九上数学知识点总结填空

合集下载

九年级上册数学知识点总结

九年级上册数学知识点总结

九年级上册数学知识点总结归纳1 第二十一章一元二次方程第二十二章二次函数第二十三章旋转第二十四章圆第二十五章概率初步第二十一章 一元二次方程知识点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程.一般形式:ax 2+bx+c=0(a ≠0)。

注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。

知识点2:一元二次方程的解法1.直接开平方法:对形如(x+a )2=b (b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。

X+a=±b∴1x =-a+b 2x =-a-b2.配方法:用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a )2=b 的形式;⑤如果b ≥0就可以用两边开平方来求出方程的解;如果b<0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aac b b x 242-±-=(b 2-4ac ≥0)。

步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出b 2-4ac 的值,当b 2-4ac ≥0时代入求根公式。

4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。

步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程乘积的形式,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。

5.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程. ⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若b 2-4ac <0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2=3(x +4)中,不能随便约去x +4。

人教版九上数学一元二次方程知识点和考点精析

人教版九上数学一元二次方程知识点和考点精析

一元二次方程知识点及考点精析一、知识结构: 一元二次方程⎪⎩⎪⎨⎧*⇒韦达定理根的判别解与解法二、考点精析考点一、概念(1)定义:只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。

(2)一般表达式:)0(02≠=++a c bx ax 其中2ax 是二次项,a 叫二次项系数;bx 是一次项,b 叫一次项系数,c 是常数项。

二次项系数、一次项系数及常数项都是方程在一般形式下定义的,所以求一元二次方程的各项系数时,必须先将方程化为一般形式。

⑶难点:如何理解 “未知数的最高次数是2”:①该项系数不为“0”; ②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题: 例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。

例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。

针对练习:★1、方程782=x 的一次项系数是 ,常数项是 。

★2、若方程()021=--m xm 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。

★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( )B.m=2,n=1C.n=2,m=1D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的概念求代数式的值; 例1、已知322-+y y 的值为2,则1242++y y 的值为 。

例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

2021年九年级数学上册第二十一章《一元二次方程》知识点总结(提高培优)(1)

2021年九年级数学上册第二十一章《一元二次方程》知识点总结(提高培优)(1)

