2012-2013江岸区八下期末数学试卷(扫描版)

合集下载

2021-2022学年湖北省武汉市江岸区八年级下期中数学试卷及答案解析

2021-2022学年湖北省武汉市江岸区八年级下期中数学试卷及答案解析

2021-2022学年湖北省武汉市江岸区八年级下期中数学试卷一.选择题(共10小题,满分30分,每小题3分)1.16的算术平方根是( )A .8B .﹣8C .4D .±4 2.式子√2x+1x−1有意义的x 的取值范围是( ) A .x ≥−12且x ≠1 B .x ≠1 C .x ≥−12 D .x >−12且x ≠1 3.下列各组线段能构成直角三角形的一组是( )A .3,4,5B .2,3,4C .1,2,3D .4,5,64.下列二次根式中,与√6是同类二次根式的是( )A .√12B .√18C .√23D .√305.已知平行四边形ABCD 中,∠B =4∠A ,则∠C =( )A .18°B .36°C .72°D .144°6.下列命题中,是假命题的是( )A .对顶角相等B .同位角相等C .同角的余角相等D .全等三角形的面积相等7.如图,在宽为30m ,长为40m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为( )A .1200m 2B .1131m 2C .1181 m 2D .1209m 28.如图,一根垂直于地面的旗杆在离地面5m 处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是( )A .5mB .12mC .13mD .18m 9.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是由第1个图案经过平移而得,那么第n个图案中有白色六边形地面砖()块.A.6+4(n+1)B.6+4n C.4n﹣2D.4n+210.如图,在平行四边形ABCD中,AD=2AB,CE⊥AB,垂足E在线段AB上,F、G分别是AD、CE的中点,连接FG,EF、CD的延长线交于点H,则下列结论:①∠DCF=1∠BCD;②EF=CF:③S△BEC=2S△CEF;④∠DFE=3∠AEF.其中,正确结论的个数2是()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.若x<2,化简√(x−2)2−|4﹣x|的结果是.12.已知√18−n是整数,自然数n的最小值为.13.如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC=°.14.如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则最短路径为.15.如图,在ABC中,AB=BC=3,∠ABC=120°,点E是AB边上一个动点(不与端点重合),ED⊥AC交AC于点D,将△ADE沿DE折叠,点A的对应点为F,当△BCF为等腰三角形时,则AE的长为.16.如图,菱形ABCD的边长是4,∠ABC=60°,点E,F分别是AB,BC边上的动点(不与点A,B,C重合),且BE=BF,若EG∥BC,FG∥AB,EG与FG相交于点G,当△ADG为等腰三角形时,BE的长为.三.解答题(共8小题,满分72分)17.(8分)计算:2√18+6√12−5√6+√318.(8分)先化简,再求值:(x﹣2+8xx−2)÷x+22x−4,其中x=−12.19.(8分)如图,在▱ABCD中,E、F是对角线AC上的两点,AE=CF.(1)求证:四边形BEDF是平行四边形;(2)连接BD交EF于点O,当BE⊥EF时,BE=8,BF=10,求BD的长.20.(8分)如图,在8×8的正方形网格中,若小正方形的边长为1,△ABC的顶点A、B、C在网格的格点上(1)图1中△ABC的面积为.(2)若点A的坐标为(0,﹣1),请你在图中找出一点D,使A、B、C、D四个点为顶点的四边形为平行四边形,则满足条件的D点地坐标是.(3)在图2中画出三边长分别为√10,2√5,√26的格点△DEF.21.(8分)如图,长方形ABCD中,AB∥CD,∠D=90°,AB=CD,AD=4cm,点P从点D出发(不含点D)以2cm/s的速度沿D→A→B的方向运动到点B停止,点P出发1s后,点Q才开始从点C出发以acm/s的速度沿C→D的方向运动到点D停止,当点P 到达点B时,点Q恰好到达点D.(1)当点P到达点A时,△CPQ的面积为3cm2,求CD的长;(2)在(1)的条件下,设点P运动时间为t(s),运动过程中△BPQ的面积为S(cm2),请用含t(s)的式子表示面积S(cm2),并直接写出t的取值范围.22.(10分)已知,如图,等腰△ABC的底边BC=10cm,D是腰AB上一点,且CD=8cm,BD=6cm,求AB的长.23.(10分)如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明:不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,探讨四边形AECF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.24.(12分)已知:△ABC为等边三角形,点E为射线AC上一点,点D为射线CB上一点,AD=DE.(1)如图1,当E在AC的延长线上且CE=CD时,AD是△ABC的中线吗?请说明理由;(2)如图2,当E在AC的延长线上时,AB+BD等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系.2021-2022学年湖北省武汉市江岸区八年级下期中数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.16的算术平方根是( )A .8B .﹣8C .4D .±4【解答】解:∵(±4)2=16,∴16的算术平方根是4,故选:C .2.式子√2x+1x−1有意义的x 的取值范围是( ) A .x ≥−12且x ≠1 B .x ≠1 C .x ≥−12 D .x >−12且x ≠1 【解答】解:由题意,得2x +1≥0且x ﹣1≠0,解得x ≥−12且x ≠1,故选:A .3.下列各组线段能构成直角三角形的一组是( )A .3,4,5B .2,3,4C .1,2,3D .4,5,6 【解答】解:A 、32+42=52,能构成直角三角形,故选项正确;B 、22+32≠42,不能构成直角三角形,故选项错误;C 、12+22≠32,不能构成直角三角形,故选项错误;D 、42+52≠62,不能构成直角三角形,故选项错误.故选:A .4.下列二次根式中,与√6是同类二次根式的是( )A .√12B .√18C .√23D .√30【解答】解:A 、√12=2√3,与√6不是同类二次根式,故本选项错误;B 、√18=3√2,与√6不是同类二次根式,故本选项错误;C 、√23=√63,与√6是同类二次根式,故本选项正确;D 、√30与√6不是同类二次根式,故本选项错误.故选:C .5.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°【解答】解:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD,∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°,故选:B.6.下列命题中,是假命题的是()A.对顶角相等B.同位角相等C.同角的余角相等D.全等三角形的面积相等【解答】解:A、对顶角相等是真命题,故此选项不合题意;B、同位角相等是假命题,故此选项符合题意;C、同角的余角相等是真命题,故此选项不合题意;D、全等三角形的面积相等是真命题,故此选项不合题意;故选:B.7.如图,在宽为30m,长为40m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为()A.1200m2B.1131m2C.1181 m2D.1209m2【解答】解:可把两条路平移到耕地的边上,如图所示,则耕地的长变为(40﹣1)m,宽变为(30﹣1)m,耕地面积为:39×29=1131(m2).故选:B.8.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m 处,旗杆折断之前的高度是()A.5m B.12m C.13m D.18m【解答】解:旗杆折断后,落地点与旗杆底部的距离为12m,旗杆离地面5m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为√122+52=13m,所以旗杆折断之前高度为13m+5m=18m.故选:D.9.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是由第1个图案经过平移而得,那么第n个图案中有白色六边形地面砖()块.A.6+4(n+1)B.6+4n C.4n﹣2D.4n+2【解答】解:∵第一个图案中,有白色的是6个,后边是依次多4个.∴第n个图案中,是6+4(n﹣1)=4n+2.故选:D.10.如图,在平行四边形ABCD中,AD=2AB,CE⊥AB,垂足E在线段AB上,F、G分别是AD、CE的中点,连接FG,EF、CD的延长线交于点H,则下列结论:①∠DCF=12∠BCD ;②EF =CF :③S △BEC =2S △CEF ;④∠DFE =3∠AEF .其中,正确结论的个数是( )A .1个B .2个C .3个D .4个【解答】解:①∵F 是AD 的中点,∴AF =FD ,∵在▱ABCD 中,AD =2AB ,∴AF =FD =CD ,∴∠DFC =∠DCF ,∵AD ∥BC ,∴∠DFC =∠FCB ,∴∠DCF =∠BCF ,∴∠DCF =12∠BCD ,故此选项正确;②延长EF ,交CD 延长线于M ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A =∠MDF ,∵F 为AD 中点,∴AF =FD ,在△AEF 和△DFM 中,{∠A =∠FDM AF =DF ∠AFE =∠DFM,∴△AEF ≌△DMF (ASA ),∴FE =MF ,∠AEF =∠M ,∵CE ⊥AB ,∴∠AEC =90°,∴∠AEC =∠ECD =90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.若x<2,化简√(x−2)2−|4﹣x|的结果是﹣2.【解答】解:∵x<2,∴√(x−2)2−|4﹣x|=|x﹣2|﹣(4﹣x)=2﹣x﹣4+x=﹣2.故答案为:﹣2.12.已知√18−n是整数,自然数n的最小值为2.【解答】解:∵√18−n是整数,n为最小自然数,∴18﹣n=16,∴n=2,故答案为:2.13.如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC=105°.【解答】解:∵菱形ABCD中,∠BAD=120°∴AB=BC=CD=AD,∠BCD=120°,∠ACB=∠ACD=12∠BCD=60°,∴△ACD是等边三角形∵CE⊥AD∴∠ACE=12∠ACD=30°∴∠BCE=∠ACB+∠ACE=90°∵CE=BC∴∠E=∠CBE=45°∴∠EFC=180°﹣∠E﹣∠ACE=180°﹣45°﹣30°=105°故答案为:105°14.如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则最短路径为2√10.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB=√62+22=2√10,故答案为:2√10.15.如图,在ABC中,AB=BC=3,∠ABC=120°,点E是AB边上一个动点(不与端点重合),ED⊥AC交AC于点D,将△ADE沿DE折叠,点A的对应点为F,当△BCF为等腰三角形时,则AE的长为2或3−√3.【解答】解:如图1,当BF=CF时,过点F作FM⊥AB于点M,∵AB=BC=3,∠ABC=120°,∴∠A=∠C=30°,∵CF=BF,∴∠CFB=∠CBF=75°,∴∠EBF=120°﹣75°=45°,设AE=x,∵将△ADE沿DE折叠,点A的对应点为F,∴AE=EF=x,∠A=∠EF A=30°,∴∠BEF=∠A+∠EF A=60°,∴EM=12x,MF=BM=√32x,∴x+12x+√32x=3,解得x=3−√3.∴AE=3−√3.如图2,当BF=CF时,∴∠C=∠FBC=30°,∴∠ABF=90°,∴BF=3×√33=√3,同理可知∠BEF=2∠A=60°,∴EF=AE=BFsin60°=√3√32=2.∴AE的长为2或3−√3.故答案为:2或3−√3.16.如图,菱形ABCD的边长是4,∠ABC=60°,点E,F分别是AB,BC边上的动点(不与点A,B,C重合),且BE=BF,若EG∥BC,FG∥AB,EG与FG相交于点G,当△ADG为等腰三角形时,BE的长为4−4√33或83.【解答】解:如图,连接AC交BD于O,∵菱形ABCD的边长是4,∠ABC=60°,∴AB=BC=4,∠ABD=30°,AC⊥BD,BO=DO,AO=CO,∵EG∥BC,FG∥AB,∴四边形BEGF 是平行四边形,又∵BE =BF ,∴四边形BEGF 是菱形,∴∠ABG =30°,∴点B ,点G ,点D 三点共线,∵AC ⊥BD ,∠ABD =30°,∴AO =12AB =2,BO =√3AO =2√3,∴BD =4√3,AC =4,同理可求BG =√3BE ,若AD =DG '=4时,∴BG '=BD ﹣DG '=4√3−4,∴BE '=4−4√33,若AG ''=G ''D 时,过点G ''作G ''H ⊥AD 于H ,∴AH =HD =2,∵∠ADB =30°,G ''H ⊥AD ,∴HG ''=2√33,DG ''=2HG ''=4√33, ∴BG ''=BD ﹣DG ''=8√33, ∴BE ''=83, 综上所述:BE 为4−4√33或83. 三.解答题(共8小题,满分72分)17.(8分)计算:2√18+6√12−5√6+√3【解答】解:原式=6√2+3√2−5√6+√3=9√2−5√6+√3.18.(8分)先化简,再求值:(x ﹣2+8x x−2)÷x+22x−4,其中x =−12.【解答】解:原式=(x 2−4x+4x−2+8x x−2)•2(x−2)x+2=(x+2)2x−2•2(x−2)x+2=2(x+2)=2x+4,当x=−12时,原式=2×(−12)+4=﹣1+4=3.19.(8分)如图,在▱ABCD中,E、F是对角线AC上的两点,AE=CF.(1)求证:四边形BEDF是平行四边形;(2)连接BD交EF于点O,当BE⊥EF时,BE=8,BF=10,求BD的长.【解答】(1)证明:连接BD交AC于O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,∵OB=OD,∴四边形BEDF是平行四边形;(2)解:∵BE⊥AC,∴∠BEF=90°,在Rt△BEF中,EF=√BF2−BE2=√102−82=6,∴OE=OF=3,在Rt△BEO中,OB=√BE2+OE2=√82+32=√73,∴BD=2OB=2√73.20.(8分)如图,在8×8的正方形网格中,若小正方形的边长为1,△ABC 的顶点A 、B 、C 在网格的格点上(1)图1中△ABC 的面积为 72 .(2)若点A 的坐标为(0,﹣1),请你在图中找出一点D ,使A 、B 、C 、D 四个点为顶点的四边形为平行四边形,则满足条件的D 点地坐标是 (﹣2,2)或(4,0)或(2,﹣4) .(3)在图2中画出三边长分别为√10,2√5,√26的格点△DEF .【解答】解:(1)△ABC 的面积为3×3−12×1×2−12×2×3−12×1×3=72,故答案为:72;(2)如图1所示,满足条件的点D 的坐标为(﹣2,2)或(4,0)或(2,﹣4),故答案为:(﹣2,2)或(4,0)或(2,﹣4);(3)如图所示,△DEF 即为所求.21.(8分)如图,长方形ABCD 中,AB ∥CD ,∠D =90°,AB =CD ,AD =4cm ,点P 从点D 出发(不含点D )以2cm /s 的速度沿D →A →B 的方向运动到点B 停止,点P 出发1s 后,点Q 才开始从点C 出发以acm /s 的速度沿C →D 的方向运动到点D 停止,当点P 到达点B 时,点Q 恰好到达点D .(1)当点P 到达点A 时,△CPQ 的面积为3cm 2,求CD 的长;(2)在(1)的条件下,设点P 运动时间为t (s ),运动过程中△BPQ 的面积为S (cm 2),请用含t (s )的式子表示面积S (cm 2),并直接写出t 的取值范围.【解答】解:(1)设点P 运动时间为t (s ),根据题意,得点P 出发1s 后,点Q 才开始从点C 出发以acm /s 的速度沿C →D 的方向运动到点D 停止,当点P 到达点B 时,点Q 恰好到达点D .∴2(t ﹣2)=a (t ﹣1),当点P 到达点A 时,△CPQ 的面积为3cm 2,即12a ×1×4=3,∴a =32.即2(t ﹣2)=32(t ﹣1),解得t =5,所以CD =a (t ﹣1)=6.答:CD 的长为6;(2)根据题意,得BC =AD =4,CD =6DP =2t ,CQ =1.5(t ﹣1),①点P 的运动时间为t ,0﹣1秒时点Q 还在点C ,△BPQ 面积不变为12×4×6=12; 即S =12(0<t ≤1)②当1<t ≤2时,DQ =6﹣1.5(t ﹣1)=7.5﹣1.5t ,S =S 梯形DPBC ﹣S △DPQ ﹣S △BQC=12(2t +4)×6−12×2t ×(7.5﹣1.5t )−12×1.5(t ﹣1)×4=1.5t 2﹣4.5t +15;③当2<t ≤5时,BP =10﹣2t ,S =12BP •BC=12(10﹣2t)×4=20﹣4t.综上所述:运动过程中△BPQ的面积为S(cm2),用含t(s)的式子表示面积S(cm2)为:S=12 (0<t≤1)或S=1.5t2﹣4.5t+15(1<t≤2)或S=20﹣4t(2<t≤5).22.(10分)已知,如图,等腰△ABC的底边BC=10cm,D是腰AB上一点,且CD=8cm,BD=6cm,求AB的长.【解答】解:设AB=AC=acm,∵BC=10cm,CD=8cm,BD=6cm,∴BD2+CD2=BC2,∴∠BDC=90°,即∠ADC=90°,在Rt△ADC中,由勾股定理得:AC2=AD2+CD2,即a2=(a﹣6)2+82,解得:a=25 3,即AB=253cm.23.(10分)如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明:不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,探讨四边形AECF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.【解答】(1)证明:连接AC,如图所示,∵菱形ABCD,∠BAD=120°,∴∠BAC=∠DAC=60°,∴∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,BC∥AD,∴∠ABC=∠BAC=∠ACB=60°,∴△ABC、△ACD为等边三角形,∴∠4=60°,AC=AB,∴在△ABE和△ACF中,{∠1=∠3AB=AC∠ABC=∠4,∴△ABE≌△ACF(ASA).∴BE=CF;(2)解:四边形AECF的面积不变.理由:由(1)得△ABE≌△ACF,则S△ABE=S△ACF,故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC=12BC•AH=12BC•√AB2−BH2=4√3.24.(12分)已知:△ABC为等边三角形,点E为射线AC上一点,点D为射线CB上一点,AD=DE.(1)如图1,当E在AC的延长线上且CE=CD时,AD是△ABC的中线吗?请说明理由;(2)如图2,当E在AC的延长线上时,AB+BD等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系.【解答】(1)解:如图1,结论:AD是△ABC的中线.理由如下:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠B=∠ACB=60°,∵CD=CE,∴∠CDE=∠E,∵∠ACD=∠CDE+∠E=60°,∴∠E=30°,∵DA=DE,∴∠DAC=∠E=30°,∵∠BAC=60°,∴∠DAB=∠CAD,∵AB=AC,∴BD=DC,∴AD是△ABC的中线.(2)结论:AB +BD =AE ,理由如下:如图2,在AB 上取BH =BD ,连接DH ,∵BH =BD ,∠B =60°,∴△BDH 为等边三角形,∴∠BHD =60°,BD =DH ,∵AD =DE ,∴∠E =∠CAD ,∴∠BAC ﹣∠CAD =∠ACB ﹣∠E 即∠BAD =∠CDE , ∵∠BHD =60°,∠ACB =60°,∴180°﹣∠BHD =180°﹣∠ACB 即∠AHD =∠DCE , ∵∠BAD =∠CDE ,AD =DE ,∠AHD =∠DCE , 在△AHD 和△DCE ,{∠BAD =∠CDE ∠AHD =∠DCE AD =DE,∴△AHD ≌△DCE (AAS ),∴DH =CE ,∴BD =CE ,∴AE =AC +CE =AB +BD .(3)AB =BD +AE ,如图3,在AB 上取AF =AE ,连接DF ,∵△ABC 为等边三角形,∴∠BAC =∠ABC =60°,∴△AFE 是等边三角形,∴∠F AE =∠FEA =∠AFE =60°,∴EF ∥BC ,∴∠EDB =∠DEF ,∵AD =DE ,∴∠DEA =∠DAE ,∴∠DEF =∠DAF ,∵DF =DF ,AF =EF ,在△AFD 和△EFD 中,{AD =DE DF =DF AF =EF,∴△AFD ≌△EFD (SSS )∴∠ADF =∠EDF ,∠DAF =∠DEF ,∴∠FDB =∠EDF +∠EDB ,∠DFB =∠DAF +∠ADF , ∵∠EDB =∠DEF ,∴∠FDB =∠DFB ,∴DB =BF ,∵AB =AF +FB ,∴AB =BD +AE .。

