十年高考真题分类汇编(2010-2019) 数学 专题13 排列组合与二项式定理 无答案原卷版
2019年高考数学真题分类汇编专题13:排列组合与概率统计(基础题含解析)
2019年高考数学真题分类汇编专题13:排列组合与概率统计(基础题)一、单选题1.(2019•浙江)设0<a<1随机变量X的分布列是则当a在(0,1)内增大时()A. D(X)增大B. D(X)减小C. D(X)先增大后减小D. D(X)先减小后增大2.(2019•全国Ⅲ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A. B. C. D.3.(2019•全国Ⅲ)(1+2x2)(1+x)2的展开式中x3的系数为()A. 12B. 16C. 20D. 244.(2019•卷Ⅱ)生物实验室有5只兔子,其中只有3只测量过某项指标。
若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B. C. D.5.(2019•卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A. 中位数B. 平均数C. 方差D. 极差6.(2019•卷Ⅰ)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,……,1000。
从这些新生中用系统抽样方法等距抽取1000名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是()A. 8号学生B. 200号学生C. 616号学生D. 815号学生7.(2019•卷Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化。
每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“--",下图就是一重卦。
在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. B. C. D.二、填空题8.(2019•江苏)已知一组数据6,7,8,8,9,10,则该组数据的方差是________.9.(2019•江苏)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.10.(2019•卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.11.(2019•卷Ⅰ)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束)。
2010年高考数学排列组合试题分类汇编(学生)
2010年高考数学试题分类汇编——排列组合(2010全国卷2理数)(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有( )(A )12种 (B )18种 (C )36种 (D )54种(2010重庆文数)(10)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天 . 若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有( )(A )30种 (B )36种(C )42种 (D )48种(2010重庆理数)(9)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )A. 504种B. 960种C. 1008种D. 1108种(2010北京理数)(4)8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为( )(A )8289A A (B )8289A C (C ) 8287A A (D )8287A C(2010四川理数)(10)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )(A )72 (B )96 (C ) 108 (D )144(2010天津理数)(10) 如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有( )(A )288种 (B )264种 (C )240种 (D )168种(2010全国卷1理数)(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有( )(A) 30种 (B)35种 (C)42种 (D)48种(2010四川文数)(9)由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是( )(A)36 (B)32 (C)28 (D)24(2010湖北文数)6.现有6名同学去听同时进行的5个课外知识讲座,名每同学可自由选择其中的一个讲座,不同选法的种数是()A.65 B. 56 C. 5654322⨯⨯⨯⨯⨯D.6543⨯⨯⨯⨯2(2010湖南理数)7、在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10B.11C.12D.15(2010湖北理数)8、现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
全国高考数学 试题分类汇编 排列、组合及二项式定理
2010排列、组合、二项式定理1.(2010·陕西高考理科·T4)5()ax x+(x R ∈)展开式中3x 的系数为10,则实数a 等于( ) (A )-1 (B )12(C) 1 (D) 2 【命题立意】本题考查二项式定理的通项公式的应用及运算能力,属保分题。
【思路点拨】5()ax x+⇒5215r r r r T a C x -+=⇒523r -=⇒11510 2.a C a =⇒= 【规范解答】选D 552155,(0,1,2,3,4,5)rr r r r r r a T C x a C x r x --+⎛⎫=== ⎪⎝⎭Q ,令523r -=,所以1r =,所以11510 2.a C a =⇒=2.(2010·北京高考理科·T4)8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为( ) (A )8289A A (B )8289A C (C )8287A A (D )8287A C【命题立意】本题考查排列组合的相关知识。
所用技巧:有序排列无序组合、不相邻问题插空法。
【思路点拨】先排8名学生,再把老师插入到9个空中去。
【规范解答】选A 。
8名学生共有88A 种排法,把2位老师插入到9个空中有29A 种排法,故共有8289A A 种排法。
【方法技巧】解决排列组合问题常用的方法与技巧:(1)有序排列无序组合;(2)不相邻问题插空法:可以把要求不相邻的元素插入到前面元素间的空中;(3)相邻问题捆绑法。
3.(2010·山东高考理科·T8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有( ) (A )36种(B )42种(C)48种(D )54种【命题立意】本题考查排列组合的基础知识,考查分类与分步计数原理,考查了考生的分析问题解决问题的能力和运算求解能力.【思路点拨】根据甲的位置分类讨论.【规范解答】选B ,分两类:第一类:甲排在第一位,共有44A =24种排法;第二类:甲排在第二位,共有1333A A =18⋅种排法,所以共有编排方案241842+=种,故选B. 【方法技巧】排列问题常见的限制条件及对策1、有特殊元素或特殊位置,先满足特殊元素或特殊位置的要求,再考虑其他元素或位置.2、元素必须相邻的排列,将必须相邻的的元素捆绑,作为一个整体,但要注意其内部元素的顺序.3、元素不相邻的排列,先排其他元素,然后“插空”.4、元素有顺序限制的排列.4.(2010·天津高考理科·T10)如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用( )(A )288种 (B )264种 (C )240种 (D )168种【命题立意】本题考查分类计数原理,排列组合等基础知识,考查分析问题、解决问题的能力。
(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题12概率统计文(含解析)
专题12概率统计历年考题细目表题型年份考点试题位置单选题2016 概率2016年北京文科06单选题2015 统计2015年北京文科04单选题2012 概率2012年北京文科03单选题2010 概率2010年北京文科03填空题2015 统计2015年北京文科14填空题2010 统计2010年北京文科12解答题2019 概率统计综合题2019年北京文科17解答题2018 概率统计综合题2018年北京文科17解答题2017 概率统计综合题2017年北京文科17解答题2016 概率统计综合题2016年北京文科17解答题2015 概率统计综合题2015年北京文科17解答题2014 概率统计综合题2014年北京文科18解答题2013 概率统计综合题2013年北京文科16解答题2012 概率统计综合题2012年北京文科17解答题2011 概率统计综合题2011年北京文科16历年高考真题汇编1.【2016年北京文科06】从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.B.C.D.【解答】解:从甲、乙等5名学生中随机选出2人,基本事件总数n10,甲被选中包含的基本事件的个数m4,∴甲被选中的概率p.故选:B.2.【2015年北京文科04】某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90 B.100 C.180 D.300【解答】解:由题意,老年和青年教师的人数比为900:1600=9:16,因为青年教师有320人,所以老年教师有180人,故选:C.3.【2012年北京文科03】设不等式组,表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A.B.C.D.【解答】解:其构成的区域D如图所示的边长为2的正方形,面积为S1=4,满足到原点的距离大于2所表示的平面区域是以原点为圆心,以2为半径的圆外部,面积为4﹣π,∴在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率P故选:D.4.【2010年北京文科03】从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是()A.B.C.D.【解答】解:由题意知本题是一个古典概型,∵试验包含的所有事件根据分步计数原理知共有5×3种结果,而满足条件的事件是a=1,b=2;a=1,b=3;a=2,b=3共有3种结果,∴由古典概型公式得到P,故选:D.5.【2015年北京文科14】高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.【解答】解:由高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况的散点图可知,两个图中,同一个人的总成绩是不会变的.从第二个图看,丙是从右往左数第5个点,即丙的总成绩在班里倒数第5.在左边的图中,找到倒数第5个点,它表示的就是丙,发现这个点的位置比右边图中丙的位置高,所以语文名次更“大”①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;②观察散点图,作出对角线y=x,发现丙的坐标横坐标大于纵坐标,说明数学成绩的名次小于总成绩名次,所以在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学;故答案为:乙;数学.6.【2010年北京文科12】从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.【解答】解:∵直方图中各个矩形的面积之和为1,∴10×(0.005+0.035+a+0.02+0.01)=1,解得a=0.03.由直方图可知三个区域内的学生总数为100×10×(0.03+0.02+0.01)=60人.其中身高在[140,150]内的学生人数为10人,所以身高在[140,150]范围内抽取的学生人数为10=3人.故答案为:0.03,3.7.【2019年北京文科17】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:不大于2000元大于2000元仅使用A27人3人仅使用B24人1人(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.【解答】解:(Ⅰ)由题意得:从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,∴A,B两种支付方式都使用的人数有:100﹣5﹣30﹣25=40,∴估计该校学生中上个月A,B两种支付方式都使用的人数为:1000400人.(Ⅱ)从样本仅使用B的学生有25人,其中不大于2000元的有24人,大于2000元的有1人,从中随机抽取1人,基本事件总数n=25,该学生上个月支付金额大于2000元包含的基本事件个数m=1,∴该学生上个月支付金额大于2000元的概率p.(Ⅲ)不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化,理由如下:上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元的概率为,虽然概率较小,但发生的可能性为.故不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化.8.【2018年北京文科17】电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数140 50 300 200 800 510好评率0.4 0.2 0.15 0.25 0.2 0.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【解答】解:(Ⅰ)总的电影部数为140+50+300+200+800+510=2000部,获得好评的第四类电影200×0.25=50,故从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)获得好评的电影部数为140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1=372,估计这部电影没有获得好评的概率为10.814,(Ⅲ)故只要第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,则使得获得好评的电影总部数与样本中的电影总部数的比值达到最大.9.【2017年北京文科17】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40), (80)90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【解答】解:(Ⅰ)由频率分布直方图知:分数小于70的频率为:1﹣(0.04+0.02)×10=0.4故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4;(Ⅱ)已知样本中分数小于40的学生有5人,故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1﹣(0.04+0.02+0.02+0.01)×10﹣0.05=0.05,估计总体中分数在区间[40,50)内的人数为400×0.05=20人,(Ⅲ)样本中分数不小于70的频率为:0.6,由于样本中分数不小于70的男女生人数相等.故分数不小于70的男生的频率为:0.3,由样本中有一半男生的分数不小于70,故男生的频率为:0.6,即女生的频率为:0.4,即总体中男生和女生人数的比例约为:3:2.10.【2016年北京文科17】某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如图频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.【解答】解:(1)由频率分布直方图得:用水量在[0.5,1)的频率为0.1,用水量在[1,1.5)的频率为0.15,用水量在[1.5,2)的频率为0.2,用水量在[2,2.5)的频率为0.25,用水量在[2.5,3)的频率为0.15,用水量在[3,3.5)的频率为0.05,用水量在[3.5,4)的频率为0.05,用水量在[4,4.5)的频率为0.05,∵用水量小于等于3立方米的频率为85%,∴为使80%以上居民在该用的用水价为4元/立方米,∴w至少定为3立方米.(2)当w=3时,该市居民的人均水费为:(0.1×1+0.15×1.5+0.2×2+0.25×2.5+0.15×3)×4+0.05×3×4+0.05×0.5×10+0.05×3×4+0.05×1×10+0.05×3×4+0.05×1.5×10=10.5,∴当w=3时,估计该市居民该月的人均水费为10.5元.11.【2015年北京文科17】某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁100 √×√√217 ×√×√200 √√√×300 √×√×85 √×××98 ×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?【解答】解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为0.2.(2)在这1000名顾客中,在甲、乙、丙、丁中同时购买3种商品的有100+200=300(人),故顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率为0.3.(3)在这1000名顾客中,同时购买甲和乙的概率为0.2,同时购买甲和丙的概率为0.6,同时购买甲和丁的概率为0.1,故同时购买甲和丙的概率最大.12.【2014年北京文科18】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:排号分组频数1 [0,2) 62 [2,4)83 [4,6)174 [6,8)225 [8,10)256 [10,12)127 [12,14) 68 [14,16) 29 [16,18) 2合计100(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(Ⅱ)求频率分布直方图中的a,b的值;(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写结论)【解答】解:(Ⅰ)由频率分布表知:1周课外阅读时间少于12小时的频数为6+8+17+22+25+12=90,∴1周课外阅读时间少于12小时的频率为0.9;(Ⅱ)由频率分布表知:数据在[4,6)的频数为17,∴频率为0.17,∴a=0.085;数据在[8,10)的频数为25,∴频率为0.25,∴b=0.125;(Ⅲ)数据的平均数为1×0.06+3×0.08+5×0.17+7×0.22+9×0.25+11×0.12+13×0.06+15×0.02+17×0.02=7.68(小时),∴样本中的100名学生该周课外阅读时间的平均数在第四组.13.【2013年北京文科16】如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【解答】解:(Ⅰ)由图看出,1日至13日13天的时间内,空气质量优良的是1日、2日、3日、7日、12日、13日共6天.由古典概型概率计算公式得,此人到达当日空气质量优良的概率P;(Ⅱ)此人在该市停留期间两天的空气质量指数(86,25)、(25,57)、(57,143)、(143,220)、(220,160)(160,40)、(40,217)、(217,160)、(160,121)、(121,158)、(158,86)、(86,79)、(79,37)共13种情况.其中只有1天空气重度污染的是(143,220)、(220,160)、(40,217)、(217,160)共4种情况,所以,此人在该市停留期间只有1天空气重度污染的概率P;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图看出从5日开始连续5、6、7三天的空气质量指数方差最大.14.【2012年北京文科17】近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了该市三类垃圾箱总计1000吨生活垃圾,数据统计如下(单位:吨);“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400 100 100可回收物30 240 30其他垃圾20 20 60(1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a >0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.(求:S2[],其中为数据x1,x2,…,x n的平均数)【解答】解:(1)由题意可知:厨余垃圾600吨,投放到“厨余垃圾”箱400吨,故厨余垃圾投放正确的概率为;(2)由题意可知:生活垃圾投放错误有200+60+20+20=300,故生活垃圾投放错误的概率为;(3)由题意可知:∵a+b+c=600,∴a,b,c的平均数为200∴,∵(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≥a2+b2+c2,因此有当a=600,b=0,c=0时,有s2=80000.15.【2011年北京文科16】以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(注:方差,其中的平均数)(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.【解答】解:(1)当X=8时,由茎叶图可知乙组同学的植树棵树是8,8,9,10,∴平均数是,方差是.(2)由题意知本题是一个等可能事件的概率.若X=9,分别从甲、乙两组中随机选取一名同学,共有16种结果,满足条件的事件是这两名同学的植树总棵数为19,包括:(9,10),(11,8),(11,8),(9,10)共有4种结果,∴根据等可能事件的概率公式得到P.考题分析与复习建议本专题考查的知识点为:随机抽样,用样本估计总体,变量间的相关关系,独立性检验,随机事件的概率,古典概型,几何概型等,历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:随机抽样,用样本估计总体,变量间的相关关系,独立性检验,随机事件的概率,古典概型,几何概型等,预测明年本考点题目会比较稳定,备考方向以知识点用样本估计总体,变量间的相关关系,独立性检验,随机事件的概率等为重点较佳.最新高考模拟试题1.如图是1990年-2017年我国劳动年龄(15-64岁)人口数量及其占总人口比重情况:根据图表信息,下列统计结论不正确的是()A.2000年我国劳动年龄人口数量及其占总人口比重的年增幅均为最大B.2010年后我国人口数量开始呈现负增长态势C.2013年我国劳动年龄人口数量达到峰值D.我国劳动年龄人口占总人口比重极差超过6%【答案】B 【解析】解:A 选项,2000年我国劳动年龄人口数量增幅约为6000万,是图中最大的,2000年我国劳动年龄人口数量占总人口比重的增幅约为3%,也是最多的.故A 对.B 选项,2010年到2011年我国劳动年龄人口数量有所增加,故B 错.C 选项,从图上看,2013年的长方形是最高的,即2013年我国劳动年龄人口数量达到峰值,C 对,D 选项,我国劳动年龄人口占总人口比重最大为11年,约为74%,最小为92年,约为67%,故极差超过6%.D 对. 故选:B .2.一试验田某种作物一株生长果个数x 服从正态分布()290,N σ,且()700.2P x <=,从试验田中随机抽取10株,果实个数在[]90,110的株数记作随机变量X ,且X 服从二项分布,则X 的方差为( ) A .3 B .2.1 C .0.3D .0.21【答案】B 【解析】∵290(),x N δ~,且()700.2P x <=,所以()1100.2P x >=∴()901100.50.20.3P x <<=-=, ∴()10,0.3X B ~,X 的方差为()100.310.3 2.1⨯⨯-=.