高考数学二轮总复习专题7导数的综合应用(共47张PPT)_图文.ppt48页

合集下载

导数及其应用阶段复习课(共107张PPT)

导数及其应用阶段复习课(共107张PPT)
不知道自己缺点的人,一辈子都不会想要改善。成功的花,人们只惊慕她现时的明艳!然而当初她的芽儿,浸透了奋斗的泪泉,洒遍了牺牲的血雨。成功的条件在于勇气和 信乃是由健全辈子。成功只有一个理由,失败却有一千种理由。从胜利学得少,从失败学得多。你生而有 前进,形如蝼蚁。你一天的爱心可能带来别人一生的感谢。逆风的方向,更适合飞翔。只有承担起旅途风雨,才能最终守得住彩虹满天只有创造,才是真正的享受,只有拚 活。知识玩转财富。志不立,天下无可成之事。竹笋虽然柔嫩,但它不怕重压,敢于奋斗、敢于冒尖。阻止你前行的,不是人生道路上的一百块石头,而是你鞋子里的那一 爱,不必呼天抢地,只是相顾无言。最值得欣赏的风景,是自己奋斗的足迹。爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。生活不可能像你想 不会像你想的那么糟。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。实现梦想往往是一个艰苦的坚持的 到位,立竿见影。那些成就卓越的人,几乎都在追求梦想的过程中表现出一种顽强的毅力。世界上唯一不变的字就是“变”字。事实胜于雄辩,百闻不如一见。思路决定出 细节决定成败,性格决定命运虽然你的思维相对于宇宙智慧来说只不过是汪洋中的一滴水,但这滴水却凝聚着海洋的全部财富;是质量上的一而非数量上的一;你的思维拥 所有过不去的都会过去,要对时间有耐心。人总会遇到挫折,总会有低潮,会有不被人理解的时候。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希 个人不知道他要驶向哪个码头,那么任何风都不会是顺风。沙漠里的脚印很快就消逝了。一支支奋进歌却在跋涉者的心中长久激荡。上天完全是为了坚强你的意志,才在道 碍。拥有资源不能成功,善用资源才能成功。小成功靠自己,大成功靠团队。炫耀什么,缺少什么;掩饰什么,自卑什么。所谓正常人,只是自我防御比较好的人。真正的 防而又不受害。学习必须如蜜蜂一样,采过许多花,这才能酿出蜜来态度决定高度。外在压力增加时,就应增强内在的动力。我不是富二代,不能拼爹,但为了成功,我可 站在万人中央成为别人的光。人一辈子不长不短,走着走着,就进了坟墓,你是要轰轰烈烈地风光下葬,还是一把骨灰撒向河流山川。严于自律:不能成为自己本身之主人 他周围任何事物的主人。自律是完全拥有自己的内心并将其导向他所希望的目标的惟一正确的途径。生活对于智者永远是一首昂扬的歌,它的主旋律永远是奋斗。眼泪的存 伤不是一场幻觉。要不断提高自身的能力,才能益己及他。有能力办实事才不会毕竟空谈何益。故事的结束总是满载而归,就是金榜题名。一个人失败的最大原因,是对自 的信心,甚至以为自己必将失败无疑。一个人炫耀什么,说明内心缺少什么。一个人只有在全力以赴的时候才能发挥最大的潜能。我们的能力是有限的,有很多东西飘然于 之外。过去再优美,我们不能住进去;现在再艰险,我们也要走过去!即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。你的所有不甘和怨气来源于你 你可以平凡,但不能平庸。懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。平凡的脚步也可以走完伟大的行程。平静的湖面锻炼不出精 生活打造不出生活的强者。人的生命似洪水在奔流,不遇着岛屿、暗礁,难以激起美丽的浪花人生不怕重来,就怕没有将来。人生的成败往往就在于一念之差。人生就像一 为你在看别人耍猴的时候,却不知自己也是猴子中的一员!人生如天气,可预料,但往往出乎意料。人生最大的改变就是去做自己害怕的事情。如果不想被打倒,只有增加 你向神求助,说明你相信神的能力;如果神没有帮助你,说明神相信你的能力。