专题3 导数的应用(文)

合集下载

专题03导数及其应用(解析版)

专题03导数及其应用(解析版)

专题03 导数及其应用1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,x y a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.2.【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1 B .[]0,2 C .[]0,eD .[]1,e【答案】C【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭,当111x x-=-,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.当1x >时,()ln 0f x x a x =-≥,即ln xa x≤恒成立, 令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =, ∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 故选C.【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后解决恒成立问题.3.(2019浙江)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b1−a , 则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增,令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴b1−a <0且{−b >013(a +1)3−12(a +1)(a +1)2−b <0, 解得b <0,1﹣a >0,b >−16(a +1)3,则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.4.【2019年高考全国Ⅰ卷理数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,x x x y x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e x y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.5.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ . 【答案】4 【解析】由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +,由20411x -=-得0x =0x =, ∴曲线4(0)y x x x=+>上,点P 到直线0x y +=4=.故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.6.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ . 【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标. 设点()00,A x y ,则00ln y x =. 又1y x'=, 当0x x =时,01y x '=, 则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 将点()e,1--代入,得00e1ln 1x x ---=-,即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增, 注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =, 故点A 的坐标为()e,1.【名师点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.7.【2019年高考北京理数】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0x xa -++=对任意的x 恒成立, 则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x x f x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞.【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.8.【2019年高考全国Ⅰ卷理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点. 【答案】(1)见解析;(2)见解析.【解析】(1)设()()g x f 'x =,则1()cos 1g x x x =-+,21sin ())(1x 'x g x =-++. 当1,2x π⎛⎫∈- ⎪⎝⎭时,()g'x 单调递减,而(0)0,()02g'g'π><,可得()g'x 在1,2π⎛⎫- ⎪⎝⎭有唯一零点,设为α.则当(1,)x α∈-时,()0g'x >;当,2x α⎛π⎫∈ ⎪⎝⎭时,()0g'x <. 所以()g x 在(1,)α-单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,故()g x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点,即()f 'x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞.(i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点.(ii )当0,2x ⎛π⎤∈ ⎥⎝⎦时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,而(0)=0f ',02f 'π⎛⎫< ⎪⎝⎭,所以存在,2βαπ⎛⎫∈ ⎪⎝⎭,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ⎛⎫∈ ⎪⎝⎭时,()0f 'x <.故()f x 在(0,)β单调递增,在,2βπ⎛⎫⎪⎝⎭单调递减.又(0)=0f ,1ln 1022f ππ⎛⎫⎛⎫=-+> ⎪ ⎪⎝⎭⎝⎭,所以当0,2x ⎛π⎤∈ ⎥⎝⎦时,()0f x >.从而,()f x 在0,2⎛⎤⎥⎝⎦π没有零点. (iii )当,2x π⎛⎤∈π⎥⎝⎦时,()0f 'x <,所以()f x 在,2π⎛⎫π ⎪⎝⎭单调递减.而02f π⎛⎫> ⎪⎝⎭,()0f π<,所以()f x 在,2π⎛⎤π⎥⎝⎦有唯一零点. (iv )当(,)x ∈π+∞时,ln(1)1x +>,所以()f x <0,从而()f x 在(,)π+∞没有零点. 综上,()f x 有且仅有2个零点.【名师点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在性定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.9.【2019年高考全国Ⅱ卷理数】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e x y =的切线. 【答案】(1)函数()f x 在(0,1)和(1,)+∞上是单调增函数,证明见解析; (2)见解析.【解析】(1)f (x )的定义域为(0,1)(1,+∞).因为212()0(1)f 'x x x =+>-,所以()f x 在(0,1),(1,+∞)单调递增. 因为f (e )=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--,所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又1101x <<,1111111()ln ()01x f x f x x x +=-+=-=-,故f (x )在(0,1)有唯一零点11x .综上,f (x )有且仅有两个零点. (2)因为0ln 01e x x -=,故点B (–ln x 0,01x )在曲线y =e x 上.由题设知0()0f x =,即0001ln 1x x x +=-,故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----. 曲线y =e x 在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是01x , 所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y =e x 的切线.【名师点睛】本题考查了利用导数求已知函数的单调性、考查了曲线的切线方程,考查了数学运算能力. 10.【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+.(1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1若存在,求出,a b 的所有值;若不存在,说明理由. 【答案】(1)见解析;(2)01a b =⎧⎨=-⎩或41a b =⎧⎨=⎩. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫ ⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =a =-a =0,与0<a <3矛盾. 综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1.【名师点睛】这是一道常规的函数导数和不等式的综合题,题目难度比往年降低了不少,考查函数的单调性、最大值、最小值这种基本量的计算. 11.【2019年高考北京理数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ).当M (a )最小时,求a 的值.【答案】(Ⅰ)y x =与6427y x =-;(Ⅱ)见解析;(Ⅲ)3a =-. 【解析】(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-, 即y x =与6427y x =-.(Ⅱ)令()(),[2,4]g x f x x x =-∈-. 由321()4g x x x =-得23()24g'x x x =-.令()0g'x =得0x =或83x =. (),()g'x g x 的情况如下:所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力. 12.【2019年高考天津理数】设函数()e cos ,()xf x xg x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭;(Ⅲ)设n x 为函数()()1u x f x =-在区间2,242n n ππ⎛⎫π+π+ ⎪⎝⎭内的零点,其中n ∈N ,证明20022sin c s e o n n n x x x -πππ+-<-. 【答案】(Ⅰ)()f x 的单调递增区间为3ππ2π,2π(),()44k k k f x ⎡⎤-+∈⎢⎥⎣⎦Z 的单调递减区间为π5π2π,2π()44k k k ⎡⎤++∈⎢⎥⎣⎦Z .(Ⅱ)见解析;(Ⅲ)见解析. 【解析】(Ⅰ)由已知,有()e (cos sin )x f 'x x x =-.因此,当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()0f 'x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()0f 'x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (Ⅱ)证明:记()()()2h x f x g x x π⎛⎫=+-⎪⎝⎭.依题意及(Ⅰ),有()e (cos sin )x g x x x =-,从而()2e sin x g'x x =-.当,42x ππ⎛⎫∈ ⎪⎝⎭时,0()g'x <,故()()()()(1)()022h'x f 'x g'x x g x g'x x ππ⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭. 所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭.(Ⅲ)证明:依题意,()()10n n u x f x =-=,即cos e 1n x n x =.记2n n y x n =-π,则,42n y ππ⎛⎫∈ ⎪⎝⎭,且()()()22e cos ecos 2e n n yx n n n n n f y y x n n π--π==-π=∈N .由()()20e1n n f y f y -π==≤及(Ⅰ),得0n y y ≥.由(Ⅱ)知,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()0g'x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫≤<= ⎪⎝⎭.又由(Ⅱ)知,()()02n n n f y g y y π⎛⎫+-≥ ⎪⎝⎭,故()()()()()022*******2sin cos sin c e e e e os e n n n n n n y n n f y y g y g y g y y y x x -π-π-π-ππ--=-≤=--≤<. 所以,20022sin c s e o n n n x x x -πππ+-<-.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力. 13.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x >(1)当34a =-时,求函数()f x 的单调区间; (2)对任意21[,)e x ∈+∞均有()2f x a≤ 求a 的取值范围. 注:e=…为自然对数的底数.【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)0,4⎛ ⎝⎦. 【解析】(1)当34a =-时,3()ln 04f x x x =-+>.3()4f 'x x =-+=所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a ≤,得0a <≤.当0a <≤()f x ≤2ln 0x -≥. 令1t a=,则t ≥.设()22ln ,g t t x t =≥则2()2ln g t t x =.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-==.故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得,11(1)077q p p ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此1()10g t g x ⎛+=> ⎝.由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞, 即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2xf x a .综上所述,所求a 的取值范围是⎛⎝⎦. 【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.14.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=,且f (x )的极大值为M ,求证:M ≤427. 【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-.因为(4)8f =,所以3(4)8a -=,解得2a =.(2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a b x +=. 因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a ba b +===-. 此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得12x x ==. 列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得1x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.15.【河北省武邑中学2019届高三第二次调研考试数学】函数f(x)=x 2−2lnx 的单调减区间是A .(0,1]B .[1,+∞)C .(−∞,−1]∪(0,1]D .[−1,0)∪(0,1]【答案】A【解析】f′(x)=2x −2x =2x 2−2x(x >0),令f′(x)≤0,解得:0<x ≤1. 故选A .【名师点睛】本题考查了函数的单调性,考查导数的应用,是一道基础题.16.【江西省南昌市2019届高三模拟考试数学】已知f(x)在R 上连续可导,f ′(x)为其导函数,且f(x)=e x +e −x −f ′(1)x ⋅(e x −e −x ),则f ′(2)+f ′(−2)−f ′(0)f ′(1)= A .4e 2+4e −2 B .4e 2−4e −2 C .0D .4e 2【答案】C【解析】∵()e e (1)()(e e ()x x x x f x f x f x --'-=+=---), ∴()f x 是偶函数,两边对x 求导,得()()f x f x -'-=',即()()f x f x '-=-', 则()f x '是R 上的奇函数,则(0)0f '=,(2)(2)f f '-=-',即(2)(2)0f f '+'-=,则(2)(2)(0)(1)0f f f f ''''+--=. 故选C .【名师点睛】本题主要考查函数导数值的计算,根据条件判断函数的奇偶性是解决本题的关键,是中档题.17.【江西省新八校2019届高三第二次联考数学】若3()3()21f x f x x x +-=++对x ∈R 恒成立,则曲线()y f x =在点()()1,1f 处的切线方程为A .5250x y +-=B .10450x y +-=C .540x y +=D .204150x y --=【答案】B 【解析】()()3321f x f x x x +-=++……①,()()3321f x f x x x ∴-+=--+……②,联立①②,解得()31124f x x x =--+,则()2312f x x '=--, ()11511244f ∴=--+=-,()351122f '=--=-,∴切线方程为:()55142y x +=--,即10450x y +-=. 故选B.【名师点睛】本题考查利用导数的几何意义求解在某一点处的切线方程,关键是能够利用构造方程组的方式求得函数的解析式.18.【云南省玉溪市第一中学2019届高三第二次调研考试数学】函数2l ()n f x x x =的最小值为A .1e -B .1eC .12e-D .12e【答案】C【解析】由题得(0,)x ∈+∞,()2ln (2ln 1)f x x x x x x '=+=+, 令2ln 10x +=,解得12ex -=,则当12(0,e )x -∈时,()f x 为减函数,当12(e ,)x -∈+∞时,()f x 为增函数, 所以12e x -=处的函数值为最小值,且121(e )2ef -=-. 故选C.【名师点睛】本题考查用导数求函数最值,解此类题首先确定函数的定义域,其次判断函数的单调性,确定最值点,最后代回原函数求得最值.19.【四川省内江市2019届高三第三次模拟考试数学】若函数f(x)=12ax 2+xlnx −x 存在单调递增区间,则a 的取值范围是 A .1,1e ⎛⎫- ⎪⎝⎭B .1,e ⎛⎫-+∞ ⎪⎝⎭C .()1,-+∞D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B【解析】()ln f x ax x '=+, ∴()0f x '>在x ∈()0+∞,上成立, 即ax+ln x >0在x ∈()0+∞,上成立,即a ln xx->在x ∈()0+∞,上成立. 令g (x )ln x x =-,则g ′(x )21ln xx -=-, ∴g (x )ln xx =-在(0,e )上单调递减,在(e ,+∞)上单调递增,∴g (x )ln x x =-的最小值为g (e )=1e-,∴a >1e-. 故选B .【名师点睛】本题考查学生利用导数研究函数的单调性及转化化归思想的运用,属中档题.20.【山西省太原市2019届高三模拟试题(一)数学】已知定义在(0,+∞)上的函数f(x)满足xf ′(x)−f(x)<0,且f(2)=2,则f (e x )−e x >0的解集是 A .(−∞,ln2) B .(ln2,+∞) C .(0,e 2)D .(e 2,+∞)【答案】A 【解析】令g (x )=f (x )x,g ′(x )=xf ′(x )−f (x )x 2<0,∴g(x)在(0,+∞)上单调递减,且g (2)=f (2)2=1,故f (e x )−e x >0等价为f (e x )e x>f (2)2,即g (e x )>g (2),故e x <2,即x <ln2, 则所求的解集为(−∞,ln2). 故选A.【名师点睛】本题考查导数与单调性的应用,构造函数的思想,考查分析推理能力,是中档题. 21.【河南省焦作市2019届高三第四次模拟考试数学】已知a =ln √33,b =e −1,c =3ln28,则a,b,c 的大小关系为 A .b <c <a B .a >c >b C .a >b >cD .b >a >c【答案】D【解析】依题意,得ln33a ==,1lne e e b -==,3ln2ln888c ==.令f (x )=ln x x,所以f ′(x )=1−ln x x 2.所以函数f (x )在(0,e )上单调递增,在(e,+∞)上单调递减, 所以[f (x )]max =f (e )=1e =b ,且f (3)>f (8),即a >c , 所以b >a >c . 故选D.【名师点睛】本题主要考查了利用导数判断函数的单调性,构造出函数()ln xf x x=是解题的关键,属于中档题.22.【安徽省毛坦厂中学2019届高三校区4月联考数学】已知f (x )=lnx +1−ae x ,若关于x 的不等式f (x )<0恒成立,则实数a 的取值范围是 A .1,e ⎛⎫-∞ ⎪⎝⎭B .(),0-∞C .1,e⎡⎫+∞⎪⎢⎣⎭D .1,e ⎛⎫+∞ ⎪⎝⎭【答案】D【解析】由()0f x <恒成立得ln 1ex x a +>恒成立, 设()ln 1e x x h x +=,则()1ln 1e xx x h x -='-. 设()1ln 1g x x x =--,则()2110g x x x'=--<恒成立,∴g (x )在(0,+∞)上单调递减,又∵g (1)=0,∴当0<x <1时,g (x )>g (1)=0,即ℎ′(x )>0; 当x >1时,g (x )<g (1)=0,即ℎ′(x )<0, ∴ℎ(x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴ℎ(x)max =ℎ(1)=1e ,∴a >1e . 故选D.【名师点睛】本题考查利用导数求函数的最值,不等式恒成立问题,分离参数是常见的方法,属于中档题.23.【辽宁省丹东市2019届高三总复习质量测试】若1x =是函数()3221()(1)33f x x a x a a x =++-+-的极值点,则a 的值为 A .-2 B .3 C .-2或3D .-3或2【答案】B 【解析】()()()()32222113(3)(132)f x x a x a a f x x x a x a a '=++-=++-+-⇒+-,由题意可知(1)0f '=,即()212(1)303a a a a +-=+⇒-=+或2a =-,当3a =时,()222()2(1)389(9)(1)f x x a x a a x x x x +-'=++-=+-=+-,当1x >或9x <-时,()0f x '>,函数单调递增;当91x -<<时,()0f x '<,函数单调递减, 显然1x =是函数()f x 的极值点;当2a =-时,()2222()232(111))(0a a f x x a x x x x +-=-++=-=+-≥',所以函数()f x 是R 上的单调递增函数,没有极值,不符合题意,舍去. 故3a =. 故选B .【名师点睛】本题考查了已知函数的极值,求参数的问题.本题易错的地方是求出a 的值,没有通过单调性来验证1x =是不是函数的极值点,也就是说使得导函数为零的自变量的值,不一定是极值点. 24.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)考试】已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()22f x xf x x '>+,则不等式()()()22018+2018420x f x f +-<+的解集为A .(),2016-∞-B .()2016,2012--C .(),2018-∞-D .()2016,0-【答案】A【解析】设()()2g x x f x =,因为()f x 为R 上的奇函数,所以()()()()22g x x f x x f x -=--=-,即()g x 为R 上的奇函数对()g x 求导,得()()()2f g f x x x x x '=+'⎡⎤⎣⎦, 而当0x >时,有()()220f x xf x x '>+≥,故0x >时,()0g x '>,即()g x 单调递增,所以()g x 在R 上单调递增,则不等式()()()22018+2018420x f x f +-<+即()()()22018+201842x f x f +<--, 即()()()22018+201842x f x f +<, 即()()20182g x g +<,所以20182x +<,解得2016x <-. 故选A.【名师点睛】本题考查构造函数解不等式,利用导数求函数的单调性,函数的奇偶性,题目较综合,有一定的技巧性,属于中档题.25.【重庆西南大学附属中学校2019届高三第十次月考数学】曲线21()ln 2f x x x x =+在点(1(1))f ,处的切线与直线10ax y --=垂直,则a =________. 【答案】12-【解析】因为21()ln 2f x x x x =+,所以()ln 1f x x x '=++, 因此,曲线21()ln 2f x x x x =+在点(1(1))f ,处的切线斜率为(1)112k f '==+=, 又该切线与直线10ax y --=垂直,所以12a =-. 故答案为12-. 【名师点睛】本题主要考查导数在某点处的切线斜率问题,熟记导数的几何意义即可求解,属于常考题型.26.【广东省深圳市高级中学2019届高三适应性考试(6月)数学】已知函数22,0,()e ,0,x x x f x x ⎧≤=⎨>⎩若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是______.【答案】3ln 22-【解析】作出函数()f x 的图象如图所示,由()2f x a =⎡⎤⎣⎦,可得()1f x =>, 即1a >,不妨设12x x < ,则2212e x x =(1)t t =>,则12ln x x t ==,12ln x x t ∴+=令()ln g t t =()g t '= ∴当18t <<时,()0g t '>,g t 在()1,8上单调递增;当8t时,()0g t '<,g t 在()8,+∞上单调递减,∴当8t =时,g t 取得最大值,为(8)ln823ln22g =-=-.故答案为3ln 22-.【名师点睛】本题主要考查方程的根与图象交点的关系,考查了利用导数判断函数的单调性以及求函数的极值与最值,属于难题.求函数()f x 的极值与最值的步骤:(1)确定函数的定义域;(2)求导数()f x ';(3)解方程()0,f x '=求出函数定义域内的所有根;(4)判断()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值.(5)如果只有一个极值点,则在该点处取得极值也是最值;(6)如果求闭区间上的最值还需要比较端点处的函数值与极值的大小.27.【山东省烟台市2019届高三3月诊断性测试(一模)数学】已知函数4211()42f x x ax =-,a ∈R . (1)当1a =时,求曲线()f x 在点(2,(2))f 处的切线方程;(2)设函数2()(22)e e ()x g x x x a f x =-+--,其中e 2.71828...=是自然对数的底数,讨论()g x 的单调性并判断有无极值,有极值时求出极值. 【答案】(1)6100x y --=;(2)当0a ≤时,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,()g x 在(,-∞和)+∞单调递增,在(单调递减,极大值为2e(2)e4g a =+,极小值为2e (4g a =-+. 【解析】(1)由题意3()f x x ax '=-,所以当1a =时,(2)2f =,(2)6f '=, 因此曲线()y f x =在点(2,(2))f 处的切线方程是26(2)y x -=-, 即6100x y --=.(2)因为2()(22)e e ()x g x x x a f x =-+--, 所以2()(22)e (22)e e '()x x g x x x x a f x '=-+-+--232()e e()()(e e )x x x a x ax x a x =---=--,令()e e x h x x =-,则()e e x h x '=-, 令()0h x '=得1x =,当(,1)x ∈-∞时,()0h x '<,()h x 单调递减, 当(1,)x ∈+∞时,()0h x '>,()h x 单调递增, 所以当1x =时,min ()(1)0h x h ==, 也就说,对于x ∀∈R 恒有()0h x ≥. 当0a ≤时,2()()()0g x x a h x '=-≥,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,令()0g x '=,可得x =当x <x >2()()()0g x x a h x '=-≥,()g x 单调递增,当x <<()0g x '<,()g x 单调递减,因此,当x =()g x 取得极大值2e(2)e4g a =+;当x =()g x 取得极小值2e (4g a =-+. 综上所述:当0a ≤时,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,()g x 在(,-∞和)+∞上单调递增,在(上单调递减, 函数既有极大值,又有极小值,极大值为2e(2)e4g a =+,极小值为2e (4g a =-+. 【名师点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.28.【陕西省2019届高三第三次联考数学】已知函数f(x)=lnx −ax ,g(x)=x 2,a ∈R .(1)求函数f(x)的极值点;(2)若f(x)≤g(x)恒成立,求a 的取值范围.【答案】(1)极大值点为1a ,无极小值点.(2)a ≥−1.【解析】(1)()ln f x x ax =-的定义域为(0,+∞),f ′(x )=1x −a , 当a ≤0时,f ′(x )=1x −a >0,所以f (x )在(0,+∞)上单调递增,无极值点;当a >0时,解f ′(x )=1x −a >0得0<x <1a ,解f ′(x )=1x −a <0得x >1a , 所以f (x )在(0,1a )上单调递增,在(1a ,+∞)上单调递减,所以函数f (x )有极大值点,为1a ,无极小值点. (2)由条件可得ln x −x 2−ax ≤0(x >0)恒成立, 则当x >0时,a ≥ln x x−x 恒成立,令ℎ(x )=ln x x−x(x >0),则ℎ′(x )=1−x 2−ln xx 2,令k (x )=1−x 2−ln x(x >0),则当x >0时,k ′(x )=−2x −1x <0,所以k (x )在(0,+∞)上为减函数. 又k (1)=0,所以在(0,1)上,ℎ′(x )>0;在(1,+∞)上,ℎ′(x )<0. 所以ℎ(x )在(0,1)上为增函数,在(1,+∞)上为减函数, 所以ℎ(x )max =ℎ(1)=−1,所以a ≥−1.【名师点睛】对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.29.【山东省济宁市2019届高三二模数学】已知函数f(x)=lnx −xe x +ax(a ∈R).(1)若函数f(x)在[1,+∞)上单调递减,求实数a 的取值范围; (2)若a =1,求f(x)的最大值.【答案】(1)a ≤2e −1;(2)f(x)max =−1.【解析】(1)由题意知,f′(x)=1x −(e x +xe x )+a =1x −(x +1)e x +a ≤0在[1,+∞)上恒成立, 所以a ≤(x +1)e x −1x 在[1,+∞)上恒成立. 令g(x)=(x +1)e x −1x ,则g′(x)=(x +2)e x +1x 2>0,所以g(x)在[1,+∞)上单调递增,所以g(x)min =g(1)=2e −1, 所以a ≤2e −1.(2)当a =1时,f(x)=lnx −xe x +x(x >0). 则f′(x)=1x−(x +1)e x +1=(x +1)(1x−e x ),令m(x)=1x −e x ,则m′(x)=−1x 2−e x <0, 所以m(x)在(0,+∞)上单调递减.由于m(12)>0,m(1)<0,所以存在x 0>0满足m(x 0)=0,即e x 0=1x 0.当x ∈(0,x 0)时,m(x)>0,f′(x)>0;当x ∈(x 0,+∞)时,m(x)<0,f′(x)<0. 所以f(x)在(0,x 0)上单调递增,在(x 0,+∞)上单调递减. 所以f(x)max =f (x 0)=lnx 0−x 0e x 0+x 0, 因为e x 0=1x 0,所以x 0=−lnx 0,所以f(x 0)=−x 0−1+x 0=−1, 所以f(x)max =−1.【名师点睛】本题主要考查利用导数研究函数的单调性,最值,零点存在性定理及其应用,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.30.【福建省龙岩市2019届高三5月月考数学】今年3月5日,国务院总理李克强作的政府工作报告中,提到要“惩戒学术不端,力戒学术不端,力戒浮躁之风”.教育部日前公布的《教育部2019年部门预算》中透露,2019年教育部拟抽检博士学位论文约6000篇,预算为800万元.国务院学位委员会、教育部2014年印发的《博士硕士学位论文抽检办法》通知中规定:每篇抽检的学位论文送3位同行专家进行评议,3位专家中有2位以上(含2位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”.有且只有1位专家评议意见为“不合格”的学位论文,将再送2位同行专家进行复评,2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”.设每篇学位论文被每位专家评议为“不合格”的概率均为(01)p p <<,且各篇学位论文是否被评议为“不合格”相互独立.(1)记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为()f p ,求()f p ;(2)若拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的评审费用为1500元;除评审费外,其它费用总计为100万元.现以此方案实施,且抽检论文为6000篇,问是否会超过预算并说明理由.【答案】(1)−3p 5+12p 4−17p 3+9p 2;(2)若以此方案实施,不会超过预算.【解析】(1)因为一篇学位论文初评被认定为“存在问题学位论文”的概率为C 32p 2(1−p )+C 33p 3, 一篇学位论文复评被认定为“存在问题学位论文”的概率为C 31p (1−p )2[1−(1−p )2],所以一篇学位论文被认定为“存在问题学位论文”的概率为f (p )=C 32p 2(1−p )+C 33p 3+C 31p (1−p )2[1−(1−p )2]=3p 2(1−p )+p 3+3p (1−p )2[1−(1−p )2] =−3p 5+12p 4−17p 3+9p 2.(2)设每篇学位论文的评审费为X 元,则X 的可能取值为900,1500.P (X =1500)=C 31p (1−p )2, P (X =900)=1−C 31p (1−p )2, 所以E (X )=900×[1−C 31p (1−p )2]+1500×C 31p (1−p )2=900+1800p (1−p )2. 令g (p )=p (1−p )2,p ∈(0,1),g ′(p )=(1−p )2−2p (1−p )=(3p −1)(p −1). 当p ∈(0,13)时,g ′(p )>0,g (p )在(0,13)上单调递增;当p ∈(13,1)时,g ′(p )<0,g (p )在(13,1)上单调递减,所以g (p )的最大值为g (13)=427.所以实施此方案,最高费用为100+6000×(900+1800×427)×10−4=800(万元). 综上,若以此方案实施,不会超过预算.【名师点睛】本题主要考查互斥事件的概率和独立重复试验的概率的求法,考查随机变量的期望的求法,考查利用导数求函数的最大值,意在考查学生对这些知识的理解掌握水平和分析推理能力. 31.【北京市西城区2019届高三4月统一测试(一模)数学】设函数f(x)=m e x −x 2+3,其中m ∈R .(1)当f(x)为偶函数时,求函数ℎ(x)=xf(x)的极值;(2)若函数f(x)在区间[−2 , 4]上有两个零点,求m 的取值范围. 【答案】(1)极小值ℎ(−1)=−2,极大值ℎ(1)=2;(2)−2e <m <13e 4或m =6e 3.【解析】(1)由函数f(x)是偶函数,得f(−x)=f(x), 即m e −x −(−x)2+3=m e x −x 2+3对于任意实数x 都成立, 所以m =0. 此时ℎ(x)=xf(x)=−x 3+3x ,则ℎ′(x)=−3x 2+3. 由ℎ′(x)=0,解得x =±1. 当x 变化时,ℎ′(x)与ℎ(x)的变化情况如下表所示:所以ℎ(x)在(−∞,−1),(1,+∞)上单调递减,在(−1,1)上单调递增. 所以ℎ(x)有极小值ℎ(−1)=−2,极大值ℎ(1)=2. (2)由f(x)=m e x −x 2+3=0,得m =x 2−3e x.所以“f(x)在区间[−2 , 4]上有两个零点”等价于“直线y =m 与曲线g(x)=x 2−3e x,x ∈[−2 , 4]有且只有两个公共点”.对函数g(x)求导,得g ′(x)=−x 2+2x+3e x.由g ′(x)=0,解得x 1=−1,x 2=3. 当x 变化时,g ′(x)与g(x)的变化情况如下表所示:所以g(x)在(−2,−1),(3,4)上单调递减,在(−1,3)上单调递增. 又因为g(−2)=e 2,g(−1)=−2e ,g(3)=6e 3<g(−2),g(4)=13e 4>g(−1),所以当−2e <m <13e4或m =6e3时,直线y =m 与曲线g(x)=x 2−3e x,x ∈[−2 , 4]有且只有两个公共点.即当−2e <m <13e 4或m =6e3时,函数f(x)在区间[−2 , 4]上有两个零点.【名师点睛】利用函数零点的情况求参数值或取值范围的方法: (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解. (3)转化为两熟悉的函数图象问题,从而构建不等式求解.。

专题3导数及其应用两大考点与真题训练 -2022年高考数学考前30天提分方案(新高考专用)

专题3导数及其应用两大考点与真题训练 -2022年高考数学考前30天提分方案(新高考专用)

