江苏省启东中学2019届高三数学上学期第一次月考试题理

合集下载

2019-2020学年江苏省南通市启东中学高三(上)第一次月考数学试卷1 (含答案解析)

2019-2020学年江苏省南通市启东中学高三(上)第一次月考数学试卷1 (含答案解析)

2019-2020学年江苏省南通市启东中学高三(上)第一次月考数学试卷1一、填空题(本大题共14小题,共70.0分)1. 设集合A ={x|x >2},B ={x|x <4},则A ∩B =______.2. 已知f(x)=ln(e 2x +1)+kx 是偶函数,则k =________.3. “x >1”是“x 2>x ”的__________条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”) 4. 幂函数f(x)=(m 2−3m +3)x m2−2m+1在区间(0,+∞)上是增函数,则m =______.5. 直线3x +√3y −6=0的倾斜角为_________6. 若命题“∃x 0∈R ,x 02+x 0+m <0”是假命题,则实数m 的范围是______.7. 若tanα+1tanα=103,α∈(π4,π2),则sin (2α+π4)+2cos π4cos 2α的值为 .8. 已知函数f(x)={x −1,x <0log 2x −3,x >0,则f(16)+f(−12)=______.9. 如果直线l :y =kx −1(k >0)与双曲线x 216−y 29=1的一条渐近线平行,那么k = ______ .10. 将函数f(x)=sin (ωx −π6)(ω>0)的图象向左平移π3个单位后,所得图象关于直线x =π对称,则ω的最小值为 .11. 已知函数f(x)={|x +1|,x ≤0|log 2x|,x >0,若方程f(x)=a(a ∈R)有四个不同的解x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则(x 1+x 2)x 4的取值范围是______ . 12. 如图,已知抛物线y 2=2px(p >0)的焦点恰好是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F ,且两条曲线的交点连线也过焦点F ,则该椭圆的离心率为___________.13. 已知tanα+2tanα−1=2,则sinα+2cosαsinα−3cosα=______.14. 已知函数f (x )={e x ,x ≤01−x 2,x >0,若关于x 方程,f[f(x)]−1=m 有两个不同的根x 1,x 2,则x 1+x 2的取值范围是 .二、解答题(本大题共6小题,共90.0分)15. 已知p :函数f(x)=lg(ax 2−x +116a)的定义域为R ;q :a ≥1.如果命题“p ∨q 为真,p ∧q 为假”,求实数a 的取值范围.16.在△ABC中,a、b、c分别是角A、B、C的对边,设a+c=2b,A−C=π3,求sin B的值.17.椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,两个焦点分别为F1(−1,0),F2(1,0).(1)求椭圆C的方程;(2)过点F2(1,0)的直线l交椭圆C于M,N两点,设点N关于x轴的对称点为Q(M、Q不重合),求证:直线MQ过x轴上一个定点.18.在水域上建一个演艺广场,演艺广场由看台Ⅰ,看台Ⅱ,三角形水域ABC,及矩形表演台BCDE四个部分构成(如图),看台Ⅰ,看台Ⅱ是分别以AB,AC为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的3倍,矩形表演台BCDE中,CD=10米,三角形水域ABC的面积为400√3平方米,设∠BAC=θ.(1)求BC的长(用含θ的式子表示);(2)若表演台每平方米的造价为0.3万元,求表演台的最低造价.19.已知函数f(x)=x2+2x,g(x)=xe x.(1)求f(x)−g(x)的极值;(2)当x∈(−2,0)时,f(x)+1≥ag(x)恒成立,求实数a的取值范围.20.已知函数f(x)=(ax+b)e x−1的极值点为−1.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若x≥0时,f(x)≥2x−1,求a的取值范围.-------- 答案与解析 --------1.答案:(2,4)解析:解:集合A={x|x>2}=(2,+∞);B={x|x<4}=(−∞,4);∴A∩B=(2,4).故答案为:(2,4).根据交集的定义进行求解即可.本题考查了交集的定义与运算问题,是基础题目.2.答案:−1解析:【分析】本题考查了函数的奇偶性问题,是一道基础题.根据函数的奇偶性的定义证明即可.【解答】解:f(−x)=ln(e−2x+1)−kx=ln (e2x+1)e2x−kx=ln(e2x+1)−lne2x−kx=ln(e2x+1)−2x−kx=ln(e2x+1)+(−k−2)x =ln(e2x+1)+kx,故−k−2=k,解得:k=−1,故答案为−1.3.答案:充分不必要解析:【分析】本题考查了充分条件与必要条件的判断,为基础题.此题还需解一元二次不等式.解:由x2>x得:x>1或x<0,∴“x>1”是“x2>x”的充分不必要条件.故答案为:充分不必要.4.答案:2解析:解:若幂函数f(x)=(m2−3m+3)x m2−2m+1在区间(0,+∞)上是增函数,则由m2−3m+3=1解得:m=2或m=1,m=2时,f(x)=x,是增函数,m=1时,f(x)=1,是常函数,故答案为:2.根据幂函数的定义求出m的值,判断即可.本题考查了幂函数的定义,考查函数的单调性问题,是一道基础题.5.答案:120∘解析:【分析】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,利用直线的倾斜角与斜率之间的关系即可得出.【解答】解:解:设倾斜角为θ,∵直线3x+√3y−6=0,,θ=120∘,故答案为120∘.6.答案:解析:本题考查了特称命题与全称命题之间的关系,解题时应注意特称命题的否定是全称命题,全称命题的否定是特称命题,是基础题.写出该命题的否定命题,根据否定命题求出m的取值范围即可.【解答】解:命题“∃x0∈R,x02+x0+m<0”是假命题,它的否定命题是“∀x∈R,有x2+x+m≥0”,是真命题,即1−4m≤0;解得m≥14,∴m的取值范围是[14,+∞).故答案为[14,+∞).7.答案:0解析:【分析】本题考查同角三角函数关系,二倍角公式,考查和角的正弦公式,考查学生的计算能力,正确运用和角的正弦公式是关键,属基础题.【解答】解:∵tanα+1tanα=103,∴sinαcosα+cosαsinα=103,∴1sin2α=53,∴sin2α=35,∵α∈(π4,π2 ),∴cos2α=−45,=35×√22+(−45)×√22+√22(1−45)=0.故答案为0.8.答案:−1解析:本题考查函数值的求法以及分段函数,考查运算求解能力,属于基础题.推导出f(16)=log 216−3=1,f(−12)=(−12)−1=−2,由此能求出f(16)+f(−12)的值. 【解答】解:∵函数f(x)={x −1,x <0log 2x −3,x >0, ∴f(16)=log 216−3=1, f(−12)=(−12)−1=−2, ∴f(16)+f(−12)=1−2=−1. 故答案为−1.9.答案:34解析:解:双曲线x 216−y 29=1的渐近线方程为y =±34x ,由直线l :y =kx −1(k >0)与双曲线x 216−y 29=1的一条渐近线平行,可得k =34. 故答案为:34.求出双曲线的渐近线方程,由两直线平行的条件:斜率相等,即可得到所求k 的值.本题考查双曲线的方程和性质,主要是渐近线方程,考查两直线平行的条件:斜率相等,考查运算能力,属于基础题.10.答案:12解析: 【分析】本题考查三角函数的图象与性质,考查图象的平移,属于基础题. 依题意,的图象关于直线x =π对称,得ω=3k+24,k ∈Z ,从而求得结果.【解答】 解:的图象向左平移π3个单位后得,所以的图象关于直线x =π对称,所以ωπ+ωπ3−π6=kπ+π2,k ∈Z ,ω=3k+24,k ∈Z ,又ω>0,所以ω的最小值为12, 故答案为12.11.答案:[−4,−2)解析:解:由题意作函数f(x)={|x +1|,x ≤0|log 2x|,x >0与y =a 的图象如下,,结合图象可知,x 1+x 2=−2,0<log 2x 4≤1, 故x 1+x 2=−2,1<x 4≤2, 故−4≤(x 1+x 2)x 4<−2, 故答案为:[−4,−2).由题意作函数f(x)={|x +1|,x ≤0|log 2x|,x >0与y =a 的图象,从而可得x 1+x 2=−2,0<log 2x 4≤1,从而解得.本题考查了数形结合的思想应用及分段函数的应用.12.答案:√2−1解析: 【分析】本题考查抛物线与椭圆的综合问题.在研究圆锥曲线问题时,用定义来解题是比较常用的方法.先把对应图形画出来,求出对应焦点和点A 的坐标(都用p 写),利用椭圆定义求出2a 和2c 就可找到椭圆的离心率. 【解答】解:由题可得图,设椭圆另一焦点为E ,因为抛物线y2=4px(p>0)的焦点F(p,0)把x=p代入y2=4px解得y=±2p,所以A(p,2p)又E(−p,0).故|AE|=2√2p,|AF|=2p,|EF|=2p.所以2a=|AE|+|AF|=(2√2+2)p,2c=2p.椭圆的离心率e=ca=√2−1.故答案为√2−1.13.答案:6解析:解:由tanα+2tanα−1=2,得tanα=4.∴sinα+2cosαsinα−3cosα=tanα+2tanα−3=4+24−3=6.故答案为:6.由已知求得tanα,再由同角三角函数的基本关系式化弦为切求得sinα+2cosαsinα−3cosα的值.本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用,是基础题.14.答案:[3ln2+1,+∞)解析:【分析】本题考查分段函数,复合函数的运用,再利用分类讨论的思想解题,属于难题.令t=f(x)−1则有t≤0,再分类讨论求出x1+x2的取值范围.【解答】解:f(x)的图象如图所示:令t=f(x)−1,则有t≤0(1)当−12≤t≤0时,x只有1个解,设此时的解为x0,则t=f(x0)−1,易知−ln2≤x0≤0,由图可知f(x)=x0只有一个解,故不成立;(2)当−1<t<−12时,x有2个解,不妨设此时的解为x3,x4,且x3<x4,则t=f(x3)−1,t=f(x4)−1,即f(x3)=f(x4),e x3=1−x42,推出x3=ln(1−x42),所以有x3<−ln2,0<x4<1,由图象可得,f(x)=x3有且仅有一个解,而f(x)=x4只有当12≤x4<1才满足只有一个解,此时满足题意,设x1<0,x2>0,则e x1=x4,1−x22=x3,所以x1=lnx4,x2=1−2x3,所以x1+x2=lnx4+1−2x3=lnx4−2ln(1−x4)+2ln2+1,且12≤x4<1,令g(x)=lnx−2ln(1−x)+2ln2+1,12≤x<1,易知g(x)在定义域上单调增,g(x)min=g(12)=3ln2+1,无最大值,所以g(x)∈[3ln2+1,+∞);(3)当t≤−1时,x只有1个解,设此时的解为x0,则t=f(x0)−1,易知x0≥1,由图可知f(x)=x0最多只有一个解,故不成立.综上所述,可知x1+x2的取值范围是[3ln2+1,+∞).故答案为[3ln2+1,+∞).15.答案:解:由p真,可知{a>0Δ=1−4a×116a<0,解得a>2,由p∨q为真,p∧q为假,可得:p和q中一个为真、一个为假.若p真q假时a不存在,若p假q真时1≤a≤2.综上,实数a的取值范围是1≤a≤2.解析:由p真,可知{a>0Δ=1−4a×116a<0,解得a,由p∨q为真,p∧q为假,可得:p和q中一个为真、一个为假.即可解出.本题考查了复合命题真假的判定方法、函数的性质、不等式的解法,考查了推理能力与计算能力,属于中档题.16.答案:解:△ABC中,由题意利用正弦定理可得sinA+sinC=2sinB,∴2sin A+C2cos A−C2=4sin B2cos B2,化简可得cos A−C2=2sin B2,即√32=2sin B2,解得sin B2=√34∴cos B2=√134.∴sinB=2sin B2cos B2=√398.解析:△ABC中,由题意利用正弦定理可得sinA+sinC=2sinB,故有2sin A+C2cos A−C2=4sin B2cos B2,化简可得sin B2=√34,故cos B2=√134.再根据sinB=2sin B2cos B2,计算求得结果.本题主要考查正弦定理的应用,两角和差的三角公式、诱导公式、二倍角公式的应用,属于中档题.17.答案:解:(1)∵依题意,{c=1ca=√22,∴c=1,a=√2,∴b=√a2−c2=1,∴椭圆的方程为x22+y2=1;(2)∵设M(x1,y1),N(x2,y2),Q(x2,−y2),l:y=k(x−1),代入x22+y2=1(y≠0),∴整理得(1+2k2)x2−4k2x+2k2−2=0,∵由韦达定理可得:x1+x2=4k21+2k2,x1x2=2k2−21+2k2,∴MQ的方程为y−y1=y1+y2x1−x2(x−x1),∵令y=0,∴得x=x1+y1(x2−x1)y1+y2=x1+k(x1−1)(x2−x1)k(x1+x2−2)=2x1x2−(x1+x2)x1+x2−2,代入x1+x2=4k21+2k2,x1x2=2k2−21+2k2,∴x=2x1x2−(x1+x2)x1+x2−2=2×2k2−21+2k2−4k21+2k24k21+2k2−2=2,即:x=2,∴直线过x轴上的一个定点,定点坐标为(2,0).解析:本题考查椭圆方程的求法,直线与椭圆的位置关系的应用,考查转化思想以及计算能力.(1)通过椭圆的离心率与焦距,求出a,c,得到b,即可求出椭圆C的方程;(2)依题意,设M(x1,y1),N(x2,y2),Q(x2,−y2),l:y=k(x−1),代入椭圆方程,利用韦达定理,结合MQ的方程为y−y1=y1+y2x1−x2(x−x1),令y=0,化简求解可得x=2,得到直线MQ过x轴上一个定点.18.答案:解:(1)∵看台Ⅰ的面积是看台Ⅱ的面积的3倍,∴12π(AB2)2=3×12π(AC2)2,∴AB=√3AC,∵S△ABC=12AB⋅AC⋅sinθ=√32AC2sinθ=400√3,∴AC2=800sinθ,∴AB2=2400sinθ,在△ABC中,由余弦定理得BC2=AB2+AC2−2AB⋅ACcosθ=3200−1600√3cosθsinθ,∴BC=40√2−√3cosθsinθ.(2)设表演台的造价为y万元,则y=120√2−√3cosθsinθ,设f(θ)=2−√3cosθsinθ(0<θ<π),则f′(θ)=√3−2cosθsin2θ,∴当0<θ<π6时,f′(θ)<0,当π6<θ<π时,f′(θ)>0,∴f(θ)在(0,π6)上单调递减,在(π6,π)上单调递增,∴当θ=π6时,f(θ)取得最小值f(π6)=1,∴y的最小值为120,即表演台的最小造价为120万元.解析:本题考查了解三角形,函数最值计算,余弦定理,属于中档题.(1)根据看台的面积比得出AB,AC的关系,代入三角形的面积公式求出AB,AC,再利用余弦定理计算BC;(2)根据(1)得出造价关于θ的函数,利用导数判断函数的单调性求出最小造价.19.答案:解:(1)令ℎ(x)=f(x)−g(x),则ℎ′(x)=(x+1)(2−e x),∴ℎ(x)极小值=ℎ(−1)=1e−1,∴ℎ(x)极大值=ℎ(ln2)=ln22;(2)由已知,当x∈(−2,0)时,x2+2x+1≥axe x恒成立即a≥x2+2x+1xe x =x+2+x−1e x恒成立,令t(x)=x+2+x−1e ,则t′(x)=−(x2+1)(x+1)x e,∴当x∈(−2,−1)时,t′(x)>0,t(x)单调递增,当x∈(−1,0)时,t′(x)<0,t(x)单调递减,故当x∈(−2,0)时,t(x)max=t(−1)=0,∴a≥0.解析:本题主要考查了利用导数研究函数的单调性等基础知识,考查恒成立问题的等价转化能力及计算能力,属于中档题.(1)令ℎ(x)=f(x)−g(x),求导数,确定函数的单调性,即可求f(x)−g(x)的极值;(2)当x∈(−2,0)时,x2+2x+1≥axe x恒成立,即a≥x2+2x+1xe x =x+2+x−1e x恒成立,求出右边的最大值,即可求实数a的取值范围.20.答案:解:(Ⅰ)函数f(x)的导数为f′(x)=(ax+b+a)⋅e x−1,由题意可得f′(−1)=0,即(−a+a+b)e−2=0,解得b=0;则f′(x)=ae x−1(x+1),当a=0时,函数f(x)=e x−1无极值,不符合题意.当a>0时,f(x)在(−1,+∞)上递增,在(−∞,−1)上递减;当a<0时,f(x)在(−1,+∞)上递减,在(−∞,−1)上递增;(Ⅱ)由(Ⅰ)可知f(x)=axe x−1,设g(x)=axe x−1−2x+1,若x≥0时,f(x)≥2x−1,必有g(1)=a−2+1≥0⇒a≥1,故a≥1是命题成立的一个必要条件.当a≥1,x≥0时,g′(x)=ae x−1(x+1)−2,令ℎ(x)=g′(x)ℎ′(x)=ae x−1(x+2)>0,故g′(x)在[0,+∞)单调递增,g′(x)min=g′(0)=ae−2.①当a≥2e时,g′(x)min≤0,g(x)在[0,+∞)单调递增,g(x)≥g(0)=1>0,②当1≤a<2e时,存在x0∈(0,1),使得g′(x0)=ae x0−1(x0+1)−2=0,且当x∈(0,x0)时,g′(x)<0,g(x)递减,x∈(x0,+∞)时,g′(x)>0,g(x)递增,∴g(x)≥g(x0)=ax0e x0−1−2x0+1=2x0x0+1−2x0+1=5−2(1x0+1+x0+1).∵x0∈(0,1),∴令t=x0+1,t∈(1,2).设函数m(t)=5−2t−2t,t∈(1,2),又m′(t)=2t2−2≤0,∴m(t)单调递减,∴m(t)>m(2)=0.∴g(x)≥g(x0)=ax0e x0−1−2x0+1=5−2(1+x0+1)>0,x0+1综上,a的取值范围为[1,+∞).解析:本题考查利用导数研究函数的单调性与极值,考查不等关系的求解,属于较难题.(Ⅰ)函数f(x)的导数为f′(x)=(ax+b+a)⋅e x−1,求出b的值,然后对a分类讨论,利用导数求出函数的单调性与极值即可;(Ⅱ)由(Ⅰ)可知f(x)=axe x−1,构造函数g(x)=axe x−1−2x+1,然后利用导数求出函数的单调性与最值,求出a的范围可得答案.。

