全等三角形巩固练习
青岛版数学 八年级上册 第一章-全等三角形 巩固练习(解析版)
青岛版数学-八年级上册-第一章-全等三角形 -巩固练习一、单选题1.如图,在AABC和ABDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于( )A. ∠EDBB. ∠BEDC. ∠AFBD. 2∠ABF2.如图,坐标平面上,△ABC≌△DEF,其中A、B、C的对应顶点分别为D,E,F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点的纵坐标都是﹣3,D、E两点在y轴上,则点F到y轴的距离为()A. 2B. 3C. 4D. 53.下列图形中有稳定性的是()A. 平行四边形B. 直角三角形C. 长方形D. 正方形4.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A. 1B. 2C. 3D. 45.下面两个三角形中,一定全等的是()A. 两个等边三角形B. 有一个角是95°,且底相等的两个等腰三角形C. 两腰相等的两个等腰三角形D. 斜边相等的两个直角三角形6.如图,∠ACB=90°,CD⊥AB,垂足为点D,下列结论错误的是()A. ∠A=∠2B. ∠1和∠B都是∠A的余角C. ∠1=∠2D. 图中有3个直角三角形7.如图所示,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A. 2B. 3C. 5D. 2.58.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A. B. 4 C. D.9.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()A. SASB. ASAC. SSSD. HL二、填空题10.如图,已知∠ACB=∠DBC,请添加一个条件________,使得△ABC≌△DCB.11.如图,方格纸中△ABC的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC全等的格点三角形共有________个(不含△ABC).12.如图,小敏做了一个角平分仪ABCD,其中,,将仪器上的点A与的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是的平分线此角平分仪的画图原理是:根据仪器结构,可得≌,这样就有则说明这两个三角形全等的依据是________13.如图,某同学把三角形玻璃打碎三块,现在他要去配一块完全一样的,你帮他想一想,带________片去,应用的原理是________(用字母表示).14.△ABC≌△DEF,且△ABC的周长为12,若AB =3,EF =4,则AC= ________。
《全等三角形》全章复习与巩固(提高)巩固练习
【巩固练习】一.选择题1.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=().A.150° B.210° C.105° D.75°2.(2016•济南校级一模)如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A.∠B=∠E,BC=EF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF3. 下列四个命题中,属于真命题的是().A.互补的两角必有一条公共边B.同旁内角互补C.同位角不相等,两直线不平行D.一个角的补角大于这个角4.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为(). A. 1 B. 2 C. 5 D. 无法确定5. 如图,在△ABC中,分别以点A和点B为圆心,大于的12AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为().A.7B.14C.17D.206. 如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则BD的长为().A.1 B.1.5 C.2 D.2.57.如图,在△ABC中,∠B=36°,∠C=72°,AD平分∠BAC交BC于点D.下列结论中错误的是()A.图中共有三个等腰三角形 B.点D在AB的垂直平分线上C.AC+CD=AB D.BD=2CD8. 用尺规作图“已知底边和底边上的高线,作等腰三角形”,有下列作法:①作线段BC=a;②作线段BC的垂直平分线m,交BC于点D;③在直线m上截取DA=h,连接AB、AC.这样作法的根据是().A.等腰三角形三线合一 B.等腰三角形两底角相等C.等腰三角形两腰相等 D.等腰三角形的轴对称性二.填空题9. 如图,△ABC中,AM平分∠CAB,CM=20cm,那么M到AB的距离是_________cm.10. 如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC=________.11.如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为1,则OE+OF的值为.12.如图所示,在△ABC中,AB=AC,点O在△ABC内,•且∠OBC=∠OCA,∠BOC=110°,则∠A的度数为________.13.如图,Rt△ABC中,∠B=90°,若点O到三角形三边的距离相等,则∠AOC=_________.14.一个等腰三角形的一条高等于腰长的一半,则这个等腰三角形的底角的度数是 .15.如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.16. (2016•抚顺)如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C运动,当OP=CD时,点P的坐标为.三.解答题17.如图所示,已知在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC.18.已知:如图,在△ABC中,AB=AC,∠BAC=30°.点D为△ABC内一点,且DB=DC,∠DCB=30°.点E为BD延长线上一点,且AE=AB.(1)求∠ADE的度数;(2)若点M在DE上,且DM=DA,求证:ME=DC.19.阅读下面材料:学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.小聪想:要想解决问题,应该对∠B进行分类研究.∠B可分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当∠B是直角时,如图1,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据“HL”定理,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是锐角时,如图2,BC=EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则△ABC和△DEF的关系是;A.全等 B.不全等 C.不一定全等第三种情况:当∠B是钝角时,如图3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°,求证:△ABC≌△DEF.20.已知:△ABC中,AD平分∠BAC交BC于点D,且∠ADC=60°.问题1:如图1,若∠ACB=90°,AC=m AB,BD=n DC,则m的值为_________,n的值为__________.问题2:如图2,若∠ACB为钝角,且AB>AC,BD>DC.(1)求证:BD-DC<AB-AC;(2)若点E在AD上,且DE=DB,延长CE交AB于点F,求∠BFC的度数.【答案与解析】一.选择题1. 【答案】A;【解析】∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A =∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°-75°=105°,∴∠1+∠2=360°-2×105°=150°.2. 【答案】D;【解析】(1)△ABC≌△DEF(SAS);故A正确;(2)△ABC≌△DEF(SSS);故B 正确;(3)△ABC≌△DEF(ASA);故C正确;(4)无法证明△ABC≌△DEF,故D错误.3. 【答案】C;【解析】答案A是假命题,因为互补的两角不一定有一条公共边;答案B是假命题,同旁内角不一定互补,在两直线平行的前提下,同旁内角互补;答案C是真命题;答案B是假命题,一个角的补角不一定大于这个角,也可能小于或等于这个角.4. 【答案】A;【解析】因为知道AD的长,所以只要求出AD边上的高,就可以求出△ADE的面积.过D 作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,构造出Rt△EDF≌Rt△CDG,求出GC的长,即为EF的长,然后利用三角形的面积公式解答即可.5. 【答案】C;【解析】首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,则可求得△ABC的周长.6. 【答案】A;【解析】延长BD交AC于E,由题意,BC=CE=3,AE=BE=5-3=2,且BD=DE=1BE=1.27. 【答案】D;【解析】解:A、在△ABC中,∠B=36°,∠C=72°,∴∠BAC=180°﹣36°﹣72°=72°,∵AD平分∠BAC,∴∠DAC=∠DAB=36°,即∠DAB=∠B,∠BAC=∠C,∠ADC=36°+36°=72°=∠C,∴△ADB、△ADC、△ABC都是等腰三角形,故本选项错误;B、∵∠DAB=∠B,∴AD=BD,∴D在AB的垂直平分线上,故本选项错误;C、在AB上截取AE=AC,连接DE,在△EAD和△CAD中∴△EAD≌△CAD,∴DE=DC,∠C=∠AED=72°,∵∠B=36°,∴∠EDB=72°﹣36°=36°=∠B,∴DE=BE,即AB=AE+BE=AC+CD,故本选项错误;D、∵CD=DE=BE,DE+BE>BD,∴BD<2DC,故本选项正确;故选D.8. 【答案】A;解析】易证∴△EFA≌△ABG得AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,故S=12(6+4)×16-3×4-6×3=50.二.填空题9. 【答案】20;【解析】过M作MD⊥AB于D,可证△ACM≌△ADM,所以DM=CM=20cm.10.【答案】45°;【解析】Rt△BDH≌Rt△ADC,BD=AD.11.【答案】1;【解析】连接AO,△ABO的面积+△ACO的面积=△ABC的面积,所以OE+OF=等边三角形的高.12.【答案】40°;【解析】∵AB=AC,所以∠ABC=∠ACB,又∵∠OBC=∠OCA,∴∠ABC+∠ACB=2(∠OBC+∠OCB),∵∠BOC=110°,∴∠OBC+∠OCB=70°,∴∠ABC+∠ACB=140°,∴∠A=180°-(∠ABC+∠ACB)=40°.13.【答案】135°;【解析】点O为角平分线的交点,∠AOC=180°-12(∠BAC+∠BCA)=135°.14. 【答案】30°或75°或15°;【解析】根据不同边的高分类讨论.15.【答案】15;【解析】因为六边形ABCDEF的六个内角都相等为120°,每个外角都为60°,向外作三个三角形,进而得到四个等边三角形,如图,设AF=x,EF=y,则有x+1+3=x+y+2=3+3+2=8所以x=4,y=2,六边形ABCDEF的周长=1+3+3+2+2+4=15.16.【答案】(2,4)或(4,2);【解析】①当点P 在正方形的边AB 上时,Rt △OCD ≌Rt △OAP ,∴OD=AP ,∵点D 是OA 中点,∴OD=AD=OA ,∴AP=AB=2,∴P (4,2),②当点P 在正方形的边BC 上时,同①的方法,得出CP=BC=2,∴P (2,4). 三.解答题 17.【解析】证明:如图所示,在AC 上取点F ,使AF =AE ,连接OF ,在△AEO 和△AFO 中,,12,AE AF AO AO =⎧⎪∠=∠⎨⎪=⎩∴ △AEO ≌△AFO (SAS ). ∴ ∠EOA =∠FOA . ∵ ∠B =60°,∴ ∠AOC =180°-(∠OAC +∠OCA)=180°-12(∠BAC +∠BCA) =180°-12(180°-60°)=120°.∴ ∠AOE =∠AOF =∠COF =∠DOC =60°.在△COD 和△COF 中,,,,COD COF OC OC OCD OCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △COD ≌△COF (ASA ). ∴ CD =CF .∴ AE +CD =AF +CF =AC .18.【解析】 解:(1)如图.∵△ABC 中,AB =AC ,∠BAC =30°,∴∠ABC =∠ACB =(18030)2-÷=75°.∵DB =DC ,∠DCB =30°, ∴∠DBC =∠DCB =30°.∴∠1=∠ABC -∠DBC =75°-30°=45°. ∵AB =AC ,DB =DC ,∴AD 所在直线垂直平分BC . ∴AD 平分∠BAC . ∴∠2=21∠BAC = 3021 =15°. ∴∠ADE =∠1+∠2 =45°+15°=60°.(2)证明:连接AM ,取BE 的中点N ,连接AN .∵△ADM 中,DM =DA ,∠ADE =60°, ∴△ADM 为等边三角形.∵△ABE 中,AB =AE ,N 为BE 的中点, ∴BN =NE ,且AN ⊥BE . ∴DN =NM .∴BN -DN =NE -NM , 即 BD =ME . ∵DB =DC , ∴ME =DC . 19.【解析】解:第二种情况:如图1所示:以F 为圆心,AC 长为半径画弧,交射线EM 于D 、D′; 则DF=D′F=AC,△DEF≌△ABC,△D′EF 和△ABC 不全等; 故选:C ; 第三种情况:证明:如图2所示:过点C 作CG⊥AB 交AB 的延长线于点G , 过点F 作DH⊥DE 交DE 的延长线于点H , ∵∠B=∠E,∴180°﹣∠B=180°﹣∠E, 即∠CBG=∠FEH, 在△CBG 和△FEH 中,,∴△CBG≌△FEH(AAS ), ∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS).20.【解析】证明:问题1:21,2 ;问题2:(1)在AB上截取AG,使AG=AC,连接GD.(如图)∵AD平分∠BAC,∴∠1=∠2.在△AGD和△ACD中,AG AC12A D AD⎧⎪∠∠⎨⎪⎩===∴△AGD≌△ACD.∴DG=DC.∵△BGD中,BD-DG<BG,∴BD-DC<BG.∵BG= AB-AG= AB-AC,∴BD-DC<AB-AC.(2)∵由(1)知△AGD≌△ACD,∴GD=CD,∠4 =∠3=60°.∴∠5 =180°-∠3-∠4=180°-60°-60°=60°.∴∠5 =∠3.在△BGD和△ECD中,53DB DEDG DC=⎧⎪∠∠⎨⎪=⎩=,∴△BGD≌△ECD.∴∠B =∠6.∵△BFC中,∠BFC=180°-∠B-∠7 =180°-∠6-∠7 =∠3,∴∠BFC=60°.。
八年级数学—全等三角形判定一(SSS,SAS)(基础)巩固练习【名校试题+详细解答】