2022年高考数学考前30天迅速提分复习方案(新高考地区专用)专题1.3导数及其应用两大考点与真题训练考点一:导数的几何意义一、单选题1.(2022·河南焦作·二模(文))函数()()2e cos xf x x x =-⋅的图象在0x =处的切线方程为( ) A .210x y -+= B .20x y -+= C .20x +=D .210x y -+=2.(2022·贵州·模拟预测(理))若存在两条过点(1,1)-的直线与曲线2ay x x=-相切,则实数a 的取值范围为( ) A .(,4)(1,)∞∞--⋃+ B .(,1)(4,)-∞-+∞ C .(,0)(3,)-∞⋃+∞D .(,3)(0,)∞∞--⋃+3.(2020·四川·模拟预测(理))曲线()ln f x x x x =-在(,0)a 处的切线方程为( ) A .0y = B .y x = C .e y x =-+D .e y x =-4.(2022·福建·三模)已知()f x 是定义在R 上的函数,且函数(1)1y f x =+-是奇函数,当12x <时,()ln(12)f x x =-,则曲线()y f x =在2x =处的切线方程是( ) A .4y x =-B .y x =C .22y x =-+D .26y x =-+5.(2022·全国·模拟预测)曲线()cos 2f x x ππ=+在12x =处的切线方程为( ) A .10x y +-= B .0x y ππ+-= C .10x y π+-=D .0x y π+-=二、多选题6.(2022·重庆·二模)已知曲线()e xf x x=及点(),0P s ,则过点P 且与曲线()y f x =相切的直线可能有( )A .0条B .1条C .2条D .3条7.(2022·福建漳州·二模)已知函数()xf x e =,则下列结论正确的是( )A .曲线()y f x =的切线斜率可以是1B .曲线()y f x =的切线斜率可以是1-C .过点()0,1且与曲线()y f x =相切的直线有且只有1条D .过点()0,0且与曲线()y f x =相切的直线有且只有2条8.(2022·全国·模拟预测)已知函数()e xf x x =,则( )A .曲线()y f x =在点()0,0处的切线方程为y x =B .函数()f x 的极小值为e -C .当2213e 2ea ≤<时,()()1f x a x <-仅有一个整数解 D .当223e 2e 2a <≤时,()()1f x a x <-仅有一个整数解9.(2022·全国·模拟预测)已知a 为常数,函数()()ln f x x x ax =-有两个极值点1x ,2x (12x x <),则( ) A .()10f x >B .()10<f xC .()212f x >-D .()212f x <-三、填空题10.(2022·江西·二模(理))已知函数()sin cos f x x x x =+,则函数()f x 在点(,())f ππ处的切线方程是____.11.(2022·河北保定·一模)若函数()ln f x x m x=在()()1,1f 处的切线过点()0,2,则实数m =______.12.(2022·陕西陕西·二模(文))已知函数()y f x =的图象过原点,且()y f x =在原点的切线为第一、三象限的平分线,试写出一个满足条件的函数______.13.(2022·全国·模拟预测)曲线()()1ln xf x x e x =++在()1,a 处的切线与直线20bx y -+=平行,则b a -=___________.14.(2022·四川宜宾·二模(理))已知21()2()3f x x xf '=+-,则曲线()f x 在点13x =-处的切线方程为___________.四、解答题15.(2022·河南焦作·二模(理))已知函数()()e 2axf x x =-.(1)若1a =,()f x 的一个零点为()000x x ≠,求曲线()y f x =在0x x =处的切线方程; (2)若当0x >时,不等式()132ln f x a x x x x ⎡⎤⎛⎫+≥+⋅ ⎪⎢⎥⎣⎦⎝⎭恒成立,求实数a 的取值范围.16.(2022·陕西西安·二模(理))已知函数()ln xf x x=. (1)求曲线()y f x =在点11,ee f⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程; (2)设()()g x f x k =-有两个不同的零点12,x x ,求证:212e x x >.17.(2022·四川达州·二模(文))已知()()e 1xf x mx m =+<-.(1)当2m =-时,求曲线()y f x =上的斜率为1-的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-恒成立,求实数m 的范围.18.(2022·河南·模拟预测(文))已知函数()21si cos n 2f x x x a x x =-++. (1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围.19.(2022·全国·模拟预测(文))设函数()()()ln 12af x x a x x =+-+. (1)若2a =,过点()2,8A --作曲线()y f x =的切线,求切点的坐标; (2)若()f x 在区间()2,+∞上单调递增,求整数a 的最大值.20.(2022·四川达州·二模(理))已知:()e xf x mx =+.(1)当1m =时,求曲线()y f x =的斜率为2的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-成立,求实数m 的范围21.(2022·北京西城·一模)已知函数()1e x axf x a=-+,0a ≠. (1)当1a =时,①求曲线()y f x =在0x =处的切线方程; ②求证:()f x 在(0,)+∞上有唯一极大值点; (2)若()f x 没有零点,求a 的取值范围.22.(2022·陕西陕西·二模(文))已知()()21ln R 2x ax a f x x a =-+∈.(1)求1a =时,()f x 在()()1,1f 处的切线方程;(2)若()f x 存在两个极值点1x ,2x 且()()12f x f x m +≤,求实数m 的取值范围.23.(2022·陕西商洛·一模(文))已知函数e ()(1)1xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当1a =时,()2f x ≥恒成立,求b 的值.考点二:导数的应用一、单选题1.(2022·陕西·西安中学模拟预测(文))已知函数()e ln x f x x x x =--,若不等式()f x a ≥恒成立,则a 的最大值为( )A .1B .e 1-C .2D .e2.(2022·江西宜春·模拟预测(文))已知实数x ,y ,R z ∈,且满足ln e e ex y z x y z==-,1y >,则x ,y ,z 大小关系为( ) A .y x z >> B .x z y >> C .y z x >> D .x y z >>3.(2022·内蒙古呼和浩特·一模(文))已知函数()|ln(1)|f x x ax a =--+有3个零点,则a 的取值范围是( ) A .(0,e)B .(0,1)C .10,e ⎛⎫ ⎪⎝⎭D .210,e ⎛⎫ ⎪⎝⎭二、多选题4.(2022·重庆·模拟预测)已知函数()e 1xaf x x =--有唯一零点,则实数a 的值可以是( ) A .1-B .12-C .0D .15.(2022·全国·模拟预测)已知函数()()e 1xf x x =+,()()1lng x x x =+,则( ) A .函数()f x 在R 上无极值点B .函数()g x 在()0,∞+上存在唯一极值点C .若对任意0x >,不等式()()2ln f ax f x >恒成立,则实数a 的最大值为2eD .若()()()120f x g x t t ==>,则()12ln 1t x x +的最大值为1e6.(2022·江苏江苏·一模)已知函数()e ()ln R xf x a x x a x=⋅-+∈,若对于定义域内的任意实数s ,总存在实数t 使得()()f t f s <,则满足条件的实数a 的可能值有( ) A .-1B .0C .1eD .17.(2022·海南·嘉积中学模拟预测)已知1201x x ,下列不等式恒成立的是( )A .1221e e x xx x >B .2112ln ln x x x x <C .1122ln ln x x x x <D .1221ln e l e n x xx x +<+三、填空题8.(2022·山东潍坊·模拟预测)设函数()()e 1xf x a x b x=+-+(a ,b ∈R )在区间[]1,3上总存在零点,则22a b +的最小值为________.9.(2022·贵州·模拟预测(理))如图,圆O :224x y +=交x 轴的正半轴于点A .B 是圆上一点,M 是弧AmB 的中点,设∠AOM=θ(0θπ<<),函数()f θ表示弦AB 长与劣弧AM 长之和.当函数()f θ取得最大值时,点M 的坐标是________.10.(2022·陕西·西安中学模拟预测(文))若过定点(1,e)P 恰好可作曲线e (0)x y a a =>的两条切线,则实数a 的取值范围是__________.11.(2022·浙江浙江·二模)已知函数()||(0,1,2,3)k f x x ka a k =->=,函数123()()()()g x f x f x f x =.若对任意[0,3]x a ∈,()12()()2g f x f x +≤恒成立,则实数a 的取值范围是________.四、解答题12.(2022·陕西·模拟预测(文))已知函数()ln 2=-f x ax x x .(1)若()f x 在1x =处取得极值,求()f x 的单调区间; (2)若函数2()()2=-+f x h x x x有1个零点,求a 的取值范围.13.(2022·河南省杞县高中模拟预测(理))已知函数()e xf x =,()1g x ax =+.(1)若()()f x g x ≥恒成立,求实数a 的值;(2)若()0,1x ∈,求证:()1ln 11x x f x x-+-<.14.(2022·江西宜春·模拟预测(文))已知函数()e 1xf x x x =--.(1)求函数()f x 在区间[]0,1上的最小值;(2)不等式()1ln 2a f x x x x ⎡⎤++>+-⎣⎦对于()0,x ∈+∞恒成立,求实数a 的取值范围.【真题训练】一、单选题1.(2021·浙江·高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+- B .1()()4y f x g x =-- C .()()y f x g x =D .()()g x y f x =2.(2021·全国·高考真题(理))设2ln1.01a =,ln1.02b =, 1.041c =.则( ) A .a b c <<B .b c a <<C .b a c <<D .c a b <<3.(2021·全国·高考真题(理))设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则( ) A .a b <B .a b >C .2ab a <D .2ab a >4.(2021·全国·高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a <<D .0e a b <<二、填空题5.(2021·全国·高考真题)已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______.6.(2021·全国·高考真题)写出一个同时具有下列性质①②③的函数():f x _______. ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()'f x 是奇函数. 8.(2021·全国·高考真题(理))曲线212x y x -=+在点()1,3--处的切线方程为__________.三、解答题9.(2021·天津·高考真题)已知0a >,函数()x f x ax xe =-. (I )求曲线()y f x =在点(0,(0))f 处的切线方程: (II )证明()f x 存在唯一的极值点(III )若存在a ,使得()f x a b ≤+对任意x ∈R 成立,求实数b 的取值范围.10.(2021·全国·高考真题)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)i P X i p i ===.(1)已知01230.4,0.3,0.2,0.1p p p p ====,求()E X ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x +++=的一个最小正实根,求证:当()1E X ≤时,1p =,当()1E X >时,1p <;(3)根据你的理解说明(2)问结论的实际含义.11.(2021·全国·高考真题)已知函数2()(1)x f x x e ax b =--+. (1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 只有一个零点①21,222e a b a <≤>; ②10,22a b a <<≤.12.(2021·北京·高考真题)已知函数()232xf x x a-=+. (1)若0a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 在1x =-处取得极值,求()f x 的单调区间,以及其最大值与最小值.13.(2021·浙江·高考真题)设a ,b 为实数,且1a >,函数()2R ()x f x a bx e x =-+∈(1)求函数()f x 的单调区间;(2)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(3)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点()1221,,x x x x >,满足2212ln 2b b e x x e b>+.(注: 2.71828e =⋅⋅⋅是自然对数的底数)14.(2021·全国·高考真题(理))已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4. (1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.15.(2021·全国·高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.16.(2021·全国·高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.17.(2021·全国·高考真题(理))已知0a >且1a ≠,函数()(0)ax x f x x a=>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.18.(2021·全国·高考真题(文))已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标.19.(2021·全国·高考真题)已知函数()()1ln f x x x =-.(1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b <+<.。

(完整版)专题三导数与三次函数

(完整版)专题三导数与三次函数
9 32002310xx 2001210xx 01x或012x 所求的切线方程为2y或9410xy 3、已知函数32fxxaxbxc在23x与1x时都取得极值。 ⑴求a、b的值及函数fx的单调区间; ⑵若对1,2x,不等式2fxc恒成立,求c的取值范围。(2006江西) 解:⑴232fxxaxb,依题意,得 212403931320fabfab,解得122ab ∴232321fxxxxx x变化时,fx、fx的变化情况如下表 x 2,3 23 2,13 1 1, fx + 0 - 0 + fx 极大值 极小值 所以fx的递增区间为2,3与1,,递减区间为2,13 ⑵32122fxxxxc,1,2x 当23x时,2227fxc为极大值,而22fc ∴22fc为最大值
7 ∴33332222mamambbmmccm 由155fabc ∴32532mmm 6m ∴23ma,39,2122mbcm 2、若函数32111132fxxaxax在区域1,4内为减函数,在区间6,上为增函数,试求实数a的取值范围。(2004全国卷) 解:21fxxaxa 令0fx解得11x,21xa ①当11a即2a时,fx在1,上为增函数,不合题意 ②当11a即2a时,函数fx在,1上为增函数,在1,1a内为减函数,在1,a上为增函数,依题意应有: 当1,4x时,0fx,当6,x时,0fx 所以416a,解得 57a 综上,a的取值范围是5,7 3、已知函数323fxaxbxx在1x处取得极值, ⑴讨论1f和1f是函数fx的极大值还是极小值; ⑵过点0,16A作曲线yfx的切线,求此切线方程。(2004天津)
3 x ,1 -1 (-1,1) 1 1, fx + 0 - 0 + ()fx 极大值 极小值 ∴()fx的单调递增区间是,1和1, ()fx的单调递减区间是1,1 当1x时,fx有极大值311312faa 当1x时,fx有极小值311312faa 要使()fx有一个零点,需且只需2020aa,解得2a 要使()fx有二个零点,需且只需2020aa,解得2a 要使()fx有三个零点,需且只需2020aa,解得22a 变式五、已知函数33,0fxxxa,如果过点,2Aa可作曲线yfx的三条切线,求a的取值范围 解:设切点为00,xy,则233fxx ∴切线方程000yyfxxx 即 2300332yxxx ∵切线过点A,2a ∴23002332xax 即 320023320xaxa ∵过点,2Aa可作yfx的三条切线 ∴方程有三个相异的实数根

2013届高三数学名校试题汇编(第3期)专题03 导数与应用 文

2013届高三数学名校试题汇编(第3期)专题03 导数与应用 文

【精选+详解】2013届高三数学名校试题汇编(第3期)专题03 导数与应用 文一.基础题1.【广东省肇庆市中小学教学质量评估2012—2013学年第一学期统一检测题】函数321()2323f x x x x =-+-在区间[0,2]上最大值为 【答案】23-【解析】2()4301,3f x x x x x '=-+=⇒==,24(0)2,(1),(2)33f f f =-=-=-2.【广州市2013届高三年级1月调研测试】若直线2y x m =+是曲线ln y x x =的切线,则实数m 的值为.3.【2012-2013学年四川省成都市高新区高三(上)统一检测】已知函数y=f (x )的导数为f′(x )且,则= .二.能力题1.【2013年河南省开封市高考数学一模试卷(文科)】已知直线ax ﹣by ﹣2=0与曲线y=x 3在点P (1,1)处的切线互相垂直,则为( )2.【2012-2013学年辽宁省丹东市四校协作体高三摸底考试(零诊)】函数f (x )=lnx+ax3.【河南省三门峡市2013届高三第一次大练习】已知二次函数()f x =2ax bx c ++的导数为()f x ',(0)f '>0,对任意实数x 都有()f x ≥0,则(1)(0)f f '的最小值为A.4B.3C.8D.2 【答案】D【解析】∵()f x '=2ax b +,∴(0)f '=b >0,∵对任意实数x 都有()f x ≥0,∴240a b ac >⎧⎨∆=-≤⎩,即24ac b ≥,∴c >0,∴(1)(0)f f '=a b c b ++=1a c b++≥1+≥1+=2,当且仅当a c =取等号,故选D.三.拔高题4.【北京市海淀区北师特学校2013届高三第四次月考】(本小题满分13分)已知函数.,1ln )(R ∈-=a xx a x f (I )若曲线)(x f y =在点))1(,1(f 处的切线与直线02=+y x 垂直,求a 的值; (II )求函数)(x f 的单调区间;5.[2012-2013学年河南省平顶山许昌新乡三市高三(上)第一次调研考试]已知函数f (x )=e x+(a ﹣2)x 在定义域内不是单调函数. (Ⅰ)求函数f (x )的极值(Ⅱ)对于任意的a ∈(2﹣e ,2)及x≥0,求证e x≥1+(1﹣)x 2. )∵f′((﹣()已知函数()()f ln ax x a R x=-∈ ()1讨论()f x 的单调性; ()2设()225,g x x bx =-+当a=-2时,若对任意[]11,x e ∈,存在[]21,2x ∈,使()()12f x g x ≤求实数b 的取值范围.7.【2012-2013学年四川省成都市高新区高三(上)统一检测】已知函数f (x )=ax 2+1(a>0),g (x )=x 3+bx .(1)若曲线y=f (x )与曲线y=g (x )在它们的交点(1,c )处有公共切线,求a ,b 的值; (2)当a=3,b=﹣9时,函数f (x )+g (x )在区间[k ,2]上的最大值为28,求k 的取值范围.,,其中e=2.71828….(1)若f (x )在其定义域内是单调函数,求实数p 的取值范围; (2)若p ∈(1,+∞),问是否存在x 0>0,使f (x 0)≤g(x 0)成立?若存在,求出符合条件的一个x 0;否则,说明理由.已知函数2()()xf x ax x e =+,其中e 是自然对数的底数,a R ∈. (1)当0a >时,解不等式()0f x ≤;(2)当0a =时,求整数的所有值,使方程()2f x x =+在[,1]t t +上有解; (3)若()f x 在[1,1]-上是单调增函数,求a 的取值范围.(3)22()(21)e ()e [(21)1]e x x x f x ax ax x ax a x '=+++=+++,①当0a =时,()(1)e xf x x '=+,()0f x '≥在[11]-,上恒成立,当且仅当1x =-时取等号,故0a =符合要求;(10 分)②当0a ≠时,令2()(21)1g x ax a x =+++,因为22(21)4410a a a ∆=+-=+>, 所以()0g x =有两个不相等的实数根1x ,2x ,不妨设12x x >,因此()f x 有极大值又有极小值.若0a >,因为(1)(0)0g g a -⋅=-<,所以()f x 在(11)-,内有极值点,故()f x 在[]11-,上不单调. (12分)若0a <,可知120x x >>,因为()g x 的图象开口向下,要使()f x 在[11]-,上单调,因为(0)10g =>,必须满足(1)0,(1)0.g g ⎧⎨-⎩≥≥即320,0.a a +⎧⎨-⎩≥≥所以203a -<≤. 综上可知,a 的取值范围是2,03⎡⎤-⎢⎥⎣⎦. (14分)8. 【安徽省黄山市2013届高中毕业班第一次质量检测】 (本小题满分12分)设函数329(62)f x x x a x =-+-.(1)对于任意实数x ,'()f m x ≥在15(,]恒成立(其中'()f x 表示()f x 的导函数),求m 的最大值;(2)若方程()0f x =在R 上有且仅有一个实根,求a 的取值范围.(2)因为当1x <时, '()0f x >;当12x <<时, '()0f x <;当2x >时, '()0f x >; 即()y f x =在(,1)-∞和(2,)+∞单增,在(1,2)单减.所以5()=(1)2f x f a =-极大值,()=(2)2f x f a =-极小值.………………………………9分故当(2)0f >或(1)0f <时,方程()0f x =仅有一个实根.得2a <或52a >时,方程()0f x =仅有一个实根.所以5(,2)(,)2a ∈-∞+∞ (12)分9.【广州市2013届高三年级1月调研测试】(本小题满分14分) 已知()fx 是二次函数,不等式()0f x <的解集是()05,,且()f x 在点()()11f ,处的切线与直线610x y ++=平行. (1)求()fx 的解析式;(2)是否存在t ∈N ,使得方程()370fx x+=在区间()1t t ,+内有两个不等的实数根?若存在,求出的值;若不存在,说明理由.(本小题主要考查二次函数、函数的性质、方程的根等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和应用意识)解法2:设()2fx ax bx c =++, ∵不等式()0fx <的解集是()05,,∴方程20ax bx c ++=的两根为05,.∴02550c a b ,=+=. ① …………… 2分 ∵2f x ax b /()=+. 又函数()f x 在点()()11f ,处的切线与直线610x y ++=平行,∴()16f/=-.∴26a b +=-. ② …………… 3分由①②,解得2a =,10b =-. …………… 4分∴()2210fx x x =-. …………… 5分10.(东莞市2013届高三上学期期末)已知函数()ln f x ax b x c =++,(,,a b c 是常数)在x=e 处的切线方程为(1)0e x ey e -+-=,1x =既是函数()y f x =的零点,又是它的极值点.(1)求常数a,b,c 的值;(2)若函数2()()()g x x mf x m R =+∈在区间(1,3)内不是单调函数,求实数m 的取值范围;(3)求函数()()1h x f x =-的单调递减区间,并证明:ln 2ln 3ln 4ln 2012123420122012⨯⨯⨯⨯<解:(1)由c x b ax x f ++=ln )(知,)(x f 的定义域为),0(+∞,xba x f +=)(', …1分 又)(x f 在e x =处的切线方程为0)1(=-+-e ey x e ,所以有 ee e b a ef 1)('--=+=,① …………2分 由1=x 是函数)(x f 的零点,得0)1(=+=c a f ,② …………3分 由1=x 是函数)(x f 的极值点,得0)1('=+=b a f ,③ …………4分 由①②③,得1-=a ,1=b ,1=c . …………5分.(ⅱ)当函数)(x g 在)3,1(内有两个极值时,0)('=x g 在)3,1(内有两个根,即二次函数02)(2=+-=m mx x x d 在)3,1(内有两个不等根,所以⎪⎪⎩⎪⎪⎨⎧<<>+-⨯=>+-=>⨯⨯-=∆,341,0332)3(,02)1(,02422m m m d m m d m m 解得98<<m . …………9分综上,实数m 的取值范围是),8(+∞. …10分11、(佛山市2013届高三上学期期末)设函数1()x e f x x-=,0x ≠.(1)判断函数()f x 在()0,+∞上的单调性;(2)证明:对任意正数a ,存在正数x ,使不等式()1f x a -<成立.解析:(1)22(1)(1)1()x x x xe e x e f x x x---+'==, -----------2分 令()(1)1xh x x e =-+,则()(1)xxxh x e e x xe '=+-=, 当0x >时,()0xh x xe '=>,∴()h x 是()0,+∞上的增函数,∴()(0)0h x h >=, 故2()()0h x f x x'=>,即函数()f x 是()0,+∞上的增函数. -----------------6分 (2)11()11x x e e x f x x x----=-=,12、(广州市2013届高三上学期期末)已知()f x 是二次函数,不等式()0f x <的解集是()05,,且()f x 在点()()11f ,处的切线与直线610x y ++=平行.(1)求()fx 的解析式;(2)是否存在t ∈N *,使得方程()370fx x+=在区间()1t t ,+内有两个不等的实数 根?若存在,求出t 的值;若不存在,说明理由. (1)解法1:∵()f x 是二次函数,不等式()0f x <的解集是()05,,∴可设()()5fx ax x =-,0a >. …………… 1分∴25f x ax a /()=-. …………… 2分 ∵函数()fx 在点()()11f ,处的切线与直线610x y ++=平行,∴()16f /=-. …………… 3分∴256a a -=-,解得2a =. …………… 4分 ∴()()225210fx x x x x =-=-. …………… 5分(2)解:由(1)知,方程()370fx x+=等价于方程32210370x x -+=. …………… 6分设()h x=3221037x x -+,则()()26202310hx x x x x /=-=-. …………… 7分当1003x ,⎛⎫∈ ⎪⎝⎭时,()0h x /<,函数()h x 在1003,⎛⎫ ⎪⎝⎭上单调递减; ……… 8分 当103x ,⎛⎫∈+∞⎪⎝⎭时,()0h x />,函数()h x 在103,⎛⎫+∞ ⎪⎝⎭上单调递增. … 9分∵()()1013100450327h h h ,,⎛⎫=>=-<=>⎪⎝⎭, …………… 12分 ∴方程()0h x=在区间1033,⎛⎫ ⎪⎝⎭,1043,⎛⎫⎪⎝⎭内分别有唯一实数根,在区间()03,,()4,+∞内没有实数根. …………… 13分∴存在唯一的自然数3t =,使得方程()370fx x+=在区间()1t t ,+内有且只有两个不等的实数根. …………… 14分13、(惠州市2013届高三上学期期末)已知函数3()3()f x x ax a R =-∈ (1)当1a =时,求()f x 的极小值;(2)若直线0x y m ++=对任意的m R ∈都不是曲线()y f x =的切线,求a 的取值范围; (3)设()|()|,[1,1]g x f x x =∈-,求()g x 的最大值()F a 的解析式.法2:f x x a a =-≥-/2()333,……………4分要使直线0=++m y x 对任意的m R ∈都不是曲线()y f x =的切线,当且仅当a -<-13时成立,31<∴a ………………6分(3)因,]1,1[|3||)(|)(3上是偶函数在--==ax x x f x g故只要求在]1,0[上的最大值. …………7分 ①当0≤a 时,)()(,0)0(]1,0[)(,0)(/x f x g f x f x f =∴=≥上单调递增且在.31)1()(a f a F -== …………………9分(ⅰ)当a f a F a a f a f 31)1()(,410,31)1()(-==≤<-=≤-时即 (ⅱ)当a a a f a F a a f a f 2)()(,3141,31)1()(=-=<<-=>-时即……13分 综上 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<<≤-=)1(,13)141(,2)41(,31)(a a a a a a a x F ………………14分14、(江门市2013届高三上学期期末)已知函数x x a x x f ln )1( 21)(2---=,其中R a ∈. ⑴若2=x 是)(x f 的极值点,求a 的值;⑵若0>∀x ,1)(≥x f 恒成立,求a 的取值范围. 解:⑴xx a x f 1)1( 1)(/---=……2分, 因为2=x 是)(x f 的极值点,所以0)2(/=f ……3分,解021)12( 1=---a 得21=a ……4分,⑵(方法一)依题意1ln )1( 212≥---x x a x ,)ln 1(2)1( 2x x x a --≤-,0>x ……5分。

新教材高考数学一轮复习第3章导数及其应用微专题进阶课3构造法解fx与f′x共存问题课件新人教B版

新教材高考数学一轮复习第3章导数及其应用微专题进阶课3构造法解fx与f′x共存问题课件新人教B版
(-∞,1) 解析:由 f′(x)>12,可得fx-12x′=f′(x)-12>0,即 函数 F(x)=f(x)-12x 在 R 上是增函数.又由 f(1)=1 可得 F(1)=12,故
f(x)<x+2 1=12+12x,整理得 f(x)-12x<12,即 F(x)<F(1).由函数的单调性 可得不等式的解集为(-∞,1).
第三章 导数及其应用
微专题进阶课(三) 构造法解f(x)与f′(x)共存问题
以抽象函数为背景,题设条件或所求结论中具有f(x)与f′(x)共存 的不等式,旨在考查导数运算法则的逆向、变形应用能力的客观题, 是近几年高考中的一个热点.解答这类问题的策略是将f(x)与f′(x)共 存的不等式与导数运算法则结合起来,合理构造出相关的可导函数, 然后利用函数的性质解决问题.
A 解析:构造函数 F(x)=f(x)·g(x).由题意可知,当 x<0 时, F′(x)>0,所以 F(x)在(-∞,0)上单调递增.又因为 f(x),g(x)分别是 定义在 R 上的奇函数和偶函数,所以 F(x)是定义在 R 上的奇函数,从 而 F(x)在(0,+∞)上单调递增.而 F(3)=f(3)g(3)=0,所以 F(-3)=- F(3)=0,结合图像(图略)可知不等式 f(x)g(x)>0⇔F(x)>0 的解集为(-3,0) ∪(3,+∞).故选 A.
【点评】当题设条件中存在或通过变形出现特征“f′(x)g(x) +f(x)g′(x)”时,可联想、逆用“f′(x)g(x)+f(x)g′(x)=[f(x)g(x)]′”, 构造可导函数 y=f(x)g(x),然后利用函数的性质巧妙地解决问题.
【点评】当题设条件中存在或通过变形出现特征“f′(x)g(x) +f(x)g′(x)”时,可联想、逆用“f′(x)g(x)+f(x)g′(x)=[f(x)g(x)]′”, 构造可导函数 y=f(x)g(x),然后利用函数的性质巧妙地解决问题.

高三《导数的应用》说课稿

高三《导数的应用》说课稿

高三《导数的应用》说课稿以下是作者为大家准备的高三《导数的应用》说课稿(共含4篇),希望对大家有帮助。

篇1:高三《导数的应用》说课稿高三《导数的应用专题》说课稿导数是新课程教材中重要内容,是进一步刻画、研究函数的重要工具,为运用函数思想简捷地解决实际问题提供了广阔的前景。

纵观这几年的高考,考察的力度逐年加大,因此在高三复习中必须引起足够的重视。

在中学数学的新课程中,导数单元作为初等数学和高等数学重要的衔接点,显得格外引人瞩目。

导数的思想及其内涵丰富了对函数等问题的研究方法,已经成为近几年高考数学的一大热点。

另外,导数又具有很强的知识交汇功能,以其为载体的问题情景很多,给师生在复习内容和方法上的选择带来困惑。

从这个意义上说,高三师生采取什么样的策略复习,复习的重点落在何处?显得至关重要。

1、教材分析与考点分析在教材中,导数处于一种特殊的地位。

一方面它是沟通初、高等数学知识的重要衔接点,渗透和加强了对学生由有限到无限的辩证思想的教育,突破了许多初等数学在思想和方法上的障碍,拓宽、优化和丰富了许多数学问题解决的思路、方法和技巧;另一方面它具有很强的知识交汇功能,可以联系多个章节内容,如常与函数、数列、三角、向量、不等式、解析几何等内容交叉渗透,并成为解决相关问题的重要工具。

从高考关于导数单元的考查情况来看,以下两个特点非常明显:(1)循序渐进:从总体上看,高考考查导数的有关知识是循序渐进的过程。

导数的内容刚进入高考数学新课程卷时,其考试要求都是很基本的,以后逐渐加深,分析近几年的高考试题,可以看出高考对导数考查的思路已基本成熟。

考查的基本原则是重点考查导数的概念与应用。

这部分内容的考查一般分为三个层次:第一层次:主要考查导数的概念、求导公式、求导法则和与实际背景有关的问题(如瞬时速度,边际成本,加速度、切线的斜率)第二层次:主要考查导数的.简单应用,包括求函数的极值、最值,求函数的单调区间,证明函数的单调性等。