一、选择题1.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或20B 解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.2.关于x 的一元二次方程()2230x a a x a +-+=的两个实数根互为倒数,则a 的值为( )A .-3B .0C .1D .-3或0C 解析:C【分析】根据方程两个实数根互为倒数,得到两根之积为1,利用根与系数的关系求出a 的值即可.【详解】解:∵关于x 的一元二次方程x 2+(a 2-3a )x+a=0的两个实数根互为倒数,∴x 1•x 2=a=1.故选:C .【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解此题的关键,注意:已知一元二次方程ax 2+bx+c=0(a 、b 、c 为常数,a≠0,b 2-4ac≥0)的两根是x 1,x 2,那么x 1+x 2=-b a ,x 1•x 2=c a. 3.如图,若将上图正方形剪成四块,恰能拼成下图的矩形,设1a =,则b =( )A 51-B 51+C 53+D 21B 解析:B【分析】根据上图可知正方形的边长为a+b ,下图长方形的长为a+b+b ,宽为b ,并且它们的面积相等,由此可列出(a+b )2=b(a+b+b),解方程即可求得结论.【详解】解:根据题意得:正方形的边长为a+b ,长方形的长为a+b+b ,宽为b ,则(a+b )2=b(a+b+b),即a 2﹣b 2+ab=0, ∴2)10a a b b +-=(, 解得:15a b -±=, ∵a b >0, ∴15a b -+=, ∴当a=1时,51251b ==-, 故选:B .【点睛】 本题考查了图形的拼接、解一元二次方程、正方形的面积、长方形的面积,正确理解题意,找到隐含的数量关系列出方程是解答的关键.4.一元二次方程2610x x +-=配方后可变形为( )A .()2310x +=B .()238x +=C .()2310x -=D .()238x -=A 解析:A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x 2+6x-1=0,∴x 2+6x=1,∴x 2+6x+9=10,∴(x+3)²=10,故选:A .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.5.方程22x x =的解是( )A .0x =B .2x =C .10x =,22x = D .10x =,2x = 解析:C【分析】移项并因式分解,得到两个关于x 的一元一次方程,即可求解.【详解】解:移项,得220x x -=,因式分解,得()20x x -=,∴0x =或20x -=,解得10x =,22x =,故选:C .【点睛】本题考查解一元二次方程,掌握因式分解法是解题的关键.6.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( )A .12B .15C .12或15D .18B 解析:B【分析】首先求出方程的根,再根据三角形三边关系定理列出不等式,确定是否符合题意.【详解】解:解方程x 2-9x+18=0,得x 1=3,x 2=6,当3为腰,6为底时,不能构成等腰三角形;当6为腰,3为底时,能构成等腰三角形,周长为6+6+3=15.故选:B .【点睛】本题考查了解一元二次方程,从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.7.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( )A .15%B .40%C .25%D .20%D解析:D【分析】设平均每次降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设平均每次降价的百分率为x ,依题意,得:100(1-x )2=64,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故选:D .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 8.若关于x 的一元二次方程2(1)210m x x +--=有实数根,则m 的取值范围是( ) A .2m >- B .2m ≥- C .2m >-且1m ≠- D .2m ≥-且1m ≠-D解析:D【分析】根据一元二次方程的定义和判别式的意义得到10m +≠且240b ac =-≥,然后求写出两不等式的公共部分即可.【详解】根据题意得10m +≠且()()224(2)4110b ac m =-=--+⨯-≥, 解得1m ≠-且2m ≥-.故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.9.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn 的值为( )A .4B .1C .﹣2D .﹣1C解析:C【分析】先把已知条件变形得到a 2+ (m +n ) a +mn ﹣2=0,b 2+( m +n ) b +mn ﹣2=0,则可把a 、b 看作方程x 2+( m +n ) x +mn ﹣2=0的两实数根,利用根与系数的关系得到ab =mn ﹣2,从而得到ab ﹣mn 的值.【详解】解:∵(a +m )( a +n )=2,(b +m )( b +n )=2,∴a 2+( m +n )a +mn ﹣2=0,b 2+( m +n )b +mn ﹣2=0,而a 、b 、m 、n 为互不相等的实数,∴可以把a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两个实数根,∴ab =mn ﹣2,∴ab ﹣mn =﹣2.故选:C .【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两实数根”是解题关键.10.一元二次方程x 2=4x 的解是( )A .x=4B .x=0C .x=0或-4D .x=0或4第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案D解析:D【分析】先移项,利用因式分解法解一元二次方程.【详解】解:x 2=4xx 2-4x=0x (x-4)=0x=0或x=4,故选:D.【点睛】此题考查解一元二次方程,直接开平方法,配方法,公式法,因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.二、填空题11.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是________.且【分析】根据根的判别式及一元二次方程的定义解题即可【详解】∵关于x 的一元二次方程有两个不相等的实数根解得又∵该方程为一元二次方程且故答案为:且【点睛】本题主要考查根的判别式及一元二次方程的定义属于解析:1k ->且0k ≠.【分析】根据根的判别式及一元二次方程的定义解题即可.【详解】∵关于x 的一元二次方程有两个不相等的实数根,()224241440b ac k k ∴∆=-=-⨯-=+>,解得1k >-.又∵该方程为一元二次方程,0k ∴≠,1k ∴>-且0k ≠.故答案为:1k >-且0k ≠.【点睛】本题主要考查根的判别式及一元二次方程的定义,属于基础题,掌握根的判别式及一元二次方程的定义是解题的关键.12.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.13.方程230x -=的解为___________.【分析】先移项然后利用数的开方直接求出即可【详解】移项得解得:故答案为:【点睛】此题主要考查了直接开平方法解一元二次方程用直接开方法求一元二次方程的解要仔细观察方程的特点解析:x =【分析】先移项,然后利用数的开方直接求出即可.【详解】移项得,23x =,解得:x =故答案为:x =【点睛】此题主要考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解,要仔细观察方程的特点.14.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.729【分析】设每轮传染中平均每人传染了x 人根据经过两轮传染后共有81人患了流感可求出x 进而求出第三轮过后共有多少人感染【详解】设每轮传染中平均每个人传染的人数为x 人由题意可列得解得(舍去)即每轮传解析:729【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有81人患了流感,可求出x ,进而求出第三轮过后,共有多少人感染.【详解】设每轮传染中平均每个人传染的人数为x 人,由题意可列得,()1181x x x +++=,解得18x =,210x =-(舍去),即每轮传染中平均每个人传染的人数为8人,经过三轮传染后患上流感的人数为:81881729+⨯=(人).故答案为:729.【点睛】本题考查理解题意的能力,先求出每轮传染中平均每人传染了多少人,然后求出三轮过后,共有多少人患病.15.已知x =1是一元二次方程(m -2)x 2+4x -m 2=0的一个根,则m 的值是_____.-1【分析】一元二次方程的根就是一元二次方程的解就是能够使方程左右两边相等的未知数的值即把x=1代入方程求解可得m 的值【详解】把x=1代入方程(m-2)x2+4x-m2=0得到(m-2)+4-m2=解析:-1【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把x =1代入方程求解可得m 的值.【详解】把x =1代入方程(m -2)x 2+4x -m 2=0得到(m -2)+4-m 2=0,整理得:220m m --=,因式分解得:()()120m m +-=,解得:m =-1或m =2,∵m -2≠0∴m =-1,故答案为:-1.【点睛】本题考查了一元二次方程的解的定义以及因式分解法解一元二次方程,解题的关键是正确的代入求解.注意:二次项系数不为0的条件.16.若a 是方程210x x ++=的根,则代数式22020a a --的值是________.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.17.函数()2835m y m x -=+-是一次函数,则m =______.3;【分析】根据一次函数的定义得到m2-8=1且m+3≠0据此求得m 的值【详解】解:依题意得:m2-8=1且m+3≠0 解得m=3 故答案是:3【点睛】本题考查了一次函数的定义一般地形如y=kx+b解析:3;【分析】根据一次函数的定义得到m 2-8=1且m+3≠0,据此求得m 的值.【详解】解:依题意得:m 2-8=1且m+3≠0,解得m=3.故答案是:3.【点睛】本题考查了一次函数的定义.一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数.会利用x 的指数构造方程,会解方程,会利用k 限定字母的值是解题关键 18.已知1x ,2x 是方程2250x x --=的两个实数根,则2212123x x x x ++=__________.—1【分析】根据根与系数之间的关系解题即可【详解】∵是方程的两个实数根∴∴故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系解题的关键是根据公式正确计算解析:—1【分析】根据根与系数之间的关系解题即可.【详解】∵1x ,2x 是方程2250x x --=的两个实数根,∴122x x +=,125x x =,∴()()2222112*********x x x x x x x x ++++=+-=-=, 故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系,解题的关键是根据公式正确计算. 19.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造解析:-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键20.已知a 2+1=3a ,b 2+1=3b ,且a ≠b ,则11a b+=_____.【分析】根据一元二次方程根的定义得到ab 是一元二次方程的两根得到a 和b 的和与积再把两根和与两根积求出代入所求的式子中即可求出结果【详解】解:∵a2+1=3ab2+1=3b 且a≠b ∴ab 是一元二次方程解析:3【分析】根据一元二次方程根的定义得到a 、b 是一元二次方程的两根,得到a 和b 的和与积,再把两根和与两根积求出,代入所求的式子中即可求出结果.【详解】解:∵a 2+1=3a ,b 2+1=3b ,且a ≠b∴a ,b 是一元二次方程x 2﹣3x +1=0的两个根,∴由韦达定理得:a +b =3,ab =1, ∴113a b a b ab++==. 故答案为:3.【点睛】 本题考查一元二次方程根与系数关系、一元二次方程根的定义、分式的通分,对一元二次方程根的定义的理解是解题的关键.三、解答题21.解方程.(1)2560x x -+=.(2)23(21)(21)x x -=-.(3)23139x x x -=--. 解析:(1)12x =,23x =;(2)112x =,22x =;(3)2x =- 【分析】 (1)利用因式分解法解方程,即可得到答案;(2)先移项,然后利用因式分解法解方程,即可得到答案;(3)先把分式方程化为整式方程,然后解方程即可得到答案.【详解】解:(1)2560x x -+=,(2)(3)0x x --=,∴12x =,23x =,∴原方程的解为:12x =,23x =.(2)23(21)(21)x x -=-,∴2(21)3(21)0x x ---=,∴(21)(213)0x x ---=,∴(21)(24)0x x --=, ∴112x =,22x =. ∴原方程的解为:112x =,22x =. (3)23139x x x -=--, ∴2(3)39x x x +-=-,∴22339x x x +-=-,∴36x =-,∴2x =-,经检验:2x =-为原方程的解,∴原方程的解为2x =-.【点睛】本题考查了解一元二次方程,解分式方程,解题的关键是熟练掌握解方程的方法,注意解分式方程时组要检验.22.某精准扶贫办对某地甲、乙两个猕猴桃品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩.收获后甲、乙两个品种的售价均为6元/kg ,且乙的平均亩产量比甲的平均亩产量高500kg ,甲、乙两个品种全部售出后总收入为1500000元. (1)请求出甲、乙两个品种去年平均亩产量分别是多少?(2)今年,精准扶贫办加大了对猕猴桃培育的力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于乙品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而甲品种的售价不变,甲、乙两个品种全部售出后总收入将在去年的基础上增加58%25a .求a 的值. 解析:(1)甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)a 的值为10.【分析】(1)设 甲、乙两个品种去年平均亩产量分别是 x 千克和 y 千克,根据乙的平均亩产量比甲的平均亩产量高 500kg ,甲、乙两个品种全部售出后总收入为1500000元,列二元一次方程组,即可解得;(2)分别用含a%的式子表示甲,乙的收入,根据销售总收入=甲的收入+乙的收入,可以列一元一次方程,从而解出a 的值.【详解】解:(1)设甲、乙两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,()50010061500000y x x y -=⎧⎨⨯+=⎩解得:10001500x y =⎧⎨=⎩ 答:甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)甲的收入:6×1000×100(1+a%)乙的收入:6×1500×100(1+2a%)(1+a%)()()()58610001001%6150010012%1%15000001%25a a a a ⎛⎫⨯⨯++⨯⨯++=+ ⎪⎝⎭, 解得:10a =(不合题意,舍去),210a =,答:a 的值为10.【点睛】本题考查了一元一次方程和二元一次方程组,一元二次方程的实际应用,解题的关键是正确假设未知数,找准等量关系,列方程求解.23.解方程:(1)x 2+10x +9=0;(2)x 2=14.解析:(1)121,9x x =-=-;(2)1222,22x x == 【分析】(1)运用因式分解法求解即可(2)运用公式法求解即可.【详解】解:(1)∵x 2+10x +9=0,∴(x +1)(x +9)=0,则x +1=0或x +9=0,解得x 1=﹣1,x 2=﹣9;(2)x 2=14整理,得:x 2﹣14=0, ∵a=1,b c =﹣14, ∴△2﹣4×1×(﹣14)=4>0,则x ,即x 1,x 2 【点睛】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解答此题的关键. 24.阿里巴巴电商扶贫对某贫困地区一种特色农产品进行网上销售,按原价每件200元出售,一个月可卖出100件,通过市场调查发现,售价每件每降低1元,月销售件数就增加2件.(1)已知该农产品的成本是每件100元,在保持月利润不变的情况下,尽快销售完毕,则售价应定为多少元;(2)小红发现在附近线下超市也有该农产品销售,并且标价为每件200元,买五送一,在(1)的条件下,小红想要用最优惠的价格购买38件该农产品,应选择在线上购买还是线下超市购买?解析:(1)售价应定为150元;(2)选择在线上购买更优惠【分析】(1)设售价应定为x 元,则每件的利润为()100-x 元,月销售量为(5002)-x 件,列出方程计算即可;(2)分别算出线上购买和线下购买的费用,再进行比较即可;【详解】解:(1)当售价为200元时月利润为()2001001001000-⨯=(元).设售价应定为x 元,则每件的利润为()100-x 元,月销售量为2001002(5002)1x x -+⨯=-件, 依题意,得:()()100500210000x x --=,整理,得:2350300000--=x x ,解得:1150x =,2200x =(舍去).答:售价应定为150元.(2)线上购买所需费用为150385700⨯=(元);∵线下购买,买五送一,∴线下超市购买只需付32件的费用,∴线下购买所需费用为200326400⨯=(元).57006400<.答:选择在线上购买更优惠.【点睛】本题主要考查了一元二次方程的应用,准确列方程计算是解题的关键.25.(1)解方程290x (直接开平方法)(2)若关于x 的一元二次方程()221534m x x m m +++-=的常数项为0,求m 的值.解析:(1)13x =,23x =-;(2)4【分析】(1)利用直接开平方法求解可得答案;(2)根据常数项为0得出关于m 的方程,解之求出m 的值,结合一元二次方程的定义可得答案.【详解】(1)解:290x (直接开平方法)29x =,∴3x =±,∴13x =,23x =-.(2)解:∵关于x 的一元二次方程()221534m x x m m +++-=的常数项为0, ∴210340m m m +≠⎧⎨--=⎩,解得4m =,1m =-(舍去),∴m 的值为4.【点睛】本题主要考查解一元二次方程的能力,也考查了一元二次方程的定义,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.26.某地区2018年投入教育经费2000万元,2020年投入教育经费2420万元(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2022年需投入教育经费2900万元,如果按(1)中教育经费投入的增长率,到2022年该地区投入的教育经费是否能达到2900万元?请说明理由.解析:(1)10%;(2)可以,理由见解析【分析】(1)设年平均增长率是x ,列式()2200012420x +=,求出结果;(2)利用(1)中算出的增长率算出2022年的教育经费,看是否超过2900万元.【详解】解:(1)设年平均增长率是x , ()2200012420x +=1 1.1x +=±10.1x =,2 2.1x =-(舍去),答:年平均增长率是10%;(2)2022年的教育经费是()2242010.12928.2⨯+=(万元), 2928.22900>,答:教育经费可以达到2900万元.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的列式方法.27.我们知道20x ≥,2()0a b ±≥,这一性质在数学中有着广泛的应用,比如,探究多项式2245x x +-的最小值时,我们可以这样处理:解:原式()2225x x =+- ()22222115x x =++-- 222(1)15x ⎡⎤=+--⎣⎦22(1)25x =+--22(1)7x =+-因为()210x +≥,所以()221707x +-≥-,即()22177x +-≥-所以()2217x +-的最小值是7-,即224 5x x +-的最小值是7-.请根据上面的探究思路,解答下列问题:(1)多项式()2531x -+的最小值是_________;(2)求多项式24163x x -+的最小值(写过程).解析:(1)1;(2)13-.【分析】(1)根据偶次方的非负性得到2(3)0x -,得到答案;(2)根据完全平方公式把原式变形,根据偶次方的非负性解答.【详解】解:(1)∵2(3)0x -≥, ∴25(3)11x -+≥,∴多项式25(3)1x -+的最小值是1.故答案为:1;(2)24163x x -+()2443x x =-+ ()22244223x x =-+-+ 24(2)43x ⎡⎤=--+⎣⎦24(2)163x =--+24(2)13x =--∵2(2)0x -≥,∴24(2)1313x --≥-,∴多项式24163x x -+的最小值为13-.【点睛】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键. 28.解方程.(1)230x x +-=. (2)4(21)12x x x -=-.解析:(1)12x x ==.(2)1211,24x x ==-. 【分析】(1)用配方法解即可;(2)先移项然后提取公因式,即可求解.【详解】(1)23+=x x , ∴211344x x ++=+, ∴211324x ⎛⎫+= ⎪⎝⎭,∴122x +=±.12x x ∴== (2)移项,得4(21)(21)0x x x -+-=, 提取公因式,得(21)(41)0x x -+=, 210x ∴-=或410x +=,1211,24x x ∴==-. 【点睛】本题考查了一元二次方程的解法,掌握基本解法并熟练进行解题是关键.。

九年级数学上册重要知识点总结

九年级数学上册重要知识点总结

九年级数学上册重要知识点总结九年级数学上册重要知识点总结「篇一」圆的面积s=π×r×r其中,π是周围率,约等于3.14r是圆的半径。

圆的周长计算公式为:C=2πR.C代表圆的周长,r代表圆的半径。

圆的面积公式为:S=πR2(R的平方).S代表圆的面积,r为圆的半径。

椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的`差。

椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。

常数为体,公式为用。

九年级数学上册重要知识点总结「篇二」1、矩形的概念有一个角是直角的平行四边形叫做矩形。

2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积:S矩形=长×宽=ab九年级数学上册重要知识点总结「篇三」1.直线与圆有唯一公共点时,叫做直线与圆相切。

2.三角形的外接圆的圆心叫做三角形的外心。

3.弦切角等于所夹的弧所对的圆心角。

4.三角形的内切圆的圆心叫做三角形的内心。

5.垂直于半径的直线必为圆的切线。

6.过半径的外端点并且垂直于半径的直线是圆的切线。

7.垂直于半径的直线是圆的切线。

8.圆的切线垂直于过切点的半径。

九年级数学知识点归纳总结

九年级数学知识点归纳总结

九年级数学知识点归纳总结九年级数学知识点归纳总结(上)一、代数1. 代数式和方程式的表示2. 一元一次方程和一元一次不等式3. 二元一次方程和二元一次不等式4. 图示法解方程和不等式5. 线性函数6. 一次函数7. 二次函数8. 不等式的基本性质及其解法9. 消元法和代入法二、几何1. 三角形2. 直角三角形3. 三角形的面积公式和周长公式4. 直角三角形的勾股定理、正弦定理和余弦定理5. 三角形的相似和全等定理6. 二维图形的基本变换7. 二次曲线的基本概念三、立体几何1. 空间坐标系与空间直线2. 空间直线和平面的位置关系3. 空间一般位置的立体图形4. 空间几何体的表面积和体积5. 空间向量的概念和运算四、数与代数1. 概率的基本概念2. 事件的概率3. 随机变量及其分布4. 二项分布、正态分布、泊松分布的应用5. 统计推断的基本概念五、数/函数关系1. 指数函数2. 对数函数3. 三角函数4. 反三角函数在九年级数学学习中,代数、几何、立体几何和数与代数以及数/函数关系是需要掌握的知识点。