故选B .3.小张刚参加工作时月工资为5000元,各种用途占比统计如下面的条形图.后来他加强了体育锻炼,目前月工资的各种用途占比统计如下面的拆线图.已知目前的月就医费比刚参加工作时少200元,则目前小张的月工资为( )A .5500B .6000C .6500D .7000【答案】A 【解析】由条形图可知,刚参加工作的月就医费为:500015%750⨯=元 则目前的月就医费为:750200550-=元∴目前的月工资为:55010%5500÷=元本题正确选项:A4.若,a b 是从集合{}1,1,2,3,4-中随机选取的两个不同元素,则使得函数()5ab f x x x =+是奇函数的概率为( ) A .320B .310C .925D .35【答案】B 【解析】从集合{}1,1,2,3,4-中随机选取的两个不同元素共有2520A = 种要使得函数()5ab f x x x =+是奇函数,必须,a b 都为奇数共有236A = 种则函数()5ab f x x x =+是奇函数的概率为632010P == 故选B5.某企业的一种商品的产量与单位成本数据如下表: 产量x (万件)14 16182022单位成本y (元/件) 1210 7a3若根据表中提供的数据,求出y 关于x 的线性回归方程为ˆ 1.1528.1yx =-+,则a 的值等于( )A .4.5B .5C .5.5D .6【答案】B 【解析】1416182022901855x ++++===1210733255a a y +++++==()x y Q , 在线性回归方程ˆ 1.1528.1y x =-+上 1.151828.1=7.4y \=-?则32=7.45a+解得5a = 故选B6.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[)50,60的同学有30人,则n 的值为( )A .100B .1000C .90D .900【答案】A 【解析】由频率分布直方图可知,支出在[)50,60的同学的频率为:0.03100.3⨯=301000.3n ∴== 本题正确选项:A7.某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,则恰好抽到2幅不同种类的概率为( ) A .56B .45C .34D .23【答案】B 【解析】设A 为“恰好抽到2幅不同种类”某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,基本事件总数2615n C ==,恰好抽到2幅不同种类包含的基本事件个数21132212m C C C ==,则恰好抽到2幅不同种类的概率为()124155m P A n ===. 故选:B .8.若即时起10分钟内,305路公交车和202路公交车由南往北等可能进入二里半公交站,则这两路公交车进站时间的间隔不超过2分钟的概率为( ) A .0.18 B .0.32C .0.36D .0.64【答案】C 【解析】设305路车和202路车的进站时间分别为x 、y ,设所有基本事件为:W 010010x y ≤≤⎧⎨≤≤⎩,“进站时间的间隔不超过2分钟”为事件A ,则{(,)|010,010,||2}A x y x y x y =≤≤≤≤-≤,画出不等式表示的区域如图中阴影区域,则10108836S =⨯-⨯=,则36()0.36100A S P A S Ω===. 选C .9.一个盒子中放有大小相同的4个白球和1个黑球,从中任取两个球,则所取的两个球不同色的概率为_______. 【答案】25【解析】设4个白球编号为:1,2,3,4;1个黑球为:A从中任取两个球的所有可能结果为:12、13、14、1A、23、24、2A、34、3A、4A,共10种所取的两个球不同色的有:1A、2A、3A、4A,共4种∴所求概率为:42105 P==本题正确结果:2 510.已知某中学高三理科班学生共有800人参加了数学与物理的水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样统计,先将800人按001,002,003,…,800进行编号。
十年高考真题分类汇编 数学 专题 排列组合与二项式定理
十年高考真题分类汇编(2010—2019)数学专题13 排列组合与二项式定理一、选择题1.(2019·全国3·理T4)(1+2x 2)(1+x)4的展开式中x 3的系数为( ) A.12B.16C.20D.24【答案】A【解析】(1+2x 2)(1+x)4的展开式中x 3的系数为C 43+2C 41=4+8=12.故选A.2.(2018·全国3·理T5) (x 2+2x)5的展开式中x 4的系数为( )A.10B.20C.40D.80【答案】C【解析】由展开式知T r+1=C 5r (x 2)5-r(2x -1)r=C 5r2r x10-3r.当r=2时,x 4的系数为C 5222=40.3.(2017·全国1·理T6)(1+1x 2)(1+x)6展开式中x 2的系数为( ) A.15B.20C.30D.35【答案】C【解析】(1+x )6的二项展开式通项为T r+1=C 6rx r,(1+1x2)(1+x )6的展开式中含x 2的项的来源有两部分,一部分是1×C 62x 2=15x 2,另一部分是1x 2×C 64x 4=15x 2,故(1+1x2)(1+x )6的展开式中含x 2的项为15x 2+15x 2=30x 2,其系数是30.4.(2017·全国3·理T4)(x+y)(2x-y)5的展开式中x 3y 3的系数为( ) A.-80 B.-40 C.40 D.80【答案】C【解析】(2x-y )5的展开式的通项公式T r+1=C 5r(2x )5-r(-y )r.当r=3时,x (2x-y )5的展开式中x 3y 3的系数为C 53×22×(-1)3=-40;当r=2时,y (2x-y )5的展开式中x 3y 3的系数为C 52×23×(-1)2=80.故展开式中x 3y 3的系数为80-40=40.5.(2017·全国2·理T6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种 【答案】D【解析】先把4项工作分成3份有C 42C 21C 11A 22种情况,再把3名志愿者排列有A 33种情况,故不同的安排方式共有C 42C 21C 11A 22·A 33=36种,故选D .6.(2016·四川·理T2)设i 为虚数单位,则(x+i)6的展开式中含x 4的项为( ) A.-15x 4B.15x 4C.-20i x 4D.20i x 4【答案】A【解析】二项式(x+i)6展开的通项T r+1=C 6rx 6-r i r,则其展开式中含x 4是当6-r=4,即r=2,则展开式中含x 4的项为C 62x 4i 2=-15x 4,故选A .7.(2016·全国2·理T5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9【答案】B【解析】由题意知,小明从街道的E 处出发到F 处的最短路径有6条,再从F 处到G 处的最短路径有3条,则小明到老年公寓可以选择的最短路径条数为6×3=18,故选B .8.(2016·全国3·理T12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有( )A.18个B.16个C.14个D.12个【答案】C【解析】由题意知a 1=0,a 8=1,则满足题意的a 1,a 2,…,a 8的可能取值如下:综上可知,不同的“规范01数列”共有14个.9.(2016·四川·理T4)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24B.48C.60D.72【答案】D【解析】要组成没有重复数字的五位奇数,则个位数应该为1,3,5中的一个,其他位置共有A44种排法,所以其中奇数的个数为3A44=72,故选D.10.(2015·四川·理T6)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个【答案】B【解析】当首位数字为4,个位数字为0或2时,满足条件的五位数有C21A43个;当首位数字为5,个位数字为0或2或4时,满足条件的五位数有C31A43个.故满足条件的五位数共有C21A43+C31A43=(2+3)A43=5×4×3×2×1=120个.故选B.11.(2015·全国1·理T10)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.60【答案】C【解析】(x2+x+y)5=[(x2+x)+y]5的展开式通项为T r+1=C5r(x2+x)5-r y r(r=0,1,2,…,5).由题意,y的幂指数为2,故r=2.对应的项为C52(x2+x)3y2=10(x2+x)3y2.记(x2+x)3的展开式通项为T s+1=C3s(x2)3-s x s=C3s x6-s(s=0,1,2,3),由题意令6-s=5,得s=1.故所求项的系数为10C31=30.12.(2015·陕西·理T4)二项式(x+1)n(n∈N*)的展开式中x2的系数为15,则n=()A.7B.6C.5D.4【答案】B【解析】(x+1)n的展开式通项为T r+1=C n r x n-r.令n-r=2,即r=n-2.则x2的系数为C n n-2=C n2=15,解得n=6,故选B.13.(2015·湖北·理T3)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A.212B.211C.210D.29【答案】D【解析】由条件知C n3=C n7,∴n=10.∴(1+x)10中二项式系数和为210,其中奇数项的二项式系数和为210-1=29.14.(2014·大纲全国·理T5)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【答案】C【解析】从6名男医生中选出2名有C62种选法,从5名女医生中选出1名有C51种选法,故共有C62·C51=6×5×5=75种选法,选C.2×115.(2014·辽宁·理T6)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144B.120C.72D.24【答案】D【解析】插空法.在已排好的三把椅子产生的4个空档中选出3个插入3人即可.故排法种数为A43=24.故选D.16.(2014·四川·理T6)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种【答案】B【解析】(1)当最左端排甲的时候,排法的种数为A55;(2)当最左端排乙的时候,排法种数为C41A44.因此不同的排法的种数为A 55+C 41A 44=120+96=216.17.(2014·重庆·理T9)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( ) A.72B.120C.144D.168【答案】B【解析】第1步,先排歌舞类节目,有A 33=6种排法,排好后有4个空位.第2步,排另3个节目,因为3个歌舞节目不相邻,则中间2个空位必须安排2个节目.分两类情况:①中间两个空位安排1个小品类节目和1个相声节目,有C 21A 22=4种排法,最后一个小品类节目排两端,有2种方法.共有6×4×2=48种排法. ②中间两个空位安排2个小品类节目,有A 22=2种排法,排好后有6 个空位,选1个将相声类节目排上,有6种排法.共有6×2×6=72种排法. 所以一共有48+72=120种排法.18.(2014·四川·理T2)在x(1+x)6的展开式中,含x 3项的系数为( ) A.30B.20C.15D.10【答案】C【解析】含x 3的项是由(1+x)6展开式中含x 2的项与x 相乘得到,又(1+x)6展开式中含x 2的项的系数为C 62=15,故含x 3项的系数是15. 19.(2014·湖南·理T4) (12x -2y)5的展开式中x 2y 3的系数是( )A .-20B .-5C .5D .20【答案】A 【解析】由已知,得T r+1=C 5r (12x)5-r(-2y)r=C 5r(12)5-r(-2)r x 5-r y r(0≤r≤5,r∈Z),令r=3,得T 4=C 53(12)2(-2)3x 2y 3=-20x 2y 3.20.(2014·浙江·理T5)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=( ) A.45 B.60 C.120 D.210【答案】C【解析】∵(1+x )6展开式的通项公式为T r+1=C 6rx r ,(1+y )4展开式的通项公式为T h+1=C 4ℎy h,∴(1+x )6(1+y )4展开式的通项可以为C 6r C 4ℎx r y h. ∴f (m ,n )=C 6m C 4n .∴f (3,0)+f (2,1)+f (1,2)+f (0,3)=C 63+C 62C 41+C 61C 42+C 43=20+60+36+4=120.故选C .21.(2013·全国1·理T9)设m 为正整数,(x+y)2m 展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m=( ) A.5 B.6 C.7 D.8 【答案】B【解析】由题意可知,a=C 2m m ,b=C 2m+1m ,∵13a=7b,∴13·(2m )!m !m !=7·(2m+1)!m !(m+1)!, 即13=2m+1,解得m=6.故选B.22.(2013·山东·理T10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A.243 B.252 C.261 D.279 【答案】B【解析】构成所有的三位数的个数为C 91C 101C 101=900,而无重复数字的三位数的个数为C 91C 91C 81=648,故所求个数为900-648=252,应选B .23.(2013·全国2·理T5)已知(1+ax)(1+x)5的展开式中x 2的系数为5,则a=( ) A.-4B.-3C.-2D.-1【答案】D【解析】因为(1+x)5的二项展开式的通项为C 5r x r(0≤r≤5,r∈Z),则含x 2的项为C 52x 2+ax·C 51x=(10+5a)x 2,所以10+5a=5,a=-1.24.(2013·辽宁·理T7)使(3x x √x )n(n ∈N *)的展开式中含有常数项的最小的n 为( )A.4B.5C.6D.7 【答案】B【解析】(3x +x √x )n 展开式中的第r+1项为C nr (3x)n-rx -32r =C n r 3n-rx n -52r ,若展开式中含常数项,则存在n ∈N *,r ∈N,使n-5r=0,故最小的n 值为5,故选B.25.(2013·大纲全国·理T7)(1+x)8(1+y)4的展开式中x 2y 2的系数是( ) A.56B.84C.112D.168【解析】因为(1+x)8的展开式中x 2的系数为C 82,(1+y)4的展开式中y 2的系数为C 42,所以x 2y 2的系数为C 82C 42=168.故选D.26.(2012·湖北·理T5)设a ∈Z,且0≤a<13,若512 012+a 能被13整除,则a=( )A.0B.1C.11D.12 【答案】D 【解析】∵512 012可化为(52-1)2 012,其二项式系数为T r+1=C 2012r522 012-r·(-1)r .故(52-1)2 012被13除余数为C 20122012·(-1)2 012=1,则当a=12时,512 012+12被13整除.27.(2012·安徽·理T7)(x 2+2) (1x 2-1)5的展开式的常数项是()A.-3B.-2C.2D.3【答案】D【解析】通项为T r+1=C 5r(1x 2)5-r(-1)r=(-1)rC 5r1x 10-2r.令10-2r=2或0,此时r=4或5.故(x 2+2)(1x 2-1)5的展开式的常数项是(-1)4×C 54+2×(-1)5×C 55=3.28.(2012·全国·理T2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) A.12种 B.10种 C.9种 D.8种 【答案】A【解析】将4名学生均分为2个小组共有C 42C 22A 22=3种分法,将2个小组的同学分给两名教师带有A 22=2种分法,最后将2个小组的人员分配到甲、乙两地有A 22=2种分法,故不同的安排方案共有3×2×2=12种.29.(2012·辽宁·理T5)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( ) A.3×3! B.3×(3!)3C.(3!)4D.9!【答案】C【解析】完成这件事可以分为两步,第一步排列三个家庭的相对位置,有A 33种排法;第二步排列每个家庭中的三个成员,共有A 33A 33A 33种排法.由乘法原理可得不同的坐法种数有A 33A 33A 33A 33,故选C .30.(2012·安徽·理T10)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为( )A .1或3B .1或4C .2或3D .2或4【解析】6人之间互相交换,总共有C 62=15种,而实际只交换了13次,故有2次未交换.不妨设为甲与乙、丙与丁之间未交换或甲与乙、甲与丙之间未交换,当甲与乙、丙与丁之间未交换时,甲、乙、丙、丁4人都收到4份礼物;当甲与乙、甲与丙之间未交换时,只有乙、丙两人收到4份礼物,故选D . 31.(2011·全国·理T8) (x +a x )(2x -1x)5的展开式中各项系数的和为2,则该展开式中常数项为( )A.-40B.-20C.20D.40【答案】D【解析】令x=1得(1+a)(2-1)5=2,∴a=1.原式=x·(2x -1x)5+1x (2x -1x)5,故常数项为 x·C 53(2x)2(-1x )3+1x ·C 52(2x)3(-1x )2=-40+80=40.32.(2010·山东·理T8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有( ) A.36种 B.42种 C.48种 D.54种 【答案】B【解析】若乙排在第二位,则有A 33种方案;若乙不排在第二位,则乙只能排在第三、四、五位,此时共有A 31A 21A 33种方案,故共有A 33+A 31A 21A 33=42(种).二、填空题1.(2019·天津·理T10)(2x-18x 3)8的展开式中的常数项为 【答案】28【解析】T r+1=C 8r (2x)8-r(1-8x3)r=C 8r ·28-r·(-18)r·x8-4r.需8-4r=0,r=2.常数项为C 8226(-18)2=C 8226126=C 82=28.2.(2018·天津·理T10)在(x 2√x )5的展开式中,x 2的系数为.【答案】52【解析】展开式的通项为T r+1=C 5r x 5-r(2x)r =(-12)r C 5r x 5-3r2.令5-3r 2=2,可得r=2.所以(x 2x )5的展开式中的x 2的系数为(-12)2C 52=52.3.(2018·浙江·T14)二项式(√x 3+12x)8的展开式的常数项是 .【答案】7 【解析】通项为T r+1=C 8r (x 13)8-r (12x -1)r =(12)r C 8r x 8-4r3,当r=2时,8-4r3=0. 故展开式的常数项为(12)2C 82=14×8×72=7.4.(2018·上海·T3)在(1+x)7的二项展开式中,x 2项的系数为 (结果用数值表示). 【答案】21【解析】由(1+x)7的二项展开式的通项,得(1+x)7的二项展开式的x 2项的系数为C 72=21.5.(2018·全国1·理T15)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有 种.(用数字填写答案) 【答案】16【解析】方法一:①恰有1位女生时,有C 21C 42=12种选法. ②恰有2位女生时,有C 22C 41=4种选法.故不同的选法共有12+4=16种.方法二:6人中选3人共有C 63种选法,3人全是男生时有C 43种选法,所以至少有1位女生入选时有C 63−C 43=16种选法.6.(2018·浙江·T16)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成 个没有重复数字的四位数.(用数字作答) 【答案】1260 【解析】分两类:第一类:从0,2,4,6中取到0,则没有重复数字的四位数有C 31C 52A 31A 33=540;第二类:从0,2,4,6中不取0,则没有重复数字的四位数有C 32C 52A 44=720.所以没有重复数字的四位数共有540+720=1260种.7.(2017·山东·理T11)已知(1+3x)n的展开式中含有x 2项的系数是54,则n= .【答案】4【解析】二项展开式的通项T r+1=C n r (3x)r=3r·C n r ·x r,令r=2,得32·C n 2=54,解得n=4.8.(2017·浙江·T13)已知多项式(x+1)3(x+2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x+a 5,则a 4= ,a 5= . 【答案】16 4【解析】由二项式展开式可得通项公式为C 3r x 3-rC 2m x 2-m 2m,分别取r=3,m=1和r=2,m=2可得a 4=4+12=16,令x=0可得a 5=13×22=4.9.(2017·天津·理T14)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有 个.(用数字作答) 【答案】1080【解析】①没有一个数字是偶数的四位数有A 54=120个;②有且只有一个数字是偶数的四位数有C 41C 53A 44=960个.所以至多有一个数字是偶数的四位数有120+960=1 080个.10.(2017·浙江·T16)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答) 【答案】660【解析】由题意可得,总的选择方法为C 84C 41C 31种方法,其中不满足题意的选法有C 64C 41C 31种方法,则满足题意的选法有C 84C 41C 31−C 64C 41C 31=660种.11.(2016·全国1·理T14)(2x+√x )5的展开式中,x 3的系数是 .(用数字填写答案) 【答案】10【解析】二项式的通项公式T r+1=C 5r (2x)5-rx r 2=C 5r 25-rx 5-r2,令5-r2=3,解得r=4,故x 3的系数为C 54×25-4=10.12.(2016·天津·理T10) (x 2-1x )8的展开式中x 7的系数为 .(用数字作答)【答案】-56【解析】展开式通项为T r+1=C 8r (x 2)8-r(-1)r=(-1)rC 8r x16-3r,令16-3r=7,得r=3,所以展开式中x 7的系数为(-1)3C 83=-56.13.(2015·广东·理T12)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答) 【答案】1560【解析】共有A 402=40×39=1 560条毕业留言.14.(2015·天津·理T12)在(x -1)6的展开式中,x 2的系数为. 【答案】 1516【解析】由题意知T r+1=C 6r x 6-r ·(-14x )r =C 6r ·x 6-2r ·(-14)r .令6-2r=2,可得r=2. 故所求x 2的系数为C 62(-14)2=1516. 15.(2015·重庆·理T12)(x32√x )5的展开式中x 8的系数是(用数字作答). 【答案】52【解析】展开式的通项公式T r+1=C 5r ·(x 3)5-r ·(2√x )r =C 5r ·2-r ·x 15-72r (r=0,1,2,…,5). 令15-72r=8,得r=2,于是展开式中x 8项的系数是C 52·2-2=52. 16.(2015·全国2·理T15)(a+x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a= .【答案】3【解析】∵(1+x)4=x 4+C 43x 3+C 42x 2+C 41x+C 40x 0=x 4+4x 3+6x 2+4x+1, ∴(a+x)(1+x)4的奇数次幂项的系数为4a+4a+1+6+1=32,∴a=3.17.