导数专题——3 导数的分类讨论

导数专题——3 导数的分类讨论

导数专题分类讨论考纲要求考试内容要求层次了解理解掌握导数及其应用导数概念及其几何意义导数的概念√导数的几何意义√导数的运算根据导数定义求函数cy=,xy=,2xy=,3xy=,xy1=,xy=的导数√导数的四则运算√简单的复合函数(仅限于形如)(baxf+)的导数√导数公式表√导数在研究函数中的应用利用导数研究函数的单调性(其中多项式函数不超过三次)√函数的极值、最值(其中多项式函数不超过三次)√利用导数解决某些实际问题√知识框图讲义导航 考点 总题数 例题 练习A 练习B 练习C 作业 一次型 3 1 0 0 1 1 二次型 16 4 3 4 3 2 分式指对 1133221知识点一. 为什么要分类讨论?1. 利用导数求单调区间的步骤 (1)确定函数的定义域;(2)求导数'()f x ,并对导数进行整理(常用方法:通分、因式分解); (3)由'()0f x >(或0<)解出相应的x 的取值范围.当'()0f x >时,()f x 在相应的区间内是单调增函数; 当'()0f x <时,()f x 在相应的区间内是单调减函数. 一般需要通过列表,写出函数的单调区间.2. 为什么要分类讨论?在利用导数解决函数的单调性与极值、最值问题时,一般含有参数的导数往往需要分类讨论. 原因在于,求单调区间的第(3)步中会去解一个含参的不等式. 或者,是题目给出的是区间端点含有参数.二. 如何进行分类讨论?1. 先明确是哪类不等式,不同类型的不等式,分类讨论的策略不同!考试中常碰到的不等式有:一元一次不等式、一元二次不等式、分式不等式、对数不等式、指数不等式2. 再观察一下区间(定义域)和参数范围.3. 结合导函数图象,开始讨论不同类型不等式的讨论策略: (1)一元一次不等式型:①参数在一次项系数上:如:'()e (1)0x f x ax =+>,R x ∈,R a ∈(i )当0a =时,'()10f x =>,()f x 增区间为R ;(ii )当0a >时,由'()0f x >,得1x a >-,()f x 增区间是1()a -+∞,;由'()0f x <,得1x a <-,()f x 减区间是1()a-∞-,.(ii )当0a <时,由'()0f x >,得1x a <-,()f x 增区间是1()a -∞-,;由'()0f x <,得1x a >-,()f x 减区间是1()a-+∞,.②参数在常数项上:如:'()e ()0x f x x a =+>,0x >,a ∈R (i )当0a时,'()0f x >恒成立,()f x 增区间为(0)+∞,;(ii )当0a <时,由'()0f x >,得x a >-,()f x 增区间为()a -+∞,; 由'()0f x <,得x a <-,()f x 增区间为()a -∞-,. (2)一元二次不等式型:①参数在二次项系数:第一种,能因式分解型;如:'()(1)()0f x a x x a =+->,x ∈R ,a ∈R当0a =时,'()0f x =恒成立,()f x 为常函数; 当0a >时,由'()0f x >,得1x <-或x a >,()f x 的增区间是(1)-∞-,,()a +∞,; 由'()0f x <,得1x a -<<,()f x 的减区间为(1)a -,. 当0a <时,(i )1a =-,2'()(1)0f x x =-+且不恒为0,()f x 减区间为()-∞+∞,; (ii )1a <-时,由'()0f x >,得1a x <<-,()f x 的增区间是(1)a -,; 由'()0f x <,得x a <或1x >-,()f x 的减区间是()a -∞,,(1)-+∞,. (iii )10a -<<时,由'()0f x >,得1x a -<<,()f x 的增区间是(1)a -,; 由'()0f x <,得1x <-或x a >,()f x 的减区间是(1)-∞-,,()a +∞,. 注:分类可以有层次感,在大类下还可以再分小类,这样逻辑比较清晰严谨,不易混乱.第二种,不能因式分解型;如:2'()10f x ax x =++>,x ∈R ,a ∈R当0a =时,由'()10f x x =+>,得1x >-,()f x 的增区间是(1)-+∞,; 由'()10f x x =+<,得1x <-,()f x 的减区间是(1)-∞-,当0a >时,14a ∆=-(i )当0∆时,即14a2'()10f x ax x =++恒成立且不恒为0,()f x 的增区间是()-∞+∞,; (ii )当0∆>时,即104a <<由2'()10f x ax x =++>,得x 或x >()f x 的增区间是(-∞,)+∞;由2'()10f x ax x =++<x <()f x 的减区间是.当0a <时,140a ∆=->由2'()10f x ax x =++>x <<()f x 的增区间是.由'()0f x <,得x x >()f x 的减区间是(-∞,)+∞. ②参数不在二次项系数上:第一种,能因式分解型如:'()(1)()0f x x x a =-->,x ∈R ,a ∈R 当1a =时,2'()(1)0f x x =-恒成立且不恒为0,()f x 增区间为()-∞+∞,; 当1a >时,由'()0f x >,得1x <或x a >,()f x 增区间为(1)-∞,,()a +∞,; 由'()0f x <,得1x a <<,()f x 减区间为(1)a ,. 当1a <时,由'()0f x >,得x a <或1x >,()f x 增区间为()a -∞,,(1)+∞,; 由'()0f x <,得1a x <<,()f x 减区间为(1)a ,. 第二种,不能因式分解型如:2'()10f x x ax =++>,x ∈R ,a ∈R 24a ∆=-当240a ∆=-,即22a -时,2'()10f x x ax =++≥恒成立且不恒为0,()f x 增区间是()-∞+∞,. 当240a ∆=->,即2a >或2a <-时,由2'()10f x x ax =++>,得242a a x ---<或242a a x -+->()f x 增区间是24()2a a ----∞,,24()2a a -+-+∞,;由'()0f x <,得224422a a a a x ----+-<<()f x 减区间是2244()22a a a a ----+-,. (3)分式不等式型这种类型往往可以转化为一元二次不等式型解决.(4)指数不等式型如:'()e 0x f x a =+>,x ∈R ,a ∈R 当0a时,'()0f x >恒成立,()f x 增区间为()-∞+∞,;当0a <时,由'()e 0x f x a =+>,得ln()x a >-,()f x 增区间为(ln())a -+∞,; 由'()0f x <,得ln()x a <-,()f x 减区间为(ln())a -∞-,(5)对数不等式型如:'()ln 0f x x a =+>,0x a >∈R ,由'()0f x >,得e a x ->,()f x 增区间是(e )a -+∞,; 由'()0f x <,得0e a x -<<,()f x 减区间是(0e )a -,.核心问题1 分类讨论:一次型设函数()e (0)kxf x x k =≠,求函数()f x 的单调区间.【解析】由()(1)0kxf x kx e '=+=得1(0)x k k=-≠若0k >,则当1,x k ⎛⎫∈-∞- ⎪⎝⎭时,()0f x '<,函数()f x 单调递减;当1,x k ⎛⎫∈-+∞ ⎪⎝⎭时,()0f x '>,函数()f x 单调递增;当0k >,则当1,x k ⎛⎫∈-∞- ⎪⎝⎭时,()0f x '>,函数()f x 单调递增;当1,x k ⎛⎫∈-+∞ ⎪⎝⎭时,()0f x '<,函数()f x 单调递减;核心问题2 分类讨论:二次型设函数3()3(0)f x x ax b a =-+≠.求函数()f x 的单调区间与极值点.【解析】2()3()(0)f x x a a '=-≠当0a <时,由()'0f x >,函数()-+f x ∞∞在(,)上单调递增,此时函数()f x 没有极值点.当0a >时,由(=0f x')得x a =± 当(,)x a ∈-∞-时,()0f x '>函数()f x 单调递增;当(,)x a a ∈-时,()0f x '<,函数()f x 单调递减; 当(,)x a ∈+∞时,()0f x '>,函数()f x 单调递增;此时,x a =-是()f x 的极大值点,x a =是()f x 的极小值点. 已知函数22()(23)e ()x f x x ax a a x =+-+∈R ,其中a ∈R 当23a ≠时,求函数()f x 的单调区间与极值. 【解析】22'()(2)24xf x x a x a a e ⎡⎤=++-+⎣⎦.令'()0f x =,解得2x a =-,或2x a =-由32a ≠知,22a a -≠- 以下分两种情况讨论.若23a >,则2a -<2a -.当x 变化时,'()()f x f x ,的变化情况如下表:x (),2-∞- 2-()2,2a a -- 2a - ()2.a -+∞ ()'f x+ 0 - 0 + ()f x增函数极大值减函数极小值增函数所以()f x 在(2)(2)a a -∞--+∞,,,内事增函数,在(22)a a --,内时间函数. 函数()f x 在2x a =-处取得极大值()2f a -,且2(2)3a f a ae --= 函数()f x 在2x a =-处取得极小值(2)f a -,且2(2)(43)a f a a e --=- 若23a <,则2a ->2a -,当x 变化时,'()()f x f x ,的变化情况如下表: x(),2a -∞-2a -()2,2a a --2a -()2,a -+∞()'f x+ 0 - 0 + ()f x增函数极大值减函数极小值增函数所以()f x 在(2)(2)a a -∞--+∞,,,内是增函数,在(22)a a --,内是减函数; 函数()f x 在2x a =-处取得极大值(2)f a -,且2(2)(43)a f a a e --=-; 函数()f x 在2x a =-处取得极小值(2)f a -,且2(2)3a f a ae --=.设函数1()ln f x x a x a x=--∈R ,,讨论的单调性. 【解析】的定义域为令()21g x x ax =-+,其判别式,∆当0∆>故上单调递增. ()f x ()f x (0,).+∞22211'()1a x ax f x x x x-+=+-=2 4.a =-||2,a f x ≤≤≥时0,'()0,af x ≤≤≥时()(0,)f x +∞在当0∆>的两根都小于0,在上,,故上单调递增.当0∆>的两根为, 当时, ;当时, ;当时, ,故分别在上单调递增,在上单调递减.已知函数2()ln(1)2kf x x x x =+-+(0k ≥).求()f x 的单调区间.【解析】(1)()1x kx k f x x+-'=+,(1,)x ∈-+∞当0k =时,()1x f x x'=-+ 所以,在区间(1,0)-上,()0f x '>; 在区间(0,)+∞上,()0f x '<故()f x 的单调递增区间是(1,0)-,单调递减区间是(0,)+∞当01k <<时,由(1)()01x kx k f x x+-'=<+ 得10x =,210kx k-=> 所以,在区间(1,0)-和1(,)kk-+∞上,()0f x '>; 在区间1(0,)kk-上,()0f x '< 故()f x 的单调递增区间是(1,0)-和1(,)k k -+∞,单调递减区间是1(0,)kk-. 当1k =时,2()1x f x x'=+ 故()f x 的单调递增区间是(1,)-+∞当1k >时,由(1)()01x kx k f x x+-'==+ 得11(1,0)kx k-=∈-,20x = 所以,在区间1(1,)kk--和(0,)+∞上,()0f x '>; 在区间1(,0)kk-上,()0f x '< 故()f x 的单调递增区间是1(1,)k k --和(0,)+∞,单调递减区间是1(,0)kk-.核心问题3 分类讨论:分式与指对数型已知函数22()(1)x bf x x -=-,求导函数()f x ',并确定()f x 的单调区间. 2a <-时,>0,g(x)=0a <-时,>0,g(x)=0(0,)+∞'()0f x >()(0,)f x +∞在2a >时,>0,g(x)=0221244a a a a x x --+-==10x x <<'()0f x >12x x x <<'()0f x <2x x >'()0f x >()f x 12(0,),(,)x x +∞12(,)x x【解析】242(1)(2)(1)()(1)x x b x f x x ---⨯-'=-3222(1)x b x -+-=-32[(1)](1)x b x --=--. 令()0f x '=,得1x b =-.当11b -<,即2b <时,()f x '的变化情况如下表:x(1)b -∞-, 1b - (11)b -, (1)+∞,()f x ' - 0 +-当11b ->,即2b >时,()f x '的变化情况如下表:x(1)-∞, (11)b -, 1b - (1)b -+∞,()f x ' - + 0 -所以,当2b <时,函数()f x 在(1)b -∞-,上单调递减,在(11)b -,上单调递增,在(1)+∞,上单调递减.当2b >时,函数()f x 在(1)-∞,上单调递减,在(11)b -,上单调递增,在(1)b -+∞,上单调递减. 当11b -=,即2b =时,2()1f x x =-,所以函数()f x 在(1)-∞,上单调递减,在(1)+∞,上单调递减.已知函数()ln f x ax x =-,()e 3ax g x x =+,其中a ∈R .若存在区间M ,使()f x 和()g x 在区间M 上具有相同的单调性,求a 的取值范围. 【解析】()f x 的定义域为(0,)+∞,11()ax f x a x x-'=-=. ① 当0a ≤时,()0f x '<,故()f x 在(0,)+∞上单调递减. ② 当0a >时,令()0f x '=,得1x a=. x ,()f x 和()f x '的情况如下:x 1(0,)a1a 1(,)a +∞ ()f x ' -+()f x↘↗故()f x 的单调减区间为1(0,)a ;单调增区间为1(,)a+∞. ()g x 的定义域为R ,且 ()e 3ax g x a '=+. 当0a >时,显然 ()0g x '>,从而()g x 在R 上单调递增.由(Ⅰ)得,此时()f x 在1(,)a+∞上单调递增,符合题意.① 当0a =时,()g x 在R 上单调递增,()f x 在(0,)+∞上单调递减,不合题意.② 当0a <时,令()0g x '=,得013ln()x a a=-. x ,()g x 和()g x '的情况如下表: x 0(,)x -∞ 0x 0(,)x +∞ ()g x ' -+()g x↘↗当30a -≤<时,00x ≤,此时()g x 在0(,)x +∞上单调递增, 由于()f x 在(0,)+∞上单调递减,不合题意当3a <-时,00x >,此时()g x 在0(,)x -∞上单调递减,由于()f x 在(0,)+∞上单调递减,符合题意. 综上,a 的取值范围是(,3)(0,)-∞-+∞.已知函数ln ()()a xf x a x+=∈R ,求()f x 的单调区间. 【解析】()f x 的定义域为(0,)+∞,21(ln )()x a f x x-+'=, 令()0f x '=得1a x e -=. 当1(0,)a x e -∈时,()0f x '>,()f x 是增函数;当1(,)a x e -∈+∞时,()0f x '<,()f x 是减函数;课堂练习【A 】已知函数1()ln 1a f x x ax x-=-+-()a ∈R ,当a ⩽ 12时,讨论()f x 的单调性.【解析】因为1()ln 1af x x ax x-=-+- 所以222111()a ax x af x a x x x--+-'=-+=- (0,)x ∈+∞ 令2()1h x ax x a =-+- (0,)x ∈+∞(1)当0a =时,()1h x x =-+ (0,)x ∈+∞所以,当(0,1)x ∈时,()0h x >此时,()0f x '<,函数()f x 单调递增;当(1,)x ∈+∞时,()0h x <此时()0f x '>,函数()f x 单调递增(2)当0a ≠时,由()0f x '=, 即 210ax x a -+-=,解得 1211,1x x a==- 当12a =时,12x x =,()0h x >,此时()'0f x ≤,函数()f x 在()0,+∞上单调递减. 当102a <<时,1110a->>(0,1)x ∈时,()0h x >,此时()0f x '<,函数()f x 单调递减;1(1,1)x a ∈-时,()0h x <,此时()0f x '>,函数()f x 单调递增;1(1,)x a∈-+∞时,()0h x >,此时()0f x '<,函数()f x 单调递减③当0a <时,由于110a-<(0,1)x ∈时,()0h x >,此时()0f x '<,函数()f x 单调递减; (0,)x ∈+∞时,()0h x <,此时()0f x '>,函数()f x 单调递增综上所述:当0a ≤时,函数()f x 在(0,1)上单调递减;函数()f x 在(1,)+∞上单调递增;当12a =时,函数()f x 在(0,)+∞上单调递减;当102a <<时,函数()f x 在(0,1)上单调递减;函数()f x 在1(1,1)a -上单调递增; 函数()f x 在1(1,)a-+∞上单调递减设函数2e ()1axf x a x =∈+R ,.(Ⅰ)当1a =时,求曲线()y f x =在点(0(0))f ,处的切线方程; (Ⅱ)求函数)(x f 单调区间.【解析】因为2e (),1axf x x =+所以222e (2)()(1)ax ax x a f x x -+'=+. (Ⅰ)当1a =时, 2e ()1xf x x =+,222e (21)()(1)x x x f x x -+'=+,所以(0)1,f = (0)1f '=.所以曲线()y f x =在点(0,(0))f 处的切线方程为10x y -+=. ……4分(Ⅱ)因为222222e (2)e ()(2)(1)(1)ax ax ax x a f x ax x a x x -+'==-+++, …5分 (1)当0a =时,由()0f x '>得0x <;由()0f x '<得0x >.所以函数()f x 在区间(,0)-∞单调递增, 在区间(0,)+∞单调递减.…6分(2)当0a ≠时, 设2()2g x ax x a =-+,方程2()20g x ax x a =-+=的判别式2444(1)(1),a a a ∆=-=-+ ……7分①当01a <<时,此时0∆>.由()0f x '>得211a x --<,或211ax +->;由()0f x '<得221111a a x a a--+-<<. 所以函数()f x 单调递增区间是211()a ---∞和211)a+-+∞,单调递减区间221111(a a --+-. ……9分②当1a ≥时,此时0∆≤.所以()0f x '≥,所以函数()f x 单调递增区间是(,)-∞+∞. …10分③当10a -<<时,此时0∆>.由()0f x '>得221111a ax a a +---<<; 由()0f x '<得211a x a +-<,或211ax a-->.所以当10a -<<时,函数()f x 单调递减区间是211(,)a a +--∞和211(,)aa--+∞,单调递增区间221111(,)a a a a+---.……12分④当1a ≤-时, 此时0∆≤,()0f x '≤,所以函数()f x 单调递减区间是(,)-∞+∞.已知函数221()()ln 2f x ax x x ax x =--+.()a ∈R .(I )当0a =时,求曲线()y f x =在(e (e))f ,处的切线方程(e 2.718...=);(II )求函数()f x 的单调区间.【解析】(I )当0a =时,()ln f x x x x =-,'()ln f x x =-, ………………………2分所以()0f e =,'()1f e =-, ………………………4分所以曲线()y f x =在(e,(e))f 处的切线方程为y x e =-+.………………………5分 (II )函数()f x 的定义域为(0,)+∞21'()()(21)ln 1(21)ln f x ax x ax x ax ax x x=-+--+=-,…………………………6分①当0a ≤时,210ax -<,在(0,1)上'()0f x >,在(1,)+∞上'()0f x <所以()f x 在(0,1)上单调递增,在(1,)+∞上递减; ……………………………………………8分 ②当102a <<时,在(0,1)和1(,)2a +∞上'()0f x >,在1(1,)2a上'()0f x <所以()f x 在(0,1)和1(,)2a +∞上单调递增,在1(1,)2a上递减;………………………10分③当12a =时,在(0,)+∞上'()0f x ≥且仅有'(1)0f =,所以()f x 在(0,)+∞上单调递增; …………………………………………12分④当12a >时,在1(0,)2a 和(1,)+∞上'()0f x >,在1(,1)2a上'()0f x < 所以()f x 在1(0,)2a 和(1,)+∞上单调递增,在1(,1)2a上递减………已知函数()(1)e (0)xa f x x x=->,其中e 为自然对数的底数.(Ⅰ)当2a =时,求曲线()y f x =在(1(1))f ,处的切线与坐标轴围成的面积; (Ⅱ)若函数()f x 存在一个极大值点和一个极小值点,且极大值与极小值的积为5e ,求a 的值.【解析】(Ⅰ)22()e xx ax a f x x-+'=, ………………3分当2a =时,2222()e xx x f x x-+'=, 12122(1)e e 1f -+'=⨯=,(1)e f =-,所以曲线()y f x =在(1,(1))f 处的切线方程为e 2e y x =-, ………………5分 切线与x 轴、y 轴的交点坐标分别为(2,0),(0,2e)-, ………………6分所以,所求面积为122e 2e 2⨯⨯-=. ………………7分 (Ⅱ)因为函数()f x 存在一个极大值点和一个极小值点,所以,方程20x ax a -+=在(0,)+∞内存在两个不等实根, ………………8分则240,0.a a a ⎧∆=->⎨>⎩………………9分 所以4a >. ………………10分设12,x x 为函数()f x 的极大值点和极小值点,则12x x a +=,12x x a =, ………………11分因为,512()()e f x f x =,所以,1251212e e e x x x a x a x x --⨯=, ………………12分 即1225121212()e e x x x x a x x a x x +-++=,225e e a a a a a-+=,5e e a =,解得,5a =,此时()f x 有两个极值点, 所以5a =.(2019年东城二模文)已知函数1()2ln 2f x x x x x=--+. (Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求证:(1)()0x f x -≥.【解析】(Ⅰ)()f x 定义域为(0,)+∞,(1)0f =.2211'()2(1ln )112ln f x x x x x=+-+=++. '(1)2f =. 所以曲线()y f x =在(1,(1))f 处的切线方程为02(1)y x -=-. 即22y x =-.…………….5分 (Ⅱ)记21()12ln g x x x =++. 33222(1)(1)'()x x g x x x x+-=-=. 由'()0g x =解得1x =.()g x 与'()g x 在区间(0,)+∞上的情况如下:x(0,1) 1(1,)+∞'()g x-0 +()g x↘ 极小 ↗所以()g x 在1x =时取得最小值(1)2g =.所以21()12ln 20g x x x=++≥>.所以'()0f x >. 所以()f x 在(0,)+∞上单调递增. 又由(1)0f =知,当01x <<时,()0f x <,10x -<,所以(1)()0x f x ->; 当1x >时,()0f x >,10x ->,所以(1)()0x f x ->. 所以(1)()0x f x -≥. ………………………………13分(2017年丰台期末理)已知函数()e x f x x =与函数21()2g x x ax =+的图象在点(0,0)处有相同的切线. (Ⅰ)求a 的值;(Ⅱ)设()()()()h x f x bg x b =-∈R ,求函数()h x 在[]1,2上的最小值.【解析】(Ⅰ)因为()e e x x f x x '=+,所以(0)1f '=. (2)因为()g x x a '=+,所以(0)g a '=. (4)因为()f x 与()g x 的图象在(0,0)处有相同的切线,所以(0)(0)f g ''=,所以1a =. 5分 (Ⅱ)由(Ⅰ)知, 21()2g x x x =+, 令21()()()e 2xh x f x bg x x bx bx =-=--,[1,2]x ∈,则()e e (1)(1)(e )x x xh x x b x x b '=+-+=+-. ……………….6分 (1)当0b ≤时,[1,2]x ∀∈,()0h x '>,所以()h x 在[1,2]上是增函数,故()h x 的最小值为3(1)=e 2h b -; (7)(2)当0b >时,由()=0h x '得,ln x b =, ……………….8分 ①若ln 1b ≤,即0e b <≤,则[1,2]x ∀∈,()0h x '>,所以()h x 在[1,2]上是增函数,故()h x 的最小值为3(1)=e 2h b -. (9)②若1ln 2b <<,即2e e b <<,则(1,ln )x b ∀∈,()0h x '<,(ln 2)x b ∀∈,,()0h x '>, 以()h x 在(1,ln )b 上是减函数,在(ln 2)b ,上是增函数, 故()h x 的最小值为21(ln )=ln 2h b b b -; ……………….11分 ③若ln 2b ≥,即2e b ≥,则[1,2]x ∀∈,()0h x '<,所以()h x 在[1,2]上是减函数,故()h x 的最小值为2(2)=2e 4h b -. (12)综上所述,当e b ≤时,()h x 的最小值为3(1)=e 2h b -, 当2e e b <<时,()h x 的最小值为21ln 2b b -,当2e b ≥时,()h x 的最小值为22e 4b -. (13)课堂练习【B 】已知函数(其中a b ,为常数且)在处取得极值. (I )当时,求的单调区间;(II )若在(0e],上的最大值为,求的值. 【解析】(I )因为所以………………2分 因为函数在处取得极值……………3分当时,,,随的变化情况如下表:1(1,)+∞极大值极小值………………5分所以的单调递增区间为,单调递减区间为 ………………6分(II )由(I )可得 12b a =--因为2()ln (21)f x x ax a x =+-+ ,22(21)1'()ax a x f x x-++=(21)(1)ax x x --= 令, ………………7分 因为在 处取得极值,所以 当时,在上单调递增,在上单调递减 2()ln f x x ax bx =++0a ≠1x =1a =()f x ()f x 1a 2()ln ,f x x ax bx =++1()2f x ax b x'=++2()ln f x x ax bx =++1x =(1)120f a b '=++=1a =3b =-2231()x x f x x-+'='(),()f x f x x x 1(0,)2121(,1)2'()f x +-+()f x ()f x 1(0,)21+∞(,)1(,1)2()0f x '=1211,2x x a==()f x 1x =21112x x a=≠=102a<()f x (0,1)(1,e]所以在区间上的最大值为,令,解得………………9分 当, 当时,在上单调递增,上单调递减,上单调递增 所以最大值1可能在或处取得而 所以,解得 ………………11分 当时,在区间上单调递增,上单调递减,上单调递增 所以最大值1可能在或处取得 而所以,解得,与矛盾 ………………12分 当时,在区间上单调递增,在单调递减, 所以最大值1可能在处取得,而,矛盾综上所述,或. ………………13分设函数321()(0)()213f x x ax ag x bx b =->=+-,,当121=-=b a 时,求函数()()f x g x +在区间[3]t t +,上的最大值. 【解析】记()()()h x f x g x =+,当121a b =-=时,()3113h x x x =--.由(II )可知,函数()h x 的单调递增区间为()(),1,1,-∞-+∞;单调递减区间为()1,1-. ①当31t +<-时,即4t <-时,()h x 在区间[],3t t +上单调递增,所以()h x 在区间[],3t t +上的最大值为()()()33211333138533h t t t t t t +=+-+-=+++; ②当1t <-且131t -≤+<,即42t -≤<-时,()h x 在区间[),1t -上单调递增,在区间[]1,3t -+上单调递减,所以()h x 在区间[],3t t +上的最大值为()113h -=-; 当1t <-且31t +≥,即21t -≤<-时,t+3<2且h (2)=h (-1),所以()h x 在区间[],3t t +的最大值为()113h -=-;()f x (]0,e (1)f (1)1f =2a =-0a >2102x a=>112a <()f x 1(0,)2a 1(,1)2a(1,e)12x a=e x =2111111()ln()(21)ln 10222224f a a a a a a a a=+-+=--<2(e)ln e+e (21)e 1f a a =-+=1e 2a =-11e 2a ≤<()f x (0,1)1(1,)2a 1(,e)2a 1x =e x =(1)ln1(21)0f a a =+-+<2(e)ln e+e (21)e 1f a a =-+=1e 2a =-211e 2x a <=<21e 2x a=≥()f x (0,1)(1,e)1x =(1)ln1(21)0f a a =+-+<12a e =-2a =-③当11t -≤<时,321t +≥>,()h x 在区间[),1t 上单调递减,在区间[]1,3t +上单调递增,而最大值为()h t 与()3h t +中的较大者.由()()()()3312h t h t t t +-=++知,当11t -≤<时,()()3h t h t +≥,所以()h x 在区间[],3t t +上的最大值为()32133853h t t t t +=+++;……13分④当1t ≥时,()h x 在区间[],3t t +上单调递增,所以()h x 在区间[],3t t +上的最大值为()32133853h t t t t +=+++.………………………………………………14分已知函数322()2(2)13f x x x a x =-+-+,其中a ∈R .(Ⅰ)若2a =,求曲线()y f x =在点(1(1))f ,处的切线方程; (Ⅱ)求在区间[23],上的最大值和最小值. 【解析】()f x 的定义域为R , 且 2()242f x x x a '=-+-.当2a =时,1(1)3f =-,(1)2f '=-,所以曲线()y f x =在点(1,(1))f 处的切线方程为 12(1)3y x +=--, 即 6350x y +-=. (Ⅱ)解:方程()0f x '=的判别式为8a =∆.(ⅰ)当0a ≤时,()0f x '≥,所以在区间(2,3)上单调递增,所以在区间[2,3] 上的最小值是7(2)23f a =-;最大值是(3)73f a =-. (ⅱ)当0a >时,令()0f x '=,得 121a x =,或221a x =+ ()f x 和()f x '的情况如下:x 1(,)x -∞1x12(,)x x 2x2(,)x +∞()f x ' + 0 -+ ()f x↗↘↗故()f x 的单调增区间为2(,1)a -∞-,2(1,)a ++∞;单调减区间为22(1a a+.① 当02a <≤时,22x ≤,此时在区间(2,3)上单调递增,所以在区间[2,3] 上的最小值是7(2)23f a =-;最大值是(3)73f a =-. ② 当28a <<时,1223x x <<<,此时在区间2(2,)x 上单调递减,在区间2(,3)x 上单调递增,()f x ()f x ()f x ()f x ()f x ()f x所以在区间[2,3]上的最小值是 252()33a af x a =--.因为 14(3)(2)3f f a -=-, 所以 当1423a <≤时,在区间[2,3]上的最大值是(3)73f a =-;当1483a <<时,在区间[2,3]上的最大值是7(2)23f a =-.③ 当8a ≥时,1223x x <<≤,此时在区间(2,3)上单调递减,所以在区间[2,3]上的最小值是(3)73f a =-;最大值是7(2)23f a =- 综上,当2a ≤时,在区间[2,3]上的最小值是723a -,最大值是73a -; 当1423a <≤时,在区间[2,3]上的最小值是5233a a a --,最大值是73a -; 当1483a <<时,在区间[2,3]上的最小值是5233a a a --,最大值是723a -; 当8a ≥时,在区间[2,3]上的最小值是73a -,最大值是723a -.设(1)若在上存在单调递增区间,求的取值范围;(2)当时,在上的最小值为,求在该区间上的最大值.【解析】(1) ……………………………2分在上存在单调递增区间存在的子区间,使得时在上单调递减,即 解得当时,在上存在单调递增区间 …………………………6分(2)令 即220x x a -++=()f x ()f x ()f x ()f x ()f x ()f x ()f x ()f x ()f x ax x x x f 22131)(23++-=)(x f ),32(+∞a 20<<a )(x f ]4,1[316-)(x f a x a x x x f 241)21(2)(22'++--=++-=)(x f ),(+∞32∴),32(+∞),(n m ),(n m x ∈0>)('x f )('x f ),(+∞32032>∴)('f 0292)32('>+=a f 91->a ∴91->a )(x f ),(+∞320=)('x f 20<<a; 则 x ,'()f x ,()f x 的情况如下 x1()-∞,x1x 12(,)x x2x2(,)x +∞'()f x- 0 + 0 -)f x (减极小增极大减在上单调递减,在上单调递增在上单调递增,在上单调递减 …………………………………8分所以的最大值为, ………………………10分 解得 ……………………13分 已知函数2()ln (2)f x x ax a x =-+-.(Ⅰ)若()f x 在1x =处取得极值,求a 的值;(Ⅱ)求函数()y f x =在2[]a a ,上的最大值. 【解析】(Ⅰ)∵2()ln (2)f x x ax a x =-+-, ∴函数的定义域为(0,)+∞. ………………1分∴2112(2)(21)(1)()2(2)ax a x x ax f x ax a x x x-+---+'=-+-==. ………………3分 ∵()f x 在1x =处取得极值,即(1)(21)(1)0f a '=--+=,∴1a =-. ………………5分 当1a =-时,在1(,1)2内()0f x '<,在(1,)+∞内()0f x '>,∴是函数()y f x =的极小值点. ∴1a =-. ………………6分(Ⅱ)∵2a a <,∴01a <<. ………………7分2112(2)(21)(1)()2(2)ax a x x ax f x ax a x x x-+--+'=-+-==-∵ x ∈(0,)+∞, ∴10ax +>,∴()f x 在1(0,)2上单调递增;在1(,)2+∞上单调递减, ………………9分28111a x +-=28112ax ++=∴)(x f ),(),,(+∞-∞21x x ),(21x x 20<<a 4121<<<∴x x ∴)(x f ),(21x ),(42x )(x f )(2x f 0622714<+-=-a f f )()( 31634084-=-=∴a f )(212==x a ,310)2()()(2==∴f x f x f 的最大值为①当102a <≤时, ()f x 在2[,]a a 单调递增, ∴32max ()()ln 2f x f a a a a a ==-+-; ………………10分②当21212a a ⎧>⎪⎪⎨⎪<⎪⎩,即1222a <<时,()f x 在21(,)2a 单调递增,在1(,)2a 单调递减,∴max 12()()ln 21ln 22424a a af x f -==--+=--; ………………11分 ③当212a ≤,即212a ≤<时,()f x 在2[,]a a 单调递减,∴2532max ()()2ln 2f x f a a a a a ==-+-. ………………12分综上所述,当102a <≤时,函数()y f x =在2[,]a a 上的最大值是32ln 2a a a a -+-; 当1222a <<时,函数()y f x =在2[,]a a 上的最大值是1ln 24a --;当22a ≥时,函数()y f x =在2[,]a a 上的最大值是5322ln 2a a a a -+- 设函数()0)(2>+=a bx axx f . (1)若函数)(x f 在1-=x 处取得极值2-,求a b ,的值; (2)若函数)(x f 在区间(11)-,内单调递增,求b 的取值范围; (3)在(1)的条件下,若00()P x y ,为函数bx axx f +=2)(图像上任意一点,直线l 与)(x f 的图像切于点P ,求直线l 的斜率的取值范围.【解析】(1)222')()()(b x x b a x f +-=由题意得⎩⎨⎧-=-=-2)1(0)1('f f ,即⎪⎪⎩⎪⎪⎨⎧-=+-=+-210)1()1(2ba b b a ,所以⎩⎨⎧==14b a ……………………………3分 (2))0()()()(222'>+--=a b x b x a x f 当0)(0'≤≤x f b 时,,函数)(x f 在区间()1,1-内不可能单调递增 (4)当0>b 时,22')())(()(b x b x b x a x f +-+-=则当),(b b x -∈时,0)('>x f ,函数)(x f 单调递增,故当且仅当⎩⎨⎧≥≤-11b b 时,函数)(x f 在区间()1,1-内单调递增,即1≥b 时,函数)(x f 在()1,1-内单调递增.故所求b 的取值范围是[)+∞,1 ………………………………………………8分 (3)直线l 在点P 处的切线斜率2202022020)1(814)1(44)('+++-=+-==x x x x x f k (10)令,1120+=x t 则10≤<t 所以21)41(84822--=-=t t t k故当41=t 时,21min -=k ;1=t 时,4max =k所以直线l 的斜率的取值范围是⎥⎦⎤⎢⎣⎡-4,21课堂练习【C 】已知函数21()(21)2ln ()2f x ax a x x a =-++∈R ,求()f x 的单调区间.【解析】2()(21)f x ax a x '=-++(1)(2)ax x x--=(0)x >. ①当0a ≤时,0x >,10ax -<,在区间(0,2)上,()0f x '>;在区间(2,)+∞上()0f x '<,故()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞.②当102a <<时,12a>,在区间(0,2)和1(,)a +∞上,()0f x '>;在区间1(2,)a上()0f x '<,故()f x 的单调递增区间是(0,2)和1(,)a +∞,单调递减区间是1(2,)a.③当12a =时,2(2)()2x f x x -'=, 故()f x 的单调递增区间是(0,)+∞.④当12a >时,102a <<,在区间1(0,)a 和(2,)+∞上,()0f x '>;在区间1(,2)a上()0f x '<,故()f x 的单调递增区间是1(0,)a 和(2,)+∞,单调递减区间是1(,2)a.已知函数()e (1)axaf x a x=⋅++,其中1a-.(Ⅰ)当1a =时,求曲线()y f x =在点(1(1))f ,处的切线方程; (Ⅱ)求)(x f 的单调区间.【解析】(Ⅰ)当1a =时,1()e (2)x f x x =⋅+,211()e (2)xf x x x '=⋅+-. 由于(1)3e f =,(1)2e f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程是2e e 0x y -+=.(Ⅱ)2(1)[(1)1]()eaxx a x f x a x ++-'=,0x ≠.当1-=a 时,令()0f x '=,解得 1x =-.)(x f 的单调递减区间为(,1)-∞-;单调递增区间为(1,0)-,(0,)+∞.当1a ≠-时,令()0f x '=,解得 1x =-,或11x a =+. ② 当01<<-a 时,)(x f 的单调递减区间为(,1)-∞-,1(,)1a +∞+;单调递增区间为(1,0)-,1(0,)1a +. ③ 当0=a 时,()f x 为常值函数,不存在单调区间.④ 当0a >时,)(x f 的单调递减区间为(1,0)-,1(0,)1a +;单调递增区间为(,1)-∞-,1(,)1a +∞+. 已知函数21()e ()(0)kx f x x x k k-=+-<.(Ⅰ)求()f x 的单调区间; (Ⅱ)是否存在实数k ,使得函数()f x 的极大值等于23e -?若存在,求出k 的值;若不存在,请说明理由.【解析】(Ⅰ)()f x 的定义域为R .221'()e ()e (21)e [(2)2]kx kx kx f x k x x x kx k x k---=-+-++=-+-+,即 '()e (2)(1)(0)kxf x kx x k -=--+<.令'()0f x =,解得:1x =-或2x k=. 当2k =-时,22'()2e (1)0x f x x =+≥,故()f x 的单调递增区间是(,).当20k -<<时,()f x ,'()f x 随x 的变化情况如下: x2(,)k-∞2k2(,1)k- 1- (1,)-+∞'()f x+-+()f x极大值极小值所以,函数()f x 的单调递增区间是2(,)k -∞和(1,)-+∞,单调递减区间是2(,1)k-. 当2k <-时,()f x ,'()f x 随x 的变化情况如下:x(,1)-∞-1- 2(1,)k-2k2(,)k+∞ '()f x+-+()f x极大值极小值所以,函数()f x 的单调递增区间是(,1)-∞-和2(,)k +∞,单调递减区间是2(1,)k-. (Ⅱ)当1k时,()f x 的极大值等于23e -. 理由如下:当2k =-时,()f x 无极大值.当20k -<<时,()f x 的极大值为22241()e ()f kk k-=+, 令22241e ()3e k k--+=,即2413,k k += 解得 1k =-或43k =(舍).当2k <-时,()f x 的极大值为e (1)kf k-=-.因为 2e e k -<,1102k <-<,所以 2e 1e 2k k --<.因为 221e 3e 2--<,所以 ()f x 的极大值不可能等于23e -.综上所述,当1k =-时,()f x 的极大值等于23e -.已知函数x a x x f ln )(2-=(R a ∈).(Ⅰ)若2=a ,求证:)(x f 在(1)+∞,上是增函数; (Ⅱ)求)(x f 在[1e],上的最小值. 【解析】(Ⅰ)证明:当2=a 时,x x x f ln 2)(2-=,当),1(+∞∈x 时,0)1(2)(2>-='xx x f ,所以)(x f 在),1(+∞上是增函数. ………………5分(Ⅱ)解:)0(2)(2>-='x xax x f ,当[1,e]x ∈,222[2,2e ]x a a a -∈--.若2≤a ,则当x ∈[1,e]时,0)(≥'x f ,所以)(x f 在[1,e]上是增函数,又1)1(=f ,故函数)(x f 在[1,e]上的最小值为1.若22e a ≥,则当x ∈],1[e 时,0)(≤'x f , 所以)(x f 在[1,e]上是减函数,又(e)f =2e a -,所以)(x f 在[1,e]上的最小值为2e a -. 若222e a <<,则当21ax <≤时,0)(<'x f ,此时)(x f 是减函数; 当e 2ax <≤时,0)(>'x f ,此时)(x f 是增函数. 又()ln 2222a a a a f =-, 所以)(x f 在[1,e]上的最小值为ln 222a a a-. 综上可知,当2≤a 时,)(x f 在[1,e]上的最小值为1;当222e a <<时,)(x f 在[1,e]上的最小值为ln 222a a a-当22e a ≥时,)(x f 在[1,e]上的最小值为2e a -.…设函数2()(1)2ln(1)f x x x =+-+. (1)求()f x 的单调区间;(2)当02a <<时,求函数2()()1g x f x x ax =---在区间[03],上的最小值. 【解析】(1)()f x 定义域为(1,)-+∞.12(2)()2(1)11x x f x x x x +'=+-=++.令()0f x '>,则2(2)01x x x +>+,所以2x <-或0x >. 因为()f x 的定义域为(1,)-+∞,所以0x >.令()0f x '<,则2(2)01x x x +<+,所以20x -<<. 因为()f x 的定义域为(1,)-+∞,所以10x -<<. 所以函数的单调递增区间为(0,)+∞,单调递减区间为(1,0)-.(2)()(2)2ln(1)g x a x x =--+ (1x >-).2(2)()(2)11a x ag x a x x x--'=--=++.因为0<a<2,所以20a ->,02aa>-. 令()0g x '> 可得2ax a >-.所以函数()g x 在(0,)2a a -上为减函数,在(,)2a a+∞-上为增函数. ①当032a a <<-,即302a <<时, 在区间[03],上,()g x 在(0,)2a a -上为减函数,在(,3)2aa-上为增函数.所以min 2()()2ln 22a g x g a a a==---. ②当32a a ≥-,即322a ≤<时,()g x 在区间(03),上为减函数. 所以min ()(3)632ln 4g x g a ==--.综上所述,当302a <<时,min 2()2ln 2g x a a=--; 当322a ≤<时,min ()632ln 4g x a =--. (2019年朝阳一模理)已知函数ln()()ax f x x= (R a ∈且0)a ≠. (Ⅰ)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)当1a =-时,求证:()1f x x ≥+;(Ⅲ)讨论函数()f x 的极值.【解析】(Ⅰ)当1a =时,ln ()x f x x =.所以21ln ()xf x x -'=. 因为(1)1,(1)0f f '==,所以曲线()y f x =在(1,(1))f 处的切线方程为1y x =-.……………….3分 (Ⅱ)当1a =-时,ln()()x f x x-=. 函数()f x 的定义域为(,0)-∞.不等式()1f x x ≥+成立⇔ln()1x x x-≥+成立⇔2ln()0x x x ---≤成立. 设2()ln()g x x x x =---((,0))x ∈-∞,则2121(21)(1)()21x x x x g x x x x x--+-++'=--==. 当x 变化时,()g x ',()g x 变化情况如下表:x (,1)-∞-1-(1,0)-()g x ' + 0- ()g x↗极大值↘所以()(1)g x g ≤-.因为(1)0g -=,所以()0g x ≤,所以ln()1x x x-≥+.………………………………………………………………….8分 (Ⅲ)求导得21ln()()ax f x x -'=. 令()0f x '=,因为0a ≠可得ex a=. 当0a >时,()f x 的定义域为()0,+∞.当x 变化时,()f x ',()f x 变化情况如下表:xe (0,)ae a e(,)a+∞()f x ' + 0- ()f x↗极大值↘此时()f x 有极大值e ()eaf a=,无极小值. 当0a <时,()f x 的定义域为(),0-∞,当x 变化时,()f x ',()f x 变化情况如下表:x e (,)a-∞e a e (,0)a()f x ' - 0+ ()f x↘极小值↗此时()f x 有极小值e ()eaf a =,无极大值.……………………………………………….13分课后作业习题1.(2017年东城区期末)设函数()ln(1)()1axf x x a x =+-∈+R . (Ⅰ)若(0)f 为()f x 的极小值,求a 的值;(Ⅱ)若()0f x >对(0,)x ∈+∞恒成立,求a 的最大值.【解析】(Ⅰ)的定义域为.因为, 所以.因为(0)f 为()f x 的极小值, 所以,即. 所以.此时,.当时,,单调递减;当时,,单调递增. 所以在处取得极小值, 所以.(Ⅱ)由(Ⅰ)知当时,在上为单调递增函数, 所以,所以对(0,)x ∈+∞恒成立.()f x (1,)-+∞()ln(1)1axf x x x =+-+21'()1(1)af x x x =-++'(0)0f =21001(01)a -=++1a =2'()(1)xf x x =+(1,0)x ∈-'()0f x <()f x (0,)x ∈+∞'()0f x >()f x ()f x 0x =1a =1a =()f x [0,)+∞()(0)0f x f >=()0f x >。