善待自己,不被别人左右,也不去左右别人,自信优雅。活是欺骗不了的,一个人要生活得 象这杯浓酒,不经三番五次的提炼呵,就不会这样一来可口!生命不止需要长度,更需要宽度。时间就像一张网,你撒在哪里,你的收获就在哪里。世上最累人的事,莫过于 你感到痛苦时,就去学习点什么吧,学习可以使我们减缓痛苦。当世界都在说放弃的时候,轻轻的告诉自己:再试一次。过错是暂时的遗憾,而错过则是永远的遗憾!很多 结果,但是不努力却什么改变也没有。后悔是一种耗费精神的情绪后悔是比损失更大的损失,比错误更大的错误所以不要后悔。环境不会改变,解决之道在于改变自己。积 成功者的最基本要素。激情,这是鼓满船帆的风。风有时会把船帆吹断;但没有风,帆船就不能航行。即使道路坎坷不平,车轮也要前进;即使江河波涛汹涌,船只也航行 粹取出来的。浪费时间等于浪费生命。老要靠别人的鼓励才去奋斗的人不算强者;有别人的鼓励还不去奋斗的人简直就是懦夫。不要问别人为你做了什么,而要问你为别人 遥远的梦想和最朴素的生活,即使明天天寒地冻,金钱没有高贵,低贱之分。金钱在高尚人的手中,就会变得高尚;金钱在庸俗人手中,就会变得低级庸俗。涓涓细流一旦 大海也就终止了呼吸。漫无目的的生活就像出海航行而没有指南针。如果我没有,我就一定要,我一定要,就一定能。上一秒已成过去,曾经的辉煌,仅仅是是曾经。其实 在昨天,而是失败在没有很好利用今天。千万人的失败,都有是失败在做事不彻底,往往做到离成功只差一步就终止不做了。强者征服今天,懦夫哀叹昨天,懒汉坐等明天 只是不来的人,要来,千军万马也是挡不住的。求人不如求己;贫穷志不移;吃得苦中苦;方为人上人;失意不灰心;得意莫忘形。人们总是在努力珍惜未得到的,而遗忘 告诉我,无理取闹的年龄过了,该懂事了。时间是个常数,但也是个变数。勤奋的人无穷多,懒惰的人无穷少。手莫伸,伸手必被捉。党与人民在监督,万目睽睽难逃脱。汝 不伸能自觉,其实想伸不敢伸,人民咫尺手自缩。思考是一件最辛苦的工作,这可能是为什么很少人愿意思考的原因。我们不能成为贵族的后代,但我们可以成为贵族的祖先 年后的自己。自信!开朗!豁达!无论现在的你处于什么状态,是时候对自己说:不为模糊不清的未来担忧,只为清清楚楚的现在努力。无人理睬时,坚定执着。万人羡慕 志者常立志,有志者立常志,咬定一个目标的人最容易成功。心随境转是凡夫,境随心转是圣贤。学会以最简单的方式生活,不要让复杂的思想破坏生活的甜美。要无条件 的时候。一个人能走多远,要看他有谁同行;一个人有多优秀,要看他有谁指点;一个人有多成功,要看他有谁相伴。成功在优点的发挥,失败是缺点的累积。从绝望中寻 辉煌。当你跌到谷底时,那正表示,你只能往上,不能往下!当你决定坚持一件事情,全世界都会为你让路。贫穷本身并不可怕,可怕的是贫穷的思想,以及认为自己命中 了贫穷的思想,就会丢失进取心,也就永远走不出失败的阴影请享受无法回避的痛苦。人的一生就是体道,悟道,最后得道的过程。人生就是一万米长跑,如果有人非议你 一点,这样,那些声音就会在你的身后,你就再也听不见了。人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有久久不会退去的余香。人生可如蚁而美如神。 变故、循环不已的痛苦和欢乐组成的。那种永远不变的蓝天只存在于心灵中间,向现实的人生去要求未免是奢望。是我们不认识自己的智慧,不明白自己拥有全宇宙的力量 是被命运安排!做好自己其他的让别人说去吧!成功不是凭梦想和希望,而是凭努力和实践成功就是简单的事情不断地重复做。荆棘的存在是为了野草不轻易地任人践踏。 人贪安逸易失志没有目标的人永远为有目标的人去努力。没有人可以做你的双拐,你必须学会独立去闯荡。每天叫醒自己的不是闹钟,而是梦想。能把在面前行走的机会抓 都会成功。你既然认准一条道路何必去打听要走多久!你可以选择这样的“三心二意”:信心、恒心、决心;创意、乐意。你若花开,蝴蝶自来。盆景秀木正因为被人溺爱 梁之材的梦。潜龙怎能久卧于深水,勤奋,是步入成功之门的通行证。