(2014·安徽·理T13)设a ≠0,n 是大于1的自然数, (1+x a )n 的展开式为a 0+a 1x+a 2x 2+…+a n x n .若点A i (i,a i )(i=0,1,2)的位置如图所示,则a= .【答案】3 【解析】由题意得a 1=1a ·C n 1=n a =3,∴n=3a; a 2=1a 2C n 2=n (n -1)2a 2=4, ∴n 2-n=8a 2.将n=3a 代入n 2-n=8a 2得9a 2-3a=8a 2,即a 2-3a=0,解得a=3或a=0(舍去).∴a=3.18.(2014·北京·理T13)把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有 种.【答案】36【解析】产品A,B 相邻时,不同的摆法有A 22A 44=48种.而A,B 相邻,A,C 也相邻时的摆法为A 在中间,C,B 在A的两侧,不同的摆法共有A 22A 33=12(种).故产品A 与产品B 相邻,且产品A 与产品C 不相邻的不同摆法有48-12=36(种).19.(2014·全国1·理T13)(x-y)(x+y)8的展开式中x 2y 7的系数为 .(用数字填写答案)【答案】-20【解析】(x+y)8的通项公式为T r+1=C 8r x 8-r y r (r=0,1,…,8,r ∈Z).当r=7时,T 8=C 87xy 7=8xy 7,当r=6时,T 7=C 86x 2y 6=28x 2y 6, 所以(x-y)(x+y)8的展开式中含x 2y 7的项为x·8xy 7-y·28x 2y 6=-20x 2y 7,故系数为-20.20.(2014·全国2·理T13)(x+a)10的展开式中,x 7的系数为15,则a= .(用数字填写答案)【答案】12【解析】设展开式的通项为T r+1=C 10r x10-r a r , 令r=3,得T 4=C 103x 7a 3,即C 103a 3=15,得a=12. 21.(2013·浙江·理T11)设二项式(√x -√x 3)5的展开式中常数项为A,则A= . 【答案】-10【解析】T r+1=C 5r (√x )5-r ·(-1√x 3)r =C 5r x 5-r 2·(-1)r ·x -r 3=(-1)r C 5r x 5-r 2-r 3=(-1)r C 5r x 15-5r 6. 令15-5r=0,得r=3,所以A=(-1)3C 53=-C 52=-10. 22.(2013·北京·理T12)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是 .【答案】96【解析】分给同一人的2张参观券连号的情况共有12,23,34,45四种情况,从4人中选一人得到连号参观券,有4C 41种方法.其余3张分给3人可以全排列,有A 33种方法,所以不同的分法有4C 41×A 33=96种.23.(2013·大纲全国·理T14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答)【答案】480【解析】先排除甲、乙外的4人,方法有A 44种,再将甲、乙插入这4人形成的5个间隔中,有A 52种排法,因此甲、乙不相邻的不同排法有A 44·A 52=480(种).24.(2013·浙江·理T14)将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有 种(用数字作答).【答案】480【解析】按C 的位置分三类情况:①当C 在第一或第六位时,有A 55=120种排法;②当C 在第二或第五位时,有A 42A 33=72种排法;③当C 在第三或第四位时,有A 22A 33+A 32A 33=48种排法.所以共有2×(120+72+48)=480种排法.25.(2012·福建·理T11)(a+x)4的展开式中x 3的系数等于8,则实数a= .【答案】2【解析】∵T r+1=C 4r a r x 4-r ,∴当4-r=3,即r=1时,T 2=C 41·a·x 3=4ax 3=8x 3.故a=2. 26.(2012·浙江·理T14)若将函数f(x)=x 5表示为f(x)=a 0+a 1(1+x)+a 2(1+x)2+…+a 5(1+x)5,其中a 0,a 1,a 2,…,a 5为实数,则a 3= .【答案】10【解析】由x 5=a 0+a 1(1+x)+a 2(1+x)2+…+a 5(1+x)5可得,{x 5=a 5·C 55x 5,0·x 4=a 4C 44x 4+a 5C 54x 4,0·x 3=a 3C 33x 3+a 4C 43x 3+a 5C 53x 3, 可解得{a 5=1,a 4=-5,a 3=10.27.(2012·大纲·理T15)若(x +1)n 的展开式中第3项与第7项的二项式系数相等,则该展开式中12的系数为 .【答案】56【解析】∵C n 2=C n 6,∴n=8.T r+1=C 8r x 8-r (1)r =C 8r x 8-2r ,当8-2r=-2时,r=5.∴系数为C 85=56.28.(2011·北京·理T12)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有 个.(用数字作答)【答案】14【解析】可用排除法,这个四位数每一位上的数字只能是2或3,则共有24个,而这其中要求数字2或3至少出现一次,所以全是2和全是3不满足,即满足要求的四位数有24-2=14个.。
十年真题(2010-2019)高考数学(文)分类汇编专题13 算法(新课标Ⅰ卷)(原卷版)
专题13算法历年考题细目表题型年份考点试题位置单选题2019 程序框图2019年新课标1文科09单选题2017 程序框图2017年新课标1文科10单选题2016 程序框图2016年新课标1文科10单选题2015 程序框图2015年新课标1文科09单选题2014 程序框图2014年新课标1文科09单选题2013 程序框图2013年新课标1文科07单选题2012 程序框图2012年新课标1文科06单选题2011 程序框图2011年新课标1文科05单选题2010 程序框图2010年新课标1文科08历年高考真题汇编1.【2019年新课标1文科09】如图是求的程序框图,图中空白框中应填入()A.A B.A=2 C.A D.A=12.【2017年新课标1文科10】如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+23.【2016年新课标1文科10】执行下面的程序框图,如果输入的=0,y=1,n=1,则输出,y的值满足()A.y=2 B.y=3 C.y=4 D.y=54.【2015年新课标1文科09】执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.85.【2014年新课标1文科09】执行如图的程序框图,若输入的a,b,分别为1,2,3,则输出的M=()A.B.C.D.6.【2013年新课标1文科07】执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4] B.[﹣5,2] C.[﹣4,3] D.[﹣2,5]7.【2012年新课标1文科06】如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数8.【2011年新课标1文科05】执行如图的程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.50409.【2010年新课标1文科08】如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.考题分析与复习建议本专题考查的知识点为:算法的逻辑结构,顺序结构、条件结构、循环结构,程序框图和算法思想,求程序框图中的执行结果和确定控制条件.历年考题主要以选择题型出现,重点考查的知识点为:算法的循环结构,程序框图和算法思想.预测明年本考点题目会比较稳定,备考方向以算法的循环结构,程序框图和算法思想为重点较佳.最新高考模拟试题1.我国古代数学专著《九章算术》中有一个“两鼠穿墙题”,其内容为:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.问何日相逢?各穿几何?”如图的程序框图于这个题目,执行该程序框图,若输入=20,则输出的结果为( )A .3B .4C .5D .62.如图所示的程序框图,若=5,则运算多少次停止( )A .2B .3C .4D .53.正整数n 除以m 后的余数为,记为r n MOD m =,如4195MOD =.执行如图的程序框图,则输出的数n 是( )A.19B.22C.27D.47 4.执行如图所示的程序框图,输出n的值为()A.6B.7C.8D.95.为了计算11111123420192020S=-+-++-L,设计如图所示的程序框图,则在空白框中应填入()A .1i i =+B .2i i =+C .3i i =+D .4i i =+6.如图程序框图的算法思路于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为16,20,则输出的a =( )A .14B .4C .2D .07.执行如图所示的程序框图,则输出的S 值为( )A.4B.5 C.8D.98.某程序框图如图所示,若该程序运行后输出的值是95,则a的值是()A.7B.6C.5D.4 9.执行如图的程序框图,如果输出的S=3,则输入的t=()A .1? -B .3?- C .1或3 D .1或3-10.如图是一个算法流程图,则输出的结果是( )A .3B .4C .5D .611.《九章算术》中有如下问题“今有牛、羊、马食人苗,苗主责之粟五斗,主日‘我羊食半马.’马主日‘ 我马食半牛.’今欲衰偿之,问各出几何?”翻译为今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说“我羊所吃的禾苗只有马的一半.”马主人说“我马吃的禾苗只有牛的一半”打算按此比率偿还,问牛、马、羊的主人各应赔偿多少粟?已知1斗=10升,针对这一问题,设计程序框图如图所示,若输出k 的值为2,则m =( )A .503B .507.C .103D .100712.在如图所示的计算1592017++++L 程序框图中,判断框内应填入的条件是( )A .2017?i ≤B .2017?i <C .2013?i <D .2021?i ≤ 13.如图所示的程序框图所实现的功能是( )A .输入a 的值,计算()2021131a -⨯+ B .输入a 的值,计算()2020131a -⨯+ C .输入a 的值,计算()2019131a -⨯+D .输入a 的值,计算()2018131a -⨯+ 14.执行如图所示的程序框图,如果输入的]2,0[∈x ,那么输出的y 值不可能为A.1 B.0C.1D.215.阅读如图所示的程序框图,则输出的()A.30B.29C.90D.5416.执行如图所示的程序框图,若输出的,则判断框内应填入的条件是()A.B.C.D.17.执行如图所示的程序框图,则输出的()A.3B.4C.5D.618.执行下面程序框图,若输入的的值分别为0和44,则输出的值为()A.4B.7C.10D.1319.执行如图所示的程序框图,若输出结果为1,则可输入的实数值的个数为()A.1B.2C.3D.420.运行程序框图,如果输入某个正数后,输出的,那么的值为()A.3B.4C.5D.6。
专题13 排列组合与二项式定理-十年(2012-2021)高考数学真题分项详解(全国通用)(解析版)
专题13 排列组合与二项式定理【2021年】1.(2021年全国高考乙卷数学(理)试题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种 B .120种 C .240种 D .480种【答案】C【分析】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C 种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有254!240C ⨯=种不同的分配方案,故选:C.2.(2021年全国高考甲卷数学(理)试题)将4个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .13B .25C .23D .45【答案】C【分析】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻的概率为1025103=+. 故选:C.【2012年——2020年】1.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))25()()x x y xy ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .20【答案】C【分析】5()x y +展开式的通项公式为515r r rr T C x y -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为:56155r rrr rrr xT xC xy C xy --+==和22542155r r rr r r r T C x y xC y y y x x --++==在615r rr r xT C xy -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x xy y -++=中,令1r =,可得:521332T C y x x y =,该项中33x y 的系数为5所以33x y 的系数为10515+= 故选:C2.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116【答案】A【分析】由题知,每一爻有2种情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .3.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24【答案】A【分析】由题意得x 3的系数为314424812C C +=+=,故选A .4.(2018年全国普通高等学校招生统一考试理数(全国卷II ))我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .118【答案】C【详解】:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有21045C =种方法,因为7+23=11+19=13+17=30,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为31=4515,选C. 5.(2018年全国卷Ⅰ理数高考试题)522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为 A .10 B .20 C .40 D .80【答案】C【详解】::由题可得()5210315522rrrr r r r T C x C x x --+⎛⎫== ⋅⋅⎪⎝⎭⋅⋅ 令103r 4-=,则r 2=所以22552240r r C C ⋅⋅==故选C.6.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))(2017新课标全国卷Ⅰ理科)621(1)(1)x x++展开式中2x 的系数为 A .15 B .20 C .30 D .35【答案】C 【解析】因为6662211(1)(1)1(1)(1)x x x x x++=⋅++⋅+,则6(1)x +展开式中含2x 的项为22261C 15x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为442621C 15x x x⋅=,故2x 的系数为151530+=,选C. 7.(2017年全国普通高等学校招生统一考试理科数学(新课标2卷))安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( ) A .12种B .18种C .24种D .36种【答案】D【详解】4项工作分成3组,可得:24C=6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成, 可得:36363A ⨯=种.故选D.8.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))()52x x y ++的展开式中,52x y 的系数为 A .10 B .20 C .30 D .60【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.9.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷))设m 为正整数,(x +y)2m 展开式的二项式系数的最大值为a ,(x +y)2m +1展开式的二项式系数的最大值为b ,若13a=7b ,则m =A .5B .6C .7D .8【答案】B【详解】:由题意可知221,m m m m C a C b +==,137a b =,221137m m m m C C +∴=,即()()()2!21!137!!!1!m m m m m m +=⋅⋅+,211371m m +∴=⋅+,解得6m =.故B 正确.10.(2013年全国普通高等学校招生统一考试理科数学(新课标2))已知(1+ax )·(1+x )5的展开式中x 2的系数为5,则a = A .-4 B .-3 C .-2 D .-1【答案】D 【详解】由题意知:21555C aC +=,解得1a =-,故选D.11.(2012年全国普通高等学校招生统一考试理科数学(课标卷))将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有 A .12种 B .10种 C .9种 D .8种【答案】A【详解】:第一步,为甲地选一名老师,有122C =种选法;第二步,为甲地选两个学生,有246C =种选法;第三步,为乙地选1名教师和2名学生,有1种选法,故不同的安排方案共有26112⨯⨯=种,故选A .12.(2012年全国普通高等学校招生统一考试理科数学(大纲卷))将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有 A .12种 B .18种 C .24种 D .36种【答案】A【解析】:先排第一列,由于每列的字母互不相同,因此共有3×2×1种不同的方法;再排第二列,其中第二列第一行的字母共有2种不同的排法,第二列第二、三行的字母只有1种排法,因此共有3×2×1×2=12(种)不同的方法.二、填空题13.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种. 【答案】36【分析】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学∴先取2名同学看作一组,选法有:246C = 现在可看成是3组同学分配到3个小区,分法有:336A =根据分步乘法原理,可得不同的安排方法6636⨯=种 故答案为:36.14.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))262()x x+的展开式中常数项是__________(用数字作答). 【答案】240【分析】622x x ⎛⎫+ ⎪⎝⎭ 其二项式展开通项:()62612rrrr C xx T -+⎛⎫⋅⋅ ⎪⎝⎭= 1226(2)r r r r x C x --⋅=⋅1236(2)r r r C x -=⋅当1230r -=,解得4r =∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.15.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案) 【答案】16【分析】根据题意,没有女生入选有344C =种选法,从6名学生中任意选3人有3620C =种选法,故至少有1位女生入选,则不同的选法共有20416-=种,故答案是16.16.(2017年全国普通高等学校招生统一考试理科数学)5(2x 的展开式中,x 3的系数是_________.(用数字填写答案) 【答案】10【详解】:5(2x 的展开式的通项为555255(2)2rr r r r r C x C x---=(0r =,1,2,…,5),令532r -=得4r =,所以3x 的系数是452C 10=.17.(2016年全国普通高等学校招生统一考试理科数学(全国2卷))有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________. 【答案】1和3.【详解】根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3; 所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3; 又加说:“我与乙的卡片上相同的数字不是2”; 所以甲的卡片上写的数字不是1和2,这与已知矛盾; 所以甲的卡片上的数字是1和3.18.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))4()(1)a x x ++的展开式中,若x 的奇数次幂的项的系数之和为32,则a =________. 【答案】3【解析】:由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.19.(2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))()()8x y x y -+的展开式中27x y 的系数为________.(用数字填写答案) 【答案】20-【详解】:由题意,8()x y +展开式通项为818k k k k T C x y -+=,08k ≤≤.当7k =时,777888T C xy xy ==;当6k =时,626267828T C x y x y ==,故()()8x y x y -+的展开式中27x y 项为726278()2820x xy y x y x y ⋅+-⋅=-,系数为20-.20.(2014年全国普通高等学校招生统一考试理科数学(全国Ⅰ卷))()10x a +的展开式中,7x 的系数为15,则a=________.(用数字填写答案) 【答案】12【详解】因为10110r r rr T C x a -+=,所以令107r -=,解得3r =,所以373410T C x a ==157x ,解得12a =.。
十年真题(2010_2019)高考数学真题分类汇编专题14概率统计理(含解析)
专题14概率统计历年考题细目表题型年份考点试题位置单选题2019 概率2019年新课标1理科06单选题2018 统计2018年新课标1理科03单选题2018 概率2018年新课标1理科10单选题2017 概率2017年新课标1理科02单选题2016 概率2016年新课标1理科04单选题2015 概率2015年新课标1理科04单选题2014 概率2014年新课标1理科05单选题2013 统计2013年新课标1理科03单选题2011 概率2011年新课标1理科04单选题2010 概率2010年新课标1理科06填空题2019 概率2019年新课标1理科15填空题2012 概率2012年新课标1理科15解答题2019 概率统计综合题2019年新课标1理科21解答题2018 概率统计综合题2018年新课标1理科20解答题2017 概率统计综合题2017年新课标1理科19解答题2016 概率统计综合题2016年新课标1理科19解答题2015 概率统计综合题2015年新课标1理科19解答题2014 概率统计综合题2014年新课标1理科18解答题2013 概率统计综合题2013年新课标1理科19解答题2012 概率统计综合题2012年新课标1理科18解答题2011 概率统计综合题2011年新课标1理科19解答题2010 概率统计综合题2010年新课标1理科19历年高考真题汇编1.【2019年新课标1理科06】我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m20,则该重卦恰有3个阳爻的概率p.故选:A.2.【2018年新课标1理科03】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【解答】解:设建设前经济收入为a,建设后经济收入为2a.A项,种植收入37%×2a﹣60%a=14%a>0,故建设后,种植收入增加,故A项错误.B项,建设后,其他收入为5%×2a=10%a,建设前,其他收入为4%a,故10%a÷4%a=2.5>2,故B项正确.C项,建设后,养殖收入为30%×2a=60%a,建设前,养殖收入为30%a,故60%a÷30%a=2,故C项正确.D项,建设后,养殖收入与第三产业收入总和为(30%+28%)×2a=58%×2a,经济收入为2a,故(58%×2a)÷2a=58%>50%,故D项正确.因为是选择不正确的一项,故选:A.3.【2018年新课标1理科10】如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3【解答】解:如图:设BC=2r1,AB=2r2,AC=2r3,∴r12=r22+r32,∴SⅠ4r2r3=2r2r3,SⅢπr12﹣2r2r3,SⅡπr32πr22﹣SⅢπr32πr22πr12+2r2r3=2r2r3,∴SⅠ=SⅡ,∴P1=P2,故选:A.。