成都市八年级下期末考试数学B卷汇编

成都市八年级下期末考试数学B卷汇编

成都市八年级下期末考试数学B 卷汇编 成华区2010~2011学年度下期期末质量测评22. 如图,在正方形ABCD 中,AC 与BD 相交于点O ,E 为AD 上的一点,连接BE ,点G 在BE 上,连结OG 并延长交AD 于点F ,若045FGE ∠=. (1)求证:BO 2=BG •BE ;(2)连接AG ,试判断AG 与BE 有怎样的位置关系?并说明理由B 卷(共50分)一、填空题(每小题4分,共20分)23. 如图,AB ∥CD ,∠BAE = 135º,∠DCE = 40º,则∠AEC = 度.24. 已知一个样本1,3,1,0,4,x 的平均数为2,则这个样本的标准差为 .25. 如图,正方形ABCD 的边长为4,AE=EB ,MN=2,线段MN 的两端在CB 、CD 上滑动,当CM= 时,ΔADE 与ΔCMN 相似.26. 如果关于x 的方程42212-=-+x mx x 的解也是不等式组⎪⎩⎪⎨⎧-≤-->-8)3(2221x x x x的一个解,则m 的取值范围为 . 27.已知在∆ABC 中,AB=6,AB 边上的高为4.如图(1),在∆ABC 内作正方形EFGH ,且E 、F 在边AB 上,G 、H 分别在边AC 、BC 上,则该正方形的边长为 ;如图(2),在∆ABC 内作并排的两个全等的正方形GDKH 和HKEF ,它们组成的矩形DEFG 的顶点D 、E 在∆ABC 的边AB 上,G 、F 分别在边AC 、BC 上,则每个正方形的边长为________;……如图(3),按此方法,在∆ABC 内作并排的n 个全等的正方形(其中n 为正整数),它们组成的最大矩形的两个顶点在∆ABC 的边AB 上,其它顶点分别在边AC 、BC 上,则每个正方形的边长可用含n 的代数式表示为___ _.二、(共8分)28. 某体育用品商场预测某品牌运动服能够畅销,就用3.2万元购进了一批这种运动服,上市后很快脱销,商场又用6.8万元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于35%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)三、(共10分)29. 如图①,在矩形ABCD 中,AB=4,AD=2,现将矩形ABCD 沿EF 折叠,使点B 与AD 边上的点M 重合(点M 不与A 、D 重合),折痕EF 交AB 于点E ,交DC 于点F ,点C 落在点N 处,MN 与CD 相交于点P ,连结EP. (1)若M 为AD 边上的中点:①请直接写出△AEM 的周长为 ;②试判断AE 、DP 、EP 三条线段的等量关系,并说明理由;(2)如图②,现将矩形ABCD 变为边长为k 的正方形(其中k 为常量,且0≠k ),其余条件不变. 此时,当点M 在AD 边上运动时,△PDM 的周长是否发生变化?若变化,请说明理由;若不变化,请求出△PDM 的周长.(用含k 的代数式表示)四、(共12分)30. 已知:如图,直线421+-=x y 与x 轴交于A 点,与y 轴交于B 点.点C 是x 轴负半轴上的一点,且满足OC ︰BC=3︰5. (1)求线段BC 的长;(2)设点C 关于原点O 对称的点为点M ,过点M 作直线l 平行于y 轴.试问在直线l 上是否存在点P ,使得△ABP 是以AB 为一条直角边的直角三角形?若存在,请求出点P 的坐标,若不存在,请说明理由;(3)若点G 是线段AC 上的一个动点,过点G 作GD ∥BC ,交AB 于点D ,连结BG ,设点G 的横坐标为t ,△BGD 的面积为S ,求S 与t 之间的函数关系式.AB C Oxy第23题图第25题图金牛10-11八年级下学期期末试题B 卷 (共50分)一、填空题(每题4分,共20分) 21. 已知234(1)()12x A Bx x x x -=+----,则整式A= 和整式B= . 22. 已知关于x 的方程m x m x =--+2123的解是非正数,则m 的取值范围是 . 23.如下图,如果Rt △ABC 中,∠BAC=90°,A 点在y 轴上且B (-2,0),C (6,0),则点A 的坐标为 .24. 已知12-=m , 则2011201020092m m m +-的值是 .25.如图所示,D 、F 分别为ABC △边AB AC ,上的点,且::2:3AD DB CF FA ==,连DF 交BC 边延长线于E ,那么:EF FD = .二、解答题(共8分)26.某工程机械厂根据市场需求,计划生产A B ,两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号 AB成本(万元/台) 200 240 售价(万元/台)250300(1(2)该厂用哪种生产方案能获最大利润?最大利润是多少?三、解答题(共10分)27.如图,在△ABC 中,∠BAC=90°,AD 是BC 边上的高,E 是BC 边上的一个动点(不与B ,C 重合),EF ⊥AB ,EG ⊥AC ,垂足分别为F ,G .(1)求证:CDADAD BD =; (2)FD 与DG 是否垂直?若垂直,请给出证明;若不垂直,请说明理由;四、解答题(共12分)28.如图,在R t△ABC 中,AC=BC ,∠BAC 的平分线AE 与BC 交于点E ,过点B 作AE 的垂线交AE 延长线于点D ,BD 、AC 的延长线交于点F ,连结CD ,G 是CD 的中点,O 为AB 的中点,连结0G . (1)判断0G 与CD 的位置关系,写出你的结论并证明; (2)求证:AE=BF ;(3)若3(2OG DE ⋅=,求△ABF 的面积.AB OCDEFG青羊区2008—2009学年度下期期末F AGCE D B八年级数学调研考试题B 卷(共50分)一、填空题(每小题4分,共20分)21.如果b a +=8,ab =15,则a 2b +ab 2的值为 。

2012-2013学年八年级上学期期末考试数学试卷

2012-2013学年八年级上学期期末考试数学试卷

岳池县2012—2013学年度上期八年级期末考试数学试卷一、选择题:请选择一个最适合的答案,填在题前括号中,祝你成功!(每小题3分,共30分)( ) 1. 1000的立方根是 A.100 B.10 C.-10 D.-100( ) 2. 如果a 3=-27,b 2=16,则ab 的值为 A.-12 B.12 C.1或-7 D.±12 ( ) 3. 下列说法中,不正确的是A.大小不同的两个图形不是全等形B.等腰三角形是轴对称图形C.负数有平方根D.( ) 4. 已知点M (0,3)关于x 轴对称的点为N ,则线段MN A.(0,-3) B.(0,0) C.(-3,0) D.(0,( ) 5. 已知正比例函数的图象如图所示,则这个函数的关系式为A. y=xB. y=-xC. y=-3x ( ) 6. 一次函数的图象经过点A (2,1),且与直线y=3x-2为A. y=3x-5B. y=x+1C. y=-3x+7D. 非上述答案 ( ) 7. 下列式子中是完全平方式的是A. a 2-ab-b 2B. a 2+2ab+3C. a 2-2b+b 2D. a 2-2a+1 ( ) 8. 下列计算正确的是A. (x 3)2=x 5B. a 2+a 3=a 5C. a 6÷a 2=a 3D. (-bc)3÷(-bc)2=-bc( ) 9. 一次函数经过第一、三、四象限,则下列正确的是 A. k>0,b>0 B. k>0,b<0 C. k<0,b>0 D. k<0,b<0 ( ) 10. 拖拉机开始工作时,油箱中有油24升,如果每小时耗油4升,那么油箱中剩油11. 如果一个三角形的两个内角分别为75o 和30o,那么这个三角形是 三角形。

12. 36的算术平方根是。

13. 直线y=3x-21与x 轴的交点坐标是 ,与y 轴的交点坐标是 。

湖北省武汉市青山区2023-2024学年八年级下学期期末考试数学试卷(含详解)

湖北省武汉市青山区2023-2024学年八年级下学期期末考试数学试卷(含详解)

湖北省武汉市青山区2023-2024学年八年级下学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________2.下列各曲线中,表示y 是x的函数的是( )A.B.C.D.3.以下列各组数为边长,能构成直角三角形的是( )4.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如下表所示:A.甲B.乙C.丙D.丁5.如图,在中,对角线AC ,BD 相交于点O .添加下列条件不能判定为矩形的是( )A. B. C. D.6.正方形的边长为,它的面积与长为,宽为的矩形的面积相等.则a 的值为( )A. C. D.7.已知一次函数,那么下列结论正确的是( )A.图象经过第一、二、四象限B.y 的值随x 的值增大而减小C.图象经过点D.当时,ABCD Y ABCD Y AC BD ⊥OA OB =AC BD =90ABC ∠=︒cm a 48cm 6cm 1221y x =-(1,2)1y <-0x <8.某登山队测得气温(单位:℃)与海拔高度(单位:)的对应关系如下表:A. B. C. D.9.如图,在菱形ABCD 中,,,E ,F 分别是边CD 和BC 的延长线上一点,且,以CE ,CF 为边作,H 是AG 的中点.则线段CH 的长为( )A.10.函数的图象与函数的图象有两个交点,则m 的取值范围(或取值)是( )A. C.________.12.写出一个图象在第一、三象限的正比例函数解析式是________.13.红星中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小邱的三项成绩(百分制)依次是95,90,88.则小邱这学期的体育成绩是________分.14.如图,在正方形ABCD 内,作等边三角形ADE ,连接BD ,BE .则________°.15.一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,往返速度的大小不变,两车离甲地的距离与慢车行驶时间之间的函数关系如图所示.则下列结论:km 4km 4.5km 5km 2km-60B ∠=︒6AB =2CE CF ==CEGF Y |1|(12)y x x =--≤≤12y x m =+0m <≤102m <≤12m -≤≤12=-=DBE ∠=(km)y (h)t①快车比慢车晚出发;②快车速度是慢车速度的2倍;;④若两车第二次相遇地距乙地距离为,则.其中正确的有________.(请填写序号)16.如图,在矩形ABCD 中,,,点E 是对角线BD 上的动点,连接CE ,以CE ,CD 为边作,连接CF .则的最小值为________.三、解答题17.计算:;(2)18.(本题满分8分)如图,在中,E ,F 分别是AB ,CD 的中点.(1)求证:四边形EBFD 是平行四边形;(2)连接BD ,当满足什么条件时,四边形EBFD 为菱形?(不需要说明理由)19.为了了解某校学生的身高情况,随机抽取该校若干名学生测量他们的身高,已知抽取的学生中,男生、女生的人数相同,利用所得数据绘制成如下的女生身高频数分布表和男2h m 90km 360km a =5AB =10BC =CEFD Y CE CF ++ABCD Y ABD △生身高频数分布直方图,请根据图表提供的信息,解答下列问题:身高分组标准(1)在女生身高频数分布表中:________,________,________;(2)补全男生身高频数分布直方图,男生身高的中位数分布在________组;(3)若学校共有女生1500人,男生1600人,请估计身高在之间的学生共约有多少人?20.已知点及在第二象限内的动点,且,设的面积为S .a =b =c =155170x ≤<(8,0)A -(,)P x y 10y x -=OPA △(1)求S 关于x 的函数解析式,并写出x 的取值范围;(2)在所给的平面直角坐标系中画出函数S 的图象;(3)当时,求P 点坐标.21.如图,是由边长为1的小正方形组成的网格,每个小正方形的顶点叫做格点,的三个顶点都是格点,仅用无刻度的直尺在给定网格中完成画图.(画图过程用虚线表示,画图结果用实线表示).(1)如图1,先画点D 使四边形ABDC 为平行四边形,连接AD 交BC 于点E ,再在AC 上画点F ,使;(2)在图2中,先在内部画格点M ,连接AM ,BM ,CM ,使,再画点M 关于AB 的对称点N .22.A 城有肥料,B 城有肥料,现要把这些肥料全部运往C ,D 两乡.从A 城往C ,D 两乡运肥料的费用分别为20元/t 和25元/t ;从B 城往C ,D 两乡运肥料的费用分别为15元/t 和24元/t.现C 乡需要肥料,D 乡需要肥料.设从A 城运往C 乡x t 肥料,总运费为y 元.(1)①从B 城运往C 乡的肥料为________;从B 城运往D 乡的肥料为________t(用含x 的式子表示).②求y 关于x 的函数解析式,并求出最少总运费;(2)由于更换车型,使从A 城运往C 乡的运费每吨减少m 元(),其他不变,这时怎样调12S =8⨯8ABC △//EF AB ABC △ABM BCM ACM S S S ==△△△400t 600t 480t 520t t 46m <<运才能使总运费最少?23.如图,M 为正方形ABCD 内一点,,连接MD ,BM .(1)如图1,求的度数;(2)过点B 作于点G ,连接CG .①如图2,试探究DM 和CG 的数量关系,并证明;②如图3,连接AG 交BC 于点E ,若,,请直接写出CG 的长为________.24.已知,在平面直角坐标系中,直线与直线分别与x 轴交于B ,C 两点,与y 轴交于点A .(1)如图1,若,.①求点A ,B ,C 的坐标;②点M ,N 分别在射线CA 和射线BA 上,点P 在x 轴上,若四边形CMNP 为菱形,求点P 的坐标;(2)如图2,若,连接BD 交AC 于点Q ,若,请直接写出h 的值.AM AD =BMD ∠BG DM ⊥6AB =2BE CE =:4m y kx =-:4n y hx =-1k =-2h =k =(0,2)D -45BQC ∠=︒参考答案1.答案:B解析:根据二次根式有意义的条件得:,解得,观察四个选项,符合条件的答案只有B,故选:B.2.答案:C 解析:3.答案:D解析:A 、,以1,2,3为边不能组成三角形,故A 不符合题意;B 、,以2,3,4为边不能组成直角三角形,故B 不符合题意;,,,D 、,,,以4,5,3为边能组成直角三角形,故D 符合题意;故选:D.4.答案:D解析:,丁的方差最小,成绩最稳定的是丁,故选:D.5.答案:A解析:四边形ABCD 是平行四边形,是矩形,故A 错误;C 正确;四边形ABCD 是平行四边形,30x -≥3x ≥123+= ∴2245+=< ∴2213+= 22=2221∴+≠224325+= 2525=222435∴+=∴0.600.560.500.45>>> ∴∴ AC BD= ABCD ∴△,,,,是矩形,故B 正确;四边形ABCD 是平行四边形,,是矩形,故D 正确;故选:A.6.答案:C 解析:根据题意得:,解得故选:C.7.答案:D解析:A 、,,图象过一、三、四象限,故此选项错误;B 、,随x 的增大而增大,故此选项错误;C 、当时,.所以图象不过,故此选项错误;D 、画出草图,当时,图象在x 轴下方,,故此选项正确.故选:D.8.答案:AAO OC ∴=BO OD =OA OB = AC BD ∴=ABCD ∴W 90ABC ∠=︒ ABCD ∴W 2486a =⨯a =20> 10-<∴20> y ∴1x =1y =(1,2)1y <-0x ∴<解析:令登山队测得气温为y ,海拔高度为x ,由题意可知,,所以当时,即,解得:,故选:A.9.答案:D 解析:如图,延长GE 交AB 于点K ,分别过点A 、K 作与点N ,与点M ,设A G 与CD 交于点O ,易知四边形BKEC ,BDGF 均为平行四边形,四边形KMNP 为矩形,在中,,,,,在中,,,,在中,,,,,,在中,,为直角三角形,为AG 的中点,4(1)1(1)561.51y x x ---=-+-=--19y =-1956x -=-4x =AN BC ⊥KM BC ⊥Rt ABN △6AB =60B ∠=︒132BN AB ==AN ==Rt AKP △4AK AB BK AB EC =-=-=60AKP B ∠=∠=︒122KP AK ∴==AP ==826PG KG KP BF KP ∴=-=-=-=Rt AKP △AG ==////EG CF AD EGO DAO ∴∽△△13EO GO EG OD AO AD ∴===AG = 624DE =-=114EO ED ∴==14OG AG ==EOG △222134EO OG EG +=+==EOG ∴△90HOC ∴∠=︒H故选:D.10.答案:B解析:如图,当经过点,解得当经过点,解得,所以,两个函数图象有两个交点时,m 的取值范围是.故选:B.11.答案:312GH AG ∴==OH GH OG ∴=-=HC ==12y x m =+0m +=m =12y x m =+21m +=0m =102m -<≤3==故答案为:3.12.答案:解析:正比例函数的图象在第一、三象限,,符合条件的正比例函数解析式可以为:(答案不唯一).故答案为:(答案不唯一).13.答案:90解析:根据题意得:(分)答:该生这学期的体育成绩是90分.故答案为:90.14.答案:解析:四边形ABCD 是正方形,,,是等边三角形,,,,,,故答案为:30.15.答案:①③④解析:由图象可得,快车比慢车晚出发2h,故①正确;快车速度是慢车速度的3倍,故②错误;,2y x= y kx =0k ∴>∴2y x =2y x =9520%9030%8850%90⨯+⨯+⨯=30︒90BAD ∴∠=︒AB AD =45DBA ∠=︒ADE △60DAE ∴∠=︒AD AE =9060150BAE ∴∠=︒+=︒︒AB AE =()1180150152ABE AEB ∴∠=∠=⨯-︒=︒︒30DBE DBA EBA ∴∠=∠-∠=︒(km /h)2a =/h)3, 26a a ∴÷=∴1(2)2am a m =-解得,,故③正确;,解得,此时慢车距乙地的距离为:解得,故④正确,故答案为:①③④.解析:四边形ABCD 是矩形,四边形CEFD 是平行四边形,,,,,,,,四边形ABEF 是平行四边形,点F 的运动轨迹是AF 所在的直线,,,要求的最小值,可以转化到求的最小值,如图,作点D 关于直线AF 的对称点G ,连接CG ,过G 作,设DG 与AF 交于点M ,过M 作,延长AM 交CH 于点N ,连接GF,,当C ,F ,G 三点共线时取等号,此时最小.由四边形ABEF 是平行四边形,四边形CEFD 是平行四边形知:,,即,,四边形FEDN 是平行四边形.,,,,3m =3(km)2a ⨯=162222a n a -⎛⎫+--= ⎪⎝⎭92n =19190, 624a a a -⨯==360a = AB CD ∴=//AB CD EF CD =//EF CD CE DF =AB EF ∴=//AB EF ∴∴CE DF = CE CF CF DF ∴+=+∴CE CF +CF DF +GH CD ⊥MP CH ⊥CF DF CF GF CG ∴+=+≥CF DF CG +=//AF BE //EF DC //FN ED //FE ND ∴EF DN ∴=DN AB ∴=5AB = 10BC =,,在中,,在中,,,在中,是DG 中点,,是的中位线,,,在中,17.答案:(1)5DN ∴=10AD =Rt ADN △AN ==DM AN ⊥ AD DN DM AN⋅∴==Rt DMN △MN ==MP CN ⊥ 2DM MN MP DN⋅∴==Rt MDP △4DP ==M //MP CH MP ∴DGH △24GH MP ∴==28DH DP ==13CH CD DH ∴=+=Rt CHG △CG ==CE CF ∴+-(2)解析:(1)原式(2)原式18.答案:(1)证明见解析(2)证明见解析解析:(1)∵四边形ABCD 是平行四边形∴,∵E ,F 分别是AB ,CD 的中点∴,∴.∴四边形EBFD 是平行四边形;(2)当满足时,四边形EBFD 为菱形.19.答案:(1)0.2,40,6(2)图见解析(3)2250人解析:(1)女生的总人数是:(人),则,,,故答案为:0.2,40,6;(2)补全直方图如图所示,(3)4+=+=4=+==+AB CD =//EB FD12BE AB =12DF CD =BE DF =ABD △90ADB ∠=︒120.3040÷=80.2040a ==40b =400.156c =⨯=81481500(0.300.250.15)160010501200225040++⨯+++⨯=+=答:估计身高在之间的学生共约有2250人.20.答案:(1),图见解析(2)解析:(1)由得,由P 在第二象限,得,解得则,x 的取值范围为S 的图象如图所示(2)当时,,解得,则,点P 的坐标为.21.答案:(1)图见解析(2)图见解析解析:(1)如图1所示,点D 和点F 即为所求;(2)如图所示,点M 和点N 为所求.22.答案:(1)①;②最少总运费为20080元155170x ≤<100x -<<(7,3)-10y x -=10y x =+0100x x <⎧⎨+>⎩100x -<<18(10)4402S x x =⨯⨯+=+100x -<<12S =44012x +=7x =-3y =(7,3)-(480)t x -(120)tx +(2)调运方案为:从A 城运往C 乡肥料,从B 城运往D 乡肥料,运往D 乡肥料,运费最少解析:(1)①从B 城运往C 乡的肥料为:;从B 城运往D 乡的肥料为:.②∵,∴y 随x 的增大而增大.∵∴当时,y 取得最小值,为20080.∴最少总运费为20080元.(2)设更换车型后的总运费为w 元.由题意,得∵∴∴w 随x 的增大而减小,∴当时,w 取得最小值.调运方案为:从A 城运往C 乡肥料,从B 城运往D 乡肥料,运往D 乡肥料,运费最少.23.答案:(1)(2)①,证明见解析解析:(1)∵四边形ABCD 为正方形∴,∵∴∴可设,在四边形ABMD 中400t 80t 520t (480)x -t (120)x +t 2015(480)25(400)24(120)y x x x x =+-+-++420080x =+40k =>040x ≤≤0x =(20)25(400)15(480)24(120)w m x x x x =-+-+-++(4)20080(040)m x x =-+≤≤46m <<240m -<-<400x =400t 80t 520t 135︒DM CQ =90BAD ∠=︒AB AD=AM AD=AB AM=AMD ADM x ∠=∠=︒ABM AMB y ∠=∠=︒9022360BAD ADM ABM BMD y x ∠+∠+∠+∠=++=︒︒︒︒解得:则:(2)①过C 作,且,连接MQ 交BC 点H ,连接GQ .∵四边形ABCD 为正方形∴,∵,且∴四边形DCQM 为平行四边形∴,且∴∵∴由(1)证得:∴∴∵∴∴∴,∴即:在等腰中∴②如图,135x y +=135BMD BMA AMD x y ︒+︒∠∠===∠+︒//CQ DM CQ DM =BC DC =90DCB ∠=︒//CQ DM CQ DM=//MQ CD MQ CD=90MHB DCB ∠=∠=︒MQ DC BC==BG DM⊥90BGM ∠=︒135BMD ∠=︒45BMG MBG ∠=∠=︒BG MG=12∠=∠901902GBC GMQ ︒∠=∠=-=︒∠-∠(SAS)BGC MGQ ≌△△GC GQ =BGC MGQ∠=∠BGC MGC MGQ MGC∠-∠=∠-∠90CGQ BGM ∠=∠=︒Rt CGQ△CQ ===DM CQ =连接BD ,作,交BM 的延长线于点H,,,,,,,,由①得,,,设,则,,在中,,,由①知,24.答案:(1)①,点和点DH BM ⊥6AB = 2BE CE =2CE ∴=4BE =BD =90BCD BGM ∠=∠=︒ DEC BEG ∠=∠CDE CBG ∴∠=∠DBM CBG∠=∠DBM CDE ∴∠=∠90H BCD ∠︒∠== BDH DEC ∴∽△△3BH CD DH CE∴==DH a =3BH a =45DMH BMG ∠︒∠== DM ∴==Rt BDH △DH a =3BH a =BD ==1a ∴=2=DH ∴=DM =CG DH ∴==(0,4)A -(4,0)B -(2,0)C②或(2)解析:(1)①∵,.∴与直线令,则,解得:,令,则,∴点A ,B ,C 的坐标分别是点,点和点;②∵点M ,N 分别在射线CA 和射线BA 上,设点∵四边形CMNP 为菱形∴轴,∴∴则,∵点,由勾股定理得:∴解得:∴①∴②1P ⎫⎪⎪⎭2P ⎫⎪⎪⎭h =1k =-2h =:4m y x =-:24n y x =-0y =40x --=240x -=4B x =-2C x =0x =4y =-(0,4)A -(4,0)B -(2,0)C (,24)M m m -//MN x MN CM CP==24M N y y m ==-(2,24)N m m --|3|M N MN x x m =-=(2,0)C 222(2)(24)CM m m =-+-222(2)(24)9m m m -+-=)3m -=)3m m-=-1m =2=32P CP MN m x ====-P x =32P CP MN m x ==-==-∴综上:点P 的坐标为或(2)由B 、D 的坐标得:直线BD 的表达式为:联立上式和直线AC 的表达式为:解得:则点,设点,过点B 作于点T ,则为等腰直角三角形,则,,过点T 作x 轴的平行线交过点B 和y 轴的平行线于点N ,交过点C 和y 轴的平行线于点M ,设点,,,,,则,,即且解得:P x =1P ⎫⎪⎪⎭2P ⎫⎪⎪⎭12,4y x =-142, 4hx x -=-Q x =82,14141Q h h ⎛⎫- ⎪--⎝⎭(,4)T t th -BT AC ⊥BCT △CT BT =90CTB ∠=︒(,4)T t th -90MTC NTB ∠+∠=︒ 90NTB TBN ∠+∠=︒MTC TBN ∴∠=∠90CMT TNB ∠=∠=︒ (AAS)CMT TNB ∴≌△△MC TN =BN MT =284141t th h ⎛⎫-=--- ⎪-⎝⎭8441th t h -=--12h =经检验12h ==。