【巩固练习】一、选择题1. △ABC 和△'''A B C 中,若AB =''A B ,BC =''B C ,AC =''A C .则( )A.△ABC ≌△'''A C BB. △ABC ≌△'''A B CC. △ABC ≌△'''C A BD. △ABC ≌△'''C B A2. 如图,已知AB =CD ,AD =BC ,则下列结论中错误的是( )A.AB ∥DCB.∠B =∠DC.∠A =∠CD.AB =BC3. 下列判断正确的是( )A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4. 如图,AB 、CD 、EF 相交于O ,且被O 点平分,DF =CE ,BF =AE ,则图中全等三角形的对数共有( )A. 1对B. 2对C. 3对D. 4对5. 如图,将两根钢条'AA ,'BB 的中点O 连在一起,使'AA ,'BB 可以绕着点O 自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△OAB ≌△''OA B 的理由是( )A.边角边B.角边角C.边边边D.角角边6. 如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,AB =CD ,BC =ED ,以下结论不正确的是( )A.EC ⊥ACB.EC =ACC.ED +AB =DBD.DC =CB二、填空题7. 如图,AB =CD ,AC =DB ,∠ABD =25°,∠AOB =82°,则∠DCB =_________.8. 如图,在四边形ABCD中,对角线AC、BD互相平分,则图中全等三角形共有_____对.9. 如图,在△ABC和△EFD中,AD=FC,AB=FE,当添加条件_______时,就可得△ABC≌△EFD(SSS)10. 如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11. 如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=_______.12. 已知,如图,AB=CD,AC=BD,则△ABC≌,△ADC≌ .三、解答题13. 已知:如图,四边形ABCD中,对角线AC、BD相交于O,∠ADC=∠BCD,AD=BC,求证:CO=DO.14. 已知:如图,AB ∥CD ,AB =CD .求证:AD ∥BC .分析:要证AD ∥BC ,只要证∠______=∠______,又需证______≌______.证明:∵ AB ∥CD ( ),∴ ∠______=∠______ ( ),在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ).∴ ∠______=∠______ ( ).∴ ______∥______( ).15. 如图,已知AB =DC ,AC =DB ,BE =CE 求证:AE =DE.【答案与解析】一.选择题1. 【答案】B ;【解析】注意对应顶点写在相应的位置.2. 【答案】D ;【解析】连接AC 或BD 证全等.3. 【答案】D ;4. 【答案】C ;【解析】△DOF ≌△COE ,△BOF ≌△AOE ,△DOB ≌△COA.5. 【答案】A ;【解析】将两根钢条'AA ,'BB 的中点O 连在一起,说明OA ='OA ,OB ='OB ,再由对顶角相等可证.6. 【答案】D ;【解析】△ABC ≌△EDC ,∠ECD +∠ACB =∠CAB +∠ACB =90°,所以EC ⊥AC ,ED +AB =BC +CD =DB.二.填空题7. 【答案】66°;【解析】可由SSS 证明△ABC ≌△DCB ,∠OBC =∠OCB =82412︒=︒, 所以∠DCB = ∠ABC =25°+41°=66°8. 【答案】4;【解析】△AOD ≌△COB ,△AOB ≌△COD ,△ABD ≌△CDB ,△ABC ≌△CDA.9. 【答案】BC =ED ;10.【答案】56°;【解析】∠CBE =26°+30°=56°.11.【答案】20°;【解析】△ABE ≌△ACD (SAS )12.【答案】△DCB ,△DAB ;【解析】注意对应顶点写在相应的位置上.三.解答题13.【解析】证明:在△ADC 与△BCD 中,,,,DC CD ADC BCD AD BC =⎧⎪∠=∠⎨⎪=⎩()...ADC BCD SAS ACD BDC OC OD ∠=∠=∴△≌△∴∴14. 【解析】3,4;ABD ,CDB ;已知;1,2;两直线平行,内错角相等;ABD ,CDB ;AB ,CD ,已知;∠1=∠2,已证;BD =DB ,公共边;ABD ,CDB ,SAS ;3,4,全等三角形对应角相等;AD ,BC ,内错角相等,两直线平行.15.【解析】证明:在△ABC 和△DCB 中D C BAAB DC AC DB BC =CB ⎧⎪⎨⎪⎩==∴△ABC ≌△DCB (SSS ) ∴∠ABC =∠DCB , 在△ABE 和△DCE 中ABC DCB AB DC BE CE =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△DCE (SAS ) ∴AE =DE.。
2020年秋人教版八年级数学上册随课练12.2 三角形全等的判定巩固练习
12.2 三角形全等的判定巩固练习一、选择题1.如图,已知AE=AC,∠C=∠E,下列条件中,无法判定△ABC≌△ADE 的是()A.∠B=∠DB.BC=DEC.∠1=∠2D.AB=AD2.如图,△ABC中,∠C=90°,E是AC上一点,连接BE,过E作DE⊥AB,垂足为D,BD=BC,若AC=6cm,则AE+DE的值为()A.4cmB.5cmC.6cmD.7cm3.测量河两岸相对的两点A,B的距离时,先在AB的垂线BF上取两点C,D,使CD=BC,再过点D画出BF的垂线DE,当点A,C,E在同一直线上时,可证明△EDC≌△ABC,从而得到ED=AB,则测得ED的长就是两点A,B的距离.△EDC≌△ABC的依据是()A.“边边边”B.“角边角”C.“全等三角形定义”D.“边角边”4.下列条件能判定△ABC≌△DEF的一组是()A.∠A=∠D,∠B=∠E,∠C=∠FB.AB=DE,BC=EF,∠A=∠DC.∠A=∠D,∠C=∠F,AC=DFD.△ABC的周长等于△DEF的周长5.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS.下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中,正确的有()A.1个B.2个C.3个D.4个6.如图,CA=CB,AD=BD,M、N分别为CA、CB的中点,∠ADN=80°,∠BDN=30°,则∠CDN的度数为()A.40°B.15°C .25°D .30°7.已知,如图,在△ABC 中,D 为BC 边上的一点,延长AD 到点E ,连接BE 、CE ,∠ABD+12∠3=90°,∠1=∠2=∠3,下列结论:①△ABD 为等腰三角形;②AE=AC ;③BE=CE=CD ;④CB 平分∠ACE .其中正确的结论个数有( )A .1个B .2个C .3个D .4个 8.如图,在等腰△ABC 中,90ACB ︒∠=,8AC =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =,连接DE 、DF 、EF 在此运动变化的过程中,下列结论:(1)△DEF 是等腰直角三角形;(2)四边形CDFE 不可能为正方形,(3)DE 长度的最小值为4;(4)连接CF ,CF恰好把四边形CDFE 的面积分成1:2两部分,则CE =13或143其中正确的结论个数是A .1个B .2个C .3个D .4个 9.如图,点E ,点F 在直线AC 上,AE=CF ,AD=CB ,下列条件中不能判断△ADF ≌△CBE 的是( )A.AD∥BCB.BE∥DFC.BE=DFD.∠A=∠C10.如图,已知:在△AFD和△CEB,点A、E、F、C在同一直线上,在给出的下列条件中,①AE=CF,②∠D=∠B,③AD=CB,④DF∥BE,选出三个条件可以证明△AFD≌△CEB的有()组.A.4B.3C.2D.111.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED 的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论为()A.①②③B .①②④C .②③④D .①②③④二、填空题12.如图,90,,E F B C AE AF ∠=∠=︒∠=∠=给出下列结论:①EM FN =;②CD DN =;③12∠=∠;④△ACN ≌△ABM .其中正确的有_______(填写答案序号).13.如图,以△ABC 的顶点A 为圆心,以BC 长为半径作弧,再以顶点C为圆心,以AB 长为半径作弧,两弧交于点D ;连接AD 、CD ,若∠B=56°,则∠ADC 的大小为 度.14.将一副三角板按如图所示的方式摆放,其中△ABC 为含有45°角的三角板,直线AD 是等腰直角三角板的对称轴,且斜边上的点D 为另一块三角板DMN 的直角顶点,DM 、DN 分别交AB 、AC 于点E 、F .则下列四个结论:①BD =AD =CD ;②△AED ≌△CFD ;③BE +CF =EF ;④S 四边形AEDF =14BC 2.其中正确结论是_____(填序号).15.如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为.16.如图,把两根钢条AB,CD的中点连在一起做成卡钳,可测量工件内槽的宽,已知AC的长度是6cm,则工件内槽的宽BD是cm.三、解答题17.(阅读理解)课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是_____.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是______.A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7(感悟)解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(问题解决)(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.18.如图,在△ABE和△DCF中,B、E、C、F共线,AB∥CD,AB=CD,BF=CE,求证:AE=DF.19.如图,在△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H,AE=BE.试说明:(1)△AEH≌△BEC.(2)AH=2BD.20.在△ABC中,AB=AC,点D是射线CB上的一个动点(不与点B,C 重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).21.如图AB=AD,AC=AE,∠BAE=∠DAC.求证:(1)∠C=∠E;(2)AM=AN.22.如图,在△ABC中,AD⊥BC,垂足为D,AD=CD,点E在AD上,DE=BD,M、N分别是AB、CE的中点.(1)求证:△ADB≌△CDE;(2)求∠MDN的度数.答案1.D2.C3.B4.C5.D6.C7.C8.A9.B10. C11. D12. ①③④13. 56°14. ①②15. 18或7016. 617. (1)解:在△ADC 和△EDB 中AD DE ADC BDE BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△EDB(SAS),故选:B ;(2)解:如图:∵由(1)知:△ADC ≌△EDB ,∴BE =AC =6,AE =2AD ,∵在△ABE 中,AB =8,由三角形三边关系定理得:8﹣6<2AD <8+6, ∴1<AD <7,故选:C.(3)延长AD 到M ,使AD =DM ,连接BM ,∵AD 是△ABC 中线,∴CD =BD ,∵在△ADC 和△MDB 中DC DB ADC MDB DA DM =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△MDB ,∴BM =AC ,∠CAD =∠M ,∵AE =EF ,∴∠CAD =∠AFE ,∵∠AFE =∠BFD ,∴∠BFD =∠CAD =∠M ,∴BF =BM =AC ,即AC =BF.18. ∵AB ∥CD ,∴∠B=∠C ,∵BF=CE ,∴BF-EF=CE-EF ,即BE=CF ,在△ABE 和△DCF 中,∴△ABE ≌△DCF (SAS ),∴AE=DF .19. (1)∵AD ⊥BC ,∴∠DAC+∠C=90°,∵BE ⊥AC ,∴∠EBC+∠C=90°,∴∠DAC=∠EBC ,在△AEH 与△BEC 中,∴△AEH ≌△BEC (ASA );(2)∵△AEH ≌△BEC ,∴AH=BC ,∵AB=AC ,AD ⊥BC ,∴BC=2BD ,∴AH=2BD .20. 解:(1) 90 度.∠DAE =∠BAC ,所以∠BAD =∠EAC,AB=AC,AD=AE ,所以ABD ≅ACE,所以∠ECA=∠DBA ,所以∠ECA =90°. (2)① αβ180+=︒.理由:∵∠BAC =∠DAE ,∴∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE,又AB=AC ,AD=AE ,∴△ABD ≌△ACE ,∴∠B=∠ACE .∴∠B +∠ACB =∠ACE+∠ACB ,∴B ACB DCE β∠∠∠+==.∵αB ACB 180∠∠++=︒, ∴αβ180+=︒.(3)补充图形如下, αβ=.21.(1)∵∠BAE=∠DAC,∴∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(SAS),∴∠C=∠E;(2)∵△ABC≌△ADE,∴∠B=∠D,在△ABM和△ADN中,∴△ABM≌△ADN(ASA),∴AM=AN.22.(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,在△ABD与△CDE 中,∵AD=CD,∠ADB=∠ADC,DB=DE,∴△ABD≌△CDE;(2)解:∵△ABD≌△CDE,∴∠BAD=∠DCE,∵M、N分别是AB、CE 的中点,∴AM=DM,DN=CN,∴∠MAD=∠MDA,∠NCD=∠NDC,∴∠ADM=∠CDN,∵∠CDN+∠ADN=90°,∴∠ADM+∠ADN=90°,∴∠MDN=90°。
华东师大初中数学八年级上册《全等三角形》全章复习与巩固(基础)巩固练习