2019届江苏省启东中学高三上学期第一次月考数学试题(解析版)

2019届江苏省启东中学高三上学期第一次月考数学试题(解析版)

2016届江苏省启东中学高三上学期第一次月考数学试题及解析一、填空题1.已知集合{}1,2,4A =,{}|(1)(3)0B x x x =--≤,则A B = .【答案】{}1,2【解析】试题分析:由已知{|13}B x x =≤≤,所以{1,2}A B =.【考点】集合的运算.2.命题“[0,)x ∃∈+∞,23x >”的否定是 . 【答案】[0,)x ∀∈+∞,23x ≤【解析】试题分析:命题“[0,)x ∃∈+∞,23x >”的否定是“[0,)x ∀∈+∞,23x ≤” 【考点】命题的否定.3.在3和243中间插入3个实数1a ,2a ,3a ,使这5个数成等比数列,则2a = . 【答案】27【解析】试题分析:222324327a =⨯=,又2a 与2,243同号,所以227a =.【考点】等比数列的性质. 4.已知7sin cos 13αα+=-,π(,0)2α∈-,则tan α= . 【答案】125-【解析】试题分析:由7sin cos 13αα+=-得249(sin cos )169αα+=,所以60sin cos 169αα=-,因为(,0)2πα∈-,所以sin 0,cos 0αα<>,由7sin cos 1360sin cos 169αααα⎧+=-⎪⎪⎨⎪=-⎪⎩得12sin 135cos 13αα⎧=-⎪⎪⎨⎪=⎪⎩,所以sin 12tan cos 5ααα==-. 【考点】同角间的三角函数关系.5.函数()ln 23x f x x =+-在区间(1,2)上的零点个数为 . 【答案】1【解析】试题分析:函数()ln 23xf x x =+-是(0,)+∞上的增函数,又1(1)ln12310f =+-=-<,2(2)ln 223ln 210f =+-=+>,所以()f x 在(1,2)上有且只有一个零点. 【考点】函数的零点.6.已知定义在R 上的函数2()23f x ax x =++的值域为[2,)+∞,则()f x 的单调增区间为 .【答案】[1,)-+∞((1,)-+∞也对)【解析】试题分析:由已知012424a a a>⎧⎪-⎨=⎪⎩,解得1a =,22()23(1)2f x x x x =++=++,所以其增区间为[1,)-+∞. 【考点】二次函数的性质.7.函数3()812f x x x =+-在区间[33]-,上的最大值与最小值之和是 . 【答案】16【解析】试题分析:设在区间[3,3]-上()f x 的最大值为M ,最小值为m ,再设()()8g x f x =-,()g x 的最大值为8M -,最小值为8m -,又3()12g x x x =-是奇函数,所以在区间[3,3]-上max min ()()0g x g x +=,即(8)(8)0M m -+-=,16M m +=.【考点】函数的奇偶性.8.等差数列{}n a 的前m 项的和为30,前2m 项的和为100,求它的前3m 项的和为 .【答案】210【解析】试题分析:因为{}n a 是等差数列,所以232,,m m m m m S S S S S --也成等差数列,即2322()()m m m m m S S S S S -=+-,所以323()3(10030)210m m m S S S =-=⨯-=. 【考点】等差数列的性质. 9.若α、β均为锐角,且1cos 17α=,47cos()51αβ+=-,则cos β= . 【答案】13【解析】试题分析:由于αβ、都是锐角,所以αβ+∈(0,)π,又1cos 17α=,47cos()51αβ+=-,所以sin 17α=,sin()51αβ+=,cos cos[()]βαβα=+-cos()cos sin()sin αβααβα=+++4715117=-⨯+5117⨯13=. 【考点】两角和与差的余弦公式.【名师点睛】三角函数的给值求值,关键是把待求角用已知角表示: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍”的关系或“互余互补”的关系. (3)在求值的过程中“拼凑角”对求值往往起到“峰回路转”的效果.通过适当地拆角、凑角来利用所给条件.常见的变角技巧有2αβ+=2βα⎛⎫-⎪⎝⎭-2αβ⎛⎫-⎪⎝⎭,α=(α-β)+β,4π+α=2π-4πα⎛⎫- ⎪⎝⎭,15°=45°-30°等. 10.函数()y f x =是R 上的奇函数,满足()()33f x f x +=-,当(0,3)x ∈时,()2x f x =,则(5)f -= .【答案】2-【解析】试题分析:由题意1(5)(32)(32)(1)22f f f f =+=-===,又()f x 是奇函数,所以(5)(5)2f f -=-=-.【考点】函数的奇偶性.11.如果若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成”函数,给出下列函数:(1)1()sin cos f x x x =+;(2)2()f x x =;(3)3()cos )f x x x =+;(4)4()sin f x x =;(5)5()2cos (sin cos )222x x xf x =+,其中“互为生成”函数的有 .(请填写序号)【答案】(1)(2)(5)【解析】试题分析:1())4f x x π=+,3()2sin()4f x x π=+,5()sin cos 1)14f x x x x π=++=++,其中(1)(2)(5)都可以由y x =平移得到,它们是“互为生成”函数,(3)(4)不能由y x =平移得到,相互也不能平移得到,故填(1)(2)⑷. 【考点】函数图象的平移.12.已知ABC ∆是单位圆O 的内接三角形,AD 是圆的直径,若满足2AB AD AC AD BC ⋅+⋅=,则||BC = .【答案】2【解析】试题分析:因为AD 直径,所以2ABD ACD π∠=∠=,所以2AB AD AB ⋅=,2AC AD AC ⋅=,所以222AB AC BC +=,即2BAC π∠=,BC 直径,所以2BC =.【考点】向量的数量积. 13.已知直线l 与曲线1y x=-和曲线ln y x =均相切,则这样的直线l 的条数为 . 【答案】1【解析】试题分析:设1()ln f x x x =+,22111'()x f x x x x-=-=,当01x <<时,'()0f x <,()f x 单调递减,当1x >时,'()0f x >,()f x 单调递增,1x =时,()f x 取得极小值也是最小值(1)ln1110f =+=>,所以1ln 0x x +>恒成立,即1ln x x>-,因此设公直线l 与曲线1y x =-相切于点11(,)A x y ,与曲线ln y x =相切于点22(,)B x y ,必有10x <,1y x =-的导数为21'y x =,ln y x =的导数是1'y x=,由题意212212112111ln 1x x x x x x x ⎧=⎪⎪⎪⎨--⎪⎪=-⎪⎩,211221111ln 1x x x x x +⇒=-,1112ln()20x x x ⇒--+=,记()2ln()2g x x x x =--+,'()2ln()1g x x =-+,令'()0g x =,则12x e -=-,当12x e -<-时,'()0g x >,()g x 单调递增,当120ex --<<时,'()0g x <,()g x 单调递减,1122max ()()2(1)0g x g e e --=-=+>,又22()320g e e -=-+<,lim[2ln()2]20x x x x →---+=>,所以()0g x =只有一解,即1112ln()20x x x --+=只有一解,所以两曲线的切线只有一条.【考点】导数的几何意义,导数与函数的单调性.【名师点睛】1.求过点P 的曲线的切线方程的步骤为: 第一步,设出切点坐标P ′(x 1,f (x 1)); 第二步,写出过P ′(x 1,f (x 1))的切线方程为y -f (x 1)=f ′(x 1)(x -x 1); 第三步,将点P 的坐标(x 0,y 0)代入切线方程,求出x 1; 第四步,将x 1的值代入方程y -f (x 1)=f ′(x 1)(x -x 1),可得过点P (x 0,y 0)的切线方程.2.判断函数y =f (x )零点个数的常用方法:(1)直接法:令f (x )=0,则方程实根的个数就是函数零点的个数.(2)零点存在性定理法:判断函数在区间[a ,b]上是连续不断的曲线,且f (a )·f (b )<0,再结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)可确定函数的零点个数.(3)数形结合法:转化为两个函数的图象的交点个数问题.画出两个函数的图象,其交点的个数就是函数零点的个数.在一个区间上单调的函数在该区间内至多只有一个零点,在确定函数零点的唯一性时往往要利用函数的单调性,确定函数零点所在区间主要利用函数零点存在定理,有时可结合函数的图象辅助解题. 14.已知数列{}n a 满足11a =,且111n n a a n +=++,*n ∈N ,则201420151()k k k aa =-=∑ .【答案】20291052【解析】试题分析:由已知1211111112n n n a a a n n nn--=+=++==+++-,2015111()()122015k k a a k k k -=+++++, 201420151()k k k a a =-=∑1111111()2()20142320153420152015+++++++++⨯ 11111(12)(123)(12)(122014)23412015k k =++⨯+++⨯+++++⨯+++++⨯+123201422222k =++++++20291052=. 【考点】数列求和.【名师点睛】 数列求和的方法:(1)一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和. (2)解决非等差、等比数列的求和,主要有两种思路:①转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.②不能转化为等差或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和. 二、解答题15. 已知集合{}||21|3A x x =-<,{}2|(2)20B x x a x a =-++≤. (1)若1a =,求A B ;(2)若A B A =,求实数a 的取值范围. 【答案】(1)[1,2);(2)(,1]-∞.【解析】试题分析:先把集合,A B 化简,(1,2)A =-,(1)当1a =时,[1,2]B =,易得AB ;(2)题设条件A B A =说明A B ⊆,此时求集合B ,需分类讨论,分成2,2,2a a a <=>三类,分别求得a 的范围. 试题解析:由题意知,(1,2)A =-; (1)当1a =时,[1,2]B =, [1,2)A B ∴=; (2)A B A =,A B ∴⊆;①当2a =时,{}2B =,不符合题意;②当2a <时,[,2]B a =,由A B ⊆得:1a -≤; ③当2a >时,[2,]B a =,此时A B ⊄,不符合题意; 综上所述,实数a 的取值范围为(,1]-∞-. 【考点】集合的运算,集合的关系.16.已知ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,满足sin sin sin sin b a B Cc B A--=+. (1)求角A 的值;(2)若a ,c ,b 成等差数列,试判断ABC ∆的形状. 