湖北省武汉市江岸区2019-2020学年八年级(下)期中数学试卷(含解析)

湖北省武汉市江岸区2019-2020学年八年级(下)期中数学试卷(含解析)

2019-2020学年湖北省武汉市江岸区八年级(下)期中数学试卷一、选择题(共10小题).1.要使二次根式有意义,则x的取值范围是()A.x≤﹣3 B.x≥﹣3 C.x≠﹣3 D.x≥32.下列根式中是最简二次根式的是()A.B.C.D.3.以下列长度的线段为边,不能构成直角三角形的是()A.2、3、4 B.1、1、C.3、4、5 D.5、12、134.下列计算正确的是()A.﹣=B.3﹣=3 C.×=D.÷2=5.正方形具有而矩形不一定具有的性质是()A.四个角都为直角B.对角线互相平分C.对角线相等D.对角线互相垂直6.下列命题的逆命题是真命题的是()A.同旁内角互补,两直线平行B.等边三角形是锐角三角形C.如果两个实数相等,那么它们的绝对值相等D.全等三角形的对应角相等7.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H.则DH=()A.6 B.C.D.58.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10 B.12 C.13 D.149.如图,四边形AEFD和EBCF都是平行四边形,过点E作直线交边AD于点M,交边BC于点N,连接MF,NF.若▱AEFD和▱EBCF的面积分别为4和6,则△MNF的面积为()A.5 B.5.5 C.6 D.810.如图,△ABC中,∠C=45°,点E在边BC上,且满足AE=AB,D为线段AE的中点,若∠EDB=∠CAB,DB=3,则AE=()A.3B.2C.3D.6二、填空题(共6小题).11.=.12.已知是整数,则满足条件的最小正整数n为.13.在△ABC中,∠C=90°,∠A=30°,AC=2,则斜边AB=.14.如图,四边形ABCD为菱形,四边形AOBE为矩形,O,C,D三点的坐标为(0,0),(2,0),(0,1),则点E的坐标为.15.如图,四边形ABCD中,AD∥BC,∠B=90°,点E为线段CD的中点,AD=1,CB=2,AE=3,则AB=.16.如图,在平面直角坐标系中,A(4,0),B(﹣2,0),C(4,4),D(﹣2,6),点E在x轴上,满足∠BED=∠DEC,则点E的坐标为.三、解答题(共72分)17.计算:(+)÷.18.如图,▱ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形.19.已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.20.如图,一架2.5m长的梯子AB斜靠在一竖直墙AO上,这时AO为2.4m.(1)求OB的长度;(2)如果梯子底端B沿地面向外移动0.8m到达点C,那么梯子顶端A下移多少m?21.如图,是由49个边长为1的小正方形组成的7×7的正方形网格,小正方形的顶点为格点,点O、A、M、N、B均在格点上.(1)直接写出OM=;(2)点E在网格中的格点上,且△OME是以O为顶角顶点的等腰三角形,则满足条件的点E有个;(3)请在如图所示的网格中,借助矩形MNBA和无刻度的直尺作出∠MON的角平分线,并保留作图痕迹.22.小明在学完了平行四边形这个章节后,想对“四边形的不稳定性”和“四边形的判定”有更好的理解,做了如下的探究:他将8个木棍和一些钉子组成了一个正方形ABCD和平行四边形HEFG(如图1),且BC,EF在一条直线上,点D落在边HE上.经小明测量,发现此时B、D、G三个点在一条直线上,∠F=67.5°,DG=2.(1)求HG的长度;(2)设BC的长度为a,CE=(用含a的代数式表示);(3)小明接着探究,在保证BC,EF位置不变的前提条件下,从点A向右推动正方形,直到四边形EFGH刚好变为矩形时停止推动(如图2).若此时DE2=8(﹣1),求BF的长度.23.矩形ABCD的对角线交于点O,∠MON=α.(1)如图1,AD=DC,α=90°,点M在边AD上,点N在边CD上,求证:MO=ON;(2)如图2,∠ACD=30°,α=60°,点M在线段AD的延长线上,点N在线段CD的延长线上,若OM=ON,求的值;(3)如图3,AD=6,DC=8,α=45°,点M在线段AD的延长线上,点N在线段CD的延长线上,若DM=DN,直接写出线段ON的长度.24.问题背景:如图1,两条相等的线段AB,CD交于点O,∠AOC=60°,连接AC,BD,求证:AC+BD≥CD.证明:过点C作AB的平行线,过点B作AC的平行线,两平行线交于点E,连接DE.∵AB∥CE,AC∥BE.∴四边形ABEC为平行四边形,则AC=,AB=CE.∵AB∥CE,∴∠DCE=∠AOC=60°.又∵CD=AB=CE,∴△DCE为等边三角形,CD=.∴AC+BD=BE+BD≥DE=CD,即AC+BD≥CD.请完成证明中的两个填空.迁移应用:如图2,正方形ABCD的边长为4,点M在边AB上,点N在边CD上,点O在MN上,过点O作MN的垂线,交AD于点F,交BC于点E.求证:①MN=EF;②FM+NE≥4.联系拓展:如图3,△ABC为等腰三角形,AB=AC,过点A作BC的平行线l,点D在直线l上,点A到BD的距离为2,求线段CD的最小值.参考答案一、选择题(共10小题).1.要使二次根式有意义,则x的取值范围是()A.x≤﹣3 B.x≥﹣3 C.x≠﹣3 D.x≥3【分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.解:根据题意得:x+3≥0,解得,x≥﹣3.故选:B.2.下列根式中是最简二次根式的是()A.B.C.D.【分析】利用最简二次根式的定义对各选项进行判断.解:=,==,=2,只有为最简二次根式.故选:B.3.以下列长度的线段为边,不能构成直角三角形的是()A.2、3、4 B.1、1、C.3、4、5 D.5、12、13【分析】根据勾股定理的逆定理,可以判断各个选项中的三条线段是否可以构成直角三角形,从而可以解答本题.解:∵22+32=4+9=13≠16=42,故选项A中三条线段不能构成直角三角形;∵12+12=1+1=2=()2,故选项B中三条线段能构成直角三角形;∵32+42=9+16=25=52,故选项C中三条线段能构成直角三角形;∵52+122=25+144=225=152,故选项D中三条线段能构成直角三角形;故选:A.4.下列计算正确的是()A.﹣=B.3﹣=3 C.×=D.÷2=【分析】利用二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C 进行判断;根据二次根式的除法法则对D进行判断.解:A、原式=2﹣,所以A选项错误;B、原式=2,所以B选项错误;C、原式==,所以C选项正确;D、原式=2÷2=,所以D选项错误.故选:C.5.正方形具有而矩形不一定具有的性质是()A.四个角都为直角B.对角线互相平分C.对角线相等D.对角线互相垂直【分析】利用正方形、矩形的性质即可判断.解:正方形、矩形都具有四个角都是直角,正方形的对角线互相垂直平分且相等,矩形的对角线互相平分且相等,故选:D.6.下列命题的逆命题是真命题的是()A.同旁内角互补,两直线平行B.等边三角形是锐角三角形C.如果两个实数相等,那么它们的绝对值相等D.全等三角形的对应角相等【分析】首先写出逆命题,然后再判断是否是真命题即可.解:A、同旁内角互补,两直线平行,逆命题是两直线平行,同旁内角互补,是真命题,故此选项符合题意;B、等边三角形是锐角三角形的逆命题是锐角三角形是等边三角形,是假命题,故此选项不合题意;C、如果两个实数相等,那么它们的绝对值相等,逆命题是两个实数绝对值相等,则这两个实数相等,是假命题,故此选项不合题意;D、全等三角形的对应角相等,逆命题是对应角相等的两个三角形全等,是假命题,故此选项不合题意;故选:A.7.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H.则DH=()A.6 B.C.D.5【分析】先根据菱形的性质得OA=OC=4,OB=OD=3,AC⊥BD,再利用勾股定理计算出AB=5,然后根据菱形的面积公式得到•AC•BD=DH•AB,再解关于DH的方程.解:∵四边形ABCD是菱形,∴OA=OC=4,OB=OD=3,AC⊥BD,在Rt△AOB中,AB==5,则AD=5,∵S菱形ABCD=•AC•BD,S=DH•AB,菱形ABCD∴DH•5=×6×8,∴DH=.故选:B.8.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10 B.12 C.13 D.14【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:芦苇长13尺.故选:C.9.如图,四边形AEFD和EBCF都是平行四边形,过点E作直线交边AD于点M,交边BC于点N,连接MF,NF.若▱AEFD和▱EBCF的面积分别为4和6,则△MNF的面积为()A.5 B.5.5 C.6 D.8【分析】由平行四边形的性质得出△EMF的面积=平行四边形AEFD的面积=2,△ENF的面积=平行四边形EBCF的面积=3,进而得出答案.解:∵四边形AEFD和EBCF都是平行四边形,∴AD∥EF,BC∥EF,∴△EMF的面积=平行四边形AEFD的面积=×4=2,△ENF的面积=平行四边形EBCF的面积=×6=3,∴△MNF的面积=△EMF的面积+△ENF的面积=2+3=5;故选:A.10.如图,△ABC中,∠C=45°,点E在边BC上,且满足AE=AB,D为线段AE的中点,若∠EDB=∠CAB,DB=3,则AE=()A.3B.2C.3D.6【分析】过点A作AF⊥BE于F,交BD于G,由等腰三角形的性质及重心定理可得BG,再证明∠DBE=∠ACB=45°,∠FGB=45°,可证得FG=FB,由勾股定理解得FG,则可得BF、EF及AG,从而可得AF,最后在Rt△AEF中,由勾股定理可求得AE的长.解:过点A作AF⊥BE于F,交BD于G,如图:∵AE=AB,AF⊥BE,∴BF=EF,∠AEB=∠ABE,∵D为线段AE的中点,∴G为△AEB的重心,∴BG=2DG=BD=×3=2,AG=2FG,在△BDE和△CAB中,∠BED=∠CBA,∠BDE=∠CAB,∠BED+∠BDE+∠DBE=∠CBA+∠CAB+∠C=180°,∠C=45°,∴∠DBE=∠ACB=45°,在Rt△GFB中,∠GFB=90°,∠GBF=45°,∴∠FGB=90°﹣∠GBF=90°﹣45°=45°=∠GBF,∴FG=FB,∵FG2+FB2=BG2,∴2FG2=,∴FG=2,∴AG=2FG=2×2=4,∴FB=FG=2,∴AF=AG+FG=4+2=6,在Rt△AEF中,∠AFE=90°,EF=BF=2,AF=6,∴AE===2.故选:B.二、填空题(每小题3分,共18分)11.=10.【分析】直接利用二次根式的性质化简得出答案.解:==10.故答案为:10.12.已知是整数,则满足条件的最小正整数n为 3 .【分析】先变形得到=,根据题意n必须是3的完全平方数倍,所以最小正整数n为3.解:∵=,而是整数,∴最小正整数n为3.故答案为3.13.在△ABC中,∠C=90°,∠A=30°,AC=2,则斜边AB=.【分析】根据含30°角的再见三角形性质求出AB=2CB,根据勾股定理得出方程,求出BC即可.解:∵在△ABC中,∠C=90°,∠A=30°,∴AB=2BC,由勾股定理得:AB2=AC2+BC2,即(2BC)2=22+BC2,解得:BC=,所以AB=,故答案为:.14.如图,四边形ABCD为菱形,四边形AOBE为矩形,O,C,D三点的坐标为(0,0),(2,0),(0,1),则点E的坐标为(﹣2,﹣1).【分析】求出OC、OD的长,根据菱形的性质求出OA=OC=2,根据矩形的性质求出OB=EA=1,即可得出答案.解:∵O,C,D三点的坐标为(0,0),(2,0),(0,1),∴OC=2,OD=1,∵四边形ABCD是菱形,∴OA=OC=2,OB=OD=1,∵四边形AOBE为矩形,∴∠EAO=∠EBO=90°,EB=OA=2,EA=OB=1,∵E在第二象限,∴E点的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).15.如图,四边形ABCD中,AD∥BC,∠B=90°,点E为线段CD的中点,AD=1,CB=2,AE=3,则AB=3.【分析】延长AE交BC的延长线于F,根据平行线的性质得到∠DAE=∠F,∠D=∠ECF,根据全等三角形的性质得到CF=AD=1,EF=AE=3,由勾股定理即可得到结论.解:延长AE交BC的延长线于F,∵AD∥BC,∴∠DAE=∠F,∠D=∠ECF,∵DE=CE,∴△ADE≌△FCE(AAS),∴CF=AD=1,EF=AE=3,∵BC=2,∴BF=3,AF=6,∵∠B=90°,∴AB===3,故答案为:3.16.如图,在平面直角坐标系中,A(4,0),B(﹣2,0),C(4,4),D(﹣2,6),点E在x轴上,满足∠BED=∠DEC,则点E的坐标为(1,0)或(4,0).【分析】①过D作DE⊥AC于E,得到正方形,利用正方形的性质可得结论,②过D作DH⊥EC于H,利用角平分线的性质与勾股定理可得答案.解:①如图,过D作DE⊥AC于E,∵A(4,0),B(﹣2,0),C(4,4),D(﹣2,6),∴∠DBA=∠BAE=∠AED=90°,BD=BA=6,∴四边形ABDE是正方形,连接AD,则∠BAD=∠EAD=45°,∴E,A重合时,有∠BED=∠DEC,∴E点的坐标为(4,0).②如图,过D作DH⊥EC于H,∵∠BED=∠DEC,DB⊥BE,∴DB=DH=6,∵C(4,4),D(﹣2,6),∴CD==,CH==2,由三角形内角和定理可得:∠BDE=∠HDE,∵DB⊥BE,DH⊥EH,∴BE=HE设BE=x,则HE=x,CE=x+2,AE=6﹣x,∵CA⊥EA,CA=4,∴(x+2)2=(6﹣x)2+42,解得,x=3,∴BE=3,∴E点的坐标为(1,0);综上,E点的坐标为(1,0)或(4,0).故答案为:(1,0)或(4,0).三、解答题(共72分)17.计算:(+)÷.【分析】利用二次根式的除法法则运算.解:原式=+=4+2.18.如图,▱ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形.【分析】首先利用平行四边形的性质,得出对角线互相平分,进而得出EO=FO,BO =DO,即可得出答案.【解答】证明:∵▱ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,∴AO=CO,BO=DO,∵AE=CF,∴AF=EC,则FO=EO,∴四边形BFDE是平行四边形.19.已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.【分析】观察可知:(1)式是完全平方和公式,(2)是平方差公式.先转化,再代入计算即可.解:(1)当x=+1,y=﹣1时,原式=(x+y)2=(+1+﹣1)2=12;(2)当x=+1,y=﹣1时,原式=(x+y)(x﹣y)=(+1+﹣1)(+1﹣+1)=4.20.如图,一架2.5m长的梯子AB斜靠在一竖直墙AO上,这时AO为2.4m.(1)求OB的长度;(2)如果梯子底端B沿地面向外移动0.8m到达点C,那么梯子顶端A下移多少m?【分析】(1)根据勾股定理即可得到结论;(2)设梯子的A端下滑到D,如图,求得OC=0.7+0.8=1.5,根据勾股定理即可得到结论.解:(1)在Rt△AOB中,OB===0.7(m);(2)设梯子的A端下滑到D,如图,∵OC=0.7+0.8=1.5,∴在Rt△OCD中,OD===2(m),∴AD=OA﹣OD=﹣2=0.4,∴梯子顶端A下移0.4m.21.如图,是由49个边长为1的小正方形组成的7×7的正方形网格,小正方形的顶点为格点,点O、A、M、N、B均在格点上.(1)直接写出OM= 5 ;(2)点E在网格中的格点上,且△OME是以O为顶角顶点的等腰三角形,则满足条件的点E有 3 个;(3)请在如图所示的网格中,借助矩形MNBA和无刻度的直尺作出∠MON的角平分线,并保留作图痕迹.【分析】(1)利用勾股定理即可求出OM的长;(2)由OM=5,得OE=5,根据网格即可找到点E;(3)连接AN和BM交于点D,连接OD,即可作出∠MON的角平分线.解:(1)根据网格可知:OM==5,故答案为:5;(2)如图,由OM=5,∴OE=5,所以满足条件的点E有3个,分别为E1,E2,E3.故答案为:3;(3)如图,连接AN和BM交于点D,连接OD,则OD即为∠MON的角平分线.22.小明在学完了平行四边形这个章节后,想对“四边形的不稳定性”和“四边形的判定”有更好的理解,做了如下的探究:他将8个木棍和一些钉子组成了一个正方形ABCD和平行四边形HEFG(如图1),且BC,EF在一条直线上,点D落在边HE上.