2021高考数学二轮专题复习7.3导数的简单应用ppt课件

2021高考数学二轮专题复习7.3导数的简单应用ppt课件
当 a≤1 时,函数单调递增,不成立;
当 a>1 时,函数在0,a-1 1上单调递增,在a-1 1,+∞上单 调递减;
有且只有两个整数 x1,x2 使得 f(x1)>0,且 f(x2)>0,故 f(2)>0 且 f(3)≤0,
即 ln 2+2- 2a+a>0,∴a<ln 2+2;ln 3+3-3a+a≤0, ∴a≥ln 32+3,故选 C.
π π

gπ6>gπ3,所以cfo6sπ6>cfo3sπ3,即
π f6>
3fπ3,故 C 正确;
π π

gπ4>gπ3,所以cfo4sπ4>cfo3sπ3,即
π f4>
2fπ3,故 D 正确;故选
CD. 【答案】 (2)CD
(3)[2020·山东济宁质量检测]已知函数 f(x)=ln x+(1-a)x+
∴切线的方程为:y-31x30-x20+53=(x20-2x0)(x-x0),
又直线过定点-1,13,
∴13-31x30-x02+53=(x20-2x0)(-1-x0), 得 x30-3x0-2=0,(x30-x0)-2(x0+1)=0, 即(x0+1)(x02-x0-2)=0,解得:x0=2 或-1, 故可做两条切线,故选 C.
x <0
在0,π2上恒成立,
因此函数 g(x)=cfoxsx在0,π2上单调递减,
π π
因此
g6π>g4π,即cfo6sπ6>cfo4sπ4,即
π f6>
26fπ4,故
A
错;
又 f(0)=0,所以 g(0)=cfo0s0=0,所以 g(x)=cfoxsx≤0 在0,π2上 恒成立,

【高中数学课件】导数及其应用ppt课件

【高中数学课件】导数及其应用ppt课件
求闭区间上函数的最值的方法:
比较极值与区间端点处函数值的大小。
欢迎指导
fn ' 1n 1 n 1 fn 'n
2对函 fnxx 数 nxan求导 :fn 'x 数 nn 1 x n x a n 1
f n 'n n n n 1 n a n 1 . 又 x a 当 0 时 ,fn 'x 0 .
当 x a 时 ,fnx xn x a n 是x 关 的于 增 . 函
【高中数学课件】导数及其应用ppt课件
一、导数的定义
定义:设函数y=f(x)在点x0处及其附近有定义,当自变量x在
点x0处有增量Dx时,D y函数值有相应的增量Dy=f(x0+ Dx)- f(x0)
如果当Dx0 时,D x 的极限存在,这个极限就叫做函数 f(x)在 x=x0处的导数(或变化率) 记作 f(x0)或 y|xx0 即
若x<x0时, f ' (x)<0且, x> x0时, f ' (x)>0 则f(x)在x0
处有极小值.
若x<x0时,f ' (x) >0且, x> x0时,f ' (x) <0 则f(x)在x0处
有极大值.
显然在极值处函数的导数为0.
y
极大值
极大值
x0
x
0
极小值
极小值
【知识在线】:
1.函数y=2x3+4x2+1的导数是__y____6_x_2___8_x_.
2.函数y=f(x)的导数y/>0是函数f(x)单调递增的 ( B )
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
3.函数y=x2 (x-3),则f(x)的单调递减区间是_(_0_,2_)_,单调递增区 间为_(_-_∞_,_0_) _, _(2_,_+_∞_)__。

高考数学二轮复习函数与导数的综合应用ppt课件

高考数学二轮复习函数与导数的综合应用ppt课件
当 x∈(1,+∞)时,f′(x)<0,f(x)单调递减.
所以 f(x)max=f(1)=-1.

3.[函数的零点问题](2022·全国乙卷,T20)已知函数 f(x)=ax--(a+1)ln x.
(2)若f(x)恰有一个零点,求a的取值范围.

解:(2)f(x)=ax--(a+1)ln x,x>0,




时,f(x)= · -a(x+2)>e
ln(2a)

·(+2)-a(x+2)=2a>0,故 f(x)在(ln a,+∞)上
存在唯一零点,从而 f(x)在(-∞,+∞)上有两个零点.