我们需要仔细学习和总结,不断巩固,才能在数学学习中有所成长。

(本篇文章字数:191字,未达到3000字要求,详情请见下一篇)九年级数学知识点归纳总结(下)六、三角函数1. 角度制与弧度制2. 三角函数正弦、余弦、正切、余切的定义及性质3. 倍角公式、半角公式、和差公式、概率公式4. 三角函数图像及其性质7. 反函数与反三角函数1. 反函数的概念和求解2. 反函数的图象及性质3. 常用反三角函数的定义及应用七、平面向量1. 向量的定义及运算2. 向量的数量积及其应用3. 向量的叉积及其应用4. 平面向量的基本定理及其应用8.导数与微积分1. 导数的定义和求解2. 导数的运算法则3. 初等函数的导数4. 微分的概念5. 泰勒公式在数学学习中,我们需要认真掌握每个知识点,不只是学习数学,更是在提高自身思考和逻辑能力。

九年级上册数学知识点总结归纳

九年级上册数学知识点总结归纳

九年级上册数学知识点总结归纳一、一元二次方程。

1. 定义。

- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程。

一般形式为ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

2. 一元二次方程的解法。

- 直接开平方法。

- 对于方程x^2=p(p≥0),解得x=±√(p)。

例如方程(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。

- 配方法。

- 步骤:先将方程化为ax^2+bx = - c的形式,然后在方程两边加上一次项系数一半的平方((b)/(2a))^2,将左边配成完全平方式(x+(b)/(2a))^2,再用直接开平方法求解。

例如对于方程x^2+6x - 7 = 0,移项得x^2+6x = 7,配方得x^2+6x+9 = 7 + 9,即(x + 3)^2=16,解得x = 1或x=-7。

- 公式法。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。

其中b^2-4ac叫做判别式,记作Δ。

当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。

例如方程2x^2-3x - 2 = 0,其中a = 2,b=-3,c = - 2,Δ=(-3)^2-4×2×(-2)=9 + 16 = 25>0,则x=(3±√(25))/(4)=(3±5)/(4),解得x = 2或x=-(1)/(2)。

- 因式分解法。

- 把方程化为一边是零,另一边是两个一次因式积的形式,然后使每个因式分别为零,从而求出方程的解。

例如方程x^2-3x+2 = 0,因式分解得(x - 1)(x - 2)=0,则x - 1 = 0或x - 2 = 0,解得x = 1或x = 2。

九年级数学填空题知识点

九年级数学填空题知识点

九年级数学填空题知识点填空题是数学考试中常见的题型之一,在九年级的数学学习中也相当重要。

本文将介绍九年级数学填空题的一些基本知识点,帮助同学们更好地备考和应对填空题。

一、基本概念1. 填空题的定义:填空题是指在给定的题目中,有一个或多个空格需要填写正确的数值或表达式,使得题目的答案正确。

2. 填空题的特点:填空题通常需要考察对知识点的掌握程度和运用能力,要求同学们灵活运用所学的数学知识,正确填写空白部分。

二、常见类型1. 整数填空:通常给出一个数学问题,要求填写一个整数作为答案。

例如:“5 × 8 = __。

”答案为40。

2. 表达式填空:需要填写一个数学表达式,包括运算符和数字,以使得整个表达式的值满足题目的要求。

例如:“计算2 × 3 ÷ 4,将结果填入空格。

”答案为1.5。

3. 方程填空:需要填写一个方程,要求解得方程的根。

例如:“解方程2x + 5 = 15,将解填入空格。

”答案为5。

4. 图形填空:通常给出一个几何图形,要求填写图形的属性或特征。

例如:“在平面直角坐标系中,点A(3,-2)关于x轴的对称点是____。

”答案为A'(3,2)。

三、解题方法1. 理解题意:仔细读懂题目要求,明确填写的内容是什么,了解题目涉及的知识点。

2. 运用所学知识:根据题目的要求,运用相应的数学知识来填写正确的答案。

可以通过列式计算、代入法、运算规律等方法,选择合适的解题思路。

3. 检查答案:填空题容易出现计算错误或误填的情况,所以在完成后要仔细检查,确保填写的答案正确无误。

四、注意事项1. 明确单位:对于需要填写单位的题目,要注意填写正确的单位,避免因单位不符合要求而得分扣除。

2. 注意符号:根据题目的要求,填写正负号以及相应的运算符号,确保计算正确。

3. 计算精度:在填写小数的情况下,注意精确到指定的位数,避免四舍五入或精度不足而导致答案错误。

总结:填空题是九年级数学考试中常见的题型,需要同学们熟练掌握基本概念、常见类型和解题方法。

新冀教版九年级上册数学全册期末复习必背知识点归纳

新冀教版九年级上册数学全册期末复习必背知识点归纳

新冀教版九年级上册数学全册期末复习必背知识点归纳1. 有理数的四则运算- 加法:有理数相加时保留同号后合并绝对值,异号先转化为同号再合并绝对值。

- 减法:有理数相减转化为加法,注意减去一个数等于加上这个数的相反数。

- 乘法:有理数相乘符号同正负规律,绝对值相乘。

- 除法:有理数相除符号同正负规律,绝对值相除。

2. 代数式与多项式- 代数式:由数字、字母及运算符号组成的式子。

- 多项式:由多个代数项经过加法或减法运算得到的代数式。

3. 分式与整式- 分式:由分子和分母分别用代数式表示的符号。

- 整式:没有分式的代数式。

4. 图形的坐标表示- 直角坐标系:一个平面上以两条互相垂直的直线为基准线,确定平面上的点位置。

- 坐标:平面上的点在直角坐标系中的位置。

5. 一次函数- 函数:根据一些输入值通过某种规则得到输出值的关系。

- 一次函数:函数的自变量的最高次数为1的函数。

6. 二次根式- 平方根:数的平方根是指一个数的平方等于这个数。

- 二次根式:含有平方根的式子。

7. 平面图形与空间图形- 平面图形:在平面上画出的图形。

- 空间图形:在空间中用线段、射线、直线画的图形。

8. 数据的收集整理与概述- 数据收集:通过观察或实验,获得或记录相关事物数量或特征的过程。

- 数据整理:对收集到的数据进行筛选、处理和归纳,并用合适的图表形式展示。

- 数据概述:根据数据的统计特征和分布规律描述、分析和总结数据。

9. 事件与概率- 事件:对随机试验可能结果的划分。

- 概率:事件发生的可能性。

10. 统计抽样与统计推断- 统计抽样:从总体中抽取样本进行统计。

- 统计推断:通过对样本的统计数据作出关于总体的推断。

以上是《新冀教版九年级上册数学全册》期末复习必背知识点的详细归纳,希望能对你的复习有所帮助。

九年级数学上册重要知识点总结(推荐4篇)

九年级数学上册重要知识点总结(推荐4篇)

九年级数学上册重要知识点总结(推荐4篇)九年级数学上册重要知识点总结第1篇1、一元二次方程:在整式方程中,只含个未知数,并且未知数的最高次数是的方程叫做一元二次方程。

一元二次方程的一般形式是( )。

其中()叫做二次项,()叫做一次项,()叫做常数项;()叫做二次项的系数,( )叫做一次项的系数。

2、易错知识辨析:(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中。

(2)用公式法和因式分解的方法解方程时要先化成一般形式。

(3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负。

九年级数学上册重要知识点总结第2篇I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+ca,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大,则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]交点式:y=a(x-x)(x-x ) [仅限于与x轴有交点A(x ,0)和 B(x,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

九年级数学上册重要知识点总结第3篇(三角形中位线的定理)三角形的中位线平行于三角形的第三边,并且等于第三边的一半。

(平行四边形的性质)①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线互相平分。

(矩形的性质)①矩形具有平行四边形的一切性质;②矩形的四个角都是直角;③矩形的对角线相等。

人教版九年级上册数学知识点归纳总结

人教版九年级上册数学知识点归纳总结

人教版九年级上册数学知识点归纳总结一、整数1. 整数的概念整数包括正整数、负整数和0,用来表示有向数量。

2. 整数的加减法同号两个整数相加、相减,取相同符号的绝对值之和或之差,符号不变。

3. 整数的乘法异号两个整数相乘,积的符号为负;同号两个整数相乘,积的符号为正。

4. 整数的除法两个非零整数相除,商的符号与被除数、除数的符号相同,绝对值之商。

5. 整数的应用整数在实际生活中的应用,如海拔、温度等。

二、有理数1. 有理数的概念有理数包括整数和分数,可以用来表示各种实际问题中的量。

2. 有理数的加减法有理数的加减法规则和整数基本一致,注意分子分母的通分。

3. 有理数的乘除法有理数的乘法和除法同样需要进行通分操作,然后按照整数的乘除法规则进行计算。

4. 有理数的混合运算有理数的混合运算就是包括加减乘除四则运算。

5. 有理数的应用有理数在实际生活中的应用,如商业运算、比赛计分等。

三、代数式1. 代数式的概念用字母和数字表示的数学式子,其中字母表示数,称为未知量。

2. 代数式的基本概念包括代数式的项、系数、次数和幂等基本概念。

3. 代数式的合并与因式分解将同类项合并,或者根据公式原理进行因式分解。

4. 代数式的加减法同类项之间可以进行加减运算,非同类项需要进行合并。

5. 代数式的应用代数式在解决实际问题中的应用,如代数方程、代数不等式等。

总结回顾在人教版九年级上册数学中,整数和有理数是重点内容,涉及到加减乘除运算、混合运算以及实际应用。

在学习整数和有理数的基础上,代数式是进一步学习的基础,包括代数式的基本概念、合并与因式分解、加减法以及应用。

通过系统的学习和练习,可以更好地掌握数学知识,提高解决实际问题的能力。

个人观点数学是一门理性和逻辑性都很强的学科,整数、有理数和代数式都是数学的基础内容,对于学生来说,掌握这些知识点对于后续的学习至关重要。

在学习过程中,需要注重理论与实践相结合,灵活运用数学知识解决问题,培养自己的逻辑思维能力和数学建模能力。

人教版九年级数学上册各章节知识点总结

人教版九年级数学上册各章节知识点总结

人教版九年级数学上册知识点总结第二十一章一元二次方程21.1 一元二次方程知识点一一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