经小明测量,发现此时B、D、G三个点在一条直线上,∠F=67.5°,DG=2.(1)求HG的长度;(2)设BC的长度为a,CE=(﹣1)a(用含a的代数式表示);(3)小明接着探究,在保证BC,EF位置不变的前提条件下,从点A向右推动正方形,直到四边形EFGH刚好变为矩形时停止推动(如图2).若此时DE2=8(﹣1),求BF的长度.【分析】(1)根据平行四边形的性质得到∠H=∠GFE=67.5°,HE∥FG,求得∠GFE=67.5°,得到∠HDG=∠BDE=67.5°,根据等腰三角形的判定定理即可得到结论;(2)由(1)知,∠BDE=∠BED=67.5°,得到BE=BD,根据等腰直角三角形的性质得到BD=BC=a,于是得到结论;(3)设CD=a,根据矩形的性质得到EF=HG=2,∠HEF=90°,根据勾股定理即可得到结论.解:(1)∵四边形HEFG是平行四边形,∴∠H=∠GFE=67.5°,HE∥FG,∴∠GFE=67.5°,∵四边形ABCD是正方形,∴∠DCB=90°,∠BDC=∠BDC=45°,∴∠DCE=90°,∴∠CDE=22.5°,∴∠BDE=∠BDC+∠CDE=67.5°,∴∠HDG=∠BDE=67.5°,∴∠H=∠GDH,∴HG=DG=2;(2)由(1)知,∠BDE=∠BED=67.5°,∴BE=BD,∵BC的长度为a,∴BD=BC=a,∴CE=BE﹣BC=a﹣a=(﹣1)a;故答案为:(﹣1)a;(3)∵在推进过程中CD的长度保持不变,设CD=a,∵四边形EFGH是矩形,∴EF=HG=2,∠HEF=90°,∴∠DEC=90°,∴DE2=CD2﹣CE2,∵BC,EF位置不变,∴CE=(﹣1)a,∴在Rt△CDE中,由勾股定理得,DE2=CD2﹣CE2,∴8(﹣1)=a2﹣(﹣1)2a2,∴a2=4,∵a>0,∴a=2,∴BF=BE+EF=2+2.23.矩形ABCD的对角线交于点O,∠MON=α.(1)如图1,AD=DC,α=90°,点M在边AD上,点N在边CD上,求证:MO=ON;(2)如图2,∠ACD=30°,α=60°,点M在线段AD的延长线上,点N在线段CD的延长线上,若OM=ON,求的值;(3)如图3,AD=6,DC=8,α=45°,点M在线段AD的延长线上,点N在线段CD的延长线上,若DM=DN,直接写出线段ON的长度.【分析】(1)根据正方形的性质得到OD=OC,OD⊥OC,由全等三角形的性质即可得到结论;(2)如图2,在DM上截取PM=DO,连接OP,根据矩形的性质得到OD=OC,求得∠ODC=∠ACD=30°,根据全等三角形的性质得到ND=OP,求得∠N=∠POM,得到∠DOP =30°,设DO=PD=x,根据三角函数的定义即可得到结论;(3)如图3,过O作OG⊥CD于G,根据三角形中位线定理得到OG=3,DG=4,连接MN,得到∠DNM=45°,过N作NH⊥OM于H,根据等腰直角三角形的性质得到NH=ON,设DM=DN=x,根据勾股定理得到ON==,根据相似三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,AD=CD,∴四边形ABCD是正方形,∴OD=OC,OD⊥OC,∵∠MON=90°,∴∠MOD=∠NOC,在△DMO与△DNO中,∴△DMO≌△CNO(AAS),∴MO=ON;(2)解:如图2,在DM上截取PM=DO,连接OP,∵四边形ABCD是矩形,∴AO=OC=AC,DO=OB=BD,AC=BD,∴OD=OC,∴∠ODC=∠ACD=30°,∵∠NOD+∠DOM=∠DOM+∠M=60°,∴∠NOD=∠M,∵OM=ON,∴△OND≌△OMP(SAS),∴ND=OP,∴∠N=∠POM,∴∠POM+∠NOD=∠N+∠MOD=∠ODC=30°,∴∠DOP=30°,即△DOP是顶角为120°的等腰三角形,∴设DO=PD=x,∴ND=OP=x,∵DM=DP+PM=DP+DO=2x,∴==;(3)如图3,过O作OG⊥CD于G,∴OG∥AD,∵AO=CO,∴OG=AD,DG=CG=CD,∵AD=6,DC=8,∴OG=3,DG=4,连接MN,∵∠MDN=90°,DM=DN,∴∠DNM=45°,过N作NH⊥OM于H,∵∠NOM=45°,∴△ONH是等腰直角三角形,∴NH=ON,设DM=DN=x,∴MN=x,NG=4+x,∴ON==,∴NH=,∵∠ONH=∠DNM=45°,∴∠ONG=∠MNH,∵∠NHM=∠NGO=90°,∴△ONG∽△MNH,∴,∴=,解得:x=5(负值舍去),∴ON==3.24.问题背景:如图1,两条相等的线段AB,CD交于点O,∠AOC=60°,连接AC,BD,求证:AC+BD≥CD.证明:过点C作AB的平行线,过点B作AC的平行线,两平行线交于点E,连接DE.∵AB∥CE,AC∥BE.∴四边形ABEC为平行四边形,则AC=BE,AB=CE.∵AB∥CE,∴∠DCE=∠AOC=60°.又∵CD=AB=CE,∴△DCE为等边三角形,CD=DE.∴AC+BD=BE+BD≥DE=CD,即AC+BD≥CD.请完成证明中的两个填空.迁移应用:如图2,正方形ABCD的边长为4,点M在边AB上,点N在边CD上,点O在MN上,过点O作MN的垂线,交AD于点F,交BC于点E.求证:①MN=EF;②FM+NE≥4.联系拓展:如图3,△ABC为等腰三角形,AB=AC,过点A作BC的平行线l,点D在直线l上,点A到BD的距离为2,求线段CD的最小值.【分析】问题背景:利用平行四边形的性质以及等边三角形的性质即可解决问题.迁移应用:①如图2中,作FH⊥BC于H,MK⊥CD于K.证明△FHE≌△MKN(AAS)可得结论.②如图2中,以EF,EM为邻边作平行四边形FMGE,连接NG.证明△MNG是等腰直角三角形即可解决问题.联系拓展:如图3中,以AD,AB为邻边作平行四边形ADPB,连接PA交BD于O.证明AP=CD,求出PA的最小值即可解决问题.解:问题背景:根据平行四边形的性质可知AC=BE,根据等边三角形的性质可知CD=DE,故答案为BE,DE.迁移应用:①如图2中,作FH⊥BC于H,MK⊥CD于K.∵四边形ABCD是正方形,∴∠A=∠B=∠C=90°,∵FH⊥BC,∴∠FHB=90°,∴四边形AFHB是矩形,∴FH=AB,同理可证:MK=BC,∵AB=BC,∴FH=MK,∵MN⊥EF,∴∠EON=∠ECN=90°,∴∠MNK+∠CEO=180°,∵∠FEH+∠CEO=180°,∴∠MNK=∠FEH,∵∠FHE=∠MKN=90°,∴△FHE≌△MKN(AAS),∴EF=MN.②如图2中,以EF,EM为邻边作平行四边形FMGE,连接NG.∴FM=EG,FM∥EG,EF=MG,EF∥MG,∴∠NOE=∠NMG=90°,∵MN=EF,∴MN=MG,∴GN=MG=EF,∵FM+EN=EG+EN≥NG,∵EF≥AB=4,∴FM+NE≥4.联系拓展:如图3中,以AD,AB为邻边作平行四边形ADPB,连接PA交BD于O.∴DP=AB=BC,∴∠DPB=∠ABC=∠ACB,∵DP=AC,∠DPB=∠ACB,PC=OC,∴△DPC≌△ACP(SAS),∴DC=AP,∵A到DB的距离为2,∴AO≥2,∴DC=AP=2AO≥4,∴CD的最小值为4.。

初二下册数学期末复习03勾股定理必刷提高练习题(原卷版)

初二下册数学期末复习03勾股定理必刷提高练习题(原卷版)

2019-2020学年八年级数学下册同步闯关练(人教版)第十七章《勾股定理》17.117.2勾股定理及勾股定理的逆定理知识点1:勾股定理【例1】(2020春•朝阳区校级月考)如图,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,DE是AC 的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD等于()A.4B.3C.2.5D.2.4【变式1-1】(2019秋•雨花区校级期末)如图,Rt△ACB中,∠ACB=90°,AB=13cm,AC=5cm,动点P从点B出发沿射线BC以2cm/s的速度运动,设运动时间为ts,当△APB为等腰三角形时,t的值为()A.或B.或12或4C.或或12D.或12或4【变式1-2】(2020•浙江自主招生)如图,边长为的立方体中,B,C,D为三条棱中点,过BCD的平面切割立方体得四面体,则以△BCD为底面的四面体的高为.【变式1-3】(2019秋•南岸区校级期末)如图,在Rt△ABC,∠ACB=90°,AD在△ABC外,AD=AC,∠CAD=∠ABC,连接BD.若AB=5,AC=3,则BD=.【变式1-4】(2019秋•高安市校级期末)如图,四边形ABCD中,∠A=∠C=90°,∠ABC=60°,AD =4,CD=10,求BD的长.【变式1-5】(2019秋•邳州市期末)如图,△ABC中,∠ACB=90°,AB=10,BC=6,若点P从点A出发,以每秒1个单位长度的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求此时t的值;(2)若点P恰好在∠BAC的平分线上,求t的值.【变式1-6】(2019秋•南召县期末)如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.知识点2:勾股定理的证明【例2】(2019春•德州期末)如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【变式2-1】(2019秋•铁西区校级月考)“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则中间小正方形与大正方形的面积差是()A.9B.36C.27D.34【变式2-2】(2017秋•新泰市期末)如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于.【变式2-3】(2017春•厦门期末)公元3世纪,我国数学家赵爽用弦图证明了勾股定理,在前面的学习中,我们知道根据勾股定理可以用长为有理数的线段来作出长为,,的线段.若一个直角三角形的一条边长为,其他两边长均为有理数,则其它两边的长可以为,.【变式2-4】(2018秋•泰兴市校级月考)如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2.【变式2-5】(2018秋•商河县期中)如图1是用硬纸片做成的两个全等的直角三角形,两条直角边长分别为a和b,斜边为c;图2是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能验证勾股定理的图形.(1)画出拼成的这个图形的示意图,并用它验证勾股定理;(2)假设图3中的直角三角形有若干个,你能运用图中所给的直角三角形拼出另一种能够验证勾股定理的图形吗?画出拼成图形的示意图(不写验证过程).【变式2-6】(2016秋•甘州区校级月考)请选择一个图形来证明勾股定理.(可以自己选用其他图形进行证明)【变式2-7】(2018春•遵义期中)如图:在Rt△ABC和Rt△BDE中,∠C=90°,∠D=90°,AC=BD =a,BC=DE=b,AB=BE=c,试利用图形证明勾股定理.知识点3:勾股定理的逆定理【例3】(2019春•贵池区期中)△ABC的三边分别为a,b,c,下列条件能推出△ABC是直角三角形的有()①a2﹣c2=b2;②(a﹣b)(a+b)+c2=0;③∠A=∠B﹣∠C;④∠A:∠B:∠C=1:2:3;⑤;⑥a=10,b=24,c=26.A.2个B.3个C.4个D.5个【变式3-1】(2019秋•义乌市期末)在△ABC中,BC=a,AC=b,AB=c,根据下列条件不能判断△ABC 是直角三角形的是()A.∠B=50°,∠C=40°B.∠A:∠B:∠C=1:2:2C.a=4,b=,c=5D.a:b:c=1:1:【变式3-2】(2019秋•南岸区校级月考)如图,在四边形ABCD中,AB=BC=2,DC=3,AD=,∠ABC=90°,则四边形ABCD的面积是【变式3-3】(2019•郫都区模拟)如图,点A、B、C分别是正方体展开图的小正方形的顶点,则∠BAC的大小为.【变式3-4】(2019秋•泰安期末)如图所示,已知△ABC中,AB=8cm,AC=6cm,BC=10cm.分别以三边AB,AC及BC为直径向外作半圆,求阴影部分的面积.【变式3-5】(2018秋•长丰县期末)如图,在△ABC中,AB=30cm,BC=35cm,∠B=60°,有一动点E 自A向B以2cm/s的速度运动,动点F自B向C以4cm/s的速度运动,若E、F同时分别从A、B出发.(1)试问出发几秒后,△BEF为等边三角形?(2)填空:出发秒后,△BEF为直角三角形?【变式3-6】(2019春•三台县期中)如图,在四边形ABCD中,O是BD的中点,且AD=8,BD=12,AC=20,∠ADB=90°.求BC的长和四边形ABCD的面积.知识点4:勾股数【例4】(2017秋•靖江市校级月考)下列一组数是勾股数的是()A.1.5,2,2.5B.7,40,41C.5,12,13D.12,15,20【变式4-1】下列各组数为勾股数的是()A.2,2,5B.15,8,17C.9,12,13D.3a,4a,5a【变式4-2】(2019秋•眉山期中)观察下列等式:32+42=52;52+122=132;72+242=252;92+402=412;112+602=612…按照这样的规律,第六个等式是.【变式4-3】(2017春•永城市期中)探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…可发现,4=,12=,24=…请写出第5个数组:.【变式4-4】(2015秋•泰兴市期末)阅读理解并解答问题如果a、b、c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数.(1)请你根据勾股数的意思,说明为什么3、4、5是一组勾股数;(2)写出一组不同于3、4、5的勾股数;(3)如果m表示大于1的整数,且a=2m,b=m2﹣1,c=m2+1,请你根据勾股数的意思,说明a、b、c为勾股数.【变式4-5】(2014秋•兴化市校级月考)观察下列等式:32=4+5=(5+4)(5﹣4)=52﹣42;52=12+13=(13+12)(13﹣12)=132﹣122;72=24+25=(25+24)(25﹣24)=252﹣242;…(1)仿照上述等式的规律写出:92=+=2﹣2(2)从上面的式子中,可以得到哪些勾股数?按此规律,你还能写出哪些勾股数?(至少三个)【变式4-6】(2018秋•内江期末)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所知道的四边形中是勾股四边形的两种图形的名称,;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°后得到△DBE,连接AD、DC,若∠DCB=30°,试证明;DC2+BC2=AC2.(即四边形ABCD是勾股四边形)知识点5:勾股定理的应用【例5】(2019春•江岸区校级月考)在平静的湖面上,有一支红莲,高出水面0.1米,一阵风吹来,红莲吹到一边花朵齐及水面,已知红莲移动的水平距离为0.5米,则这里的水深是()A.1米B.1.5米C.1.2米D.1.3米【变式5-1】(2019秋•诸暨市校级月考)如图,有两条公路OM,ON相交成30°,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,距拖拉机中心50米的范围内均会受到噪音影响,已知有两台相距40米的拖拉机正沿ON方向行驶,它们的速度均为10米/秒,则这两台拖拉机沿ON方向行驶时给小学带来噪音影响的时间为()A.6秒B.8秒C.10秒D.18秒【变式5-2】(2019秋•温州期末)如图是高空秋千的示意图,小明从起始位置点A处绕着点O经过最低点B.最终荡到最高点C处,若∠AOC=90°,点A与点B的高度差AD=1米,水平距离BD=4米,则点C与点B的高度差CE为米.【变式5-3】(2019春•金州区校级月考)如图,有一个长方体的盒子,它的长、宽、高分别是4m,3m和12m,则盒内可放的木棒最长为m.【变式5-4】(2019秋•金台区期末)如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB 于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?【变式5-5】(2019春•马山县期中)如图,某开发区有一块四边形空地ABCD,现计划在空地上种植草皮.经测量,∠B=90°,AB=20m,BC=15m,CD=7m,AD=24m.(1)求这块四边形空地的面积;(2)若每平方米草皮需要200元,则种植这片草皮需要多少元?【变式5-6】(2019秋•泉港区期末)一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?。