【答案】(1)3A π=;(2)等边三角形.【解析】试题分析:(1)题中已知条件sin sin sin sin b a B Cc B A--=+是边角关系,为了求角A ,我们应用正弦定理把它化为边的关系或者角的关系,本题化为边的关系后,可用余弦定理求得A 角;(2)判断三角形形状,由已知2c a b =+,再结合(1)222a b c bc =+-,消去a ,可得b c =,从而ABC ∆为等边三角形.试题解析:(1)由正弦定理,得:b a b cc b a --=+, 整理,得:222a b c bc =+-,由余弦定理,得:1cos 2A =,A 是ABC ∆的内角,π3A ∴=; (2)a ,c ,b 成等差数列,2c a b ∴=+,由(1)可知,222a b c bc =+-,222(2)c b b c bc ∴-=+-,整理,得:2330c bc -=,由0c >,得b c =,a b c ∴==, ∴ABC ∆是等边三角形.(注:本题第二小问可以用角的化简来处理)【考点】正弦定理,余弦定理,三角形形状的判断. 【名师点睛】判定三角形形状的两种常用途径:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断.(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断.提醒:在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.17.已知向量a ,b ,c 满足0a b c ++=,且a 与b 的夹角等于150︒,b 与c 的夹角等于120︒,||2c =,求||a ,||b . 【答案】||23a =,||4b =.【解析】试题分析:要求||a ,||b ,就要列出关于||a ,||b 的方程组,观察已知条件a 与b 的夹角等于150︒,b 与c 的夹角等于120︒,即为cos150a b a b ⋅=︒,cos120b c b c ⋅=︒,因此把0a b c ++=分别变发为a b c +=-,和b c a +=-,平方后可达到要求.试题解析:由0a b c ++=得:22222222a b c a b a b cb c a b c b c a ⎧⎧+=-++⋅=⎪⎪⇒⎨⎨+=-++⋅=⎪⎪⎩⎩, 2222||||2||||cos1504||422||cos120||a b a b b b a ︒︒⎧++=⎪∴⎨++⋅⋅=⎪⎩, 解之,得:||23a =,||4b =.(注:本题可先判断a c ⊥,或利用平行四边形法则或三角形法则来做)【考点】向量的数量积.18.设n S 是等比数列{}n a 的前n 项和,3S ,9S ,6S 成等差数列. (1)设此等比数列的公比为q ,求3q 的值;(2)问:数列中是否存在不同的三项m a ,n a ,p a 成等差数列?若存在,求出m ,n ,p 满足的条件;若不存在,请说明理由. 【答案】(1)312q =-;(2)存在不同的三项1a ,7a ,4a 成等差数列. 【解析】试题分析:(1)本题要求3q 值,已知是9362S S S ∴=+,我们借助n S 的最基本形态12n n S a a a =+++,有19123162()()()a a a a a a a ++=+++++,化简即得7894562()()0a a a a a a +++++=,而3789456()0a a a q a a a ++=++≠,由此可得3q ;(2)数列中的探索性命题,如果是肯定性结论,本题只要能找到三项,成等差数列即可,如果是否定性结论,则必须证明.具体找三项时,可写出数列{}n a 中连续一些项,从中观察寻找. 试题解析:(1)3S ,9S ,6S 成等差数列,9362S S S ∴=+,∴9693()()0S S S S -+-=,即789789456()()()0a a a a a a a a a ++++++++=,34564562()()0q a a a a a a ∴+++++=, 24564(1)0a a a a q q ++=++≠,312q ∴=-;(2)存在不同的三项1a ,7a ,4a 成等差数列. 671114a a q a ==,341112a a q a ==-,7142a a a ∴=+;一般地,当6n m =+,且3p m =+时,有m a ,n a ,p a 成等差数列.(注:若利用等比数列求和公式,则必须讨论公比q 是否等于1,不讨论者扣3分) 【考点】等比数列与等差数列的性质.19.已知各项均为正数的数列{}n a 的前n 项和为n S ,满足:2*11,2,n n n S ka ta n n -+=-∈N ≥(其中,k t 为常数). (1)若12k =,14t =,数列{}n a 是等差数列,求1a 的值; (2)若数列{}n a 是等比数列,求证:k t <.【答案】(1)11a =+;(2)证明见解析.【解析】试题分析:(1)已知条件是2111124n n n S a a -+=-,这种问题一般都是再写一次即21111124n n n S a a +++=-,两式相减变形后可得12n n a a +-=,注意这里有2n ≥,但由于数列{}n a 是等差数列,因此也有212a a -=,代入已知212211124a a a +=-可求得1a ;(2)与(1)相同方法得2211(2)n n n n n a ka ka ta ta n +++-=-≥,由数列{}n a 是等比数列,可设1n n a qa +=,代入化简得2(1)1(2)n t q a kq k n ∴-=-+≥,下面对此式分析,首先0q >,1q ≠,{}n a 不是常数列,这样此式对2n ≥恒成立,必有0t =,恒等式变为10kq k -+=,不能得出什么有用结论,回到已知条件,已知变为11n n S ka -∴+=-,此式中,10,0n n a S ->>,那么只能有0k <,命题得证. 试题解析:(1)由题意知,21111(*)24n n n S a a -+=-,21111124n n n S a a ++∴+=-, 两式相减,得:22111111(2)2244n n n n n a a a a a n +++-=-≥, 整理,得:11()(2)0(2)n n n n a a a a n +++--=≥, 0n a >,12(2)n n a a n +∴-=≥,数列{}n a 是等差数列,212a a ∴-=,由(*)得:212211124a a a +=-,11a ∴=10a >,11a =+;(2)由211n n n S ka ta -+=-得2111n n n S ka ta +++=-,两式相减,得:2211(2)n n n n n a ka ka ta ta n +++-=-≥,设等比数列{}n a 的公比为q ,∴222n n n n n a kqa ka tq a ta +-=-,2(1)1(2)n t q a kq k n ∴-=-+≥,由已知,可知0q >,∴1q ≠,{}n a 不是常数列,0t ∴=;11n n S ka -∴+=-,而0n a >且10n S ->,0k ∴<,k t ∴<.【考点】等差数列与等比数列的定义.20.已知函数()=e x f x (其中e 是自然对数的底数),2()1g x x ax =++,a ∈R .(1)记函数()()()F x f x g x =⋅,当0a >时,求()F x 的单调区间;(2)若对于任意的1x ,2[0,2]x ∈,12x x ≠,均有1212|()()||()()|f x f x g x g x ->-成立,求实数a 的取值范围. 【答案】(1)单调增区间为:(,1)a -∞--,(1,)-+∞,减区间为(1,1)a ---;(2)[1,22ln 2]--.【解析】试题分析:(1)求单调区间的方法是求出'()0F x =的解1,1a ---,确定'()0F x >(或'()0F x <)的取值区间,即函数的单调区间,此可用列表方法得出(同时可得出极值);(2)本小题不等式1212|()()||()()|f x f x g x g x ->-或有绝对值符号,有两个参数12,x x ,由于函数()f x 是增函数,因此设1202x x ≤<≤,则有12()()f x f x <,原问题等价于121221()()()()()()f x f x g x g x f x f x -<-<-恒成立,分两个问题,1212()()()()f x f x g x g x -<-恒成立和1221()()()()g x g x f x f x -<-恒成立,前面转化为1122()()()()f x g x f x g x -<-,可以考虑函数()()f x g x -在[0,2]上是单调递增的,后面一个转化为1122()()()()f x g x f x g x +<+,可以考虑函数()()f x g x +在[0,2]上是单调递增的.试题解析:(1)2()()()e (1)x F x f x g x x ax =⋅=++,()e (1)(+1)0x F x x x a '∴=++= , 得1x =-或1x a =--,()F x ∴的单调增区间为:(,1)a -∞--,(1,)-+∞,减区间为(1,1)a ---; (2)设12x x <,()e x f x =是单调增函数,12()()f x f x ∴<,2112121221()()|()()|()()()()()()f x f x g x g x f x f x g x g x f x f x ∴->-⇒-<-<-;①由1212()()()()f x f x g x g x -<-得:1122()()()()f x g x f x g x -<-, 即函数2()()e 1x y f x g x x ax =-=---在[0,2]上单调递增,()()e 20x y f x g x x a '''∴=-=--≥在[0,2]上恒成立, e 2x a x ∴-≤在[0,2]上恒成立;令()e 2x h x x =-,()e 20ln 2x h x x '∴=-=⇒=,∴[0,ln 2)x ∈时,()0h x '<;(ln 2,2]x ∈时,()0h x '>;ln 2min ()(ln 2)e 2ln 222ln 2h x h ∴==-=-, 22ln2a ∴-≤;②由1221()()()()g x g x f x f x -<-得:1122()()()()g x f x f x g x +<+, 即函数2()()e 1x y f x g x x ax =+=+++在[0,2]上单调递增,()()e 20x y f x g x x a '''∴=+=++≥在[0,2]上恒成立, e 2x a x ∴--≥在[0,2]上恒成立;函数e 2x y x =--在[0,2]上单调递减,∴当0x =时,0max e 201y =--⋅=-, 1a ∴≥-,综上所述,实数a 的取值范围为[1,22ln 2]--.【考点】导数与函数的单调性,不等式恒成立问题. 【名师点睛】1.用导数研究函数的单调性:(1)求函数f (x )单调区间的方法是,通过解不等式f ′(x )>0(或f ′(x )<0)直接得到单调递增(或递减)区间.(2)导数法证明函数f (x )在(a ,b )内的单调性的步骤: ①求f ′(x ).②确认f ′(x )在(a ,b )内的符号.③得出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.2.不等式恒成立问题,一般通过转化与化归思想,转化为用导数求函数的最值,研究函数的单调性,这类问题比较复杂,考查学生的分析问题解决问题的能力,考查计算推理能力.。