【巩固练习】一.选择题1. 下列说法中不正确的是( ).A.等边三角形是轴对称图形B.若两个图形的对应点连线都被同一条直线垂直平分,则这两个图形关于这条直线对称 △C.若 ABC ≌ △A 1B 1C 1 ,则这两个三角形一定关于一条直线对称 D.直线 MN 是线段 AB 的垂直平分线,若 P 点使 PA =PB ,则点 P 在 MN 上,若 P 1A ≠P 1B ,则 P 1 不在 MN 上2. 下列语句中,属于命题的是( ).A.直线 AB 和 CD 垂直吗B.过线段 AB 的中点 C 画 AB 的垂线C.同旁内角不互补,两直线不平行D.连结 A ,B 两点 3.(2016•新疆)如图,在△ABC 和△DEF 中,∠B=∠DEF ,AB=DE ,添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,这个条件是( )A .∠A=∠DB .BC=EFC .∠ACB=∠FD .AC=DF 4. 在下列结论中, 正确的是( ) .A.全等三角形的高相等B.顶角相等的两个等腰三角形全等C.一角对应相等的两个直角三角形全等D.一边对应相等的两个等边三角形全等 5. 图中的尺规作图是作( ).A. 线段的垂直平分线B. 一条线段等于已知线段C. 一个角等于已知角D. 角的平分线 6.如图,AC=AD ,BC=BD ,则有().A. AB 垂直平分 CDB. CD 垂直平分 ABC. AB 与 CD 互相垂直平分D. CD 平分∠ACB7. 如图,△ABC 中∠ACB =90°,CD 是 AB 边上的高,∠BAC 的角平分线 AF 交 CD 于 △E ,则CEF 必为( ). A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形8.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有几个(1)DA平分∠EDF;(△2)EBD≌FCD;(△3)AED≌AFD;(△4)AD垂直BC.()A.1个B.2个C.3个D.4个二.填空题9.“直角三角形两个锐角互余”的逆命题是:如果_________,那么_________.10.△ABC和△ADC中,下列三个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:__________.11.如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为.12.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.13.如右图,在△ABC中,∠C=90°,BD平分∠CBA交AC于点D.若AB=a,CD=b,则△ADB的面积为______________.14.(2016秋•扬中市月考)如图,AC⊥AB,AC⊥△C D,要使得ABC≌△CDA.(1)若以“SAS”为依据,需添加条件;(2)若以“HL”为依据,需添加条件.15.如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC=________.16.如图,△ABC中,BO、CO分别平分∠ABC、∠ACB,OM∥AB,ON∥AC,BC=10cm,则ΔOMN的周长=______cm.三.解答题17.如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别为∠BAC、∠ABC的角平分线,求证:BQ+AQ=AB+BP.18.作图题(不写作图步骤,保留作图痕迹).已知:如图,求作点P,使点P到A、B两点的距离相等,且P到∠MON两边的距离也相等.19.(1)如图△1,在ABC中,AD平分∠BAC交BC于D,DE⊥AB于E,DF⊥AC于F,则有相等关系DE=DF,AE=AF.(2)如图2,在(1)的情况下,如果∠MDN=∠EDF,∠MDN的两边分别与AB、AC相交于M、N两点,其它条件不变,那么又有相等关系AM+=2AF,请加以证明.(3)如图3,在Rt△ABC中,∠C=90°,∠BAC=60°,AC=6,AD平分∠BAC交BC于D,∠MDN=120°,ND∥AB,求四边形AMDN的周长.20.已知:如图,△ABC中,∠ACB=45︒,AD⊥BC于D,CF交AD于点F,连接BF 并延长交AC于点E,∠BAD=∠FCD.求证:(△1)ABD≌△CFD;(2)BE⊥AC.【答案与解析】一.选择题1.【答案】C;【解析】全等的两个三角形不一定关于一条直线对称.2.【答案】C;【解析】根据命题的定义作出判断.3.【答案】D;【解析】∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.4.【答案】D;【解析】A项应为全等三角形对应边上的高相等;B项如果腰不相等不能证明全等;C项直角三角形至少要有一边相等.5.【答案】A;【解析】根据图象是一条线段,它是以线段的两端点为圆心,作弧,进而作出垂直平分线,故做的是:线段的垂直平分线.6.【答案】A;【解析】∵AC=AD,BC=BD,∴点A,B在线段CD的垂直平分线上.∴AB垂直平分CD.故选A.7.【答案】A;【解析】∠CFA=∠B+∠BAF,∠CEF=∠ECA+∠EAC,而∠B=∠ECA,∠BAF=∠EAC,故△CEF为等腰三角形.8.【答案】D;【解析】解:(1)如图,∵AB=AC,BE=CF,∴AE=AF.又∵AD是角平分线,∴∠1=∠2,∴在△AED和△AFD中,,∴△AED≌△AFD(SAS),∴∠3=∠4,即DA平分∠EDF.故(1)正确;∵如图,△ABC中,AB=AC,AD是角平分线,∴△ABD≌△ACD.又由(△1)知,AED≌△AFD,∴EBD≌FCD.故(△2)正确;(3)由(△1)知,AED≌AFD.故(△3)正确;(△4)∵如图,ABC中,AB=AC,AD是角平分线,∴AD⊥BC,即AD垂直BC.故(4)正确.综上所述,正确的结论有4个.故选:D.二.填空题9.【答案】一个三角形的两个锐角互余;这个三角形是直角三角形;【解析】本题主要考查了互逆命题的知识,根据概念即可得出答案.10.【答案】①②③;11.【答案】6;【解析】∵ED垂直平分BC,∴BE=CE,∠EDB=90°,∵∠B=30°,ED=3,∴BE=2DE=6,∴CE=612.【答案】60°或120°;【解析】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.13.【答案】1ab;21【解析】由三角形全等知D点到AB的距离等于CD=b,所以△ADB的面积为ab.2 14.【答案】AB=CD;AD=BC【解析】(1)若以“SAS”为依据,需添加条件:AB=CD;△ABC≌△CDA(SAS);(2)若以“HL”为依据,需添加条件:AD=BC;△R t ABC≌△R t CDA(HL).15.【答案】45°;【解析】△R t BDH≌△R t ADC,BD=AD.16.【答案】10;【解析】OM=BM,ON=CN,∴△OMN的周长等于BC.三.解答题17.【解析】证明:延长AB至E,使BE=BP,连接EP∵在△ABC中,∠BAC=60°,∠ACB=40°,∴∠ABC=80°∴∠E=∠BPE=802=40°∵AP、BQ分别为∠BAC、∠ABC的角平分线,∴∠QBC=40°,∠BAP=∠CAP∴BQ=QC(等角对等边)在△AEP与△ACP中,⎨∠E=∠C⎪A P=AP⎧∠EAP=∠CAP⎪⎩∴△AEP≌△ACP(AAS)∴AE=AC∴AB+BE=AQ+QC,即AB+BP=AQ+BQ.18.【解析】解:19.【解析】(1)证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,在△ADE和△ADF中,,∴△ADE≌△ADF(AAS),∴DE=DF,AE=AF;(2)解:AM+AN=2AF;证明如下:由(1)得DE=DF,∵∠MDN=∠EDF,∴∠MDE=∠NDF,在△MDE和△NDF中,,∴△MDE≌△NDF(ASA),∴ME=NF,∴AM+AN=(AE+ME)+(AF﹣NF)=AE+AF=2AF;(3)由(2)可知AM+AN=2AC=2×6=12,∵∠BAC=60°,AD平分∠BAC交BC于D,∴∠BAD=∠CAD=30°,∵ND∥AB,∴∠ADN=∠BAD=30°,∴∠CAD=∠ADN,∴AN=DN,在Rt△CDN中,DN=2CN,∵AC=6,∴DN=AN=×6=4,∵∠BAC=60°,∠MDN=120°,∴∠CDE=∠MDN,∴DM=DN=4,∴四边形AMDN的周长=12+4×2=20.20.【解析】证明:(1)∵AD⊥BC,∴∠ADC=∠FDB=90°.∵∠ACB=45︒,∴∠ACB=∠DAC=45︒∴AD=CD∵∠BAD=∠FCD,∴△ABD≌△CFD(2)∵△ABD≌△CFD∴BD=FD.∵∠FDB=90°,∴∠FBD=∠BFD=45︒.∵∠ACB=45︒,∴∠BEC=90︒.∴BE⊥AC.AEFB D C。
全等三角形练习题
全等三角形练习题全等三角形是初中数学中一个重要的概念,对于学生来说,掌握全等三角形的性质和判定方法是非常重要的。
下面是一些全等三角形的练习题,帮助学生巩固和加深对该概念的理解与应用。
练习题1:已知△ABC和△DEF中,∠ABC=∠DEF,∠ACB=∠DFE,AB=DE。
根据给定条件,你能得出什么结论?请解释理由。
练习题2:已知△ABC与△DEF中,AB=DE,∠ABC=30°,∠ACB=75°,∠DEF=60°。
请判断△ABC与△DEF是否全等,如果是,请说明理由;如果不是,请说明理由。
练习题3:在平面上,画出一个△ABC,使得AB=BC=3 cm,AC=5 cm。
再画一个点D,使得DB=BC,连结AD。
设E为△ABC的中线中点。
请证明△ADE和△ABC全等。
练习题4:已知△ABC与△DEF中,∠A=∠D,∠B=∠E,AB=DE。
请判断△ABC与△DEF是否全等,如果是,请说明理由;如果不是,请说明理由。
练习题5:在平面上,画出一个△ABC,使得AB=12 cm,BC=5 cm,∠ABC=90°。
再画一个点D,使得∠BAC=∠BCD。
请判断△ABC与△BCD是否全等,如果是,请说明理由;如果不是,请说明理由。
练习题6:在△ABC中,AB=BC,∠BAC=60°。
在BC上取一点D,使得BD=AC。
请判断△ABC与△ACD是否全等,如果是,请说明理由;如果不是,请说明理由。
练习题7:在平面上,画出一个△ABC,使得∠BAC=100°,∠BCA=20°,AC=10 cm。
再画一个点D,连接BD,并延长BD至点E,使得DE=BC。
请证明△ABE和△ABC全等。
练习题8:已知△ABC与△DEF,AB=DE,∠ABC=60°,∠DEF=30°,AC=5 cm,FD=3 cm。
请判断△ABC与△DEF是否全等,如果是,请说明理由;如果不是,请说明理由。
人教版数学八年级上册-第十二章-全等三角形-巩固练习(解析版)
人教版数学八年级上册-第十二章-全等三角形-巩固练习一、单选题1.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A. AB=CDB. EC=BFC. ∠A=∠DD. AB=BC2.如图,已知点D在AC上,点B在AE上,△ABC≌△DBE,且∠BDA=∠A,若∠A:∠C=5:3,则∠DBC=()A. 30°B. 25°C. 20°D. 15°3.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A. 带①去B. 带②去C. 带③去D. 带①和②去4.在下列各组图形中,是全等的图形是()A. B. C. D.5.用尺规作已知角的平分线的理论依据是()A. SASB. AASC. SSSD. ASA6.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A. 20°B. 30°C. 35°D. 40°7.如图,△ABC≌△BAD,A和B,C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为()A. 4cmB. 5cmC. 6cmD. 以上都不对8.已知AB=AC,AD=AE,欲证△ABD≌△ACE,须补充的条件是()A. ∠B=∠CB. ∠B=∠EC. ∠1=∠2D. ∠CAD=∠DAC9.如果△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x等于()A. B. 3 C. 4 D. 510.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的根据是()A. SASB. ASAC. AASD. SSS二、填空题11.实验回答:把一长一短两根细木棍的一端用螺钉铰合在一起,如图所示,使长木棍的另一端与射线BC的端点B重合,固定住长木棍,把短木棍摆起来,这说明________。
(完整版)全等三角形练习题及答案
全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。
B、斜边和一锐角对应相等。
C、斜边和一条直角边对应相等。
D、两锐角相等。
2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。
2020年秋人教版八年级数学上册随课练——12章全等三角形单元巩固练习
12章全等三角形单元巩固练习一、选择题1.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)2.如图,△ABC中,∠B=∠C=∠EDF=α,BD=CF,BE=CD,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°3.如图,在Rt△ABC中,∠ACB=90°,AC=BC,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BE,则∠BED的度数为()A.100°B.120°C.135°D.150°4.下列结论正确的是()A.形状相同的两个图形是全等图形B.全等图形的面积相等C.对应角相等的两个三角形全等D.两个等边三角形全等5.△ABC≌△ECD,∠A=48°,∠D=62°,点B,C,D在同一条直线上,则图中∠B的度数是()A.38°B.48°C.62°D.70°6.如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=7cm,BC=12cm,AC=9cm,那么BD的长是()A.7cm B.9cmC.12cm D.无法确定7.如图,在△ABC中,点D在边BC上,若∠BAD=∠CAD,AB=6,AC=3,S△ABD=3,则S△ACD=()A.3 B.6C.D.8.到三角形三边距离相等的点是()A.三角形的两条平分线的交点B.三角形的两条高的交点C.三角形的三条中线的交点D.三角形的三条边的垂直平分线的交点9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )A .330°B .315°C .310°D .320°二、填空题11.工人师傅常用角尺平分一个任意角.作法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 作射线OC .由作法得△MOC ≌△NOC 的依据是 .12.已知:如图,ACB DBC ∠∠=,要使△ABC ≌△DCB ,只需增加的一个条件是_____(只需填写一个你认为适合的条件).13.△ABC≌△DEF,且△ABC的周长为12,若AC=3,EF=4,AB=.14.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件.15.如图,在△ABC中,BF⊥AC于F,AD⊥BC于D,BF与AD相交于E.若AD=BD,BC=8cm,DC=3cm,则AE=cm.16.在△ABC中,已知∠A=60°,∠ABC的平分线BD与∠ACB的平分线CE 相交于点O,∠BOC的平分线交BC于F,则下列说法中正确的是.①∠BOE=60°,②∠ABD=∠ACE,③OE=OD④BC=BE+CD三、解答题17.如图,△ACF≌△DBE,其中点A、B、C、D在一条直线上.(1)若BE⊥AD,∠F=62°,求∠A的大小.(2)若AD=9cm,BC=5cm,求AB的长.18.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN 于D,BE⊥MN于E.(1)如图1所示位置时判断△ADC与△CEB是否全等,并说明理由;(2)如图2所示位置时判断△ADC与△CEB是否全等,并说明理由.19.