓动量和⾓动量守恒定律当刚体以⾓速度ω绕定轴转动时,刚体中各质点都绕定轴作圆周运动.设质点P i 的质量为Δm i ,与轴的距离为r i ,线速度的⼤⼩为v i ,则质点P i 的动量的⼤⼩为Δm i v i (图5-13),P i 对转轴的⾓动量为Δm i v i r i .刚体中所有质点的⾓动量之和称为刚体对转轴的⾓动量,⽤L 表⽰,则ωωωJ r m r m r m L i i i i i i i i i i =??===∑∑∑22ΔΔΔv这样,刚体的转动定律可写为tL t J t JM d d d )d(d d ===ωω即 tJ t L M d )d(d d ω== (5-15)可以证明:(5-15)式不但适⽤于绕定轴转动的刚体,⽽且适⽤于绕定轴转动的任意物体或物体系.所不同的是,对于绕定轴转动的刚体来说,转动惯量J 是不变的,但对于绕定轴转动的任意物体或物体系来说,J 是可以变化的.在特殊情形下,如果作⽤于转动物体的合外⼒矩M = 0,则由(5-15)式,我们有L = J ω = 常量(5-16)即当物体所受的合外⼒矩等于零时,物体的⾓动量J ω保持不变,这⼀结论称为⾓动量守恒定律.⾓动量守恒有两种情形:① J 不变的情形,由(5-16)式得知ω亦不变,地球的⾃转差不多是这种情形;② J 是变化的情形,由(5-16)式得知,当J 减⼩时,ω增⼤;当J 增⼤时,ω减⼩.例如⼀⼈坐在可以绕铅直轴⾃由转动的凳⼦上,⼿中握着两个很重的哑铃.当他两臂伸开时,使凳⼦和⼈⼀起转动起来,假设轴承处的摩擦很⼩可以忽略不计,则凳⼦和⼈没有受到外⼒矩作⽤,其⾓动量J ω保持不变(图5-14a).当⼈把两臂收缩时,转动惯量J 减⼩,⾓速度ω就增⼤,即是说⽐两臂伸开时要转得快些(图5-14b).⼜如跳⽔运动员在空中翻筋⽃图5-13时,先把两臂伸直,当他从跳板跳起时使他⾃⼰以某⼀⾓速度绕通过腰部的⼀⽔平轴线转动,在空中时使臂和腿尽量蜷缩起来,以减⼩转动惯量,因⽽⾓速度增⼤,在空中迅速翻转,当他快要接近⽔⾯时,再伸直两臂和腿以增⼤转动惯量,减⼩⾓速度,以便竖直地进⼊⽔中.⾓动量守恒定律,与前⾯介绍过的动量守恒定律和能量守恒定律⼀样,是⾃然界中的普遍规律之⼀,不但适⽤于宏观物体的机械运动,也适⽤于原⼦、原⼦核和基本粒⼦等微观粒⼦的运动.例题5-6 ⼀⽔平放置的圆盘形转台.质量为m ’,半径为R ,可绕通过中⼼的竖直轴转动,摩擦阻⼒可以忽略不计.有⼀质量为m 的⼈站在台上距转轴为2R 处.起初⼈和转台⼀起以⾓速度ω1转动,当这⼈⾛到台边后,求⼈和转台⼀起转动的⾓速度ω2.解以⼈和转台为⼀系统,该系统没有受到外⼒矩作⽤,因此⾓动量守恒:J 1ω1 = J 2ω2 =常量即 22212221421ωω??? ??+'=???? ?+'mR R m R m R m 由此得 12422ωωmm m m +'+'= 思考题5-1 对于定轴转动刚体上的不同点来说,下⾯的物理量中哪些具有相同的值,哪些具有不同的值?线速度、法向加速度、切向加速度、⾓位移、⾓速度、⾓加速度.5-2 飞轮转动时,在任意选取的⾓位移间隔Δθ内,⾓速度的增量Δω相等,此飞轮是在作匀加速转动吗?5-3 作⽤在刚体上的合外⼒为F ,合外⼒矩为M ,举例说明在什么情况下(1) F ≠ 0⽽M = 0;(2) F = 0⽽M ≠ 0;(3) F = 0且M = 0.5-4 当刚体受到若⼲外⼒作⽤时,能否⽤平⾏四边形法先求它们的合⼒,再求合⼒的⼒矩?其结果是否等于各外⼒的⼒矩之和?5-5 在磁带录⾳机中,驱动装置将磁带匀速拉过读写磁头,于是磁带被拉出的⼀端卷带轴上剩余的磁带半径逐渐减⼩,作⽤在该卷带轴上的⼒矩随时间如何变化?该卷带轴的⾓速度随时间如何变化?5-6 如果要设计⼀个存储能量的飞盘,在质量和半径相同的情况下,应该选取质量均匀分布的圆盘形的还是质量集中在边缘的圆环形的呢?