高考数学(理)二轮专题练习【专题2】(3)导数及其应用(含答案)

高考数学(理)二轮专题练习【专题2】(3)导数及其应用(含答案)

第3讲导数及其应用考情解读 1.导数的意义和运算是导数应用的基础,是高考的一个热点.2.利用函数的单调性和最值确定函数的解析式或参数的值,突出考查导数的工具性作用.1.导数的几何意义函数y=f(x)在点x=x0处的导数值就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,其切线方程是y-f(x0)=f′(x0)(x-x0).2.导数与函数单调性的关系(1)f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0.(2)f′(x)≥0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f′(x)=0时,则f(x)为常函数,函数不具有单调性.3.函数的极值与最值(1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题.(2)函数在其定义区间的最大值、最小值最多有一个,而函数的极值可能不止一个,也可能没有.(3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的最值.4.定积分的三个公式与一个定理(1)定积分的性质:①ʃb a kf(x)d x=kʃb a f(x)d x;②ʃb a[f1(x)±f2(x)]d x=ʃb a f1(x)d x±ʃb a f2(x)d x;③ʃb a f(x)d x=ʃc a f(x)d x+ʃb c f(x)d x(其中a<c<b).(2)微积分基本定理:一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a).热点一导数的运算和几何意义例1 (1)(2014·广东)曲线y =e-5x+2在点(0,3)处的切线方程为________.(2)在平面直角坐标系xOy 中,设A 是曲线C 1:y =ax 3+1(a >0)与曲线C 2:x 2+y 2=52的一个公共点,若C 1在A 处的切线与C 2在A 处的切线互相垂直,则实数a 的值是________. 思维启迪 (1)先根据导数的几何意义求出切线的斜率,写出点斜式方程,再化为一般式方程.(2)A 点坐标是解题的关键点,列方程求出. 答案 (1)5x +y -3=0 (2)4 解析 (1)因为y ′=e -5x(-5x )′=-5e-5x,所以y ′|x =0=-5,故切线方程为y -3=-5(x -0), 即5x +y -3=0.(2)设A (x 0,y 0),则C 1在A 处的切线的斜率为f ′(x 0)=3ax 20,C 2在A 处的切线的斜率为-1k OA =-x 0y 0, 又C 1在A 处的切线与C 2在A 处的切线互相垂直, 所以(-x 0y 0)·3a 20=-1,即y 0=3ax 30, 又ax 30=y 0-1,所以y 0=32, 代入C 2:x 2+y 2=52,得x 0=±12,将x 0=±12,y 0=32代入y =ax 3+1(a >0),得a =4.思维升华 (1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.(1)已知函数y =f (x )的导函数为f ′(x )且f (x )=x 2f ′(π3)+sin x ,则f ′(π3)=________.(2)若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 等于________. 答案 (1)36-4π(2)2 解析 (1)因为f (x )=x 2f ′(π3)+sin x ,所以f ′(x )=2xf ′(π3)+cos x .所以f ′(π3)=2×π3f ′(π3)+cos π3.所以f ′(π3)=36-4π.(2)f ′(x )=sin x +x cos x ,f ′(π2)=1,即函数f (x )=x sin x +1在点x =π2处的切线的斜率是1,直线ax +2y +1=0的斜率是-a2,所以(-a2)×1=-1,解得a =2.热点二 利用导数研究函数的性质例2 已知函数f (x )=(x +a )e x ,其中e 是自然对数的底数,a ∈R . (1)求函数f (x )的单调区间;(2)当x ∈[0,4]时,求函数f (x )的最小值.思维启迪 (1)直接求f ′(x ),利用f ′(x )的符号确定单调区间;(2)讨论区间[0,4]和所得单调区间的关系,一般情况下,f (x )的最值可能在极值点或给定区间的端点处取到. 解 (1)因为f (x )=(x +a )e x ,x ∈R ,所以f ′(x )=(x +a +1)e x . 令f ′(x )=0,得x =-a -1.当x 变化时,f (x )和f ′(x )的变化情况如下:故f (x )单调增区间为(-a -1,+∞).(2)由(1)得,f (x )的单调减区间为(-∞,-a -1); 单调增区间为(-a -1,+∞).所以当-a -1≤0,即a ≥-1时,f (x )在[0,4]上单调递增,故f (x )在[0,4]上的最小值为f (x )min =f (0)=a ;当0<-a -1<4,即-5<a <-1时, f (x )在(0,-a -1)上单调递减, f (x )在(-a -1,4)上单调递增,故f (x )在[0,4]上的最小值为f (x )min =f (-a -1)=-e-a -1;当-a -1≥4,即a ≤-5时,f (x )在[0,4]上单调递减, 故f (x )在[0,4]上的最小值为f (x )min =f (4)=(a +4)e 4.所以函数f (x )在[0,4]上的最小值为f (x )min =⎩⎪⎨⎪⎧a , a ≥-1,-e-a -1, -5<a <-1,(a +4)e 4, a ≤-5.思维升华 利用导数研究函数性质的一般步骤: (1)确定函数的定义域; (2)求导函数f ′(x );(3)①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0.②若已知函数的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题来求解.(4)①若求极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号. ②若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解. (5)求函数f (x )在闭区间[a ,b ]的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.已知函数f (x )=ln x +2ax,a ∈R .(1)若函数f (x )在[2,+∞)上是增函数,求实数a 的取值范围; (2)若函数f (x )在[1,e]上的最小值为3,求实数a 的值. 解 (1)∵f (x )=ln x +2a x ,∴f ′(x )=1x -2ax 2.∵f (x )在[2,+∞)上是增函数,∴f ′(x )=1x -2ax 2≥0在[2,+∞)上恒成立,即a ≤x2在[2,+∞)上恒成立.令g (x )=x2,则a ≤[g (x )]min ,x ∈[2,+∞),∵g (x )=x2在[2,+∞)上是增函数,∴[g (x )]min =g (2)=1.∴a ≤1.所以实数a 的取值范围为(-∞,1]. (2)由(1)得f ′(x )=x -2ax2,x ∈[1,e].①若2a <1,则x -2a >0,即f ′(x )>0在[1,e]上恒成立, 此时f (x )在[1,e]上是增函数.所以[f (x )]min =f (1)=2a =3,解得a =32(舍去).②若1≤2a ≤e ,令f ′(x )=0,得x =2a . 当1<x <2a 时,f ′(x )<0,所以f (x )在(1,2a )上是减函数,当2a <x <e 时,f ′(x )>0,所以f (x )在(2a ,e)上是增函数. 所以[f (x )]min =f (2a )=ln(2a )+1=3, 解得a =e 22(舍去).③若2a >e ,则x -2a <0,即f ′(x )<0在[1,e]上恒成立,此时f (x )在[1,e]上是减函数. 所以[f (x )]min =f (e)=1+2ae=3,得a =e.适合题意. 综上a =e.热点三 导数与方程、不等式例3 已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ).(1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图象上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值;(3)是否存在实数m ,使得函数y =g (2ax 2+1)+m -1的图象与函数y =f (1+x 2)的图象恰有四个不同交点?若存在,求出实数m 的取值范围;若不存在,说明理由.思维启迪 (1)利用F ′(x )确定单调区间;(2)k =F ′(x 0),F ′(x 0)≤12分离a ,利用函数思想求a的最小值;(3)利用数形结合思想将函数图象的交点个数和方程根的个数相互转化. 解 (1)F (x )=f (x )+g (x )=ln x +a x (x >0),F ′(x )=1x -a x 2=x -ax 2.∵a >0,由F ′(x )>0⇒x ∈(a ,+∞), ∴F (x )在(a ,+∞)上是增函数. 由F ′(x )<0⇒x ∈(0,a ), ∴F (x )在(0,a )上是减函数. ∴F (x )的单调递减区间为(0,a ), 单调递增区间为(a ,+∞). (2)由F ′(x )=x -ax2(0<x ≤3)得k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立⇔a ≥-12x 20+x 0恒成立.∵当x 0=1时,-12x 20+x 0取得最大值12,∴a ≥12,a 的最小值为12.(3)若y =g (2a x 2+1)+m -1=12x 2+m -12的图象与y =f (1+x 2)=ln(x 2+1)的图象恰有四个不同交点,即12x 2+m -12=ln(x 2+1)有四个不同的根,亦即m =ln(x 2+1)-12x 2+12有四个不同的根.令G (x )=ln(x 2+1)-12x 2+12.则G ′(x )=2xx 2+1-x =2x -x 3-x x 2+1=-x (x +1)(x -1)x 2+1当x 变化时G ′(x )、G (x )的变化情况如下表:由上表知:G (x )极小值=G (0)=12,G (x )极大值=G (-1)=G (1)=ln 2>0.又由G (2)=G (-2)=ln 5-2+12<12可知,当m ∈(12,ln 2)时,y =G (x )与y =m 恰有四个不同交点.故存在m ∈(12,ln 2),使函数y =g (2ax 2+1)+m -1的图象与y =f (1+x 2)的图象恰有四个不同交点.思维升华 研究方程及不等式问题,都要运用函数性质,而导数是研究函数性质的一种重要工具.基本思路是构造函数,通过导数的方法研究这个函数的单调性、极值和特殊点的函数值,根据函数的性质推断不等式成立的情况以及方程实根的个数,必要时画出函数的草图辅助思考.已知函数f (x )=a (x 2+1)+ln x .(1)讨论函数f (x )的单调性;(2)若对任意a ∈(-4,-2)及x ∈[1,3],恒有ma -f (x )>a 2成立,求实数m 的取值范围.解 (1)由已知,得f ′(x )=2ax +1x =2ax 2+1x(x >0).①当a ≥0时,恒有f ′(x )>0,则f (x )在(0,+∞)上是增函数. ②当a <0时,若0<x < -12a,则f ′(x )>0, 故f (x )在(0,-12a]上是增函数; 若x >-12a,则f ′(x )<0,故f (x )在[-12a,+∞)上是减函数. 综上,当a ≥0时,f (x )在(0,+∞)上是增函数; 当a <0时,f (x )在(0,-12a]上是增函数,在[ -12a,+∞)上是减函数. (2)由题意,知对任意a ∈(-4,-2)及x ∈[1,3], 恒有ma -f (x )>a 2成立, 等价于ma -a 2>f (x )max . 因为a ∈(-4,-2),所以24< -12a <12<1. 由(1),知当a ∈(-4,-2)时,f (x )在[1,3]上是减函数, 所以f (x )max =f (1)=2a , 所以ma -a 2>2a ,即m <a +2.因为a ∈(-4,-2),所以-2<a +2<0. 所以实数m 的取值范围为m ≤-2. 热点四 定积分 例4 (1)已知a =ʃ10(e x+2x )d x (e为自然对数的底数),函数f (x )=⎩⎪⎨⎪⎧ln x ,x >02-x ,x ≤0,则f (a )+f (log 216)=________.(2)(2014·山东)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2 D .4思维启迪 (1)利用微积分基本定理先求出a ,再求分段函数的函数值;(2)利用图形将所求面积化为定积分. 答案 (1)7 (2)D 解析 (1)因为a =ʃ10(e x +2x )d x =(e x +x 2)|1=e +1-1=e ,f (x )=⎩⎪⎨⎪⎧ln x ,x >02-x ,x ≤0,所以f (a )+f (log 216)=f (e)+f (-log 26)=ln e +2-(-log 26)=1+6=7. (2)令4x =x 3,解得x =0或x =±2,∴S =ʃ20(4x -x 3)=⎪⎪⎝⎛⎭⎫2x 2-x 4420=8-4=4,故选D.思维升华 (1)直接使用微积分基本定理求定积分时,要根据求导运算与求原函数运算互为逆运算的关系,运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出原函数. (2)利用定积分求所围成的阴影部分的面积时,要利用数形结合的方法确定出被积函数和积分的上限与下限.同时,有的定积分不易直接求出,需要借用其几何意义求出.(1)若ʃa1(2x +1x)d x =3+ln 2,且a >1,则a 的值为( )A .6B .4C .3D .2 (2)如图,阴影部分的面积是( )A .2 3B .9-2 3 C.323D.353答案 (1)D (2)C解析 (1)ʃa 1(2x +1x )d x =(x 2+ln x )|a 1=a 2+ln a -1,由题意,可得a 2+ln a -1=3+ln 2, 解得a =2.(2)由题图,可知阴影部分面积为ʃ1-3(3-x 2-2x )d x =(3x -13x 3-x 2)|1-3=(3-13-1)-(-9+9-9)=323.1.函数单调性的应用(1)若可导函数f (x )在(a ,b )上单调递增,则f ′(x )≥0在区间(a ,b )上恒成立; (2)若可导函数f (x )在(a ,b )上单调递减,则f ′(x )≤0在区间(a ,b )上恒成立; (3)可导函数f (x )在区间(a ,b )上为增函数是f ′(x )>0的必要不充分条件. 2.可导函数极值的理解(1)函数在定义域上的极大值与极小值的大小关系不确定,也有可能极小值大于极大值; (2)对于可导函数f (x ),“f (x )在x =x 0处的导数f ′(x )=0”是“f (x )在x =x 0处取得极值”的必要不充分条件;(3)注意导函数的图象与原函数图象的关系,导函数由正变负的零点是原函数的极大值点,导函数由负变正的零点是原函数的极小值点. 3.利用导数解决优化问题的步骤(1)审题设未知数;(2)结合题意列出函数关系式;(3)确定函数的定义域;(4)在定义域内求极值、最值;(5)下结论. 4.定积分在几何中的应用被积函数为y =f (x ),由曲线y =f (x )与直线x =a ,x =b (a <b )和y =0所围成的曲边梯形的面积为S .(1)当f (x )>0时,S =ʃb a f (x )d x ; (2)当f (x )<0时,S =-ʃb a f (x )d x ;(3)当x ∈[a ,c ]时,f (x )>0;当x ∈[c ,b ]时,f (x )<0,则S =ʃc a f (x )d x -ʃb c f (x )d x .真题感悟1.(2014·江西)若曲线y =e -x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________. 答案 (-ln 2,2)解析 设P (x 0,y 0),∵y =e -x =1e x ,∴y ′=-e -x ,∴点P 处的切线斜率为k =-e -x 0=-2, ∴-x 0=ln 2,∴x 0=-ln 2,∴y 0=e ln 2=2,∴点P 的坐标为(-ln 2,2).2.(2014·浙江)已知函数f (x )=x 3+3|x -a |(a >0),若f (x )在[-1,1]上的最小值记为g (a ). (1)求g (a );(2)证明:当x ∈[-1,1]时,恒有f (x )≤g (a )+4. (1)解 因为a >0,-1≤x ≤1,所以 ①当0<a <1时,若x ∈[-1,a ],则f (x )=x 3-3x +3a , f ′(x )=3x 2-3<0,故f (x )在(-1,a )上是减函数; 若x ∈[a,1],则f (x )=x 3+3x -3a , f ′(x )=3x 2+3>0, 故f (x )在(a,1)上是增函数. 所以g (a )=f (a )=a 3.②当a ≥1时,有x ≤a ,则f (x )=x 3-3x +3a , f ′(x )=3x 2-3<0,故f (x )在(-1,1)上是减函数, 所以g (a )=f (1)=-2+3a .综上,g (a )=⎩⎪⎨⎪⎧a 3,0<a <1,-2+3a ,a ≥1.(2)证明 令h (x )=f (x )-g (a ). ①当0<a <1时,g (a )=a 3.若x ∈[a,1],则h (x )=x 3+3x -3a -a 3, h ′(x )=3x 2+3,所以h (x )在(a,1)上是增函数,所以,h (x )在[a,1]上的最大值是h (1)=4-3a -a 3, 且0<a <1,所以h (1)≤4.故f (x )≤g (a )+4.若x ∈[-1,a ],则h (x )=x 3-3x +3a -a 3,h ′(x )=3x 2-3, 所以h (x )在(-1,a )上是减函数,所以,h (x )在[-1,a ]上的最大值是h (-1)=2+3a -a 3. 令t (a )=2+3a -a 3,则t ′(a )=3-3a 2>0, 知t (a )在(0,1)上是增函数. 所以,t (a )<t (1)=4,即h (-1)<4. 故f (x )≤g (a )+4.②当a ≥1时,g (a )=-2+3a , 故h (x )=x 3-3x +2,h ′(x )=3x 2-3, 此时h (x )在(-1,1)上是减函数,因此h (x )在[-1,1]上的最大值是h (-1)=4. 故f (x )≤g (a )+4.综上,当x ∈[-1,1]时,恒有f (x )≤g (a )+4. 押题精练1.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________. 答案 ⎣⎡⎭⎫94,+∞解析 由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min =f (0)=-1.根据题意可知存在x ∈[1,2],使得g (x )=x 2-2ax +4≤-1, 即x 2-2ax +5≤0,即a ≥x 2+52x 能成立,令h (x )=x 2+52x ,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min , 又函数h (x )=x 2+52x 在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.2.已知函数f (x )=x 28-ln x ,x ∈[1,3].(1)求f (x )的最大值与最小值;(2)若f (x )<4-at 对任意的x ∈[1,3],t ∈[0,2]恒成立,求实数a 的取值范围;解 (1)∵函数f (x )=x 28-ln x ,∴f ′(x )=x 4-1x,令f ′(x )=0得x =±2, ∵x ∈[1,3],当1<x <2时,f ′(x )<0;当2<x <3时,f ′(x )>0;∴f (x )在(1,2)上是单调减函数,在(2,3)上是单调增函数,∴f (x )在x =2处取得极小值f (2)=12-ln 2; 又f (1)=18,f (3)=98-ln 3, ∵ln 3>1,∴18-(98-ln 3)=ln 3-1>0, ∴f (1)>f (3),∴x =1时f (x )的最大值为18,x =2时函数取得最小值为12-ln 2. (2)由(1)知当x ∈[1,3]时,f (x )≤18, 故对任意x ∈[1,3],f (x )<4-at 恒成立,只要4-at >18对任意t ∈[0,2]恒成立,即at <318恒成立,记g (t )=at ,t ∈[0,2]. ∴⎩⎨⎧ g (0)<318g (2)<318,解得a <3116, ∴实数a 的取值范围是(-∞,3116).(推荐时间:60分钟)一、选择题1.曲线y =x 3-2x 在(1,-1)处的切线方程为( )A .x -y -2=0B .x -y +2=0C .x +y -2=0D .x +y +2=0答案 A解析 由已知,得点(1,-1)在曲线y =x 3-2x 上,所以切线的斜率为y ′|x =1=(3x 2-2)|x =1=1,由直线方程的点斜式得x -y -2=0,故选A.2.(2014·课标全国Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a 等于( )A .0B .1C .2D .3答案 D解析 令f (x )=ax -ln(x +1),则f ′(x )=a -1x +1.由导数的几何意义可得在点(0,0)处的切线的斜率为f ′(0)=a -1.又切线方程为y =2x ,则有a -1=2,∴a =3.3.(2014·陕西)如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为( )A .y =1125x 3-35x B .y =2125x 3-45x C .y =3125x 3-x D .y =-3125x 3+15x 答案 A解析 函数在[-5,5]上为减函数,所以在[-5,5]上y ′≤0,经检验只有A 符合.故选A.4.函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为( )A .{x |x >0}B .{x |x <0}C .{x |x <-1,或x >1}D .{x |x <-1,或0<x <1}答案 A解析 构造函数g (x )=e x ·f (x )-e x ,因为g ′(x )=e x ·f (x )+e x ·f ′(x )-e x=e x [f (x )+f ′(x )]-e x >e x -e x =0,所以g (x )=e x ·f (x )-e x 为R 上的增函数.又因为g (0)=e 0·f (0)-e 0=1,所以原不等式转化为g (x )>g (0),解得x >0.5.若函数f (x )=log a (x 3-ax )(a >0,a ≠1)在区间(-12,0)内单调递增,则a 的取值范围是( ) A .[14,1) B .[34,1) C .(94,+∞) D .(1,94) 答案 B解析 由x 3-ax >0得x (x 2-a )>0.则有⎩⎪⎨⎪⎧ x >0,x 2-a >0或⎩⎪⎨⎪⎧x <0,x 2-a <0, ∴x >a 或-a <x <0,即函数f (x )的定义域为(a ,+∞)∪(-a ,0).令g (x )=x 3-ax ,则g ′(x )=3x 2-a .由g ′(x )<0得-3a 3<x <0. 从而g (x )在x ∈(-3a 3,0)上是减函数,又函数f (x )在x ∈(-12,0)内单调递增,则有⎩⎨⎧ 0<a <1,-a ≤-12,-3a 3≤-12,∴34≤a <1. 6.如图所示,曲线y =x 2-1,x =2,x =0,y =0围成的阴影部分的面积为( )A .ʃ20|x 2-1|d xB .|ʃ20(x 2-1)d x |C .ʃ20(x 2-1)d xD .ʃ10(x 2-1)d x +ʃ21(1-x 2)d x答案 A解析 由曲线y =|x 2-1|的对称性,所求阴影部分的面积与如图图形的面积相等,即ʃ20|x 2-1|d x ,选A.二、填空题7.已知f (x )=x 3+f ′(23)x 2-x ,则f (x )的图象在点(23,f (23))处的切线斜率是________. 答案 -1解析 f ′(x )=3x 2+2f ′(23)x -1,令x =23,可得f ′(23)=3×(23)2+2f ′(23)×23-1,解得f ′(23)=-1,所以f (x )的图象在点(23,f (23))处的切线斜率是-1. 8.若函数f (x )=ax +1x +2在x ∈(2,+∞)上单调递减,则实数a 的取值范围是________. 答案 a <12解析 f ′(x )=(ax +1)′(x +2)-(x +2)′(ax +1)(x +2)2=a (x +2)-(ax +1)(x +2)2=2a -1(x +2)2,令f ′(x )<0,即2a -1<0,解得a <12. 9.已知函数f (x )=mx 3+nx 2的图象在点(-1,2)处的切线恰好与直线3x +y =0平行,若f (x )在区间[t ,t +1]上单调递减,则实数t 的取值范围是__________.答案 [-2,-1]解析 由题意知,点(-1,2)在函数f (x )的图象上,故-m +n =2.①又f ′(x )=3mx 2+2nx ,则f ′(-1)=-3,故3m -2n =-3.②联立①②解得:m =1,n =3,即f (x )=x 3+3x 2,令f ′(x )=3x 2+6x ≤0,解得-2≤x ≤0,则[t ,t +1]⊆[-2,0],故t ≥-2且t +1≤0,所以t ∈[-2,-1].10.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是____________. 答案 0<t <1或2<t <3解析 f ′(x )=-x +4-3x =-x 2+4x -3x=-(x -1)(x -3)x,由f ′(x )=0得函数的两个极值点1,3,则只要这两个极值点在区间(t ,t +1)内,函数在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,解得0<t <1或2<t <3.三、解答题11.(2014·重庆)已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x . (1)求a 的值;(2)求函数f (x )的单调区间与极值.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x, 由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54. (2)由(1)知f (x )=x 4+54x -ln x -32, 则f ′(x )=x 2-4x -54x 2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数.由此知函数f (x )在x =5时取得极小值f (5)=-ln 5.12.已知f (x )=x 2+3x +1,g (x )=a -1x -1+x . (1)a =2时,求y =f (x )和y =g (x )图象的公共点个数;(2)a 为何值时,y =f (x )和y =g (x )的公共点个数恰为两个.解 (1)当a =2时,联立⎩⎪⎨⎪⎧y =f (x ),y =g (x ), 得x 2+3x +1=1x -1+x , 整理得x 3+x 2-x -2=0(x ≠1),即联立⎩⎪⎨⎪⎧y =0,y =x 3+x 2-x -2(x ≠1), 求导得y ′=3x 2+2x -1=0得x 1=-1,x 2=13, 得到极值点分别在-1和13处, 且极大值、极小值都是负值,图象如图,故交点只有一个.(2)联立⎩⎪⎨⎪⎧y =f (x ),y =g (x ),得x 2+3x +1=a -1x -1+x , 整理得a =x 3+x 2-x (x ≠1),即联立⎩⎪⎨⎪⎧y =a ,y =h (x )=x 3+x 2-x (x ≠1),对h (x )求导可以得到极值点分别在-1和13处,画出草图如图.h (-1)=1,h (13)=-527, 当a =h (-1)=1时,y =a 与y =h (x )仅有一个公共点(因为(1,1)点不在y =h (x )曲线上),故a =-527时恰有两个公共点. 13.设函数f (x )=a e x (x +1)(其中,e =2.718 28……),g (x )=x 2+bx +2,已知它们在x =0处有相同的切线.(1)求函数f (x ),g (x )的解析式;(2)求函数f (x )在[t ,t +1](t >-3)上的最小值;(3)若对∀x ≥-2,kf (x )≥g (x )恒成立,求实数k 的取值范围.解 (1)f ′(x )=a e x (x +2),g ′(x )=2x +b .由题意,得两函数在x =0处有相同的切线.∴f ′(0)=2a ,g ′(0)=b ,∴2a =b ,f (0)=a ,g (0)=2,∴a =2,b =4,∴f (x )=2e x (x +1),g (x )=x 2+4x +2.(2)f ′(x )=2e x (x +2),由f ′(x )>0得x >-2,由f ′(x )<0得x <-2,∴f (x )在(-2,+∞)单调递增,在(-∞,-2)单调递减.∵t >-3,∴t +1>-2.①当-3<t <-2时,f (x )在[t ,-2]单调递减,在[-2,t +1]单调递增,∴f (x )min =f (-2)=-2e -2. ②当t ≥-2时,f (x )在[t ,t +1]单调递增,∴f (x )min =f (t )=2e t (t +1);∴f (x )=⎩⎪⎨⎪⎧-2e -2(-3<t <-2)2e t (t +1)(t ≥-2) (3)令F (x )=kf (x )-g (x )=2k e x (x +1)-x 2-4x -2,由题意当x ≥-2时,F (x )min ≥0.∵∀x ≥-2,kf (x )≥g (x )恒成立,∴F (0)=2k -2≥0,∴k ≥1.F ′(x )=2k e x (x +1)+2k e x -2x -4=2(x +2)(k e x -1),∵x ≥-2,由F ′(x )>0得e x >1k ,∴x >ln 1k; 由F ′(x )<0得x <ln 1k ,∴F (x )在(-∞,ln 1k )单调递减,在[ln 1k,+∞)单调递增. ①当ln 1k<-2, 即k >e 2时,F (x )在[-2,+∞)单调递增,F (x )min =F (-2)=-2k e -2+2=2e 2(e 2-k )<0, 不满足F (x )min ≥0.当ln 1k =-2,即k =e 2时,由①知,F (x )min =F (-2)=2e 2(e 2-k )=0,满足F (x )min ≥0. ③当ln 1k >-2,即1≤k <e 2时,F (x )在[-2,ln 1k )单调递减,在[ln 1k,+∞)单调递增. F (x )min =F (ln 1k)=ln k (2-ln k )>0, 满足F (x )min ≥0.综上所述,满足题意的k 的取值范围为[1,e 2].。