如图所示,在△ABC中,∠ACB=90°,D在AB上,且AD=AC,AG 平分∠CAB,过点D作BC的平行线交AG于点F,连接CF并延长交AB 于点E.求证:(1)△ACF≌△ADF;(2)CF=CG;(3)CE⊥AB.20.如图1,在平面直角坐标系xOy中,点A在y轴上,点B是第一象限的点,且AB⊥y轴,且AB=OA,点C是线段OA上任意一点,连接BC,作BD ⊥BC,交x轴于点D.(1)依题意补全图1;(2)用等式表示线段OA,AC与OD之间的数量关系,并证明;②连接CD,作∠CBD的平分线,交CD边于点H,连接AH,求∠BAH的度数.21.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.答案1.A2. A3.C4. B5.D6.B7. C8. A9.D10.B11. SSS.12.∠A=∠D或∠ABC=∠DCB或BD=AC 13.5.14. AB=AC.15.2.16.①③④17.(1)∵BE⊥AD,∴∠EBD=90°. ∵△ACF ≌△DBE , ∴∠FCA =∠EBD=90°.∴∠F +∠A=90°∵∠F =62°, ∴∠A =28°.(2)∵△ACF ≌△DBE , ∴CA =BD . ∴CA -CB=BD -CB . 即AB =CD .∵AD =9 cm, BC=5 cm , ∴AB +CD=9-5=4 cm . ∴AB =CD=2 cm . 18. (1)如图1,全等,理由:∵∠ACB =90°,AD ⊥MN 于D ,BE ⊥MN 于E , ∴∠DAC+∠DCA =∠BCE+∠DCA , ∴∠DAC =∠BCE , 在△DAC 与△ECB 中,∵90DAC BCE ADC CEB AC BC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩, ∴△DAC ≌△ECB (AAS ); (2)如图2,全等, 理由:∵∠ACB =90°,AD ⊥MN , ∴∠DAC+∠ACD =∠ACD+∠BCE , ∴∠DAC =∠BCE , 在△ACD 与△CBE 中,∵DAC ECBADC CEB AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△CBE(AAS)19.证明:(1)∵AG平分∠CAB,∴∠CAG=∠BAG,在△ACF和△ADF中,,∴△ACF≌△ADF(SAS);(2)∵△ACF≌△ADF,∴∠ACF=∠ADF,∵DF∥BC,∴∠ADF=∠ABC,∴∠ACF=∠B,∵∠CFG=∠ACF+∠CAG,∠CGF=∠B+∠GAB,∴∠CFG=∠CGF,∴CF=CG;(2)∵∠ACB=90°,∴∠ACF+∠BCE=90°,∴∠ABC+∠BCE=90°,∴CE⊥AB.20.解:(1)如图1所示,(2)①OA+AC=OD,过B作BE⊥x轴于E,则四边形AOEB是矩形,∴BE=AO,∠ABE=90°,∵AB=AO,∴AB=BE,∵BD⊥BC,∴∠CBD=90°,∴∠ABC=∠DBE,在△ABC与△BDE中,,∴△ABC≌△BDE,∴AC=DE,∵OE=AB=OA,∴AO+AC=OD;②如图2由(1)知:△ABC≌△BDE,∴BC=BD,∵BD⊥BC,∴△BCD是等腰直角三角形,∴∠BCD=45°,∵BH平分∠CBD,∴∠BHC=90°,∵∠BAO=90°,过H作HN⊥OA,HM⊥AB,∴四边形ANMH是矩形,∴∠NHM=90°,∴∠NHC=∠MHB,∴△CNH≌△BHM,∴HN=HM,∴AH平分∠CAB,∴∠BAH=45°.21.解:(1)猜想:AB=AC+CD.证明:如图②,在AB上截取AE=AC,连接DE,∵AD为∠BAC的角平分线时,∴∠BAD=∠CAD,∵AD=AD,∴△ADE≌△ADC(SAS),∴∠AED=∠C,ED=CD,∵∠ACB=2∠B,∴∠AED=2∠B,∵∠AED=∠B+∠EDB,∴∠B=∠EDB,∴EB=ED,∴EB=CD,∴AB=AE+DE=AC+CD.(2)猜想:AB+AC=CD.证明:在BA的延长线上截取AE=AC,连接ED.∵AD平分∠FAC,∴∠EAD=∠CAD.在△EAD与△CAD中,AE=AC,∠EAD=∠CAD,AD=AD,∴△EAD≌△CAD(SAS).∴ED=CD,∠AED=∠ACD.∴∠FED=∠ACB,又∵∠ACB=2∠B∴∠FED=2∠B,∠FED=∠B+∠EDB,∴∠EDB=∠B,∴EB=ED.∴EA+AB=EB=ED=CD.∴AC+AB=CD.。
直角三角形全等判定(提高)巩固练习含答案
【巩固练习】一、选择题1.下列命题中,不正确的是()A.斜边对应相等的两个等腰直角三角形全等B.两条直角边对应相等的两个直角三角形全等C.有一条边相等的两个等腰直角三角形全等D.有一条直角边和斜边上的中线对应相等的两个直角三角形全等2. 如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于点O,AO的延长线交BC于F,则图中全等直角三角形的对数为()A. 3对B. 4对C. 5对D. 6对3. 如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.1B.2C.3D.44. 如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是()A. △ABE≌△ACFB. 点D在∠BAC的平分线上C. △BDF≌△CDED. 点D是BE的中点5.5.(2016春•泰山区期末)如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A.AC=AD B.AB=AB C.∠ABC=∠ABD D.∠BAC=∠BAD6. 已知,如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A. 1B. 2C. 5D. 无法确定二、填空题7. (2016秋•亭湖区校级月考)如图,AB=AC,CD⊥AB于点D,BE⊥AC于点E,BE与CD相交于点O,图中有对全等的直角三角形.8. 已知,如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,若CD=CE,则∠COD+∠AOB=__________度.9. 判定两直角三角形全等的各种条件:(1)一锐角和一边;(2)两边对应相等;(3)两锐角对应相等.其中能得到两个直角三角形全等的条件是_________.10.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP 与△PQB全等.11. 如图,已知AD是△ABC的高,E为AC上一点,BE交AD于F,且BF=AC,FD=CD.则∠BAD=_______.12. 如图所示的网格中(4×4的正方形),∠1+∠2+∠3+∠4+∠5+∠6=________.三、解答题13.用三角板可按下面方法画角平分线:在已知∠AOB的两边上,分别取OM=ON (如图),再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB,请你说出其中的道理.14. 求证:有两边和其中一边上的高对应相等的两个锐角三角形全等.15. 如图,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,•若AB=CD,试证明BD平分EF.16.如图,四边形ABDC中,∠D=∠ABD=90゜,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.【答案与解析】一.选择题1. 【答案】C;【解析】C选项如果是一个等腰直角三角形的腰和另一个等腰直角三角形的底边对应相等,这是肯定不全等.2. 【答案】D;【解析】Rt△ABD≌Rt△ACE;Rt△BEO≌Rt△CDO;Rt△AEO≌Rt△ADO;Rt△ABF≌Rt△ACF;Rt△BEC≌Rt△CDB;Rt△BFO≌Rt△CFO.3. 【答案】A;【解析】本题可先根据AAS判定△AEH≌△CEB,可得出AE=CE,从而得出CH=CE-EH =4-3=1.4. 【答案】D;【解析】A选项:∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A∴△ABE≌△ACF(AAS),正确;B选项:∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴DF=DE故点D在∠BAC的平分线上,正确;C选项:∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴△BDF≌△CDE(AAS),正确.5. 【答案】A;【解析】解:需要添加的条件为BC=BD或AC=AD,理由为:若添加的条件为BC=BD,Rt△ABC≌Rt△ABD(HL);若添加的条件为AC=AD,Rt△ABC≌Rt△ABD(HL).6. 【答案】A;【解析】因为知道AD的长,所以只要求出AD边上的高,就可以求出△ADE的面积.过D 作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,构造出Rt△EDF≌Rt△CDG,求出GC的长,即为EF的长,然后利用三角形的面积公式解答即可二.填空题7.【答案】3【解析】提示:Rt △ABE ≌△Rt △ACD (AAS ),Rt △AOD ≌Rt △AOE (HL ),Rt △BOD ≌Rt △COE (ASA ),∴全等的直角三角形共有3对.8. 【答案】90;【解析】解:∵CD ⊥OA 于D ,CE ⊥OB 于E ,CD=CE ,∴点C 在∠AOB 的角平分线,∴∠DOC=12∠AOB=30°, ∴∠COD+∠AOB=30°+60°=90°.故答案为:90°;9. 【答案】(1)(2)10.【答案】4;【解析】解:∵CA⊥AB 于A ,DB⊥AB 于B ,∴∠A=∠B=90°,设运动x 分钟后△CAP 与△PQB 全等;则BP=xm ,BQ=2xm ,则AP=(12﹣x )m ,分两种情况:①若BP=AC ,则x=4,AP=12﹣4=8,BQ=8,AP=BQ ,∴△CAP≌△PBQ;②若BP=AP ,则12﹣x=x ,解得:x=6,BQ=12≠AC,此时△CAP 与△PQB 不全等;综上所述:运动4分钟后△CAP 与△PQB 全等;故答案为:4.11.【答案】45°;【解析】证△ADC 与△BDF 全等,AD =BD ,△ABD 为等腰直角三角形.12.【答案】270°;【解析】∠1+∠6=∠2+∠5=∠3+∠4=90°,所以∠1+∠2+∠3+∠4+∠5+∠6=270°.三.解答题13.【解析】证明:在Rt △OPM 和Rt △OPN 中,OP OP OM ON=⎧⎨⎩=∴Rt △OPM ≌Rt △OPN.∴∠POM =∠PON ,即OP 平分∠AOB.14.【解析】根据题意,画出图形,写出已知,求证.已知:如图,在锐角△ABC 与锐角△A B C '''中.AB =A B '',BC =B C '',AD ⊥BC 于D ,A D ''⊥B C '' 于D '且 AD =A D ''求证:△ABC ≌△A B C '''证明: 在Rt △ABD 与Rt △A B D '''中∵AB A B AD A D ''=⎧⎨''=⎩∴Rt △ABD ≌ Rt △A B D ''' (HL)∴∠B =∠B '(全等三角形对应角相等)在△ABC 与△A B C '''中∵AB A B B B BC B C ''=⎧⎪'∠=∠⎨⎪''=⎩∴△ABC ≌△'''A B C (SAS)15.【解析】证明∵DE ⊥AC ,BF ⊥AC ,∴∠DEG =∠BFE =90°.∵AE =CF ,AE +EF =CF +EF .即AF =CE .在Rt △ABF 和Rt △CDE 中, ,,AB CD AF CE =⎧⎨=⎩ ∴Rt △ABF ≌Rt △CDE (HL ),∴BF =DE .在△BFG 和△DEG 中,,,,BFG DEG BGF DGE BF DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BFG ≌△DEG (AAS ),∴FG =EG ,即BD 平分EF .16. 【解析】证明:(1)过点O 作OE⊥AC 于E ,∵∠ABD=90゜,OA 平分∠BAC,∴OB=OE,∵点O 为BD 的中点,∴OB=OD,∴OE=OD,∴OC 平分∠ACD ;(角的内部,到角两边距离相等的点,在这个角的平分线上.)(2)在Rt△ABO 和Rt△AEO 中,,∴Rt△ABO≌Rt△AEO(HL),∴∠AOB=∠AOE,同理求出∠COD=∠COE,∴∠AOC=∠AOE+∠COE=×180°=90°,∴OA⊥OC;(3)∵Rt△ABO≌Rt△AEO,∴AB=AE,同理可得CD=CE,∵AC=AE+CE,∴AB+CD=AC.。
2022年人教版初中数学8年级上册全等三角形判定二(SSS,AAS)(基础)巩固练习及答案
2022年人教版初中数学8年级上册【巩固练习】一、选择题1.(2020•奉贤区二模)如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是()A.∠B=45° B.∠BAC=90° C.BD=AC D.AB=AC2.如图,已知AB=CD,AD=BC,则下列结论中错误的是()A.AB∥DCB.∠B=∠DC.∠A=∠CD.AB=BC3.下列判断正确的是()A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4.如图,AB、CD、EF相交于O,且被O点平分,DF=CE,BF=AE,则图中全等三角形的对数共有()A.1对B.2对C.3对D.4对5.如图,∠1=∠2,∠3=∠4,下面结论中错误的是()A.△ADC≌△BCD B.△ABD≌△BACC.△ABO≌△CDO D.△AOD≌△BOC6.如图,已知AB⊥BD于B,ED⊥BD于D,AB=CD,BC=ED,以下结论不正确的是()A.EC⊥ACB.EC=ACC.ED+AB=DBD.DC=CB二、填空题7.如图,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=_________.8.如图,已知:∠1=∠2,∠3=∠4,要证BD=CD,需先证△AEB≌△AEC,根据是,再证△BDE≌△,根据是.9.(2020秋•大同期末)如下图∠1=∠2,由AAS判定△ABD≌△ACD,则需添加的条件是.10.如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11.如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B=20°,则∠C=_______.12.已知,如图,AB=CD,AC=BD,则△ABC≌,△ADC≌.三、解答题13.(2020•通辽)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.14.如图,已知D、E、B三点共线,AE=CE,AE⊥CE,∠D=∠B=90°.求证:CD+AB=DB.15.如图,已知AB=DC,AC=DB,BE=CE求证:AE=DE.【答案与解析】一.选择题1.【答案】D;【解析】解:当AB=AC时,△ABD≌△ACD,∵AD是△ABC的边BC上的高,AB=AC,∴BD=CD,∵在△ABD 和△ADC 中,∴△ABD≌△ACD(SSS).2.【答案】D;【解析】连接AC 或BD 证全等.3.【答案】D;4.【答案】C;【解析】△DOF≌△COE,△BOF≌△AOE,△DOB≌△COA.5.