当⾓速度相同时,⼆者的转动动能之⽐为多少?图5-145-7 ⼏何形状完全相同的铁圆盘与铝圆盘,哪⼀个绕中⼼对称轴的转动惯量⼤?要使它们由静⽌开始绕轴转动并获得相同的⾓速度,对哪⼀个圆盘外⼒矩要作更多的功?5-8 恒星起源于缓慢旋转的⽓团,在重⼒作⽤下,这些⽓团的体积逐渐减⼩,在恒星尺度收缩的过程中,它的⾓速度如何变化?习题5-1 ⼀个螺丝每厘⽶长度上有20条螺纹,⽤电动螺丝起⼦驱动,在12.8s 内推进了1.37cm ,求螺丝的平均⾓速度.5-2 转盘半径为10.0cm ,以⾓加速度10.0 rad/s 2由静⽌开始转动,当t = 5.00s 时,求(1) 转盘的⾓速度;(2) 转盘边缘的切向加速度和法向加速度.5-3 ⼀个匀质圆盘由静⽌开始以恒定⾓加速度绕过中⼼⽽垂直于盘⾯的定轴转动.在某⼀时刻,转速为10.0 r/s ,再转60转后,转速变为15.0 r/s ,试计算:(1)⾓加速度;(2)由静⽌达到10.0 r/s 所需时间;(3)由静⽌到10.0 r/s 时圆盘所转的圈数.5-4 如图所⽰,半径r 1 = 30.0 cm 的A 轮通过⽪带被半径为r 2 = 75.0 cm 的B 轮带动,B 轮以π rad/s 的匀⾓加速度由静⽌起动,轮与⽪带间⽆滑动发⽣,试求A 轮⾓速度达到3.00×103 r/min 所需要的时间.5-5 在边长为b 的正⽅形的顶点上,分别有质量为m 的四个质点,求此系统绕下列转轴的转动惯量:(1)通过其中⼀质点A ,平⾏于对⾓线BD 的转轴,如图所⽰.(2)通过A 垂直于质点所在平⾯的转轴.5-6 求半径为R ,质量为m 的均匀半圆环相对于图中所⽰轴线的转动惯量.5-7 代换汽车引擎盖密封垫时要求对螺栓的扭矩达到90.0N·m(扭矩过⼤会使密封垫失效),如果使⽤长度为45.0 cm 的扳⼿,如图所⽰,在垂直于扳⼿⼿柄⽅向⽤多⼤的作⽤⼒可以完成这⼀⼯作?5-8 ⽔井上提⽔的辘轳为圆柱形,半径为0.200m ,质量为5.00kg ,辘轳缠绕的轻绳上悬挂的⽔桶质量为3.00kg ,如图所⽰.辘轳失去控制使⽔桶⽆初速地下落,在2.00s 后达到井下⽔⾯,忽略辘轳轴上的摩擦阻⼒,求(1) ⽔桶下落的加速度;(2) 井⼝到⽔⾯的深度;(3) 辘轳的⾓加速度.题5-4图题5-5图题5-6图题5-7图5-9 圆盘形飞轮直径为1.25m ,质量为80.0kg ,飞轮上附着的滑轮半径为0.230m ,质量可以忽略,电动机通过环绕滑轮的⽪带驱动飞轮顺时针旋转,如图所⽰.当飞轮的⾓加速度为1.67rad/s 2时,上段⽪带中的张⼒为135N ,忽略轴上的摩擦阻⼒,求下段⽪带中的张⼒.5-10 制陶旋盘半径为0.500m ,转动惯量为12.0kg·m 2,以转速50.0r/min 旋转.陶⼯⽤湿抹布沿径向施加70.0N 的⼒按住旋盘的边缘,使之在6.00s 内制动,求旋盘的边缘和湿抹布之间的有效滑动摩擦系数.5-11 ⼀轻绳跨过滑轮悬有质量不等的⼆物体A 、B ,如图所⽰,滑轮半径为20.0 cm ,转动惯量等于50.0 kg·m 2,滑轮与轴间的摩擦⼒矩为98.1N·m ,绳与滑轮间⽆相对滑动,若滑轮的⾓加速度为2.36 rad/s 2,求滑轮两边绳中张⼒之差.5-12 如图所⽰的系统中,m 1 = 50.0 kg ,m 2 = 40.0 kg ,圆盘形滑轮质量m = 16.0 kg ,半径R = 0.100 m ,若斜⾯是光滑的,倾⾓为30°,绳与滑轮间⽆相对滑动,不计滑轮轴上的摩擦,(1)求绳中张⼒;(2)运动开始时,m 1距地⾯⾼度为1.00 m ,需多少时间m 1到达地⾯?5-13 飞轮质量为60.0 kg ,半径为0.250 m ,当转速为1.00×103 r/min 时,要在5.00 s 内令其制动,求制动⼒F ,设闸⽡与飞轮间摩擦系数µ = 0.400,飞轮的转动惯量可按匀质圆题5-8图题5-9图题5-11图题5-12图题5-13图题5-15图盘计算,闸杆尺⼨如图所⽰.5-14 ⼀个风扇转速为900 r/min ,当马达关闭后,风扇均匀减速,⽌动前它转过了75转,在此过程中制动⼒作的功为44.4 J ,求风扇的转动惯量和摩擦⼒矩.5-15 如图所⽰,质量为24.0 kg 的⿎形轮,可绕⽔平轴转动,⼀绳缠绕于轮上,另⼀端通过质量为5.00 kg 的圆盘形滑轮悬有10.0 kg 的物体,当重物由静⽌开始下降了0.500 m 时,求:(1)物体的速度;(2)绳中张⼒.