2013—2014学年第二学期八年级数学期末试题(含答案)

2013—2014学年第二学期八年级数学期末试题(含答案)

2013—2014学年度第二学期期末考试八年级数学试题(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.) 1x 的取值范围是A.3x 2≥B. 3x 2>C. 2x 3≥ D. 2x 3>2.下列二次根式中,最简二次根式是3.下列命题的逆命题成立的是A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .全等三角形的对应角相等D .两条直线平行,内错角相等4.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 表示的实数为A . 2.5B .C.D.15.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是 A.平行四边形 B. 菱形 C.正方形 D. 矩形6.在平面直角坐标系中,将正比例函数y=kx (k >0)的图象向上平移一个单位,那么平移后的图象不经过A.第一象限B. 第二象限C.第三象限D. 第四象限 7.下列描述一次函数y=-2x+5图象性质错误的是A. y 随x 的增大而减小B. 直线经过第一、二、四象限C.直线从左到右是下降的D. 直线与x 轴交点坐标是(0,5)8.商场经理要了解哪种型号的洗衣机最畅销,在相关数据的统计量中,对商场经理来说最有意义的是A.平均数B.众数C.中位数D.方差9. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是 A .1.65米是该班学生身高的平均水平 B .班上比小华高的学生人数不会超过25人 C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米10.如图,已知ABCD的面积为48,E 为AB连接DE ,则△ODE 的面积为 A.8 B.6 C.4 D.3第4题图第10题图 B D二、填空题:11.在一次学校的演讲比赛中,从演讲内容、演讲能力、演讲效果三个方面按照5:3:2计算选手的最终演讲成绩。

八年级最新数学下册单元测试题初二数学下册章节练习题带图文答案解析全部100篇下学期期末试卷

八年级最新数学下册单元测试题初二数学下册章节练习题带图文答案解析全部100篇下学期期末试卷

八年级数学人教新课标版(2012教材)下学期期末试卷(答题时间:90分钟) 一、选择题 1. 如果2(21)a =1−2a ,则( )A. a <12B. a ≤12C. a >12D. a ≥122. 某次器乐比赛设置了6个获奖名额,共有ll 名选手参加,他们的比赛得分均不相同。

若知道某位选手的得分。

要判断他能否获奖,在下列ll 名选手成绩的统计量中,只需知道( )A. 平均数B. 众数C. 中位数D. 无法判断 3. 计算(2-1)(2+1)2的结果是( ) A. 2+1 B. 3(2-1) C. 1D. -1 4. 如图,正方形OABC 的边长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A. 1B.2 C. 1.5 D. 2 5. 一条直线y =kx +b ,其中k +b =-5、kb =6,那么该直线经过( ) A. 第二、四象限B. 第一、二、三象限C. 第一、三象限D. 第二、三、四象限*6. 你喜欢看篮球比赛吗?美国休斯敦火箭队为了能够重塑昔日辉煌,在这个夏天的转会市场上引爆了一个“重磅炸弹”,他们用弗朗西斯交换来两届得分王麦格雷迪,下表为休斯球龄(年)1 2 3 6 7 9 10 12 13 人数 41 2 3 1 1 2 2 1 A. 1,6 B. 6,1 C. 1,1 D. 6,3*7. 直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )A. x >-1B. x <-1C. x <-2D. 无法确定*8. 如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B ′处,点A 对应点为A ′,且B ′C =3,则AM 的长是( )A. 1.5B. 2C. 2.25D. 2.5**9. 把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是( ) A. 1<m <7 B. 3<m <4 C. m >1 D. m <4**10. 如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( )A. 1B. 2C. 4-22D. 32-4二、填空题 11. 某班七个兴趣小组人数分别为:3,3,4,x ,5,5,6,已知这组数据的平均数是4,则这组数据的中位数是________。

八年级期末各区汇总压轴题

八年级期末各区汇总压轴题

10.如图,在四边形ABCD 中,∠A =∠C =90°,∠ABC =α,在AB 、BC 上分别找一点E 、F ,使△DEF 的周长取最小,此时∠EDF =( )A .αB .90°-αC .2αD .180°-2α16.如图,在△ABC 中,已知∠CAB =60°,D 、E 分别在边AB 、AC 上,∠AED =60°,DE +DB =CE ,∠CDB =2∠CDE ,则∠DCB = .23.(10分)(1)已知3x =2y =5z ≠0,求23x y zx y z ++−+的值.(2)某市政工程计划将安装的路灯交给甲、乙两家灯饰厂完成,已知甲厂生产100个路灯与乙厂生产150.个路灯所用时间相同,且甲厂比乙厂每天少生产10个路灯,间甲、乙两家工厂每天各生产路灯多少个?24.(12分) 如图,已知A (-3,0),B (0,7),C (7,0),∠ABC +∠ADC =180°,BC ⊥C D .(1)如图1,求证:∠ABO =∠CAD ; (2)求四边形ABCD 的面积;(3)如图2,E 为∠BCO 的邻补角的平分线上的一点,且∠BEO =45°,OE 与BC 交于点F ,求BF 的长.第10题图AB CDE Fα第16题图A BCD E图110.如图,将等边△ABC 折叠,使得点B 恰好落在AC 边上的点D 处,折痕为EF ,O 为折痕EF 上一动点,若AD =1,AC =3,△OCD 周长的最小值是( )A .4B .5C .6D .716.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,且AC +CD =BD ,若BD =6,则CD = .23.(本题满分10分)已知,D 为等边△ABC 的边BC 上一点,点E 在射线AD 上,连接BE ,CE . (1)如图1,点E 在线段AD 上,CE 平分∠ACB ,求证:AE =BE ; (2)∠CED =60°;①如图2,点E 在线段AD 的延长线上,求BED ∠的度数; ②如图3,点E 在线段AD 上,CE AE 2=,求BED ∠的度数.24.(本题满分12分)如图,A (-2,6),C (6,2),AB ⊥y 轴于点B ,CD ⊥x 轴于点D . (1)求证:△AOB ≌△COD ;(2)连接AC ,BD 交于点P ,求证:点P 为AC 中点;(3)如图2,点E 为第一象限内一点,点F 为y 轴正半轴上一点,连接AF ,EF ,EF ⊥CE 且EF =CE ,点,求证:∠OEG =45°.OF E DC BAAB C D E 图3图2图1ABCD ABCD E D CBAE图1图2图3AA10.如图,点E 在等边△ABC 的边BC 上,BE =6,射线CD ⊥BC 于点C ,点P 是射线CD 上一动点,点F 是线段AB 上一动点,当EP +PF 的值最小时,BF =7,则AC 为( ) A .14 B .13 C .12 D .1016.在△ABC 中,AC =BC ,∠ACB =90°,点E 是射线CB 上的一个动点,作AF ⊥AE ,且AF =AE ,连接BF 交射线AC 于点G ,若52BC BE =,则AG CG= .23.(10分) CD 是△ABC 的高.(1)如图1,若∠ACB =90°,∠BAC 的平分线AE 交CD 于点F ,交BC 于点E ,求证:CE =CF ;(2)如图2,若∠A =2∠B ,∠ACB 的平分线CG 交AB 于点G ,求BC BGDG-的值;(3)如图3,若△ABC 是以AB 为斜边的等腰直角三角形,再以AD 为斜边作等腰Rt △AMD ,Q是DB 的中点,连接CQ 、MQ ,试判断线段CQ 与MQ 的关系,并给出证明.24.(12分) 在平面直角坐标系中,已知A (-m ,0),B (0,n ),C (m ,0).(1)如图1,若AC =AB ,CM ⊥AB 于点M ,MN ∥y 轴交AO 于点N (-2,0),则m =__________; (2)如图2,若m 2+2mn +n 2=0,∠ACB 的平分线CD 交AB 于点D ,过AC 上一点E 作EF ∥CD ,交AB 于点F ,AG 是△AEF 的高,探究AG 与EF 的数量关系;(3)如图3,在(1)的条件下,AC 上点H 满足AH MACH MC=,直线MH 交y 轴于点Q ,求点Q 的坐标.DPCEBFA图3图2图1Q MD ABCD BCD FABEC图2图3CBA10.如图,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,∠EAF =12∠BAD ,若DF =1,BE =5,则线段EF 的长为( ). A .3 B .4 C .5 D .616.P 是△ABC 内一点,∠PBC =30°,∠PBA =8°,且∠P AB =∠P AC =22°,则∠APC 的度数为 .23.(本题10分)如图所示,已知△ABC 中,AB =AC =10,BC =8,点D 是AB 中点,点P 在线段BC 上以每秒3个单位长度的速度由点B 向点C 运动,同时点Q 在线段CA 上由点C 向点A 以每秒a 个单位长度的速度运动.设运动的时间为t 秒.(1)求CP 的长(用含t 的式子表示); (2)若以点C 、P 、Q 为顶点的三角形和以点B 、D 、P 为顶点的三角形全等,并且∠B 和∠C 是对应角,求a 和t 的值.24.(本题12分)在平面直角坐标系中,M (m ,n )且m 、n 满足m 2+2n 2-2mn +4n +4=0,B (0,b )为y 轴上一动点,绕B 点将直线BM 顺时针旋转45°交x 轴于点C ,过C 作AC ⊥BC 交直线BM 于点A (a ,t ).(1)求点M 的坐标;(2)如图1,在B 点运动的过程中,A 点的横坐标是否会发生变化?若不变,求a 的值;若变化,写出A 点的横坐标a 的取值范围;(3)如图2,过T (a ,0)作TH ⊥BM (垂足H 在x 轴下方),在射线HB 上截取HK =HT ,连OK ,求∠OKB 的度数.DABCEF BC PAA C DQB10.如图,Rt △ABC 中,∠ABC =90°,∠BAC =30°,AC =2,分别以三边为直径画半圆,则两个月形图案的面积之和(阴影部分的面积)是( )A BC D16.若m +2=3n ,则327m n −⋅的值是 .27.(本题12分)已知,关于x 的分式方程13111m x m x x +−+−=+.(1)当m =-1时,请判断这个方程是否有解并说明理由; (2)若这个分式方程有实数解,求m 的取值范图.28.(本题12分)在平面直角坐标系中,点A (0,4),B (m ,0)在坐标轴上,点C ,O 关于直线AB 对称,点D 在线段AB 上.(1)如图1,若m =8,求AB 的长;(2)如图2,若m =4,连接OD ,在y 轴上取一点E ,使OD =DE ,求证:CE DE ;(3)如图3,若m =,在射线AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.图1 图2 图3CAB10.如图,已知△ABC 中,∠ACB =90°,∠BAC =30°,AB =4,点D 为直线AB 上一动点,将线段CD 绕点C 逆时针旋转60°得到线段CE ,连接ED 、BE ,当BE 最小时,线段AD 的值为( )A .3B .4C .5D .616.如图,已知∠AOB =α( 0°<α<60°),射线OA 上一点M ,以OM 为边在OA 下方作等边△OMN ,点P 为射线OB 上一点,若∠MNP =α,则∠OMP = .23.(本题10分)如图1,已知等边三角形ABC ,点P 为AB 的中点,点D 、E 分别为边AC、BC 上的点,∠APD +∠BPE =60°.(1)①若PD ⊥AC ,PE⊥BC ,直接写出PD 、PE 的数量关系: ; ②如图1,证明:AP =AD +BE(2)如图2,点F 、H 分别在线段BC 、AC 上,连接线段PH 、PF ,若PD ⊥PF 且PD =PF ,HP ⊥EP . ①求∠FHP 的度数;②如图3,连接DE ,直接写出PF DEPH+= .24.(本题12分)已知,平面直角坐标系中,A (0,4) ,B (b ,0) (-4<b <0),将线段AB 绕点A 逆时针旋转90°得到线段AC ,连接B C .(1)如图1,直接写出C 点的坐标: ;(用b 表示)(2)如图2,取线段BC 的中点D ,在x 轴取一点E 使∠DEB =45°,作CF ⊥x 轴于点F . ①求证:EF =OB ;②如图3,连接AE ,作DH ∥y 轴交AE 于点H ,当OE =EF 时,求线段DH 的长度.图1 图2 图3EDCBA αNMBAO图1PEDCBA HF ABCDEP图2HF ABCDEP 图310.如图,∠AOC =∠BOC =10°,OC =20,在OA 上找一点M ,在OB 上找一点N ,则CM +MN 的最小值是( )A .20B .16C .12D .1016.如图,Rt △ ABC 中,∠C =90°,AC =BC =8,AB =,将Rt △ABC 折叠,使得点C 恰好落在AB边上的点E 处,折痕为AD ,P 为折痕AD 上一动点,则△PEB 周长的最小值是 .23. (本题满分10分)已知:在△ABC 中,AB =AC ,∠BAC =90°,点E 在边BC 上,点F 在射线EC 上,且∠EAF =45°.(1)如图1,画出△AEF 关于直线AF 对称的△AEF ,并写出画法;(2)如图2,若AFE =75°,求BEEF的值;(3)如图3,若BE =CF ,直接写出∠AFE 的度数为 .24.(本题满分12分)在平面直角坐标系中,点A (a ,0)、C (b ,0)、B (0),a 、b 满足: a 2+2ab +2b 2-4b +4=0,且AB =AC (1)判断△ABC 的形状并证明;(2)如图1,点D 为BA 延长线上一点,AD =AB ,E 为x 轴负半轴上一点,F 为DE 上一点,连接CF 交AD 于点G ,∠EFC =120°,求的值;(3)如图2,R (3a ,0),点P 为线段BR 上一动点,以AP 为边作等腰△APQ ,P A =PQ ,且∠APQ =∠RAB ,连接AQ ,当点P 运动时,△ABQ 的面积是否变化?若不变,求其值;若变化,求其变化范围.CBANMOPED C BAABCE FFE CBA10.如图,四边形ABCD 中,AB =AD ,BC =BD ,若∠ABD =12∠BAC =α,则∠BDC 的度数为( ) A .2αB .45°+12α C .90°-α D .180°-3α16 . 如图,在△ABC 中,AB =AC ,BD ⊥AC 于D ,E 为BD 延长线上一点,∠E =∠C ,∠BAC 的平分线交BD 于F . 若BD DE =94,则ADCD的值为 .23.(本题10分)如图,在△ABC 中,∠BAC =60°,D 为AB 上一点,连接C D . (1)如图1,若∠BCA =90°,CD ⊥AB ,则ADBD=______(直接写出结果). (2)如图2,若BD =AC ,E 为CD 的中点,AE 与BC 存在怎样的数量关系,判断并说明理由; (3)如图3,CD 平分∠ACB ,BF 平分∠ABC ,交CD 于F .若BF =AC ,求∠ACD 的度数.24.(本题12分)在平面直角坐标系中,点A (a ,0),B (0,b ),且a ,b 满足a 2-20b +b 2+(b -4)2=0,点C 为线段AB 上一点,连接O C . (1)直接写出a =____,b =_____;(2)如图1,P 为OC 上一点,连接P A ,P B .若P A =B 0,∠BPC =30°.求点P 的纵坐标;(3)如图2,在(2)的条件下,点M 是AB 上一动点,以OM 为边在OM 的右侧作等边△OMN ,连接CN .若OC =t ,求ON +CN 的最小值(结果用含t 的式子表示).DABC图3图2图1A BCDFABCD EABCD图2图110.小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有( )A .3个B .4个C .5个 D .无数个16 . 在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且P A =2,以PB 为边作等边△PBM ,则线段AM 的长最大值为 .23.(10分) 如图,分别以△ABC 的边AB ,AC 向外作两个等边三角形△ABD ,△ACE .连接BE 、CD 交点F ,连接AF .(1)求证:△ACD ≌△AEB ; (2)求证:AF +BF +CF =C D .24.(12分) (本题满分12分)问题背景:如图1,在四边形ABCD 中,∠ABC =90°,AB =CB =DB ,DB ⊥A C . ①直接写出∠ADC 的大小; ②求证:AB 2+BC 2=AC 2.迁移应用:如图2,在四边形ABCD 中,∠BAD =60°,AB =BC =CD =DA =2,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE 、CF . ①求证:△CEF 是等边三角形; ②若∠BAF =45°,求BF 的长.D CBA B C C B b a FEDBAE DCBAMF EDCBA东湖高新区10.如图,AD 为△ABC 的高,点H 为AC 的垂直平分线与BC 的交点,点F 为BC 上一点,若∠B =2∠C ,且AC =AB +BF ,AC FCDF−的值为( )A .1B .2C .1.5D .316.如图,∠AOB =35°,C 为OB 上的定点,M 、N 分别为OA 、OB 上两个动点,当CM +MN 的值最小时,∠OCM 的度数为 .23.(本题10分)如图1,△ABC 为等腰直角三角形,△ABD 为等边三角形,连接C D . (1)求∠ACD 的度数;(2)如图1,作∠BAC 的平分线交CD 于点E ,求证:DE =AE +CE ; (3)如图2,在(2)的条件下,M 为线段BC 右侧一点,满足∠CMB =60°,求证:EM 平分∠CM B .图1 图224.(本题12分)如图,在平面直角坐标系中,A (a ,0)、B (0,b ),且│a +4│+b 2-8b +16=0. (1)求a 、b 的值; (2)如图1,C 为y 轴负半轴上一点,连CA ,过点C 作CD ⊥CA ,使CD =CA ,连BD ,求证:∠CBD =45°; (3)如图2,若有一等腰Rt △BMN ,∠BMN =90°,连AN ,取AN 中点P ,连PM 、PO .试探究PM 和PO 的关系.图1 图2AB C MN AB CDE MABCE D10.如图,在平面直角坐标系中,有一个正三角形ABC ,其中B 、C 的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个正三角形沿着x 轴向右滚动,则在滚动的过程中,这个正三角形的顶点A 、B 、C 中,会过点(2018,1)的是点( )A .A 和B B .B 和C C .C 和AD .C16.正方形ABCD 与正三角形AEF 的顶点A 重合,将△AEF 绕顶点A 旋转,在旋转过程中,当BE =DF时,∠BAE 的大小是 .23.(本题10分)如图1,点A 在x 轴上,点D 在y 轴上,以OA 、AD 为边分别作等边△OAC 和等边△ADE ,A (2,0).(1)若∠DAC =10°,求∠AEC 的度数.(2)如图2,若点P 为x 轴正半轴上一动点,点P 在点A 的右边,连PC ,以PC 为边在第一象限内作等边△PCM ,延长MA 交y 轴于点N ,当点P 运动时,①∠ANO 的值是否发生变化?若不变,求其值;若变化,请说明理由;②AM ﹣AP 的值是否发生变化?若不变,求其值;若变化,请说明理由.图1 图224.(本题12分)已知等边△ABC 中,点D 为射线BA 上一点,作DE =DC ,交直线BC 于点E .(1)当点D 在线段AB 上时,如图1,线段CE 、AD 、AC 之间的数量关系是 ;(2)当点D 在BA 的延长线上时,如图2,求证:CE =AC ﹣AD ;(3)在(2)的条件下,∠ABC 的平分线BF ,交CD 于点F ,过点A 作AH ⊥CD 于H ,当∠EDC =30°,CF=10时,求DH 的长.图1 图2 备用图E DC B A ED C B A F HA B C DE10.在△ABC 中,∠ACB =90°,∠B =60°,AB =4,点D 是直线BC 上一动点,连接AD ,在直线AD的右側作等边△ADE ,连接CE ,当线段CE 的长度最小时,线段CD 的长度为( )A .1B .2C .3 D16.如图,△ABC 中,∠ BAC =60°,D 为线段AC 上一点,若BD 平分∠ABC ,∠C =80°,AD =m ,AC =n ,则BC = .(用含m ,n 的式子表示)23.(本题满分10分)已知△ABC ,AB =AC ,∠BAC =2α.(1)如图1,∠ABG =∠BCG ,则∠G = (用α表示);(2)如图2,点E ,M 分别为BC 、AC 上的点,AE 交BM 于点F ,连接CF ,若∠BFE =2∠CFE =2α,求ABF ACFS S ∆∆的值; (3)如图3,CD 为AB 边上的高,∠ACD 的平分线CP 交AB 于P ,过P 作PH ⊥BC 于H ,PH 与CD 交于点Q ,连接BQ .若PD =a ,BD =b ,请直接用含有a ,b 的代数式表示△BQC 的面积为 .图1 图2 图324.(本题满分12分)已知△ABC 是等边三角形.(1)如图1,点D 是BC 边的中点,点P 在直线AC 上,若△P AD 是轴对称图形,则∠APD 的度数为 ;(2)如图2,点D 在BC 边上,∠ADG =60°,DG 与∠ACB 的外角平分线交于G ,GH ⊥AC 于H ,当点D 在BC 边上移动时,请判断线段AH ,AC ,CD 之间的数量关系,并说明理由;(3)如图3,点D 在BC 延长线上,连接AD ,E 为AD 上一点,AE =AC ,连接BE 交AC 于F ,若AF =2ED =3,则线段CF 的长为 .图1 图2 图3A B C D EA B C DA BC G E MF AB C QPH A B C D A BC D H G M A B C D AB C D E F。