【答案】A;【解析】将两根钢条'AA ,'BB 的中点O 连在一起,说明OA='OA ,OB='OB ,再由对顶角相等可证.6.【答案】D;【解析】△ABC≌△EDC,∠ECD+∠ACB=∠CAB+∠ACB=90°,所以EC⊥AC,ED +AB =BC+CD=DB.二.填空题7.【答案】66°;【解析】可由SSS 证明△ABC≌△DCB,∠OBC=∠OCB=82412︒=︒,所以∠DCB=∠ABC=25°+41°=66°.8.【答案】ASA,CDE,SAS;【解析】△AEB ≌△AEC 后可得BE=CE.9.【答案】∠B=∠C.【解析】解:由图可知,只能是∠B=∠C,才能组成“AAS”.故填∠B=∠C.10.【答案】56°;【解析】∠CBE=26°+30°=56°.11.【答案】20°;【解析】△ABE≌△ACD(SAS).12.【答案】△DCB,△DAB;【解析】注意对应顶点写在相应的位置上.三.解答题13.【解析】解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD 中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC 和△DEC 中,,∴△ABC≌△DEC(AAS).14.【解析】证明:∵AE⊥CE,∴∠AEB+∠CED=90°,又∵∠B=90°∴∠A+∠AEB=90°,∴∠A=∠CED,在△AEB 与△ECD 中,A CEDB DAE CE ∠=∠∠=∠=⎧⎪⎨⎪⎩∴△AEB≌△ECD(AAS)∴AB=DE ,BE=CD∵DE+BE=DB∴CD+AB=DB15.【解析】证明:在△ABC 和△DCB 中AB DC AC DB BC =CB ⎧⎪⎨⎪⎩==∴△ABC≌△DCB(SSS)∴∠ABC=∠DCB,在△ABE 和△DCE 中ABC DCB AB DC BE CE =∠=∠=⎧⎪⎨⎪⎩∴△ABE≌△DCE(SAS)∴AE=DE.全等三角形的判定二(SSS,AAS)(基础)【学习目标】1.理解和掌握全等三角形判定方法3——“边边边”,和判定方法4——“角角边”;2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定3——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果''A B =AB,''A C =AC,''B C =BC,则△ABC≌△'''A B C .要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SAS AAS ASA 两角对应相等ASA AAS 两边对应相等SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定3——“边边边”1、已知:如图,△RPQ 中,RP=RQ,M 为PQ 的中点.求证:RM平分∠PRQ.【思路点拨】由中点的定义得PM=QM,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM=QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边∴△RPM≌△RQM(SSS).∴∠PRM=∠QRM(全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中.把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.举一反三:【变式】已知:如图,AD=BC,AC=BD.试证明:∠CAD=∠DBC.【答案】证明:连接DC,在△ACD 与△BDC 中()AD BC AC BD CD DC ⎧=⎪=⎨⎪=⎩公共边∴△ACD≌△BDC(SSS)∴∠CAD=∠DBC(全等三角形对应角相等)类型二、全等三角形的判定4——“角角边”2、已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.【思路点拨】要证AC=AD,就是证含有这两个线段的三角形△BAC≌△EAD.【答案与解析】证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°∴∠CAD+∠DAB=∠BAE+∠DAB ,即∠BAC=∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC≌△EAD(AAS)∴AC=AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.举一反三:【变式】如图,AD 是△ABC 的中线,过C、B 分别作AD 及AD 的延长线的垂线CF、BE.求证:BE=CF.【答案】证明:∵AD 为△ABC 的中线∴BD=CD∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BED 和△CFD 中BED CFD BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等)∴△BED≌△CFD(AAS)∴BE=CF3、(2020春•雅安期末)如图:AB=A′B′,∠A=∠A′,若△ABC≌△A′B′C′,则还需添加的一个条件有()种.A.1B.2C.3D.4【思路点拨】本题要证明△ABC≌△A′B′C′,已知了AB=A′B′,∠A=∠A′,可用的判别方法有ASA,AAS,及SAS,所以可添加一对角∠B=∠B′,或∠C=∠C′,或一对边AC=A′C′,分别由已知与所添的条件即可得证.【答案与解析】解:添加的条件可以为:∠B=∠B′;∠C=∠C′;AC=A′C′,共3种.若添加∠B=∠B′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B′C′(ASA);若添加∠C=∠C′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B′C′(AAS);若添加AC=A′C′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS).故选C.【总结升华】此题考查了全等三角形的判定,是一道条件开放型问题,需要由因索果,逆向推理,逐步探求使结论成立的条件,解决这类问题要注意挖掘隐含的条件,如公共角、公共边、对顶角相等,这类问题的答案往往不唯一,只有合理即可.熟练掌握全等三角形的判定方法是解本题的关键.类型三、全等三角形判定的实际应用4、“三月三,放风筝”.下图是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学的知识证明.【答案与解析】证明:在△DEH 和△DFH 中,DE DF EH FH DH DH ⎧⎪⎨⎪=⎩==∴△DEH≌△DFH(SSS)∴∠DEH=∠DFH.【总结升华】证明△DEH≌△DFH,就可以得到∠DEH=∠DFH,我们要善于从实际问题中抽离出来数学模型,这道题用“SSS”定理就能解决问题.举一反三:【变式】(2020秋•紫阳县期末)雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=AB,AF=AC,当O 沿AD 滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD 与∠CAD 有何关系?说明理由.【答案】解:雨伞开闭过程中二者关系始终是:∠BAD=∠CAD,理由如下:∵AB=AC,AE=AB,AF=AC,∴AE=AF,在△AOE 与△AOF 中,,∴△AOE≌△AOF(SSS),∴∠BAD=∠CAD.【巩固练习】一、选择题1.如图,∠A=∠D,∠B=∠E,BF=CE,下列结论错误的是()A.△ABC≌△DEFB.BF=ECC.AC∥DED.AC=DF2.如图,AB∥EF,DE∥AC,BD=CF,则图中不是全等三角形的是()A.△BAC≌FEDB.△BDA≌FCEC.△DEC≌CADD.△BAC≌FCE3.如图,AB=BD,∠1=∠2,要用AAS判定△ABC≌△DBE,则添加的条件是()A.AE=ECB.∠D=∠AC.BE=BCD.∠DEB=∠C4.下列判断中错误的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等5.(2020•滕州市校级模拟)如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC6.如图,点A在DE上,AC=CE,∠1=∠2=∠3,则DE的长等于()A.DC B.BC C.AB D.AE+AC二、填空题7.(2020春•鹤岗校级期末)如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件________________时,就可得到△ABC≌△FED.(只需填写一个即可)8.如图,点D在AB上,点E在AC上,且∠B=∠C,在条件①AB=AC,②AD=AE,③BE=CD,④∠AEB=∠ADC中,不能使△ABE≌△ACD的是_______.(填序号)9.已知,如图,AB∥CD,AF∥DE,AF=DE,且BE=2,BC=10,则EF=________.10.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有______对.11.如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是1和2,则EF的长是___________.12.在△ABC 和△DEF 中(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F 从这六个条件中选取三个条件可判定△ABC 与△DEF 全等的方法共有________种.三、解答题13.(2020秋•景洪市校级期中)如图,O 为码头,A,B 两个灯塔与码头的距离相等,OA,OB 为海岸线,一轮船离开码头,计划沿∠AOB 的平分线航行,在航行途中,测得轮船与灯塔A 和灯塔B 的距离相等,试问轮船航行时是否偏离预定航线,请说明理由.14.已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE AC ⊥于E ,BE 与CD 相交于点F .求证:BF AC =.15.如图,DC∥AB,∠BAD 和∠ADC 的角平分线相交于E,过E 的直线分别交DC、AB 于C、B 两点.求证:AD=AB+DC.【答案与解析】一、选择题1.【答案】C;2.【答案】D;3.【答案】D;【解析】满足判定定理AAS的只有D选项.4.【答案】B;【解析】C选项和D选项都可以由SSS定理证全等.5.【答案】D;【解析】解:A、∵在△ABD和△ACD中,∴△ABD≌△ACD(SSS),故本选项错误;B、∵在△ABD和△ACD中,∴△ABD≌△ACD(SAS),故本选项错误;C、∵在△ABD和△ACD中,∴△ABD≌△ACD(AAS),故本选项错误;D、不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;故选D.6.【答案】C;【解析】可证∠BAC=∠E,∠BCA=∠DCE,所以△ABC≌△EDC,DE=AB.二、填空题7.【答案】BC=ED.8.【答案】④【解析】三个角对应相等不能判定三角形全等.9.【答案】6;【解析】△ABF≌△CDE,BE=CF=2,EF=10-2-2=6.10.【答案】6;【解析】△ABO≌△CDO,△AFO≌△CEO,△DFO≌△BEO,△AOD≌△COB,△ABD≌△CDB,△ABC≌△CDA.11.【答案】3;【解析】由AAS证△ABF≌△CBE,EF=FB+BE=CE+AF=2+1=3.12.【答案】13;【解析】ASA类型3种,AAS类型6种,SAS类型3种,SSS类型一种,共13种.三、解答题13.【解析】解:此时轮船没有偏离航线.理由:由题意知:假设轮船在D处,则DA=DB,AO=BO,在△ADC和△BDC中,,∴△ADO≌△BDO(SSS),∴∠AOD=∠BOD,即DO 为∠AOB 的角平分线,∴此时轮船没有偏离航线.14.【解析】证明:∵CD AB⊥∴90BDC CDA ∠=∠=︒∵45ABC ∠=︒∴45DCB ABC ∠=∠=︒∴DB DC=∵BE AC⊥∴90AEB ∠=︒∴90A ABE ∠+∠=︒∵90CDA ∠=︒∴90A ACD ∠+∠=︒∴ABE ACD∠=∠在BDF ∆和CDA ∆中BDC CDADB DC ABE ACD∠=∠⎧⎪=⎨⎪∠=∠⎩∴BDF ∆≌CDA ∆(AAS)∴BF AC =.15.【解析】证明:延长DE 交AB 的延长线于F∴∠CDE=∠F,∠CDA+∠BAD=180º∵DE 平分∠CDA,AE 平分∠DAB ∴∠CDE=∠ADE=21∠CDA,∠DAE=∠EAF=21∠BAD∴∠ADE=∠F,∠EDA+∠DAE=90º∴∠AED=∠AEF=90º在△ADE 与△AFE 中⎪⎩⎪⎨⎧=∠=∠∠=∠AE AE FEA DEA F ADE ∴△ADE≌△AFE (AAS)∴DE=EF,AD=AF在△DCE 与△FBE 中,⎪⎩⎪⎨⎧∠=∠=∠=∠FEB DEC FE DE F CDE ∴△DCE≌△FBE(ASA)∴DC=BF,∴AD=AB+DC.全等三角形的判定二(SSS,AAS)(提高)【学习目标】1.理解和掌握全等三角形判定方法3——“边边边”,和判定方法4——“角角边”;2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定3——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果''A B =AB,''A C =AC,''B C =BC,则△ABC≌△'''A B C.要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SAS AAS ASA 两角对应相等ASA AAS 两边对应相等SASSSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定3——“边边边”1、如图,在△ABC 和△ADE 中,AB=AC,AD=AE,BD=CE,求证:∠BAD=∠CAE.【答案与解析】证明:在△ABD 和△ACE 中,AB AC AD AE BD CE =⎧⎪=⎨⎪=⎩∴△ABD≌△ACE(SSS)∴∠BAD=∠CAE(全等三角形对应角相等).【总结升华】把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的判定和性质.要证∠BAD=∠CAE,先找出这两个角所在的三角形分别是△BDA 和△CAE,然后证这两个三角形全等.【变式】(2020•静海县模拟)已知点A、D、C、F 在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需添加一个条件是.【答案】AC=DF.解:理由是:∵在△ABC 和△DEF中,∴△ABC≌△DEF(SSS),故答案为:AC=DF.类型二、全等三角形的判定4——“角角边”2、已知:如图,∠ACB=90°,AC=BC,CD 是经过点C 的一条直线,过点A、B 分别作AE⊥CD、BF⊥CD,垂足为E、F.求证:CE=BF【答案与解析】证明:∵AE⊥CD、BF⊥CD,∴∠AEC=∠BFC=90°∴∠BCF+∠B=90°∵∠ACB=90°,∴∠BCF+∠ACF=90°∴∠ACF=∠B在△BCF 和△CAE 中⎪⎩⎪⎨⎧=∠=∠∠=∠BC AC B ACE BFC AEC ∴△BCF≌△CAE(AAS)∴CE=BF.【总结升华】要证CE=BF,只需证含有这两个线段的△BCF≌△CAE.