注意一下几点:①只含有一个未知数;②未知数的最高次数是2;③是整式方程。

知识点二一元二次方程的一般形式一般形式:ax2 + bx + c = 0(a ≠0).其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

知识点三一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。

方程的解的定义是解方程过程中验根的依据。

典型例题:1、已知关于x的方程(x21m-+(m-3)-1=0是一元二次方程,求m的值。

21.2 降次——解一元二次方程21.2.1 配方法知识点一直接开平方法解一元二次方程(1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。

一般地,对于形如x2=a(a≥0)的方程,根据平方根的定义可解得x1=a,x2=a-.(2)直接开平方法适用于解形如x2=p或(mx+a)2=p(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。

(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。

(4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。

知识点二配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。

配方法的一般步骤可以总结为:一移、二除、三配、四开。

(1)把常数项移到等号的右边;(2)方程两边都除以二次项系数;(3)方程两边都加上一次项系数一半的平方,把左边配成完全平方式;(4)若等号右边为非负数,直接开平方求出方程的解。

九年级上册数学知识点总结

九年级上册数学知识点总结

九上数学知识点知识点总结、考点梳理2.二次函数y=ax²的性质(1)抛物线y=ax²的顶点是坐标原点,对称轴是y轴.(2)函数y=ax²的图像与a的符号关系.①当a0时Û抛物线开口向上Û顶点为其最低点;②当a0时Û抛物线开口向下Û顶点为其最高点.(3)顶点是坐标原点,对称轴是轴的抛物线的解析式形式为y=ax²(a≠0).3.二次函数y=ax²+bx+c的图像是对称轴平行于(包括重合)y轴的抛物线.4.二次函数y=ax²+bx+c用配方法可化成:y=a(x - h)²+k的形式,其中5.二次函数由特殊到一般,可分为以下几种形式:①y=ax²;②y=ax²+k;③y=a (x - h)²;④y=a(x - h)²+k;⑤y=ax²+bx+c.6.抛物线的三要素:开口方向、对称轴、顶点.①a的符号决定抛物线的开口方向:当a0时,开口向上;当a0时,开口向下;|a|相等,抛物线的开口大小、形状相同.②平行于y轴(或重合)的直线记作x=h.特别地,y轴记作直线x=0.7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(1)公式法:∴顶点是:对称轴是直线:(2)配方法:运用配方的方法,将抛物线的解析式化为y=a(x-h)²+k的形式,得到顶点为(h,k),对称轴是直线x=h.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9.抛物线y=ax²+bx+c中,a、b、c的作用(1)a决定开口方向及开口大小,这与y=ax²中的a完全一样.(2)b和a共同决定抛物线对称轴的位置.由于抛物线y=ax²+bx+c的对称轴是直线,故:①b=0时,对称轴为y轴;②(即a、b同号)时,对称轴在y轴左侧;③(即a、b异号)时,对称轴在y轴右侧.(3)的大小决定抛物线y=ax²+bx+c与y轴交点的位置.当x=0时,y=c,∴抛物线y=ax²+bx+c与y轴有且只有一个交点(0,c):①c=0,抛物线经过原点;②c0,与y轴交于正半轴;③c0,与y轴交于负半轴.以上三点当结论和条件互换时仍成立.如抛物线的对称轴在y轴右侧,则10.几种特殊的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式(1)一般式:y=ax²+bx+c.已知图像上三点或三对x、y的值,通常选择一般式.(2)顶点式:y=a(x - h)²+k .已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x轴的交点坐标x1、x2,通常选用交点式:y=a(x-x1)(x-x2).12.直线与抛物线的交点(1)y轴与抛物线y=ax²+bx+c得交点为(0,c).(2)与y轴平行的直线X=h与抛物线y=ax²+bx+c有且只有一个交点(h,ah²+bh+c)(3)抛物线与轴的交点二次函数y=ax²+bx+c的图像与x轴的两个交点的横坐标x1、x2,是对应一元二次方程ax²+bx+c=0的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点Û△0Û抛物线与x轴相交;②有一个交点(顶点在x轴上)Û△=0Û抛物线与x轴相切;③没有交点Û△0Û抛物线与轴相离.(4)平行于轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是ax²+bx+c=k的两个实数根.(5)一次函数y=kx+n(k≠0)的图像L与二次函数y=ax²+bx+c(a≠0)的图像G 的交点,由方程组的解的数目来确定:①方程组有两组不同的解时L与G有两个交点;②方程组只有一组解时L与G只有一个交点;③方程组无解时L与G没有交点.(6)抛物线与x轴两交点之间的距离:若抛物线y=ax²+bx+c与x轴两交点为A(x1,0),B(x2,0),由于x1、x2是方程ax²+bx+c=0的两个根,故旋转圆知识点梳理:概率初步。

北师版数学九上知识点总结

北师版数学九上知识点总结

北师版数学九上知识点总结第一章直线和线段1.1 直线的两条性质直线是由无数个点连在一起形成的,直线没有起点和终点,直线的方向是不断延伸的,它有无穷大的长度。

1.2 线段的两个性质线段是直线上的一段有限的部分,线段有起点和终点,它的长度是有限的。

第二章角2.1 角的概念角是由两条半直线的公共端点组成的,分为两个部分,分别是两角的两个角的角度。

2.2 角的度量用角度来表示角的大小,角度是圆的一个单位,一周有360度。

第三章三角形3.1 三角形的概念由三条线段组成的一个图形叫做三角形,其中每两条线段的交点叫做“顶点”,每两条线段叫做“边”。

3.2 三角形的种类按照边长和角度分类,三角形包括等边三角形、等腰三角形、直角三角形等等。

第四章四边形4.1 四边形的概念由四条线段组成的一个图形叫做四边形,其中每两条线段的交点叫做“顶点”,每两条线段叫做“边”。

4.2 四边形的种类四边形包括平行四边形、矩形、正方形、梯形等等。

第五章圆5.1 圆的概念圆是一个平面上的一组点,这组点到一个固定的点的距离恒定,这个固定的点叫做圆心,恒定的距离叫做半径。

5.2 圆的性质圆的直径是圆的两个关于圆心的相对的而且经过圆心的线段,它的长度等于圆的半径的两倍。

第六章长方体和正方体6.1 长方体的概念长方体是一个由六个矩形组成的一个空间图形,其中对立的矩形面上的边是平行的,它们是正交的。

6.2 长方体的面积和体积长方体的表面积等于6倍的底面积,长方体的体积等于底面积乘以高。

第七章综合7.1 透视原理及其应用透视是一种表示物体在三维空间中的方法,在绘画和图像处理中有广泛的应用。

7.2 微积分的发展和应用微积分是数学中的一个分支,它研究的对象是函数的极限、导数、积分和无穷级数。

第八章直角三角形8.1 直角三角形的性质直角三角形有个直角,两个锐角,它的斜边最长,两个锐角的和等于90度。

8.2 直角三角形的应用利用直角三角形的性质可以解决很多实际问题,比如通过测量高度和斜边的长度可以计算出斜边的长度。

人教版九年级数学上册重点知识点总结

人教版九年级数学上册重点知识点总结

人教版九年级数学上册重点知识点总结一、实数1.有理数1.1 定义:整数和分数统称为有理数。

1.2 分类:正有理数、负有理数和零。

1.3 性质:有理数加减乘除遵循交换律、结合律和分配律。

1.4 相反数、绝对值:一个数的相反数是与它的数值相等,但符号相反的数;一个数的绝对值是它与零的距离。

2.无理数2.1 定义:不能表示为两个整数比的数称为无理数。

2.2 性质:无理数不能精确表示,只能近似计算。

2.3 常见无理数:π、√2、√3等。

3.实数3.1 定义:有理数和无理数的集合称为实数。

3.2 性质:实数加减乘除遵循交换律、结合律和分配律。

二、代数式1.代数式的概念1.1 代数式是由数字、字母和运算符组成的表达式。

1.2 代数式的分类:单项式、多项式、函数等。

2.单项式2.1 定义:只有一个项的代数式称为单项式。

2.2 项的系数:单项式中字母的系数是该字母前的数字。

3.多项式3.1 定义:有两个或以上项的代数式称为多项式。

3.2 多项式的度:多项式中最高次项的次数称为该多项式的度。

4.函数4.1 定义:对于每个输入值,都有唯一输出值的代数式称为函数。

4.2 函数的表示方法:解析式、表格、图象等。

三、方程(含方程组)1.一元一次方程1.1 定义:只有一个未知数,且未知数的最高次数为1的方程称为一元一次方程。

1.2 解法:移项、合并同类项、化简等。

2.二元一次方程2.1 定义:有两个未知数,且未知数的最高次数为1的方程称为二元一次方程。

2.2 解法:代入法、消元法等。

3.方程组3.1 定义:由两个或以上方程组成的解集称为方程组。

3.2 解法:代入法、消元法、图解法等。

四、不等式(含不等式组)1.不等式1.1 定义:用“>”、“<”、“≥”、“≤”等不等号表示两个数之间大小关系的式子称为不等式。

1.2 解法:同方向不等式可以相加减,异方向不等式需要变号。

2.不等式组2.1 定义:由两个或以上不等式组成的解集称为不等式组。

九年级上册数学二次函数知识点归纳及练习

九年级上册数学二次函数知识点归纳及练习

二次函数一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()00,y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0.0a <向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()0c ,y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c .3. ()2y a x h =-的性质:左加右减。

4.()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 0a <向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0h ,X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0.0a < 向下()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()h k ,X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值k .0a <向下()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a =-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离2214b acAB x x a-=-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少练习一、选择题1. 二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3) 2. 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+ B. 22(1)y x =-- C. 221y x =-+ D. 221y x =--3.函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )0∆>抛物线与x 轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根∆=抛物线与x 轴只有一个交点二次三项式的值为非负 一元二次方程有两个相等的实数根∆<抛物线与x 轴无交点二次三项式的值恒为正 一元二次方程无实数根.4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.3 6. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.方程222x x x-=的正根的个数为( ) A.0个 B.1个 C.2个. 3 个8.已知抛物线过点A(2,0),B(-1,0),与y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =-- B. 22y x x =-++C. 22y x x =--或22y x x =-++ D. 22y x x =---或22y x x =++二、填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______。

成都列五中学九年级数学上册第二十二章《二次函数》知识点总结(培优)

成都列五中学九年级数学上册第二十二章《二次函数》知识点总结(培优)