专题3 导数解决不等式的恒成立和证明

专题3  导数解决不等式的恒成立和证明

第三章 导数专题3 导数解决不等式的恒成立和证明【三年高考精选】(2021年全国新高考Ⅰ卷数学试题) 1. 已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析. 【解析】【分析】(1) 首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.(2)方法二:将题中的等式进行恒等变换,令11,m n a b==,命题转换为证明:2m n e <+<,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论.【详解】(1)()f x 的定义域为()0,∞+. 由()()1ln f x x x =-得,()ln f x x '=-,当1x =时,()0f x '=;当()0,1x ∈时()0f x >′;当()1,x ∈+∞时,()'0f x <. 故()f x 在区间(]0,1内为增函数,在区间[)1,+∞内为减函数, (2)[方法一]:等价转化由ln ln b a a b a b -=-得1111(1ln )(1ln )a a b b -=-,即11()()f f a b=.由a b ,得11a b ≠.由(1)不妨设11(0,1),(1,)b a ∈∈+∞,则1()0f a >,从而1()0f b >,得1(1,)e b∈,①令()()()2g x f x f x =--,则22()(2)()ln(2)ln ln(2)ln[1(1)]g x f x f x x x x x x ''=---'=-+=-=--,当()0,1x ∈时,()0g x '<,()g x 在区间()0,1内为减函数,()()10g x g >=,从而()()2f x f x ->,所以111(2)()()f f f a a b->=,由(1)得112a b -<即112a b<+.①令()()h x x f x =+,则()()'11ln h x f x x '=+=-,当()1,x e ∈时,()0h x '>,()h x 在区间()1,e 内为增函数,()()h x h e e <=,从而()x f x e +<,所以11()f e b b +<.又由1(0,1)a ∈,可得11111(1ln )()()f f a a a a b <-==,所以1111()f e a b b b+<+=.②由①②得112e a b<+<. [方法二]【最优解】:ln ln b a a b a b -=-变形为ln ln 11a b a b b a-=-,所以ln 1ln 1a b a b ++=. 令11,m n a b ==.则上式变为()()1ln 1ln m m n n -=-, 于是命题转换为证明:2m n e <+<.令()()1ln f x x x =-,则有()()f m f n =,不妨设m n <. 由(1)知01,1m n e <<<<,先证2m n +>.要证:()()()222)2(m n n m f n f m f m f m +>⇔>-⇔<-⇔<-()()20f m f m ⇔--<.令()()()()2,0,1g x f x f x x =--∈,则()()()()()2ln ln 2ln 2ln10g x f x f x x x x x '='+'-=---=⎡⎤⎣≥-⎦--=, ()g x ∴在区间()0,1内单调递增,所以()()10g x g <=,即2m n +>.再证m n e +<.因为()()1ln 1ln m n n m m -=⋅->,所以()1ln n n n e m n e -+<⇒+<.令()()()1ln ,1,h x x x x x e =-+∈,所以()'1ln 0h x x =->,故()h x 在区间()1,e 内单调递增. 所以()()h x h e e <=.故()h n e <,即m n e +<. 综合可知112e a b<+<. [方法三]:比值代换 证明112a b+>同证法2.以下证明12x x e +<. 不妨设21x tx =,则211x t x =>, 由1122(1ln )(1ln )x x x x -=-得1111(1ln )[1ln()]x x tx tx -=-,1ln 1n 1l t x t t=--, 要证12x x e +<,只需证()11t x e +<,两边取对数得1ln(1)ln 1t x ++<,即ln(1)1ln 11t t t t++-<-, 即证ln(1)1ln t t t t+<-. 记ln(1)(),(0,)s g s ss ∈=+∞+,则2ln(1)1()s s s g s s '-++=. 记()ln(1)1sh s s s=-++,则211()0(1)1h s s s '=-<++, 所以,()h s 在区间()0,∞+内单调递减.()()00h s h <=,则()'0g s <, 所以()g s 在区间()0,∞+内单调递减.由()1,t ∈+∞得()10,t -∈+∞,所以()()1g t g t <-, 即ln(1)1ln t t t t+<-. [方法四]:构造函数法 由已知得ln ln 11a b a b b a-=-,令1211,x x a b ==,不妨设12x x <,所以()()12f x f x =.由(Ⅰ)知,1201x x e <<<<,只需证122x x e <+<. 证明122x x +>同证法2.再证明12x x e +<.令2ln 21()(0)()(ln ,)exh x x e h x x e x xe x '-++-=<<=--. 令()ln 2(0)e x x x e x ϕ=+-<<,则221()0e x ex x x xϕ-'=-=<. 所以()()()0,0x e h x ϕϕ>='>,()h x 在区间()0,e 内单调递增.因为120x x e <<<,所以122111ln ln x e x e x x --<--,即112211ln ln x x x ex e -->-- 又因为()()12f x f x =,所以12212112ln ln 1,1x x x ex x x ex x --=>--,即()()2222111212,0x ex x ex x x x x e -<--+->.因为12x x <,所以12x x e +<,即11e a b+<. 综上,有112e a b<+<结论得证. 【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.方法四:构造函数之后想办法出现关于120e x x +-<的式子,这是本方法证明不等式的关键思想所在.视频(2020年高考全国Ⅰ卷文数20) 2. 已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【答案】(1)()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)1(,)e+∞.【解析】【分析】(1)将1a =代入函数解析式,对函数求导,分别令导数大于零和小于零,求得函数的单调增区间和减区间;(2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,将其转化为2xea x =+有两个解,令()(2)2xe h x x x =≠-+,求导研究函数图象的走向,从而求得结果.【详解】(1)当1a =时,()(2)x f x e x =-+,'()1xf x e =-,令'()0f x <,解得0x <,令'()0f x >,解得0x >, 所以()f x 的减区间为(,0)-∞,增区间为(0,)+∞; (2)若()f x 有两个零点,即(2)0x e a x -+=有两个解,从方程可知,2x =-不成立,即2x e a x =+有两个解,令()(2)2x e h x x x =≠-+,则有'22(2)(1)()(2)(2)x x x e x e e x h x x x +-+==++, 令'()0h x >,解得1x >-,令'()0h x <,解得2x <-或21x -<<-, 所以函数()h x 在(,2)-∞-和(2,1)--上单调递减,在(1,)-+∞上单调递增, 且当2x <-时,()0h x <,而2x +→-时,()h x →+∞,当x →+∞时,()h x →+∞,所以当2xe a x =+有两个解时,有1(1)a h e >-=,所以满足条件的a 的取值范围是:1(,)e+∞.【点睛】本题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线x y e =和直线(2)y a x =+有两个交点,利用过点(2,0)-的曲线x y e =的切线斜率,结合图形求得结果. 【三年高考刨析】【2022年高考预测】预测2022年高考仍是考查函数的单调性,根据不等式恒成立求参数的取值范围或不等式的证明..【2022年复习指引】由前三年的高考命题形式,在2022年的高考备考中同学们只需要稳扎稳打,加强常规题型的练习,关于集合2022高考备考主要有以下几点建议:1.涉及本单元知识点的高考题,综合性强.所以在复习中要熟记相关的定义,法则;2.利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.3.将不等式的证明、方程根的个数的判定转化为函数的单调性、极值问题处理.4.要深入体会导数应用中蕴含的数学思想方法.数形结合思想,如通过从导函数图象特征解读函数图象的特征,或求两曲线交点个数等;等价转化思想,如将证明的不等式问题等价转化为研究相应问题的最值等.【2022年考点定位】 考点1 证明不等式典例1 (安徽省蚌埠市2021-2022学年高三上学期第一次教学质量检查)已知函数()()212,2e 21x x f x x x g x x =+-=---. (1)求()f x 的单调区间;(2)当(),1x ∈-∞时,求证:()()g x f x .【答案】(1)在(),1-∞单调递增,在()1,+∞上单调递减;(2)证明见解析. 【分析】(1)由题可以求函数的导函数,则可得()f x 的单调区间; (2)由题知要证()()g x f x ,即证2201e 2x x x x x x ---+≥-,然后利用导函数判断函数的单调性,最后利用单调性证明即可. 【详解】 (1)因为()21e 2x x f x x x =+-, 所以()()()21e 1e e 1e ex x x x x x x f x x +--=+-=', 令()0f x '=,解得1x =,∴当(),1x ∈-∞时,()()0,1,f x x ∞∈'>+时,()0f x '< 所以()f x 在(),1-∞单调递增,在()1,+∞上单调递减; (2)要证()()g x f x即证22121e 2x x x x x --+--, 即22e 0112x x x x x x --+-≥-, 设2()11e 21x F x x x=---+-,即证()0xF x .因为()2211(1)e 2xF x x =++-' 所以当(),1x ∈-∞时,()0F x '>恒成立,()F x 单调递增, 又当0x =时,()0F x =,所以当01x <<时,()0F x >,当0x <时,()0F x <; 所以当()(),1,0x xF x ∞∈-, 即当(),1x ∈-∞时,()()g x f x .【规律方法技巧】利用导数证明不等式f (x )>g (x )的基本方法 (1)若f (x )与g (x )的最值易求出,可直接转化为证明f (x )min >g (x )max ;(2)若f (x )与g (x )的最值不易求出,可构造函数h (x )=f (x )-g (x ),然后根据函数h (x )的单调性或最值,证明h (x )>0. 2.证明不等式时的一些常见结论(1)ln x ≤x -1,等号当且仅当x =1时取到; (2)e x ≥x +1,等号当且仅当x =0时取到; (3)ln x <x <e x ,x >0; (4)≤ln(x +1)≤x ,x >-1,等号当且仅当x =0时取到.【考点针对训练】(2022贵州省贵阳市五校联考)3. 已知函数()xe f x x =.(1)函数()()f xg x x=,求()g x 的单调区间和极值. (2)求证:对于()0,x ∀∈+∞,总有()13ln 44f x x >-. 【答案】(1)()g x 在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;极小值()2e 24g =,无极大值;(2)证明见解析. 【解析】【分析】(1)写出()g x 的函数表达式,通过求导写出单调区间和极值即可(2)证明()13ln 44f x x >-恒成立,结合(1)得,等价于2e 1(ln 3)4x x x x >-恒成立,且已知左式的最小值,只要大于右式的最大值,则不等式恒成立【详解】(1)解:2243e e 2e e (2)()()x x x x x x x g x g x x x x --'=⇒==,当02x <<时,()0g x '<; 当0x <或2x >时,()0g x '>,()g x ∴在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;故()g x 有一个极小值2e (2)4g =,无极大值.(2)证明:要证13()ln 44f x x >-成立,只需证e 13ln 44x x x >-成立,即证2e 1(ln 3)4x x x x>-成立,令1()(ln 3)4h x x x =-,则24ln ()=4xh x x -',当40e x <<时,()0h x '>; 当4e x >时,()0h x '<,()h x ∴在()40,e 上单调递增,在()4e ,+∞上单调递减,()4max 41()e 4e h x h ==∴, 2e ()x g x x =∵由(1)可知2min e ()(2)4g x g ==,min max ()()g x h x >∴,()()g x h x >∴,13()ln 44f x x >-∴.【点睛】题目比较综合,第一小题是已知函数求单调性极值的问题,属于常规题目;第二小题证明不等式成立,有两种类型,一种是构造左右两个函数,若最小值大于最大值,则不等式恒成立,但是只能做证明题;若最小值不大于最大值,不能说明不等式不成立;另外一种是构造一个函数,证明最小值大于0恒成立,这种的函数会比较困难,所以优先用第一种尝试,再选取第二种方法考点2 不等式恒成立问题典例2 (2020辽宁省沈阳市2019届高三一模)已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( )A.2a ≤B.2a ≥C.0a ≤D.02a ≤≤ 【答案】A【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围. 【详解】设()1,x g x e x =--则()1x g x e '=-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【规律方法技巧】利用导数解决恒成立问题主要涉及以下方面:(1)已知不等式在某一区间上恒成立,求参数的取值范围:一般先分离参数,再转化为求函数在给定区间上的最值问题求解;(2)如果无法分离参数可以考虑对参数a 或自变量进行分类求解,如果是二次不等式恒成立的问题,可以考虑限制二次项系数或判别式的方法求解.(3)已知函数的单调性求参数的取值范围:转化为f ′(x )≥0(或f ′(x )≤0)恒成立的问题. 【考点针对训练】(山西省运城市2021届高三检测)4. 当0x <时,不等式()2e e 3xxx x k k -≥恒成立,则实数k 的取值范围是__. 【答案】[]3e,0- 【解析】 【分析】由题意可得()232e 3x k x x +≤对0x <恒成立,讨论320x +=,320x +>,320x +<,运用参数分离和构造函数,利用导数判断单调性,求最值,可得所求范围.【详解】解:当0x <时,不等式()2e e 3xxx x k k -≥恒成立, 即为()232e 3x k x x +≤对0x <恒成立,Ⅰ当320x +=即23x =-时,403≤恒成立;Ⅰ当320x +<,即23x <-时,()2332e x x k x +≥恒成立,等价为()2max 332e x x k x ⎡⎤⎢⎥+⎣⎦≥, 设()()2332e x x f x x =+,()()()()()232222632e 335e 931232e 32e x x x x x x x x x x x f x x x +-+-++'==++ ()()()2313432exx x x x -+-=+,可得1x <-时,()0f x >′,()f x 递增;213x -<<-时,()0f x <′,()f x 递减, 可得()f x 在1x =-处取得最大值,且为3e -, 则3e k ≥-;Ⅰ当320x +>,即203x -<<时,()2332e x x k x +≤恒成立, 等价为()2min332e x x k x ⎡⎤⎢⎥+⎣⎦≤,设()()2332e x x f x x =+,()()()()2313432e x f x x x x x -+-'=+, 可得203x -<<时,()0f x <′,()f x 递减, 可得()0f x >, 则0k ≤,综上可得,k 的范围是[]3e,0-.【点睛】本题考查不等式恒成立问题解法,参变分离是常用的解题方法,属于中档题.方法点睛:(1)将参数和变量分离,转化为求最值问题; (2)构造函数,求导数,分析单调性; (3)求函数的最值,求出参数的范围.考点3 不等式存在成立问题典例3 (黑龙江省大庆铁人中学2021届高三第三次模拟)若函数()2ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是( )A.(],2-∞B.1,8⎛⎫-+∞ ⎪⎝⎭C.12,8⎛⎫-- ⎪⎝⎭ D.()2,-+∞【答案】D 【分析】将函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间,转化1()20f x ax x '=+>在区间1()22,成立,再转化为min 212()a x>-,进而可求出结果. 【详解】因为函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间, 所以1()20f x ax x '=+>在区间1()22,上成立, 即min 212()a x>-在区间1()22,上成立,又函数2yx 在1()22,上单调递增, 所以函数21y x =-在1()22,上单调递增, 故当12x =时21y x =-最小,且min 21()=4x --,即24a >-,得2a >-. 故选:D【规律方法技巧】1.有关存在成立问题的解题方法∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2)等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值,即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.2.注意不等式恒成立与存在成立的异同不等式在某区间上能成立与不等式在某区间上恒成立问题是既有联系又有区别的两种情况,解题时应特别注意,两者都可转化为最值问题,但f (a )≥g (x )(f (a )≤g (x ))对存在x ∈D 能成立等价于f (a )≥g (x )min (f (a )≤g (x )max ),f (a )≥g (x )(f (a )≤g (x ))对任意x ∈D 都成立等价于f (a )≥g (x )max (f (a )≤g (x )min ),应注意区分,不要搞混. 【考点针对训练】 (2019·吉林白山联考)5. 设函数f (x )=e x 33x x ⎛⎫+- ⎪⎝⎭-ax (e 为自然对数的底数),若不等式f (x )≤0有正实数解,则实数a 的最小值为________. 【答案】e 【解析】【分析】已知不等式转化为2(33)x a e x x ≥-+,此不等式有正数解,只要求得2()(33)x g x e x x =-+在(0,)+∞上的最小值即可得a 的范围.【详解】原问题等价于存在x Ⅰ(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=x e (x 2-3x +3),x Ⅰ(0,+∞),则a ≥g (x )min ,而g ′(x )=x e (x 2-x ),由g ′(x )>0,得x Ⅰ(1,+∞),此时()g x 递增,由g ′(x )<0,得x Ⅰ(0,1),此时()g x 递减,Ⅰ函数g (x )在区间(0,+∞)上的极小值也是最小值为g (1)=e , Ⅰa ≥e ,即实数a 的最小值为e . 故答案为:e .【点睛】本题考查不等式有解问题,解题关键是用分离参数法转化为求函数的最值.只是求解时要注意与不等式恒成立区分开来,不等式恒成立也常常用分离参数法转化为求函数的最值,但两者所求最值一个是最大值,一个是最小值,要根据题意确定.考点4 利用导数研究方程的根(或函数的零点)典例4 (河南省郑州市商丘市名师联盟 2020-2021学年高三质量检测)已知函数()2ln f x x x =-,()33g x x xm =-+,方程()()f x g x =在区间1,e e ⎡⎤⎢⎥⎣⎦内有两个不同的实根,则m 的取值范围是( )A.2121,333e ⎛⎤+ ⎥⎝⎦ B.2221e -2,33e 3⎡⎤+⎢⎥⎣⎦ C.221,133e ⎡⎫+⎪⎢⎣⎭ D.21e 2,33⎛⎤- ⎥⎝⎦【答案】A 【分析】由题可得232ln m x x =-,构造函数()22ln h x x x =-,讨论其在1,e e ⎡⎤⎢⎥⎣⎦的变化情况即可得出答案. 【详解】由()()f x g x =,得232ln m x x =-,令()22ln h x x x =-,则()()()211x x h x x-+'=,所以()h x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增,所以()()min 11h x h ==,()221122h e e h e e ⎛⎫=->=+ ⎪⎝⎭,则21132m e <≤+,即2121333m e <≤+. 故选:A.【规律方法技巧】求解涉及函数零点或方程根的问题的注意点 (1)利用函数零点存在性定理求解.(2)分离参数a 后转化为函数的值域(最值)问题求解,如果涉及多个零点,还需考虑函数的图象与直线y =a 的交点个数.(3)转化为两个熟悉的函数的图象的上、下位置关系问题,从而构建不等式求解. 【考点针对训练】(重庆市秀山高级中学校2022届高三上学期9月月考) 6. 已知函数2eln ()x f x x =,若关于x 的方程21[()]()08f x mf x -+=有4个不同的实数根,则实数m 的取值范围为___________.【答案】324⎛⎫⎪ ⎪⎝⎭【解析】【分析】利用导数求出函数()f x 的单调区间和最值,设()f x t =,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,故12121201102201t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,从而可求出实数m 的取值范围 【详解】依题意,求导243e 2eln e(12ln )()x x xx x f x x x ⋅--'==,令()0f x '=,解得:x =当x ∈时,()0f x '>,()f x 单调递增;当)x ∈+∞,()0f x '<,函数单调递减,且max 1()e 2f x f ===, 又0x →时,()f x →-∞;又x →+∞时,()0f x →;设()f x t =,显然当10,2t ⎛⎫∈ ⎪⎝⎭时,方程()f x t =有两个实数根,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根, 故121212011022010t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,210211082401m m m ⎧->⎪⎪⎪-+>⎨⎪<<⎪⎪⎩,解得:324m ⎛⎫∈ ⎪ ⎪⎝⎭.故答案为:3,24⎛⎫⎪ ⎪⎝⎭【点睛】关键点点睛:此题考查函数与方程的综合应用,考查导数的应用,解题的关键是利用导数判断出函数()f x 的单调区间和最值,设()f x t =,将问题转化为方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,然后利用一元二次方程根的分布情况求解即可,考查数学转化思想和计算能力,属于中档题【二年模拟精选】(2020河北省衡水市第二中学高三检测) 7. 已知函数21()ln 2f x x a x =+,若对任意两个不等的正数1x ,2x ,都有()()12124f x f x x x ->-恒成立,则a 的取值范围为A. [4,)+∞B. (4.?)+∞C. (,4]-∞D. (,4)-∞【答案】A 【解析】【分析】根据题意先确定g (x )=f (x )﹣4x 在(0,+∞)上单增,再利用导数转化,可得24x a x ≥-恒成立,令()24h x x x =-,求得()h x max ,即可求出实数a 的取值范围.【详解】令()()4g x f x x =-,因为()()12124f x f x x x ->-,所以()()12120g x g x x x ->-,即()g x 在()0,+∞上单调递增,故()40ag x x x=-'+≥在()0,+∞上恒成立, 即24x a x ≥-,令()()24,0,h x x x x =-∈+∞.则()()2424h x x x h =-≤=,()h x max 4=,即a 的取值范围为[4,+∞).故选A.【点睛】本题考查了函数单调性的判定及应用,考查了原函数单调与导函数正负的关系,确定g (x )在(0,+∞)上单增是关键,属于中档题. (2020辽宁省沈阳市高三上学期一模)8. 已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( ) A. 2a ≤ B. 2a ≥C. 0a ≤D. 02a ≤≤【答案】A 【解析】【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围.【详解】设()1,x g x e x =--则()'1x g x e =-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【点睛】本题考查了构造新函数,也考查了导数的应用以及由单调性求参数的问题,属于中档题.(江西省萍乡市2021届高三上期数学期中复习试卷)9. 已知函数222,0()11,0x x x f x x x ⎧++≤⎪=⎨-+>⎪⎩,若()f x ax ≥恒成立,则实数a 的取值范围是( )A. 2⎡⎤-⎣⎦B. (],1-∞C. ()2-D. 2⎡⎤-⎣⎦【答案】A 【解析】 【分析】作出函数()f x 的图象,利用数形结合的思想判断a 的范围,找出临界点即相切时a 的取值,进而得出a 的范围. 【详解】作出()f x 的图象,如图,由图象可知:要使()f x ax 恒成立,只需函数()g x ax =的图象恒在图象()f x 的下方, 可得1a ,设()g x ax =与函数2()22(0)f x x x x =++相切于点(),(0)P m n m <, 由()f x 的导数为22x +,可得切线的斜率为22m +, 即有22a m =+,222am m m =++,解得m =2a =-由图象可得222a -,综上可得a 的范围是[2-1]. 故选:A【点睛】解决此类问题的关键是作出函数图象,根据数形结合的思想处理问题,本题关键找出相切时刻这一临界位置,利用直线与抛物线相切即可求解. (四川省内江市威远中学2020-2021学年高三月考)10. 已知函数32()f x x x ax b =-++,12,(0,1)x x ∀∈且12x x ≠,都有1212|()()|||f x f x x x -<-成立,则实数a 的取值范围是( )A. 2(1,]3--B. 2(,0]3-C. 2[,0]3-D. [1,0]-【答案】C 【解析】 【分析】原不等式等价于()()211212x x f x f x x x --<-<恒成立,得到()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++在()0,1上严格单调,转化为()0g x '≤在()0,1上恒成立,()0h x '≥在()0,1上恒成立,利用分离参数思想转化为求最值问题即可. 【详解】不妨设1210x x >>>,则1212|()()|||f x f x x x -<-等价于()()211212x x f x f x x x --<-<,即()()()()11221122 f x x f x x f x x f x x ⎧-<-⎪⎨+>+⎪⎩,设()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++,依题意,函数()g x 在()0,1上为严格的单调递减函数, 函数()h x 在()0,1上为严格的单调递增函数,Ⅰ()23210g x x x a '=-+-≤在()0,1上恒成立,()23210h x x x a '=-++≥在()0,1上恒成立,Ⅰ2321a x x ≤-++在()0,1上恒成立,2321a x x ≥-+-在()0,1上恒成立, 而二次函数2321y x x =-++在[0,1]上的最小值在1x =时取得,且最小值为0, 二次函数2321y x x =-+-在[0,1]上的最大值在13x =时取得,其最大值为23-, 综上,实数a 的取值范围是2[,0]3-, 故选:C.【点睛】关键点点睛:去绝对值,得到两个函数的单调性,结合导数与单调性的关系,利用分离参数的思想转化为求二次函数最值问题. (2020湖南省益阳市高三上学期期末)11. 已知变量()()12,0,0x x m m ∈>,且12x x <,若2112x x x x <恒成立,则m 的最大值为(e 2.71828=为自然对数的底数)( ) A. eB.C.1eD. 1【答案】A 【解析】 【分析】不等式两边同时取对数,然后构造函数()ln xf x x=,求函数的导数,研究函数的单调性即可得到结论. 【详解】21122112ln ln x x x x x x x x <⇒<,()12,0,,0x x m m ∈>,1212ln ln x x x x ∴<恒成立, 设函数()ln xf x x=,12x x <,()()12f x f x <,()f x ∴在()0,m 上为增函数,函数的导数()21ln xf x x -'=, ()00f x x e '>⇒<<,即函数()f x 的增区间是()0,e ,则m 的最大值为e . 故选:A【点睛】关键点点睛:本题考查利用函数研究函数的单调性,本题的关键点是对已知等式变形,211212211212ln ln ln ln x x x x x x x x x x x x <⇒<⇒<,转化为求函数()ln xf x x=的单调区间. (山东省泰安肥城市2021届高三高考适应性训练)12. 已知函数()ln f x x x x =+,()g x kx k =-,若k Z ∈,且()()f x g x >对任意2x e >恒成立,则k 的最大值为( ) A. 2 B. 3C. 4D. 5【答案】B 【解析】【分析】由不等式,参变分离为ln 1x x x k x +⎛⎫< ⎪-⎝⎭,转化为求函数()ln 1x x x u x x +=-,()2,x e ∈+∞的最小值,利用导数求函数的最小值.【详解】()()f x g x >,即ln x x x kx k +>-.由于()()f x g x >对任意()2,x e ∈+∞恒成立,所以ln 1x x x k x +⎛⎫< ⎪-⎝⎭,即min ln 1x x x k x +⎛⎫< ⎪-⎝⎭.令()ln 1x x x u x x +=-,()2,x e ∈+∞,()()2ln 21x x u x x --'=-.令()ln 2h x x x =--,()1110x h x x x='-=->, 所以()h x 在()2,x e ∈+∞上单调递增,所以()()22e e 40h x h >=->,可得()0u x '>,所以()u x 在()2,e +∞上单调递增.所以()()()22223e 3e 33,4e 1e 1u x u >==+∈--.又k Z ∈,所以max 3k =. 故选:B.(广西柳州市2021届高三摸底考试)13. 已知函数212,(0)()2ln ,(0)x x x f x x x x ⎧++≤⎪=⎨⎪>⎩,若存在0x R ∈,使得()2012f x m m ≤-成立,则实数m 的取值范围是( )A. 1,12⎡⎤-⎢⎥⎣⎦B. 11,2⎡⎤-⎢⎥⎣⎦C. 11,2⎡⎤⎢⎥⎣⎦D. 1,02⎡⎤-⎢⎥⎣⎦【答案】A 【解析】【分析】分析函数()f x 的最小值,只需使()2min 12f x m m ≤-成立即可. 【详解】当0x ≤时,()2122f x x x =++,根据二次函数的性质可知,当1x =-时,()f x 有最小值12-;当0x >时,()ln f x x x =,由()ln 10f x x '=+=得1=x e当10,e x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>, 所以()ln f x x x =在10,e x ⎛⎫∈ ⎪⎝⎭上单调递减,在1,x e ⎛⎫∈+∞ ⎪⎝⎭上单调递增,所以()ln f x x x =最小值为11111ln 2f e e ee ⎛⎫==->- ⎪⎝⎭,则()min 12f x =-若存在0x R ∈,使得()2012f x m m ≤-成立,则()2min 12f x m m ≤- 所以21122m m -≤-,解得112m -≤≤故选:A .(重庆实验外国语学校2022届高三上学期入学考试)14. 关于函数()xf x e =,()lng x x =下列说法正确的是( )A. 对0x ∀>,()1g x x ≤-恒成立B. 对x R ∀∈,()f x ex ≥恒成立C. 若a b e >>,()()ag b bg a <D. 若不等式()()f ax ax x g x -≥-对1x ∀>恒成立,则正实数a 的最小值为1e【答案】ABD 【解析】【分析】选项A :构造函数()()ln 10h x x x x =-+>,根据导数判断函数的单调性并求最大值,从而判断选项正确;选项B :构造函数()()x f x ex ϕ=-,根据导数判断函数的单调性并求最小值,从而判断选项正确; 选项C :构造函数()()()0g x m x x x=>,根据导数判断函数在(),e +∞内单调递减,从而判断选项错误;选项D :把不等式()()f ax ax x g x -≥-变形为ln ln ax x e ax e x -≥-,所以只需研究函数()xF x e x =-的单调性即可求出答案,从而判断选项正确.【详解】选项A :令()()ln 10h x x x x =-+>,则()111xh x x x -'=-=,因为0x >,所以由()0h x '>得01x <<;由()0h x '<得1x >, 所以()h x 在()0,1内单调递增,在()1,+∞内单调递减,所以()h x 的最大值为()10h =,所以对0x ∀>,()0h x ≤恒成立, 即对0x ∀>,()1g x x ≤-恒成立,故选项A 正确;选项B :令()()x x f x ex e ex ϕ=-=-,则()xx e e ϕ'=-,由()0x ϕ'>得1x >;由()0x ϕ'<得1x <,所以()x ϕ在()1,+∞内单调递增,在(),1-∞内单调递减,所以()x ϕ的最小值为()10ϕ=,所以对x R ∀∈,()0x ϕ≥恒成立,即对x R ∀∈,()f x ex ≥恒成立,故选项B 正确;选项C :令()()ln ()0g x x m x x x x==>,则21ln ()xm x x -'=,所以由()0m x '>得0x e <<;由()0m x '<得x e >,所以()m x 在()0,e 内单调递增,在(),e +∞内单调递减, 所以当a b e >>时,()()m a m b <,即()()g a g b a b<, 所以a b e >>,()()ag b bg a >成立,故选项C 错误; 选项D :因为不等式()()f ax ax x g x -≥-对1x ∀>恒成立,即不等式ln ax e ax x x -≥-对1x ∀>恒成立,又因为ln ln ln x x x e x -=-, 所以不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立;令()xF x e x =-,则 ()1x F x e '=-,当0x >时,()10x F x e '=->恒成立,所以()xF x e x =-在()0,∞+单调递增,所以由不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立,得ln ax x ≥对1x ∀>恒成立,即ln xa x≥对1x ∀>恒成立, 由选项C 知,()ln ()1xm x x x=>在()1,e 内单调递增,在(),e +∞内单调递减,所以()m x 的最大值为1()m e e =,所以只需1a e ≥,即正实数a 的最小值为1e .故选:ABD.【点睛】利用导数研究不等式恒成立问题,通常要构造函数,然后利用导数研究函数的单调性,求出最值进而得到结论或求出参数的取值范围;也可分类变量构造函数,把问题转化为函数的最值问题.恒成立问题常见的处理方式有:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)()f x a >恒成立型的可转化为min ()f x a >;(3)()()f x g x >恒成立型的可以通过作差法构造函数()()()h x f x g x =-,然后求min ()0h x >,或者转化为min max ()()f x g x >.(T 8联考八校2020-2021学年高三上学期第一次联考) 15. 已知函数()()ln 202x af x ae a x =+->+,若()0f x >恒成立,则实数a 的取值范围为______. 【答案】(),e +∞ 【解析】 【分析】根据()0f x >恒成立,可得到含有x a ,的不等式,再进行分离变量,将“恒成立”’转化为求函数的最大值或最小值,最后得出a 的范围. 【详解】()ln202x af x ae x =+->+,则()ln ln ln 22x a e a x ++>++, 两边加上x 得到()()()ln 2ln ln 2ln 2ln 2x x aex a x x ex ++++>+++=++,x y e x =+单调递增,()ln ln 2x a x ∴+>+,即()ln ln 2a x x >+-, 令()()ln 2g x x x =+-,则()11121x g x x x --'=-=++,因为()f x 的定义域为()2,-+∞()2,1x ∴∈--时,()0g x '>,()g x 单调递增,()1,x ∈-+∞,()0g x '<,()g x 单调递减,()()max ln 11a g x g ∴>=-=,a e ∴>.故答案为:(),e +∞【点睛】对于“恒成立问题”,关键点为:对于任意的x ,使得()f x a >恒成立,可得出()min f x a >; 对于任意的x ,使得()f x a <恒成立,可得出()max f x a <. (浙江省百校2020-2021学年高三上学期12月联考)16. 已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln xx x a a -≤-恒成立,则a 的最小值为______.【答案】3e【解析】 【分析】不等式等价变形()()()4ln 3ln 3ln 3ln x x xe x x a a x x a a e e -≤-⇔-≤-,利用同构函数()ln f x x x =-的单调性得解【详解】()()4ln 3ln 3ln 3ln x xe x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤- 令()ln f x x x =-,()111x f x x x-'=-=, Ⅰ()f x 在[)1,+∞上单调递增.Ⅰ1a >,1[,)3x ∈+∞,Ⅰ[)3,1,xe x a ∈+∞,Ⅰ33x x eae x x a ⇔≤⇔≤恒成立,令()3x x g x e =,只需max ()a g x ≥,()33xxg x e -'=,Ⅰ1[,1),()0,()3x g x g x ∈'>单调递增,Ⅰ(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e,Ⅰ3a e ≥,Ⅰa 的最小值为3e.故答案为:3e【点睛】不等式等价变形,同构函数()ln f x x x =-是解题关键. (河北省部分学校2022届高三上学期第一次月考)17. 已知函数()32f x x x ax =--在R 上单调递增,则a 的取值范围是____________.【答案】1(,]3-∞-【解析】【分析】求出函数()f x 的导函数()f x ',再由()0f x '≥恒成立即可得解.【详解】依题意:()232x x a f x '=--,因函数()32f x x x ax =--在R 上单调递增,于是得2320x x a --≥对x ∈R 恒成立,则4120a ∆=+≤,解得13a ≤-,所以a 的取值范围是1(,]3-∞-.故答案为:1(,]3-∞-18. 已知函数()f x 的定义域为R ,()12f -=,对任意(),2x R f x '∈>,则()24f x x >+的解集为____________.【答案】(1,)-+∞. 【解析】【分析】构造()()24g x f x x =--,根据题意得到()g x 在R 为单调递增函数,又由()12f -=,得到()10g -=,进而得到1x >-时,()0g x >,即可求解.【详解】设()()24g x f x x =--,可得()()2g x f x ''=-,因为对任意(),2x R f x '∈>,所以()0g x '>,所以()g x 在R 为单调递增函数, 又由()12f -=,可得()12240g -=+-=,所以当1x >-时,()0g x >,即不等式()24f x x >+的解集为(1,)-+∞. 故答案为:(1,)-+∞.(浙江省宁波市北仑中学2021-2022学年高三上学期返校考试) 19. 设函数()ln 2ef x x mx n x=--+,若不等式()0f x ≤对任意(0,)x ∈+∞恒成立,则nm的最大值为______________. 【答案】2e 【解析】【分析】根据()0ln 22e n f x x m x x m ⎛⎫≤⇒-≤- ⎪⎝⎭转化成两个函数比较大小的问题.【详解】不等式()0f x ≤对任意(0,)x ∈+∞恒成立,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭,0x >恒成立, 设()()'21ln 0e e g x x g x x x x=-⇒=+> 所以()g x 在()0,∞+单调递增,且()0g e =,当0x →时()g x →-∞ 当x →+∞时()g x →+∞ 作出()g x 的图像如图,再设()22n h x m x m ⎛⎫=- ⎪⎝⎭,当0x >可得()h x 表示过点,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点),要求nm 的最大值且满足不等式恒成立,可求2n m的最大值,由点,02n m ⎛⎫⎪⎝⎭在x 轴上方移动,只需找到合适的0m >,且()h x 与()g x 图像相切于点,02n m ⎛⎫⎪⎝⎭,如图所示,此时22n n e e m m =⇒= 故答案为:2e(江苏省扬州市仪征市精诚高级中学2021-2022学年高三上学期9月月考) 20. 已知函数()ln ()f x x ax a R =-∈. (1)讨论函数()f x 的单调性; (2)证明不等式2()x e ax f x --≥恒成立. 【答案】(1)答案见解析;(2)证明见解析. 【解析】 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性;(2)构造函数2()ln x x e x ϕ-=-,利用导数可得()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则可得()0()0x x ϕϕ≥>,即得证.【详解】(1)11()(0)axf x a x x x-'=-=>, 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当1,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.(2)设函数2()ln x x e x ϕ-=-,则21()x x e xϕ-'=-,可知()x ϕ'在(0,)+∞上单调递增.又由(1)0ϕ'<,(2)0ϕ'>知,()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则()020010x x ex ϕ-'=-=,即0201x e x -=.当()00,x x ∈时,()0x ϕ'<,()ϕx 单调递减; 当()0x x ∈+∞时,()0x ϕ'>,()ϕx 单调递增;所以()0200()ln x x x ex ϕϕ-≥=-,结合021x e x -=,知002ln x x -=-, 所以()()22000000001211()20x x x x x x x x x ϕϕ--+≥=+-==>,则2()ln 0x x e x ϕ-=->, 即不等式2()x e ax f x --≥恒成立.【点睛】关键点睛:本题考查不等式恒成立的证明,解题的关键是转化为证明2()ln x x e x ϕ-=-的最小值大于0.(贵州省铜仁市思南中学2021届高三第十次月考)21. 已知函数()e (0)x f x ax a -=≠存在极大值1e .(1)求实数a 的值;(2)若函数F (x )=f (x )﹣m 有两个零点x 1,x 2(x 1≠x 2),求实数m 的取值范围,并证明:x 1+x 2>2.【答案】(1)a =1 (2)10e m <<,证明见解析【解析】【分析】(1)利用极值的定义,列式求出a 的值,然后进行验证即可; (2)利用(1)中的结论,确定()f x 的单调性、极值以及函数的取值情况,由零点的定义,即可得到m 的取值范围,利用12()()F x F x =,得到2211lnx x x x -=,将问题转化为证明2122111ln 2x x x x x x -<+,即证明21221111ln 21x x x x x x -<+,不妨设12x x <,令21x t x =,则1t >,从而将问题转化为证明1112t lnt t -<+对于1t >恒成立,构造函数11()ln 21t g t t t -=-+,利用导数研究函数的单调性,求解函数的取值情况,即可证明.【小问1详解】解:函数()e (0)x f x ax a -=≠, 则(1)()e xa x f x -'=, 令()0f x '=,解得1x =, 所以f (1)1e ea ==,解得1a =, 此时1()e xxf x -'=, 当1x <时,()0f x '>,则()f x 单调递增, 当1x >时,()0f x '<,则()f x 单调递减, 所以当1x =时,函数()f x 取得极大值f (1)1e=,符合题意,。