专题25期中全真模拟卷05-2020-2021学年八年级数学上学期期中考试高分直通车(原卷版)

专题25期中全真模拟卷05-2020-2021学年八年级数学上学期期中考试高分直通车(原卷版)

20202021学年八年级上学期数学期中考试高分直通车【人教版】专题2.5人教版八年级数学上册期中全真模拟卷05姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题,选择12道、填空6道、解答8道 .答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•新都区模拟)下列图形中,是轴对称图形的是()A.B.C.D.2.(2020春•沙坪坝区校级月考)下列各线段中,能与长为4,6的两线段组成三角形的是()A.2B.8C.10D.123.(2019秋•肇庆期末)如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE4.(2020•温州模拟)如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1B.1C.﹣5D.55.(2020春•肇东市期末)如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形6.(2019秋•松滋市期末)如图,已知D为BC上一点,∠B=∠1,∠BAC=64°,则∠2的度数为()A .37°B .64°C .74°D .84°7.(2019秋•万州区期末)如图,在△ABC 中,边AC 的垂直平分线交边AB 于点D ,连结CD .若∠A =50°,则∠BDC 的大小为( )A .90°B .100°C .120°D .130°8.(2020•恩平市模拟)如图,AB =DB ,∠1=∠2,请问添加下面哪个条件不能判断△ABC ≌△DBE 的是( )A .BC =BEB .AC =DE C .∠A =∠D D .∠ACB =∠DEB9.(2019•霞山区一模)如图,点P 是∠AOB 的角平分线OC 上一点,PD ⊥OA ,垂足为点D ,PD =2,M 为OP 的中点,则点M 到射线OB 的距离为( )A .12B .1C .√2D .210.(2019•大庆)如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是( )A.15°B.30°C.45°D.60°11.(2019秋•郯城县期中)在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD 为直角三角形,则∠BCD的度数为()A.60°B.10°C.45°D.10°或60°12.(2019秋•西城区校级期中)如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点,如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC上由点A向C点以4cm/s 的速度运动.经过()秒后,△BPD与△CQP全等.A.2B.3C.2或3D.无法确定二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上13.(2020秋•江岸区校级月考)五边形的内角和是,外角和是,对角线有条.14.(2019秋•铜山区期中)如图,在△ABC中,∠C=90°,AD平分∠BAC,若CD=8,点E是AB上一动点,DE的最小值为.15.(2019•广安)如图,正五边形ABCDE中,对角线AC与BE相交于点F,则∠AFE=度.16.(2019秋•岱岳区期中)茗茗用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需这种材料的长度为cm.17.(2019秋•镇原县期末)如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′=.18.(2018秋•全南县期中)在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•禅城区期末)如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1,点A、B、C的对应点分别是A1、B1、C1,则A1、B1、C1的坐标为:A1(,),B1(,)、C1(,);(2)画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,则△CC1C2的面积是.20.(2020•宁波模拟)如图1是五个小正方形拼成的图形,请你移动其中一个小正方形,重新拼一个图形,使得所拼成的新图形:(1)是轴对称图形,但不是中心对称图形.(2)既是轴对称图形,又是中心对称图形.(请将两个小题依次作答在图①、②中,均只需画出符合条件的一种情形,内部涂上阴影)21.(2020•江阴市模拟)如图,点A、E、F、C在一直线上,DE∥BF,DE=BF,AE=CF.求证:AB∥CD.22.(2019秋•鹿邑县期末)如图,△ABC中,AB=AC,∠A=50°,P为△ABC内一点,∠PBC=∠PCA,求∠BPC的值.23.(2019•重庆)如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.24.(2019秋•渝中区校级期中)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE ⊥BC交BC于点E,交CA延长线于点F.(1)证明:AF=AD;(2)若∠B=60°,BD=4,AD=2,求EC的长.25.(2018•绍兴)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.26.(2019秋•日照期中)综合与实践:问题情境:已知在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D为直线BC上的动点(不与点B,C重合),点E在直线AC上,且AE=AD,设∠DAC=n.(1)如图1,若点D在BC边上,当n=36°时,求∠BAD和∠CDE的度数;拓广探索:(2)如图2,当点D运动到点B的左侧时,其他条件不变,试猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动点C的右侧时,其他条件不变,请直接写出∠BAD和∠CDE的数量关系.。