江苏省启东中学高三上学期第一次月考数学(理)试题Word版含答案

江苏省启东中学高三上学期第一次月考数学(理)试题Word版含答案
现有一个以OA、OB为半径的扇形池塘,在OA、OB上分别取点C、D,作DE∥OA、CF∥OB交弧AB于点E、F,且BD=AC,现用渔网沿着DE、EO、OF、FC将池塘分成如图所示的三种的养殖区域.若OA=1km, , .
(1)求区域Ⅱ的总面积;
(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是15万元、20万元、10万元,记年总收入为y万元. 试问当 为多少时,年总收入最大?
(3)若函数 存在极大值,且极大值点为1,证明: .
江苏省启东中学2018-2019学年度第一学期月考
高三年级数学答案
答题卷上只有第18题需要附图,其余按模式搞就行了
1. 2. 3.充分不必要4.1 5. 6. 7.
8. 9. 10. 11. 12. 13. 14.
15.解: 或
16.解:(1)在△ABC中,因为 , , ,
则 的值为▲.
10.将函数 ( )的图象向左平移 个单位后,所得图象关于直线
对称,则 的最小值为▲.
11.已知函数 , ,则 的解集是▲.
12.若向量 满足 , ,且对一切实数 , 恒成立,则向量 的夹角的大小为▲.
13.在斜三角形ABC中,若 ,则sinC的最大值为▲.
14.已知函数 , ( 为自然对数的底数),若函数
③若 ,则 时, ,
当 时, 的最小值为 ;
当 时, 的最小值为 .
因为 , ,所以 的最小值为 .14分
综上所述: ………………………………16分
20.解(1)当 ,函数 在 上单调递增;
当 ,函数 在 上单调递减,在 上单调递增;
当 ,函数 在 上单调递增,在 上单调递减.……………4分
(2) 若对任意 , 恒成立,求实数 的取值范围;

江苏省启东中学高三数学上学期第一次月考试题 理(含解析)

江苏省启东中学高三数学上学期第一次月考试题 理(含解析)

江苏省启东中学2014-2015学年度第一学期第一次月考高三数学(理)试卷【试卷综析】本试卷是高三文科理试卷,考查学生解决实际问题的综合能力,是份较好的试卷.以基础知识和基本能力为载体突出考查考纲要求的基本能力,重视学生科学素养的考查.试题重点考查:集合、命题,函数模型不等式、复数、向量、导数函数的应用、三角函数的性质、三角恒等变换与解三角形等,是一份非常好的试卷。

一.填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应 位置上.【题文】1.已知全集}7,5,3,1{},5,4,2{},7,6,5,4,3,2,1{===B A U ,则=⋂)(B C A U ▲ .【知识点】集合及其运算A1【答案解析】{2,4,5} ∵全集U={1,2,3,4,5,6.7},B={1,3,5,7},∴∁UB={2,4,6},又A={2,4,5},则A ∩(∁UB )={2,4,5}.故答案为:{2,4,5}【思路点拨】找出全集U 中不属于B 的元素,确定出B 的补集,找出A 与B 补集的公共元素,即可确定出所求的集合.【题文】2.若命题“R x ∈∃,有02≤--m mx x ”是假命题,则实数m 的取值范围是 ▲ .【知识点】命题及其关系A2【答案解析】[-4,0] ∵命题“∃x ∈R ,有x2-mx-m <0”是假命题,⇔“∀x ∈R ,有x2-mx-m ≥0”是真命题.令f (x )=x2-mx-m ,则必有△=m2-4m ≤0,解得-4≤m ≤0.故答案为:[-4,0].【思路点拨】令f (x )=x2-mx-m ,利用“∃x ∈R ,有x2-mx-m <0”是假命题⇔△=m2-4m ≤0,解出即可.【题文】3.已知βα,的终边在第一象限,则“βα>”是“βαsin sin >”的 ▲ 条件.【知识点】充分条件、必要条件A2【答案解析】既不必要也不充分条件 ∵角α,β的终边在第一象限, ∴当α= 3π+2π,β= 3π,满足α>β,但sin α=sin β,则sin α>sin β不成立,即充分性不成立,若当α= 3π,β= 56π+2π,满足sin α>sin β,但α>β不成立,即必要性不成立,故“α>β”是“sin α>sin β”的既不必要也不充分条件,故答案为:既不必要也不充分条件.【思路点拨】根据三件函数的定义和关系式,结合充分条件和必要条件的定义进行判断.【题文】4.已知)(x f 的定义域是]4,0[,则)1()1(-++x f x f 的定义域为 ▲ .【知识点】函数及其表示B1【答案解析】[1,3] ∵f (x )的定义域是[0,4],∴f (x+1)+f (x-1)的定义域为不等式组014014x x ≤+≤⎧⎨≤-≤⎩的解集,解得:1≤x ≤3. 故答案为:[1,3].【思路点拨】由题意可列不等式组014014x x ≤+≤⎧⎨≤-≤⎩,解之即可. 【题文】5.已知角α终边上一点P 的坐标是)3cos 2,3sin 2(-,则=αsin ▲ .【知识点】角的概念及任意角的三角函数C1【答案解析】-cos3 ∵角α终边上一点P 的坐标是(2sin3,-2cos3),∴2=,∴sin α= 2cos32-=-cos3.故答案为:-cos3. 【思路点拨】由题意,先求出点P 到原点的距离,再由定义求出即可.【题文】6.已知曲线33:x x y S -=及点)2,2(P ,则过点P 可向曲线S 引切线,其切线共有▲ 条.【知识点】导数的应用B12【答案解析】3 ∵y=3x-x3,∴y'=f'(x )=3-3x2,∵P (2,2)不在曲线S 上,∴设切点为M (a ,b ),则b=3a-a3,f'(a )=3-3a2则切线方程为y-(3a-a3)=(3-3a2)(x-a ),∵P (2,2)在切线上,∴2-(3a-a3)=(3-3a2)(2-a ),即2a3-6a2+4=0,∴a3-3a2+2=0,即a3-a2-2a2+2=0,∴(a-1)(a2-2a-2)=0,解得a=1或a=1∴切线的条数为3条,故答案为3.【思路点拨】求函数的导数,设切点为M (a ,b ),利用导数的几何意义,求切线方程,利用点P (2,2)在切线上,求出切线条数即可.【题文】7.化简:=-----++)3sin()3cos()23sin()2cos()tan(αππαπααπαπ ▲ .【知识点】同角三角函数的基本关系式与诱导公式C2 【答案解析】=-----++)3sin()3cos()23sin()2cos()tan(αππαπααπαπtan cos cos (cos )sin ∂∂∂-∂∂=-1【思路点拨】利用三角函数诱导公式同角三角函数基本关系。

江苏省启东中学高三第一次月考(数学)缺答案

江苏省启东中学高三第一次月考(数学)缺答案

江苏省启东中学高三第一次月考(数学)一、填空题(每题5分,共70分)1、若集合131,11,2,01A y y x x B y y x x ⎧⎫⎧⎫⎪⎪==-≤≤==-<≤⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭,则A ∩B 等于 。

2、设向量,a b 满足:31,,222a ab a b ==+=,则b = 。

3、对a,b ∈R,记max{a,b}=⎩⎨⎧≥ba b ba a <,,,函数f (x )=max{|x+1|,|x-2|}(x ∈R)的最小值是 。

4、设0,1a a >≠,函数2lg(23)()xx f x a -+=有最大值,则不等式()2log 570a x x -+>的解集为 。

5、已知函数f (x )=2sin ϖx(ϖ>0)在区间[3π-,4π]上的最小值是-2,则ϖ的最小值等于 。

6、已知βα,⎪⎭⎫⎝⎛∈ππ,43,sin(βα+)=-,53 sin ,13124=⎪⎭⎫ ⎝⎛-πβ则cos ⎪⎭⎫ ⎝⎛+4πα=________.7、已知︱OA ︱=1,︱OB ︱=3,OB OA ∙=0,点C 在∠AOB 内,且∠AOC =30°,设OC =m OA +n OB (m 、n ∈R ),则n m等于 。

8、已知命题1:1,2p x ≤≤命题2:(21)(1)0,q x a x a a -+++≤若p ⌝是q ⌝的必要而不充分条件,则实数a 的取值范围是 .9、已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ∙的最小值为 。

10、已知函数222,0()2,0x x x f x x x x ⎧+≥=⎨-<⎩,若2(2)()f a f a ->,则a 的取值范围为 。

11、已知225(),(32s i n )322x f x f m m xθ-=+<+-对一切R θ∈恒成立,则实数m 的范围 。

2019届江苏省启东中学高三上学期第一次月考物理试题(解析版)

2019届江苏省启东中学高三上学期第一次月考物理试题(解析版)

江苏省启东中学2019届高三上学期第一次月考物理试题★祝你考试顺利★注意事项:1、考试范围:高考考查范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题1.竹蜻蜓是我国古代发明的一种儿童玩具,人们根据竹蜻蜓的原理设计了直升机的螺旋桨.如图所示,一小孩搓动质量为20g的竹蜻蜓,松开后竹蜻蜓能上升到二层楼房顶处.搓动过程中手对竹蜻蜓做的功可能是( )A. 0.2JB. 0.6JC. 1.0JD. 2.5J【答案】D【解析】【详解】地面到二层楼房顶的高度约为6m,竹蜻蜓从地面飞到二层楼房顶高处时,速度刚好为零,此过程中,根据动能定理得:0−mv02=−mgh−W f, 则:mv02>mgh=0.02×10×6=1.2J,而在搓动过程中手对竹蜻蜓做的功等于竹蜻蜓获得的初动能,所以在搓动过程中手对竹蜻蜓做的功大于1.2J,故D正确。

故选D.2.“天宫、蛟龙、天眼、悟空、墨子”等重大科技成果写进十九大报告,航天科技成果丰硕,天宫二号在离地面393km的圆形轨道上飞行,慧眼空间科学卫星在离地面550km的圆形轨道上飞行.若天宫二号与慧眼卫星的质量相同,环绕地球运行均可视为匀速圆周运动,则( )A. 慧眼卫星运行时向心加速度比天宫二号小B. 慧眼卫星运行的周期比天宫二号小C. 慧眼卫星运行时机械能比天宫二号小D. 慧眼卫星运行时速度比天宫二号大【答案】A【解析】【详解】根据可得:,则慧眼卫星运行时向心加速度比天宫二号小,选项A 正确;由可知,慧眼卫星运行的周期比天宫二号大,选项B错误;根据可知慧眼卫星运行时速度比天宫二号小,选项D错误;因两卫星质量相同,慧眼卫星高度大,则发射需要的能量较大,在轨道上的机械能较大,选项C错误;故选A.3.光滑平面上一运动质点以速度v通过原点O,v与x轴正方向成α角(如图),与此同时对质点加上沿x轴正方向的恒力F x和沿y轴正方向的恒力F y,则( )A. 因为有F x,质点一定做曲线运动B. 如果F y>F x,质点向y轴一侧做曲线运动C. 质点不可能做直线运动D. 如果F x>F y cotα,质点向x轴一侧做曲线运动【答案】D【解析】【详解】若F x=F y cotα,则合力方向与速度方向在同一条直线上,物体做直线运动;选项AC错误;若F x>F y cotα,则合力方向与速度方向不在同一条直线上,合力偏向于速度方向下侧,则质点向x轴一侧做曲线运动,选项B错误;若F x>F y cotα,则合力方向与速度方向不在同一条直线上,合力偏向于速度方向下侧,质点向x轴一侧做曲线运动。

(全优试卷)江苏省启东中学高三上学期第一次月考数学(理)试题Word版含答案

(全优试卷)江苏省启东中学高三上学期第一次月考数学(理)试题Word版含答案

江苏省启东中学2018-2019学年度第一学期月考高三年级数学 (理)一.填空题:(本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上..1= ▲ .2的值为 ▲ .3▲条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).4m 的值是 ▲ . 5.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5= ▲ .6.错误!未找到引用源。