全国卷2010-2020分章节汇编(12)排列组合与二项式定理
全国卷2010-2020分章节汇编排列组合与二项式定理(排列组合)1.(2010Ⅱ文9理6)将标号为1,2,3,4,5,6 的6 张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()A.12 种B.18 种C.36 种D.54 种2.(2011Ⅱ文9)4位同学每人从甲、乙、丙3门课程中选修1门,则恰2人选修课程甲的不同选法共有()A.12 种B.24 种C.30 种D.36 种3.(2011Ⅱ理7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4 种B.10 种C.18 种D.20 种4.(2012Ⅰ理2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12 种B.10 种C.9 种D.8 种5.(2012Ⅰ文7)6位选手依次演讲,其中选手甲不再第一个也不再最后一个演讲,则不同的演讲次序共有()A.240 种B.360 种C.480 种D.720 种6.(2012Ⅱ理11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12 种B.18 种C.24 种D.36 种7.(2016Ⅱ理5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A .24B .18C .12D .98.(2017Ⅱ理6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1 人完成,则不同的安排方式共有( )A .12 种B .18 种C .24 种D .36 种9.(2018Ⅰ理15)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有 种.(用数字填写答案)10.(2020Ⅱ理14)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.(二项式定理)1.(2010Ⅱ文14)9)1(x x +的展开式中x 3的系数是2.(2010Ⅱ理4)若9)(x a x - 的展开式中x 3的系数是-84,则a =3.(2011Ⅰ理8)5)12)((x x x ax -+的展开式中各项系数的和为2,则该展开式中常数项为( ) A .-40 B .-20 C .20 D .404.(2011Ⅱ文13)(1-x )10的二项展开式中,x 的系数与x 9的系数之差为5.(2011Ⅱ理13)20)1(x - 的二项展开式中,x 的系数与x 9的系数之差为6.(2012Ⅱ文13)8)21(xx +的展开式中x 2的系数为 7.(2012Ⅱ理15) n x x )1(+展开式第3与第7项的二项式系数相等,则展开式中21x的系数为8.(2013Ⅰ理 9)设m 为正整数,m y x 2)(+展开式的二项式系数的最大值为a , 12)(++m y x 展开式的二项式系数的最大值为b ,若13a =7b ,则m = ( )A .5B .6C .7D .89.(2013Ⅱ理5)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( )A .-4B .-3C .-2D .-110.(2014Ⅰ理13)(x - y )(x + y )8的展开式中x 2 y 7的系数为 (数字作答)11.(2014Ⅱ理13)(x +a )10的展开式中,x 7的系数为15,则a =(数字作答) 12.(2015Ⅰ理10)(x 2+ x + y 5的展开式中,x 5 y 2的系数为()A .10B .20C .30D .60 13.(2015Ⅱ理15)(a +x )(1+ x )4的展开式中x 的奇数次幂项的系数之和为32,则a=14.(2016Ⅰ理14)5)2(x x +的展开式中,x 3的系数是 (数字作答)15.(2017Ⅰ理6) 62)1)(11(x x ++展开式中x 2的系数为( ) A .15 B .20 C .30 D .3516.(2017Ⅲ理4) (x + y )(2x - y )5的展开式中的x 3 y 3系数为( )A .﹣80B .﹣40C .40D .8017.(2018Ⅲ理5) 52)2(xx +的展开式中x 4的系数为( )A .10B .20C .40D .80 18.(2019Ⅲ理4) (1+2x 2 )(1+ x )4的展开式中x 3的系数为( )A .12B .16C . 20D . 2419.(2020Ⅰ理8)25()()x x y xy ++的展开式中x 3y 3的系数为( ) A. 5 B. 10 C. 15 D. 2020.(2020Ⅲ理14)62)2(xx 的展开式中常数项是__________(用数字作答).。
10排列、组合、二项式定理和概率、十年高考题(带详细解析)统计
第十章 排列、组合、二项式定理和概率、统计●考点阐释本章从内容到方法都是比较独特的,是进一步学习概率论的基础知识.其中分类计数原理和分步计数原理是本章的基础,它是学习排列、组合、二项式定理和计算事件的概率的预备知识.在对应用题的考查中,经常要运用分类计数原理或分步计数原理对问题进行分类或分步分析求解,如何灵活利用这两个原理对问题进行分类或分步往往是解应用题的关键.从两个原理上,完成一件事的“分类”和“分步”是有区别的,因此在应用上,要注意将两个原理区分开.排列、组合也是本章的两个主要概念.定义中从n 个不同元素中,任取M (M ≤n )个元素“按一定的顺序排成一列”与不管怎样的顺序“并成一组”是有本质区别的.只有准确、全面把握这两个概念,才能正确区分是排列问题,还是组合问题.具体解决手段:只要取出2个元素交换看结果是否有变化.二项式定理中,公式一般都能记住,但与其相关的概念如:二项式系数、系数、常数项、项数等,学生易混,须在平常加以对比分析,对通项公式重点训练.应用上要注意:①它表示二项展开式中的任意项,只要n 与r 确定,该项随之确定.②公式表示的是第r +1项.③公式中a 、b 的位置不能颠倒,它们的指数和为n .④r 的取值从0到n ,共n +1个.古典概型是学习概率与统计的起点,而掌握古典概型的前提是能熟练掌握排列组合的基本知识.熟练掌握五种事件的概率以及抽样方法、总体分布的估计、期望和方差. ●试题类编 一、选择题1.(2003京春理,9)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )A.42B.30C.20D.122.(2003京春文,10)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为( )A.6B.12C.15D.303.(2002京皖春理,6)从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作.若其中甲、乙两名志愿者都不能从事翻译工作,则选派方案共有( )A.280种B.240种C.180种D.96种4.(2002京皖春文,6)若从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作,则选派方案共有( )A.180种B.360种C.15种D.30种5.(2002京皖春理,10)对于二项式(x1+x 3)n(n ∈N *),四位同学作出了四种判断: ①存在n ∈N *,展开式中有常数项 ②对任意n ∈N *,展开式中没有常数项 ③对任意n ∈N *,展开式中没有x 的一次项 ④存在n ∈N *,展开式中有x 的一次项上述判断中正确的是( )A.①③B.②③C.②④D.①④6.(2002京皖春文,10)在(x1+x 2)6的展开式中,x 3的系数和常数项依次是( ) A.20,20 B.15,20 C.20,15 D.15,157.(2002全国文,12、理,11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( )A.8种B.12种C.16种D.20种8.(2002北京文,9)5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为( )A.480B.240C.120D.969.(2002北京理,9)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( )A.4448412C C C 种B.34448412C C C 种C.3348412AC C种 D.334448412A C C C 种10.(2001京皖春,3)1222C C lim ++∞→n n n nn 等于( )A.0B.2C.21D.41 11.(2001天津理,9)某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分,一球队打完15场,积33分,若不考虑顺序,该队胜、负、平的情况共有( )A.3种B.4种C.5种D.6种12.(2000京皖春,8)从单词“equation ”中选取5个不同的字母排成一排,含有“qu ”(其中“qu ”相连且顺序不变)的不同排列共有( )A.120个B.480个C.720个D.840个13.(1999全国理,8)若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+ax 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为( ) A.1 B.-1 C.0 D.214.(1999全国,14)某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( )A.5种B.6种C.7种D.8种15.(1998全国理,11)3名医生和6名护士被分配到3所学校为学生体检,每校分配1 名医生和2名护士.不同的分配方法共有( ) A.90种 B.180种 C.270种 D.540种 16.(1997全国理,15)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有( )A.150种B.147种C.144种D.141种17.(1997全国文)四面体的一个顶点为A ,从其他顶点与棱的中点中取3个点,使它们和点A 在同一平面上,不同的取法有( )A.30种B.33种C.36种D.39种 18.(1996全国文)6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有( ) A.720种 B.360种 C.240种 D.120种19.(1995全国文15,理13)用1、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有( )A.24个B.30个C.40个D.60个 20.(1995全国,6)在(1-x 3)(1+x )10的展开式中,x 5的系数是( ) A.-297 B.-252 C.297 D.20721.(1994全国,10)有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法共有( )A.1260种B.2025种C.2520种D.5040种22.(1994上海,18)计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有( )A.5544A A 种 B.554435A A A 种 C.554413A A A 种D.554422A A A 种二、填空题23.(2003上海春,9)8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,大师赛共有_____场比赛.24.(2002上海7)在某次花样滑冰比赛中,发生裁判受贿事件,竞赛委员会决定将裁判由原来的9名增至14名,但只任取其中7名裁判的评分作为有效分.若14名裁判中有2人受贿,则有效分中没有受贿裁判的评分的概率是_____.(结果用数值表示)25.(2002上海春,7)六位身高全不相同的同学拍照留念,摄影师要求前后两排各三人,则后排每人均比前排同学高的概率是_____.26.(2002上海春,5)若在(xx 15)n的展开式中,第4项是常数项,则n = . 27.(2002全国理,16)(x 2+1)(x -2)7的展开式中x 3项的系数是 . 28.(2002上海文,9)某工程由下列工序组成,则工程总时数为 天.29.(2002天津文,15)甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t/hm 2):其中产量比较稳定的小麦品种是_____.30.(2001上海,7)某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需准备不同的素菜品种 种.(结果用数值表示)31.(2001全国,16)圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为 .32.(2001上海理,8)在代数式(4x 2-2x -5)(1+21x )5的展开式中,常数项为 . 33.(2001全国文,13)(21x +1)10的二项展开式中x 3的系数为 . 34.(2001上海春)在大小相同的6个球中,2个红球,4个白球.若从中任意选取3个,则所选的3个球中至少有1个红球的概率是_____.(结果用分数表示)35.(2001广东河南,13)已知甲、乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛人员的组成共有 种可能(用数字作答).36.(2001江西、山西、天津理)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,则其中含红球个数的数学期望是_____.(用数字作答)37.(2001上海文)利用下列盈利表中的数据进行决策,应选择的方案是_____.38.(2000上海春,4)若(x +a )5的展开式中的第四项是10a 2(a 为大于零的常数),则x =_____.39.(2000上海春,10)有n (n ∈N *)件不同的产品排成一排,若其中A 、B 两件产品排在一起的不同排法有48种,则n =_____.40.(2000京皖春理,17)103)1(xx 展开式中的常数项是_____. 41.(2000全国文、理,3)乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_____种(用数字作答).42.(2000年上海,9)在二项式(x -1)11的展开式中,系数最小的项的系数为 .(结果用数值表示)43.(2000上海,10)有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1、2和3.现任取3面,它们的颜色与号码均不相同的概率是 .44.(2000两省一市理,13)某厂生产电子元件,其产品的次品率为5%,现从一批产品中任意地连续取出2件,其中次品数以ξ的概率分布是45.(1999全国,16)在一块并排10垄的田地中,选择2垄分别种植A 、B 两种作物,每种作物种植一垄.为有利于作物生长,要求A 、B 两种作物的间隔不小于6垄,则不同的选垄方法共有_____种(用数字作答).46.(1999上海理,3)在(x 3+22x)5展开式中,x 5项的系数为 . 47.(1999上海理,11)若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=16内的概率是 .48.(1998全国理,17)(x +2)10(x 2-1)的展开式中x 10的系数为_____(用数字作答).49.(1998上海,9)设n 是一个自然数,(1+n x )n的展开式中x 3的系数为161,则n =_____. 50.(1997全国,16)已知(2x x a)9的展开式中x 3的系数为49,常数a 的值为_____. 51.(1997上海,11)若(3x +1)n (n ∈N *)的展开式中各项系数的和是256,则展开式中x 2的系数是_____.52.(1997上海,16)从集合{0、1、2、3、5、7、11}中任取3个元素分别作为直线方程Ax +By +C =0中的A 、B 、C ,所得经过坐标原点的直线有_____条(结果用数值表示).53.(1996全国,17)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有_____个(用数字作答).54.(1996上海,17)有8本互不相同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有_____种(结果用数字表示).55.(1996上海理,14)在(1+x )6(1-x )4的展开式中,x 3的系数是_____(结果用数值表示).56.(1995上海,13)若(x +1)n =x n +…+ax 3+bx 2+…+1(n ∈N *),且a ∶b =3∶1,那么n =_____.57.(1995上海,19)从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组装计算机各2台,则不同的选取法有_____种.(结果用数值表示).58.(1995全国,20)四个不同小球放入编号为1、2、3、4的四个盒中,则恰有一个空盒的放法共有_____种.(用数字作答)59.(1994全国,16)在(3-x )7的展开式中,x 5的系数是_____(用数字作答). 三、解答题60.(2002天津文20,理19)某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立).(Ⅰ)求至少3人同时上网的概率;(Ⅱ)至少几人同时上网的概率小于0.3?61.(2001江西、山西、天津)如图10—1,用A 、B 、C 三类不同的元件连接成两个系统N 1,N 2.当元件A 、B 、C 都正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作.已知元件A 、B 、C 正常工作的概率依次为0.80、0.90、0.90.分别求系统N 1、N 2正常工作的概率P 1、P 2.62.(2001上海理)对任意一个非零复数z ,m z ={ω|ω=z 2n -1,n ∈N }(1)设α是方程x +21=x的一个根,试用列举法表示集合M α.若在M α中任取两个数,求其和为零的概率P .(2)设复数ω∈M z ,求证:M ω⊆M z .63.(2001全国理,20)已知i ,m ,n 是正整数,且1<i ≤m <n . (1)证明n i i m A <m i i n A ;(2)证明(1+m )n >(1+n )m .64.(2000江西、山西、天津理,17)甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少?(2)甲、乙二人中至少有一人抽到选择题的概率是多少?65.(2000上海,22)规定!)1()1(C m m x x x mx+-⋅⋅-⋅=,其中x ∈R ,m 是正整数,且0C x =1,这是组合数mn C (n 、m 是正整数,且m ≤n 的一种推广).(1)(文)求315C -的值; (理)求515C -的值;(2)(文)设x >0,当x 为何值时,213)C (C x x 取最小值?(理,文2)组合数的两个性质: ①m n n mn-=C C . ②mn m n m n 11C C C +-=+.是否都能推广到mx C (x ∈R ,m 是正整数)的情形?若能推广,请写出推广的形式,并给出证明;若不能,则说明理由.(3)(理)已知组合数mn C 是正整数,证明:当x ∈Z ,m 是正整数时,mn C ∈Z . 66.(1996全国文24,理23)某地现有耕地10000公顷,规划10年后粮食单产比现在图10—1增加22%,人均粮食占有量比现在提高10%,如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?答案解析1.答案:A解析:这是一个插空问题,应分两类:第一类,新增的两个节目连在一起;第二类,两个新增节目不连在一起,而原来的5个节目可看做分出6个空位.第一类则有2×16A 种不同的插法,第二类则有26A 种不同的插法.应用分类计数原理,共有12+30=42种不同的插法. 评述:该题是应用问题,内容贴近学生,有一定的综合性、灵活性、考查分析,解决问题及逻辑思维的能力.同时应有周密的思维习惯.2.答案:D解析:见第1题. 3.答案:B解析:因为甲、乙两名志愿者都不能从事翻译工作.因此,翻译工作从余下的四名志愿者选一人有14A 种,再从余下的5人中选3人从事导游、导购、保洁有35A 种.因此3514A A =240.4.答案:B 解析:46A =360.5.答案:D解析:二项式(x 1+x 3)n 展开式的通项为T r +1=r n C (x1)n -r (x 3)r =r n C x r -n ·x 3r =r n C x 4r -n 当展开式中有常数项时,有4-n =0,即存在n 、r 使方程有解.当展开式中有x 的一次项时,有4r -n =1,即存在n 、r 使方程有解. 即分别存在n ,使展开式有常数项和一次项. 6.答案:C 解析:二项式(x1+x 2)6展开式的通项为: T r +1=636266C )()1(C --=r r r r rx x x∴当T r +1为x 3项时,r =3,∴T r +1=36C ·x 3=20·x 3 当T r +1为常数项时,r =2,∴T r +1=26C =157.答案:B解析:联想以空间模型,注意到“有2个面不相邻”,既可从相对平行的平面入手正面构造,即16C ·12C ;也可从反面入手剔除8个角上3个相邻平面,即:1836C C -. 8.答案:B解析:先把5本书中的两本捆起来(25C ),再分成四份(44A ),∴分法种数为25C ·44A =240(种).9.答案:A解析:先分配4个人到第一个路口,再分配4个人到第二个路口,最后分配4个人到第三个路口,即:412C ·48C ·44C .10.答案:D解析:原式=n n n n n n n n n n nn n n n n n n n n n n n n 2411)12(21)12)(22()1)(1(A A A A A A A A 122112111222++=++=++++=⋅⋅=++++++++∴41C C lim 1222=++∞→n n n nn 11.答案:A 解析:设该队胜x 场,平y 场,则负(15-x -y )场,由题意得3x +y =33, ∴y =33-3x ≥0∴x ≤11,且x +y ≤15,(x ,y ∈N ) 因此,有以下三种情况:⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==69310011y x y x y x 或或 评述:本题利用不定方程及穷举法解决排列、组合问题. 12.答案:B解析:4436A C =480.13.答案:A 14.答案:C解法一:由题意知,按买磁盘盒数多少可分三类:买4盒磁盘时,只有1种;买3盒磁盘时,有买3片或4片软件两种;买2盒磁盘时,可买3片、4片、5片或6片软件,有4种,故共有1+2+4=7种不同的选购方式,答案为C.解法二:先买软件3片,磁盘2盒,共需320元,还有180元可用,按不再买磁盘、再买1盒磁盘、再买两盒磁盘三类,仿解法一可知选C.