同角的余角相等是找角3、平面内有一等腰直角三角板(∠ACB=90°)和一直线MN.过点C 作CE⊥MN 于点E,过点B 作BF⊥MN 于点F.当点E 与点A 重合时(如图1),易证:AF+BF=2CE.当三角板绕点A 顺时针旋转至图2的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.【思路点拨】过B 作BH⊥CE 与点H,易证△ACE≌△CBH,根据全等三角形的对应边相等,即可证得AF+BF=2CE.【答案与解析】解:图2,AF+BF=2CE 仍成立,证明:过B 作BH⊥CE 于点H,∵∠CBH+∠BCH=∠ACE+∠BCH=90°∴∠CBH=∠ACE在△ACE 与△CBH 中,90ACH CBH AEC CHB AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ACE≌△CBH.(AAS)∴CH=AE,BF=HE,CE=EF,∴AF+BF=AE+EF+BF=CH+EF+HE=CE+EF=2EC.【总结升华】正确作出垂线,构造全等三角形是解决本题的关键.举一反三:【变式】已知Rt△ABC 中,AC=BC,∠C=90°,D 为AB 边的中点,∠EDF=90°,∠EDF 绕D 点旋转,它的两边分别交AC、CB 于E、F.当∠EDF 绕D 点旋转到DE⊥AC 于E 时(如图1),易证12DEF CEF ABC S S S +=△△△;当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图2情况下,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.图2ADBC E M N F 【答案】解:图2成立;证明图2:过点D 作DM AC DN BC⊥⊥,则90DME DNF MDN ∠=∠=∠=°在△AMD 和△DNB 中,AMD=DNB=90A B AD BD ∠∠︒⎧⎪∠=∠⎨⎪=⎩∴△AMD≌△DNB(AAS)∴DM=DN∵∠MDE+∠EDN=∠NDF+∠EDN=90°,∴∠MDE=∠NDF在△DME 与△DNF 中,90EMD FDN DM DN MDE NDF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴△DME≌△DNF(ASA)∴DME DNFS S =△△∴DEF CEF DMCN DECF S =S =S S .+△△四边形四边形可知ABC DMCN 1S =S 2△四边形,∴12DEF CEF ABC S S S +=△△△.类型三、全等三角形判定的实际应用4、(2020秋•内丘县期中)如图,AD 是一段斜坡,AB 是水平线,现为了测斜坡上一点D 的竖直高度DB 的长度,欢欢在D 处立上一竹竿CD,并保证CD⊥AD,然后在竿顶C 处垂下一根绳CE,与斜坡的交点为点E,他调整好绳子CE 的长度,使得CE=AD,此时他测得DE=2米,求DB 的长度.【思路点拨】延长CE交AB于F,根据等角的余角相等求出∠A=∠C,再利用“角角边”证明△ABD和△CDE全等,根据全等三角形对应边相等可得DB=DE.【答案与解析】解:如图,延长CE交AB于F,则∠A+∠1=90°,∠C+∠2=90°,∵∠1=∠2(对顶角相等),∴∠A=∠C,在△ABD和△CDE中,,∴△ABD≌△CDE(AAS),∴DB=DE,∵DE=2米,∴DB的长度是2米.【总结升华】本题考查了全等三角形的应用,仔细观察图形求出∠A=∠C是解题的关键.。
华东师大初中数学八年级上册全等三角形判定一(SAS、ASA、AAS)(提高)巩固练习
【巩固练习】一、选择题1. 如图,AB=DE,∠B=∠E,∠A=∠D,下列结论错误的是()A.△ABC≌△DEFB. BF=ECC.AC∥DED.AC=DF2.(2016•黔西南州)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC3. 如图,AB=BD,∠1=∠2,添加一个条件可使△ABC≌△DBE,则这个条件不可能是()A.AE=ECB.∠D=∠AC.BE=BCD.∠1=∠DEA)))二、填空题7. (2016•济宁)如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.AEHB CD8. 如图,点D在AB上,点E在AC上,且∠B=∠C,在条件①AB=AC,②AD=AE,③ADC中,不能使△ABE≌△ACD的是_______.(填序号)BE=CD,④∠AEB=∠9. 如图,要判断△ABE≌△ACD,除去公共角∠A外,在下列横线上,写出还需的两个条件,并在括号内写出这些条件判定三角形全等的依据(1)∠B=∠C,AB=AC(ASA);(2),();).(3),(10. 如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有______对.11.如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是1和2,则EF 的长是___________.12.图中的两个三角形全等,若∠D=25°,则∠3+∠4﹣∠2﹣∠1的值是.三、解答题13.如图,△ABC为等边三角形,D、E为AC和BC边上的两点,且CD=CE,连接ED并延长到F,使AD=DF,连接AF、BD、CF,(1)写出图中所有全等的三角形(不加字母和辅助线);(2)从(1)中选一对全等三角形,说明全等的理由.14.已知:如图,∠AOD=∠BOC,∠A=∠C,O是AC的中点.求证:△AOB≌△COD.15. 如图,DC∥AB,∠BAD和∠ADC的角平分线相交于E,过E的直线分别交DC、AB于C、B两点.求证:AD=AB+DC.【答案与解析】一、选择题1. 【答案】C;2.【答案】C;【解析】解:解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选C.3. 【答案】A;【解析】D选项可证得∠D=∠A,从而用ASA证全等.4. 【答案】A;【解析】△ABE≌△ACD;△BDF≌△CEF;△ADF≌△AEF;△BCD≌△CBE;△ABF ≌△ACF.5. 【答案】D;6. 【答案】C;【解析】可证∠BAC=∠E,∠BCA=∠DCE,所以△ABC≌△EDC,DE=AB.二、填空题7.【答案】AH=CB;【解析】∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故答案不唯一:AH=CB或EH=EB或AE=CE都可以.8. 【答案】④【解析】三个角对应相等不能判定三角形全等.9. 【答案】(2)AB=AC,AE=AD(SAS);(3)AB=AC,∠AEB=∠ADC(ASA).【解析】要证△ABE≌△ACD,已知公共角∠A,则根据全等三角形的判定方法,分别添加两边或一个角一个边利用SAS,ASA来判定三角形全等.此时注意运用SAS时,角应该是两边的夹角.10.【答案】6;【解析】△ABO ≌△CDO ,△AFO ≌△CEO ,△DFO ≌△BEO ,△AOD ≌△COB ,△ABD ≌△CDB ,△ABC ≌△CDA.11.【答案】3;【解析】由AAS 证△ABF ≌△CBE ,EF =FB +BE =CE +AF =2+1=3.12. 【答案】50°;【解析】∵∠3﹣∠1=∠D,∠4﹣∠2=∠C,∴∠3+∠4﹣∠2﹣∠1=∠C+∠D,∵△ABC≌△ABD,∠D=25°,∴∠C=∠D=25°,∴∠3+∠4﹣∠2﹣∠1=2∠D=2×25°=50°.三、解答题13.【解析】(1)解:△ABD≌△ACF,△CBD≌△ECF,△EBD≌△DCF;(2)证明△ABD≌△ACF;理由:∵△ABC 为等边三角形,CD=CE ,∴△CDE 为等边三角形,∴∠ADF=∠CDE=60°,又∵AD=DF,∴△ADF 为等边三角形,∴AD=AF,∠BAD=∠DAF=60°,又AB=AC ,∴△ABD≌△ACF(SAS ).14.【解析】证明:∵∠AOD=∠BOC,∴∠AOD+∠DOB=∠BOC+∠BOD,即∠AOB=∠COD,∵O 是AC 的中点,∴AO=CO,在△AOB 与△COD 中,∴△AOB≌△COD.15.【解析】证明:延长DE 交AB 的延长线于F∴∠CDE=∠F, ∠CDA+∠BAD=180º∵DE 平分∠CDA,AE 平分∠DAB ∴∠CDE=∠ADE=21∠CDA, ∠DAE=∠EAF=21∠BAD ∴∠ADE=∠F,∠EDA+∠DAE=90º∴∠AED=∠AEF=90º在△ADE 与△AFE 中 ⎪⎩⎪⎨⎧=∠=∠∠=∠AE AE FEA DEA F ADE ∴△ADE≌△AFE (AAS ) ∴DE=EF,AD =AF 在△DCE 与△FBE 中 ⎪⎩⎪⎨⎧∠=∠=∠=∠FEB DEC FEDE FCDE ∴△DCE≌△FBE (ASA ) ∴DC=BF∴AD=AB +DC.。
人教版八年级上册第十二章《全等三角形的重要模型》巩固练习含答案
专题训练——全等三角形的重要模型1.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图中,若,求边上的中线的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长到点,使,请根据小明的方法思考:由已知和作图能得到的理由是________.A.B.C.D.求得的取值范围是________.A.B.C.D.【方法感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】如图,已知:是的中线,求证:.2.在中,,,则边上的中线的长的取值范围是什么?3.已知三角形两边长分别为和,求第三边上中线的长度的取值范围.4.如图,是的中线,点在的延长线上,,,求证:.5.已知:在中,是边上的中线,是上一点,且,延长交于,求证:.6.如图,已知中,,是边上的中线,延长到,使.给出下列结论:;;;平分,则以上结论正确的是________.7.已知,如图:是的中线,,连接.试猜想线段与的关系,并证明.8.如图,中,的平分线交于,,,那么的度数是________.9.如图,中,的平分线交于,,,那么的度数是________度..11.问题:在中,,,为的平分线,探究、、之间的数量关系.请你完成下列探究过程.(1)观察图形,猜想、、之间的数量关系为________.(2)在对中的猜想进行证明时,当推出后,可进一步推出________度.(3)为了使同学们顺利地解答本题中的猜想,小强同学提供了一种探究的思路:在上12.如图,在四边形中,,,、分别是边、上的点,且.(2)如图,在四边形中,,,、分别是边、上的点,且,结论是否成立?13.如图,是边长为的等边三角形,是等腰三角形,且.以为顶点作一个角,使其两边分别交于点,交于点,连接,则的周长为________.14.已知:如图,是正方形的边上任意一点,是边上的点,且平分求证:.15.(1)问题背景:如图,在四边形中,,,,、分别是边、上的点,且,直接写出、、之间的数量关系.(2)探索延伸:如图,若在四边形中,,.、分别是边、上的点,且,上述结论是否仍然成立?说明理由.(3)实际应用:如图,在某次军事演习中,舰艇甲在指挥中心(处)北偏西的处,舰艇乙在指挥中心南偏东的处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以海里/小时的速度前进,舰艇乙沿北偏东的方向以海里/小时的速度前进.小时后,指挥中心观测到甲、乙两舰艇分别到达、处,且两舰艇之间的夹角为(即:),试求此时两舰艇之间的距离.参考答案1.【答案】见解析【解析】解:在和中,,,故答案为:B;解:由知:,,在中,,由三角形三边关系定理得:,,故答案为:C.证明:如图,延长到,使,连接,是的中线,在与中,,,,是的外角,,,,,,,,在与中,,.【知识点】三角形的三边关系定理、三角形的外角等于不相邻的内角的和、SAS、全等三角形对应边对应角相等、倍长中线2.【答案】倍长中线,【解析】倍长中线,.【知识点】倍长中线3.【答案】见解析【解析】解:提示:利用倍长中线法,.【知识点】倍长中线4.【答案】见解析【解析】证明:延长至,使,是的中线,,在和中,,,,,,,即,在和中,.,,.【知识点】SAS、全等三角形对应边对应角相等、倍长中线5.【答案】见解析【解析】解:证明:如图,延长到点,使得,连接.∵是边上的中线(已知)∴在和中∴∴,又∵∴∴∵∴即:∴6.【答案】【解析】解:正确.,,.、正确.延长到,使,连接.是的中线,.在和中,,在和中,即,平分.错误.,而是边上中线而不是的角平分线故和不一定相等.答案:.【知识点】SAS、全等三角形对应边对应角相等、倍长中线7.【答案】见解析【解析】猜想:.证明:延长到,使得,连接,延长交于点,,是的中线,,在和中,,,,,,即.在和中,,,;,,,,,.【知识点】SAS、全等三角形对应边对应角相等、倍长中线、同(等)角的补角相等8.【答案】【解析】解:在上截取,如图,平分,,在和中,,,,,,,,.【知识点】SAS、全等三角形对应边对应角相等、截长补短9.【答案】60【解析】解:在上截取,如图,∵平分,∴,∵在和中,∴,∴,∵,∴,∴,∵∴.【知识点】SAS、全等三角形对应边对应角相等、截长补短10.【答案】见解析【解析】证明:如图,在上截取,连接,平分,,在和中,,,,.,,.又,.【知识点】SAS、全等三角形对应边对应角相等、截长补短11.(1)【答案】【解析】由图可得猜想.【知识点】三角形内角和定理、等腰三角形两底角相等、SAS、全等三角形对应边对应角相等、截长补短11.(2)【答案】【解析】为的平分线,故度.【知识点】角的计算11.(3)【答案】见解析【解析】画出图形,如下,,,.,.,,.,,,,,.【知识点】三角形内角和定理、等腰三角形两底角相等、等角对等边、SAS、全等三角形对应边对应角相等、截长补短12.(1)【答案】证明见解析【解析】证明:延长到,使,连接.,,.,...又,....【知识点】SAS、全等三角形对应边对应角相等、截长补短12.(2)【答案】成立【解析】解:结论仍然成立.在的延长线上截取,连接(如图),,,,,,,,,,,,,.【知识点】同(等)角的补角相等、SAS、全等三角形对应边对应角相等、截长补短13.【答案】6【解析】解:是等腰三角形,且,.是边长为的等边三角形,,.如图,延长至,使,连接,在和中,,,,,,.,,,即.又为公共边,,,的周长是:.【知识点】等腰三角形两底角相等、等边三角形内角都是60度、SAS、全等三角形对应边对应角相等、截长补短14.【答案】答案见解析【解析】证明:延长到,使,连接,,,.,,.即【知识点】两直线平行,内错角相等、SAS、全等三角形对应边对应角相等、截长补短、角平分线、全等形的性质15.(1)【答案】见解析【解析】解:.理由:如图,延长到点,使,连接,,,在和中,,,,,,,在和中,,,,,.【知识点】全等三角形的定义、SAS、全等三角形对应边对应角相等、截长补短15.(2)【答案】见解析【解析】结论仍然成立.理由:如图,延长到点,使,连接,,,在和中,,,,,,,在和中,,,,,.【知识点】截长补短、全等三角形的定义、SAS、全等三角形对应边对应角相等15.(3)【答案】见解析【解析】如图,连接,延长、相交于点,,,又,,符合中的条件,即结论成立,(海里).答:此时两舰艇之间的距离是海里.【知识点】角的计算、角-方位角。
全等三角形专项练习及答案