设绳与滑轮间⽆相对滑动.5-16 蒸汽机的圆盘形飞轮质量为200 kg ,半径为1.00 m ,当飞轮转速为120 r/min 时关闭蒸汽阀门,若飞轮在5.00 min 内停下来,求在此期间飞轮轴上的平均摩擦⼒矩及此⼒矩所作的功.5-17 长为85.0 cm 的均匀细杆,放在倾⾓为45°的光滑斜⾯上,可以绕过上端点的轴在斜⾯上转动,如图所⽰,要使此杆实现绕轴转动⼀周,⾄少应给予它的下端多⼤的初速度? 5-18 如图所⽰,滑轮转动惯量为0.0100 kg·m 2,半径为7.00 cm ,物体质量为5.00 kg ,由⼀绳与劲度系数k = 200 N/m 的弹簧相连,若绳与滑轮间⽆相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧⽆伸长时,使物体由静⽌⽽下落的最⼤距离;(2)物体速度达最⼤值的位置及最⼤速率. 5-19 圆盘形飞轮A 质量为m ,半径为r ,最初以⾓速度ω0转动,与A 共轴的圆盘形飞轮B 质量为4m ,半径为2r ,最初静⽌,如图所⽰,两飞轮啮合后,以同⼀⾓速度ω转动,求ω及啮合过程中机械能的损失. 5-20 ⼀⼈站在⼀匀质圆板状⽔平转台的边缘,转台的轴承处的摩擦可忽略不计,⼈的质量为m ’,转台的质量为10 m ’,半径为R .最初整个系统是静⽌的,这⼈把⼀质量为m 的⽯⼦⽔平地沿转台的边缘的切线⽅向投出,⽯⼦的速率为v (相对于地⾯).求⽯⼦投出后转台的⾓速度与⼈的线速度.5-21 ⼀⼈站⽴在转台上,两臂平举,两⼿各握⼀个m = 4.00 kg 的哑铃,哑铃距转台轴r 0 = 0.800 m ,起初,转台以ω0 = 2π rad/s 的⾓速度转动,然后此⼈放下两臂,使哑铃与轴相距r = 0.200 m ,设⼈与转台的转动惯量不变,且J = 5.00 kg·m 2,转台与轴间摩擦忽略不计,求转台⾓速度变为多⼤?整个系统的动能改变了多少?5-22 证明刚体中任意两质点相互作⽤⼒所作之功的和为零.如果绕定轴转动的刚体除受到轴的⽀承⼒外仅受重⼒作⽤,试证明它的机械能守恒.5-23 ⼀块长L = 0.500 m ,质量为m =3.00 kg 的均匀薄⽊板竖直悬挂,可绕通过其上端的⽔平轴⽆摩擦地⾃由转动,质量m = 0.100 kg 的球以⽔平速度v 0 = 50.0 m/s 击中⽊板中题5-17图题5-18图题5-19图⼼后⼜以速度v = 10.0 m/s 反弹回去,求⽊板摆动可达到的最⼤⾓度.⽊板对于通过其上端轴的转动惯量为231L m J '= . 5-24 半径为R 质量为m '的匀质圆盘⽔平放置,可绕通过圆盘中⼼的竖直轴转动.圆盘边缘及R /2处设置了两条圆形轨道,质量都为m 的两个玩具⼩车分别沿⼆轨道反向运⾏,相对于圆盘的线速度值同为v .若圆盘最初静⽌,求⼆⼩车开始转动后圆盘的⾓速度.5-25 花样滑冰运动员起初伸展⼿臂以转速1.50r/s 旋转,然后他收拢⼿臂紧靠⾝体,使他的转动惯量减少到原来的3/4,求该运动员此时的转速.5-26 旋转⽊马转盘半径为2.00m ,质量为25.0kg ,假设可视为圆盘形刚体,转速为0.200r/ s ,⼀个质量为80.0kg 的⼈站在转盘边缘.当此⼈⾛到距转轴1.00m 处时,求转盘的⾓速度和⼈和转盘组成的系统转动动能的改变量.。