,取值范围是 ▲ .7的值为 ▲ .8.定义在R的值为 ▲ . 9,其前n的值为 ▲ .10.的最小值为▲.11的解集是▲.12的夹角的大小为▲ .13.在斜三角形ABC中,若则sinC的最大值为▲ .14,若函数4的取值范围为▲.二.解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)R.16. (本小题满分14分)在△ABC B,C的对边分别为a,b,c(1(2)求c的值.17. (本小题满分14分)(1)(2)是否存在非零的实使得数列.18.(本题满分16分)现有一个以OA、OB为半径的扇形池塘,在OA、OB上分别取点C、D,作DE∥OA、CF∥OB交弧AB于点E、F,且BD = AC,现用渔网沿着DE、EO、OF、FC将池塘分成如图所示的三种的养殖区域.若OA=1km(1)求区域Ⅱ的总面积;(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是15万元、20万元、10万元,记年总收入为y万元.19. (本小题满分16分) .(1(2(3.20.(本小题满分16分)).(1(2(31江苏省启东中学2018-2019学年度第一学期月考 高三年级数学答案答题卷上只有第18题需要附图,其余按模式搞就行了充分不必要 4.1 5.3146.15.16.解:(1)在△ABC…… 2分…… 4分…… 6分(2)由(1…… 10分在△ABC……12分…… 14分17. 解:(1(218. 解:(1DE∥OA,CF∥OB,………………………………2分…………………………………6分(2…………………………………10分…………………………………12分y有最大值. (16)19. 解(13分(2………………………………… 7分(3………………………………9分12分分16分20. 解(1. ……………4分(2……………6分①……………7分②……………9分注:分离变量、数形结合等方法得出正确结论的本小题给2分。

【配套K12】江苏省启东中学2019届高三数学上学期第一次月考试题 文

【配套K12】江苏省启东中学2019届高三数学上学期第一次月考试题 文

江苏省启东中学2018-2019学年度第一学期月考高三年级数学 (文)一.填空题:(本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上..1.集合}1|{-==x y y A ,集合)}2lg(|{x y x B -==,则B A ⋂ = ▲ .2.若()x x x xke e f x ke e---=+为奇函数,则k 的值为 ▲ . 3.设命题:4p x >;命题2:540q x x -+≥,那么p 是q 的 ▲ 条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).4.已知幂函数22*()m m y x m -=∈N 在(0,)+∞是增函数,则实数m 的值是 ▲ . 5.直线0()x m m R +=∈的倾斜角为 ▲ .6.若“122x ⎡⎤∃∈⎢⎥⎣⎦, 错误!未找到引用源。

,使得2210x x -λ+<成立”是假命题,则实数λ的取值范围是 ▲ .7.已知钝角α满足3cos 5α=-,则tan 24απ⎛⎫+ ⎪⎝⎭的值为 ▲ .8.定义在R 上的函数()()()⎪⎩⎪⎨⎧>--≤-=05101log 9x x f x x x f ,则()2018f 的值为 ▲ . 9.在平面直角坐标系xoy 中,双曲线222:1(0)4x y C a a -=>的一条渐近线与直线21y x =+平行,则实数a 的值是 ▲ .10.将函数()π()sin 6f x x ω=-(0ω>)的图象向左平移π3个单位后,所得图象关于直线πx =对称,则ω的最小值为 ▲ .11.已知函数2()||2x f x x +=+,x ∈R ,则2(2)(2)f x x f x -<-的解集是 ▲ . 12.已知抛物线22(0)x py p =>的焦点F 是椭圆22221(0)y x a b a b+=>>的一个焦点,若P ,Q 是椭圆与抛物线的公共点,且直线PQ 经过焦点F ,则该椭圆的离心率为 ▲ . 13.在斜三角形ABC 中,若114tan tan tan A B C+=,则sinC 的最大值为 ▲ .14.已知函数()22x x x f -=,()2+=x e x g x(e 为自然对数的底数),若函数()()[]k x g f x h -=有4个零点,则k 的取值范围为 ▲ .二.解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字 说明、证明过程或演算步骤. 15. (本小题满分14分) 已知21>a 且1≠a ,条件p :函数()()x x f a 12log -=在其定义域上是减函数,条件q :函数()2--+=a x x x g 的定义域为R .如果“p 或q ”为真,试求a 的取值范围.16. (本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知1a =,b =,π6B A -=. (1)求sin A 的值; (2)求c 的值.17. (本小题满分14分)已知椭圆C :22221(0)x y a b a b+=>>,且过点(2,1)P -.(1) 求椭圆C 的方程;(2) 设点Q 在椭圆C 上,且PQ 与x 轴平行,过点P 作两条直线分别交椭圆C 于A(x 1,y 1),B(x 2,y 2)两点,若直线PQ 平分∠APB,求证:直线AB 的斜率是定值,并求出这个定值.18.(本题满分16分)现有一个以OA 、OB 为半径的扇形池塘,在OA 、OB 上分别取点C 、D ,作DE ∥OA 、CF ∥OB 交弧AB 于点E 、F ,且BD = AC ,现用渔网沿着DE 、EO 、OF 、FC 将池塘分成如图所示的三种的养殖区域.若OA =1km ,π2AOB ∠=,π(0)2EOF θθ∠=<<.(1)求区域Ⅱ的总面积;(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是15万元、20万元、10万元,记年总收入为y 万元. 试问当θ为多少时,年总收入最大?19. (本小题满分16分)已知函数()122++=ax x x f (a ∈R ) ,()x f '是()x f 的导函数.(1)若函数x e x f x ⋅'=)()(ϕ极小值为1-,求实数a 的值;(2)若[]1,2--∈x ,不等式()()x f x f '≤恒成立,求实数a 的取值范围; (3)设函数()()()()()()()⎩⎨⎧'<'≥'=x f x f x f x f x f x f x g ,,,求()x g 在[]4,2∈x 上的最小值.(第18题)20.(本小题满分16分)已知函数()x ax x x f ln +=(∈a R ). (1)讨论函数()x f 的单调性;(2)若对任意),1[+∞∈x ,3)(x x f ≤恒成立,求实数a 的取值范围; (3)若函数()x f 存在极大值,且极大值点为1,证明:()21x ex f x+≤.江苏省启东中学2018-2019学年度第一学期月考 高三年级数学答案答题卷上只有第17、18题需要附图,其余按模式搞就行了1.[)2,02.1±3.充分不必要4.15. 0150 6.(]22,∞-7.3- 8.21 9. 1 10.2111.()2,0 12. 2-1 13.322 14.⎪⎭⎫⎝⎛-212,0ee 15.解:121<<a 或2≥a16.解:(1)在△ABC 中,因为1a =,b =π6B A -=,由正弦定理得,1sin πsin 6A A + …… 2分于是ππsin cos cos sin 66A A A =+,即cos A A =, …… 4分又22sin cos 1A A +=,所以sin A =. …… 6分(2)由(1)知,cos A =,则sin 22sin cos A A A =,213cos212sin 14A A =-=, …… 10分在△ABC 中,因为πA B C ++=,π6B A -=,所以5π26C A =-.则()5πsin sin 26C A =-5π5πsin cos2cos sin 266A A =-113214=⨯+1114=. ……12分由正弦定理得,sin sin a C c A == …… 14分17. 解:(1) 由e =c a =32得a∶b∶c=2∶1∶3,椭圆C 的方程为x 24b 2+y2b 2=1.把P(2,-1)的坐标代入,得b 2=2,所以椭圆C 的方程是x 28+y22=1.(2) 解法一:由已知得PA ,PB 的斜率存在,且互为相反数. 设直线PA 的方程为y +1=k(x -2),其中k ≠0.由⎩⎪⎨⎪⎧y +1=k (x -2),x 2+4y 2=8,消去y 得x 2+4[kx -(2k +1)]2=8, 即(1+4k 2)x 2-8k(2k +1)x +4(2k +1)2-8=0. 因为该方程的两根为2,x A , 所以2x A =4(2k +1)2-81+4k 2, 即x A =8k 2+8k -21+4k 2. 从而y A =4k 2-4k -14k 2+1. 把k 换成-k ,得x B =8k 2-8k -21+4k 2,y B =4k 2+4k -14k 2+1. 计算,得k AB =y B -y A x B -x A =8k -16k =-12,是定值.解法二:由⎩⎪⎨⎪⎧y +1=k (x -2),x 2+4y 2=8得⎩⎪⎨⎪⎧y +1=k (x -2),4(y 2-1)=4-x 2, 当(x ,y )≠(2,-1)时,可得⎩⎪⎨⎪⎧y +1=k (x -2),4k (y -1)=-x -2.解得⎩⎪⎨⎪⎧x A =8k 2+8k -24k 2+1,y A =4k 2-4k -14k 2+1. 以下同解法一.解法三:由A ,B 在椭圆C :x 2+4y 2=8上得(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0,所以k AB =y 1-y 2x 1-x 2=-14·x 1+x 2y 1+y 2.同理k PA =y 1+1x 1-2=-14·x 1+2y 1-1,k PB =y 2+1x 2-2=-14·x 2+2y 2-1.由已知得k PA =-k PB ,所以y 1+1x 1-2=-y 2+1x 2-2,且x 1+2y 1-1=-x 2+2y 2-1,即x 1y 2+x 2y 1=2(y 1+y 2)-(x 1+x 2)+4,且x 1y 2+x 2y 1=(x 1+x 2)-2(y 1+y 2)+4.从而可得x 1+x 2=2(y 1+y 2). 所以k AB =-14·x 1+x 2y 1+y 2=-12,是定值.18. 解:(1)因为BD AC OB OA ==,,所以OD OC =. 因为π2AOB ∠=,DE ∥OA ,CF ∥OB , 所以DE OB CF OA ⊥⊥,.又因为OE OF =,所以Rt ODE ∆≌Rt OCF ∆.所以1π()22DOE COF COF θ∠=∠∠=-,. ………………………………2分所以1πcos cos[()]22OC OF COF θ=⋅∠=-.所以11sin cos 24COF S OC OF COF θ∆=⋅⋅⋅∠=,所以II 1=cos 2S θ区域,π(0)2θ<<. …………………………………6分(2)因为I 12S θ=区域,所以III I II π11cos 422S S S S θθ=--=--总区域区域区域.所以11π111520cos 10(cos )22422y θθθθ=⨯+⨯+⨯--55ππ5cos (0)222θθθ=++<<,, …………………………………10分 所以5(12sin )2y θ'=-,令=0y ',则π=6θ. …………………………………12分当π6θ<<0时,0y '>,当ππ62θ<<时,0y '<. 故当π=6θ时,y 有最大值. 答:当θ为π6时,年总收入最大. …………………………………16 19. 解(1)12ln -…………………………………3分 (2)⎪⎭⎫⎢⎣⎡+∞,23 ………………………………… 7分 (3)因为()()()[]a x x x f x f 211)(---='-, ①若21-≥a ,则[]4,2∈x 时,()()x f x f '≥,所以()()a x x f x g 22+='=,从而()x g 的最小值为()422+=a g .………………………………9分②若23-<a ,则[]4,2∈x 时,()()x f x f '<,所以()()122++==ax x x f x g , 当232-<≤-a 时,()x g 的最小值为()542+=a g ;当24-<<-a 时,()x g 的最小值为()21a a g -=-;当4-≤a 时,()x g 的最小值为()1784+=a g ;………………………………12分③若2123-<≤-a ,则[]4,2∈x 时,()[)[]⎩⎨⎧-∈+-∈++=4,21,2221,2,122a x a x a x ax x x g ,当[]a x 21,2-∈时,()x g 的最小值为()542+=a g ; 当[]4,21a x -∈时,()x g 的最小值为()a a g 2221-=-. 因为2123-<≤-a ,()()0362254<+=--+a a a ,所以()x g 的最小值为54+a .14分 综上所述:()⎪⎪⎪⎩⎪⎪⎪⎨⎧-≥+-<≤-+-<<---≤+=.21,42,212,54,24,1,4,1782mina a a a a a a a x g ………………………………16分20. 解(1)当0=a ,函数()x f 在()+∞,0上单调递增;当0>a ,函数()x f 在⎪⎪⎭⎫⎝⎛--a e 11,0上单调递减,在⎪⎪⎭⎫ ⎝⎛--a e 11上单调递增;当0<a ,函数()x f 在⎪⎪⎭⎫⎝⎛--a e 11,0上单调递增,在⎪⎪⎭⎫ ⎝⎛--a e 11上单调递减. ……………4分(2)()x ax x x f ln +=若对任意),1[+∞∈x ,3)(x x f ≤恒成立,求实数a 的取值范围; 因为),1[+∞∈x ,所以3)(x x f ≤⇔0ln 12≥--x a x ,设),1[,ln 1)(2+∞∈--=x x a x x ϕ,则xa x x a x x -=-='222)(ϕ,所以 ……………6分① 当2≤a 时,0)(≥'x ϕ,)(x ϕ在),1[+∞上递增,所以0)1()(=≥ϕϕx ,所以2≤a 适合。