评卷人得分一、选择题(题型注释)、1.小明想用三根木棒为边制作一个三角形,则可以选用的木棒长为()A.8cm、15cm 、6cm B.7cm、9cm、13cmC.10cm、20cm、30cm D.20cm、40cm、60cm【答案】B2.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是()=AC B.∠BAE=∠CAD =DC =DE【答案】D[3.已知:如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A、∠A与∠D互为余角B、∠A=∠2C、△ABC≌△CEDD、∠1=∠2【答案】D4.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于D,DE⊥AB于=6cm,则△DEB 的周长为()A. 4cmB. 6cmC. 10cmD. 14cm【答案】B5.如图,OA=OC,OB=OD,OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC;&AB CDE1]其中正确的结论是( )A.①② B.①②③ C.①③ D.②③》【答案】B【解析】试题分析:因为OA=OC,OB=OD,OA⊥OB,OC⊥OD,可得△COD≌△AOB, ∠CDO=∠ABO;∠DOC+∠AOC=∠AOB+∠AOC, OA=OC,OB=OD,所以△AOD≌△COB,所以CD=AB,∠ADO=∠CBO;所以∠CDA=∠ABC.故①②③都正确.故选B考点:三角形全等的判定和性质6.如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=α,则下列结论正确的是()…A.2α+∠A=180° B.α+∠A=90° C.2α+∠A=90° D.α+∠A=180°【答案】A【解析】试题分析:根据已知条件可证明△BDE≌△CFD,则∠BED=∠CDF,由∠A+∠B+∠C=180°,得∠B=,因为∠BDE+∠EDF+∠CDF=180°,所以得出a与∠A的关系2a+∠A=180°.考点:全等三角形的判定和性质,三角形的内角和定理7.如图,AD是△ABC的中线,E、F分别在AB、AC上,且DE⊥DF,则()~A.BE+CF>EFB.BE+CF=EFC.BE+CF<EFD.BE+CF与EF的大小关系不能确定.【答案】A.8.如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm}【答案】C.【解析】试题分析:∵AB的垂直平分AB,∴AE=BE,BD=AD,∵AE=3cm,△ADC的周长为9cm,∴△ABC的周长是9cm+2×3cm=15cm,故选C.考点:线段垂直平分线的性质.9.如图所示,∠A+∠B+∠C+∠D+∠E的结果为()A.90° B.1 80° C.360° D.无法确定【答案】?【解析】试题分析:延长BE交AC于F,∵∠A+∠B=∠2,∠D+∠E=∠1,∠1+∠2+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°,考点:1.三角形内角和定理;2.三角形的外角性质.10.若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()>A、36B、72C、108D、144【答案】C【解析】∵∠A+∠B+∠C=180°,∴2(∠A+∠B+∠C)=360°,∵2(∠A+∠C)=3∠B,∴∠B=72°,11.如图,AB∥CD,∠D =∠E =35°,则∠B的度数为().A.60° B.65° C.70° D.75°【答案】C.~12.如图,已知△ABC,O是△ABC内的一点,连接OB、OC,将∠ABO、∠ACO分别记为∠1、∠2,则∠1、∠2、∠A、∠O四个角之间的数量关系是()A .∠1+∠0=∠A+∠2B .∠1+∠2+∠A+∠O=180°C .∠1+∠2+∠A+∠O=360°D .∠1+∠2+∠A=∠O【答案】D .【解析】 试题分析:连接AO 并延长,交BC 于点D ,》∵∠BOD 是△AOB 的外角,∠COD 是△AOC 的外角,∴∠BOD=∠BAD+∠1①,∠COD=∠CAD+∠2②,①+②得,∠BOC=(∠BAD+∠CAD )+∠1+∠2,即∠BOC=∠BAC+∠1+∠2.故选D .考点:1.三角形的外角性质;2.三角形内角和定理.13.如图,BD 是∠ABC 的角平分线,DE ⊥AB 于E ,DF ⊥BC 于F ,,,,△cm 12BC cm 18AB cm 362ABC ===S 则DE 的长是( )B.cm 512 D.cm 514 ¥【答案】B【解析】试题分析:∵BD 是∠ABC 的角平分线,DE ⊥AB ,DF ⊥BC,由角平分线的性质可得DE=DF ∴DCB S S ∆∆+=ADB ABC S △=DF DE ⋅⨯+⋅⨯12211821=9DE+6DF=15DE=36∴DE=cm 512 所以选B.考点:角平分线的性质?第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分~二、填空题(题型注释)14.如图,△ABC中,∠A=90°,DE是BC的垂直平分线,AD=DE,则∠C的度数是°.【答案】30°.【解析】试题分析:∵DE是BC的垂直平分线,∴DE⊥BC,∵∠A=90°,AD=DE,∴BD平分∠AABC,∴∠ABD=∠DBC,∵DE是BC的垂直平分线,∴DC=BD,∴∠C=∠DBC,∴3∠C=90°,∴∠C=30°.故答案为:30°.考点:1.线段垂直平分线的性质;2.角平分线的性质.!15.如图,在△ABC中,∠ACB=90°,AB的垂直平分线DE交AB于E,交AC于D,∠DBC=30°,BD=,则D到AB的距离为。
初中数学中考复习:30全等三角形(含答案)
中考总复习:全等三角形—巩固练习【巩固练习】一、选择题1.如图,△ABC是不等边三角形,DE=BC,以D、E为两个顶点画位置不同的三角形,使所画的三角形与△ABC全等,这样的三角形最多可画出( ) .A.2个B.4个C.6个D.8个2.如图,Rt△ABC中,∠BAC=90°,AB=AC,D为AC的中点,AE⊥BD交BC于E,若∠BDE=,∠ADB的大小是().A. B. C. D.3.如图,△ABC中,∠C为钝角,CF为AB上的中线,BE为AC上的高,若CF=BE,则∠ACF的大小是().A.45° B.60° C.30° D.不确定4.如图,△ABC中,∠BAC=90° AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是( ) . A. 45°B. 20°C. 30°D. 15°5.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是(). A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等 C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC6. 如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则(). A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC;二、填空题7.如图,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的。
若∠1:∠2:∠3=28:5:3,则的度数为______.8.如图,把△ABC绕C点顺时针旋转35°,得到,交于点,若,则∠A=______.9.如图,已知的周长是20,分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3, △ABC的面积是___________..如图,直线AE∥BD,点则……峰1峰2已知:如图,过△ABC的边BC的中点求证:14.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE,AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.15.如图,已知中,厘米,厘米,点为的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C 点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与 全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?16. 如图,在中,,,,. (1)求证:,. (2)如图,若是的中点.求证:. (3)如图,若于点,延长交于点.求证:.【答案与解析】一、选择题1.【答案】B.2.【答案】C.【解析】作关于BC的对称图形,作的中点,连接,则容易证明,说明和AE在同一条直线上的线段,根据对称性交于E点,所以与DE在同一条直线上,容易证明.所以.所以.3.【答案】C.【解析】延长CF到D,使CD=2CF,容易证明 △AFC≌△,所以∠D=∠FCA,所以AC∥BD,因为 CF=BE,所以CD=2BE,即AC与BD之间的距离等于CD的一半, 所以∠D=30°.所以内错角∠ACF=30°.4.【答案】D.5.【答案】C.【解析】提示:∵△ABD≌△CDB, ∴AB=CD,BD=DB,AD=CB,∠ADB=∠CBD, ∴△ABD和△CDB的周长和面积都分别相等. ∵∠ADB=∠CBD, ∴AD∥BC.6.【答案】D.二、填空题7.【答案】80°.【解析】由三角形内角和是180°知∠1=140°,∠2=25°,∠3=15°, 由翻折知:∠ABE=∠2,∠ACD=∠3,∴.8.【答案】55°.【解析】由旋转知:,, ∵,∴55, ∴55°.9.【答案】30 .【解析】提示:面积法.10.【答案】8.11.【答案】相等或互补.12.【答案】-29 , B .三、解答题13.【答案与解析】证明:延长FM到G,使,连接 ∵M为BC的中点, ∴△BMG≌△CMF ∴∠G=∠2,CF=BG, 又∵平分,ME∥AD, ∴∠3=∠4,∠3=∠E,∠1=∠4, ∴∠1=∠E,即AE=AF, ∵∠1=∠2,∠G=∠2,∠1=∠E, ∴∠G=∠E,即BE=BG=CF, ∴AB+AC=AB+AF+CF=AB+AE+CF=BE+CF=2CF,即14.【答案与解析】猜测AE=BD,AE⊥BD. 证明如下: ∵∠ACD=∠BCE=90°, ∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB. ∵△ACD和△BCE都是等腰直角三角形, ∴AC=CD,CE=CB. ∴△ACE≌△DCB(SAS) ∴AE=BD,∠CAE=∠CDB. ∵∠AFC=∠DFH, ∴∠DHF=∠ACD=90°, ∴AE⊥BD.15.【答案与解析】(1)①∵秒, ∴, ∵,点为的中点, ∴. 又∵, ∴, ∴. 又∵, ∴, ∴. ②∵,∴, 又∵,,则, ∴点,点运动的时间秒, ∴. (2)设经过秒后点与点第一次相遇, 由题意,得, 解得. ∴点共运动了. ∵, ∴点、点在边上相遇, ∴经过秒点与点第一次在边上相遇.16.【答案与解析】(1)提示:证明≌(SAS).(2)提示:延长至,使得,连结,先证≌(SAS), 再证≌(SAS).(3)提示:作于,的延长线于,先证≌(AAS), 同理证明≌,再证≌(AAS).。
专题26 三角形全等【考点巩固】(解析版)
专题26 三角形全等考点1:全等三角形的概念和性质1.如图所示,已知△ABC△△ADE,BC的延长线交DE于F,△B=△D=25°,△ACB=△AED =105°,△DAC=10°,则△DFB为()A.40°B.50°C.55°D.60°【分析】设AD与BF交于点M,要求△DFB的大小,可以在△DFM中利用三角形的内角和定理求解,转化为求△AMC的大小,再转化为在△ACM中求△ACM就可以.【答案】解:设AD与BF交于点M,△△ACB=105,△△ACM=180°﹣105°=75°,△AMC=180°﹣△ACM﹣△DAC=180°﹣75°﹣10°=95°,△△FMD=△AMC=95°,△△DFB=180°﹣△D﹣△FMD=180°﹣95°﹣25°=60°.故选:D.2.如图,△ABC△△AED,连接BE.若△ABC=15°,△D=135°,△EAC=24°,则△BEA的度数为()A.54°B.63°C.64°D.68°【分析】直接利用全等三角形的性质结合三角形内角和定理得出△BAE=54°,进而得出答案.【答案】解:△△ABC△△AED,△D=135°△△C=△D=135°,AB=AE,△△ABE=△AEB,△△ABC=15°,△D=△C=135°,△△BAC=30°,△△EAC=24°,△△BAE=54°,×(180°﹣54°)=63°.则△BEA的度数为:12故选:B.3.下图所示的图形分割成两个全等的图形,正确的是()A.B.C.D.【分析】直接利用全等图形的性质进而得出答案.【答案】解:如图所示:图形分割成两个全等的图形,.故选:B.考点2:三角形全等的判定1.(2021·重庆)如图,点B,F,C,E共线,△B=△E,BF=EC,添加一个条件,不等判断△ABC△△DEF的是()A.AB=DE B.△A=△D C.AC=DF D.AC△FD【答案】C【分析】根据全等三角形的判定与性质逐一分析即可解题.【详解】解:BF =EC ,BC EF ∴=A. 添加一个条件AB =DE ,又,BC EF B E =∠=∠()ABC DEF SAS ∴△≌△故A 不符合题意;B. 添加一个条件△A =△D又,BC EF B E =∠=∠()ABC DEF AAS ∴≌故B 不符合题意;C. 添加一个条件AC =DF ,不能判断△ABC △△DEF ,故C 符合题意;D. 添加一个条件AC △FDACB EFD ∴∠=∠又,BC EF B E =∠=∠()ABC DEF ASA ∴≌故D 不符合题意,故选:C .2.(2021·山东)如图,四边形ABCD 中,BAC DAC ∠=∠,请补充一个条件____,使ABC ADC △≌△.【答案】D B ∠=∠(答案不唯一)【分析】本题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【详解】解:添加的条件为D B ∠=∠, 理由是:在ABC 和ADC 中,BAC DAC D B AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△ABC ADC △≌△(AAS ),故答案为:D B ∠=∠.3.(2021·湖北)如图,在平面直角坐标系中,点C 的坐标为()1,0-,点A 的坐标为()3,3-,将点A 绕点C 顺时针旋转90︒得到点B ,则点B 的坐标为_____________.【答案】()2,2【分析】根据题意画出图形,易证明ADC CEB △≌△,求出OE 、BE 的长即可求出B 的坐标.【详解】解:如图所示,点A 绕点C 顺时针旋转90︒得到点B ,过点A 作x 轴垂线,垂足为D ,过点B 作x 轴垂线,垂足为E ,△点C 的坐标为()1,0-,点A 的坐标为()3,3-, △CD=2,AD =3,根据旋转的性质,AC =BC ,△90ACB ∠=︒,△90ACD BCE ∠+∠=︒,△90ACD DAC ∠+∠=︒,△BCE DAC ∠=∠,△ADC CEB △≌△,△AD =CE =3,CD =BE =2,△OE =2,BE =2,故答案为:()2,2.4.(2021·湖南衡阳市)如图,点A 、B 、D 、E 在同一条直线上,,//,//AB DE AC DF BC EF =.求证:ABC DEF △≌△.【答案】见解析【分析】根据//,//AC DF BC EF ,可以得到,A FDE ABC DEF ∠=∠∠=∠,然后根据题目中的条件,利用ASA 证明△ABC △△DEF 即可.【详解】证明:点A ,B ,C ,D ,E 在一条直线上△//,//AC DF BC EF△,A FDE ABC DEF ∠=∠∠=∠在ABC 与DEF 中CAB FDE AB DEABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩△()ABC DEF ASA △≌△5.(2020•泸州)如图,AC 平分△BAD ,AB =AD .求证:BC =DC .【分析】由“SAS”可证△ABC△△ADC,可得BC=DC.【解答】证明:△AC平分△BAD,△△BAC=△DAC,又△AB=AD,AC=AC,△△ABC△△ADC(SAS),△BC=CD.6.(2020•无锡)如图,已知AB△CD,AB=CD,BE=CF.求证:(1)△ABF△△DCE;(2)AF△DE.【分析】(1)先由平行线的性质得△B=△C,从而利用SAS判定△ABF△△DCE;(2)根据全等三角形的性质得△AFB=△DEC,由等角的补角相等可得△AFE=△DEF,再由平行线的判定可得结论.【解答】证明:(1)△AB△CD,△△B=△C,△BE=CF,△BE﹣EF=CF﹣EF,即BF=CE,在△ABF和△DCE中,△{AB=CD ∠B=∠C BF=CE,△△ABF△△DCE(SAS);(2)△△ABF△△DCE,△△AFB=△DEC,△△AFE=△DEF,△AF△DE.7.(2020•台州)如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD△△ACE;(2)判断△BOC的形状,并说明理由.【分析】(1)由“SAS”可证△ABD△△ACE;(2)由全等三角形的性质可得△ABD=△ACE,由等腰三角形的性质可得△ABC=△ACB,可求△OBC=△OCB,可得BO=CO,即可得结论.【解答】证明:(1)△AB=AC,△BAD=△CAE,AD=AE,△△ABD△△ACE(SAS);(2)△BOC是等腰三角形,理由如下:△△ABD△△ACE,△△ABD=△ACE,△AB=AC,△△ABC=△ACB,△△ABC﹣△ABD=△ACB﹣△ACE,△△OBC=△OCB,△BO=CO,△△BOC是等腰三角形.。