综上,a 的取值范围是(,+∞).
法二
+
令 f(x)=0,得 ex=a(x+2),即=


3
解:(2)当 x≥0 时,f(x)≥x +1 恒成立,
①当 x=0 时,不等式恒成立,可得 a∈R;
②当 x>0 时,可得 a≥
则 h′(x)=
=








++-


恒成立,设 h(x)=



++-


,


(-) +( --) (-) +( - )+( --) (-) + (-)+(-)(+)
因为f′(0)=0,所以当x>0时,f′(x)>0;当x<0时,f′(x)<0,

高考数学导数的应用专题复习精品PPT课件

高考数学导数的应用专题复习精品PPT课件
第3讲 │ 导数的应用
第3讲 │ 主干知识整合
主干知识整合
第3讲 │ 主干知识整合
第3讲 │ 主干知识整合
第3讲 │ 主干知识整合
第3讲 │ │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 规律技巧提炼
规律技巧提炼
第3讲 │ 规律技巧提炼
第3讲 │ 规律技巧提炼
第3讲 │ 江苏真题剖析
江苏真题剖析
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End 演讲人:XXXXXX 时 间:XX年XX月XX日
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究

2021高考数学二轮专题复习7.5导数的综合问题课件

2021高考数学二轮专题复习7.5导数的综合问题课件
∴当 x∈(1,+∞)时,h′(x)<0,∴h(x)在 x∈(1,+∞)上为减 函数,
∴h(x)max=h(1)=2e, ∵a≥[(4-2x)ex]max,∴a≥2e,即 a∈[2e,+∞).
(2)证明:因为 g(x)=ex(x2-4x+5)-a, 所以 g′(x)=ex(x-1)2≥0,
所以 g(x)在(-∞,+∞)上为增函数,
当 a<0,b>0 时,g′(x)<0,则 g(x)在(0,+∞)上单调递减; 当 a<0,b<0 时,令 g′(x)>0,得 0<x<ba,令 g′(x)<0,
得 x>ba,则 g(x)在0,ba上单调递增,在ab,+∞上单调递减.
(2)证明:记函数 h(x)=f(x)-(3x+1),则 h′(x)=x+2 1+cos x -3.
因为 g(x1)+g(x2)=2g(m),即 g(x1)-g(m)=g(m)-g(x2),g(x1) -g(m)和 g(m)-g(x2)同号,
所 以 不 妨 设 x1<m<x2 , 设 h(x) = g(2m - x) + g(x) - 2g(m)(x>m≥1),
所以 h′(x)=-e2m-x(2m-x-1)2+ex(x-1)2, 因为 e2m-x<ex,(2m-x-1)2-(x-1)2=(2m-2)(2m-2x)≤0,
『考点练透』 已知函数 f(x)=xln x,g(x)=λ(x2-1)(λ 为常数). (1)若曲线 y=f(x)与曲线 y=g(x)在 x=1 处有相同的切线,求实 数 λ 的值; (2)若 λ=12,且 x≥1,证明:f(x)≤g(x).
解析:(1)f′(x)=ln x+1,g′(x)=2λx,因为在 x=1 处有相同 的切线,所以 f′(1)=g′(1),则 1=2λ,即 λ=12.

2021高考数学考前微专题07导数的综合应用(教师版)

2021高考数学考前微专题07导数的综合应用(教师版)

和 y=ex 的图像的交点,即点的坐标是两个曲线方程的解,此处考查了函数与方程的思想;第二层意思:该点处切线
相同,即函数 y=g(x)和 y=e 在该点处切线方程一样,进一步挖掘 y=g(x)和 y=ex 在该点处斜率相等.通过建立方程组证
明.
证明:由于公共点

上,
所以 因为 所以 由①②得
.

的图像在
由判别式△的正负问题进行分类讨论,重点考查了学生转化与化归、分类讨论的数学思想;第(Ⅱ)问在第(I)问的基
础上进一步深化,把存在性问题呈现在学生面前.其中
,让学生将函数值问题转化为函数图像问题,再
转化为方程问题求解.重点考查了学生转化与化归、数形结合、函数与方程的数学思想;第(Ⅲ)第(Ⅱ)问的基础上进
内单调递增,在区间
内单调递减
(Ⅱ)证明:由(I)知
.
不妨设 为极大值点,
0,如图所示.
2
由 f'(x)=0 得 (Ⅲ)证明:当
. ,代入上式得 a≥3 时,如图.
,结论得证.
又 f(x) 在 区 间 [0 , 2] 上 单 调 递 减 ,
b| M=

.