【高考数学真题分类汇编】——导数及其应用

【高考数学真题分类汇编】——导数及其应用

专题三导数及其应用第七讲导数的几何意义、定积分与微积分基本定理2019年 1.(2019全国Ⅰ理)13曲线23()e xy x x =+在点 (0)0,处的切线方程为.____________ 2.(2019全国Ⅲ理6)已知曲线 e ln xy a x x =+在点 1e a (,)处的切线方程为y x =2+b ,则 A . e 1a b ==−, B .a=e , b =1 C .1e 1a b −==,D .1e a −= , 1b =−2010-2018年一、选择题1.(2018全国卷Ⅰ)设函数32()(1)f x x a x ax =+−+,若()f x 为奇函数,则曲线 ()y f x =在点(0,0)处的切线方程为 A .2y x =−B .y x=−C .2y x =D .y x= 2(2016.年四川)设直线1l ,2l 分别是函数()f x = ln ,01, ln ,1,x x x x −<<⎧⎨>⎩图象上点1P ,2P 处的切线,1l 与2l 垂直相交于点P ,且1l ,2l 分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是A (0,1)B (0,2)C (0,+.. .∞)D (1,+).∞3.(2016 年山东)若函数 ()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称 ()y f x = 具有性质.下列函数中具有性质的是T T A .sin y x =B .ln y x =C .xy e =D .3y x =4(2015 ).福建若定义在R 上的函数()f x 满足 () 01f =−,其导函数 ()f x '满足 () 1f x k '>> ,则下列结论中一定错误的是A .11()f kk<B .11()1f kk >−C .11()11f k k <−−D .1()11k f k k >−−52014 .( 新课标Ⅰ)设曲线ln(1)y ax x =−+在点(0,0)处的切线方程为2y x =,则a = A 0 B 1 C 2 D....3 62014 .( 山东)直线 x y 4=与曲线3y x =在第一象限内围成的封闭图形的面积为A .22B .24C 2D 4..72013 .( 江西)若22221231111 ,,,xS x dx S dx S e dx x === ⎰⎰⎰则 123 ,,S S S 的大小关系为 A . 123 S S S << B .213 S S S <<C . 231 S S S << D . 321S S S << 82012 .(福建)如图所示,在边长为的正方形1 OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为A .14B .15C .16D .1792011.( 新课标)由曲线y x =,直线2y x =−及y 轴所围成的图形的面积为A .103B 4C ..163D 6.10.( 2011 福建)1(2)x e x dx +⎰等于A 1B ..1e −C .eD .1e +11.(2010湖南)421dx x⎰等于A .2ln 2− B .2ln 2 C .ln 2− D .ln 212.( 2010新课标)曲线3y 21x x =−+在点(1,0)处的切线方程为 A .1y x =− B .1y x =−+ C .22y x =− D .22y x =−+ 13.(2010辽宁)已知点P在曲线y=41xe +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是A [0,.4π) B . [,)42ππC .3(,]24ππD .3[,)4ππ二、填空题14.(2018 全国卷Ⅱ)曲线2ln(1)=+y x 在点 (0,0)处的切线方程为__________ .15.(2018 全国卷Ⅲ)曲线(1)x y ax e =+在点(0,1)处的切线的斜率为2−,则a =____ .16.(2016 年全国Ⅱ)若直线 y kx b =+是曲线 ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则 b =.17.(2016 年全国Ⅲ) 已知()f x 为偶函数,当 0x <时, ()ln()3f x x x =−+,则曲线()y f x =,在点 (1,3)−处的切线方程是_________.18.( 2015湖南)2(1)x dx −⎰= .19.(2015陕西)设曲线xy e =在点(0,1)处的切线与曲线1(0)y x x=>上点P 处的切线垂直,则P 的坐标为.20.(2015福建)如图,点A 的坐标为 ()1,0,点C 的坐标为()2,4,函数 ()2f x x =,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于.(第题)(第1517 题)21.( 2014广东)曲线25+=−x ey 在点)3,0(处的切线方程为.22.( 2014福建)如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为.______23.(2014 江苏)在平面直角坐标系xOy 中,若曲线xbax y +=2 (a ,b 为常数过点))5,2(−P , 且该曲线在点处的切线与直线P 0327=++y x 平行,则 b a +的值是. 24.( 2014安徽)若直线l 与曲线C 满足下列两个条件:)(i 直线l 在点()00 ,y x P 处与曲线C 相切;)(ii 曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号)①直线 0:=y l 在点 ()0,0P 处“切过”曲线C :3y x =②直线 1:−=x l 在点 ()0,1−P 处“切过”曲线C :2 )1(+=x y ③直线 x y l =:在点 ()0,0P 处“切过”曲线C : xy sin =④直线 x y l =:在点()0,0P 处“切过”曲线C : x y tan =⑤直线 1:−=x y l 在点 ()0,1P 处“切过”曲线C : x y ln =. 25.(2013 江西)若曲线1y x α=+(R α∈)在点(1,2)处的切线经过坐标原点,则α= .26.(2013 湖南)若209,Tx dx T =⎰ 则常数的值为.27.( 2013福建)当 ,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=−两边同时积分得:111112222220000011.......1ndx xdx x dx x dx dx x+++++=− ⎰⎰⎰⎰⎰从而得到如下等式:2311111111 1()()...()...ln 2. 2223212n n + ⨯+⨯+⨯++⨯+=+请根据以下材料所蕴含的数学思想方法,计算:012231 1111111 ()()() 2223212n n n n n n C C C C n + ⨯+⨯+⨯+⋅⋅⋅+⨯+=.28.( 2012江西)计算定积分121(sin )x x dx −+=⎰___________.29.(2012 山东)设0>a ,若曲线 x y =与直线0,==y a x 所围成封闭图形的面积为2a ,则=a. 30.( 2012新课标)曲线(3ln 1)y x x =+在点(1,1)处的切线方程为________ .31.( 2011 陕西)设2lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若 ((1))1f f =,则a =.32.(2010新课标)设 ()y f x =为区间[0,1]上的连续函数,且恒有0()1f x ≤≤,可以用随机模拟方法近似计算积分1()f x dx ⎰,先产生两组(每组N 个)区间[0,1]上的均匀随机数12,,N x x x …和12,,N y y y … ,由此得到N 个点 (,)(1,2,)i i x y i N =…,,再数出其中满足 ()(1,2,)i i y f x i N ≤=…,的点数1N ,那么由随机模拟方案可得积分1()f x dx ⎰的近似值为.332010.(江苏)函数2y x =( 0x >)的图像在点2(,)k k a a 处的切线与x 轴交点的横坐标为1k a +,其中*k N ∈,若1 16a =,则 135 a a a ++= .三、解答题34.( 2017北京)已知函数 ()cos x f x e x x =−. (Ⅰ)求曲线 ()y f x =在点 (0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间 [0,]2π上的最大值和最小值.35.(2016 )年北京设函数()a x f x xe bx −=+,曲线 ()y f x =在点 (2,(2))f 处的切线方程为 (1)4y e x =−+,()求I a ,b 的值;()求II ()f x 的单调区间.36.()设函数2015 重庆23 ()()e xx axf x a R +=∈.(Ⅰ)若()f x 在 0x =处取得极值,确定a 的值,并求此时曲线 ()y f x =在点 (1,(1))f 处的切线方程;(Ⅱ)若()f x 在 [3,)+∞上为减函数,求a 的取值范围.37.( 2015新课标Ⅰ)已知函数31()4f x x ax =++, ()lng x x =−. ()当Ⅰa 为何值时,x 轴为曲线 ()y f x =的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数{} ()min (),()h x f x g x = (0)x >,讨论()h x 零点的个数.38.(2014 新课标Ⅰ设函数)1()ln x xbe f x ae x x−=+,曲线 ()y f x =在点 (1,(1))f 处的切线为(1)2y e x =−+. ()Ⅰ求,a b ;(Ⅱ)证明:()1f x >. 39.( 2013新课标Ⅱ)已知函数 ()()ln x f x e x m =−+()Ι设 0x =是 ()f x 的极值点,求m ,并讨论 ()f x 的单调性;(Ⅱ)当 2m ≤时,证明 ()0f x >.40.(辽宁)设2012 ()()() =ln +1++1++,,,f x x x ax b a b R a b ∈为常数,曲线 ()=y f x 与直线3=2y x 在 ()0,0点相切.()求1,a b 的值;()证明:当2 0<<2x 时,()9<+6xf x x . 41.( 2010福建)()已知函数13 ()=f xx x −,其图象记为曲线C . ()求函数i ()f x 的单调区间;()证明:若对于任意非零实数ii 1x ,曲线与其在点C111 (,())P x f x 处的切线交于另一点 222 (,())P x f x ,曲线与其在点C 222 (,())P x f x 处的切线交于另一点333 (,())P x f x ,线段 1223 ,PP P P 与曲线C 所围成封闭图形的面积分别记为1,2S S ,则12S S 为定值;()对于一般的三次函数232()g x ax bx cx d =+++ (0)a ≠ ,请给出类似于(1)(ii )的正确命题,并予以证明.。

专题3.3 利用导数研究函数的单调性-重难点题型精讲(新高考地区专用)(解析版)

专题3.3 利用导数研究函数的单调性-重难点题型精讲(新高考地区专用)(解析版)