大学物理力学第五章1刚体、转动定律

大学物理力学第五章1刚体、转动定律
3. 同一方程式中所有量都必须相对同一转轴。
(12)
例1、如图所示,A、B为两个相同的绕着轻绳的定滑
轮.A滑轮挂一质量为M的物体,B滑轮受拉力F,而且
F=Mg.设A、B两滑轮的角加速度分别为βA和β B,
不计滑轮轴的摩擦,则有
(A) β A= β B. (B) β A> β B. (C) β A< β B. (D) 开始时β A= β B,以后β A< β B.
转动惯量的计算
1)定义 J miri2
J r 2dm
i
m
2) 对称的 简单的 查表
3) 平行轴定理
典型的几种刚体的转动惯量
m
m
l
细棒转轴通过中 心与棒垂直
J ml 2 12
l
细棒转轴通过端 点与棒垂直
J ml 2 3
M,R
M,R
o
圆环转轴通过环心与环面垂直
J MR2
薄圆盘转轴通过 中心与盘面垂直
以 m1 为研究对象 m1g T1 m1a 以 m 2 为研究对象 T2 m2a 以 M 为研究对象
(T1 T2 )R J J 1 MR 2 2
m 2 T2 M , R
(1) T1
T1
(2)
m1
m1
M ,R
m1g (3)
T2
m2
T2
T1
补充方程:
a R
(4)
联立方程(1)---(4)求解得
J 1 MR 2 2
m 2r
r l
球体转轴沿直径
J 2mr 2 5
圆柱体转轴沿几何轴
J 1 mr 2 2
转动定律应用举例 解题步骤: 1. 认刚体;
3. 分析力和力矩;