直角三角形全等判定(基础)巩固练习
【巩固练习】一、选择题A .斜边和一锐角对应相等的两个直角三角形全等B .有两边对应相等的两个直角三角形全等C .有两个锐角相等的两个直角三角形全等D .有一直角边和一锐角对应相等的两个直角三角形全等2.如图,AB =AC ,AD ⊥ BC 于D ,E 、F 为AD 上的点,则图中共有( )对全等三角形.A .3B .4C .5D .63. 能使两个直角三角形全等的条件是( )A.斜边相等B.一锐角对应相等C.两锐角对应相等D.两直角边对应相等4. 在Rt △ABC 与Rt △'''A B C 中, ∠C = ∠'C = 90︒, ∠A = ∠'B , AB =''A B , 那么下列结论中正确的是( )A. AC = ''A CB.BC = ''B CC. AC = ''B CD. ∠A = ∠'A5. 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等6. 在两个直角三角形中,若有一对角对应相等,一对边对应相等,则两个直角三角形( )A.一定全等B.一定不全等C.可能全等D.以上都不是二、填空题7.如图,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”.8. 已知,如图,∠A =∠D =90°,BE =CF ,AC =DE ,则△ABC ≌_______.9. 如图,BA ∥DC ,∠A =90°,AB =CE ,BC =ED ,则AC =_________.11.有两个长度相同的滑梯,即BC=EF,左边滑梯的高度AC与右边滑梯的水平方向的长度DF相等,则∠ABC+∠DFE=________.12. 如图,已知AD是△ABC的高,E为AC上一点,BE交AD于F,且BF=AC,FD=CD.则∠BAD=_______.三、解答题15. 如图,已知AB=AC,AE=AF,AE⊥EC,AF⊥BF,垂足分别是点E、F.求证:∠1=∠2.【答案与解析】一、选择题1. 【答案】C;【解析】解:A、∵直角三角形的斜边和一锐角对应相等,所以另一锐角必然相等,∴符合ASA定理,故本选项正确;B、两边对应相等的两个直角三角形全等,若是两条直角边,可以根据SAS判定全等,若是直角边与斜边,可根据HL判定全等.故本选项正确;C、有两个锐角相等的两个直角三角形相似,故本选项错误;D、有一直角边和一锐角对应相等的两个直角三角形符合ASA定理,可判定相等,故本选项正确.故选C.2. 【答案】D;【解析】△ABD≌△ACD;△ABF≌△ACF;△ABE≌△ACE;△EBF≌△ECF;△EBD≌△ECD;△FBD≌△FCD.3. 【答案】D;4. 【答案】C;【解析】注意看清对应顶点,A对应'B,B对应'A.5. 【答案】C;【解析】等底等高的两个三角形面积相等.6. 【答案】C;【解析】如果这对角不是直角,那么全等,如果这对角是直角,那么不全等.二、填空题7. 【答案】HL;8. 【答案】△DFE9. 【答案】CD;【解析】通过HL证Rt△ABC≌Rt△CDE.10.【答案】AB=AC;【解析】解∵AD ⊥BC 于D ,∴∠ADB=∠ADC=90°,在Rt △ABD 和Rt △ACD 中,,∴Rt △ABD ≌Rt △ACD (HL ),故答案为:AB=AC .11.【答案】90°;【解析】通过HL 证Rt △ABC ≌Rt △DEF ,∠BCA =∠DFE.12.【答案】45°;【解析】证△ADC 与△BDF 全等,AD =BD ,△ABD 为等腰直角三角形.三、解答题13.【解析】解:在Rt △AOB 与Rt △COD 中,(3590AOB COD AO CO A C ∠=∠⎧⎪==⎨⎪∠=∠=︒⎩对顶角相等)∴Rt △AOB ≌Rt △COD (ASA )∴AB =CD =20cm .14.【解析】解:在Rt △OPM 和Rt △OPN 中,,所以Rt △OPM ≌Rt △OPN (HL ),所以∠POM=∠PON ,即OP 平分∠AOB .15.【解析】证明:∵AE ⊥EC ,AF ⊥BF ,∴△AEC 、△AFB 为直角三角形,在Rt △AEC 与Rt △AFB 中,AB AC AE AF⎧⎨⎩==∴Rt △AEC ≌Rt △AFB (HL ),∴∠EAC =∠FAB ,∴∠EAC -∠BAC =∠FAB -∠BAC ,即∠1=∠2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如图1-10,AB⊥BC,ΔABE≌ΔECD.判断AE与DE的关系,并证明你的结论.2.已知:如图,AD=BC.AC=BD.试证明:∠CAD=∠DBC.3..已知:如图,线段a、b、c.求作:ΔABC,使得BC=a,AC=b,AB=c.4.已知:如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.5.如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的关系,并证明你的结论..6.已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.7.已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.8.如图,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.(2)如图,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.9.判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和这个角的邻边对应相等;()(3)一个锐角和斜边对应相等;()(4)两直角边对应相等;()(5)一条直角边和斜边对应相等.()10.如图,AB=AC,AD⊥BC于D,E、F为AD上的点,则图中共有()对全等三角形.A.3 B.4 C.5 D.611.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC:(2)AD∥BC.12.已知:如图,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC;13.已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.14.已知:如图,DE⊥AC,BF⊥AC,AD=BC,DE=BF.求证:AB∥DC.152.下列说法中,正确的画“√”;错误的画“×”,并作图举出反例.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()16.(1)已知:如图,线段AC、BD交于O,∠AOB为钝角,AB=CD,BF⊥AC于F,DE⊥AC于E,AE=CF.求证:BO=DO.(2)若∠AOB为锐角,其他条件不变,请画出图形并判断(1)中的结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由.17.如图6-5,△ABC 中,若∠B =∠C ,BD =CE ,CD =BF ,则∠EDF = ( ) A .90°-∠AB .A ∠-2190oC .180°-2∠A D .A ∠-2145o图6-5 图6-618.下列各组条件中,可保证△ABC 与△A 'B 'C '全等的是 ( )A .∠A =∠A ',∠B =∠B ',∠C =∠C ' B .AB =A 'B ',AC =A 'C ',∠B =∠B ' C .AB =C 'B ',∠A =∠B ',∠C =∠C 'D .CB =A 'B ',AC =A 'C ',BA =B 'C '19.如图6-6,已知MB =ND ,∠MBA =∠NDC ,下列条件不能判定△ABM ≌△CDN 的是 ( )A .∠M =∠NB .AB =CDC .AM =CND .AM ∥CN20.已知:如图6-7,AD =AE ,AB =AC ,∠DAE =∠BAC .求证:BD =CE .图6-721.已知:如图6-8,AC 与BD 交于O 点,AB ∥DC ,AB =DC .(1)求证:AC 与BD 互相平分;(2)若过O 点作直线l ,分别交AB 、DC 于E 、F 两点, 求证:OE =OF .图6-822.如图6-9,E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?图6-9 23.(作图题)已知:如图7-2,∠AOB.求作:∠AOB的平分线OC.作法:图7-224.(作图题)已知:如图7-4,△AB C.求作:点P,使得点P在△ABC内,且到三边AB、BC、CA的距离相等.作法:图7-425.已知:如图7-5,△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.图7-526.已知:如图7-6,CD⊥AB于D,BE⊥AC于E,CD、BE交于O,∠1=∠2.求证:OB=OC.图7-627.(作图题)已知:如图7-7,△ABC中,∠C=90°,试在AC上找一点P,使P到斜边的距离等于PC.图7-7图8-3 图8-428.已知:如图8-3,在RtΔABC中,∠C=90°,沿着过点B的一条直线BE折叠ΔABC,使C点恰好落在AB边的中点D处,则∠A的度数等于_____.29.已知:如图8-4,在ΔABC中,BD、CE分别平分∠ABC、∠ACB,且BD、CE交于点O,过O作OP⊥BC于P,OM⊥AB于M,ON⊥AC于N,则OP、OM、ON的大小关系为_____.30.已知:如图8-5,OD平分∠POQ,在OP、OQ边上取OA=OB,点C在OD上,CM⊥AD于M,CN⊥BD于N.求证:CM=CN.图8-531.已知:如图8-6,ΔABC的外角∠CBD和∠BCE的平分线BF、CF交于点F.求证:点F必在∠DAE的平分线上.图8-632.已知:如图8-7,A、B、C、D四点在∠MON的边上,AB=CD,P为∠MON内一点,并且△PAB 的面积与△PCD的面积相等.求证:射线OP是∠MON的平分线.图8-733.如图8-8,在ΔABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E,若△BCD与△BCA的面积比为3∶8,求△ADE与△BCA的面积之比.图8-834.已知:如图8-9,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠DAB;(2)猜想AM与DM的位置关系如何?并证明你的结论.图8-9AP D CB 35.已知:如图8-10,在ΔABC 中,AD 是△ABC 的角平分线,E 、F 分别是AB 、AC 上一点,并且有∠EDF+∠EAF =180°.试判断DE 和DF 的大小关系并说明理由.图8-1036.已知 ABC 的边AB =6,AC =8,AD 是BC 边上的中线,求AD 的取值范围.DCBA37. 在四边形ABCP 中,BP 平分∠ABC ,PD ⊥BC 于D ,且AB+BC=2BD.求证:∠BAP+∠BCP=180o.38.(北京2006)第23题.如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。
请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F 。
请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。
(第38题图)OP AMNEB CD FACEFBD图①图② 图③D EBC ANM DEBNAC MEDBCANM39.在△ABC 中,090ACB ∠=,AC=BC ,直线MN 经过点C ,且AD MN D BE MN E ⊥⊥于,于。
(1) 当直线MN 绕点C 旋转到图1的位置时,求证:DE=AD+BE ;(2) 当直线MN 绕点C 旋转到图2的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明。
(3) 当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系 ,不用证明。
图1 图2 图340-.如图(1),△ABC 中,BC=AC ,△CDE 中,CE=CD ,现把两个三角形的C 点重合,且使∠BCA=∠ECD ,连接BE ,AD. 求证:BE=AD.若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等吗?为什么?B C AE D B C A ED B C AE D (1) (2) (3)41、如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是( )A.相等B.不相等C.互余或相等D.互补或相等42、如图所示,A ,E ,F ,C 在一条直线上,AE =CF ,过E ,F 分别作DE ⊥AC ,BF ⊥AC ,若AB =CD ,可以得到BD 平分EF ,为什么?若将△DEC 的边EC 沿AC 方向移动,变为图时,其余条件不变,上述结论是否成立?请说明理由.G DFA CB EGDFACBE43、如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF.(2)请你判断BE+CF与EF的大小关系,并说明理由.FED C BAG。