江苏省启东中学2019届高三上学期第一次月考数学(理)试题(含答案)

江苏省启东中学2019届高三上学期第一次月考数学(理)试题(含答案)

江苏省启东中学2018-2019学年度第一学期月考高三年级数学 (理)一.填空题:(本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上........ 1.集合}1|{-==x y y A ,集合)}2lg(|{x y x B -==,则B A ⋂ = ▲ .2.若()x x x xke e f x ke e ---=+为奇函数,则k 的值为 ▲ .3.设命题:4p x >;命题2:540q x x -+≥,那么p 是q 的 ▲ 条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).4.已知幂函数22*()m m y x m -=∈N 在(0,)+∞是增函数,则实数m 的值是 ▲ .5.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5= ▲ .6.若“122x ⎡⎤∃∈⎢⎥⎣⎦, 错误!未找到引用源。

,使得2210x x -λ+<成立”是假命题,则实数λ的取值范围是 ▲ . 7.已知钝角α满足3cos 5α=-,则tan 24απ⎛⎫+ ⎪⎝⎭的值为 ▲ .8.定义在R 上的函数()()()⎪⎩⎪⎨⎧>--≤-=05101log 9x x f x x x f ,则()2018f 的值为 ▲ . 9.设等差数列{}n a 的公差为d (0≠d ),其前n 项和为n S .若22410a a =,122210S S =+,则d 的值为 ▲ .10.将函数()π()sin 6f x x ω=-(0ω>)的图象向左平移π3个单位后,所得图象关于直线πx =对称,则ω的最小值为 ▲ .11.已知函数2()||2x f x x +=+,x ∈R ,则2(2)(2)f x x f x -<-的解集是 ▲ . 12.若向量,a b →→满足a →=,1b →=,且对一切实数x ,a x b a b →→→→++≥恒成立,则向量,a b →→的夹角的大小为▲ .13.在斜三角形ABC 中,若114tan tan tan A B C+=,则sinC 的最大值为 ▲ . 14.已知函数()22x x x f -=,()2+=x e x g x(e 为自然对数的底数),若函数()()[]k x g f x h -=有4个零点,则k 的取值范围为 ▲ .二.解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字 说明、证明过程或演算步骤. 15. (本小题满分14分) 已知21>a 且1≠a ,条件p :函数()()x x f a 12log -=在其定义域上是减函数,条件q :函数()2--+=a x x x g 的定义域为R .如果“p 或q ”为真,试求a 的取值范围.16. (本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知1a =,b =π6B A -=. (1)求sin A 的值; (2)求c 的值.17. (本小题满分14分)已知等比数列{}n a 的各项均为正数,且163221=+a a ,62234a a a =.(1) 求数列{}n a 的通项公式;(2) 设n n a a a b 22212log ...log log +++=,是否存在非零的实数λ,使得数列⎭⎬⎫⎩⎨⎧-λn b n 2为等差数列?若存在,求出λ的值;若不存在,说明理由.18.(本题满分16分)现有一个以OA 、OB 为半径的扇形池塘,在OA 、OB 上分别取点C 、D ,作DE ∥OA 、CF ∥OB 交弧AB 于点E 、F ,且BD = AC ,现用渔网沿着DE 、EO 、OF 、FC 将池塘分成如图所示的三种的养殖区域.若OA =1km ,π2AOB ∠=,π(0)2EOF θθ∠=<<.(1)求区域Ⅱ的总面积;(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是15万元、20万元、10万元,记年总收入为y 万元. 试问当θ为多少时,年总收入最大?19. (本小题满分16分)已知函数()122++=ax x x f (a ∈R ) ,()x f '是()x f 的导函数.(1)若函数x e x f x ⋅'=)()(ϕ极小值为1-,求实数a 的值;(2)若[]1,2--∈x ,不等式()()x f x f '≤恒成立,求实数a 的取值范围;(3)设函数()()()()()()()⎩⎨⎧'<'≥'=x f x f x f x f x f x f x g ,,,求()x g 在[]4,2∈x 上的最小值.20.(本小题满分16分)已知函数()x ax x x f ln +=(∈a R ). (1)讨论函数()x f 的单调性;(2)若对任意),1[+∞∈x ,3)(x x f ≤恒成立,求实数a 的取值范围; (3)若函数()x f 存在极大值,且极大值点为1,证明:()21x ex f x+≤.江苏省启东中学2018-2019学年度第一学期月考高三年级数学答案答题卷上只有第18题需要附图,其余按模式搞就行了1.[)2,02.1±3.充分不必要4.15.314 6.(]22,∞- 7.3-8.21 9.10- 10.21 11.()2,0 12.43π 13.322 14.⎪⎭⎫⎝⎛-212,0e e15.解:121<<a 或2≥a16.解:(1)在△ABC 中,因为1a =,b =π6B A -=,由正弦定理得,1sin πsin 6A A =+…… 2分于是ππsin cos cos sin 66A A A =+,即cos A A =, …… 4分又22sin cos 1A A +=,所以7sin A . …… 6分(2)由(1)知,321cos A ,则33sin 22sin cos A A A =,213cos212sin 14A A =-=, …… 10分在△ABC 中,因为πA B C ++=,π6B A -=,所以5π26C A =-.则()5πsin sin 26C A =-5π5πsin cos2cos sin 266A A =-113214=⨯1114=. ……12分由正弦定理得,sin sin a C c A == …… 14分17. 解:(1)nn a 2=;(2)2-=λ18. 解:(1)因为BD AC OB OA ==,,所以OD OC =. 因为π2AOB ∠=,DE ∥OA ,CF ∥OB , 所以DE OB CF OA ⊥⊥,.又因为OE OF =,所以Rt ODE ∆≌Rt OCF ∆.所以1π()22DOE COF COF θ∠=∠∠=-,. ………………………………2分所以1πcos cos[()]22OC OF COF θ=⋅∠=-.所以11sin cos 24COF S OC OF COF θ∆=⋅⋅⋅∠=,所以II 1=cos 2S θ区域,π(0)2θ<<. …………………………………6分(2)因为I 12S θ=区域,所以III I II π11cos 422S S S S θθ=--=--总区域区域区域.所以11π111520cos 10(cos )22422y θθθθ=⨯+⨯+⨯--55ππ5cos (0)222θθθ=++<<,, …………………………………10分 所以5(12sin )2y θ'=-,令=0y ',则π=6θ. …………………………………12分当π6θ<<0时,0y '>,当ππ62θ<<时,0y '<. 故当π=6θ时,y 有最大值. 答:当θ为π6时,年总收入最大. …………………………………16 19. 解(1)12ln -…………………………………3分 (2)⎪⎭⎫⎢⎣⎡+∞,23 ………………………………… 7分 (3)因为()()()[]a x x x f x f 211)(---='-, ①若21-≥a ,则[]4,2∈x 时,()()x f x f '≥,所以()()a x x f x g 22+='=,从而()x g 的最小值为()422+=a g .………………………………9分②若23-<a ,则[]4,2∈x 时,()()x f x f '<,所以()()122++==ax x x f x g , 当232-<≤-a 时,()x g 的最小值为()542+=a g ;当24-<<-a 时,()x g 的最小值为()21a a g -=-;当4-≤a 时,()x g 的最小值为()1784+=a g ;………………………………12分③若2123-<≤-a ,则[]4,2∈x 时,()[)[]⎩⎨⎧-∈+-∈++=4,21,2221,2,122a x a x a x ax x x g ,当[]a x 21,2-∈时,()x g 的最小值为()542+=a g ; 当[]4,21a x -∈时,()x g 的最小值为()a a g 2221-=-. 因为2123-<≤-a ,()()0362254<+=--+a a a ,所以()x g 的最小值为54+a .14分综上所述:()⎪⎪⎪⎩⎪⎪⎪⎨⎧-≥+-<≤-+-<<---≤+=.21,42,212,54,24,1,4,1782mina a a a a a a a x g ………………………………16分20. 解(1)当0=a ,函数()x f 在()+∞,0上单调递增;当0>a ,函数()x f 在⎪⎪⎭⎫ ⎝⎛--a e 11,0上单调递减,在⎪⎪⎭⎫ ⎝⎛--a e 11上单调递增;当0<a ,函数()x f 在⎪⎪⎭⎫ ⎝⎛--a e 11,0上单调递增,在⎪⎪⎭⎫ ⎝⎛--a e 11上单调递减. ……………4分 (2)()x ax x x f ln +=若对任意),1[+∞∈x ,3)(x x f ≤恒成立,求实数a 的取值范围; 因为),1[+∞∈x ,所以3)(x x f ≤⇔0ln 12≥--x a x ,设),1[,ln 1)(2+∞∈--=x x a x x ϕ,则xa x x a x x -=-='222)(ϕ,所以 ……………6分① 当2≤a 时,0)(≥'x ϕ,)(x ϕ在),1[+∞上递增,所以0)1()(=≥ϕϕx ,所以2≤a 适合。

江苏省启东中学高三上学期第一次月考数学(理)试题.pdf

江苏省启东中学高三上学期第一次月考数学(理)试题.pdf

命题:龚凯宏 审题:黄勤力 一.填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应 位置上. 3.函数的定义域为已知角θ的终边经过点P(-4cos α,3cos α)(<α<),则sin θ+cos θ=已知函数,则 7.已知幂函数在上为减函数,则=▲ . 8.已知f(x)是定义在R上的偶函数,并且f(x+2)=-,当2≤x≤3时,f(x)=x,则f()= 9.已知函数处取得极大值10,则的值为 ▲ . 10.已知函数,若互不相等,且,则的取值范围是 ▲ . 13.已知函数,在其图象上点(,)处的切线方程为,则图象上点(-,)处的切线方程为 ▲ . 14.函数的定义域为D,若满足如下两条件:①在D内是单调函数;② 存在,使得在上的值域为,那么就称函数为“启中函数”,若函数=是“启中函数”,则的取值范围是 ▲ . 解答题:本大题共6小题,共90分.请在答题卡指定区域内作答. 解答时应写出文字说明、证明过程或演算步骤. 本题满分14分命题实数满足(其中), 命题实数满足 若,且为真,求实数的取值范围; 若是的充分不必要条件,求实数a的取值范围. 本题满分14分 (2)若,,求实数的取值范围。

17.(本题满分1分已知sin θ、cos θ是关于x的方程x2-ax+a=0(aR)的两个根. (2)求tan(π-θ)-的值. 18.(本题满分1分,其中 (1)判断的奇偶性; (2)对于函数,当时,,求实数的取值集合; (3)当时,的值恒为负,求的取值范围。

(本题满分1分 (本题满分1分 江苏省启东中学2014届高三第一次诊断性测试(2013.10) 数学试卷参考答案及评分标准 一.填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应 位置上.解答题:本大题共6小题,共90分.请在答题卡指定区域内作答. 解答时应写出文字说明、证明过程或演算步骤. 本题满分14分命题实数满足(其中), 命题实数满足 16.(本题满分14分 (2)若,,求实数的取值范围。

江苏省启东中学高三上学期第一次月考——数学(理)数学(理)

江苏省启东中学高三上学期第一次月考——数学(理)数学(理)

江苏省启东中学2015届高三上学期第一次月考数学(理)试题一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应..... 位置上.... 1.已知全集}7,5,3,1{},5,4,2{},7,6,5,4,3,2,1{===B A U ,则 .2.若命题“,有”是假命题,则实数的取值范围是 .3.已知的终边在第一象限,则“”是“”的 条件.4.已知的定义域是,则的定义域为 .5.已知角终边上一点的坐标是,则 .6.已知曲线及点,则过点可向曲线引切线,其切线共有 条.7.化简:=-----++)3sin()3cos()23sin()2cos()tan(αππαπααπαπ .8.设函数.若,则 .9.函数|cos |sin cos |sin |)(x x x x x f ⋅+⋅=的值域为 .10.已知函数在内是减函数,则实数的范围是 .11.已知偶函数在单调递减,则满足的实数的取值范围是 .12.已知锐角满足,则的最大值是 .13.已知是上最小正周期为2的周期函数,且当时,,则函数的图象在区间上与轴的交点的个数为 .14.定义在上的可导函数,已知的图象如图所示,则的增区间是 .二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答. 解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)已知集合}0)]4()][1([|{},1121|{<+-+-=++-==a x a x x B x x y x A .分别根据下列条件,求实数的取值范围.(1); (2)16.(本小题满分14分)设为实数,给出命题:关于的不等式的解集为,命题:函数]89)2(lg[)(2+-+=x a ax x f 的定义域为,若命题“”为真,“”为假,求实数的取值范围.17.(本小题满分15分)已知定义域为的函数是奇函数.(1)求实数的值;(2)若存在,不等式0)2()2(22<-+-k t f t t f 成立,求实数的取值范围.18.(本小题满分15分)设函数1cos 3sin )(++=x x x f .(1)求函数在的最大值与最小值;(2)若实数使得对任意恒成立,求的值.19.(本小题满分16分)已知某种型号的电脑每台降价成(1成为10%),售出的数量就增加成(为常数,且).(1)若某商场现定价为每台元,售出台,试建立降价后的营业额与每台降价成所成的函数关系式.并问当,营业额增加1.25%时,每台降价多少?(2)为使营业额增加,当时,求应满足的条件.20.(本小题满分16分)设函数)()(R a a ax e x f x ∈+-=,其图像与轴交于两点,且.(1)求的取值范围;(2)证明:(为函数的导函数);(3)设点在函数的图象上,且为等腰直角三角形,记,求的值.参考答案15.(本小题满分14分)(1);(2)16.(本小题满分14分)或.17.(本小题满分15分)(1);(2).。