评述:本题主要考查分类计数原理、分类讨论思想.背景简单,但无现成模式可用,对分析解决问题的能力有较高要求.15.答案:D解析:设计让3所学校依次挑选,先由学校甲挑选,有2613C C 种,再由学校乙挑选,有2412C C 种,余下的到学校丙只有一种,于是不同的方法数共有13C ·26C ·2412C C =540种,答案为D.评述:设计一个程序是解答排列组合应用题的常见解法. 16.答案:D解法一:10个点任取4个点取法有410C 种,其中面ABC 内的6个点中任意4点都共面,从这6点中任取4点有46C 种,同理在其余3个面内也有46C 种,又每条棱与相对棱中点共面有6种,各棱中点中4点共面的有3种,故10个点中取4点,不共面的取法共有36C 4C 46410---=141种.解法二:四面体记之为A —BCD ,设平面BCD 为α,那么从10个点中取4个不共面的点的情况共有四类:(1)恰有3个点在α上,有4(3C 36-)=68种取法;(2)恰有2个点在α上,可分两种情况:该2个点在四面体的同一条棱上时有3)3C (C 2423-=27种,该2个点不在同一条棱上,有(2326C 3C -)·(24C -1)=30种;(3)恰有1个点在α上,可分两种情况,该点是棱的中点时有3×3=9种,该点是棱的端点时有3×2=6种;(4)4个点全不在α上,只有1种取法.根据分类计数原理得,不同的取法共有68+27+30+9+6+1=141种.评述:本题对空间想象能力要求较高,对观察能力和思维能力要求也高.在应用背景及其限制条件下合理分类是解题的关键.17.答案:B解析:四面体有4个顶点,6条棱有6个中点,每个面上的6个点共面,点A 所在的每个面中含A 的4点组合有35C 个,点A 在3个面内,共有335C 个组合,点A 在6条棱的三条棱上,每条棱上有3个点,这3点与对棱的中点共面,所以与点A 共面的四点组合共有335C +3=33(个)评述:本题考查组合的知识和空间想象能力.对考生的观察能力和思维能力有较高要求,考生失误的主要原因是没有把每条棱上的3点与它对棱上的中点共面的情况计算入内.18.答案:C解析:把甲、乙两人看作1个人,这样6个人看作5个人,5个人的全排列有55A 种,甲、乙两个人还有顺序问题,所以排法总数为55A ·22A =240(种)评述:这是一道有限制条件的排列题,考查排列的概念和排列数公式.“相邻问题”是一个常见的典型问题.19.答案:A解法一:其中2在个位的三位数有24A 个,4在个位的三位数有24A 个,故没有重复数字的三位偶数共有224A =24个,故选A.解法二:先排个位有12A 种,再排十位、百位有24A 种,于是合乎要求的三位偶数共有2412A A =24个.故选A. 评述:本题为有特殊要求的排列问题,考查排列基础知识和逻辑推理能力. 20.答案:D解析:∵原式=(1+x )10-x 3(1+x )10.∴欲求原展开式中x 5的系数,只需求出(1+x )10展开式中x 5和x 2的系数.而(1+x )10=1+…+210C x 2+…+510C x 5+….故(1-x 3)(1+x )10展开式中,x 5的系数为510C -210C =207.21.答案:C解法一:从10人中选派4人有410C 种,进而对选出的4人具体分派任务,有1224C C 种,由分步计数原理得不同的选派方法为1224410C C C =2520种,答案为C.解法二:据分步计数原理,不同选法种数为210C ·18C ·17C =2520种.评述:本题主要考查组合和分步计数原理,答数较大,对组合数的计算要求较高.方法一用的是先选后派方法是处理排列组合应用题的基本方法.22.答案:D解析:先各看成整体,但水彩画不在两端,则为22A ,然后水彩画与国画各全排列,所以共有554422A A A .23.答案:16解析:分两组比赛,每组有24C 场,每组的第一名与另一组的第二名比赛有2场,三、四名比赛,冠亚军比赛,共有224C +2+2=16(场)24.答案:133 解析:有效分应该是由没有受贿裁判的评分,因此,7名裁判应从12人中选712C ,则有效分中没有受贿裁判的评分的概率是133C C 714712=.25.答案:201 解析:因为后排每人均比前排人高,因此应将6人中最高的3个人放在后排,其余3人站前排.故所有排法有33A ·33A =36种.故后排每人均比前排同学高的概率为201A A A 663333=⋅ 26.答案:18 解析:∵5183333534)1(C )1()(C ---=-=n n n nx xx T 为常数项. ∴518-n =0,即n =18. 27.答案:1008解析:系数为:17C (-2)6+37C (-2)4=1008.28.答案:11解析:要完成某项工序,必须先完成它的紧前工序且在紧前工序完成的条件下,若干件工序可同时进行,因而工程总时数为:3+2+5+1=11(天).29.答案:甲解析:根据题意,需要比较2*甲S 和2*乙S由于2*甲S =0.158,2*乙S =0.552 因此甲产量比较稳定. 30.答案:7解析:在5种不同的荤菜中取出2种的选择方式应有245C 25⨯==10(种) 选择方式至少为200种,设素菜为x 种,∴252C C x ≥2002)1(-x x ≥20,x (x -1)≥40,x ≥7 ∴至少应为7种素菜. 31.答案:2n (n -1)解析:先在圆上找一点,2n 个点因为是等分点,所以过圆心的直径应有n ,减去过这点的直径,剩下的直径n -1个都可以与这个点形成直角三角形,∴一个点可以形成n -1个直角三角形,这样的点有2n 个.∴一共为2n (n -1). 32.答案:15解析:15205)1(1C )4()1(1C 512415202505=+-=+-xx x . 33.答案:15 解析:15816891081C )21(C 3103310=⨯⨯⨯=⨯= 34.答案:54 解析:所选3球中至少有一个红球的选法有12C ·2224C C +·14C =16(种) 从6个球中任选3个球的选法有36C =20(种). 故概率p =542016=. 评述:本题主要考查对可能事件的概率计算,以及考生分析问题解决问题的能力.古典概率是学习概率与统计的起点,而掌握古典概型的前提是能熟练地掌握排列组合的基本知识.35.答案:4900解析:完成这件事可分为两步:第一步:从甲组8人中抽取4个,有48C 种方法; 第二步:从乙组8人中抽取4人,有48C 种方法. 因此,比赛人员的组成共有48C ·48C =4900种可能.评述:本题考查分步计数原理、组合的概念以及组合数的运算,考查分析问题、解决问题的能力.36.答案:1.2解析:设其中含红球个数为x ,则x =1或 x =2.而含一个红球的概率A 1=106C C C 251213=⋅ 含两个红球的概率为A 2=103C C 2523=∴含红球个数的数学期望为1×106+2×103=1.2 评述:本题考查数学期望的概念、概率的概念及它们的计算.37.答案:A 3解析:A 1的数学期望:1x E =0.25×50+0.30×65+0.45×26=43.7 A 2的数学期望:2x E =0.25×70+0.30×26+0.45×16=32.5 A 3的数学期望:3x E =0.25×(-20)+0.30×52+0.45×78=45.7A 4的数学期望:4x E =0.25×98+0.30×82+0.45×(-10)=44.6评述:本题考查概率与数学期望,考查学生识表的能力.对图表的识别能力,是近年高考突出考查的热点.图表语言与其数学语言的相互转换,应成为数学学习的一个重点,应引起高度重视.38.答案:a1 解析:∵x a a x T 33352135410)(C ==-,∴x =a1.39.答案:5解析:由11A 2--n n =48,得11A --n n =24,∵44A =24,∴n =5. 40.答案:210 解析:T r +1=65301031102110)1(C )()(Cr rr rrr xx x ----=-⋅,令30-5r =0,得r =6.∴常数项T 7=610C ·(-1)6=210.41.答案:252解析:222733A C A =252.42.答案:-462解法一:因为在(x -1)11的展开式中,各项的二项式系数与系数相等或互为相反数,又展开式中二项式系数最大的项有两项,分别为第六项511C x 6(-1)5.第七项611C x 5(-1)6,所以得系数最小的项的系数为462C 511-=-.解法二:展开式中第r +1项为r rrx)1(C 1111--,要使项的系数最小,则r 为奇数,且使r11C 为最大,由此得r =5,所以项的最小系数为462)1(C 5511-=-.43.答案:141解析:从9面旗帜中任取3面,共有39C (种)取法. 现取3面,颜色与号码均不相同共有13C ·12C ·11C =6(种) 因此,所求概率为141846C 639==. 44.答案:解析:设次品数为ξ,则ξ~(2,0.05),其中p =0.05为次品率,则q =0.95为正品率,于是由二项分布公式(列成表格):即得所求结果.45.答案:12解析:先考虑A 种植在左边的情况,有三类:A 种植在最左边一垄上时,B 有三种不同的种植方法;A 种植在左边第二垄上时,B 有两种不同的种植方法;A 种植在左边第三垄上时,B 只有一种种植方法.又B 在左边种植的情况与A 时的相同,故共有2×(3+2+1)=12种不同的选垄方法.评述:本题主要考查两个基本原理、分类讨论思想,对分析解决问题的能力有较高要求. 46.答案:40解析:由通项公式T r +1=r5C (x 3)5-r ·(22x)r =r 5C ·2r ·x 15-5r由题意,令15-5r =5.得r =2. ∴含x 5项的系数为25C ·22=40. 47.答案:92解析:掷两次骰子分别得到的总数m 、n 作为P 点的坐标共有16A ·16A =36(种)可能结果,其中落在圆内的点有8个:(1,1)、(2,2)、(1,2)、(2,1)、(1,3)、(3,1)、(2,3)、(3,2),则所求的概率为92368=. 评述:本题考查点与圆的位置关系,概率概念等基础知识以及运用数形结合的思想和分类讨论的思想解决实际问题的能力.48.答案: 179解析:展开式中x 10的系数与(x +2)10的展开式中x 10的系数和x 8的系数有关,由多项式运算法则知所求系数为010C ·(-1)+210C ·22·1=179.评述:本题考查在逻辑思维能力上的要求,兼考查分类讨论的思想.49. 答案:4 解析:T r +1=r rn n x )(C ,令r =3得x 3的系数1611C 33=n n ,解得n =4. 50.答案: 4解析:T r +1=929299292C )1()()2()1(C -+---⋅⋅⋅-=-r rrr r r r r rr x a xa x当392=-+r r ,即r =8时,492C )1(28898=⋅⋅--a ,解得a =4. 评述:本题考查二项式定理的基础知识,重点考查通项公式和项的系数的概念,兼考运算能力.51.答案: 54解析:令x =1得展开式各项系数之和4n =256解得n =4,所以x 2的系数是24C ·32=54. 52.答案:30解析:因过原点的直线常数项为0知c =0,从集合中任取两个非零元素作系数A 、B 有26A 种,所以适合条件的直线有26A =30条.53.答案: 32解析:7个点任取3点的组合数37C =35,其中三点在一线上不能组成三角形的有3个,故组成三角形的个数为35-3=32个. 评述:本题是有限制条件的组合应用题,背景采用几何图形,对逻辑思维能力要求较高.易出现不排除不构成三角形的情况的错误.54.答案: 1440解析:将数学书与外文书分别捆在一起与其他3本书一起排,有55A =120种排法,再将3本数学书之间交换有33A =6种,2本外文书之间交换有22A =2种,故共有223355A A A =1440种排法.55.答案: -8解析:原式=(1+x )2(1-x 2)4=(1+2x +x 2)(1-x 2)4含x 3的项为2x ·14C ·(-x 2)=-8x 3,故x 3的系数为-8.56.答案:11解析:2233C C ,C C nn n n n nb a ====--, 由已知有113)1(62)2)(1(13C C 23=⇒=-⋅--⇒=n n n n n n n n. 57. 答案:350解析:选法是原装取2台组装取3台,原装取3台组装取2台.故不同的选取法有25363526C C C C +=350种. 58. 答案:144解法一:考虑用分配的数学模型来解.若1号盒空,2号盒放2个球,3号盒和4号盒各放一个球有111224C C C =12种放法. 若1号盒空,3号盒放2个球,4号盒和2号盒各放一个球时仍有111224C C C =12种放法. 若1号盒空,4号盒放2个球,2号盒和3号盒各放一个球同样有111224C C C =12种放法. 即1号盒空共有3×12=36种放法.同理2号盒空有36种放法,3号盒空有36种放法,4号盒空有36种放法. 故按题中要求恰有一个空盒的放法共有4×36=144种放法.解法二:先将4个球分成3组每组至少1个,分法有6种.然后再将这3组球放入4个盒子中每盒最多装一组.则恰有一个空盒的放法种数为634A =144种.评述:本题是一道排列组合综合题,运用先分组,后排列的方法较好. 59.答案: -189 解析:r r r r x T )()3(C 771-=-+,所以r =5,x 5的系数为57C 32(-1)5=-189.评述:本题考查二项式定理,重点考查通项公式,兼考计算能力.60.解:(Ⅰ)至少3人同时上网的概率等于1减去至多2人同时上网的概率,即32216415611)5.0(C )5.0(C )5.0(C 1626616606=++-=---.(Ⅱ)至少4人同时上网的概率为3.03211)5.0(C )5.0(C )5.0(C 666656646>=++至少5人同时上网的概率为:3.0647)5.0)(C C (66656<=+. 因此,至少5人同时上网的概率小于0.3.61.解:分别记元件A 、B 、C 正常工作为事件A 、B 、C ,由已知条件 P (A )=0.80,P (B )=0.90,P (C )=0.90.(Ⅰ)因为事件A 、B 、C 是相互独立的,系统N 1正常工作的概率 P 1=P (A ·B ·C )=P (A )·P (B )·P (C )=0.80×0.90×0.90=0.648. 故系统N 1正常工作的概率为0.648. (Ⅱ)系统N 2正常工作的概率)]()(1[)()](1[)(2C P B P A P C B P A P P ⋅-⋅=⋅-⋅=.∵P (B )=1-P (B )=1-0.90=0.10. P (C )=1-P (C )=1-0.90=0.10.∴P 2=0.80×[1-0.10×0.10]=0.80×0.99=0.792. 故系统N 2正常工作的概率为0.792. 62.解:(1)解方程x +21=x 得x =i 2222± 当α1=i 2222+时ω=α12n -1=112121])2222[()(ααααn nni i =+=由i n 的周期性知:ω有四个值. n =1时,ω=i i i 22222222+=+ n =2时,ω=i i 222222221+-=+- n =3时,ω=i i i 22222222--=+- n =4时,ω=i i 222222221-=+当α2=2222-i 时,ω=α22n -1=2222)()(αααnni -=n =1时,ω=i i i 22222222-=-- n =2时,ω=i i 222222221--=-- n =3时,ω=i i i 22222222+-=- n =4时,ω=i i 222222221+=- ∴不管α=i 2222+还是α=i 2222- M α={i i i i 2222,2222,2222,2222--+--+ } P =3162C 224== (2)∵ω∈M z ,则ω=z 2m -1,m ∈N任取x ∈M ω,则x =ω2n -1,n ∈N而ω=z 2m -1 ∴x =(z 2m -1)2n -1=z (2m -1)(2n -1) ∵(2m -1)(2n -1)为正奇数 ∴x ∈M z ∴M ω⊆M z评述:复数的运算是复数的基础,本题考查复数的奇数次幂,由于i n 的周期性,因而 α2n -1只有四个值,题目以集合的形式给出复数ω,使复数与集合有机的结合在一起,不仅考查复数还考查集合的表示方法.而证明一个集合是另一个集合的子集在对集合的考查上又高了一个层次.证明尽管不繁,但思维层次较高.63.证明:(1)方法一:ii i m m i m m m m )1()1(A +-⋅⋅-⋅= ii i n ni n n n n )1()1(A +-⋅⋅-⋅=。
历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编(附答案)
历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编考点01 排列组合综合1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .232.(2023∙全国甲卷∙高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( ) A .120B .60C .30D .203.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .234.(2023∙全国乙卷∙高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A .30种B .60种C .120种D .240种5.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ). A .4515400200C C ⋅种 B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种6.(2022∙全国新Ⅱ卷∙高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种B .24种C .36种D .48种7.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .238.(2021∙全国乙卷∙高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种B .120种C .240种D .480种9.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .0.3B .0.5C .0.6D .0.810.(2021∙全国甲卷∙高考真题)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A .13B .25C .23D .4511.(2020∙海南∙高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( )A .2种B .3种C .6种D .8种12.(2020∙山东∙高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种13.(2019∙全国∙高考真题)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116考点02 二项式定理综合1.(2024∙北京∙高考真题)在(4x 的展开式中,3x 的系数为( ) A .6B .6-C .12D .12-2.(2022∙北京∙高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-3.(2020∙北京∙高考真题)在52)-的展开式中,2x 的系数为( ). A .5-B .5C .10-D .104.(2020∙全国∙高考真题)25()()x x y x y ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .205.(2019∙全国∙高考真题)(1+2x 2)(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24参考答案考点01 排列组合综合1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .23【答案】B【详细分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解. 【答案详解】解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法, 其中丙不在排头,且甲或乙在排尾的排法共有8种, 故所求概率81=243P =. 解法二:当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选:B2.(2023∙全国甲卷∙高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( ) A .120B .60C .30D .20【详细分析】利用分类加法原理,分类讨论五名志愿者连续参加两天公益活动的情况,即可得解. 【答案详解】不妨记五名志愿者为,,,,a b c d e ,假设a 连续参加了两天公益活动,再从剩余的4人抽取2人各参加星期六与星期天的公益活动,共有24A 12=种方法,同理:,,,b c d e 连续参加了两天公益活动,也各有12种方法, 所以恰有1人连续参加了两天公益活动的选择种数有51260⨯=种. 故选:B.3.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .23【答案】D【详细分析】利用古典概率的概率公式,结合组合的知识即可得解.【答案详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件, 其中这2名学生来自不同年级的基本事件有1122C C 4=,所以这2名学生来自不同年级的概率为4263=. 故选:D.4.(2023∙全国乙卷∙高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A .30种 B .60种 C .120种 D .240种【答案】C【详细分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【答案详解】首先确定相同得读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分步乘法公式则共有1265C A 120⋅=种,故选:C.5.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ). A .4515400200C C ⋅种 B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种【详细分析】利用分层抽样的原理和组合公式即可得到答案. 【答案详解】根据分层抽样的定义知初中部共抽取4006040600⨯=人,高中部共抽取2006020600⨯=, 根据组合公式和分步计数原理则不同的抽样结果共有4020400200C C ⋅种. 故选:D.6.(2022∙全国新Ⅱ卷∙高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种 B .24种C .36种D .48种【答案】B【详细分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【答案详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式, 故选:B7.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .23【答案】D【详细分析】由古典概型概率公式结合组合、列举法即可得解.【答案详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种, 故所求概率2172213P -==. 故选:D.8.(2021∙全国乙卷∙高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种 B .120种 C .240种 D .480种【答案】C【详细分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【答案详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C 种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有2 54!240C⨯=种不同的分配方案,故选:C.