(新人教版)八年级(下册)期末数学试卷6+参考答案与试题解析

(新人教版)八年级(下册)期末数学试卷6+参考答案与试题解析

八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)1.下列二次根式中,是最简二次根式的是()A. B. C.D.2.平行四边形ABCD中,若∠B=2∠A,则∠C的度数为()A.120°B.60°C.30°D.15°3.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示()则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁4.若A(1,y1),B(2,y2)两点都在反比例函数y=的图象上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定5.如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD 的周长为()A.16 B.24 C.4D.86.下列命题中,正确的是()A.有一组邻边相等的四边形是菱形B.对角线互相平分且垂直的四边形是矩形C.两组邻角相等的四边形是平行四边形D.对角线互相垂直且相等的平行四边形是正方形7.如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=CD,则∠BEC的度数为()A.22.5° B.60°C.67.5° D.75°8.关于x的一元二次方程x2﹣2x+k=0有两个实数根,则实数k的取值范围是()A.k≤1 B.k>1 C.k=1 D.k≥19.已知正比例函数y=kx的图象与反比例函数y=的图象交于A,B两点,若点A的坐标为(﹣2,1),则关于x的方程=kx的两个实数根分别为()A.x1=﹣1,x2=1 B.x1=﹣1,x2=2 C.x1=﹣2,x2=1 D.x1=﹣2,x2=210.中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD 的面积分别记为S1,S2,S3,若S1+S2+S3=18,则正方形EFGH的面积为()A.9 B.6 C.5 D.二、填空题(本题共20分,第11-14题,每小题3分,第15-18题,每小题3分)11.关于x的一元二次方程x2﹣6x+m=0有一个根为2,则m的值为______.12.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为______.13.某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是______.14.将一元二次方程x2+4x+1=0化成(x+a)2=b的形式,其中a,b是常数,则a+b=______.15.反比例函数y=在第一象限的图象如图,请写出一个满足条件的k值,k=______.16.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′,BC′与AD交于点E,若AB=3,BC=4,则DE的长为______.17.如图,平安路与幸福路是两条平行的道路,且与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处,如果小强同学站在平安路与新兴大街的交叉路口,准备去书店,按图中的街道行走,最近的路程为______m.18.如图,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP 的长,y表示线段BP的长,y与x之间的关系如图2所示,则线段AB的长为______,线段BC的长为______.三、解答题(本题共16分,第19题8分,第20题8分)19.计算:(1)﹣+(+1)(﹣1)(2)×÷.20.解方程:(1)x2﹣6x+5=0(2)2x2﹣3x﹣1=0.四、解答题(本题共34分,第21-22题,每小题7分,第23题6分,第24-25题,每小题7分)21.如图,在▱ABCD中,点E,M分别在边AB,CD上,且AE=CM,点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF;(2)连接EM,FN,若EM⊥FN,求证:EFMN是菱形.22.为了让同学们了解自己的体育水平,初二1班的体育康老师对全班45名学生进行了一次体育模拟测试(得分均为整数)成绩满分为10分,成绩达到9分以上(包含9分)为优秀,成绩达到6分以上(包含6分)为合格,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表根据以上信息,解答下列问题:(1)在这次测试中,该班女生得10分的人数为4人,则这个班共有女生______人;(2)补全初二1班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上;(3)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由;(5)体育康老师说,从整体看,1班的体育成绩在合格率方面基本达标,但在优秀率方面还不够理想,因此他希望全班同学继续加强体育锻炼,争取在期末考试中,全班的优秀率达到60%,若男生优秀人数再增加6人,则女生优秀人数再增加多少人才能完成康老师提出的目标?23.已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.24.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别为OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形;(2)求证:四边形EFMN是矩形;(3)连接DM,若DM⊥AC于点M,ON=3,求矩形ABCD的面积.25.在平面直角坐标系xOy中,四边形OABC是矩形,点B的坐标为(4,3),反比例函数y=的图象经过点B.(1)求反比例函数的解析式;(2)一次函数y=ax﹣1的图象与y轴交于点D,与反比例函数y=的图象交于点E,且△ADE的面积等于6,求一次函数的解析式;(3)在(2)的条件下,直线OE与双曲线y=(x>0)交于第一象限的点P,将直线OE向右平移个单位后,与双曲线y=(x>0)交于点Q,与x轴交于点H,若QH=OP,求k的值.26.如图,在数轴上点A表示的实数是______.27.我们已经学习了反比例函数,在生活中,两个变量间具有反比例函数关系的实例有许多,例如:在路程s一定时,平均速度v是运行时间t的反比例函数,其函数关系式可以写为:v=(s为常数,s≠0).请你仿照上例,再举一个在日常生活、学习中,两个变量间具有反比例函数关系的实例:______;并写出这两个变量之间的函数解析式:______.28.已知:关于x的一元二次方程mx2﹣3(m﹣1)x+2m﹣3=0(m>3).(1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2(用含m的代数式表示);①求方程的两个实数根x1,x2(用含m的代数式表示);②若mx1<8﹣4x2,直接写出m的取值范围.29.四边形ABCD是正方形,对角线AC,BD相交于点O.(1)如图1,点P是正方形ABCD外一点,连接OP,以OP为一边,作正方形OPMN,且边ON与边BC相交,连接AP,BN.①依题意补全图1;②判断AP与BN的数量关系及位置关系,写出结论并加以证明;(2)点P在AB延长线上,且∠APO=30°,连接OP,以OP为一边,作正方形OPMN,且边ON与BC的延长线恰交于点N,连接CM,若AB=2,求CM的长(不必写出计算结果,简述求CM长的过程)八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)1.下列二次根式中,是最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】利用最简二次根式的定义判断即可.【解答】解:A、为最简二次根式,符合题意;B、=2,不合题意;C、=,不合题意;D、=2,不合题意,故选A【点评】此题考查了最简二次根式,熟练掌握最简二次根式的定义是解本题的关键.2.平行四边形ABCD中,若∠B=2∠A,则∠C的度数为()A.120°B.60°C.30°D.15°【考点】平行四边形的性质.【分析】先根据平行四边形的性质得出∠A+∠B=180°,∠A=∠C,再由∠B=2∠A可求出∠A的度数,进而可求出∠C的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∠A=∠C,∵∠B=2∠A,∴∠A+2∠A=180°,∴∠A=∠C=60°.故选B.【点评】本题考查的是平行四边形的性质,熟知平行四边形的对角相等是解答此题的关键.3.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示()则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】先比较四个选手的方差的大小,根据方差的性质解答即可.【解答】解:∵0.60>0.56>0.50>0.45,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.【点评】本题考查的是方差的性质,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.若A(1,y1),B(2,y2)两点都在反比例函数y=的图象上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征结合点A、B的横坐标,求出y1、y2的值,二者进行比较即可得出结论.【解答】解:∵A(1,y1),B(2,y2)两点都在反比例函数y=的图象上,∴1•y1=1,2•y2=1,解得:y1=1,y2=,∵1>,∴y1>y2.故选C.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是根据反比例函数图象上点的坐标特征求出y1、y2的值.本题属于基础题,难度不大,解决该题型题目时,结合点的横坐标,利用反比例函数图象上点的坐标特征求出点的纵坐标是关键.5.如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD 的周长为()A.16 B.24 C.4D.8【考点】菱形的性质.【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD 中,根据勾股定理可以求得AB的长,即可求得菱形ABCD的周长.【解答】解:∵四边形ABCD是菱形,∴BO=OD=AC=2,AO=OC=BD=3,AC⊥BD,∴AB==,∴菱形的周长为4.故选:C.【点评】本题考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.6.下列命题中,正确的是()A.有一组邻边相等的四边形是菱形B.对角线互相平分且垂直的四边形是矩形C.两组邻角相等的四边形是平行四边形D.对角线互相垂直且相等的平行四边形是正方形【考点】命题与定理.【分析】分别根据菱形、矩形、正方形及平行四边形的判定定理对各选项进行逐一分析即可.【解答】解:A、有一组邻边相等的平行四边形是菱形,故本选项错误;B、对角线互相平分且垂直的四边形是菱形,故本选项错误;C、两组对角相等的四边形是平行四边形,故本选项错误;D、对角线互相垂直且相等的平行四边形是正方形,故本选项正确.故选D.【点评】本题考查的是命题与定理,熟知菱形、矩形、正方形及平行四边形的判定定理是解答此题的关键.7.如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=CD,则∠BEC的度数为()A.22.5° B.60°C.67.5° D.75°【考点】正方形的性质.【分析】由正方形的性质得到BC=CD,∠DBC=45°,证出BE=BC,根据三角形的内角和定理求出∠BEC=∠BCE=67.5°即可.【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠DBC=45°,∵BE=CD,∴BE=BC,∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,故选C.【点评】本题考查了正方形的性质,三角形的内角和定理,等腰三角形的性质等知识;熟练掌握正方形的性质,证出BE=BC是解决问题的关键.8.关于x的一元二次方程x2﹣2x+k=0有两个实数根,则实数k的取值范围是()A.k≤1 B.k>1 C.k=1 D.k≥1【考点】根的判别式.【分析】根据所给的方程找出a,b,c的值,再根据关于x的一元二次方程x2﹣2x+k=0有两个实数根,得出△=b2﹣4ac≥0,从而求出k的取值范围.【解答】解:∵a=1,b=﹣2,c=k,而方程有两个实数根,∴△=b2﹣4ac=4﹣4k≥0,∴k≤1;故选A.【点评】本题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是本题的关键.9.已知正比例函数y=kx的图象与反比例函数y=的图象交于A,B两点,若点A的坐标为(﹣2,1),则关于x的方程=kx的两个实数根分别为()A.x1=﹣1,x2=1 B.x1=﹣1,x2=2 C.x1=﹣2,x2=1 D.x1=﹣2,x2=2【考点】反比例函数与一次函数的交点问题.【分析】根据正、反比例函数图象的对称性可得出点A、B关于原点对称,由点A的坐标即可得出点B的坐标,结合A、B点的横坐标即可得出结论.【解答】解:∵正比例函数图象关于原点对称,反比例函数图象关于原点对称,∴两函数的交点A、B关于原点对称,∵点A的坐标为(﹣2,1),∴点B的坐标为(2,﹣1).∴关于x的方程=kx的两个实数根分别为﹣2、2.故选D.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是求出点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据正、反比例函数的对称性求出两交点的坐标是关键.10.中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD 的面积分别记为S1,S2,S3,若S1+S2+S3=18,则正方形EFGH的面积为()A.9 B.6 C.5 D.【考点】勾股定理的证明.【分析】据图形的特征得出四边形MNKT的面积设为x,将其余八个全等的三角形面积一个设为y,从而用x,y表示出S1,S2,S3,得出答案即可.【解答】解:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=18,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=18,故3x+12y=18,x+4y=6,所以S2=x+4y=6,即正方形EFGH的面积为6.故选:B.【点评】此题主要考查了勾股定理的应用,根据已知得出用x,y表示出S1,S2,S3,再利用S1+S2+S3=18求出是解决问题的关键.二、填空题(本题共20分,第11-14题,每小题3分,第15-18题,每小题3分)11.关于x的一元二次方程x2﹣6x+m=0有一个根为2,则m的值为8.【考点】一元二次方程的解.【分析】根据关于x的一元二次方程x2﹣6x+m=0有一个根为2,可以求得m的值.【解答】解:∵关于x的一元二次方程x2﹣6x+m=0有一个根为2,∴22﹣6×2+m=0,解得,m=8,故答案为:8.【点评】本题考查一元二次方程的解,解题的关键是明确方程的解一定适合方程.12.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为5.【考点】三角形中位线定理;直角三角形斜边上的中线.【分析】已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.【解答】解:∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF=×10=5cm.故答案为:5.【点评】此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.13.某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是23.【考点】折线统计图;中位数.【分析】根据中位数的定义求解即可.【解答】解:由折线统计图可知,阅读20本的有4人,21本的有8人,23本的有20人,24本的有8人,共40人,∴其中位数是第20、21个数据的平均数,即=23,故答案为:23.【点评】此题考查了折线统计图及中位数的知识,关键是掌握寻找中位数的方法,一定不要忘记将所有数据从小到大依此排列再计算.14.将一元二次方程x2+4x+1=0化成(x+a)2=b的形式,其中a,b是常数,则a+b=5.【考点】解一元二次方程-配方法.【分析】方程配方得到结果,确定出a与b的值,即可求出a+b的值.【解答】解:方程x2+4x+1=0,移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3,∴a=2,b=3,则a+b=5,故答案为:5【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.15.反比例函数y=在第一象限的图象如图,请写出一个满足条件的k值,k=3.【考点】反比例函数的性质.【分析】根据反比例函数y=的性质:当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小可得答案.【解答】解:∵反比例函数y=的图象在第一象限,∴k>0,∴k=3,故答案为:3.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.16.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′,BC′与AD交于点E,若AB=3,BC=4,则DE的长为.【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【分析】先根据等角对等边,得出DE=BE,再设DE=BE=x,在直角三角形ABE中,根据勾股定理列出关于x的方程,求得x的值即可.【解答】解:由折叠得,∠CBD=∠EBD,由AD∥BC得,∠CBD=∠EDB,∴∠EBD=∠EDB,∴DE=BE,设DE=BE=x,则AE=4﹣x,在直角三角形ABE中,AE2+AB2=BE2,即(4﹣x)2+32=x2,解得x=,∴DE的长为.故答案为:【点评】本题以折叠问题为背景,主要考查了轴对称的性质以及勾股定理.折叠是一种对称变换,它属于轴对称,折叠前后图形的对应边和对应角相等.解题时,我们常设所求的线段长为x,然后用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求解.17.如图,平安路与幸福路是两条平行的道路,且与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处,如果小强同学站在平安路与新兴大街的交叉路口,准备去书店,按图中的街道行走,最近的路程为500m.【考点】勾股定理的应用.【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.【解答】解:如右图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC==500m,∴CE=AC﹣AE=200m,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故答案是:500.【点评】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC≌△DEA,并能比较从B到E有两种走法.18.如图,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP 的长,y表示线段BP的长,y与x之间的关系如图2所示,则线段AB的长为2,线段BC的长为2.【考点】动点问题的函数图象.【分析】如图1中,作BE⊥AC于E,由图2可知,AB=2,AE=1,AC=4,EC=3,在Rt △ABE,Rt△BEC中利用勾股定理即可解决问题.【解答】解:如图1中,作BE⊥AC于E.由图2可知,AB=2,AE=1,AC=4,EC=3,在Rt△ABE中,∵∠AEB=90°,∴BE===,在Rt△BEC中,BC===2.故答案分别为2,2.【点评】本题考查动点问题的函数图象、勾股定理等知识,解题的关键是读懂图象信息,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题(本题共16分,第19题8分,第20题8分)19.计算:(1)﹣+(+1)(﹣1)(2)×÷.【考点】二次根式的混合运算.【分析】(1)先化简二次根式、根据平方差公式去括号,再合并同类二次根式可得;(2)先化简,再计算乘除法可得.【解答】解:(1)原式=3﹣2+3﹣1=+2;(2)原式=2××=8.【点评】本题主要考查二次根式的混合运算,熟练掌握二次根式的性质化简各二次根式是解题的关键.20.解方程:(1)x2﹣6x+5=0(2)2x2﹣3x﹣1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出b2﹣4ac的值,再代入公式求出即可.【解答】解:(1)x2﹣6x+5=0,(x﹣5)(x﹣1)=0,x﹣5=0,x﹣1=0,x1=5,x2=1;(2)2x2﹣3x﹣1=0,b2﹣4ac=(﹣3)2﹣4×2×(﹣1)=17,x=,x1=,x2=.【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程是解此题的关键.四、解答题(本题共34分,第21-22题,每小题7分,第23题6分,第24-25题,每小题7分)21.如图,在▱ABCD中,点E,M分别在边AB,CD上,且AE=CM,点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF;(2)连接EM,FN,若EM⊥FN,求证:EFMN是菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质.【分析】(1)直接利用平行四边形的性质得出AN=CF,再利用全等三角形的判定方法得出答案;(2)直接利用全等三角形的判定与性质得出EN=FM,EF=MN,再结合菱形的判定方法得出答案.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵ND=BF,∴AD﹣ND=BC﹣BF,即AN=CF,在△AEN和△CMF中,∴△AEN≌△CMF(SAS);(2)如图:由(1)△AEN≌△CMF,故EN=FM,同理可得:△EBF≌△MDN,∴EF=MN,∵EN=FM,EF=MN,∴四边形EFMN是平行四边形,∵EM⊥FN,∴四边形EFMN是菱形.【点评】此题主要考查了菱形的判定以及全等三角形的判定与性质,正确掌握全等三角形的判定与性质是解题关键.22.为了让同学们了解自己的体育水平,初二1班的体育康老师对全班45名学生进行了一次体育模拟测试(得分均为整数)成绩满分为10分,成绩达到9分以上(包含9分)为优秀,成绩达到6分以上(包含6分)为合格,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表根据以上信息,解答下列问题:(1)在这次测试中,该班女生得10分的人数为4人,则这个班共有女生25人;(2)补全初二1班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上;(3)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由;(5)体育康老师说,从整体看,1班的体育成绩在合格率方面基本达标,但在优秀率方面还不够理想,因此他希望全班同学继续加强体育锻炼,争取在期末考试中,全班的优秀率达到60%,若男生优秀人数再增加6人,则女生优秀人数再增加多少人才能完成康老师提出的目标?【考点】方差;统计表;扇形统计图;条形统计图;中位数;众数.【分析】(1)根据扇形统计图可以得到这个班的女生人数;(2)根据本班有45人和(1)中求得得女生人数可以得到男生人数,从而可以得到得7分的男生人数,进而将统计图补充完整;(3)根据表格中的数据可以求得男生得平均成绩和女生的众数;(4)答案不唯一,只要从某一方面能说明理由即可;(5)根据题意可以求得女生优秀人数再增加多少人才能完成康老师提出的目标.【解答】解:(1)∵在这次测试中,该班女生得10分的人数为4人,∴这个班共有女生:4÷16%=25(人),故答案为:25;(2)男生得7分的人数为:45﹣25﹣1﹣2﹣3﹣5﹣3=6,故补全的统计图如右图所示,(3)男生得平均分是:=7.9(分),女生的众数是:8,故答案为:7.9,8;(4)女生队表现更突出一些,理由:从众数看,女生好于男生;(5)由题意可得,女生需增加的人数为:45×60%﹣(20×40%+6)﹣(25×36%)=4(人),即女生优秀人数再增加4人才能完成康老师提出的目标.【点评】此题主要考查了平均数、众数、方差、中位数的定义,正确把握相关定义是解题关键.23.已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.【考点】勾股定理的逆定理;勾股定理.【分析】由于∠B=90°,AB=BC=2,利用勾股定理可求AC,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可证△ACD是直角三角形,于是有∠CAD=90°,从而易求∠BAD.【解答】解:∵∠B=90°,AB=BC=2,∴AC==2,∠BAC=45°,又∵CD=3,DA=1,∴AC2+DA2=8+1=9,CD2=9,∴AC2+DA2=CD2,∴△ACD是直角三角形,∴∠CAD=90°,∴∠DAB=45°+90°=135°.故∠DAB的度数为135°.【点评】本题考查了等腰三角形的性质、勾股定理、勾股定理的逆定理.解题的关键是连接AC,并证明△ACD是直角三角形.24.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别为OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形;(2)求证:四边形EFMN是矩形;(3)连接DM,若DM⊥AC于点M,ON=3,求矩形ABCD的面积.【考点】矩形的判定与性质.【分析】(1)根据题目要求画出图形即可;(2)根据三角形中位线定理可得EF∥AB,EF=AB,NM∥CD,MN=DC,再由矩形的性质可得AB∥DC,AB=DC,AC=BD,进而可得四边形EFMN是矩形;(3)根据条件可得DM垂直平分OC,进而可得DO=CO,然后证明△COD是等边三角形,进而得出BC,CD的长,进而得出答案.【解答】(1)解:如图所示:(2)证明:∵点E,F分别为OA,OB的中点,∴EF∥AB,EF=AB,同理:NM∥CD,MN=DC,∵四边形ABCD是矩形,∴AB∥DC,AB=DC,AC=BD,∴EF∥NM,EF=MN,∴四边形EFMN是平行四边形,∵点E,F,M,N分别为OA,OB,OC,OD的中点,∴EO=AO,MO=CO,在矩形ABCD中,AO=CO=AC,BO=DO=BD,∴EM=EO+MO=AC,同理可证FN=BD,∴EM=FN,∴四边形EFMN是矩形.(3)解:∵DM⊥AC于点M,由(2)MO=CO,∴DO=CD,在矩形ABCD中,AO=CO=AC,BO=DO=BD,AC=BD,∴AO=BO=CO=DO,∴△COD是等边三角形,∴∠ODC=60°,∵MN∥DC,∴∠FNM=∠ODC=60°,在矩形EFMN中,∠FMN=90°.∴∠NFM=90°﹣∠FNM=30°,∵NO=3,∴FN=2NO=6,FM=3,MN=3,∵点F,M分别为OB,OC的中点,∴BC=2FM=6,∴矩形的面积为BC•CD=36.【点评】此题主要考查了矩形的判定与性质以及等边三角形的判定与性质、勾股定理等知识,正确得出△COD是等边三角形是解题关键.25.在平面直角坐标系xOy中,四边形OABC是矩形,点B的坐标为(4,3),反比例函数y=的图象经过点B.(1)求反比例函数的解析式;(2)一次函数y=ax﹣1的图象与y轴交于点D,与反比例函数y=的图象交于点E,且△ADE的面积等于6,求一次函数的解析式;(3)在(2)的条件下,直线OE与双曲线y=(x>0)交于第一象限的点P,将直线OE向右平移个单位后,与双曲线y=(x>0)交于点Q,与x轴交于点H,若QH=OP,求k的值.【考点】反比例函数与一次函数的交点问题;矩形的性质;坐标与图形变化-平移.【分析】(1)利用待定系数法即可解决.(2)设点E(x E,y E),由△ADE的面积=6,得•AD•|x E|=6,列出方程即可解决.(3)设点P(x P,y P),取OP中点M,则OM=OP,则M(x P,x P),Q(x P+,x P),列出方程求出x P即可解决问题.【解答】解:(1)∵反比例函数y=的图象经过点B(4,3),∴=3,∴m=12,∴反比例函数解析式为y=.(2)∵四边形OABC是矩形,点B(4,3),∴A(0,3),C(4,0),∵一次函数y=ax﹣1的图象与y轴交于点D,∴点D(0,﹣1),AD=4,设点E(x E,y E),∵△ADE的面积=6,∴•AD•|x E|=6,∴x E=±3,∵点E在反比例函数y=图象上,∴E(3,4),或(﹣3,﹣4),当E(3,4)在一次函数y=ax﹣1上时,4=3a﹣1,∴a=,∴一次函数解析式为y=x﹣1,当点(﹣3,﹣4)在一次函数y=ax﹣1上时,﹣4=﹣3a﹣1,∴a=1,∴一次函数解析式为y=x﹣1,综上所述一次函数解析式为y=x﹣1或y=x﹣1.(3)由(2)可知,直线OE解析式为y=x,设点P(x P,y P),取OP中点M,则OM= OP,∴M(x P,x P),∴Q(x P+,x P),∴H(,0),∵点P、Q在反比例函数y=图象上,∴x P•x P=(x P+)x P,∴x P=,∴P(,),∴k=.【点评】本题考查反比例函数图象与一次函数图象的交点问题,矩形的性质、坐标与图形的变化等知识,解题的关键是把问题转化为方程,学会利用参数解决问题,属于中考常考题型.26.如图,在数轴上点A表示的实数是.。

2020年初二数学下期末试卷(带答案)

2020年初二数学下期末试卷(带答案)

2020年初二数学下期末试卷(带答案)2020年初二数学下期末试卷(带答案)一、选择题1.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,0),点C的坐标为(0,1),则选C。

2.已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM 长为半径画弧,两弧交于点C,连接AC,BC,则△XXX一定是等腰三角形。

3.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则CBD的度数为60度。

4.如图,在ABCD中,对角线AC、BD相交于点O。

E、F是对角线AC上的两个不同点,当E、F两点满足下列条件时,四边形DEBF不一定是平行四边形:DE=BF。

5.下列计算正确的是52=10.6.下列计算中正确的是32 1.7.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是:参加本次植树活动共有30人。

8.已知a,b,c是ABC的三边,且满足(a b)(a b c)0,则ABC是等腰直角三角形。

9.下列结论中,错误的有③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形。

10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是4m2/h。

1.300平方米2.150平方米3.330平方米4.450平方米11.答案为B。

根据角平分线定理可知AE/ED=AB/BD=6/4,AF/FD=BC/BD=8/4,因此AE+AF=ED+DF=2×BD=8,故选B。

12.答案为B。

根据余弦定理可得AC=4√7,因为BD是菱形的对角线,所以BD=2√7,又因为ABCD是菱形,所以BC=AC/2=2√7,故选B。

13.角平分线定理。

当XXX时,BE=ED=DF=FB,即四边形BEDF为正方形。

湖北省武汉市江岸区2017--2018学年度上期八年级数学期末试题(解析版)

湖北省武汉市江岸区2017--2018学年度上期八年级数学期末试题(解析版)