专题3.3 利用导数研究函数的单调性-重难点题型精讲函数的单调性与导数的关系条件 恒有 结论函数y =f (x )在区间(a ,b )上可导f ′(x )>0 f (x )在(a ,b )内单调递增 f ′(x )<0 f (x )在(a ,b )内单调递减 f ′(x )=0f (x )在(a ,b )内是常数函数【思考】“f(x )在区间(a ,b )上是增函数,则f ′(x )>0在(a ,b )上恒成立”,这种说法是否正确? 提示 不正确,正确的说法是:可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任一非空子区间内都不恒为零.【题型1 不含参函数的单调性】 【方法点拨】确定函数单调区间的步骤 (1)确定函数f (x )的定义域. (2)求f ′(x ).(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间. (4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.【例1】(2021春•鞍山期末)函数f(x)=xx2+1的单调递减区间为.【解题思路】根据题意,求出函数的导数,解f′(x)≤0,利用导数与函数单调性的关系分析可得答案.【解答过程】解:根据题意,函数f(x)=xx2+1,其导数f′(x)=(x2+1)−x×(2x)(x2+1)2=1−x2(x2+1)2,若f′(x)≤0,即1−x2(x2+1)2≤0,解可得:x≤﹣1或x≥1,即函数f(x)的单调递减区间为(﹣∞,﹣1]、[1,+∞);故答案为:(﹣∞,﹣1]、[1,+∞).【变式1-1】(2021春•资阳期末)函数f(x)=√x•lnx的递增区间为()A.(1e2,+∞)B.(1e,+∞)C.(0,1e2)D.(0,1e)【解题思路】对f(x)求导,令f′(x)>0,即可求得函数的递增区间.【解答过程】解:f(x)=√x•lnx的定义域为(0,+∞),f′(x)=12√x lnx+√xx=1√x(12lnx+1),令f′(x)>0,解得x>1e2,即函数f(x)=√x•lnx的递增区间为(1e2,+∞).故选:A.【变式1-2】(2021春•修水县期末)已知函数f(x)=(x−1)e xx2+1.求函数f(x)的单调区间.【解题思路】对f(x)求导,利用导数与单调性的关系即可求解;【解答过程】解:f′(x)=xe x(x2+1)−(x−1)e x(2x)(x2+1)2=x(x2−2x+3)e x(x2+1)2,令f′(x)>0,可得x>0,令f′(x)<0,可得x<0,∴(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增.【变式1-3】(2021•全国四模)已知f(x)=e x.求关于x的函数g(x)=f(x)﹣4f(﹣x)﹣5x的单调区间.【解题思路】依题意,得g(x)=e﹣x(e x﹣1)(e x﹣4),由g′(x)>0可得g(x)的增区间,g′(x)<0可得g(x)的减区间;【解答过程】解:g(x)=e x﹣4e﹣x﹣5x,g′(x)=e x+4e﹣x﹣5=e﹣x(e x﹣1)(e x﹣4),∴g′(x)>0⇔x>ln4或x<0,g(x)的增区间为(﹣∞,0),(ln4,+∞);g′(x)<0⇔x>0<x<ln4,g(x)的减区间为(0,ln4);【题型2 含参函数的单调性】【方法点拨】(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点.【例2】(2021•湖南模拟)已知函数f(x)=x3+3a(x+1)(a∈R).讨论f(x)的单调性.【解题思路】对函数f(x)求导,分a≥0及a<0讨论导函数与0的大小关系,即可求得单调性;【解答过程】解:f′(x)=3x2+3a,①当a≥0时,f′(x)≥0,f(x)在R上单调递增;②当a<0时,令f′(x)>0,解得x<−√−a或x>√−a,令f′(x)<0,解得−√−a<x<√−a,∴f(x)在(−∞,−√−a),(√−a,+∞)上单调递增,在(−√−a,√−a)上单调递减;综上,当a≥0时,f(x)在R上单调递增;当a<0时,f(x)在(−∞,−√−a),(√−a,+∞)上单调递增,在(−√−a,√−a)上单调递减;【变式2-1】(2021•肥城市模拟)已知函数f(x)=ln(x+a)−xx+a,a∈R.讨论f(x)的单调性.【解题思路】求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;【解答过程】解:由已知可得函数f(x)的定义域为(﹣a,+∞),f′(x)=x(x+a)2,当a≤0时,x>﹣a≥0,故f'(x)>0,f(x)在(﹣a,+∞)上单调递增;当a>0时,x∈(﹣a,0)时,f'(x)<0,f(x)在(﹣a,0)上单调递减,x∈(0,+∞)时,f'(x)>0,f(x)在(0,+∞)上单调递增;综上所述,当a≤0时,f(x)的单调递增区间是(﹣a,+∞),无单调递减区间;当a>0时,f(x)的单调递减区间是(﹣a,0),f(x)的单调递增区间是(0,+∞).【变式2-2】(2021•庐阳区校级模拟)已知函数f(x)=a2(x−2)2−x+2lnx(a>0).讨论f(x)的单调性.【解题思路】可得f′(x)=(x−2)(ax−1)x,分a=12,0<a<12,a>12三类讨论,可得f(x)的单调性;【解答过程】解:函数f(x)的定义域为(0,+∞),f′(x)=a(x−2)−1+2x=(x−2)(ax−1)x,令f'(x)=0,则x1=2,x2=1 a.(ⅰ)若a=12,则f'(x)≥0恒成立,所以f(x)在(0,+∞)上是增函数.(ⅱ)若0<a<12,则1a>2,当x∈(0,2)∪(1a,+∞)时,f'(x)>0;当x∈(2,1a)时,f'(x)<0.(ⅲ)若a >12,则0<1a <2,当x ∈(0,1a )∪(2,+∞)时,f '(x )>0;当x ∈(1a,2)时,f '(x )<0. 综上所述;当a =12时,f (x )在(0,+∞)上是增函数;当0<a <12,f (x )在(0,2),(1a,+∞)上是增函数,在(2,1a)上是减函数; 当a >12时,f (x )在(0,1a ),(2,+∞)上是增函数,在(1a ,2)上是减函数. 【变式2-3】(2021•丙卷模拟)已知函数ℎ(x)=a 2x −a −1+lnxx,其中a ∈R ,若函数f (x )=x •h (x ),讨论f (x )的单调性.【解题思路】由条件可得f ′(x )=(2ax+1)(ax−1)x,然后分a =0,a >0,a <0三类讨论,可得f (x )的单调情况;【解答过程】解:由题意,得2221()()()1(0)lnxf x x h x x a x a a x ax lnx x x+=⋅=⋅--=--->, 则222121(21)(1)()2a x ax ax ax f x a x a x x x--+-'=--==①当0a =时,1()0f x x'=-<在(0,)+∞上恒成立,()f x ∴在(0,)+∞上单调递减;②当0a >时,110,02x a a-<<>, 令()0f x '>,即(21)(1)0ax ax x +->,解得1x a >;令()0f x '<,即(21)(1)0ax ax x+-<,解得10x a <<,()f x ∴在1(0,)a 上单调递减,在1(,)a+∞上单调递增;③当0a <时,110,02x a a<<->, 令()0f x '>,即(21)(1)0ax ax x +->,解得12x a >-; 令()0f x '<,即(21)(1)0ax ax x +-<,解得102x a<<-,()f x ∴在1(0,)2a-上单调递减,在1(,)2a -+∞上单调递增.综上,当0a =时,()f x 在(0,)+∞上单调递减;当0a >时,()f x 在1(0,)a 上单调递减,在1(,)a+∞上单调递增;当0a <时,()f x 在1(0,)2a-上单调递减,在1(,)2a -+∞上单调递增.【题型3 利用函数单调性比较大小】【例3】(2021•二模拟)已知a=12ln2+14,b=2e,c=lnπ+1π,则a,b,c之间的大小关系为()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【解题思路】本题不能直接比较大小,所以先将a,b化为与c一样的形式,即a=12ln2+14+14=2ln2+14=ln4+14,b=2e=lne+1e,然后令f(x)=lnx+1x,利用导数求出函数的单调性,比较大小.【解答过程】解:令f(x)=lnx+1x,则f′(x)=−lnxx2,令f′(x)>0,解得:0<x<1,所以f(x)在(0,1)上递增,令f′(x)<0,解得:x>1,所以f(x)在(1,+∞)上递减,由题:a=12ln2+14+14=2ln2+14=ln4+14=f(4),b=2e=lne+1e=f(e),c=lnπ+1π=f(π),因为e<π<4,所以f(e)>f(π)>f(4),即b>c>a,故选:B.【变式3-1】(2021•丙卷模拟)已知函数f(x)+f'(x)=2m x,f(x)﹣f'(x)=2m﹣x(m>1),若a=0.75,b=70.5,c=log51,则()A.f(b)<f(a)<f(c)B.f(c)<f(b)<f(a)C.f(c)<f(a)<f(b)D.f(a)<f(b)<f(c)【解题思路】根据条件得到f(x)=e x+e﹣x,然后判断f(x)的奇偶性和单调性,再结合a=0.75,b=70.5,c=log51,判断a,b,c的大小即可.【解答过程】解:由f(x)+f'(x)=2m x与f(x)﹣f'(x)=2m﹣x,得f(x)=m x+m﹣x,f'(x)=m x﹣m﹣x,所以m=e,所以f(x)=e x+e﹣x,由f(x)=f(﹣x),知函数f(x)为偶函数.又f'(x)=e x﹣e﹣x,当x>0时,f'(x)>0,当x<0时,f'(x)<0,所以函数f(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增.因为c=log51=0<a=0.75<1<b=70.5,所以f(c)<f(a)<f(b).故选:C.【变式3-2】(2021•皇姑区校级模拟)已知实数x ,y ,z 满足e y lnx =ye x 且e z ln 1x=ze x ,若y >1,则( )A .x >y >zB .x >z >yC .y >z >xD .y >x >z【解题思路】由选项确定比较x ,y ,z 三个字母的大小,题干中只有两个等式及y >1,所以先考虑到将等式变形,确定除x >1,z <0;在比较x 与y 的大小,构造出x ,y 的一个不等式,然后利用函数的单调性求解.【解答过程】解:因为e y•lnx =y •e x可e y y=e x lnx,∵y >1,e y>0,∴e y y>0,∴e x lnx>0,∴lnx >0, ∴x >1,∵e z⋅ln 1x =z ⋅e x,∴e z z =e x ln1x=−e x lnx <0,∵e z >0, ∴z <0;(下面比较x ,y 的大小)令f (x )=x ﹣lnx ,f′(x)=1−1x =x−1x ,当x >1时,f ′(x )>0,∴f (x )在(1,+∞)上单调递增,∴x >1时,f (x )>f (1),即x ﹣lnx >1,一定有x ﹣lnx >0,∴x >lnx >0,∴e x x<e x lnx①,又∵e xlnx=e x y,①式可化为e x x<e y y,令g(x)=e xx ,则g′(x)=e x (x−1)x 2, 当x >1时,g ′(x )>0,∴g (x )在(1,+∞)上单调递增, ∵x >1,y >1,e x x<e y y,∴x <y ,综上:y >x >z 故选:D .【变式3-3】(2021•渝水区校级模拟)已知x ∈(0,π4),且a =2cos 2x+1e 2cos 2x,b =cosx+1e cosx ,c =sinx+1e sinx ,则a ,b ,c 的大小关系式为( ) A .a <b <cB .a <c <bC .b <c <aD .c <a <b【解题思路】构造函数g (x )=x+1e x ,利用导数可得g (x )在区间(0,+∞)单调递减,进一步分析可得2cos 2x >cos x >sin x >0,从而可得答案. 【解答过程】解:令g (x )=x+1e x , 则g ′(x )=−xe x ,所以当x >0时,g ′(x )<0,g (x )单调递减.① 因为x ∈(0,π4), 所以cos x ∈(√22,1),2cos x ∈(√2,2),且cos x >sin x >0, 又2cos 2x ﹣cos x =cos x (2cos x ﹣1)>0, 所以2cos 2x >cos x >sin x >0, 由①得a <b <c , 故选:A .【题型4 利用函数单调性解不等式】【例4】(2021•大通县一模)已知定义在R 上的函数f (x )满足f (2)=20,且f (x )的导函数f '(x )满足f '(x )>6x 2+2,则不等式f (x )>2x 3+2x 的解集为( ) A .{x |x >﹣2}B .{x |x >2}C .{x |x <2}D .{x |x <﹣2或x >2}【解题思路】令g (x )=f (x )﹣2x 3﹣2x ,结合条件判断g (x )的单调性,将问题转化为g (x )>g (2),然后求出不等式的解集即可.【解答过程】解:令g (x )=f (x )﹣2x 3﹣2x ,则g '(x )=f '(x )﹣6x 2﹣2>0, 所以g (x )在R 上单调递增.因为g (2)=f (2)﹣2×23﹣2×2=0, 故原不等式等价于g (x )>g (2),所以x >2, 所以不等式的解集为{x |x >2}. 故选:B .【变式4-1】(2021•全国卷模拟)f (x )是定义在R 上的奇函数,且f (1)=0,f '(x )为f (x )的导函数,且当x ∈(0,+∞)时f '(x )>0,则不等式f (x ﹣1)>0的解集为( )A.(0,1)∪(2,+∞)B.(﹣∞,1)∪(1,+∞)C.(﹣∞,1)∪(2,+∞)D.(﹣∞,0)∪(1,+∞)【解题思路】依题意,作出y=f(x)的图象,得到f(x)>0的解集,继而可得不等式f(x﹣1)>0的解集.【解答过程】解:∵f(x)是定义在R上的奇函数,且f(1)=0,当x∈(0,+∞)时f'(x)>0,∴f(x)在(﹣∞,0),(0,+∞)上单调递增,图形如下:∴f(x)>0的解集为:(﹣1,0)∪(1,+∞),又y=f(x﹣1)的图象是y=f(x)的图象向右平移一个单位,∴不等式f(x﹣1)>0的解集为(0,1)∪(2,+∞),故选:A.【变式4-2】(2021•长春模拟)已知定义域为R的函数f(x)满足f(x)+xf'(x)>1(f'(x)为函数f(x)的导函数),则不等式(1+x)f(1﹣x2)>f(1﹣x)+x的解集为()A.(0,1)B.(0,1]C.(0,+∞)D.(0,1)∪(1,+∞)【解题思路】构造函数g(x)=xf(x)﹣x,求出函数的导数,根据函数的单调性求出不等式的解集即可.【解答过程】解:由(1+x)f(1﹣x2)>f(1﹣x)+x,当x<1时,可得(1﹣x)(1+x)f(1﹣x2)>(1﹣x)f(1﹣x)+(1﹣x)x,即(1﹣x2)f(1﹣x2)>(1﹣x)f(1﹣x)+x﹣x2,即(1﹣x2)f(1﹣x2)﹣(1﹣x2)>(1﹣x)f(1﹣x)﹣(1﹣x),构造函数g(x)=xf(x)﹣x,g'(x)=f(x)+xf'(x)﹣1>0,所以函数g(x)递增,则1﹣x2>1﹣x,此时0<x<1,即0<x<1满足;当x>1时,可得(1﹣x2)f(1﹣x2)﹣(1﹣x2)<(1﹣x)f(1﹣x)﹣(1﹣x),由函数g(x)递增,则1﹣x2<1﹣x,此时x<0或x>1,即x>1满足;当x=1时,2f(0)>f(0)+1,即f(0)>1满足f(x)+x⋅f'(x)>1.综上,x∈(0,+∞),故选:C.【变式4-3】(2021•香坊区校级三模)设函数f'(x)是奇函数f(x)(x∈R)的导函数,当x>0时,lnxf′(x)<−1x f(x),则使得(x2﹣9)f(x)<0成立的x的取值范围是()A.(﹣3,0)∪(3,+∞)B.(﹣∞,﹣3)∪(3,+∞)C.(﹣3,0)∪(0,3)D.(﹣∞,﹣3)∪(0,3)【解题思路】令g(x)=f(x)lnx(x>0),则当x>0时,g(x)=f(x)lnx单调递减,而g(1)=0,于是可得当x∈(0,1)∪(1,+∞)时,f(x)<0;x∈(﹣1,0)∪(﹣∞,﹣1)时,f(x)>0,从而可求得(x2﹣9)f(x)<0的解.【解答过程】解:令g(x)=f(x)lnx(x>0),则g′(x)=f′(x)lnx+1x f(x)<0,∴当x>0时,g(x)=f(x)lnx单调递减.又g(1)=f(1)ln1=0,∴当x∈(0,1)时,g(x)>0,而此时lnx<0,∴f(x)<0;当x∈(1,+∞)时,g(x)<0,而此时lnx>0,∴f(x)<0;又f(x)是奇函数,∴当x∈(﹣1,0)时,f(x)>0;当x∈(﹣∞,﹣1)时,f(x)>0;∵(x2﹣9)f(x)<0,∴当x<0时,x2﹣9<0,解得﹣3<x<0;①当x>0时,x2﹣9>0,解得x>3;②综合①②,得(x2﹣9)f(x)<0成立的x的取值范围为(﹣3,0)∪(3,+∞),故选:A.【题型5 函数单调性与图像关系】【例5】(2020秋•宝鸡期末)若函数y=f(x)的导函数图象如图所示,则y=f(x)的图象可能为()A.B.C.D.【解题思路】根据f′(x)的图象,分别判断函数的单调性即可.【解答过程】解:设f′(x)=0的两个根分别为a,b,0<a<b,则当x<a时,f′(x)<0,函数f(x)为减函数,排除选项A和D;当a<x<b时,f′(x)>0,函数f(x)为增函数,当x>b时,f′(x)<0,函数f(x)为减函数,∵0<a<b,∴选项B不成立,选项C成立,则对应的图象为C,故选:C.【变式5-1】(2021春•葫芦岛期末)设函数f(x)的图象如图所示,则导函数f′(x)的图象可能为()A.B.C .D . 【解题思路】由原函数的单调性确定导函数的函数值的正负,即可得解【解答过程】解:由f (x )的图象知当x ∈(﹣∞,1)时,f (x )单调递减,f '(x )<0当x ∈(1,4)时,f (x )单调递增,f '(x )>0当x ∈(4,+∞)时,f (x )单调递减,f '(x )<0故选:C .【变式5-2】(2020秋•南昌期末)已知定义在R 上的函数y =f (x ),其导函数y =f '(x )的大致图象如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (e )>f (d )D .f (c )>f (b )>f (a )【解题思路】根据导函数的图象,求出函数f (x )的单调区间,根据a ,b ,c 的大小以及函数的单调性判断函数值的大小即可.【解答过程】解:显然f (x )(﹣∞,c )递增,在(c ,e )递减,在(e ,+∞)递增,而a <b <c ,故f (a )<f (b )<f (c ),故选:D .【变式5-3】(2020秋•渝中区校级月考)已知函数y =f (x )(x ∈R )的图象如图所示,则不等式f′(x)x−1<0的解集为( )A .(﹣∞,0)∪(12,2)B .(﹣1,1)∪(1,3)C .(﹣∞,12)∪(12,2) D .(﹣∞,12)∪(1,2) 【解题思路】根据条件判断函数的单调性,利用数形结合即可解不等式.【解答过程】解:∵f′(x)x−1<0,即(x ﹣1)•f ′(x )<0,∴不等式等价为x >1时,f ′(x )<0,此时函数单调递减,由图象可知此时解集为:(1,2). 当x <1时,f ′(x )>0,此时函数单调递增,由图象可知x <12,即不等式的解集为(﹣∞,12)∪(1,2). 故选:D .【题型6 利用函数单调性求参数】【方法点拨】根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )为增(减)函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0(f ′(x )≤0)且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则会漏解.(3)函数在某个区间上存在单调区间可转化为不等式有解问题.【例6】(2021•广东模拟)若函数f(x)=ax 2+1e x(e 为自然对数的底数)是减函数,则实数a 的取值范围是( )A .a ≤0B .a ≤1C .a >0D .0≤a ≤1 【解题思路】对f (x )求导,由f (x )是减函数可得f ′(x )≤0恒成立,令g (x )=2ax ﹣ax 2﹣1,则g (x )≤0恒成立,对a 分类讨论,即可求得a 的取值范围.【解答过程】解:函数f(x)=ax 2+1e x 的定义域为R ,f ′(x )=2ax−ax 2−1e x, 因为函数f (x )是减函数,所以f ′(x )≤0恒成立,令g (x )=2ax ﹣ax 2﹣1,则g (x )≤0恒成立,当a=0时,g(x)=﹣1成立;当a<0时,则g(x)的图象开口向上,g(x)≤0不恒成立,不符合题意;当a>0时,要使g(x)≤0恒成立,则△=4a2﹣4a≤0,解得0≤a≤1,又a>0,所以0<a≤1.综上可得,实数a的取值范围是0≤a≤1.故选:D.【变式6-1】(2021•湖南模拟)若函数f(x)=﹣x3+ax2+4x在区间(0,2)上单调递增,则实数a的取值范围为.【解题思路】问题转化为a≥3x2−2x在(0,2)恒成立,令g(x)=3x2−2x,x∈(0,2),求出函数的导数,根据函数的单调性求出a的取值范围即可.【解答过程】解:f(x)=﹣x3+ax2+4x,则f′(x)=﹣3x2+2ax+4,若f(x)在区间(0,2)上单调递增,则﹣3x2+2ax+4≥0在(0,2)恒成立,即a≥3x2−2x在(0,2)恒成立,令g(x)=3x2−2x,x∈(0,2),则g′(x)=32+2x2>0,g(x)在(0,2)递增,故g(x)<g(2)=2,故a≥2,故实数a的取值范围为[2,+∞),故答案为:[2,+∞).【变式6-2】(2021•南昌二模)若函数f(x)=x2+ax+1在(﹣1,+∞)上单调递增,则实数a的取值范围为.【解题思路】根据题意,求出函数的解析式,由函数的导数与单调性的关系,可得f′(x)=1−a+1(x+1)2≥0,即a+1≤(x+1)2的区间(﹣1,+∞)上恒成立,据此分析可得答案.【解答过程】解:根据题意,f(x)=x2+ax+1=x2−1+a+1x+1=x﹣1+a+1x+1,其导数f′(x)=1−a+1 (x+1)2,若函数f(x)=x2+ax+1在(﹣1,+∞)上单调递增,则f′(x)=1−a+1(x+1)2≥0,即a+1≤(x+1)2的区间(﹣1,+∞)上恒成立,又由x∈(﹣1,+∞),则(x+1)2≥0,必有a +1≤0即a ≤﹣1恒成立,即a ≤﹣1,则a 的取值范围为(﹣∞,﹣1]. 故答案为:(﹣∞,﹣1].【变式6-3】(2021•黔江区校级模拟)函数f (x )=x 2﹣axlnx 在(2e ,2)上不单调,则实数a 的取值范围是 .【解题思路】求出函数的导数,问题转化为方程a =2x lnx+1在(2e ,2)上有根,令g (x )=2x lnx+1,根据函数的单调性求出a 的范围即可.【解答过程】解:f ′(x )=2x ﹣a (lnx +1),若函数f (x )=x 2﹣axlnx 在(2e ,2)上不单调,则方程f ′(x )=0在(2e ,2)上有根即方程a =2x lnx+1在(2e ,2)上有根且方程的根是函数f ′(x )的变号零点, 令g (x )=2x lnx+1,则g ′(x )=2lnx (lnx+1)2, x ∈(2e ,1)时,g ′(x )<0,g (x )递减,x ∈(1,2)时,g ′(x )>0,g (x )递增, 又g (1)=2,g (2e )=4eln2,g (2)=4ln2+1,由g (2)﹣g (2e)=4ln2+1−4eln2>0, 得g (x )∈(2,4ln2+1),故a ∈(2,4ln2+1),故答案为:(2,4ln2+1).。

高考复习专题03 导数及其应用选择填空题(含解析)三年高考试题

高考复习专题03 导数及其应用选择填空题(含解析)三年高考试题

1.【2019年新课标3理科06】已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=﹣1B.a=e,b=1C.a=e﹣1,b=1D.a=e﹣1,b=﹣12.【2019年新课标3理科07】函数y在[﹣6,6]的图象大致为()A.B.C.⊈D.3.【2019年新课标1理科05】函数f(x)在[﹣π,π]的图象大致为()A.B.C.D.4.【2018年新课标1理科05】设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x5.【2018年新课标2理科03】函数f(x)的图象大致为()A.B.C.D.6.【2018年新课标3理科07】函数y=﹣x4+x2+2的图象大致为()A.B.C.D.7.【2018年浙江05】函数y=2|x|sin2x的图象可能是()A.B.C.D.8.【2017年新课标2理科11】若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f (x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.19.【2017年新课标3理科11】已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a =()A.B.C.D.110.【2017年浙江07】函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.11.【2019年新课标1理科13】曲线y=3(x2+x)e x在点(0,0)处的切线方程为.12.【2019年北京理科13】设函数f(x)=e x+ae﹣x(a为常数).若f(x)为奇函数,则a =;若f(x)是R上的增函数,则a的取值范围是.13.【2019年江苏10】在平面直角坐标系xOy中,P是曲线y=x(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是.14.【2019年江苏11】在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A 处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是.15.【2019年浙江16】已知a∈R,函数f(x)=ax3﹣x.若存在t∈R,使得|f(t+2)﹣f(t)|,则实数a的最大值是.16.【2018年江苏11】若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为.17.【2018年新课标2理科13】曲线y=2ln(x+1)在点(0,0)处的切线方程为.18.【2018年新课标3理科14】曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=.19.【2017年江苏11】已知函数f(x)=x3﹣2x+e x,其中e是自然对数的底数.若f(a ﹣1)+f(2a2)≤0.则实数a的取值范围是.1.【2019年新课标3理科06】已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=﹣1B.a=e,b=1C.a=e﹣1,b=1D.a=e﹣1,b=﹣1【解答】解:y=ae x+xlnx的导数为y′=ae x+lnx+1,由在点(1,ae)处的切线方程为y=2x+b,可得ae+1+0=2,解得a=e﹣1,又切点为(1,1),可得1=2+b,即b=﹣1,故选:D.2.【2019年新课标3理科07】函数y在[﹣6,6]的图象大致为()A.B.C.⊈D.【解答】解:由y=f(x)在[﹣6,6],知f(﹣x),∴f(x)是[﹣6,6]上的奇函数,因此排除C又f(4),因此排除A,D.故选:B.3.【2019年新课标1理科05】函数f(x)在[﹣π,π]的图象大致为()A.B.C.D.【解答】解:∵f(x),x∈[﹣π,π],∴f(﹣x)f(x),∴f(x)为[﹣π,π]上的奇函数,因此排除A;又f(),因此排除B,C;故选:D.4.【2018年新课标1理科05】设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.5.【2018年新课标2理科03】函数f(x)的图象大致为()A.B.C.D.【解答】解:函数f(﹣x)f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.6.【2018年新课标3理科07】函数y=﹣x4+x2+2的图象大致为()A.B.C.D.【解答】解:函数过定点(0,2),排除A,B.函数的导数f′(x)=﹣4x3+2x=﹣2x(2x2﹣1),由f′(x)>0得2x(2x2﹣1)<0,得x或0<x,此时函数单调递增,由f′(x)<0得2x(2x2﹣1)>0,得x或x<0,此时函数单调递减,排除C,也可以利用f(1)=﹣1+1+2=2>0,排除A,B,故选:D.7.【2018年浙江05】函数y=2|x|sin2x的图象可能是()A.B.C.D.【解答】解:根据函数的解析式y=2|x|sin2x,得到:函数的图象为奇函数,故排除A和B.当x时,函数的值也为0,故排除C.故选:D.8.【2017年新课标2理科11】若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f (x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.1【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:f′(﹣2)=(﹣4+a)e﹣3+(4﹣2a﹣1)e﹣3=0,即﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.9.【2017年新课标3理科11】已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a =()A.B.C.D.1【解答】解:因为f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)=﹣1+(x﹣1)2+a(e x﹣1)=0,所以函数f(x)有唯一零点等价于方程1﹣(x﹣1)2=a(e x﹣1)有唯一解,等价于函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1)的图象只有一个交点.①当a=0时,f(x)=x2﹣2x≥﹣1,此时有两个零点,矛盾;②当a<0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1)在(﹣∞,1)上递增、在(1,+∞)上递减,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1)的图象的最高点为B(1,2a),由于2a<0<1,此时函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1)的图象有两个交点,矛盾;③当a>0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1)在(﹣∞,1)上递减、在(1,+∞)上递增,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1)的图象的最低点为B(1,2a),由题可知点A与点B重合时满足条件,即2a=1,即a,符合条件;综上所述,a,故选:C.10.【2017年浙江07】函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选:D.11.【2019年新课标1理科13】曲线y=3(x2+x)e x在点(0,0)处的切线方程为.【解答】解:∵y=3(x2+x)e x,∴y'=3e x(x2+3x+1),∴当x=0时,y'=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为:y=3x.12.【2019年北京理科13】设函数f(x)=e x+ae﹣x(a为常数).若f(x)为奇函数,则a =;若f(x)是R上的增函数,则a的取值范围是.【解答】解:根据题意,函数f(x)=e x+ae﹣x,若f(x)为奇函数,则f(﹣x)=﹣f(x),即e﹣x+ae x=﹣(e x+ae﹣x),变形可得a=﹣1,函数f(x)=e x+ae﹣x,导数f′(x)=e x﹣ae﹣x若f(x)是R上的增函数,则f(x)的导数f′(x)=e x﹣ae﹣x≥0在R上恒成立,变形可得:a≤e2x恒成立,分析可得a≤0,即a的取值范围为(﹣∞,0];故答案为:﹣1,(﹣∞,0].13.【2019年江苏10】在平面直角坐标系xOy中,P是曲线y=x(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是.【解答】解:由y=x(x>0),得y′=1,设斜率为﹣1的直线与曲线y=x(x>0)切于(x0,),由,解得(x0>0).∴曲线y=x(x>0)上,点P()到直线x+y=0的距离最小,最小值为.故答案为:4.14.【2019年江苏11】在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A 处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是.【解答】解:设A(x0,lnx0),由y=lnx,得y′,∴,则该曲线在点A处的切线方程为y﹣lnx0,∵切线经过点(﹣e,﹣1),∴,即,则x0=e.∴A点坐标为(e,1).故答案为:(e,1).15.【2019年浙江16】已知a∈R,函数f(x)=ax3﹣x.若存在t∈R,使得|f(t+2)﹣f(t)|,则实数a的最大值是.【解答】解:存在t∈R,使得|f(t+2)﹣f(t)|,即有|a(t+2)3﹣(t+2)﹣at3+t|,化为|2a(3t2+6t+4)﹣2|,可得2a(3t2+6t+4)﹣2,即a(3t2+6t+4),由3t2+6t+4=3(t+1)2+1≥1,可得0<a,可得a的最大值为.故答案为:.16.【2018年江苏11】若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为.【解答】解:∵函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()1=0,解得a=3,f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],f′(x)>0的解集为(﹣1,0),f(x)在(﹣1,0)上递增,在(0,1)上递减,f(﹣1)=﹣4,f(0)=1,f(1)=0,∴f(x)min=f(﹣1)=﹣4,f(x)max=f(0)=1,∴f(x)在[﹣1,1]上的最大值与最小值的和为:f(x)max+f(x)min=﹣4+1=﹣3.17.【2018年新课标2理科13】曲线y=2ln(x+1)在点(0,0)处的切线方程为.【解答】解:∵y=2ln(x+1),∴y′,当x=0时,y′=2,∴曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.故答案为:y=2x.18.【2018年新课标3理科14】曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=.【解答】解:曲线y=(ax+1)e x,可得y′=ae x+(ax+1)e x,曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,可得:a+1=﹣2,解得a=﹣3.故答案为:﹣3.19.【2017年江苏11】已知函数f(x)=x3﹣2x+e x,其中e是自然对数的底数.若f(a ﹣1)+f(2a2)≤0.则实数a的取值范围是.【解答】解:函数f(x)=x3﹣2x+e x的导数为:f′(x)=3x2﹣2+e x2+20,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)由f(﹣(a﹣1))=﹣f(a﹣1),f(2a2)≤f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a,故答案为:[﹣1,].。

2021届高考数学选择填空题专题复习课件:专题3 导数的概念及简单应用

2021届高考数学选择填空题专题复习课件:专题3 导数的概念及简单应用

【解析】(1)令t=ex,故x=ln t,所以f(t)=ln t+t,
即f(x)=ln x+x,
所以f′(x)= +11,所以f′(1)=2.
x
(2)因为曲线y=ax2+b 过点P(2,-5),
x
所以4a+b =-5.①
2
又y′=2ax- b,且曲线在点P(2,-5)处的切线与直线
x2
7x+2y+3=0平行,所以4ab- =-7 .②
【变式训练】
(1)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为
y=2x,则a= ( )
A.0
B.1
C.2
D.3
(2)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切
线过点(2,7),则a=________.
【解析】(1)选D.y′=a- x,+1由1 题意得y′|x=0=2, 即a-1=2,所以a=3. (2)因为f′(x)=3ax2+1,所以f′(1)=3a+1. 又f(1)=a+2,所以f(x)在点(1,f(1))处的切线方程为 y-(a+2)=(3a+1)(x-1).
3.已知点P在曲线y= 4 上,α为曲线在点P处的切线
ex+1
的倾斜角,则α的取值范围是________.
【解析】1.由题意知y′=ex+xex,令y′=0,解得x=-1,
代入函数解析式可得极值点的坐标为(-1,-. 1)
e
又极值点处的切线为平行于x轴的直线,故方程为y=
- 1.
e
2.设P(x0,y0)(x0>0),
由y=ex,得y′=ex,所以y′|x=0=1.

专题03 导数及其应用选择填空题(解析版)

专题03 导数及其应用选择填空题(解析版)
函数f(x)在(0,+∞)上单调递增,f(0)=1,
f(x)在(0,+∞)上没有零点,舍去;
②当a>0时,f′(x)=2x(3x﹣a)>0的解为x ,
∴f(x)在(0, )上递减,在( ,+∞)递增,
又f(x)只有一个零点,
∴f( ) 1=0,解得a=3,
f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],
∴切线方程为:y=3x.
故答案为:y=3x.
12.【2019年北京理科13】设函数f(x)=ex+ae﹣x(a为常数).若f(x)为奇函数,则a=;若f(x)是R上的增函数,则a的取值范围是.
【解答】解:根据题意,函数f(x)=ex+ae﹣x,
若f(x)为奇函数,则f(﹣x)=﹣f(x),即e﹣x+aex=﹣(ex+ae﹣x),变形可得a=﹣1,
•常见基本初等函数的导数公式:
(C)0(C为常数);(xn)nxn1,nN;(sinx)cosx;(cosx)sinx;(ex)ex;(ax)axlna(a0,且a1);
(lnx) ;(logax) logae(a0,且a1)
•常用的导数运算法则:
法则1:[u(x)v(x)]u(x)v(x).
法则2:[u(x)v(x)]u(x)v(x)u(x)v(x).
【解答】解:由y=f(x) 在[﹣6,6],知
f(﹣x) ,
∴f(x)是[﹣6,6]上的奇函数,因此排除C
又f(4) ,因此排除A,D.
故选:B.
3.【2019年新课标1理科05】函数f(x) 在[﹣π,π]的图象大致为( )
A.
B.
C.
D.
【解答】解:∵f(x) ,x∈[﹣π,π],

高考数学第一轮复习教案 专题3导数与其应用

高考数学第一轮复习教案 专题3导数与其应用

专题三 导数与其应用一、考试内容导数概念及其几何意义 导数及其应用 二、考试要求(1)理解导数概念及其几何意义,掌握基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.。

(2)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次);. 了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).。

(3)会利用导数解决实际问题。

三、命题热点分析近几年的高考试题,导数这一知识点是高考的必考内容,对导数的考查主要是有三个方面:一是考查导数的运算与导数的几何意义,二是考查导数的简单应用,例如求函数的单调区间、极值与最值等,三是考查导数的综合应用.导数的几何意义以及简单应用通常以客观题的形式出现,属于容易题和中档题;而对于导数的综合应用,则主要是和函数、不等式、方程等联系在一起以解答题的形式进行考查,例如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题.。

在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有导数试题,而且常考常新.以函数、不等式、方程等联系在一起以解答题的形式进行考查是高考命题的新趋势。

四、知识回顾(一)导数的概念及几何意义(1)平均变化率一般地,函数21,),(x x x f y =是其定义域内不同的两点,那么函数的变化率可用式子2121)()(x x x f x f --表示,这个式子称,函数的到从21),(x x x f y =平均变化率,记为=∆∆xf 2121)()(x x x f x f --=x x f x x f ∆-∆+)()(21(2)曲线的切线切线的斜率:x x f x x f x y k x x ∆-∆+=∆∆=→∆→∆)()(000lim lim ,切线的方程为:)(00x x k y y -=- (4)导数的概念一般地,函数0)(x x x f y ==在处的瞬间变化率是xyx x f x x f x x ∆∆=∆-∆+→∆→∆lim lim0000)()(,称它为0)(x x x f y ==在处的导数,记为0)(0x x y x f =/''或,即x yx x f x x f x f x x ∆∆=∆-∆+='→∆→∆lim lim0000)()()((5)导数的几何意义0)(x x f y 在点=处的导数)(0x f '的几何意义是:曲线0)(x x f y 上过点=的切线的斜率。