【名师点评】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.9.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为() A.0.3 B.0.5 C.0.6 D.0.8【答案】C【详细分析】利用古典概型的概率公式可求概率.【答案详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.6 10,故选:C.10.(2021∙全国甲卷∙高考真题)将4个1和2个0随机排成一行,则2个0不相邻的概率为()A.13B.25C.23D.45【答案】C【答案详解】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C=种排法,若2个0不相邻,则有2510C=种排法,所以2个0不相邻的概率为102 5103=+.故选:C.11.(2020∙海南∙高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种 B.3种 C.6种 D.8种【答案】C【详细分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.【答案详解】第一步,将3名学生分成两个组,有12323C C=种分法第二步,将2组学生安排到2个村,有222A=种安排方法所以,不同的安排方法共有326⨯=种 故选:C【名师点评】解答本类问题时一般采取先组后排的策略.12.(2020∙山东∙高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种【答案】C【详细分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解. 【答案详解】首先从6名同学中选1名去甲场馆,方法数有16C ; 然后从其余5名同学中选2名去乙场馆,方法数有25C ; 最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C【名师点评】本小题主要考查分步计数原理和组合数的计算,属于基础题.13.(2019∙全国∙高考真题)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116【答案】A【详细分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【答案详解】由题知,每一爻有2种情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【名师点评】对利用排列组合计算古典概型问题,首先要详细分析元素是否可重复,其次要详细分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.考点02 二项式定理综合1.(2024∙北京∙高考真题)在(4x 的展开式中,3x 的系数为( ) A .6 B .6- C .12 D .12-【答案】A【详细分析】写出二项展开式,令432r-=,解出r 然后回代入二项展开式系数即可得解.【答案详解】(4x 的二项展开式为(()()442144C C 1,0,1,2,3,4r rrr rr r T x xr --+==-=,令432r-=,解得2r =, 故所求即为()224C 16-=. 故选:A.2.(2022∙北京∙高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-【答案】B【详细分析】利用赋值法可求024a a a ++的值. 【答案详解】令1x =,则432101a a a a a ++++=, 令=1x -,则()443210381a a a a a -+-+=-=, 故420181412a a a +++==, 故选:B.3.(2020∙北京∙高考真题)在52)-的展开式中,2x 的系数为( ). A .5- B .5C .10-D .10【答案】C【详细分析】首先写出展开式的通项公式,然后结合通项公式确定2x 的系数即可.【答案详解】)52展开式的通项公式为:()()55215522r rrrr r r T CC x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-. 故选:C.【名师点评】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.4.(2020∙全国∙高考真题)25()()x x y xy ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .20【答案】C【详细分析】求得5()x y +展开式的通项公式为515rrrr T C xy -+=(r N ∈且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积为65r rr C xy -或425r r r C x y -+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.【答案详解】5()x y +展开式的通项公式为515r rr r T C xy -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为:56155r rrr rrr xT xC xy C xy --+==和22542155r r rr r r r T C x y xC y y y x x --++==在615rrr r xT C xy -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x x y =,该项中33x y 的系数为5所以33x y 的系数为10515+= 故选:C【名师点评】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及详细分析能力,属于中档题.5.(2019∙全国∙高考真题)(1+2x 2)(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24【答案】A【详细分析】本题利用二项展开式通项公式求展开式指定项的系数.【答案详解】由题意得x 3的系数为314424812C C +=+=,故选A .【名师点评】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.。
2010-2019年十年高考数学真题分类汇编.docx
A.1
B.2
C.3
D.4
31(. 2017Ⅲ理 1)已知集合 A = (x, y) x2 + y2 = 1 ,B = (x, y) y = x ,则 A I B 中元素的个数为( )
A.3
B.2
C.1
D.0
32.(2018Ⅰ文 1)已知集合 A = 0,2 , B = -2,-1,0,1,2 ,则 A I B = ( )
A.(-14,16)
B.(-14,20)
C.(-12,18)
D.(-12,20)
x-3 2.(2010Ⅱ文 2)不等式 0 的解集为( )
x+2
A.{x|-2< x<3} B.{ x|x<-2}
C.{ x|x<-2,或 x>3} D.{ x∣x>3}
x -1
3.(2010Ⅱ文
5
理
3)若变量
x,y
1.集合
1.(2010Ⅰ文理 1)已知集合 A = x | x 2,x R,B = x | x 4,x Z ,则 A I B =( )
A.(0,2)
B.[0,2]
C.{0,2}
D.{0,1,2}
2.(2010Ⅱ文 1)设全集 U= x N * | x 6 ,集合 A={1,3},B={3,5},则 CU A U B =( )
A.{-1,0}
B.{0,1}
C.{-1,0,1}
D.{0,1,2}
20.(2016Ⅰ文 1)设集合 A={1,3,5,7},B={x| 2 x 5},则 A∩B=( )
A.{1,3}
B.{3,5}
C.{5,7}
D.{1,7}
21.(2016Ⅰ理 1)设集合 A={x|x2-4x+3<0},B={x|2x-3>0},则 A I B = ( )
十年高考真题分类汇编(2010-2019) 数学 专题13 排列组合与二项式定理 (含答案)
十年高考真题分类汇编(2010—2019)数学专题13 排列组合与二项式定理一、选择题1.(2019·全国3·理T4)(1+2x 2)(1+x)4的展开式中x 3的系数为( )A.12B.16C.20D.242.(2018·全国3·理T5) (x2+2x )5的展开式中x 4的系数为( ) A.10 B.20 C.40 D.803.(2017·全国1·理T6)(1+1x 2)(1+x)6展开式中x 2的系数为( ) A.15 B.20 C.30 D.354.(2017·全国3·理T4)(x+y)(2x-y)5的展开式中x 3y 3的系数为( )A.-80B.-40C.40D.805.(2017·全国2·理T6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种6.(2016·四川·理T2)设i 为虚数单位,则(x+i)6的展开式中含x 4的项为( )A.-15x 4B.15x 4C.-20i x 4D.20i x 47.(2016·全国2·理T5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.98.(2016·全国3·理T12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有( )A.18个B.16个C.14个D.12个9.(2016·四川·理T4)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A.24B.48C.60D.7210.(2015·四川·理T6)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个11.(2015·全国1·理T10)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.6012.(2015·陕西·理T4)二项式(x+1)n(n∈N*)的展开式中x2的系数为15,则n=()A.7B.6C.5D.413.(2015·湖北·理T3)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A.212B.211C.210D.2914.(2014·大纲全国·理T5)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种15.(2014·辽宁·理T6)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144B.120C.72D.2416.(2014·四川·理T6)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种17.(2014·重庆·理T9)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.16818.(2014·四川·理T2)在x(1+x)6的展开式中,含x3项的系数为( )A.30B.20C.15D.1019.(2014·湖南·理T4) (12x-2y)5的展开式中x2y3的系数是( )A.-20B.-5C.5D.2020.(2014·浙江·理T5)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=( )A.45B.60C.120D.21021.(2013·全国1·理T9)设m 为正整数,(x+y)2m 展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m=( )A.5B.6C.7D.8 22.(2013·山东·理T10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A.243B.252C.261D.27923.(2013·全国2·理T5)已知(1+ax)(1+x)5的展开式中x 2的系数为5,则a=( )A.-4B.-3C.-2D.-124.(2013·辽宁·理T7)使(3x x x )n (n ∈N *)的展开式中含有常数项的最小的n 为( ) A.4 B.5 C.6 D.725.(2013·大纲全国·理T7)(1+x)8(1+y)4的展开式中x 2y 2的系数是( )A.56B.84C.112D.16826.(2012·湖北·理T5)设a ∈Z,且0≤a<13,若512 012+a 能被13整除,则a=( ) A.0 B.1 C.11 D.1227.(2012·安徽·理T7)(x 2+2) (1x 2-1)5的展开式的常数项是( ) A.-3 B.-2 C.2 D.328.(2012·全国·理T2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种29.(2012·辽宁·理T5)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( )A.3×3!B.3×(3!)3C.(3!)4D.9! 30.(2012·安徽·理T10)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为( )A .1或3B .1或4C .2或3D .2或431.(2011·全国·理T8) (x +a )(2x -1)5的展开式中各项系数的和为2,则该展开式中常数项为( )A.-40B.-20C.20D.40 32.(2010·山东·理T8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有( )A.36种B.42种C.48种D.54种二、填空题1.(2019·天津·理T10)(2x-18x 3)8的展开式中的常数项为2.(2018·天津·理T10)在(x 2x )5的展开式中,x 2的系数为. 3.(2018·浙江·T14)二项式(√x 3+12x )8的展开式的常数项是. 4.(2018·上海·T3)在(1+x)7的二项展开式中,x 2项的系数为 (结果用数值表示).5.(2018·全国1·理T15)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有 种.(用数字填写答案)6.(2018·浙江·T16)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成 个没有重复数字的四位数.(用数字作答)7.(2017·山东·理T11)已知(1+3x)n 的展开式中含有x 2项的系数是54,则n= .8.(2017·浙江·T13)已知多项式(x+1)3(x+2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x+a 5,则a 4= ,a 5= .9.(2017·天津·理T14)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有 个.(用数字作答)10.(2017·浙江·T16)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答)11.(2016·全国1·理T14)(2x+√x )5的展开式中,x 3的系数是 .(用数字填写答案)12.(2016·天津·理T10) (x 2-1x)8的展开式中x 7的系数为 .(用数字作答) 13.(2015·广东·理T12)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答)14.(2015·天津·理T12)在(x -14x)6的展开式中,x 2的系数为. 15.(2015·重庆·理T12)(x 32√x)5的展开式中x 8的系数是(用数字作答). 16.(2015·全国2·理T15)(a+x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a= .17.(2014·安徽·理T13)设a ≠0,n 是大于1的自然数, (1+x a )n 的展开式为a 0+a 1x+a 2x 2+…+a n x n.若点A i (i,a i )(i=0,1,2)的位置如图所示,则a= .18.(2014·北京·理T13)把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有 种.19.(2014·全国1·理T13)(x-y)(x+y)8的展开式中x 2y 7的系数为 .(用数字填写答案)20.(2014·全国2·理T13)(x+a)10的展开式中,x 7的系数为15,则a= .(用数字填写答案)21.(2013·浙江·理T11)设二项式(√x -1√x 3)5的展开式中常数项为A,则A= . 22.(2013·北京·理T12)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是 .23.(2013·大纲全国·理T14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答)24.(2013·浙江·理T14)将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有 种(用数字作答).25.(2012·福建·理T11)(a+x)4的展开式中x 3的系数等于8,则实数a= .26.(2012·浙江·理T14)若将函数f(x)=x 5表示为f(x)=a 0+a 1(1+x)+a 2(1+x)2+…+a 5(1+x)5,其中a 0,a 1,a 2,…,a 5为实数,则a 3= .27.(2012·大纲·理T15)若(x +1x )n 的展开式中第3项与第7项的二项式系数相等,则该展开式中1x 2的系数为.28.(2011·北京·理T12)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有 个.(用数字作答)。
十年高考分类上海高考数学试卷精校版含详解13概率统计排列组合二项式定理
十年高考分类上海高考数学试卷精校版含详解13概率排列组合二项式定理一、选择题(共3小题;共15分)1. 若事件与相互独立,且,则的值等于A. B. C. D.2. 组合数、恒等于A. B.C. D.3. 设.随机变量取值的概率均为,随机变量取值的概率也均为.若记分别为的方差,则A.B.C.D. 与的大小关系与的取值有关二、填空题(共43小题;共215分)4. 马老师从课本上抄录一个随机变量的概率分布列如下表请小牛同学计算的数学期望,尽管" "处无法完全看清,且两个" "处字迹模糊,但能肯定这两个" "处的数值相同.据此,小牛给出了正确答案.5. 在一个小组中有名女同学和名男同学,从中任意地挑选名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是(结果用分数表示).6. 二项式的展开式中常数项的值为.7. 三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).8. 某学校要从名男生和名女生中选出人作为上海世博会志愿者,若用随机变量表示选出的志愿者中女生的人数,则数学期望(结果用最简分数表示).9. 在五个数字中,若随机取出三个数字,则剩下两个数字都是奇数的概率是(结果用数值表示).10. 两部不同的长篇小说各由第一、二、三、四卷组成,每卷本,共本.将它们任意地排成一排,左边本恰好都属于同一部小说的概率是(结果用分数表示).11. 盒子中装有编号为的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是.(结果用最简分数表示)12. 某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为.13. 某班有名学生,其中人选修课程,另外人选修课程.从班级中任选两名学生,他们是选修不同课程的学生的概率是.(结果用分数表示)14. 为强化安全意识,某商场拟在未来的连续天中随机选择天进行紧急疏散演练,则选择的天恰好为连续天的概率是(结果用最简分数表表示).15. 为强化安全意识,某商场拟在未来的连续天中随机选择天进行紧急疏散演练,则选择的天恰好为连续天的概率是(结果用最简分数表示).16. 某班共有名学生,其中只有一对双胞胎,若从中一次随机抽查三位学生的作业,则这对双胞胎的作业同时被抽中的概率是(结果用最简分数表示).17. 某国际科研合作项目成员由个美国人、个法国人和个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为.(结果用分数表示)18. 随机变量的概率分布由下表给出:则该随机变量的均值是.19. 若某学校要从名男生和名女生中选出人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于名的概率是(结果用最简分数表示).20. 某班有名学生,其中人选修课程,另外人选修课程.从班级中任选两名学生,他们选修不同课程的学生的概率是.(结果用分数表示)21. 在大小相同的个球中,个是红球,个是白球.若从中任意选取个,则所选的个球中至少有个红球的概率是.(结果用分数表示)22. 在平面直角坐标系中,从五个点:、、、、中任取三个,这三点能构成三角形的概率是(结果用分数表示).23. 在平面直角坐标系中,从六个点、、、、、中任取三个,这三点能构成三角形的概率是(结果用分数表示).24. 从一副混合后的扑克牌(张)中,随机抽取张,事件为"抽得红桃 ",事件为"抽得黑桃",则概率(结果用最简分数表示).25. 一次二期课改经验交流会打算交流试点学校的论文篇和非试点学校的论文篇.若任意排列交流次序,则最先和最后交流的论文都为试点学校的概率是.(结果用分数表示)26. 如果一条直线与一个平面垂直,那么,称此直线与平面构成一个"正交线面对".在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的"正交线面对"的个数是.27. 在的展开式中,的系数是,则实数.28. 设常数.若的二项展开式中项的系数为,则.29. 在的二项展开式中,常数项等于.30. 在的二项展开式中,常数项等于.31. 若在的展开式中,第项是常数项,则.32. 三位同学参加跳高、跳远、铅球项目的比赛.若每人只选择一个项目,则有且仅有两人选择的项目相同的概率是(结果用最简分数表示).33. 随机抽取的位同学中,至少有位同学在同一月份出生的概率为(默认每个月的天数相同,结果精确到).34. 若在二项式的展开式中任取一项,则该项的系数为奇数的概率是.(结果用分数表示)35. 盒子中装有编号为,,,,,,的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示).36. 在的二项式中,所有项的二项式系数之和为,则常数项等于.37. 在的展开式中,项的系数为(结果用数值表示).38. 在的二项展开式中,常数项等于(结果用数值表示).39. 如图,在由二项式系数所构成的杨辉三角形中,第行中从左至右第与第个数的比为.40. 赌博有陷阱.某种赌博每局的规则是:赌客先在标记有,,,,的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的倍作为其奖金(单位:元).若随机变量和分别表示赌客在一局赌博中的赌金和奖金,则(元).41. 如图,在平面直角坐标系中,为正八边形的中心,,任取不同的两点,,点满足,则点落在第一象限的概率是.42. 某游戏的得分为,,,,,随机变量表示小白玩该游戏的得分.若,则小白得分的概率至少为.43. 随机抽取个同学中,至少有个同学在同一月出生的概率是(默认每月天数相同,结果精确到).44. 如图,是海上的四个小岛,要建三座桥,将这四个岛连接起来,不同的建桥方案共有种.45. 从集合的子集中选出个不同的子集,需同时满足以下两个条件:(1)都要选出;(2)对选出的任意两个子集和,必有或.那么,共有种不同的选法.46. 用个不同的实数可得到个不同的排列,每个排列为一行写成一个行的数阵.对第行,记,.