时,如图
M , 而 g(0)=|1+b| , g(2)=|1 - 2a -

时,如图,M=
于.
; ,所以 g(x)在区间[-1,1]上的最大值不小
此题对函数最大值问题考查较深入,体现了数形结合、分类与整合等数学思想的应用,对学生推理论证能力、运算 求解能力以及将已知结论转化为条件的应用意识等能力提出了较高的要求.近三年的高考题中,2016 年高考数学浙 江卷理科第 21 题重点对函数最小值问题进行了考查.高考数学呈现出对函数极值的考查转向对函数最值考查的态 势,如 2016 年高考数学全国卷Ⅱ理科第 21 题、2016 年高考数学上海卷文科第 21 题、2017 年高考数学北京卷第 21

导数的综合应用-新高考数学自主复习完美课件

导数的综合应用-新高考数学自主复习完美课件

在(0,
)上单调递增,在
上单调递减,

上单调递增.
【名校课堂】获奖PPT-专题导数的综 合应用- 年新高 考数学 自主复 习课件 (共PPT )(最 新版本 )推荐
【名校课堂】获奖PPT-专题导数的综 合应用- 年新高 考数学 自主复 习课件 (共PPT )(最 新版本 )推荐
专题2
导数的综合应用
当x∈(0,x1)时,u(x)>0,所以f′(x)>0,所以f(x)在(0,x1)上单调递增,当x∈(x1,x2)时,u(x)<0,所
以f′(x)<0,所以f(x)在(x1,x2)上单调递减,当x∈(x2,+∞)时,u(x)>0,所以f′(x)>0,所以f(x)在
(x2,+∞)上单调递增.综上所述,当a≥- 时,f(x)在(0,+∞)上单调递增;当a<- 时,f(x)
x
x
4
令2x2+3ax+1=0,则Δ=9a2-8.
当a≥0时,f′(x)>0,所以f(x)在(0,+∞)上单调递增;
当a<0时,x=-3a >0,
4
22
若若Δ Δ= >0,9即a2-a<8-≤203,2即,-设u3(x)≤=a0<的0,两u根(xx)1≥=-0恒3a成-立4 9,a2所-8以,fx′2=(x-)≥3a0+,4所9a以2-f8(,x)在(0,+∞)上单调递增;
(2)当a<-1时,由(1)知f(x)在(0,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增,
所以函数f(x)的极大值为f(x1),极小值为f(x2).下面研究f(x)的极大值f(x1)=ln x1+x12+3ax1+1.

导数及其应用复习课件

导数及其应用复习课件

3x03
2x03
x0
0或x0

3 2
所求曲线的切线方程为y=2x与
y1x 4
4公式①.基本初等函数的导数公式
(1)常函数:(C)/ 0, (c为常数); (2)幂函数 : (xn)/ nxn1
(3)三角函数 (:1)(sin x) cos x
(2)(cos x) sin x (3)(tanx)/ =?
最大值,较小的一个是最小值.
y
ax
x 20 x
g1
3
g
x 4 bx
最值与极值的区别与联系
1.最值是整个定义域内最大(小)值,而极值只是在极 值点附近最大(小)的值.
2.极值可以有多个,最值若有则只能有一个. 3.极值只能在区间内取得,而最值可以在区间端点取得. 4.有极值未必有最值,有最值也未必有极值.
复合函数求导
1.已知函数f x在R上满足f x 2 f 2 x x2 8x 8, 则曲线y f x在点1, f 1处的切线方程是__y_=__2_x_-1____
例 3(05 山东 19)已知 x 1是函数
f (x) mx3 3(m 1)x2 nx 1的一个极值点,
y=f(x)
y
y=f(x)
f '(x)<0
f '(x)>0
oa
bx
oa
bx
如果在某个区间内恒有 f (x) 0 ,则 f (x)为常函数. 返回
6.极值点与极值 函数y f x在x a点,若f 'x 0,
y
ax
x 20 x
g1
3
g
x 4 bx
a的左侧f 'x 0,右侧f 'x 0,则a叫极大__值点, f a叫极大__值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档