第五章刚体力学参考答案

第五章刚体力学参考答案

第五章 刚体力学参考答案(2014)一、 选择题[C ]1、【基础训练2】一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图5-7所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的X 力 (A)处处相等.(B) 左边大于右边. (C)右边大于左边.(D) 哪边大无法判断.【提示】:逆时针转动时角速度方向垂直于纸面向外,由于m 1<m 2,实际上滑轮在作减速转动,角加速度方向垂直纸面向内,设滑轮半径为R,受右端绳子向下拉力为T 2,左端绳子向下拉力为T 1,对滑轮由转动定律得:(T 2-T 1)R=J β[D ]2、【基础训练3】如图5-8所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大(A) 为41mg cos θ.(B)为21mg tg θ.(C)为mg sin θ.(D)不能唯一确定图5-8【提示】:因为细杆处于平衡状态,它所受的合外力为零,以B 为参考点,外力矩也是平衡的,则有:A B N f =A B f N mg +=θθθlcon N l f lmgA A +=sin sin 2三个独立方程有四个未知数,不能唯一确定。

[ C ]3、基础训练(7)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (B) 不变.(C) 减小. (D) 不能确定.【提示】:把三者看作同一系统时,系统所受合外力矩为零,系统角动量守恒。

设L 为每一子弹相对与O 点的角动量大小,ω0为子弹射入前圆盘的角速度,ω为子弹射入后的瞬间与圆盘共同的角速度,J 为圆盘的转动惯量,J 子弹为子弹转动惯量,据角动量守恒m 2m 1O 图5-7 O Mm m图5-11定律有:00()J L L J J J J J ωωωωω+-=+=<+子弹子弹[ C ]4、【自测提高4】光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图5-19所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 (A)L 32v .(B) L 54v . (C) L 76v . (D) L 98v . (E) L712v .图5-19【提示】:视两小球与细杆为一系统,碰撞过程中系统所受合外力矩为零,满足角动量守恒条件,所以2221[(2)]12lmv lmv ml ml m l ω+=++可得答案(C )[ A ]5、【自测提高7】质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫⎝⎛=R J mR v 2ω,逆时针.(C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针.视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒:0Rmv J ω=-可得2()Rmv mR v J J Rω==。

刚体的定轴转动

刚体的定轴转动

F
F
圆盘静止不动
F 圆盘绕圆心转动
F
力矩可以反映力的作用点的位置对物体运动的影响.
一、力矩
刚体绕Oz轴旋转,力 F作用在刚体上点P,且在转动平面内, 由 点O 到力的作用点P的径矢为 。r
F 对转轴z的力矩
MrF 大小
M F rsin
z
M
Or
d
F
P
Fd
d : 力臂
二、力矩的功
F 力 F 对质元P所做的元功:
角位置: ( t ) 单位:r a d
角速度: d dt
角加速度:
d
dt
d 2
dt2
角量与线量的关系
v a
i it
ri ri
a
in
ri
2
质元
vi
ri mi x
转动平面
固定轴
方向: 右手螺旋方向
刚体定轴转动的转动方向可以用角速度的正负来表示.
z
z
0
0
2 匀变速转动公式 当刚体绕定轴转动的角加速度为恒量时,刚体做匀变速转动.
dW FdrFcosds
cossin
dsrd
d W F r s i n d
又 M F r s in
d W M d
力矩的功 W 2 Md 1
z
d
F dr

rP
y
F
dr
d r
P
o
x
三、转动动能
在刚体上取一质元 p :i
动能:Eki
1 2
mivi2
1 2
mi
ri22
F 对刚体上所有质元的动能求和:
M F d J 1 t 2 2 F2dJt2 126N