例如:用可得数阵如图,由于此数阵中每一列各数之和都是,所以,那么,在用形成的数阵中,.三、解答题(共1小题;共13分)47. 已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.(1)如果函数的值域为,求的值;(2)研究函数(常数)在定义域内的单调性,并说明理由;(3)对函数和(常数)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数(是正整数)在区间上的最大值和最小值(可利用你的研究结论).答案第一部分1. B2. D3. A 【解析】由已知条件可得所以,因为所以变量较变量的波动性更大,即可得.第二部分4.【解析】设,则,所以.5.【解析】两名志愿者都是女同学的概率.6.7.【解析】每位同学均有种选择的方法,三位同学共有种不同的选择方法.其中两人选择项目相同,先从三位同学中确定两位同学,有种方法,再让这两位同学去选择项目,有种选择项目的方法;剩下的一位同学与它们不同,有种选择项目的方法.由此可得有且仅有两人选择项目完全相同的参赛方法共有种方法.故有且仅有两人选择的项目完全相同的概率.8.9.10.【解析】本任意排列共有种排法,左边本恰好是同一部小说共有种排法,所以左边本恰好都是属于同一部小说的概率.11.【解析】个数个奇数,个偶数,根据题意所求概率为12.【解析】将种水果每两种分为一组,有种方法,则甲、乙两位同学各自所选的两种水果相同的概率为.13.14.15.16.17.【解析】提示:属于同一个国家的概率为.18.【解析】由随机变量的概率分布列知,的均值为.19.20.21.22.【解析】.23.【解析】.24.【解析】从一副混合后的扑克牌中随机抽取张的基本事件总数为种,而事件为"抽得红桃或抽得黑桃",其对应的事件数为,那么相应的概率为.25.【解析】篇论文任意排列共有种交流次序,最先和最后交流的论文都为试点学校的交流次序共有种,所以最先和最后交流的论文都为试点学校的概率是.26.【解析】正方体中,一个面有四条棱与之垂直,所以六个面共构成个“正交线面对”;而正方体的六个对角面中,每个对角面又有两条面对角线与之垂直,共构成个“正交线面对”,所以共有个“正交线面对”.27.28.【解析】,令,解得,从而,解得.29.30.31.32.【解析】三位同学各任选一个项目共有(种)不同的选法,而 "恰有两人所选项目相同"有(种)不同选法,故所求概率为.33.【解析】试验发生包含的基本事件数,每人生日各不相同,共有种结果,所以要求的事件的概率是.34.35.【解析】.36.【解析】,.通项.取,常数项为.37.【解析】要出现需要中有两个括号内取,剩下的括号内都取,故项的系数为.38.39.【解析】由题意得,即,解得.40.【解析】,的所有可能取值为,概率分别为,可求得.41.【解析】.42.【解析】小白玩该游戏得,,分的概率均为时,所求出的相应值为答案.43.【解析】个同学出生的月份的所有可能有种,个同学出生的月份都不相同的所有可能有种,所以至少有个同学在同一月出生的概率是.44.【解析】桥的连接方式有种,从种中任意选出个作为一种方案,于是有种,种中包含岛首尾相接的情况种,不合题意,要减去.所以一共有种情况.45.【解析】由题可知,另外两个集合均为全集的非空真子集,不妨设,两个集合分别为、,且,则选法可分为以下两类:(1)当集合中含有一个元素时,集合共有种选法,此时集合的所有选法为种;(2)当集合中含有两个元素时,集合共有种选法,此时集合的所有选法为种;综上,不同的选法共有种.46.【解析】在形成的数阵中,第列为的有个,同理第列分别为、、、的也有个,则在形成的数阵中,每一列各数之和都是所以第三部分47. (1)函数的最小值是,则,故.(2)设,当时,,函数在上单调递增;当时,,函数在上单调递减.又因为函数为偶函数,所以函数在上单调递增;在上单调递减.(3)可以把函数推广为(常数),其中是正整数.当是奇数时,函数在上是减函数,在上是增函数,在上是增函数,在上是减函数.当是偶数时,函数在上是减函数,在上是增函数,在上是减函数,在上是增函数.因此在上是减函数,在上是增函数.所以,当或时,取得最大值;当时,取得最小值.。
十年高考真题分类汇编(2010—2019)数学(20210417120444)
十年高考真题分类汇编(2010—2019)数学专题空间向量1. (2014 •全国2 •理T11)直三棱柱ABC-A6C 、中,N%4R00 ,MN 分别是A £, A6的中 点,则6y 与4V 所成角的余弦值为() r 同 u.— 102. (2013 •北京•文T8)如图,在正方体被〃中,尸为对角线做的三等分点,尸到各顶点的距离的不同取值有()3. (2012 •陕西•理T5)如图,在空间直角坐标系中有直三棱柱板。
1二8与纸则直线与直线必夹角的余弦值为(4. (2010 •大纲全国•文T6)直三棱柱ABC-ABQ 中,若NBAC =90° ,AB=AC=AA1,则异面直线BA : 与AQ 所成的角等于()A. 30°B. 45°C. 60°D. 90°5. (2019 •天津•理 T17)如图,AE,平面 ABCD, CF 〃AE , AD 〃BC, AD_LAB, AB=AD=1, AE=BC 二2.(1)求证:BF 〃平面ADE;B -l B. 4个C 5个 D.6个A.3个 C.这⑵求直线CE与平面BDE所成角的正弦值;⑶若二面角E-BD-F的余弦值为京求线段CF的长.EB6.(2019 •浙江• T 19)如图,已知三棱柱ABC-A&C,平面 4月平面ABC, ZABC^0° , Z 区灰>30° ,4月引。
泡尸分别是〃;43的中点.(1)证明:年J_6C;⑵求直线房与平面46。
所成角的余弦值.7.(2019 •全国1•理T18)如图,直四棱柱极〃的底面是菱形,例=1,止2, N 员切40° ,EM,V分别是比破,4。
的中点.⑴证明:/V〃平面C、DE;(2)求二面角力T4M的正弦值.8.(2019 •全国2 •理T17)如图,长方体力用a-4£4〃的底面月颜是正方形,点£在棱前[上,龙LEG.⑴证明:麻山平面微a;⑵若AE=A^求二面角B-EC-C的正弦值.9.(2019 •全国3 •理T19)图1是由矩形ADEB,Rt^ABC和菱形BFGC组成的一个平面图形,其中AB=1, BE=BF=2, ZFBC=60° .将其沿AB, BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A, C, G, D四点共面,且平面ABC_L平面BCGE;(2)求图2中的二面角B-CG-A的大小.10.(2018 •浙江• T 8)已知四棱锥S-ABCD的底面是正方形,侧棱长均相等,E是线段AB 上的点(不含端点).设SE与BC所成的角为01,SE与平面ABCD所成的角为82,二面角S-AB-C的平面角为83,则()A.01<02<03B.03<02<61C.01<O3<02D.92<03<0111.(2018 •全国3 •理T19)如图,边长为2的正方形4加9所在的平面与半圆弧曲所在平面垂直,"是曲上异于的点.(1)证明:平面AMD_L平面BMC;⑵当三棱锥M-ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.12.(2018 •北京•理T16)如图,在三棱柱ABC-A瓜&中,CC_L平面ABCM & F, G分别为44:, AQ 4Q 能的中点,AB二BC二遍,AC=AA尸2.⑴求证:AC_L平面BEF;(2)求二面角B-CD-G的余弦值;16.(2018 •浙江• T9)如图,已知多面体ABCA瓜心, 44 £5 均垂直于平面ABC, Z板=120° , A.A^ GC=1, AB=BC=B-.B=^.(1)证明:四_L平面4A4;⑵求直线月a与平面月期所成的角的正弦值.17.(2018 •上海,T17)已知圆锥的顶点为P,底面圆心为0,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设P0=4, 0A, 0B是底面半径,且NA0B=90° , M为线段AB的中点,如图,求异面直线PM与0B 所成的角的大小.18.(2017 •北京•理T16)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD,平面ABCD, 点M在线段PB上,PD〃平面MAC, PA=PD二遍,AB=4.⑴求证:M为PB的中点;(2)求二面角B-PD-A的大小;⑶求直线MC与平面BDP所成角的正弦值.19.(2017 •全国 1 •理 T18)如图,在四棱锥 P-ABCD 中,AB〃CD,且NBAP=NCDP=90。
高考数学选择题试题分类汇编排列组合与二项式定理
2010年高考数学选择题试题分类汇编——排列组合与二项式定理 (2010全国卷2理数)(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.(2010全国卷2文数)(9)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A ) 12种 (B)18种 (C) 36种 (D)54种【解析】B :本题考查了排列组合的知识∵先从3个信封中选一个放1,2有3种不同的选法,再从剩下的4个数中选两个放一个信封有246C =,余下放入最后一个信封,∴共有24318C =(2010江西理数)6.(82展开式中不含..4x 项的系数的和为( ) A.-1 B.0 C.1 D.2【答案】B【解析】考查对二项式定理和二项展开式的性质,重点考查实践意识和创新能力,体现正难则反。
采用赋值法,令x=1得:系数和为1,减去4x 项系数80882(1)1C -=即为所求,答案为0.(2010重庆文数)(10)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天 . 若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有(A )30种 (B )36种(C )42种 (D )48种解析:法一:所有排法减去甲值14日或乙值16日,再加上甲值14日且乙值16日的排法即2212116454432C C C C C C -⨯+=42法二:分两类甲、乙同组,则只能排在15日,有24C =6种排法甲、乙不同组,有112432(1)C C A +=36种排法,故共有42种方法(2010重庆文数)(1)4(1)x +的展开式中2x 的系数为 (A )4 (B )6(C )10 (D )20解析:由通项公式得2234T C 6x x ==(2010重庆理数)(9)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种D. 1108种 解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法 故共有1008种不同的排法(2010北京理数)(4)8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为(A )8289A A (B )8289A C (C ) 8287A A (D )8287A C答案:A(2010四川理数)(10)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是(A )72 (B )96 (C ) 108 (D )144解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个算上个位偶数字的排法,共计3(24+12)=108个答案:C(2010天津理数)(10) 如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用(A )288种 (B )264种 (C )240种 (D )168种【答案】D【解析】本题主要考查排列组合的基础知识与分类讨论思想,属于难题。
十年真题(2010-2019)高考数学真题分类汇编专题13算法文(含解析)
专题13算法历年考题细目表单选题2011程序框图2011年北京文科06历年高考真题汇编1.【2019年北京文科04】执行如图所示的程序框图,输出的s值为()A.1 B.2 C.3 D.4【解答】解:模拟程序的运行,可得k=1,s=1s=2不满足条件k≥3,执行循环体,k=2,s=2不满足条件k≥3,执行循环体,k=3,s=2此时,满足条件k≥3,退出循环,输出s的值为2.故选:B.2.【2018年北京文科03】执行如图所示的程序框图,输出的s值为( )A.B.C.D.【解答】解:执行循环前:k=1,S=1.在执行第一次循环时,S=1.由于k=2≤3,所以执行下一次循环.S,k=3,直接输出S,故选:B.3.【2017年北京文科03】执行如图所示的程序框图,输出的S值为( )A.2 B.C.D.【解答】解:当k=0时,满足进行循环的条件,执行完循环体后,k =1,S=2,当k=1时,满足进行循环的条件,执行完循环体后,k=2,S,当k=2时,满足进行循环的条件,执行完循环体后,k=3,S,当k=3时,不满足进行循环的条件,故输出结果为:,故选:C.4.【2016年北京文科03】执行如图所示的程序框图,输出s的值为()A.8 B.9 C.27 D.36【解答】解:当k=0时,满足进行循环的条件,故S=0,k=1,当k=1时,满足进行循环的条件,故S=1,k=2,当k=2时,满足进行循环的条件,故S=9,k=3,当k=3时,不满足进行循环的条件,故输出的S值为9,故选:B.5.【2015年北京文科05】执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.6【解答】解:模拟执行程序框图,可得k=1,s=1,s=s+(k﹣1)2=1,不满足条件s>15,k=2,s=s+(k﹣1)2=2,不满足条件s>15,k=3,s=s+(k﹣1)2=6,不满足条件s>15,k=4,s=s+(k﹣1)2=15,不满足条件s>15,k=5,s=s+(k﹣1)2>15,输出k=5.故选:C.6.【2014年北京文科04】执行如图所示的程序框图,输出的S值为( )A.1 B.3 C.7 D.15【解答】解:由程序框图知:算法的功能是求S=1+21+22+…+2k的值,∵跳出循环的k值为3,∴输出S=1+2+4=7.故选:C.7.【2013年北京文科06】执行如图所示的程序框图,输出的S值为()A.1 B.C.D.【解答】解:框图首先给变量i和S赋值0和1.执行,i=0+1=1;判断1≥2不成立,执行,i=1+1=2;判断2≥2成立,算法结束,跳出循环,输出S的值为.故选:C.8.【2012年北京文科04】执行如图所示的程序框图,输出的S值为()A.2 B.4 C.8 D.16【解答】解:第1次判断后S=1,k=1,第2次判断后S=2,k=2,第3次判断后S=8,k=3,第4次判断后3<3,不满足判断框的条件,结束循环,输出结果:8.故选:C.9.【2011年北京文科06】执行如图所示的程序框图,若输入A的值为2,则输入的P值为()A.2 B.3 C.4 D.5【解答】解:S=1,满足条件S≤2,则P=2,S=1满足条件S≤2,则P=3,S=1满足条件S≤2,则P=4,S=1不满足条件S≤2,退出循环体,此时P=4故选:C.考题分析与复习建议本专题考查的知识点为:算法的逻辑结构,顺序结构、条件结构、循环结构,程序框图和算法思想,求程序框图中的执行结果和确定控制条件。
全国高考数学 试题分类汇编10 排列、组合及二项式定理
2013年全国高考理科数学试题分类汇编10:排列、组合及二项式定理一、选择题 1 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a( )A .4-B .3-C .2-D .1-【答案】D 2 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))用0,1,,9十个数字,可以组成有重复数字的三位数的个数为 ( ) A .243 B .252 C .261 D .279 【答案】B 3 .(2013年高考新课标1(理))设m 为正整数,2()mx y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )A .5B .6C .7D .8【答案】B 4 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))()()8411+x y +的展开式中22x y 的系数是( )A .56B .84C .112D .168【答案】D 5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为 ( )A .14B .13C .12D .10【答案】B6 .(2013年上海市春季高考数学试卷(含答案))10(1)x +的二项展开式中的一项是( )A .45xB .290xC .3120xD .4252x【答案】C 7 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))使得()3nx n N n+⎛+∈ ⎝的展开式中含有常数项的最小的为( )A .4B .5C .6D .7【答案】B8 .(2013年高考四川卷(理))从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是 ( )A .9B .10C .18D .20【答案】C9 .(2013年高考陕西卷(理))设函数61,00.,()x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩ , 则当x >0时, [()]f f x 表达式的展开式中常数项为( )A .-20B .20C .-15D .15【答案】A10.(2013年高考江西卷(理))(x 2-32x)5展开式中的常数项为 ( )A .80B .-80C .40D .-40 【答案】C 二、填空题 11.(2013年上海市春季高考数学试卷(含答案))36的所有正约数之和可按如下方法得到:因为2236=23⨯,所以36的所有正约数之和为22222222(133)(22323)(22323)(122)133)91++++⨯+⨯++⨯+⨯=++++=(参照上述方法,可求得2000的所有正约数之和为________________________【答案】483612.(2013年高考四川卷(理))二项式5()x y +的展开式中,含23x y 的项的系数是_________.(用数字作答)【答案】10 13.(2013年上海市春季高考数学试卷(含答案))从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).【答案】4514.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))将FE D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答) 【答案】480 15.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答) 【答案】590 16.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))6x ⎛- ⎝ 的二项展开式中的常数项为______.【答案】15 17.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设二项式53)1(xx -的展开式中常数项为A ,则=A ________. 【答案】10-18.(2013年高考上海卷(理))设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =【答案】2a =-19.(2013年高考北京卷(理))将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________. 【答案】9620.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))若8x ⎛+ ⎝的展开式中4x 的系数为7,则实数a =______. 【答案】2121.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))6个人排成一行,其中甲、乙两人不相邻的不同排法共有____________种.(用数字作答). 【答案】480。
十年真题(2010_2019)高考数学真题分类汇编专题14概率统计理(含解析)
专题14概率统计历年考题细目表历年高考真题汇编1.【2019年新课标1理科06】我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m20,则该重卦恰有3个阳爻的概率p.故选:A.2.【2018年新课标1理科03】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【解答】解:设建设前经济收入为a,建设后经济收入为2a.A项,种植收入37%×2a﹣60%a=14%a>0,故建设后,种植收入增加,故A项错误.B项,建设后,其他收入为5%×2a=10%a,建设前,其他收入为4%a,故10%a÷4%a=2.5>2,故B项正确.C项,建设后,养殖收入为30%×2a=60%a,建设前,养殖收入为30%a,故60%a÷30%a=2,故C项正确.D项,建设后,养殖收入与第三产业收入总和为(30%+28%)×2a=58%×2a,经济收入为2a,故(58%×2a)÷2a=58%>50%,故D项正确.因为是选择不正确的一项,故选:A.3.【2018年新课标1理科10】如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3【解答】解:如图:设BC=2r1,AB=2r2,AC=2r3,∴r12=r22+r32,∴SⅠ4r2r3=2r2r3,SⅢπr12﹣2r2r3,SⅡπr32πr22﹣SⅢπr32πr22πr12+2r2r3=2r2r3,∴SⅠ=SⅡ,∴P1=P2,故选:A.4.【2017年新课标1理科02】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S,则对应概率P,故选:B.5.【2016年新课标1理科04】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P,故选:B.6.【2015年新课标1理科04】投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.312【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为0.648.故选:A.7.【2014年新课标1理科05】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为.故选:D.8.【2013年新课标1理科03】为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.9.【2011年新课标1理科04】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件数是3×3=9种结果,满足条件的事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到P,故选:A.10.【2010年新课标1理科06】某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.400【解答】解:由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2粒,补种的种子数记为X故X=2ξ,则EX=2Eξ=2×1000×0.1=200.故选:B.11.【2019年新课标1理科15】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是.【解答】解:甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p=p1+p2+p3+p4=0.036+0.036+0.054+0.054=0.18.故答案为:0.18.12.【2012年新课标1理科15】某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A),P(B)P(C)=P(AB)=P(A)P(B)故答案为13.