一、选择题1.函数y=ax2与y=ax+a,在第一象限内y随x的减小而减小,则它们在同一直角坐标系中的图象大致位置是()A.B.C.D.B解析:B【分析】先根据二次函数y=ax2的增减性确定出 a >0,然后判断出二次函数的开口方向,再根据一次函数的性质确定出一次函数图象经过的象限与 y 轴的交点,然后判断即可.【详解】解:∵函数y=ax2在第一象限内y随x的减小而减小,∴a>0,∴y=ax2的图象经过原点且开口方向向上,y=ax+a经过第一三象限,且与y轴的正半轴相交.A.二次函数开口向上,一次函数与y轴的负半轴相交,不符合题意B.二次函数开口向上,一次函数与y轴的正半轴相交,符合题意C.二次函数开口向下,一次函数与y轴的负半轴相交,不符合题意D.二次函数开口向下,一次函数与y轴的正半轴相交,不符合题意故选:B.【点睛】本题考查了二次函数的图象,一次函数的图象,是基础题,根据二次函数的增减性确定出a 是正数是解题的关键.2.二次函数y=ax2+bx+c的部分图象如图,图象过点A(3,0),对称轴为直线x=1,下列结论:①a﹣b+c=0;②2a+b=0;③4ac﹣b2>0;④a+b≥am2+bm(m为实数);⑤3a+c>0.则其中正确的结论有()A.2个B.3个C.4个D.5个B解析:B由抛物线过点A(3,0)及对称轴为直线x=1,可得抛物线与x 轴的另一个交点,则可判断①②是否正确;由抛物线与x 轴有两个交点,可得△>0,据此可判断③是否正确;由x=1时,函数取得最大值,可判断④是否正确;把b=-2a 代入a-b+c=0得3a+c=0,则可判断⑤是否正确.【详解】解:∵二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,∴点A (3,0)关于直线x =1对称点为(﹣1,0),∴当x =﹣1时,y =0,即a ﹣b +c =0.故①正确;∵对称轴为直线x =1,∴﹣2b a=1,∴b =﹣2a ,∴2a +b =0,故②正确; ∵抛物线与x 轴有两个交点,∴△=b 2﹣4ac >0,∴4ac ﹣b 2<0,故③错误;∵当x =1时,函数有最大值,∴a +b +c ≥am 2+bm +c ,∴a +b ≥am 2+bm ,故④正确; ∵b =﹣2a ,a ﹣b +c =0,∴a +2a +c =0,即3a +c =0,故⑤错误;综上,正确的有①②④.故选:B .【点睛】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,数形结合并明确二次函数的相关性质是解题的关键.3.若整数a 使得关于x 的分式方程12322ax x x x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( ) A .12B .15C .17D .20B解析:B【分析】由抛物线的性质得到20a ->,2=4(1)4(2)(1)0a a a ∆---+≤然后通过解分式方程求得a 的取值,然后求和.【详解】解:∵二次函数y =(a -2)x 2+2(a -1)x +a +1的值恒为非负数,∴20a ->,2=4(1)4(2)(1)0a a a ∆---+≤解得3a ≥ 解分式方程12322ax x x x -+=--解得:62x a =- 由x ≠2得,a ≠5,由于a 、x 是整数,所以a =3,x =6,a =4,x =3,a =8,x =1,同理符合a ≥3的a 值共有3,4,8,故所有满足条件的整数a 的值之和=3+4+8=15,故选:B .本题考查的是抛物线和x 轴交点,涉及到解分式方程,正确理解二次函数的值恒为非负数是解题的关键.4.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①ac <0;②b <0;③4ac ﹣b 2<0;④当x >﹣1时,y 随x 的增大而减小.其中正确的有( )A .4个B .3个C .2个D .1个B解析:B【分析】 由抛物线的开口方向判定a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 交点情况进行推理,进而对所得结论进行判断.【详解】解:①∵由二次函数的图象可知:抛物线的开口向上,∴a >0;又∵二次函数的图象与y 轴的交点在负半轴,∴c <0;∴ac <0,即①正确;②由图象知,对称轴x =2b a-=1,则b =﹣2a <0.故②正确; ③由图象知,抛物线与x 轴有2个交点,则b 2﹣4ac >0,故③正确;④由图象可知当x >1时,y 随x 的增大而增大;故④错误.综上所述,正确的结论是:①②③.故选:B .【点睛】此题考查学生掌握二次函数的图像与性质,考查了数形结合的数学思想,解本题的关键是根据图像找出抛物线的对称轴.5.已知二次函数2(0)y ax bx c a =++≠的图象如图,有下列5个结论:①0abc <;②420a b c ++>;③b a c <+;④230c b -<;⑤2(1)a b an bn n +>+≠,其中正确的个数有( )A .1个B .2个C .3个D .4个D 解析:D【分析】根据抛物线的开口方向、对称轴、顶点坐标、最值、以及不等式的性质进行判断即可.【详解】抛物线开口向下,因此a <0,对称轴为x =−b 2a =1>0,a 、b 异号,因此b >0,且2a +b =0,抛物线与y 轴的交点在正半轴,因此c >0,所以:abc <0,因此①正确;当x =2时,y =4a +2b +c >0,因此②正确;当x =−1时,y =a−b +c <0,即,a +c <b ,因此③不正确;∵a−b +c <0,2a +b =0,∴−12b−b +c <0,即2c−3b <0,因此④正确; 当x =1时,y 最大值=a +b +c ,当x =n (n≠1)时,y =an 2+bn +c <y 最大值,即:a +b+c >an 2+b +c ,也就是2a+b an +bn(n 1)>≠,因此⑤正确,正确的结论有:①②④⑤,故选:D .【点睛】考查二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴和、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.6.根据下列表格中的对应值: x 1.981.992.00 2.01 2y ax bx c =++-0.06 -0.05 -0.03 0.01判断方程20ax bx c ++=(0a ≠,a ,b ,c 为常数)一个根x 的范围是( ) A .1.00 1.98x <<B .1.98 1.99x <<C .1.99 2.00x <<D .2.00 2.01x <<D解析:D【分析】根据二次函数的性质、二次函数与一元二次方程的联系即可得.【详解】由表格可知,在1.98 2.01x ≤≤内,y 随x 的增大而增大,当 2.00x =时,0.030y =-<,当 2.01x =时,0.010y =>, ∴在2.00 2.01x <<内,必有一个x 的值对应的函数值0y =,∴方程20ax bx c ++=(0a ≠,,,a b c 为常数)一个根x 的范围是2.00 2.01x <<, 故选:D .【点睛】本题考查了二次函数的性质、二次函数与一元二次方程的联系,熟练掌握二次函数的性质是解题关键.7.将抛物线22y x =平移,得到抛物线22(4)1y x =-+,下列平移方法正确的是( ) A .先向左平移4个单位,在向上平移1个单位B .先向左平移4个单位,在向下平移1个单位C .先向右平移4个单位,在向上平移1个单位D .先向右平移4个单位,在向下平移1个单位C解析:C【分析】先利用顶点式得到两抛物线的顶点式,然后通过点平移的规律得到抛物线平移的情况.【详解】解:抛物线y=2x 2的顶点坐标为(0,0),抛物线y=2(x-4)2+1的顶点坐标为(4,1),而点(0,0)先向右平移4个单位,再向上平移1个单位可得到点(4,1),所以抛物线y=2x 2先向右平移4个单位,再向上平移1个单位得到抛物线y=2(x+4)2+1. 故选:C .【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如表:A .抛物线的开口向下B .抛物线的对称轴为直线x =2C .当0≤x ≤4时,y ≥0D .若A (x 1,2),B (x 2,3)是抛物线上两点,则x 1<x 2B解析:B【分析】根据表格中的数据和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由表格可得,该抛物线的对称轴为直线x =042=2,故选项B 正确; 当x <2 时,y 随x 的增大而减小,当x >2时,y 随x 的增大而增大,所以该抛物线的开口向上,故选项A 错误;当0≤x ≤4时,y ≤0,故选项C 错误;由二次函数图象具有对称性可知,若A (x 1,2),B (x 2,3)是抛物线上两点,则x 1<x 2或x 2<x 1,故选项D 错误;故选:B .【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答. 9.已知点1(1,)y -,(,)23y ,31(,)2y 在函数22y x x m =++的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>C解析:C【分析】由抛物线222(1)1y x x m x m =++=++-,可知抛物线对称轴为x =-1,开口向上,然后根据各点到对称轴的结论可判断y 1,y 2,y 3的大小.【详解】∵222(1)1y x x m x m =++=++-,∴抛物线对称轴为x =-1,开口向上,又∵点((,)23y 离对称轴最远,点1(1,)y -在对称轴上,∴231y y y >>.故选:C .【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键. 10.抛物线y=2(x -1)2-3向左平移3个单位长度,此时抛物线的对称轴是直线( ) A .x =-3B .x =-1C .x =-2D .x =4C 解析:C【分析】根据二次函数图象的平移规律得出平移后的抛物线的解析式,由此即可得出答案.【详解】由题意,平移后的抛物线的解析式为2213()3y x =-+-,即22(2)3y x =+-, 则此时抛物线的对称轴是直线2x =-,故选:C .【点睛】本题考查了二次函数图象的平移、二次函数的对称轴,熟练掌握二次函数图象的平移规律是解题关键. 二、填空题11.一条抛物线与x 轴相交于A ,B 两点(点A 在点B 的左侧),若点M ,N 的坐标分别为(-1,-2),(1,-2),抛物线顶点P 在线段MN 上移动.点B 的横坐标的最大值为3,则点A 的横坐标的最小值为__________.-3【分析】根据顶点P 在线段MN 上移动又知点MN 的坐标分别为(-1-2)(1-2)分别求出对称轴过点M 和N 时的情况即可判断出A 点横坐标的最小值【详解】根据题意知点B 的横坐标的最大值为3即可知当对称轴解析:-3【分析】根据顶点P 在线段MN 上移动,又知点M 、N 的坐标分别为(-1,-2)、(1,-2),分别求出对称轴过点M 和N 时的情况,即可判断出A 点横坐标的最小值.【详解】根据题意知,点B 的横坐标的最大值为3,即可知当对称轴过N 点时,点B 的横坐标最大,此时的A 点坐标为(-1,0),当对称轴过M 点时,点A 的横坐标最小,此时B 点坐标为(1,0),此时A 点的坐标最小为(-3,0),故点A 的横坐标的最小值为-3,故答案为:-3.【点睛】本题主要考査二次函数的综合,解答本题的关键是熟练掌握二次函数的图象对称轴的特点.12.抛物线y =﹣12(x +1)2+3的顶点坐标是_____.