江苏省启东中学2019-2020学年高一上学期第一次质量检测数学试题 含答案

江苏省启东中学2019-2020学年高一上学期第一次质量检测数学试题 含答案

江苏省启东中学2019-2020学年度第一学期第一次月考高一数学试卷题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.若1∈{x,x2},则x=()A. 1B.C. 0或1D. 0或1或2.已知集合,集合,则P与Q的关系是A. B. C. D.3.已知集合A={a-2,2a2+5a,12},-3∈A,则a的值为()A. B. C. D.4.如果集合S={x|x=3n+1,n∈N},T={x|x=3k-2,k∈Z},则()A. B. C. D.5.已知函数y=f(x)定义域是[-2,3],则y=f(2x-1)的定义域是().A. B. C. D.6.函数f(x)=的定义域为,则实数m的取值范围是()A. B. C. D.7.已知偶函数f(x)在区间[0,+∞)单调递增,则满足f(2x-1)<f()的x取值范围是()A. B. C. D.8.下列四个函数中,在(0,+∞)上为增函数的是()A. B. C. D.9.已知函数f(x)=4x2+kx-1在区间[1,2]上是单调函数,则实数k的取值范围是()A. B.C. D.10.已知函数y =f(x)在定义域(-1,1)上是减函数,且f(2a-1)<f(1-a),则实数a的取值范围是()A. B. C. D.11.函数的最小值为()A. 0B.C.D.12.已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则x i=()A. 0B. mC. 2mD. 4m二、填空题(本大题共4小题,共20.0分)13.设集合M={x|-1<x<2},N={x|x-k≤0},若M∩N≠∅,则k的取值范围是______ .14.设A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若A∩B=B,则实数m的取值范围是______ .15.已知集合A={x|ax2-3x+2=0,a∈R},若集合A中只有一个元素,则实数a的取值为______ .16.已知函数是R上的递增函数,则实数m的取值范围是_____________.三、解答题(本大题共6小题,共72.0分)17.求值:(1)-(2-π)0-+;(2)已知0<x<1,且x+x-1=3,求.18.设集合A={x|x2<9},B={x|(x-2)(x+4)<0}.(1)求集合A∩B;(2)若不等式2x2+ax+b<0的解集为A∪B,求a、b的值.19.已知集合A={x|ax2+2x+1=0,a∈R},(1)若A只有一个元素,试求a的值,并求出这个元素;(2)若A是空集,求a的取值范围;(3)若A中至多有一个元素,求a的取值范围.20.近年来,雾霾日趋严重,我们的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题.某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产该型号空气净化器x(百台),其总成本为P(x)(万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本).销售收入Q(x)(万元)满足Q (x)=,假定该产品产销平衡(即生产的产品都能卖掉),根据以述统计规律,请完成下列问题:(1)求利润函数y=f(x)的解析式(利润=销售收入-总成本);(2)工厂生产多少百台产品时,可使利润最多?21.设函数是增函数,对于任意x,都有.求;证明奇函数;解不等式.22.已知二次函数满足,且.(Ⅰ)求a , b的值;(Ⅱ)若,在区间上的最小值为,最大值为,求的取值范围.答案和解析1.【答案】B【解析】【分析】本题考查元素与集合的关系,需要注意集合中元素的互异性,属于基础题.根据题意,若1∈{x,x2},则必有x=1或x2=1,进而分类讨论:x=1或者x2=1,每种情况下求出x的值,并验证是否符合集合中元素的性质,综合即可得答案.【解答】解:根据题意,若1∈{x,x2},则必有x=1或x2=1,进而分类讨论:①、当x=1时,x2=1,不符合集合中元素的互异性,舍去,②、当x2=1,解可得x=-1或x=1(舍),当x=-1时,x2=1,符合题意,综合可得,x=-1,故选B.2.【答案】C【解析】【分析】本题考查了集合的表示方法,进行集合间的元素或判断集合间的关系时,应该先化简各个集合,再借助数轴或韦恩图进行运算或判断,属于基础题.通过求集合P中函数的定义域化简集合p,通过求集合Q中函数的值域化简集合Q,利用集合间元素的关系判断出集合的关系.【解答】解:依题意得,P={x|x+1≥0}={x|x≥-1},Q={y|y≥0},∴Q⊆P,故选C.3.【答案】B【解析】【分析】由于-3∈A则a-2=-3或2a2+5a=-3,求出a的值然后再代入再根据集合中元素的互异性对a进行取舍.本题主要考察了集合中元素的互异性,属常考题型,较难.解题的关键是求出a的值后要回代到集合中利用集合中元素的互异性进行检验.【解答】解:∵-3∈A∴-3=a-2或-3=2a2+5a∴a=-1或a=-,∴当a=-1时,a-2=-3,2a2+5a=-3,不符合集合中元素的互异性,故a=-1应舍去当a=-时,a-2=-,2a2+5a=-3,满足.∴a=-.4.【答案】A【解析】解:由T={x|x=3k-2=3(k-1)+1,k∈Z}={x|x=3(k-1)+1,k-1∈Z}令t=k-1,则t∈Z,则T={x|x=3t+1,t∈Z}通过对比S、T,且由常用数集N与Z可知N⊊Z故S⊊T故选A.若t=k-1,则将T化简为S的形式,对比常用数集即可得到答案本题考查了集合间相等关系的判断与应用,属于基础题5.【答案】C【解析】【分析】本题考查复合函数定义域的求解,是基础题.根据复合函数定义域之间的关系得-2≤2x-1≤3,计算得结论.【解答】解:因为函数y=f(x)定义域是[-2,3],所以-2≤2x-1≤3,解得-≤x≤2,因此函数y=f(2x-1)的定义域为[-,2].故选C.6.【答案】B【解析】【分析】本题主要考查函数的定义域,考查含有参数的不等式恒成立问题,考查运算求解能力和分类讨论思想,属于基础题.根据题意,可得在上恒成立,当时,有在上恒成立;当时,可得,即可求出结果.【解答】解:函数的定义域为,在上恒成立,①当时,有在上恒成立,符合条件;②当时,则,解得;综上,实数的取值范围是.故选.【解析】【分析】本题考查函数的奇偶性及单调性,同时考查不等式的求解,根据函数奇偶性和单调性的关系将不等式进行转化是解决本题的关键.根据函数奇偶性和单调性的性质,将不等式进行转化求解即可.【解答】解:∵f(x)是偶函数,∴f(x)=f(|x|),∴不等式等价为f(|2x-1|),∵f(x)在区间[0,+∞)单调递增,∴,解得.故选A.8.【答案】C【解析】【分析】本题考查函数的单调性与单调区间的知识点,属于基础题.根据各选项逐一分析各函数的单调性即可得出答案.【解答】解:A.∵f(x)=3-x在(0,+∞)上为减函数,故A不正确;B.∵f(x)=x2-3x是开口向上对称轴为x=的抛物线,所以它在(0,+∞)上先减后增,故B不正确;C.∵f(x)=-在(0,+∞)上y随x的增大而增大,所它为增函数,故C正确;D.∵f(x)=-|x|在(0,+∞)上y随x的增大而减小,所以它为减函数,故D不正确,故选C.9.【答案】A【解析】【分析】本题考查二次函数的单调性的判断,注意运用分类讨论的思想方法,考查运算能力,属于基础题.求出f(x)的对称轴方程,讨论f(x)在区间[1,2]上是单调增函数和减函数,注意对称轴和区间的关系,解不等式即可得到所求范围.【解答】解:函数f(x)=4x2+kx-1的对称轴为x=-,若f(x)在区间[1,2]上是单调增函数,可得-≤1,解得k≥-8;若f(x)在区间[1,2]上是单调减函数,可得-≥2,解得k≤-16,综上可得k的范围是.故选A.10.【答案】B【解析】【分析】本题考查了函数的性质的运用,利用函数y=f(x)在定义域(-1,1)上是减函数,将f(2a-1)<f(1-a)转化为:2a-1>1-a求解,注意定义域的范围.【解答】解:函数y=f(x)在定义域(-1,1)上是减函数,则有:,解得:.故选B.11.【答案】C【解析】【分析】本题考查函数的最值,属于基础题.利用换元方法,设,t≥0,则x=t2-1,将已知函数化为关于t的二次函数们进一步求出最小值.【解答】解:设=t,t≥0,则x=t2-1,,解析式化为y=,t≥0,所以t=1时,原函数的最小值为-1.故选C.12.【答案】B【解析】【分析】本题考查的知识点是二次函数的图象和性质,函数的对称性质,难度中档.根据已知函数f(x)(x∈R)满足f(x)=f(2-x),分析函数的对称性,可得函数y=|x2-2x-3|与y=f(x)图象的交点关于直线x=1对称,进而得到答案.【解答】解:∵函数f(x)(x∈R)满足f(x)=f(2-x),故函数f(x)的图象关于直线x=1对称,又函数y=|x2-2x-3|的图象也关于直线x=1对称,故函数y=|x2-2x-3|与y=f(x)图象的交点也关于直线x=1对称,故x i=×2=m,故选B.13.【答案】(-1,+∞)【解析】【分析】本题考查集合之间的基本运算问题,是基础题.因集合M、N是数集,容易得出结论.【解答】解:∵集合M={x|-1<x<2},N={x|x-k≤0}={x|x≤k},且M∩N≠∅,∴k的取值范围是:(-1,+∞).故答案为(-1,+∞).14.【答案】m≤3【解析】【分析】A∩B=B⇔B⊆A,利用集合的基本关系转化为元素与集合,元素与元素的关系求解.注意B=∅情情形.本题考查的知识点是交集及其运算及集合的包含关系判断及应用,解答时容易漏掉B=∅的情况.【解答】解:①由B={x|m+1≤x≤2m-1}=∅,可得m+1>2m-1,m<2,满足A∩B=B.②B≠∅时,需,解得2≤m≤3,综上所述,实数m的取值范围是m<2或2≤m≤3,即m≤3.故答案为:m≤3.15.【答案】0或【解析】【分析】通过集合A={x|ax2-3x+2=0,x∈R,a∈R}有且只有一个元素,方程只有一个解或重根,求出a的值即可.解题时容易漏掉a=0的情况,当方程,不等式,函数最高次项系数带有参数时,要根据情况进行讨论.【解答】解:因为集合A={x|ax2-3x+2=0,x∈R,a∈R}有且只有一个元素,当a=0时,ax2-3x+2=0只有一个解x=,当a≠0时,一元二次方程只有一个元素则方程有重根,即△=9-8a=0即a=.所以实数a=0或.故答案为0或.16.【答案】m≤-10【解析】【分析】本题考查分段函数的单调性及一次、二次函数,函数f(x)是R上的单调递增函数,可得两段都是增函数,再结合函数在x=1时,二次函数的取值要大于或等于一次函数的取值,即可得出实数m的取值范围.【解答】解: 由题意可得,解得,所以m≤-10,故答案为m≤-10.17.【答案】解:(1)-(2-π)0-(+;原式=-1-+=-1-+=-+8=8.(2)由题意:0<x<1,∴<0所以:()2=x+x-1-2.∵x+x-1=3,∴()2=1,故得=-1.【解析】(1)利用指数幂的运算性质即可得出.(2)由题意0<x<1,且x+x-1=3,判断x-x的值为负,采用两边平方后,再开方可得答案.本题考查了指数幂的运算性质,属于基础题.18.【答案】解:集合A={x|x2<9}={x|-3<x<3},B={x|(x-2)(x+4)<0}={x|-4<x<2};(1)集合A∩B={x|-3<x<2};(2)∵A∪B={x|-4<x<3},且不等式2x2+ax+b<0的解集为(-4,3),∴2x2+ax+b=0的根是-4和3,由根与系数的关系得,解得a=2,b=-24.【解析】本题考查了集合的化简与运算,以及根与系数的关系应用问题,是基础题目.(1)化简集合A、B,根据交集的定义进行计算即可;(2)求出A、B的并集,再由根与系数的关系,即可求出a、b的值.19.【答案】解:(1)若A中只有一个元素,则方程ax2+2x+1=0有且只有一个实根,当a=0时,方程为一元一次方程,满足条件,此时x=-,当a≠0,此时△=4-4a=0,解得:a=1,此时x=-1,(2)若A是空集,则方程ax2+2x+1=0无解,此时△=4-4a<0,解得:a>1.(3)若A中至多只有一个元素,则A为空集,或有且只有一个元素,由(1),(2)得满足条件的a的取值范围是:a=0或a≥1.【解析】本题考查的知识点是元素与集合关系的判断,根据题目要求确定集合中方程ax2+2x+1=0根的情况,是解答本题的关键.(1)若A中只有一个元素,表示方程ax2+2x+1=0为一次方程,或有两个等根的二次方程,分别构造关于a的方程,即可求出满足条件的a值,(2)A为空集,表示方程ax2+2x+1=0无解,根据一元二次方程根的个数与△的关系,我们易得到一个关于a的不等式,解不等式即可得到答案.