【2019年新课标1理科21】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得﹣1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得﹣1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i﹣1+bp i+cp i+1(i=1,2,…,7),其中a=P(X =﹣1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1﹣p i}(i=0,1,2,…,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.【解答】(1)解:X的所有可能取值为﹣1,0,1.P(X=﹣1)=(1﹣α)β,P(X=0)=αβ+(1﹣α)(1﹣β),P(X=1)=α(1﹣β),∴X 的分布列为:(2)(i )证明:∵α=0.5,β=0.8, ∴由(1)得,a =0.4,b =0.5,c =0.1.因此p i =0.4p i ﹣1+0.5p i +0.1p i +1(i =1,2,…,7),故0.1(p i +1﹣p i )=0.4(p i ﹣p i ﹣1),即(p i +1﹣p i )=4(p i ﹣p i ﹣1),又∵p 1﹣p 0=p 1≠0,∴{p i +1﹣p i }(i =0,1,2,…,7)为公比为4,首项为p 1的等比数列; (ii )解:由(i)可得,p 8=(p 8﹣p 7)+(p 7﹣p 6)+…+(p 1﹣p 0)+p 0,∵p 8=1,∴p 1,∴P 4=(p 4﹣p 3)+(p 3﹣p 2)+(p 2﹣p 1)+(p 1﹣p 0)+p 0p 1.P 4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为,此时得出错误结论的概率非常小,说明这种试验方案合理.14.【2018年新课标1理科20】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p (0<p <1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f (p ),求f (p )的最大值点p 0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p 0作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【解答】解:(1)记20件产品中恰有2件不合格品的概率为f(p),则f(p),∴,令f′(p)=0,得p=0.1,当p∈(0,0.1)时,f′(p)>0,当p∈(0.1,1)时,f′(p)<0,∴f(p)的最大值点p0=0.1.(2)(i)由(1)知p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y,∴E(X)=E(40+25Y)=40+25E(Y)=40+25×180×0.1=490.(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,∵E(X)=490>400,∴应该对余下的产品进行检验.15.【2017年新课标1理科19】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得9.97,s0.212,其中x i为抽取的第i 个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,0.09.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由9.97,s≈0.212,得μ的估计值为9.97,σ的估计值为0.212,由样本数据可以看出一个零件的尺寸在之外,因此需对当天的生产过程进行检查.剔除之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008,因此σ的估计值为0.09.16.【2016年新课标1理科19】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2,P(X=17),P(X=18)=()2+2()2,P(X=19),P(X=20),P(X=21),P(X=22),∴X的分布列为:(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18).P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19).∴P(X≤n)≥0.5中,n的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19).买19个所需费用期望:EX1=200(200×19+500)(200×19+500×2)(200×19+500×3)4040,买20个所需费用期望:EX2(200×20+500)(200×20+2×500)4080,∵EX1<EX2,∴买19个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.04=4080,∴买19个更合适.17.【2015年新课标1理科19】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i)2(w i)2(x i)(y i)(w i)i表中w i i,(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1v1),(u2v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:,.【解答】解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w,先建立y关于w的线性回归方程,由于68,563﹣68×6.8=100.6,所以y关于w的线性回归方程为100.6+68w,因此y关于x的回归方程为100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值100.6+68576.6,年利润z的预报值576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值0.2(100.6+68)﹣x=﹣x+13.620.12,当 6.8时,即当x=46.24时,年利润的预报值最大.18.【2014年新课标1理科18】从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.19.【2013年新课标1理科19】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)(Ⅱ)X可能的取值为400,500,800,并且P(X=800),P(X=500),P(X=400)=1,故X的分布列如下:故EX=400500800506.2520.【2012年新课标1理科18】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)0.1,P(X=70)0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝21.【2011年新课标1理科19】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表B配方的频数分布表(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)【解答】解:(Ⅰ)由试验结果知,用A配方生产的产品中优质的频率为∴用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为∴用B配方生产的产品的优质品率的估计值为0.42;(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间[90,94),[94,102),[102,110]的频率分别为0.04,0.54,0.42,∴P(X=﹣2)=0.04,P(X=2)=0.54,P(X=4)=0.42,即X的分布列为22.【2010年新课标1理科19】为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.附:K2.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K 2的观测值因为9.967>6.635,且P (K 2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.考题分析与复习建议本专题考查的知识点为:随机抽样,用样本估计总体,变量间的相关关系,独立性检验,随机事件的概率,古典概型,几何概型,离散型随机变量及其分布列,二项分布及其应用,离散型随机变量的均值与方差,正态分布等,历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:随机抽样,用样本估计总体,变量间的相关关系,独立性检验,随机事件的概率,古典概型,几何概型,离散型随机变量及其分布列,二项分布及其应用,离散型随机变量的均值与方差,等,预测明年本考点题目会比较稳定,备考方向以知识点用样本估计总体,变量间的相关关系,独立性检验,随机事件的概率,离散型随机变量及其分布列,二项分布及其应用,离散型随机变量的均值与方差等为重点较佳.最新高考模拟试题1.如图是1990年-2017年我国劳动年龄(15-64岁)人口数量及其占总人口比重情况:根据图表信息,下列统计结论不正确的是( )A .2000年我国劳动年龄人口数量及其占总人口比重的年增幅均为最大B .2010年后我国人口数量开始呈现负增长态势C .2013年我国劳动年龄人口数量达到峰值D .我国劳动年龄人口占总人口比重极差超过6% 【答案】B 【解析】解:A 选项,2000年我国劳动年龄人口数量增幅约为6000万,是图中最大的,2000年我国劳动年龄人口数量占总人口比重的增幅约为3%,也是最多的.故A 对.B 选项,2010年到2011年我国劳动年龄人口数量有所增加,故B 错.C 选项,从图上看,2013年的长方形是最高的,即2013年我国劳动年龄人口数量达到峰值,C 对,D 选项,我国劳动年龄人口占总人口比重最大为11年,约为74%,最小为92年,约为67%,故极差超过6%.D 对. 故选:B .2.一试验田某种作物一株生长果个数x 服从正态分布()290,N σ,且()700.2P x <=,从试验田中随机抽取10株,果实个数在[]90,110的株数记作随机变量X ,且X 服从二项分布,则X 的方差为( ) A .3 B .2.1 C .0.3 D .0.21【答案】B 【解析】∵290(),x N δ~,且()700.2P x <=,所以()1100.2P x >=∴()901100.50.20.3P x <<=-=, ∴()10,0.3X B ~,X 的方差为()100.310.3 2.1⨯⨯-=.故选B .3.小张刚参加工作时月工资为5000元,各种用途占比统计如下面的条形图.后来他加强了体育锻炼,目前月工资的各种用途占比统计如下面的拆线图.已知目前的月就医费比刚参加工作时少200元,则目前小张的月工资为( )A .5500B .6000C .6500D .7000【答案】A 【解析】由条形图可知,刚参加工作的月就医费为:500015%750⨯=元 则目前的月就医费为:750200550-=元∴目前的月工资为:55010%5500÷=元本题正确选项:A4.若,a b 是从集合{}1,1,2,3,4-中随机选取的两个不同元素,则使得函数()5ab f x x x =+是奇函数的概率为( )A .320B .310C .925D .35【答案】B 【解析】从集合{}1,1,2,3,4-中随机选取的两个不同元素共有2520A = 种要使得函数()5ab f x x x =+是奇函数,必须,a b 都为奇数共有236A = 种则函数()5ab f x x x =+是奇函数的概率为632010P == 故选B5.某企业的一种商品的产量与单位成本数据如下表:若根据表中提供的数据,求出y 关于x 的线性回归方程为ˆ 1.1528.1yx =-+,则a 的值等于( ) A .4.5 B .5C .5.5D .6【答案】B 【解析】1416182022901855x ++++===1210733255a a y +++++==()x y , 在线性回归方程ˆ 1.1528.1yx =-+上 1.151828.1=7.4y \=-?则32=7.45a+解得5a = 故选B6.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[)50,60的同学有30人,则n 的值为( )A .100B .1000C .90D .900【答案】A 【解析】由频率分布直方图可知,支出在[)50,60的同学的频率为:0.03100.3⨯=301000.3n ∴== 本题正确选项:A7.某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,则恰好抽到2幅不同种类的概率为( ) A .56B .45C .34D .23【答案】B 【解析】设A 为“恰好抽到2幅不同种类”某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,基本事件总数2615n C ==,恰好抽到2幅不同种类包含的基本事件个数21132212m C C C ==,则恰好抽到2幅不同种类的概率为()124155m P A n ===. 故选:B .8.若即时起10分钟内,305路公交车和202路公交车由南往北等可能进入二里半公交站,则这两路公交车进站时间的间隔不超过2分钟的概率为( ) A .0.18 B .0.32 C .0.36 D .0.64【答案】C【解析】设305路车和202路车的进站时间分别为x 、y ,设所有基本事件为:W 010010x y ≤≤⎧⎨≤≤⎩,“进站时间的间隔不超过2分钟”为事件A ,则{(,)|010,010,||2}A x y x y x y =≤≤≤≤-≤,画出不等式表示的区域如图中阴影区域,则10108836S =⨯-⨯=,则36()0.36100A S P A S Ω===. 选C .9.一个盒子中放有大小相同的4个白球和1个黑球,从中任取两个球,则所取的两个球不同色的概率为_______. 【答案】25【解析】设4个白球编号为:1,2,3,4;1个黑球为:A从中任取两个球的所有可能结果为:12、13、14、1A 、23、24、2A 、34、3A 、4A ,共10种 所取的两个球不同色的有:1A 、2A 、3A 、4A ,共4种∴所求概率为:42105P == 本题正确结果:2510.已知某中学高三理科班学生共有800人参加了数学与物理的水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样统计,先将800人按001,002,003,…,800进行编号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十年高考真题分类汇编(2010—2019)数学专题13 排列组合与二项式定理一、选择题1.(2019·全国3·理T4)(1+2x2)(1+x)4的展开式中x3的系数为( )A.12B.16C.20D.242.(2018·全国3·理T5) 的展开式中x4的系数为( )A.10B.20C.40D.803.(2017·全国1·理T6)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.354.(2017·全国3·理T4)(x+y)(2x-y)5的展开式中x3y3的系数为()A.-80B.-40C.40D.805.(2017·全国2·理T6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种6.(2016·四川·理T2)设i为虚数单位,则(x+i)6的展开式中含x4的项为()A.-15x4B.15x4C.-20i x4D.20i x47.(2016·全国2·理T5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.98.(2016·全国3·理T12)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个9.(2016·四川·理T4)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24B.48C.60D.7210.(2015·四川·理T6)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个11.(2015·全国1·理T10)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.6012.(2015·陕西·理T4)二项式(x+1)n(n∈N*)的展开式中x2的系数为15,则n=()A.7B.6C.5D.413.(2015·湖北·理T3)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A.212B.211C.210D.2914.(2014·大纲全国·理T5)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种15.(2014·辽宁·理T6)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144B.120C.72D.2416.(2014·四川·理T6)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种17.(2014·重庆·理T9)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.16818.(2014·四川·理T2)在x(1+x)6的展开式中,含x3项的系数为( )A.30B.20C.15D.1019.(2014·湖南·理T4) 的展开式中x2y3的系数是( )A.-20B.-5C.5D.2020.(2014·浙江·理T5)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=( )A.45B.60C.120D.21021.(2013·全国1·理T9)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m=( )A.5B.6C.7D.822.(2013·山东·理T10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.27923.(2013·全国2·理T5)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.-4B.-3C.-2D.-124.(2013·辽宁·理T7)使 (n∈N*)的展开式中含有常数项的最小的n为( )A.4B.5C.6D.725.(2013·大纲全国·理T7)(1+x)8(1+y)4的展开式中x2y2的系数是( )A.56B.84C.112D.16826.(2012·湖北·理T5)设a∈Z,且0≤a<13,若512 012+a能被13整除,则a=( )A.0B.1C.11D.1227.(2012·安徽·理T7)(x2+2) 的展开式的常数项是( )A.-3B.-2C.2D.328.(2012·全国·理T2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种29.(2012·辽宁·理T5)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A.3×3!B.3×(3!)3C.(3!)4D.9!30.(2012·安徽·理T10)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为()A.1或3B.1或4C.2或3D.2或431.(2011·全国·理T8) 的展开式中各项系数的和为2,则该展开式中常数项为( )A.-40B.-20C.20D.4032.(2010·山东·理T8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有()A.36种B.42种C.48种D.54种二、填空题1.(2019·天津·理T10)(2x-8的展开式中的常数项为2.(2018·天津·理T10)在的展开式中,x2的系数为.3.(2018·浙江·T14)二项式的展开式的常数项是.4.(2018·上海·T3)在(1+x)7的二项展开式中,x2项的系数为(结果用数值表示).5.(2018·全国1·理T15)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)6.(2018·浙江·T16)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)7.(2017·山东·理T11)已知(1+3x)n的展开式中含有x2项的系数是54,则n= .8.(2017·浙江·T13)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4= ,a5= .9.(2017·天津·理T14)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有个.(用数字作答)10.(2017·浙江·T16)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)11.(2016·全国1·理T14)(2x+)5的展开式中,x3的系数是.(用数字填写答案)12.(2016·天津·理T10) 的展开式中x7的系数为.(用数字作答)13.(2015·广东·理T12)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)14.(2015·天津·理T12)在的展开式中,x2的系数为.15.(2015·重庆·理T12)的展开式中x8的系数是(用数字作答).16.(2015·全国2·理T15)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a= .17.(2014·安徽·理T13)设a≠0,n是大于1的自然数, 的展开式为a0+a1x+a2x2+…+a n x n.若点A i(i,a i)(i=0,1,2)的位置如图所示,则a= .18.(2014·北京·理T13)把5件不同产品摆成一排.若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.19.(2014·全国1·理T13)(x-y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)20.(2014·全国2·理T13)(x+a)10的展开式中,x7的系数为15,则a= .(用数字填写答案)21.(2013·浙江·理T11)设二项式的展开式中常数项为A,则A= .22.(2013·北京·理T12)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是.23.(2013·大纲全国·理T14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有种.(用数字作答)24.(2013·浙江·理T14)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有种(用数字作答).25.(2012·福建·理T11)(a+x)4的展开式中x3的系数等于8,则实数a= .26.(2012·浙江·理T14)若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…,a5为实数,则a3= .27.(2012·大纲·理T15)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为.28.(2011·北京·理T12)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有个.(用数字作答)。