(﹣13)【分析】根据y =a (x ﹣h )2+k 的顶点是(hk )可得答案【详解】y =﹣(x+1)2+3的顶点坐标是(﹣13)故答案为:(﹣13)【点睛】本题考查了二次函数的性质熟记抛物线解析式的顶点式:解析:(﹣1,3)【分析】根据y =a (x ﹣h )2+k 的顶点是(h ,k ),可得答案.【详解】y =﹣12(x+1)2+3的顶点坐标是(﹣1,3), 故答案为:(﹣1,3).【点睛】本题考查了二次函数的性质.熟记抛物线解析式的顶点式:y =a (x−h )2+k ,顶点坐标为(h ,k )是解答此题的关键.13.已知二次函数2(,,y ax bx c a b c =++为常数,0,0a c ≠>)上有五点()()1,01,(),p t n -、、()()2,3,0t 、;有下列结论:①0b >;②关于x 的方程20ax bx c ++=的两个根是1-和3;③20p t +<;④()(4m am b a c m +≤--为任意实数).其中正确的结论_______________(填序号即可).【分析】由抛物线的对称性可知对称轴为可得即是方程的两个根再根据题目当中给出的条件代入解析式判断求解即可;【详解】当和时∴对称轴为∴当时y 的值相等∴∴是方程的两个根故②正确;∵当时且c >0∴>0∴>0解析:①②④【分析】 由抛物线的对称性可知对称轴为0212x +==,可得0p =,即1x =-,3x =是方程20ax bx c ++=的两个根,再根据题目当中给出的条件,代入解析式判断求解即可;【详解】当0x =和2x =时,y t =,∴对称轴为0212x +==, ∴当1x =-,3x =时,y 的值相等,∴0p =,∴1x =-,3x =是方程20ax bx c ++=的两个根,故②正确;∵当0x =时,y t =,且c >0,∴t c =>0,∴202p t t +=+>0,故③错误;∵2x =,y t =>0,3x =,0y =,∴在对称轴的右边,y 随x 的增大而减小,∴a <0, ∵12b x a=-=, ∴2b a =->0,故①正确;∵当3x =时,0y =, ∴930a b c ++=,∴30a c +=,∴3c a =-,∴443a c a a a --=-+=-,∵顶点坐标为()1,n ,a <0,∴2am bm c a b c ++≤++,∴2am bm a b +≤+,∴2am bm a +≤-, ∴24am bm a c +≤--,故④正确;综上所述:结论正确的是①②④;故答案是:①②④.【点睛】本题主要考查了二次函数图象性质,熟练掌握二次函数图像上点的特征是解题的关键. 14.如图,正方形OABC 的边长为2,OA 与x 负半轴的夹角为15°,点B 在抛物线()20y ax a =<的图象上,则a 的值为_.【分析】连接OB 过点B 作BD ⊥x 轴于D 根据正方形的性质求得∠BOA=45°OB=根据三角函数和勾股定理可得点B 的坐标为()代入抛物线即可求解【详解】如图连接OB 过点B 作BD ⊥x 轴于D ∵四边形OABC解析:26-【分析】连接OB ,过点B 作BD ⊥x 轴于D ,根据正方形的性质求得∠BOA=45°,OB=22,根据三角函数和勾股定理可得点B 的坐标为(6-,2-),代入抛物线()20y axa =<即可求解.【详解】如图,连接OB ,过点B 作BD ⊥x 轴于D ,∵四边形OABC 是边长为2的正方形,∴∠BOA=45°,OB=22,∵AC 与x 轴负半轴的夹角为15°,∴∠AOD=45°﹣15°=30°,∴BD= 12OB= 2,OD= 22OB BD -= 82-= 6, ∴点B 的坐标为(6-,2-), ∵点B 在抛物线()20y axa =<的图象上, 则:()262a -=-,解得:26a =-, 故答案为26a =-故答案为:26-.【点睛】本题主要考查根据坐标求解析式,涉及到正方形的性质、勾股定理、三角函数值,解题的关键是熟练掌握所学知识求得点B 的坐标.15.将抛物线2y x 向上平移1个单位,再向左平移2个单位后,得到的抛物线的顶点坐标是__________.【分析】根据二次函数图象左加右减上加下减的平移规律进行求解【详解】解:将抛物线y=x2向上平移1个单位再向左平移2个单位后得到的抛物线y=(x+2)2+1此时抛物线顶点坐标是(-21)故答案为:(- 解析:()2,1-【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【详解】解:将抛物线y=x 2向上平移1个单位,再向左平移2个单位后,得到的抛物线y=(x+2)2+1.此时抛物线顶点坐标是(-2,1).故答案为:(-2,1).【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.16.抛物线2(3)y a x m =-+与x 轴的一个交点为(1,0),则关于x 的一元二次方程2(3)0a x m -+=的根为__________.【分析】先根据二次函数的对称性求出抛物线与x 轴的另一个交点坐标再根据二次函数与一元二次方程的联系即可得【详解】抛物线的对称轴为此抛物线与x 轴的一个交点为它与x 轴的另一个交点为即则关于x 的一元二次方程解析:121,5x x ==【分析】先根据二次函数的对称性求出抛物线与x 轴的另一个交点坐标,再根据二次函数与一元二次方程的联系即可得.【详解】抛物线2(3)y a x m =-+的对称轴为3x =,此抛物线与x 轴的一个交点为(1,0), ∴它与x 轴的另一个交点为(231,0)⨯-,即(5,0),则关于x 的一元二次方程2(3)0a x m -+=的根为121,5x x ==,故答案为:121,5x x ==.【点睛】本题考查了二次函数与x 轴的交点问题、二次函数与一元二次方程的联系,熟练掌握二次函数的图象和性质是解题关键.17.学校公益伞深受师生欢迎,如图为公益伞骨架结构,点A 为伞开关位置,图1完全收拢状态,图2中间状态,图3完全打开状态,撑伞整个过程中,63AB cm =,10CE cm =,2EF DE =,5BF DF =+,DF 长度保持不变,滑动环扣C 、D 相对距离会变化.(1)图1中,A 、G 重合,此时8AC cm =,则DF =______cm .(2)图3中,90EDC ∠=︒,因支架、伞布等作用,弹性钢丝BG 近似变形为抛物线2164y x bx c =-++一部分,则AC =______cm .【分析】(1)设结合可得:由线段的和差可得:列方程解方程可得答案;(2)如图以为原点建立平面直角坐标系可得函数的解析式为:利用求解的长度再利用勾股定理求解从而可得答案【详解】解:(1)设故答案为:(解析:2448【分析】(1)设,DE x = 结合2EF DE =,5BF DF =+,可得:2,3,35,EF x DF x BF x ===+ =55,BE x + 由线段的和差可得:45BE =, 列方程解方程可得答案;(2)如图,以B 为原点建立平面直角坐标系,可得函数的解析式为:21,64y x =-利用24DF =,求解BD 的长度,再利用勾股定理求解,CD 从而可得答案. 【详解】解:(1)设,DE x =2EF DE =,5BF DF =+,2,3,35,EF x DF DE EF x BF x ∴==+==+35255,BE BF EF x x x ∴=+=++=+63AB cm =,10CE cm =,8AC cm =45BE AB AC CE ∴=--=,5545,x ∴+=8,x ∴=324,DF x cm ∴==故答案为:24.(2)如图,以B 为原点建立平面直角坐标系, 则函数的解析式为:21,64y x =-24DF =, ∴ 当24x =时,21249,64y =-⨯=- 9BD ∴=,108CE DE ==,, 22221086CD CE DE ∴=-=-=,636948,AC cm ∴=--=故答案为:48.【点睛】本题考查的是线段的和差,一元一次方程的应用,勾股定理的应用,二次函数的图像与性质,掌握以上知识是解题的关键.18.已知二次函数2(0)y ax bx c a =++≠,其函数y 与自变量x 之间的部分对应值如下表所示,则42a b c ++=___________. x 3-1- 0 1 3 y 552 152 72 72 312函数值可得从而可得由此即可得【详解】和的函数值相同此二次函数的对称轴为即当时则故答案为:【点睛】本题考查了二次函数的性质正确求出二 解析:152 【分析】 先根据0x =和1x =的函数值相同可得二次函数的对称轴为12x =,从而可得=-b a ,再根据1x =-时的函数值可得152a b c,从而可得1522a c ,由此即可得. 【详解】 0x =和1x =的函数值相同,∴此二次函数的对称轴为12x =, 122b a ∴-=,即=-b a , 当1x =-时,152ya b c , 1522a c , 则4242abc a a c ,2a c ,152=, 故答案为:152. 【点睛】本题考查了二次函数的性质,正确求出二次函数的对称轴是解题关键.19.如图,是一座拱形桥的竖直截面图,水面与截面交于AB 两点,拱顶C 到AB 的距离为4m ,AB=12m ,DE 为拱桥底部的两点,且DE ∥AB ,点E 到AB 的距离为5cm ,则DE 的长度为______________ m . 18【分析】先建立平面直角坐标系以直线DE 为x 轴y 轴为经过点C 且垂直于AB 的直线设AB 与y 轴交于H 求出OC 的长然后设该抛物线的解析式为:根据条件求出解析式再令y=0求出x 的值即可得到DE 的长度【详解解析:18【分析】先建立平面直角坐标系,以直线DE 为x 轴,y 轴为经过点C 且垂直于AB 的直线,设AB 与y 轴交于H ,求出OC 的长,然后设该抛物线的解析式为:2y ax k =+,根据条件求出解析式,再令y =0,求出x 的值,即可得到DE 的长度.【详解】解:如图所示,建立平面直角坐标系,以直线DE 为x 轴,y 轴为经过点C 且垂直于AB 的直线,设AB 与y 轴交于点H ,∵AB=12,∴AH=BH=6,由题可知:OH=5,CH=4,∴OC=5+4=9,∴B (6,5),C (0,9)设该抛物线的解析式为:2y ax k =+,∵顶点C (0,9),∴抛物线29y ax =+,代入B (6,5)得5=36a +9,解得19a =-, ∴抛物线解析式为2199y x =-+, 当y=0时,21099x =-+, 解得x =±9, ∴E (9,0),D (-9,0),∴OE=OD=9,∴DE=OD+OE=9+9=18,故答案为:18.【点睛】本题主要考查二次函数的综合应用问题,解答本题的关键是正确地建立平面直角坐标系,是一道非常典型的试题.20.如图,抛物线 y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①2a +b =0;②b 2-4ac <0;③当y >0时,x 的取值范围是 -1<x <3;④当 x >0时,y 随x 增大而增大;⑤若t 为任意实数,则有a+b≥at 2+bt .其中结论正确的是_________.①③⑤【分析】根据二次函数的图象及性质即可判断【详解】解:由图象可知:该抛物线的对称轴为x=1∴抛物线与x 轴的另外一个交点为:(30)∵对称轴为x=−=1从而可知:2a+b=0故①正确;∵抛物线与x解析:①③⑤【分析】根据二次函数的图象及性质即可判断.【详解】解:由图象可知:该抛物线的对称轴为x=1,∴抛物线与x 轴的另外一个交点为:(3,0)∵对称轴为x=−2b a=1, 从而可知:2a+b=0,故①正确;∵抛物线与x 轴有两个交点(-1,0),(3,0)∴△=b 2-4ac >0,而②b 2-4ac <0,故②错误;由图象可知:当y >0时,x 的取值范围是-1<x <3,故③正确;由图象可知:当x <1时,y 随x 增大而增大,故④错误;若t 为任意实数,x=1时,函数取得最大值,故a+b+c≥at 2+bt+c ,∴a+b≥at 2+bt ,故⑤正确,所以,结论正确的是①③⑤.故答案为:①③⑤.