《大学物理》第五章刚体的定轴转动

《大学物理》第五章刚体的定轴转动

偏转角为30°。问子弹的初速度为多少。
o
解: 角动量守恒:
30°
mva 1 Ml 2 ma 2
la
3
v
机械能守恒:
1 1 Ml 2 ma 2 2 mga1 cos 30 Mg l 1 cos 30
23
2
v 1 g 2 3 Ml 2ma Ml 2 3ma 2 ma 6
刚体可以看成是很多质元组成的质点系,且在外力 作用下,各个质元的相对位置保持不变。 因此,刚体的运动规律,可通过把牛顿运动定律应 用到这种特殊的质点系上得到。
3
2.刚体的运动
平动:刚体在运动过程中,其上任意两点的连线 始终保持平行。
刚体的平动可看做刚体质心 的运动。
转动:刚体中所有的点都绕同一直线做圆周运动. 转动又分定轴转动和非定轴转动 .
r2dm
L
r2 dl
L
(线质量分布)
12
3 平行轴定理
如果刚体的一个轴与过质 心轴平行并相距d,则质量 为 m 的刚体绕该轴的转动 惯量,等于刚体绕过质心 轴的转动惯量与 md2 之和:
J z Jc md 2
请同学们自己证明平行轴定理的。
提示:利用余弦定理 ri2 ri '2 d 2 2dxi 13
hc hi
若A外+ A内非=0
Ep=0
则Ek +Ep =常量。
例13 一均质细杆可绕一水平轴旋转,开始时处于 水平位置,然后让它自由下落。求: ( )
解 方法一 动能定理
M mg L cos
2
W
Md
mg
L cosd
0
0
2
mg L sin
2
θ

第五章刚体定轴转动

第五章刚体定轴转动

(1
cos
)
1
JHale Waihona Puke 2232arc cos(1
3 4m2l 2
)
例 题 14
14、如图所示,滑轮转动惯量为0.5kg·m2,半径为0.3m,
物体质量为60kg,由绳与倔强系数k=2000N/m的弹簧相
连,若绳与滑轮间无相对滑动, 滑轮轴上的摩擦忽略不计,假设 开始使物体静止而弹簧无伸长。 求:物体下落h=0.4m时的速率 是多大。
v
2
mgl sin 30
0
2 2 2 r
解得: v 2.15m / s
(2)当物体沿斜面下滑到最大距离时,系统静止
kL2 mgL sin 30 2
解得: L 3.16m
Mr ]
R
T
T
a
mg
例题6
6、如图所示,轻绳跨过半径为R具有水平光滑轴、质量 为M的定滑轮;绳的两端分别悬有质量为m1和m2物体 (m1<m2),绳与轮之间无相对滑动,滑轮轴处的摩擦不 计;设开始时系统静止,求滑轮的角加速度α及物体的
加速度a ?
M
R
m2 m1
解:受力分析如图, m1、m2利用牛顿第二定律:
m2 )r2 2
例题9
9、如图所示,质量为m,长为l的均匀细杆,可绕一端 光滑的水平轴在竖直面内转动( J 1 ml 2),求(1)杆
从水平位置摆下角 ( < 90 o ) 时的角速3 度(分别用转动
定律和机械能守恒定律求解)?(2)细杆的长度缩小 一半时,角速度的大小如何变化?
0
解:(1)方法一:杆、地球组成的系统在下落过程机
第五章 刚体定轴转动 教学基本要求 基本概念 例题分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1) 刚体转动惯性大小的量度 2) 转动惯量与刚体的质量有关 3) J 在质量一定的情况下与质量的分布有关 4) J与转轴的位置有关
18/41
二、定轴转动刚体的角动量守恒
由质点系的角动 量定理
t2
d J dLz M z(轴) M z(轴) dt dt
2
积分

t1
M 轴 dt
dLz d( J z ) Mz J z dt dt 转动定律:刚体绕定轴转动时,刚体的角加速 度与它所受的合外力矩成正比,与刚体的转动 惯量成反比。
L J
J mi ri
2
25/41
纸风车
电风扇
没事!
不敢!
MZ JZ
M
M
如一个外径和质量相同的实心圆柱与空心圆筒,若 受 26/41 力和力矩一样,谁转动得快些呢?
二、转动惯量的计算
J mi ri
i 2
称为刚体对转轴的转动惯量
对质量连续分布刚体