【新高考】高三数学一轮复习知识点专题3-3 函数与导数的综合应用

【新高考】高三数学一轮复习知识点专题3-3 函数与导数的综合应用

专题3.3 函数与导数的综合应用(精测)1.(2020·四川成都模拟)已知函数f (x )=e 2x -2a e x -2ax ,其中a >0. (1)当a =1时,求曲线y =f (x )在点(0,f (0))处的切线方程; (2)若函数f (x )有唯一零点,求a 的值.【解析】(1)当a =1时,f (x )=e 2x -2e x -2x ,∴f ′(x )=2e 2x -2e x -2,∴f ′(0)=2e 0-2e 0-2=-2. 又f (0)=e 0-2e 0-0=-1,∴曲线y =f (x )在点(0,f (0))处的切线方程为y -(-1)=-2x ,即2x +y +1=0. (2)由题意得f ′(x )=2e 2x -2a e x -2a =2(e 2x -a e x -a ). 令t =e x ∈(0,+∞),则g (t )=2(t 2-at -a ).设t 2-at -a =0的解为t 1,t 2则t 1+t 2=a ,t 1t 2=-a ,又∵a >0,∴函数y =g (t )在(0,+∞)上仅有一个零点. ∴存在t 0∈(0,+∞),使得g (t 0)=0, 即存在x 0满足t 0=e x 0时,f ′(x 0)=0.∴当t ∈(0,t 0),即x ∈(-∞,x 0)时,f ′(x )<0,∴f (x )在(-∞,x 0)上单调递减;当t ∈(t 0,+∞),即x ∈(x 0,+∞)时,f ′(x )>0,∴f (x )在(x 0,+∞)上单调递增.又当x →-∞时,e 2x -2a e x →0,-2ax →+∞,∴f (x )→+∞;当x >0时,e x >x ,∴f (x )=e 2x -2a e x -2ax >e 2x -2a e x -2a e x =e x (e x -4a ), ∵当x →+∞时,e x (e x -4a )→+∞,∴f (x )→+∞.∴函数f (x )有唯一零点时,必有f (x 0)=e2x 0-2a e x 0-2ax 0=0.① 又e2x 0-a e x 0-a =0,②由①②消去a ,得e x 0+2x 0-1=0.令h (x )=e x +2x -1,∵h ′(x )=e x +2>0,∴h (x )单调递增. 又h (0)=0,∴方程e x 0+2x 0-1=0有唯一解x =0.将x =0代入e2x 0-a e x 0-a =0,解得a =12,∴当函数f (x )有唯一零点时,a 为12.2.(2020·广西桂林市联考)已知函数f (x )=⎝⎛⎭⎫a +1a ln x +1x -x (a >0). (1)若a =12,求f (x )的极值点;(2)若曲线y =f (x )上总存在不同的两点P (x 1,f (x 1)),Q (x 2,f (x 2)),使得曲线y =f (x )在P ,Q 两点处的切线平行,求证:x 1+x 2>2.【解析】f (x )的定义域为(0,+∞),f ′(x )=⎝⎛⎭⎫a +1a ·1x -1x2-1(a >0). (1)当a =12时,f ′(x )=-⎝⎛⎭⎫1x -2⎝⎛⎭⎫1x -12=-(x -2)(2x -1)2x 2, 令f ′(x )<0,得0<x <12或x >2;令f ′(x )>0,得12<x <2,∴f (x )在⎝⎛⎭⎫0,12,(2,+∞)上单调递减,在⎝⎛⎭⎫12,2上单调递增, ∴x =12是f (x )的极小值点,x =2是f (x )的极大值点.(2)证明:由题意知,f ′(x 1)=f ′(x 2),即⎝⎛⎭⎫a +1a ·1x 1-1x 21-1=⎝⎛⎭⎫a +1a ·1x 2-1x 22-1(x 1≠x 2), ∴a +1a =1x 1+1x 2=x 1+x 2x 1x 2.∵x 1,x 2∈(0,+∞),x 1≠x 2,∴x 1+x 2>2x 1x 2,则有x 1x 2<(x 1+x 2)24,∴a +1a =x 1+x 2x 1x 2>4x 1+x 2,∴x 1+x 2>⎝ ⎛⎭⎪⎫4a +1a max.∵a >0,∴4a +1a≤2(当且仅当a =1时取等号),∴x 1+x 2>⎝ ⎛⎭⎪⎫4a +1a max=2.3.(2020·云南昆明市高三诊断)已知函数f (x )=2ln x -x +1x .(1)求f (x )的单调区间;(2)若a >0,b >0,且a ≠b ,证明:ab <a -b ln a -ln b <a +b2.【解析】(1)由题意得,函数f (x )的定义域为(0,+∞), f ′(x )=2x -1-1x 2=-x 2+2x -1x 2=-(x -1)2x 2≤0.所以函数f (x )在(0,+∞)上单调递减,无单调递增区间. (2)设a >b >0,则ab <a -b ln a -ln b ⇔ln a -ln b <a -b ab⇔ln a b <a b -1ab ⇔2ln ab-a b +1ab<0. 由(1)知,f (x )是(0,+∞)上的减函数,又ab >1,所以f ⎝⎛⎭⎫a b <f (1)=0, 即f ⎝⎛⎭⎫a b =2ln a b-a b +1ab<0,所以ab <a -bln a -ln b .又a -b ln a -ln b <a +b 2⇔ln a -ln b >2(a -b )a +b⇔ln a b >2⎝⎛⎭⎫a b -1ab+1. 令g (x )=ln x -2(x -1)x +1,则g ′(x )=(x -1)2x (x +1)2,当x ∈(0,+∞)时,g ′(x )≥0,即g (x )是(0,+∞)上的增函数.因为a b >1,所以g ⎝⎛⎭⎫a b >g (1)=0,所以ln a b >2⎝⎛⎭⎫a b -1a b +1,从而a -b ln a -ln b <a +b 2.综上所述,当a >0,b >0,且a ≠b 时,ab <a -b ln a -ln b <a +b2.4.(2020·山东烟台模拟)已知函数f (x )=x ln x ,g (x )=-x 2+ax -3. (1)求函数f (x )在[t ,t +2](t >0)上的最小值;(2)若存在x ∈⎣⎡⎦⎤1e ,e (e 是自然对数的底数,e =2.718 28…)使不等式2f (x )≥g (x )成立,求实数a 的取值范围. 【解析】(1)由题意知f ′(x )=ln x +1, 当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,此时f (x )单调递减; 当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0,此时f (x )单调递增. 当0<t <t +2<1e时,t 无解;当0<t ≤1e <t +2,即0<t ≤1e 时,f (x )min =f ⎝⎛⎭⎫1e =-1e ; 当1e <t <t +2,即t >1e 时,f (x )在[t ,t +2]上单调递增, 故f (x )min =f (t )=t ln t .所以f (x )min=⎩⎨⎧-1e ,0<t ≤1e ,t ln t ,t >1e .(2)由题意,知2x ln x ≥-x 2+ax -3,即a ≤2ln x +x +3x ,令h (x )=2ln x +x +3x(x >0),则h ′(x )=2x +1-3x 2=(x +3)(x -1)x 2,当x ∈⎣⎡⎭⎫1e ,1时,h ′(x )<0,此时h (x )单调递减; 当x ∈(1,e]时,h ′(x )>0,此时h (x )单调递增.所以h (x )max =max ⎩⎨⎧⎭⎬⎫h ⎝⎛⎭⎫1e ,h (e ). 因为存在x ∈⎣⎡⎦⎤1e ,e ,使2f (x )≥g (x )成立, 所以a ≤h (x )max ,又h ⎝⎛⎭⎫1e =-2+1e +3e ,h (e)=2+e +3e , 故h ⎝⎛⎭⎫1e >h (e),所以a ≤1e+3e -2. 5.(2020·陕西省质检)设函数f (x )=ln x +k x,k ∈R.(1)若曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围. 【解析】(1)由题意,得f ′(x )=1x -kx2(x >0),∵曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直, ∴f ′(e)=0,即1e -ke 2=0,解得k =e ,∴f ′(x )=1x -e x 2=x -ex2(x >0),由f ′(x )<0,得0<x <e ;由f ′(x )>0,得x >e ,∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增. 当x =e 时,f (x )取得极小值,且f (e)=ln e +ee =2.∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立, 设h (x )=f (x )-x =ln x +kx -x (x >0),则h (x )在(0,+∞)上单调递减,∴h ′(x )=1x -kx 2-1≤0在(0,+∞)上恒成立,即当x >0时,k ≥-x 2+x =-⎝⎛⎭⎫x -122+14恒成立, ∴k ≥14.故k 的取值范围是⎣⎡⎭⎫14,+∞. 6.(2020·山西大同调研)已知函数f (x )=2ln x -x 2+ax (a ∈R).(1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎡⎦⎤1e ,e 上有两个不同的零点,求实数m 的取值范围. 【解析】(1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x -2x +2,则k =f ′(1)=2.∵f (1)=1,∴切点坐标为(1,1).所以切线方程为y -1=2(x -1),即y =2x -1.(2)由题意得,g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x .∵x ∈⎣⎡⎦⎤1e ,e ,∴令g ′(x )=0,得x =1.当1e ≤x <1时,g ′(x )>0,g (x )单调递增;当1<x ≤e 时,g ′(x )<0,g (x )单调递减. 故g (x )在⎣⎡⎦⎤1e ,e 上有最大值g (1)=m -1.又g ⎝⎛⎭⎫1e =m -2-1e 2,g (e)=m +2-e 2,g (e)-g ⎝⎛⎭⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝⎛⎭⎫1e , ∴g (x )在⎣⎡⎦⎤1e ,e 上的最小值是g (e).g (x )在⎣⎡⎦⎤1e ,e 上有两个不同的零点的条件是⎩⎪⎨⎪⎧g (1)=m -1>0,g ⎝⎛⎭⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2, ∴实数m 的取值范围是⎝⎛⎦⎤1,2+1e 2. 7.(2020·河南安阳二模)已知函数f (x )=ln x -x 2+ax ,a ∈R. (1)证明:ln x ≤x -1;(2)若a ≥1,讨论函数f (x )的零点个数.【解析】(1)证明:令g (x )=ln x -x +1(x >0),则g (1)=0, g ′(x )=1x -1=1-x x,∴当x ∈(0,1)时,g ′(x )>0,函数g (x )单调递增;当x ∈(1,+∞)时,g ′(x )<0,函数g (x )单调递减. ∴当x =1时,函数g (x )取得极大值也是最大值, ∴g (x )≤g (1)=0,即ln x ≤x -1.(2)f ′(x )=1x -2x +a =-2x 2+ax +1x ,x >0.令-2x 2+ax +1=0,解得x 0=a +a 2+84(负值舍去),在(0,x 0)上,f ′(x )>0,函数f (x )单调递增,在(x 0,+∞)上,f ′(x )<0,函数f (x )单调递减. ∴f (x )max =f (x 0).当a =1时,x 0=1,f (x )max =f (1)=0,此时函数f (x )只有一个零点x =1.当a >1时,f (1)=a -1>0,f ⎝⎛⎭⎫12a =ln 12a -14a 2+12<12a -1-14a 2+12=-⎝⎛⎭⎫12a -122-14<0, f (2a )=ln 2a -2a 2<2a -1-2a 2=-2⎝⎛⎭⎫a -122-12<0. ∴函数f (x )在区间⎝⎛⎭⎫12a ,1和区间(1,2a )上各有一个零点. 综上可得,当a =1时,函数f (x )只有一个零点x =1; 当a >1时,函数f (x )有两个零点.8.(2020·河北石家庄质检)已知函数f (x )=(2-x )e k (x -1)-x (k ∈R ,e 为自然对数的底数).(1)若f (x )在R 上单调递减,求k 的最大值; (2)当x ∈(1,2)时,证明:lnx (2x -1)2-x>2⎝⎛⎭⎫x -1x .【解析】(1)∵f (x )在R 上单调递减,∴f ′(x )=e k (x -1)[k (2-x )-1]-1≤0恒成立,即-kx +2k -1≤1ek (x -1)对任意x ∈R 恒成立. 设g (x )=1ek (x -1)+kx -2k +1,则g (x )≥0对任意x ∈R 恒成立,显然应满足g (1)=2-k ≥0,∴k ≤2.当k =2时,g ′(x )=2⎣⎡⎦⎤1-1e 2(x -1),且g ′(1)=0,当x ∈(1,+∞)时,g ′(x )>0,g (x )单调递增, 当x ∈(-∞,1)时,g ′(x )<0,g (x )单调递减, ∴g (x )min =g (1)=0,即g (x )≥0恒成立, 故k 的最大值为2.(2)证明:由(1)知,当k =2时,f (x )=(2-x )e 2(x -1)-x 在R 上单调递减,且f (1)=0,所以当x ∈(1,2)时,f (x )<f (1),即(2-x )e 2(x-1)<x ,两边同取以e 为底的对数得ln(2-x )+2(x -1)<ln x , 即2(x -1)<ln x2-x,①下面证明-2x +2<ln(2x -1),x ∈(1,2).②令H (x )=ln(2x -1)-⎝⎛⎭⎫-2x +2(1<x <2), 则H ′(x )=2(x -1)2x 2(2x -1)>0,∴H (x )在(1,2)上单调递增,则H (x )>H (1)=ln(2×1-1)-⎝⎛⎭⎫-21+2=0,故②成立, ① +②得,ln x (2x -1)2-x>2⎝⎛⎭⎫x -1x 成立.9.(2020·河南郑州市第一次质检)已知函数f (x )=(e x -2a )e x ,g (x )=4a 2x . (1)设h (x )=f (x )-g (x ),试讨论h (x )在定义域内的单调性;(2)若函数y =f (x )的图象恒在函数y =g (x )的图象的上方,求a 的取值范围. 【解析】(1)∵h (x )=(e x -2a )e x -4a 2x , ∴h ′(x )=2e 2x -2a e x -4a 2=2(e x +a )(e x -2a ). ①当a =0时,h ′(x )>0恒成立, ∴h (x )在R 上单调递增;②当a >0时,e x +a >0,令h ′(x )=0,解得x =ln 2a , 当x <ln 2a 时,h ′(x )<0,函数h (x )单调递减, 当x >ln 2a 时,h ′(x )>0,函数h (x )单调递增;③当a <0时,e x -2a >0,令h ′(x )=0,解得x =ln(-a ), 当x <ln(-a )时,h ′(x )<0,函数h (x )单调递减, 当x >ln(-a )时,h ′(x )>0,函数h (x )单调递增. 综上所述,当a =0时,h (x )在R 上单调递增;当a >0时,h (x )在(-∞,ln 2a )上单调递减,在(ln 2a ,+∞)上单调递增; 当a <0时,h (x )在(-∞,ln (-a ))上单调递减,在(ln(-a ),+∞)上单调递增.(2)若函数y =f (x )的图象恒在函数y =g (x )的图象的上方,则h (x )>0恒成立,即h (x )min >0. ①当a =0时,h (x )=e 2x >0恒成立;②当a >0时,由(1)得,h (x )min =h (ln 2a )=-4a 2ln 2a >0,∴ln 2a <0,∴0<a <12;③当a <0时,由(1)可得h (x )min =h (ln(-a ))=3a 2-4a 2ln(-a )>0, ∴ln(-a )<34,∴-e 34<a <0.综上所述,a 的取值范围为⎝⎛⎭⎪⎫-e 34,12.10.(2020·河北衡水中学调研)已知函数f (x )=ln x -x +1x -1.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线y =e x 的切线. 【解析】(1)函数f (x )=ln x -x +1x -1.定义域为(0,1)∪(1,+∞); f ′(x )=1x +2(x -1)2>0,(x >0且x ≠1),∴f (x )在(0,1)和(1,+∞)上单调递增.①在(0,1)上取1e 2,1e 代入函数,由函数零点的定义得,∵f ⎝⎛⎭⎫1e 2<0,f ⎝⎛⎭⎫1e >0,f ⎝⎛⎭⎫1e 2·f ⎝⎛⎭⎫1e <0, ∴f (x )在(0,1)有且仅有一个零点.②在(1,+∞)上取e ,e 2代入函数,由函数零点的定义得, 又∵f (e)<0,f (e 2)>0,f (e)·f (e 2)<0, ∴f (x )在(1,+∞)上有且仅有一个零点, 故f (x )在定义域内有且仅有两个零点.(2)证明:若x 0是f (x )的一个零点,则有ln x 0=x 0+1x 0-1,由y =ln x ,得y ′=1x;∴曲线y =ln x 在点A (x 0,ln x 0)处的切线方程为y -ln x 0=1x 0(x -x 0),即y =1x 0x -1+ln x 0,即y =1x 0x +2x 0-1,当曲线y =e x 切线斜率为1x 0时,切点为⎝⎛⎭⎫ln 1x 0,1x 0, ∴曲线y =e x 的切线在点⎝⎛⎭⎫ln 1x 0,1x 0处的切线方程为y -1x 0=1x 0⎝⎛⎭⎫x -ln 1x 0, 即y =1x 0x +2x 0-1,故曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线y =e x 的切线.故得证.11.(2020·四川宜宾市第一中学模拟)设函数()ln e xf x x x a =-,()p x kx =,其中a ∈R ,e 是自然对数的底数.(1)若()f x 在()0,∞+上存在两个极值点,求a 的取值范围;(2)若()1()x lnx f x ϕ=+-′,(1)e ϕ=,函数()x ϕ与函数()p x 的图象交于()11,A x y ,()22,B x y ,且AB 线段的中点为()00,P x y ,证明:()()001x p y ϕ<<.【答案】(1)10ea <<;(2)见解析. 【解析】(1)()ln e xf x x x a =-的定义域为()0,∞+,()ln 1e xf x x a =+-′,则()f x 在()0,+∞上存在两个极值点等价于()0f x '=在()0,+∞上有两个不等实根, 由()ln 1e 0xf x x a =+-=′,解得ln 1e xx a +=, 令ln 1()ex x g x +=,则1(ln 1)()e xx x g x -+'=,令1()ln 1h x x x =--,则211()h x x x'=--, 当0x >时,()0h x '<,故函数()h x 在()0,∞+上单调递减,且()10h =, 所以,当()0,1x ∈时,()0h x >,()0g x '>,()g x 单调递增, 当()1,x ∈+∞时,()0h x <,()0g x '<,()g x 单调递减, 所以,1x =是()g x 的极大值也是最大值, 所以max 1()(1)e g x g ==,所以1ea <, 又当0x →时,()g x ↔-∞,当+x →∞时,()g x 大于0且趋向于0, 要使()0f x '=在()0,∞+有两个根,则10ea <<; (2)证明:()()ln 1()ln ln 1e e 1xxx x f x x x a a ϕ=+-+--==+′,由(1)e ϕ=,得1a =,则()e x x ϕ=, 要证()()001x p y ϕ<<成立, 只需证122112221e e e e e2x x x x x x k x x +-+<=<-,即212121221e e e 1e 2x x x x x x x x +--+<<-,即2121212211e 12e ex x x x x x x x ----+<<-, 设210t x x =->,即证2e 1e 1e 2tt t t -+<<, 要证2e 1e t t t-<,只需证22e e t t t ->,令22()e e tt F t t =--,则221()e e 102t tF t ⎛⎫'=+-> ⎪⎝⎭,所以()F t 在()0,∞+上为增函数,所以()()00F t F >=,即2e 1e tt t -<成立;要证e 1e 12t t t -+<,只需证e 1e 12t t t -<+,令e 1()e 12tt t G t -=-+,则()()()222e 12e 1()02e 12e 1t tt t G t --'=-=<++, 所以()G t 在()0,+∞上为减函数,所以()()00G t G <=,即e 1e 12t t t -+<成立; 所以2e 1e 1e 2tt t t -+<<成立,即()()001x p y ϕ<<成立. 12.(2020·山东师范大学附属中学模拟)已知函数21()e ln (,ax f x x b x ax a b +=⋅--∈R ).(1 )若b =0,曲线f (x )在点(1,f (1)) 处的切线与直线y = 2x 平行,求a 的值; (2)若b =2,且函数f (x )的值域为[2,),+∞求a 的最小值. 【解析】(1)当0b =时,21()ax f x x eax +=-,1()(2)ax f x xe ax a +'=+-,由1(1)e (2)2a f a a +'=+-=,得1e (2)(2)0a a a ++-+=,即1(e1)(2)0a a +-+=,解得1a =-或2a =-.当1a =-时,0(1)e 12f =+=,此时直线2y x =恰为切线,故舍去,所以2a =-. (2)当2b =时,21()e 2ln ax f x x x ax +=--,设21e ax t x +=,则ln 2ln 1t x ax =++,故函数()f x 可化为()ln 1g t t t =-+.由11()1t g t t t-'=-=,可得()g t 的单调递减区间为(0,1),单调递增区间为(1,)+∞, 所以()g t 的最小值为(1)1ln112g =-+=,此时,函数的()f x 的值域为[2,)+∞,问题转化为当1t =时,ln 2ln 1t x ax =++有解, 即ln12ln 10x ax =++=,得12ln x a x +=-,设12ln ()x h x x +=-,则22ln 1()x h x x -'=, 故()h x的单调递减区间为,单调递增区间为)+∞,所以()h x的最小值为h =,故a的最小值为13.(2020·河南省开封市第五中学模拟)已知函数()()211ln 2f x x ax a x =-+-,()ln g x b x x =-的最大值为1e. (1)求实数b 的值;(2)当1a >时,讨论函数()f x 的单调性;(3)当0a =时,令()()()22ln 2F x f x g x x =+++,是否存在区间[],(1m n ⊆,)+∞,使得函数()F x 在区间[],m n 上的值域为()()2,2k m k n ⎡⎤++⎣⎦?若存在,求实数k 的取值范围;若不存在,请说明理由. 【解析】(1) 由题意得()'ln 1g x x =--,令()'0g x =,解得1ex =, 当10,e x ⎛⎫∈ ⎪⎝⎭时,()'>0g x ,函数()g x 单调递增;当1,e x ⎛⎫∈+∞ ⎪⎝⎭时,()'<0g x ,函数()g x 单调递减. 所以当1e x =时,()g x 取得极大值,也是最大值,所以11e e eg b ⎛⎫=+= ⎪⎝⎭,解得0b =. (2)()f x 的定义域为()0,+∞.()()()21111x x a a x ax a f x x a x x x-+---+-=-+==', ① 11a -=即2a =,则()()21x f x x ='-,故()f x 在()0,+∞单调增;②若11a -<,而1a >,故12a <<,则当()1,1x a ∈-时,()0f x '<;当()0,1x a ∈-及()1,x ∈+∞时,()0f x '>故()f x 在()1,1a -单调递减,在()()0,1,1,a -+∞单调递增.③若11a ->,即2a >,同理()f x 在()1,1a -单调递减,在()()0,1,1,a -+∞单调递增(3)由(1)知()2ln 2F x x x x =-+, 所以()'2ln +1F x x x =-,令()()'2ln +1x F x x x ω==-,则()1'20x xω=->对()1,x ∀∈+∞恒成立,所以()'F x 在区间()1,+∞内单调递增,所以()()''110F x F >=>恒成立,所以函数()F x 在区间()1,+∞内单调递增.假设存在区间[](),1,m n ⊆+∞,使得函数()F x 在区间[],m n 上的值域是()()2,2k m k n ⎡⎤++⎣⎦,则()()()()2222{22F m m mlnm k m F n n nlnn k n =-+=+=-+=+, 问题转化为关于x 的方程()2ln 22x x x k x -+=+在区间()1,+∞内是否存在两个不相等的实根, 即方程2ln 22x x x k x -+=+在区间()1,+∞内是否存在两个不相等的实根, 令()2ln 22x x x h x x -+=+,()1,x ∈+∞,则()()22342ln '2x x x h x x +--=+, 设()2342ln p x x x x =+--,()1,x ∈+∞,则()()()2122'230x x p x x x x-+=+-=>对()1,x ∀∈+∞恒成立,所以函数()p x 在区间()1,+∞内单调递增,故()()10p x p >=恒成立,所以()'0h x >,所以函数()h x 在区间()1,+∞内单调递增,所以方程2ln 22x x x k x -+=+在区间()1,+∞内不存在两个不相等的实根. 综上所述,不存在区间[](),1,m n ⊆+∞,使得函数()F x 在区间[],m n 上值域是()()2,2k m k n ⎡⎤++⎣⎦. 的。

专题3 用导数求解函数的零点

专题3 用导数求解函数的零点

专题3 函数的零点、隐零点及零点赋值问题(一) 函数零点个数问题用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数.【例1】已知()()ln 1sin f x x a x =+-,其中a 为实数.(1)若()f x 在()1,0-上单调递增,求a 的取值范围;(2)当1a >时,判断函数()f x 在()1,π-上零点的个数,并给出证明.(二)零点存在性赋值理论1.确定零点是否存在或函数有几个零点,作为客观题常转化为图象交点问题,作为解答题一般不提倡利用图象求解,而是利用函数单调性及零点赋值理论.函数赋值是近年高考的一个热点, 赋值之所以“热”, 是因为它涉及到函数领域的方方面面:讨论函数零点的个数(包括零点的存在性, 唯一性); 求含参函数的极值或最值; 证明一类超越不等式; 求解某些特殊的超越方程或超越不等式以及各种题型中的参数取值范围等,零点赋值基本模式是已知 f (a ) 的符号,探求赋值点 m (假定 m < a )使得 f (m ) 与 f (a ) 异号,则在 (m ,a ) 上存在零点.2.赋值点遴选要领:遴选赋值点须做到三个确保:确保参数能取到它的一切值; 确保赋值点 x 0 落在规定区间内;确保运算可行三个优先:(1)优先常数赋值点;(2)优先借助已有极值求赋值点;(3)优先简单运算.【例2】已知函数()x e f x x =,()ln g x x =. (1)当0a >时,讨论函数1()()()=--F x af x g x x的单调性; (2)当1a >时,求证:()()(1)1->-+axf x g ax e x .(三)隐零点问题1.函数零点按是否可求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题3 导数的应用(文)专题指导一、利用导数研究函数单调性1.设函数()y f x =在某个区间内可导,若'()0f x >,则函数()f x 为增函数;若'()0f x <,则函数()f x 为减函数。

2.求可导函数单调区间的一般方法和步骤。

(1)确定函数()f x 的定义区间。

(2)求'()f x ,令'()f x =0解此方程,求出它在定义区间内的实根。

(3)把函数()f x 的间断点的横坐标和'()f x =0的各实根按由小到大的顺序排列起来,把函数()f x 的定义区间分成若干个小区间。

(4)确定'()f x 在各个小区间的符号(用数轴或列表),根据'()f x 的符号判定函数()f x 在各个相应小区间内的增减性。

二、利用导数研究函数极值1.设函数()f x 在点0x 附近有定义,且对0x 附近所有点都有0()()f x f x <(()f x >或0()f x ,则称0()f x 为函数()f x 的一个极大(小)值,称0x 为极大(小)值点。

2.求可导函数()f x 极值步骤: (1)求'()f x ;(2)求方程'()f x =0的根;(3)检验'()f x 在方程'()f x =0的根的左、右符号,如果是左正、右负,那么()f x 在这个根处取得极大值;如果是左负,右正,那么函数()f x 在这个根处取极小值。

三、利用导数研究函数最值1.函数()y f x =是定义在闭区间[a,b]上,且在(a,b)内可导,求()y f x =在[a,b]上的最大值与最小值,可分两步进行:(1)求()y f x =在(a,b)内的极值.(2)将()y f x =在各极值点的极值与()()f a f b 、比较,其中最大的一个为最大值,最小的一个为最小值.2.若()f x 在[a,b]上是单调递增函数,则()f a 为最小值,()f b 为最大值;若()f x 在[a,b]上是单调递减函数,则()f a 为最大值,()f b 为最小值.值得注意的几点:(1)函数()f x 在区间(a,b)内'()0('()0)()f x f x f x ><或是在(a,b)内单调递增(减)的充分但不必要条件.事实上,若'()f x 在(a,b)内'()f x ≥0('()f x ≤0)且使'()f x =0的根只有有限个时,()f x 在(a,b)内是增函数(减函数).如:3y x =,在2(,)'()3f x x -∞+∞=上≥0但3y x =在(,)-∞+∞上是增函数.(2)可导函数的极值点处导数为零,但导数值为零的点不一定是极值点.如()f x =3x ,'(0)00f x ==但并不是极小值点;而且函数极值点处导数也不一定为零,如||,0y x x ==是极小值点,但函数在x=0处不可导.(3)函数的极值是局部概念,而最值是区间整体概念;函数在区间上极值不一定是最值,最值也不一定是极值,极小值与端点函数值中最小的是最小值,极大值与端点函数值中最大的是最大值,但如果连续函数在开区间(a,b)内只有一个极值,那么极大值必是最大值,极小值必是最小值.四、利用导数求曲线00()(,)y f x x y =在点处的切线方程. (二)命题解读导数是近代数学的重要组成部分,是初、高等数学的衔接点,新教材增加导数这部分内容后,高中数学各知识间被“激活”了.导数的应用极其广泛,它是研究函数性质、证明不等式、研究曲线切线问题和解决实际问题等的有力工具,因此它是近年来各地高考命题热点之一,考查导数除了分值比重增加外,另一特点是考查导数的应用不再只局限于求函数单调区间、极值和最值,而是与平面向量,解析几何、三角、数列等有机地融合在一起进行考查,强调了综合性,对考生运用数学的能力提出了更高要求。

新题解读例1.设()()f x g x ,分别是定义在R 上的奇函数和偶函数,当0x <时,'()()f x g x +()'()0(3)0()()0f x g x g f x g x >-=⋅<且,则不等式的解集是:A .(3,0)(3,)-+∞B .(3,0)(0,3)-C .(,3)(3,)-∞-+∞D .(,3)(0,3)-∞-感悟:本题是导数和函数奇偶性、单调性等综合知识在解不等式中的应用,关键是揭示'()()f x g x +()'()()()'.f x g x f x g x =⋅例2.已知函数3()f x x x =-(1)求曲线()(,())y f x M t f t =在点处的切线方程.(2)设a>0,如果过点(a,b)可作曲线()y f x =的三条切线,证明:().a b f a -<< 感悟:导数的切线问题是导数知识的一个重点内容,通过对导数切线的考查可以体现导数的运算、导数的几何意义、函数思想的运用等多方面知识,对学生的素质有较高的要求。

例3.设函数()(1)()(1)f x x x x a a =-->(1)求导数'()f x ,并证明12()f x x x 有两个不同的极值点,; (2)若不等式12()()f x f x +≤0成立,求a 的取值范围.感悟:本题是一道利用导数解决函数、方程、不等式综合问题,问题(1)是常规方程,问题(2)看似无从下手,但它的解题方法却具有一般性,要求用具体关系将12()()f x f x +≤0表示出来,运用函数、方程、不等式等知识综合解决问题。

例4.已知a 为实数,2()(4)()f x x x a =-- (1)求导数'()f x ;(2)若'(1)0()[2,2]f f x -=-,求在上的最大值和最小值.感悟:利用导数判断函数的单调性,从而在闭区间上求函数的最值问题。

能力锤炼:一、选择题1.函数32()31f x x x =-+是减函数的区间为: A .(2,)+∞B .(,2)-∞C .(,0)-∞D .(0,2)2.曲线314(1,)33y x x =+在点处的切线与坐标轴围成的三角形面积为 A .19B .29C .13D .233.3()2(1,)f x x ax =+-+∞在内为增函数,则实数a 的取值范围为: A .[3,)+∞B .[3,)-+∞C .(3,)-+∞D .(,3)-∞-4.若s 、t ∈R ,则32()5f x x sx tx =-+-+ A .在(,)-∞+∞单调递增B .在(,)-∞+∞单调递减C .当23(,)s t <-∞+∞时,在单调递增D .当23(,)s t <-∞+∞时,在单调递减5.设()f x 是R 上以5为周期的可导偶函数,则曲线()5y f x x ==在处的切线斜率为 A .15-B .0C .15D .56.函数()f x 的定义域为R ,导函数'()f x 的图象如图所示,则数()f x A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点7.用边长为48cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形;然后把四边折起,就能焊成铁盒。

若所做的铁盒容积最大,则在四角截去的小正方形的边长为:A .6B .8C .10D .128.曲线32111(1,)326y x x M =+-在点处的切线方程为:A .y =16B .x -2y +1=0C .x +2y -2=0D .x +2y -1=09.设气球以每秒100cm 3的常速注入气体,假设气体压力不变,那么当气球半径为10cm 时,气球半径增加的速度为:A .1/4cm s πB .1/cm s πC .1/2cm s πD .2/3cm s π10.若函数()y f x =在0x >上可导,且满足不等式'()()xf x f x >恒成立,又常数a 、b 满足a>b>0,则下列不等式一定成立的是A .()()bf a af b >B .()()af a af b >C .()()bf a af b <D .()()af a bf b >二、填空题11.双曲线1y y x==与抛物线_____________. 12.直线323y x y x x ax ==-+是曲线的切线,则a=____________.13.函数3|3|[2,2]y x x =--在闭区间上的最大值是_______________.14.一曲线21()(,())(0)y f x x f x x k x =≠=在处的切线斜率为,此曲线过点(1,2),则此曲线方程为___________________.三、解答题15.(2007全国卷Ⅰ)设函数32()2338f x x ax bx c =+++在x=1及x=2时取得极值。

(1)求a 、b 的值;(2)若对于任意的x ∈[0,3]都有f (x)<c 2成立,求c 的取值范围。

16.已知22()(1)(1)x nf x m x=-+-的定义域为[m ,n),且1≤m <n ≤2. (1)讨论f (x)的单调性;(2)证明:对任意1212[,)()()|1x x m n f x f x ∈-<、,不等式|恒成立. 17.(2007·天津卷)设函数2()()().f x x x a x R a R =--∈∈,其中 (1)当a=1时,求曲线()(2,(2)).y f x f =在点处的切线方程 (2)当a ≠0时,求函数()f x 的极大值和极小值.(3)当a>3时,证明存在k ∈[-1,0],使得不等式22(cos )(cos )f k x f k x -≥-对任意x ∈R 恒成立.导数的应用(文)答案新题解读例1.解析:设F(x)=f(x)·g(x),依题意F(x)是R 上奇函数且F(-3)=0,f’(x)=f’(x)g(x)+f(x)g’(x),∴x<0时f’(x)>0,即x<0时F(x)是单调增函数,如图可知F(x)<0的解集是(-∞,-3)∪(0,3),∴选D 。

例2.解析:求函数()f x 的导数得2'()31f x x =-,曲线()y f x =在点M (,())t f t 处的切线方程为:23()'()(),(31)2y f t f t x t y t x t -=-=--.(2)证明:如果有一条切线过点(a,b),则存在t ,使b=(3t 3-1)a =2t 3。

相关文档
最新文档