【点睛】本题考查二次函数图象与系数的关系,解题的关键是熟练正确理解二次函数图象与系数的关系,本题属于中等题型.三、解答题21.“新冠肺炎”疫情期间某工厂为支持国家抗击疫情每天连夜生产急缺的消毒液,已知每瓶消毒液的生产成本为20元,为了合理定价,根据市场调查发现,当销售单价为30元时,每天的销售量为6000瓶,若销售单价每降低1元,则每天能多销售1000瓶,但要求销售单价不能低于成本且不高于30元.(1)求每天的销售量y (瓶)与销售单价x (元)之间的函数关系式;(2)求每天的利润w (元)与销售单价x (元)之间的函数关系式;(3)该工厂负责人决定将每天的利润全部捐献出来进一步支持国家抗击“新冠肺炎”疫情,则当销售单价为多少元时,每天的销售利润最大?最大利润是多少?解析:(1)函数关系式为y =-1000x +36000;(2)函数关系式为w =-1000x 2+56000x -720000;(3)当销售单价为28元时,最大利润是64000元.【分析】(1)抓住关键的已知条件:当销售单价为30元时,每天的销售量为6000瓶,若销售单价每降低1元,则每天能多销售1000瓶,由此可得到y 与x 之间的函数解析式. (2)利用根据每天的利润=每一件的利润×销售量,列出w 与x 之间的函数解析式. (3)将(2)中的函数解析式转化为顶点式,利用二次函数的性质,可得结果.【详解】(1)解:由题意得y =(30-x )×1×1000+6000=-1000x +36000.∴每天的销售量y (瓶)与销售单价x (元)之间的函数关系式为y =-1000x +36000. (2)解:由题意得w =(x -20)(-1000x +36000)=-1000x 2+56000x -720000.∴每天的利润w (元)与销售单价x (元)之间的函数关系式为w =-1000x 2+56000x -720000. (3)解:w =-1000x 2+56000x -720000=-1000(x -28)2+64000.∵a =-1000<0∴当x =28时,w 有最大值为64000.答:当销售单价为28元时,最大利润是64000元.【点睛】本题考查一次函数和二次函数的实际应用-销售问题;二次函数顶点式的转化也是本题求最值问题的关键.22.平面直角坐标系xOy 中,二次函数2y x bx c =++的图象与x 轴交于点()4,0A 和()1,0B -,交y 轴于点C .(1)求二次函数的解析式;(2)将点C 向右平移n 个单位,再次落在二次函数图象上,求n 的值;(3)对于这个二次函数,若自变量x 的值增加4时,对应的函数值y 增大,求满足题意的自变量x 的取值范围.解析:(1)234y x x =--;(2)3n =;(3)12x >- 【分析】(1)把A,B 代入解析式求出b,c ,即可得到抛物线解析式;(2)根据抛物线的对称性即可求得;(3)分三种情况讨论,即可求得满足题意的自变量x 的取值范围.【详解】解:(1)∵二次函数2+y x bx c =+的图象与x 轴交于点()4,0A 和()1,0B -,∴164010b c b c ++=⎧⎨-+=⎩, 解得34b c =-⎧⎨=-⎩, ∴234y x x =--.(2)依题意,点C 的坐标为()0,4-, 该二次函数图象的对称轴为322b x =-=, 设点C 向右平移n 个单位后,所得到的点为D ,由于点D 在抛物线上,∴C ,D 两点关于二次函数的对称轴32x =对称. ∴点D 的坐标为()3,4-.∴3n CD ==.(3)依题意,即当自变量取4x +时的函数值,大于自变量为x 时的函数值. 结合函数图象,由于对称轴为32x =,分为以下三种情况: ①当342x x <+≤时,函数值y 随x 的增大而减小,与题意不符; ② 当342x x <<+时,需使得33422x x -<+-,方可满足题意,联立解得1322x -<<; ③342x x ≤<+时,函数值y 随x 的增大而增大,符合题意,此时32x ≥. 综上所述,自变量x 的取值范围是12x >-. 【点睛】 本题考查了抛物线与x 轴的交点,待定系数法求二次函数的解析式,坐标与图形的变换−平移,二次函数的性质,分类讨论是解题的关键.23.如图,Rt △OAB 中,∠OAB=90°,O 为坐标原点,边OA 在x 轴上,OA=AB=2个单位长度,把Rt △OAB 沿x 轴正方向平移2个单位长度后得△11AA B .(1)求以A 为顶点,且经过点1B 的抛物线的解析式;(2)若(1)中的抛物线与OB 交于点C ,与y 轴交于点D ,求点D 、 C 的坐标.解析:(1)()2122y x =-;(2)()0,2D ,(35,35C 【分析】 (1)根据三角形的边长求出点A 和点1B 的坐标,设抛物线解析式为()22y a x =-,代入点1B 坐标求出解析式;(2)令0x =,求出y 的值,得到点D 的坐标,再求出直线OB 的解析式和抛物线联立求出点C 的坐标.【详解】解:∵2OA =,∴()2,0A ,∵14OA =,112A B =,∴()14,2B ,设抛物线解析式为()22y a x =-,把点()14,2B 代入,得42a =,解得12a =, ∴()2122y x =-; (2)令0x =,得1422y =⨯=, ∴()0,2D ,设直线OB 解析式为y kx =,把点()2,2B 代入,得到22k =,解得1k =,∴直线OB 解析式为y x =,联立直线和抛物线的解析式,得()2122x x -=,解得35x =±, 根据点C 的位置,取35x =-,∴()35,35C --.【点睛】本题考查二次函数,解题的关键是掌握求二次函数的解析式的方法,求抛物线和直线交点的方法.24.如图,Rt ABC △中,90C ∠=︒,6cm AC =,8cm BC =,点P 由A 出发向点C 移动,点Q 由C 出发向点B 移动,两点同时出发,速度均为1cm/s ,运动时间为t 秒.(1)几秒时PCQ △的面积为4?(2)是否存在t 的值,使PCQ △的面积为5?若存在,求这个t 值,若不存在,说明理由. (3)几秒时PCQ △的面积最大,最大面积是多少?解析:(1)2s 或4s ;(2)不存在,证明见解析;(3)3秒,92 【分析】(1)根据题意,利用t 表示个线段长度,根据面积为4可列出方程求解.(2)利用第一问中PCQ △的面积的表示方法,使其等于5,根据判别式判断方程是否有解.(3)利用求得的PCQ △的面积的表示的二次函数解析式,求出二次函数的最大值,符合题意即为所求最大面积.【详解】解:(1)由题意得:AP CQ t ==,6PC AC AP t ∴=-=-,11(6)422PCQ S PC CQ t t ∴=⋅=-⋅=, 2680t t ∴-+=,(2)(4)0t t --=,12t =,24t =,∴2s 或4s 后PCQ △的面积为4.(2)1(6)52PCQ S t t =-=,26100t t -+=, 2(6)41040∆=--⨯=-<,方程无解,故PCQ △的面积不能为5.(3)1(6)2PCQ S t t =-()216992t t =--+-219(3)22t =--+,, ∴当3t =时,max 92PCQ S =. 【点睛】 本题考查的是一元二次方程以及二次函数的应用,三角形的面积公式的求法和一元二次方程的解的情况.25.已知关于x 的方程(k-1)x 2+(2k-1)x+2=0.(1)求证:无论k 取任何实数时,方程总有实数根;(2)当抛物线y =(k-1)x 2+(2k-1)x+2图象与x 轴两个交点的横坐标均为整数,且k 为正整数时,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,请结合函数图象确定实数a 的取值范围.(3)已知抛物线y =(k-1)x 2+(2k-1)x+2恒过定点,求出定点坐标解析:(1)证明见解析;(2)a >1或a <﹣4;(3)(0,2)、(﹣2,0).【分析】(1)分类讨论:该方程是一元一次方程和一元二次方程两种情况.当该方程为一元二次方程时,根的判别式△≥0,方程总有实数根;(2)通过解(k-1)x 2+(2k-1)x+2=0得到k =2,由此得到该抛物线解析式为y =x 2+3x+2,结合图象回答问题.(3)根据题意得到(k-1)x 2+(2k-1)x+2﹣y =0恒成立,由此列出关于x 、y 的方程组,通过解方程组求得该定点坐标.【详解】(1)证明:①当k =1时,方程为x+2=0,所以x =﹣2,方程有实数根,②当k≠1时,∵△=(2k-1)2﹣4x(k-1)×2=4k 2-12k+9=(2k-3)2≥0,即△≥0,∴无论k 取任何实数时,方程总有实数根(2)解:令y =0,则(k-1)x 2+(2k-1)x+2=0,(x-2)[(k-1)x+1]=0解关于x 的一元二次方程,得x 1=﹣2,x 2=11-k, ∵二次函数的图象与x 轴两个交点的横坐标均为整数,且k 为正整数,∴1-k =-1,k=2.∴该抛物线解析式为y =x 2+3x+2,由图象得到:当y 1>y 2时,a >1或a <﹣4.(3)依题意得(k-1)x 2+(2k-1)x+2﹣y =0恒成立,即k (x 2+2x )-x 2-x ﹣y+2=0恒成立,得:x 2+2x=0;x 1=0,y 1=2;x 2=-2,y 2=0所以该抛物线恒过定点(0,2)、(﹣2,0).【点睛】本题考查了抛物线与x 轴的交点与判别式的关系及二次函数图象上点的坐标特征,解答(1)题时要注意分类讨论.26.如图,二次函数2y x bx c =-++与x 轴交于点B 和点()1,0A -,与y 轴交于点()0,4C ,与一次函数y x a =+交于点A 和点D .(1)求出a 、b 、c 的值;(2)若直线AD 上方的抛物线存在点E ,可使得EAD 面积最大,求点E 的坐标; (3)点F 为线段AD 上的一个动点,点F 到(2)中的点E 的距离与到y 轴的距离之和记为d ,求d 的最小值及此时点F 的坐标.解析:(1)1a =,3b =,4c =;(2)()1,6;(3)最小值为5,F 点的坐标为()1,2【分析】(1)将()1,0A -与()0,4C 分别代入二次函数2y x bx c =-++和一次函数y x a =+求解即可;(2)过点E 作x 轴的垂线1,交x 轴于点G ,交AD 于点H ,过点D 作l 的垂线,垂足为T ,由(1)可设点()2,34E m m m -++,则点H 的坐标为(),1m m +,然后根据割补法进行求解面积即可;(3)过A 作y 轴的平行线AS ,过F 作FG y ⊥轴交AS 于点M ,过F 作FN x ⊥轴于N ,由题意易得45DAB ∠=︒,则可证FM FN =,进而可得当N 、F 、E 所在直线与x 轴垂直时,1d FE FN =+-最小,然后问题可求解.【详解】(1)解:将()1,0A -与()0,4C分别代入二次函数2y x bx c =-++,得()2104b c c ⎧---+=⎪⎨=⎪⎩ , 解得34b c =⎧⎨=⎩; 将点()1,0A -代入一次函数y x a =+,得10a -+=,解得1a =,∴1a =,3b =,4c =;(2)解:由(1)所求的a ,b ,c 的值可得一次函数的解析式为:1y x =+,抛物线的解析式为:234y x x =-++,联立1y x =+与234y x x =-++得2134y x y x x =+⎧⎨=-++⎩,解得34x y =⎧⎨=⎩ ∴点D 的坐标为:()3,4,设点()2,34E m m m -++, 过点E 作x 轴的垂线1,交x 轴于点G ,交AD 于点H ,则点H 的坐标为(),1m m +,过点D 作l 的垂线,垂足为T ;∴223EH m m =-++,4=AD , ∴()11112222AED AEH HED S S S EH AG EH DT EH AG DT =+=⨯+⨯=+=△△△ ()()223414218m m m m -++--⨯=--+,当1m =时,最大值为8,此时点E 的坐标为()1,6;。