(3)若A中至多只有一个元素,则集合A为空集或A中只有一个元素,由(1)(2)的结论,将(1)(2)中a的取值并进来即可得到答案.20.【答案】解:(1)由题意得P(x)=12+10x,则f(x)=Q(x)-P(x)=,即为f(x)=;(2)当x>16时,函数f(x)递减,即有f(x)<f(16)=212-160=52万元当0≤x≤16时,函数f(x)=-0.5x2+12x-12,=-0.5(x-12)2+60,当x=12时,f(x)有最大值60万元,所以当工厂生产12百台时,可使利润最大为60万元.【解析】本题考查函数模型在实际问题中的应用,考查函数的最值问题,正确求出分段函数式,求出各段的最值是解题的关键,属于中档题.(1)先求得P(x),再由f(x)=Q(x)-P(x),由分段函数式可得所求;(2)分别求出各段的最值,注意运用一次函数和二次函数的最值求法,即可得到.21.【答案】解:(1)由题设,令x=y=0,恒等式可变为f(0+0)=f(0)+f(0),解得f(0)=0;(2)证明:令y=-x,则由f(x+y)=f(x)+f(y)得f(0)=0=f(x)+f(-x),即f(-x)=-f(x),故f(x)是奇函数;(3)∵,,即,又由已知f(x+y)=f(x)+f(y)得:f(x+x)=2f(x),∴f(x2-3x)>f(2x),由函数f(x)是增函数,不等式转化为x2-3x>2x,即x2-5x>0,∴不等式的解集{x|x<0或x>5}.【解析】本题主要考查了抽象函数及其应用,考查分析问题和解决问题的能力,属于中档题.(1)利用已知条件通过x=y=0,直接求f(0);(2)通过函数的奇偶性的定义,直接证明f(x)是奇函数;(3)利用已知条件转化不等式.通过函数的单调性直接求解不等式f(x2)-f(x)>f(3x)的解集即可.22.【答案】解:(I)根据题意得,f(1)=a-4+b=-2,又因为f(x)=f(4-x),所以二次函数的对称轴为,解得a=1,所以b=1,(II)由(I)可知,f(x)=,当m>2时,最小值,最大值,所以;当m+1<2<m+2,即0<m<1时,最小值为,最大值,所以;当m≤2<m+1,即1<m≤2,最小值为,最大值为,所以;当m+2≤2时,即m≤0时,最小值为,最大值,所以;所以,函数的图象如下:观察图象可知,函数的值域为.【解析】本题主要考查函数的解析式与分段函数,利用函数的图象求函数的值域,利用二次函数的性质研究最值.(1)利用二次函数的对称轴,即可得;(2)利用二次函数的性质,即可得最值,借助函数的图象,即可得分段函数的的值域.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省启东中学2018-2019学年度第一学期月考高三年级数学 (理)一.填空题:(本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上..1.集合}1|{-==x y y A ,集合)}2lg(|{x y x B -==,则B A ⋂ = ▲ .2.若()x x x xke e f x ke e---=+为奇函数,则k 的值为 ▲ . 3.设命题:4p x >;命题2:540q x x -+≥,那么p 是q 的 ▲ 条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).4.已知幂函数22*()m m y x m -=∈N 在(0,)+∞是增函数,则实数m 的值是 ▲ .5.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5= ▲ .6.若“122x ⎡⎤∃∈⎢⎥⎣⎦,,使得2210x x -λ+<成立”是假命题,则实数λ的取值范围是▲ .7.已知钝角α满足3cos 5α=-,则tan 24απ⎛⎫+ ⎪⎝⎭的值为 ▲ .8.定义在R 上的函数()()()⎪⎩⎪⎨⎧>--≤-=05101log 9x x f x x x f ,则()2018f 的值为 ▲ . 9.设等差数列{}n a 的公差为d (0≠d ),其前n 项和为n S .若22410a a =,122210S S =+,则d 的值为 ▲ .10.将函数()π()sin 6f x x ω=-(0ω>)的图象向左平移π3个单位后,所得图象关于直线πx =对称,则ω的最小值为 ▲ .11.已知函数2()||2x f x x +=+,x ∈R ,则2(2)(2)f x x f x -<-的解集是 ▲ . 12.若向量,a b →→满足2a →=,1b →=,且对一切实数x ,a x b a b →→→→++≥恒成立,则向量,a b→→的夹角的大小为 ▲ .13.在斜三角形ABC 中,若114tan tan tan A B C+=,则sinC 的最大值为 ▲ . 14.已知函数()22x x x f -=,()2+=x e x g x(e 为自然对数的底数),若函数()()[]k x g f x h -=有4个零点,则k 的取值范围为 ▲ .二.解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字 说明、证明过程或演算步骤. 15. (本小题满分14分) 已知21>a 且1≠a ,条件p :函数()()x x f a 12log -=在其定义域上是减函数,条件q :函数()2--+=a x x x g 的定义域为R .如果“p 或q ”为真,试求a 的取值范围.16. (本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知1a =,23b =,π6B A -=. (1)求sin A 的值; (2)求c 的值.17. (本小题满分14分)已知等比数列{}n a 的各项均为正数,且163221=+a a ,62234a a a =.(1) 求数列{}n a 的通项公式;(2) 设n n a a a b 22212log ...log log +++=,是否存在非零的实数λ,使得数列⎭⎬⎫⎩⎨⎧-λn b n 2为等差数列?若存在,求出λ的值;若不存在,说明理由.18.(本题满分16分)现有一个以OA 、OB 为半径的扇形池塘,在OA 、OB 上分别取点C 、D ,作DE ∥OA 、CF ∥OB 交弧AB 于点E 、F ,且BD = AC ,现用渔网沿着DE 、EO 、OF 、FC 将池塘分成如图所示的三种的养殖区域.若OA =1km ,π2AOB ∠=,π(0)2EOF θθ∠=<<.(1)求区域Ⅱ的总面积;(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是15万元、20万元、10万元,记年总收入为y 万元. 试问当θ为多少时,年总收入最大?19. (本小题满分16分)已知函数()122++=ax x x f (a ∈R ) ,()x f '是()x f 的导函数.(1)若函数x e x f x ⋅'=)()(ϕ极小值为1-,求实数a 的值;(2)若[]1,2--∈x ,不等式()()x f x f '≤恒成立,求实数a 的取值范围;(3)设函数()()()()()()()⎩⎨⎧'<'≥'=x f x f x f x f x f x f x g ,,,求()x g 在[]4,2∈x 上的最小值.(第18题)Ⅲ ⅡⅠⅡⅢ CAFE20.(本小题满分16分)已知函数()x ax x x f ln +=(∈a R ). (1)讨论函数()x f 的单调性;(2)若对任意),1[+∞∈x ,3)(x x f ≤恒成立,求实数a 的取值范围; (3)若函数()x f 存在极大值,且极大值点为1,证明:()21x ex f x +≤.江苏省启东中学2018-2019学年度第一学期月考 高三年级数学答案答题卷上只有第18题需要附图,其余按模式搞就行了1.[)2,02.1±3.充分不必要4.15.314 6.(]22,∞- 7.3-8.21 9.10- 10.21 11.()2,0 12.43π13.32214.⎪⎭⎫ ⎝⎛-212,0e e 15.解:121<<a 或2≥a 16.解:(1)在△ABC 中,因为1a =,23b =π6B A -=,由正弦定理得,()231sin πsin 6A A + …… 2分于是ππ23sin sin cos cos sin 66A A A =+,即33sin cos A A =, …… 4分又22sin cos 1A A +=,所以7sin A =. …… 6分(2)由(1)知,321cos A =,则33sin 22sin cos A A A =,213cos212sin 14A A =-=, …… 10分在△ABC 中,因为πA B C ++=,π6B A -=,所以5π26C A =-.则()5πsin sin 26C A =-5π5πsin cos2cos sin 266A A =-333113214=⨯+1114=. ……12分 由正弦定理得,sin 117sin 7a C c A == …… 14分17. 解:(1)nn a 2=;(2)2-=λ18. 解:(1)因为BD AC OB OA ==,,所以OD OC =. 因为π2AOB ∠=,DE ∥OA ,CF ∥OB , 所以DE OB CF OA ⊥⊥,.又因为OE OF =,所以Rt ODE ∆≌Rt OCF ∆.所以1π()22DOE COF COF θ∠=∠∠=-,. ………………………………2分所以1πcos cos[()]22OC OF COF θ=⋅∠=-.所以11sin cos 24COF S OC OF COF θ∆=⋅⋅⋅∠=,所以II 1=cos 2S θ区域,π(0)2θ<<. …………………………………6分(2)因为I 12S θ=区域,所以III I II π11cos 422S S S S θθ=--=--总区域区域区域.所以11π111520cos 10(cos )22422y θθθθ=⨯+⨯+⨯--55ππ5cos (0)222θθθ=++<<,, …………………………………10分 所以5(12sin )2y θ'=-,令=0y ',则π=6θ. …………………………………12分当π6θ<<0时,0y '>,当ππ62θ<<时,0y '<. 故当π=6θ时,y 有最大值. 答:当θ为π6时,年总收入最大. …………………………………16 19. 解(1)12ln -…………………………………3分 (2)⎪⎭⎫⎢⎣⎡+∞,23 ………………………………… 7分 (3)因为()()()[]a x x x f x f 211)(---='-, ①若21-≥a ,则[]4,2∈x 时,()()x f x f '≥,所以()()a x x f x g 22+='=,从而()x g 的最小值为()422+=a g .………………………………9分②若23-<a ,则[]4,2∈x 时,()()x f x f '<,所以()()122++==ax x x f x g , 当232-<≤-a 时,()x g 的最小值为()542+=a g ;当24-<<-a 时,()x g 的最小值为()21a a g -=-;当4-≤a 时,()x g 的最小值为()1784+=a g ;………………………………12分③若2123-<≤-a ,则[]4,2∈x 时,()[)[]⎩⎨⎧-∈+-∈++=4,21,2221,2,122a x a x a x ax x x g ,当[]a x 21,2-∈时,()x g 的最小值为()542+=a g ; 当[]4,21a x -∈时,()x g 的最小值为()a a g 2221-=-. 因为2123-<≤-a ,()()0362254<+=--+a a a ,所以()x g 的最小值为54+a .14分 综上所述:()⎪⎪⎪⎩⎪⎪⎪⎨⎧-≥+-<≤-+-<<---≤+=.21,42,212,54,24,1,4,1782mina a a a a a a a x g ………………………………16分20. 解(1)当0=a ,函数()x f 在()+∞,0上单调递增;当0>a ,函数()x f 在⎪⎪⎭⎫⎝⎛--a e 11,0上单调递减,在⎪⎪⎭⎫ ⎝⎛--a e 11上单调递增;当0<a ,函数()x f 在⎪⎪⎭⎫⎝⎛--a e 11,0上单调递增,在⎪⎪⎭⎫ ⎝⎛--a e 11上单调递减. ……………4分(2)()x ax x x f ln +=若对任意),1[+∞∈x ,3)(x x f ≤恒成立,求实数a 的取值范围; 因为),1[+∞∈x ,所以3)(x x f ≤⇔0ln 12≥--x a x ,设),1[,ln 1)(2+∞∈--=x x a x x ϕ,则xa x x a x x -=-='222)(ϕ,所以 ……………6分① 当2≤a 时,0)(≥'x ϕ,)(x ϕ在),1[+∞上递增,所以0)1()(=≥ϕϕx ,所以2≤a 适合。

相关文档
最新文档