J r dm
2
线分布 dm dx 是质量的线密度 面分布 dm σds 是质量的面密度 体分布 dm dV 是质量的体密度
27/41
例:
一均匀细棒长 l 质量为 m
求: ?
解: 对M+m系统 O
l
M 轴外 0
系统角动量守恒
M
1 mv0l mvl Ml 2 3 v l 3m v0 3m M l
m v0
? v
24/41
一、刚体的转动定律
5.5
定轴 转动 刚体 的转 动定 同一转轴、地位(质点动力学牛顿第二定律) 律 M 外 J 刚体定轴转动定律 转动 中的 牛顿第二定律 F外 ma J 与 m 功和 对应 刚体的角动量 能
d d 2 lim 2 t 0 t dt dt
z θ
三、角量与线量的关系
dS r d
切向分量
刚体定轴转动
a
d d a r r dt dt
r
2
r
法向分量
an
r 2
15/41
刚体:质元之间没有相对运动的特殊的质点系。 dLz dL 定轴 质点系角动量定理 M , M z dt dt
J ZZ constant ( M Z 0)
19/41
注意:1)对一般的刚体运动,该定理对通过质心的 转轴的转动也是成立的。即合外力对通过质心的轴 的力矩恒为零时,则对该轴的角动量守恒。
J C1 J C2
( M C 0)
C
C

F F
F
mg
C

C

C
常平架陀螺仪
dL 质点的角动量定理 M dt
质点对某固定点所受的合外力矩等于它对该点角动量 的时间变化率。 6/41
dL 三、质点的角动量守恒定律 M dt 分析质点的角动量定理 dL 0 或 L 常矢量 若 M外 0 则
dt
若对某一固定点,质点所受合外力矩为零, 则 质点对该固定点的角动量矢量保持不变。 例:质点做匀速直线运动中, 对O点角动量是否守恒? O LO r m r LO r m sin r m
13/41
A
B
3、刚体的一般运动
C
o
B A A A C
一个汽车轮子在 地上的滚动 A、B、C、…各点 的运动都不相同
C
C
o
B
o
B
o o轮子的平动
刚体的运动=平动+转动
B
o
A
C
绕过o 轴的转动
14/41
二、用角量描述转动
1、角位移θ 在 t 时间内刚体转动角度 d lim 2、角速度 t 0 t dt 3、角加速度
2/41
一、角动量的定义
L
p
L r p r m
称为一个质点对参考点O的 质点角动量或质点动量矩
m r
O
L rp sin mr sin
3/41
几点说明 L r p r m
p
L
r
m O 1. 角动量是矢量,单个质点的角 动量是 r 和 p 的矢积,因而既 垂直于 r,又垂直于 p,即垂直 于 r 和 p 所确定的平面,其指 向由右手定则决定。 2. 角动量是相对给定的参考点定义的,且参考点 在所选的参考系中必须是固定点,对不同的参 考点体系的角动量是不同的。通常我们把参考 点取为坐标原点,这时的角动量的定义才如上 式所示。 3. 角动量的单位是千克· 米2 /秒,量纲为 ML2T -1
rc mi i [ri ' mic ] [ri ' mi i ']
i i
' [( r r c i ) mi i ]
i c i '
[r ' m ] [ m r '] mrc' c 0
i i c i i c i i
p
只有分力F2才对刚体的转动状态 有影响。 M=F2 d 刚体内力矩
r
F2
P
d
f
f’ 17/41
2、刚体的角动量
刚体由多质点组成,转速为ω, 对于质点i,质量为△mi
Lz= Lzi ri mi ri mi ri J z
2
转动惯量的物理意义:
J z mi ri 2
Z1
1) 轴 z1 过棒的中心且垂直于棒 2) 轴 z2 过棒一端且垂直于棒 求: 上述两种情况下的转动惯量 解: 棒质量的线密度
11/41
一、刚体运动 1、平动
平动是刚体的一种基本运动形式, 刚体做平动时,刚体上所有点运动都相 同,可用其上任何一点的运动来代表整 体的运动。
当刚体中所有点的运动轨迹都保持 完全相同时,或者说刚体内任意两 点间的连线总是平行于它们的初始 位置间的连线时,刚体的运动叫作 平动。
2、转动
刚体中所有的点都绕同一条直 线作圆周运动,这种运动称为 转动。这条直线叫作转轴。
4/41
例:自由下落质点的角动量 (1) 对 A 点的角动量
o
R
A
r
1 2 任意时刻 t, 有 r 2 g t
r
m
p m mgt 3 1 LA r p 2 mt g g 0
m
(2) 对 O 点的角动量 LO r p ( R r ) p R p R mgt
f ji
Fj
M外
ri Fi
i
i
i j
M内 ( ri f ij ) 0
M外
dL dt
M 外 0 时 L Li 常矢量
i
i
i j
质点系的角动量定理
质点系的角动量守恒 10/41
5.3
刚 体 的 定 轴 转 动
如果需要研究物体的转动,就不能 忽略它的形状和大小而把它简化为质点 来处理。但如果物体的形状和转动不能 忽略,而形变可以忽略, 我们就得到实 际物体的另外一个抽象模型 —— 刚体 (rigid body),即形状和大小完全不变的 物体。刚体的这一特点使刚体力学不同 于一般的质点组力学,刚体力学问题虽 不是每个都能解决,但有不少是能够解 决的。于是我们定义:刚体是这样一种 质点组,组内任意两质点间的距离保持 不变。