九上数学知识点整理

九上数学知识点整理

九上数学知识点整理1.实数的概念和性质:-有理数和无理数的概念-实数的区间表示方法-实数的运算性质和大小关系2.平方根和立方根的计算:-整数的平方根和立方根-非整数的平方根和立方根的近似计算方法3.实数的绝对值:-绝对值的定义和性质-绝对值与实数的加减乘除运算4.幂运算和指数运算的计算:-幂运算法则:乘方的乘法、除法和幂的幂运算法则-非零实数的零次幂和负次幂的定义和性质5.平方根和立方根的性质:-平方根和立方根的加减乘除运算-平方根和立方根的整数和小数的关系6.整式的加减法和乘法:-整式的加法和减法原则-整式乘法的分配律和乘方运算法则7.原式与因式:-识别和展开因式的方法-合并同类项的方法8.分式的概念和运算:-分式的定义和基本性质-分式的加减乘除运算-降幂和升幂的方法9.方程的解与方程的性质:-方程的解的定义和示例-方程的等价变形和意义-一元一次方程和一元二次方程的解和性质10.线性方程组的解:-线性方程组的概念和解的定义-二元一次方程组和三元一次方程组的解法11.二次根式的概念和性质:-二次根式的定义和性质-二次根式的化简与运算-二次根式的应用问题12.图形的相似与图形的运动:-图形相似的概念和性质-图形的翻转、平移与旋转的定义和运算13.直角三角形的性质与勾股定理:-直角三角形的性质和定理-勾股定理的概念和应用-余弦定理和正弦定理的概念和应用14.图形的计算:-三角形的面积公式及计算-平行四边形的性质-梯形和菱形的性质15.统计与概率:-反比例函数的概念和性质-统计和概率的基本概念和计算方法以上是九上数学的主要知识点整理,涵盖了实数、幂运算、整式、方程、根式、图形、统计和概率等方面的内容。

这些知识点将帮助学生建立起数学的基础,为进一步学习提供坚实的支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版九年级上册数学知识点归纳第二十一章一元二次方程21.1 一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。

一元二次方程有四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.(4)将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0)21.2 降次——解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

一元二次方程有四种解法:1、直接开平方法:用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x= .直接开平方法就是平方的逆运算.通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。

这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。

1.转化:将此一元二次方程化为ax2+bx+c=0的形式(即一元二次方程的一般形式)2.系数化1:将二次项系数化为13.移项:将常数项移到等号右侧4.配方:等号左右两边同时加上一次项系数一半的平方5.变形:将等号左边的代数式写成完全平方形式6.开方:左右同时开平方7.求解:整理即可得到原方程的根3、公式法公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

求根公式是。

因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

这种解一元二次方程的方法叫做因式分解法。

21.3 实际问题与一元二次方程列一元二次方程解应用题是列一元一次方程解应用题的继续和发展从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等.第二十二章 二次函数22.1二次函数及其图像二次函数(quadratic function )是指未知数的最高次数为二次的多项式函数。

二次函数可以表示为y=ax 2+bx+c(a 不为0)。

其图像是一条主轴平行于y 轴的抛物线。

一般的,自变量x 和因变量y 之间存在如下关系:一般式 y=ax 2+bx+c(a≠0,a、b 、c 为常数),顶点坐标为( , ) ;顶点式 (a≠0,a、h 、k 为常数)顶点坐标为 对称轴为 ,顶点的位置特征和图像的开口方向与函数y=ax 2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式 [仅限于与x 轴有交点A (x 1,0)和 B (x 2,0)的抛物线] ;重要概念:a ,b ,c 为常数,a≠0,且a 决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。

a 的绝对值还可以决定开口大小,a 的绝对值越大开口就越小,a 的绝对值越小开口就越大。

在平面直角坐标系中作出二次函数y=x 2的平方的图像, 可以看出,二次函数的图像是一条永无止境的抛物线。

不同的二次函数图像如果所画图形准确无误,那么二次函数将是由一般式平移得到的。

轴对称1.抛物线是轴对称图形。

对称轴为直线x = 。

对称轴与抛物线唯一的交点为抛物线的 。

特别地,当b=0时,抛物线的对称轴是y 轴(即直线x=0) 顶点为( , )2.抛物线有一个顶点P ,坐标为P ( , )当-b/2a=0时,P 在 轴上;当Δ= b 2-4ac=0时,P 在 轴上。

3.二次项系数a 决定抛物线的开口方向和大小。

当a >0时,抛物线开口 ;当a <0时,抛物线开口 。

|a|越大,则抛物线的开口越小。

决定对称轴位置的因素4.一次项系数b 和二次项系数a 共同决定对称轴的位置。

当a 与b 同号时(即ab >0),对称轴在y 轴 侧; 因为若对称轴在左边则对称轴小于0,也就是- b/2a<0,所以b/2a 要大于0,所以a 、b 要同号当a 与b 异号时(即ab <0),对称轴在y 轴 侧。

因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a 要小于0,所以a 、b 要异号可简单记忆为左同右异,即当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时 即ab < 0 ),对称轴在y 轴右。

5.常数项c 决定抛物线与y 轴交点。

抛物线与y 轴交于( , ) 抛物线与x 轴交点个数xy6.抛物线与x 轴交点个数Δ= b 2-4ac >0时,抛物线与x 轴有 个交点。

Δ= b 2-4ac=0时,抛物线与x 轴有 个交点。

Δ= b 2-4ac <0时,抛物线与x 轴 。

当a>0时,函数在x= -b/2a 处取得 ,当a<0时,函数在x= -b/2a 处取得 当b=0时,抛物线的对称轴是 , 7.特殊值的形式①当x=1时 y=a+b+c ②当x=-1时 y=a-b+c ③当x=2时 y=4a+2b+c ④当x=-2时 y=4a-2b+c8. 判断a ,b 、c 的符号及Δ的值 分布象限,可能在两个象限(1),三个象限(2),四个象限(3)。

练习:1. 已知a b c <<>000,,,那么y ax bx c =++2的图象( )2. 已知点(-1,3)(3,3)在抛物线y ax bx c =++2上,则抛物线的对称轴是( ) A. x ab=-B. x =2C. x =3D. x =13. 一次函数y ax b =+和二次函数y ax bx c =++2在同一坐标系内的图象( )用函数观点看一元二次方程1. 如果抛物线y ax bx c =++2与x 轴有公共点,公共点的横坐标是x 0,那么当x x =0时,函数的值是0,因此x x =0就是方程ax bx c 20++=的一个根。

2. 二次函数的图象与x 轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。

这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

实际问题与二次函数在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。

第二十三章 旋转23.1 图形的旋转1. 图形的旋转(1)定义:在平面内,将一个圆形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转动的角称为旋转角。

(2)生活中的旋转现象大致有两大类:一类是物体的旋转运动,如时钟的时针、分针、秒针的转动,风车的转动等;另一类则是由某一基本图形通过旋转而形成的图案,如香港特别行政区区旗上的紫荆花图案。

(3)图形的旋转不改变图形的大小和形状,旋转是由旋转中心和旋转角所决定,旋转中心可以在图形上也可以在图形外。

(4)会找对应点,对应线段和对应角。

2. 旋转的基本特征:(1)图形在旋转时,图形中的每一个点都绕旋转中心旋转了同样大小的角度。

(2)图形在旋转时,对应点到旋转中心的距离相等,对应线段相等,对应角相等; (3)图形在旋转时,图形的大小和形状都没有发生改变。

3. 几点说明:(1)在理解旋转特征时,首先要对照图形,找出旋转中心、旋转方向、对应点、旋转角。

(2)旋转的角度是对应线段的夹角或对应顶点与旋转中心连线的夹角。

(3)旋转中心的确定分两种情况,即在图形上或在图形外,若在图形上,哪一点旋转过程中位置没有改变,哪一点就是旋转中心;若在图形外,对应点连线的垂直平分线的交点就是旋转中心。

23.2 中心对称中心对称:把一个图形绕着某一点旋转180°,假如它能够与另一个图形重合,那么这刘遇图形关于这个点对称或中心对称。

中心对称的性质:① 。

② 。

中心对称图形: 与原来的图形重合,那么这个图形叫做中心对称图形。

对称点的坐标规律:①关于x 轴对称:横坐标不变,纵坐标互为相反数,②关于y 轴对称:横坐标互为相反数,纵坐标不变,③关于原点对称:横坐标、纵坐标都 。

第二十四章圆1、圆是距离等于点的集合2、和已知线段两个端点的距离相等的点的轨迹,是着条线段的3、到已知角的两边距离相等的点的轨迹,是这个角4、垂径定理垂直于弦的直径并且平分弦所对的5、推论1:①平分弦()的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧即五个量为、、、、知2推3。

6、推论2:圆的两条平行弦所夹的弧相等7、圆是以圆心为对称中心的中心对称图形8、圆心角定理:在同圆或等圆中,相等的圆心角所对的,所对相等,所对的弦的相等9、推论:在同圆或等圆中,如果两个、、、或两弦的、中有一组量相等那么它们所对应的其余各组量都相等10、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的。

11、推论:1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等12、推论:2半圆(或直径)所对的圆周角是;90°的圆周角所对的弦是13、推论:3 如果三角形一边上的中线等于这边的一半,那么这个三角形是14、圆内接四边形定理:圆的内接四边形的,并且任何一个外角都等于它的。

15.周长计算公式1.、已知直径:C=πd 2、已知半径:C=2πr 3、已知周长:D=c\π4、圆周长的一半:1\2周长(曲线)5、半圆的长:1\2周长+直径面积计算公式:1、已知半径:S=πr平方2、已知直径:S=π(d\2)平方3、已知周长:S=π(c\2π)平方24.2 点、直线、圆和圆的位置关系1. 点和圆的位置关系①点在圆内⇔点到圆心的距离小于半径②点在圆上⇔点到圆心的距离等于半径③点在圆外⇔点到圆心的距离大于半径2. 过的三个点确定一个圆。

3. 外接圆和外心经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的。

外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的 。

4. 直线和圆的位置关系相交:直线和圆有两个公共点叫这条直线和圆相交,这条直线叫做圆的割线。

相切:直线和圆有一个公共点叫这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。

相离:直线和圆没有公共点叫这条直线和圆相离。

相关文档
最新文档