20/41
2)角动量守恒定理不仅对刚体成立而且对非刚 体也成立。 一般有三种情况: A:J不变,也不变,保持匀速转动。(常 平架上的回转仪)。 B:J发生变化,但J不变,则要发生改 变。

F


F
21/41
C:开始不旋转的物体,当其一 部分旋转时,必引起另一部分 朝另一反方向旋转。 Ⅰ、芭蕾舞演员的高难动作
12/41
瞬时转轴: 转轴随时间变化 —— 一般转动 固定转轴: 转轴不随时间变化—— 刚体定轴转动 定轴转动的特点: •各质点都作圆周运动; •各质点圆周运动的平面垂直于 轴线,圆心在轴线上; •各质点的矢径在相同的时间内 转过的角度相同。
z ω ,α v r P θ
r 刚体 O×
定轴
参 考 方 向
第五章
5.1 5.2 5.3
质点的角动量 刚体的定轴转动
角动量定理
质点系的角动量定理
角动 量
5.4
5.5
定轴转动刚体的角动量定理
转动定理 功和能
5.6
角动 量守 恒定 律
刚体的进动
5.1
质点 系的 角动 量
角动 量定 理
在描述转动的问题时,我们需要引 进另一个物理量——角动量。这一概念 在物理学上经历了一段有趣的演变过程。 18世纪在力学中才定义和开始利用它, 直到 19世纪人们才把它看成力学中的最 基本的概念之一,到 20世纪它加入了动 量和能量的行列,成为力学中最重要的 概念之一。角动量之所以能有这样的地 位,是由于它也服从守恒定律,在近代 物理学中其运用是极为广泛的。
D:实际中的一些现象


高!
高!
'
艺术美、人体美、物理美相互结合
22/41
Ⅱ当滑冰、跳水、体操运动员在空中为了迅速
翻转也总是曲体、减小转动惯量、增加角速 度。当落地时则总是伸直身体、增大转动惯 量、使身体平稳落地。
Ⅲ、直升飞机后面的螺旋浆
23/41
已知: 匀质杆M 长 l 子弹m 水平速度 v0 射入不出来
例: 当 Mx = 0,则 Lx = 常量
8/41
5.2 一、质点系的角动量
相关文档
最新文档