2017-2018学年湖北省武汉市江岸区八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.下列各图中,不是轴对称图形的是()A.B.C.D.2.若分式有意义,则x的取值范围是()A.x≠1B.x=1C.x>1D.x<13.下列计算正确的是()A.b3•b3=2b3B.(x+2)(x﹣2)=x2﹣2C.(a+b)2=a2+b2D.(﹣2a)2=4a24.在平面直角坐标系中,点A(2,5)与点B关于y轴对称,则点B的坐标是()A.(﹣5,﹣2)B.(﹣2,﹣5)C.(﹣2,5)D.(2,﹣5)5.某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为()A.0.34×10﹣6米B.3.4×10﹣6米C.34×10﹣5米D.3.4×10﹣5米6.已知多项式x2+kx+36是一个完全平方式,则k=()A.12B.6C.12或﹣12D.6或﹣67.一个多边形的内角和是900°,则这个多边形的边数是()A.6B.7C.8D.98.如图,甲是一块直径为2a+2b的圆形钢板,从中挖去直径分别为2a、2b的两个圆,则剩下的钢板的面积为()A.abπB.2abπC.3abπD.4abπ9.已知关于x的多项式﹣x2+mx+4的最大值为5,则m的值可能为()A.1B.2C.4D.510.如图,点C为线段AB上一点,且AC=2CB,以AC、CB为边在AB的同侧作等边△ADC和等边△EBC,连接DB、AE交于点F,连接FC,若FC=3,设DF=a、EF =b,则a、b满足()A.a=2b+1B.a=2b+2C.a=2b D.a=2b+3二、填空题(共6小题,每小题3分,共18分)11.分式的值为0,则x的值是.12.分式与的最简公分母为.13.已知2m=5,2n=9,则2m+n=.14.计算:已知:a+b=3,ab=1,则a2+b2=.15.如图,在Rt△ABC中,∠C=30°,将△ABC绕点B旋转θ(0<θ<60°)到△A′BC′,边AC和边A′C′相交于点P,边AC和边BC′相交于Q,当△BPQ为等腰三角形时,则θ=.16.如图,点C为线段AB的中点,E为直线AB上方的一点,且满足CE=CB,连接AE,以AE为腰,A为顶角顶点作等腰Rt△ADE,连接CD,当CD最大时,∠DEC =.三、解答题(共8小题,共72分)17.(8分)分解因式:(1)3mx﹣6my(2)4xy2﹣4x2y﹣y3.18.(8分)解方程:(1)﹣1=;(2)+=1.19.(8分)把一张长方形的纸片ABCD沿对角线BD折叠.折叠后,边BC的对应边BE交AD于F,求证:BF=DF.20.(8分)化简:(+)×.21.(8分)△ABC在平面直角坐标系中的位置如图所示,先将△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称(1)画出△A1B1C1和△A2B2C2;(2)在x轴上确定一点P,使BP+A1P的值最小,直接写出P的坐标为;(3)点Q在坐标轴上且满足△ACQ为等腰三角形,则这样的Q点有个.22.(10分)甲、乙两工程队承包一项工程,如果甲工程队单独施工,恰好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则恰好如期完成.(1)问原来规定修好这条公路需多少长时间?(2)现要求甲、乙两个工程队都参加这项工程,但由于受到施工场地条件限制,甲、乙两工程队不能同时施工.已知甲工程队每月的施工费用为4万元,乙工程队每月的施工费用为2万元.为了结算方便,要求:甲、乙的施工时间为整数个月,不超过15个月完成.当施工费用最低时,甲、乙各施工了多少个月?23.(10分)等边△ABC中,点H在边BC上,点K在边AC上,且满足AK=HC,连接AH、BK交于点F.(1)如图1,求∠AFB的度数;(2)如图2,连接FC,若∠BFC=90°,点G为边AC上一点,且满足∠GFC=30°,求证:AG⊥BG;(3)如图3,在(2)条件下,在BF上取D使得DF=AF,连接CD交AH于E,若△DEF面积为1,则△AHC的面积为.24.(12分)在平面直角坐标系中,已知A(0,a)、B(b,0),且a、b满足:a2+b2﹣4a+4b+8=0,点D为x正半轴上一动点(1)求A、B两点的坐标;(2)如图,∠ADO的平分线交y轴于点C,点F为线段OD上一动点,过点F作CD 的平行线交y轴于点H,且∠AFH=45°,判断线段AH、FD、AD三者的数量关系,并予以证明;(3)以AO为腰,A为顶角顶点作等腰△ADO,若∠DBA=30°,直接写出∠DAO的度数2017-2018学年湖北省武汉市江岸区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.下列各图中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选:C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.若分式有意义,则x的取值范围是()A.x≠1B.x=1C.x>1D.x<1【分析】根据分式有意义,分母不等于0列不等式求解即可.【解答】解:由题意得,x﹣1≠0,解得x≠1.故选:A.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3.下列计算正确的是()A.b3•b3=2b3B.(x+2)(x﹣2)=x2﹣2C.(a+b)2=a2+b2D.(﹣2a)2=4a2【分析】根据整式的乘法分别计算各选项即可得出答案.【解答】解:A、b3•b3=b6,此选项错误;B、(x+2)(x﹣2)=x2﹣4,此选项错误;C、(a+b)2=a2+2ab+b2,此选项错误;D、(﹣2a)2=4a2,此选项正确;故选:D.【点评】本题主要考查整式的混合运算,解题的关键是熟练掌握整式的乘法运算法则.4.在平面直角坐标系中,点A(2,5)与点B关于y轴对称,则点B的坐标是()A.(﹣5,﹣2)B.(﹣2,﹣5)C.(﹣2,5)D.(2,﹣5)【分析】考查平面直角坐标系点的对称性质.【解答】解:点P(m,n)关于y轴对称点的坐标P′(﹣m,n)∴点P(2,5)关于y轴对称的点的坐标为(﹣2,5)故选:C.【点评】此题考查平面直角坐标系点对称的应用.5.某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为()A.0.34×10﹣6米B.3.4×10﹣6米C.34×10﹣5米D.3.4×10﹣5米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为3.4×10﹣6米.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.已知多项式x2+kx+36是一个完全平方式,则k=()A.12B.6C.12或﹣12D.6或﹣6【分析】利用完全平方公式的结构特征判断即可求出k的值.【解答】解:∵多项式x2+kx+36是一个完全平方式,∴k=12或﹣12,故选:C.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.一个多边形的内角和是900°,则这个多边形的边数是()A.6B.7C.8D.9【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选:B.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.8.如图,甲是一块直径为2a+2b的圆形钢板,从中挖去直径分别为2a、2b的两个圆,则剩下的钢板的面积为()A.abπB.2abπC.3abπD.4abπ【分析】剩下钢板的面积=直径为2a+2b的大圆面积﹣两个小圆的面积,依此列式计算即可.【解答】解:所剩钢板的面积=π(a+b)2﹣πa2﹣πb2=2πab,故选:B.【点评】此题考查了列代数式,涉及的知识有:圆的面积公式,完全平方公式,熟练掌握公式及法则是解本题的关键.9.已知关于x的多项式﹣x2+mx+4的最大值为5,则m的值可能为()A.1B.2C.4D.5【分析】将多项式配方后解答即可.【解答】解:﹣x2+mx+4=﹣(x﹣)2+()2+4,因为关于x的多项式﹣x2+mx+4的最大值为5,所以()2+4=5,解得:m=±2,所以可能为2.故选:B.【点评】此题考查配方法的运用,关键是将多项式配方后解答.10.如图,点C为线段AB上一点,且AC=2CB,以AC、CB为边在AB的同侧作等边△ADC和等边△EBC,连接DB、AE交于点F,连接FC,若FC=3,设DF=a、EF =b,则a、b满足()A.a=2b+1B.a=2b+2C.a=2b D.a=2b+3【分析】如图作CM⊥AE于M,CN⊥BD于N.在AE上取一点H使得CH=CF.首先证明AF=FD+FC,FB=FE+FC,再根据===2,推出AF=2BF,列出关系式即可解决问题;【解答】解:如图作CM⊥AE于M,CN⊥BD于N.在AE上取一点H使得CH=CF.∵△ACD,△BCE度数等边三角形,∴CA=CB,CE=CB,∠ACD=∠ECB=60°,∴∠ACE=∠DCB,∴△ACE≌△DCB,∴∠CAE=∠CDB,AE=BD,S△ACE =S△DCB,∴•AE•CM=•BD•CN,∴CM=CN,∵CM⊥AE于M,CN⊥BD于N,∴∠CFA=∠CFB,∵∠CAE=∠CDB,可得∠DFA=∠DCA=60°,∴∠DFA=∠CFA=∠CFB=60°,∵CH=CF,∴△CFH是等边三角形,∴∠FCH=∠ACD=60°,CH=CF=FH,∴∠ACH=∠DCF,∵CA=CD,CH=CF,∴△ACH≌△DCF,∴AH=DF,∴AF=AH+FH=DF+FC=a+3,同理可得BF=FE+FC=b+3,∴===2,∴AF=2BF,∴a+3=2(b+3),∴a=2b+3,故选:D.【点评】本题考查全等三角形的判定和性质、等边三角形的性质、角平分线的判定定理.三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考,选择题中的压轴题.二、填空题(共6小题,每小题3分,共18分)11.分式的值为0,则x的值是1.【分析】根据分式的值为零的条件得到x﹣1=0且x≠0,易得x=1.【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.【点评】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.12.分式与的最简公分母为2xy2.【分析】题目给出的两个分式的分母都是单项式,可根据最简公分母的定义直接确定【解答】解:对于分母2xy与y2,其系数的最小公倍数是2,y与y2指数最高的是y2,x只在一个中含有,所以最简公分母是2xy2故答案为:2xy2【点评】本题考查了确定最简公分母.若分式分母含有多项式,先把分母因式分解,再确定最简公分母.13.已知2m=5,2n=9,则2m+n=45.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:∵2m=5,2n=9,∴2m+n=2m•2n=5×9=45.故答案为:45.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.14.计算:已知:a+b=3,ab=1,则a2+b2=7.【分析】将所求式子利用完全平方公式变形后,把a+b与ab的值代入即可求出值.【解答】解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=32﹣2=9﹣2=7.故答案为:7【点评】此题考查了完全平方公式的运用,熟练掌握完全平方公式是解本题的关键.15.如图,在Rt△ABC中,∠C=30°,将△ABC绕点B旋转θ(0<θ<60°)到△A′BC′,边AC和边A′C′相交于点P,边AC和边BC′相交于Q,当△BPQ为等腰三角形时,则θ=20°或40°.【分析】过B作BD⊥AC于D,过B作BE⊥A'C'于E,根据旋转可得△ABC≌△A'BC',则BD=BE,进而得到BP平分∠A'PC,再根据∠C=∠C'=30°,∠BQC=∠PQC',可得∠CBQ=∠C'PQ=θ,即可得出∠BPQ=(180°﹣∠C'PQ)=90°﹣θ,分三种情况讨论,利用三角形内角和等于180°,即可得到关于θ的方程,进而得到结果.【解答】解:如图,过B作BD⊥AC于D,过B作BE⊥A'C'于E,由旋转可得,△ABC≌△A'BC',则BD=BE,∴BP平分∠A'PC,又∵∠C=∠C'=30°,∠BQC=∠PQC',∴∠CBQ=∠C'PQ=θ,∴∠BPQ=(180°﹣∠C'PQ)=90°﹣θ,分三种情况:①如图所示,当PB=PQ时,∠PBQ=∠PQB=∠C+∠QBC=30°+θ,∵∠BPQ+∠PBQ+∠PQB=180°,∴90°﹣θ+2×(30°+θ)=180°,解得θ=20°;②如图所示,当BP=BQ时,∠BPQ=∠BQP,即90°﹣θ=30°+θ,解得θ=40°;③当QP=QB时,∠QPB=∠QBP=90°﹣θ,又∵∠BQP=30°+θ,∴∠BPQ+∠PBQ+∠BQP=2(90°﹣θ)+30°+θ=210°>180°(不合题意),故答案为:20°或40°.【点评】本题主要考查了等腰三角形的性质以及旋转的性质的运用,解决问题的关键是利用全等三角形对应边上高相等,得出BP平分∠A'PC,解题时注意分类思想的运用.16.如图,点C为线段AB的中点,E为直线AB上方的一点,且满足CE=CB,连接AE,以AE为腰,A为顶角顶点作等腰Rt△ADE,连接CD,当CD最大时,∠DEC =67.5°.【分析】如图1中,将线段CA绕点A逆时针旋转90°得到线段AH,连接CH,DC.首先证明△DAH≌△EAC(SAS),推出DH=CE=定值,由CD≤DH+CH,CH是定值,推出当D,C,H共线时,DC定值最大,如图2中,求出∠CDE=22,5°,∠DCE=90°即可解决问题.【解答】解:如图1中,将线段CA绕点A逆时针旋转90°得到线段AH,连接CH,DC.∵∠DAE=∠HAC=90°,∴∠DAH=∠EAC,∵DA=EA,HA=CA,∴△DAH≌△EAC(SAS),∴DH=CE=定值,∵CD≤DH+CH,CH是定值,∴当D,C,H共线时,DC定值最大,如图2中,此时∠AHD=∠ACE=135°,∴∠ECB=45°,∠DCE=∠ACE﹣∠ACH=90°,∵∠ECB=∠CAE+∠CEA,∵CA=CE,∴∠CAE=∠CEA=22.5°,∴∠ADH=∠AEEC=22.5°,∴∠CDE=45°﹣22.5°=22.5°,∴∠DEC=90°﹣22.5°=67.5°.故答案为:67.5°.【点评】本题考查旋转变换,等腰直角三角形的性质,全等三角形的判定和性质,三角形的三边关系等知识,解题的关键是添加常用辅助线构造全等三角形.三、解答题(共8小题,共72分)17.(8分)分解因式:(1)3mx﹣6my(2)4xy2﹣4x2y﹣y3.【分析】(1)直接提取公因式3m,进而分解因式得出答案;(2)首先提取公因式﹣y,再利用完全平方公式分解因式即可.【解答】解:(1)3mx﹣6my=3m(x﹣2y);(2)原式=﹣y(﹣4xy+4x2+y2)=﹣y(y﹣2x)2.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确运用公式是解题关键.18.(8分)解方程:(1)﹣1=;(2)+=1.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:10﹣2x﹣6=x2+x﹣6,解得:x=2或x=﹣5,经检验x=2是增根,分式方程的解为x=﹣5.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(8分)把一张长方形的纸片ABCD沿对角线BD折叠.折叠后,边BC的对应边BE交AD于F,求证:BF=DF.【分析】由翻折的性质可知∠EBD=∠CBD,由矩形的性质可知:AD∥BC,从而得到∠ADB=∠DBC,于是∠EBD=∠ADB,故此BF=DF.【解答】证明:由折叠的性质知,CD=ED,BE=BC.∵四边形ABCD是矩形,在△ABF和△EDF中,∵,∴△ABF≌△EDF(AAS),∴BF=DF;【点评】本题主要考查的是翻折的性质、全等三角形的性质和判定、勾股定理的应用,由翻折的性质找出相等的角或边是解题的关键.20.(8分)化简:(+)×.【分析】先计算括号内的加法,再计算乘法即可得.【解答】解:原式====﹣2.【点评】本题主要考查分式的混合运算,分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.21.(8分)△ABC在平面直角坐标系中的位置如图所示,先将△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称(1)画出△A1B1C1和△A2B2C2;(2)在x轴上确定一点P,使BP+A1P的值最小,直接写出P的坐标为(﹣,0);(3)点Q在坐标轴上且满足△ACQ为等腰三角形,则这样的Q点有7个.【分析】(1)△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称,据此作图即可;(2)依据轴对称的性质,连接BA2,交x轴于点P,此时BP+A1P的值最小,依据直线BA2的解析式,即可得到点P的坐标;(3)在平面直角坐标系中,作线段AC的垂直平分线,与坐标轴有2个交点,分别以A,C为圆心,AC长为半径画弧,与坐标轴的交点有5个,即可得到Q点的数量.【解答】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求;(2)如图所示,连接BA2,交x轴于点P,则点P即为所求;由B(﹣3,2),A2(3,﹣3)可得,直线BA2的解析式为y=﹣x﹣,令y=0,则x=﹣,∴P(﹣,0),故答案为:P(﹣,0);(3)根据点Q在坐标轴上且满足△ACQ为等腰三角形,可得这样的Q点有7个.故答案为:7.【点评】本题主要考查了利用平移以及轴对称变换进行作图以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.22.(10分)甲、乙两工程队承包一项工程,如果甲工程队单独施工,恰好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则恰好如期完成.(1)问原来规定修好这条公路需多少长时间?(2)现要求甲、乙两个工程队都参加这项工程,但由于受到施工场地条件限制,甲、乙两工程队不能同时施工.已知甲工程队每月的施工费用为4万元,乙工程队每月的施工费用为2万元.为了结算方便,要求:甲、乙的施工时间为整数个月,不超过15个月完成.当施工费用最低时,甲、乙各施工了多少个月?【分析】(1)设原来规定修好这条公路需x个月,则甲修好这条公路需x个月,乙修好这条公路需(x+6)个月,根据“现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则恰好如期完成”列出方程,解方程即可;(2)设甲工作了a个月,乙工作了b个月完成任务,施工费用为w元.根据题意,列出关系式,求出b=18﹣1.5a,6≤a<36,再根据a,b均为整数,得出a,b的取值情况,进而得到相应的施工费用,比较即可.【解答】解:(1)设原来规定修好这条公路需x个月.根据题意,得4(+)+=1,解得:x=12.检验:当x=12时,x(x+6)≠0,经检验,x=12是原方程的解,且满足题意.答:规定修好路的时间为12个月;(2)设甲工作了a个月,乙工作了b个月完成任务,施工费用为w元.根据题意,得,由①可得:b=18﹣1.5a③,代入②中:0<18﹣1.5a+a≤15,∴6≤a<36,又∵a,b均为整数,∴a=6,b=9,W1=4×6+9×2=42(万元),a=8,b=6,W2=8×4+6×2=44(万元),a=10,b=3,W3=10×4+3×2=46(万元).∵W1<W2<W3,∴工费最低时,甲工作了6个月,乙工作9个月.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.23.(10分)等边△ABC中,点H在边BC上,点K在边AC上,且满足AK=HC,连接AH、BK交于点F.(1)如图1,求∠AFB的度数;(2)如图2,连接FC,若∠BFC=90°,点G为边AC上一点,且满足∠GFC=30°,求证:AG⊥BG;(3)如图3,在(2)条件下,在BF上取D使得DF=AF,连接CD交AH于E,若△DEF面积为1,则△AHC的面积为.【分析】(1)先判断出△ABK≌△CAH,即可得出∠HAC=∠ABK,(2)先判断出△AFB≌△AMC,即可判断出△FMN是等边三角形,进而判断出△AGF ≌△CGN,即可得出结论;(3)先判断出△DEF是等边三角形,进而判断出DE=CE=AF,即可得出△CEF的面积为1,△AFC的面积是1,再判断出△CEN是等边三角形,再判断出△CHN∽△BHF,即可得出HE=EN,即可得出结论.【解答】解:(1)∵△ABC是等边三角形,∴∠BAK=∠ACH=60°,AB=AC,在△ABK和△CAH中,,∴△ABK≌△CAH∴∠HAC=∠ABK,∴∠BFH=∠ABK+∠BAH=∠BAK=60°∴∠AFB=120°(2)在BF上取M使AF=FM,连MC延长FG交MC于N易得:△AFB≌△AMC,∴∠AMC=120°又△AFM为等边△,∴∠AMB=∠BMC=60°∵∠BFC=90°,∴∠MFC=90°,∠NFC=30°∴△FMN为等边△,且FN=NC∴NC=FN=FM=AF,∴△AGF≌△CGN∴AG=GC,∴BG⊥AC;(3)如图3,延长BF至M,使FM=DF,∵BF⊥CF,∴CD=CM,由(2)知,△AFM是等边三角形,∴∠AMF=60°,∵∠AMC=∠AFB=120°,∴∠CMD=60°,∴△CDM是等边三角形,∴∠CDM=60°=∠EFD,∴△DEF是等边三角形,∴DE=DF=EF,∴DE=CE=AF,∵△DEF的面积为1,∴△CEF的面积为1,∴△AFC的面积是1,∵∠ABF+∠BAF=∠BFH=60°,∠ABF+∠CBD=60°,∴∠BAF=∠CBD,∵∠AFB=180°﹣∠BFE=120°,∠BDC=180°﹣∠EDF=120°,∴∠AFB=∠BDC,∵AB=BC,∴△ABF≌△BCD,∴BD=AF=DF过点C作CN∥BF交AH的延长线于N,∴∠ECN=∠N=60°,∴△CEN是等边三角形,且△CEN≌△DEF,∴CN=DF=BD=EF=EN,∵CN∥BF,∴△CHN∽△BHF,∴=,∴HF=2HN,∴HE+EF=HE+EN=HE+HE+HN=2HN,∴HN=2HE,∴HE =EN ,∴S △CEH =S △CEN =,∴S △ACH =S △AFC +S △CEF +S △CEH =.【点评】此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角形的判定和性质,相似三角形的判定和性质,同底等高的两三角形面积相等,解本题的关键是判断出△CDM 是等边三角形.24.(12分)在平面直角坐标系中,已知A (0,a )、B (b ,0),且a 、b 满足:a 2+b 2﹣4a +4b +8=0,点D 为x 正半轴上一动点(1)求A 、B 两点的坐标;(2)如图,∠ADO 的平分线交y 轴于点C ,点F 为线段OD 上一动点,过点F 作CD 的平行线交y 轴于点H ,且∠AFH =45°,判断线段AH 、FD 、AD 三者的数量关系,并予以证明;(3)以AO 为腰,A 为顶角顶点作等腰△ADO ,若∠DBA =30°,直接写出∠DAO 的度数 30°或60°或150°.【分析】(1)理由非负数的性质即可解决问题;(2)结论:AH+FD=AD;在AD上取K使AH=AK.只要证明△AHF≌△AKF,FD=DK即可解决问题;(3)分四种情形讨论即可解决问题;【解答】解:(1)∵a2+b2﹣4a+4b+8=0,∴(a﹣2)2+(b+2)2=0,∵(a﹣2)2≥0,(b+2)2≥0,∴a﹣2=0,b+2=0,∴a=2,b=﹣2,∴A(0,2),B(﹣2,0).(2)结论:AH+FD=AD理由:在AD上取K使AH=AK.设∠HFO=α,∴∠OAF=45﹣α,∵HF∥CD,∴∠CDO=∠ADC=α,∴∠FAD=45﹣α,∴△AHF≌△AKF,∴∠AFK=45°,∴∠KFD=90﹣α,∠FKD=90﹣α,∴FD=DK,∴AH+FD=AD.(3)如图2中:①当D1在△ABO内部时,可以证明当BD1=OD1时,AO=AD1,此时∠D1BO=∠D1OB=15°,∠AOD1=∠AD1O=75°,∴∠D1AO=30°.②当D3在BD1的延长线上时,可得∠OAD3=60°,③当D2在AB上方时,同法可得∠OAD3=60°,∠OAD4=150°∴∠DAO=60°或30°或150°.故答案为60°或30°或150°.【点评】本题考查三角形综合题、等腰直角三角形的性质、平行线的性质、角平分线的定义、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

人教版八年级下册数学期末复习全套专题课件精选全文

人教版八年级下册数学期末复习全套专题课件精选全文

= a+ b-( a- b)
=2 b.
12.(8 分)(闵行区期中)先化简,再求值:
已知 a=2- 3,b=2+ 3,求 a2-b2 的值. 2a+2b
解: a2-b2 =(a+b)(a-b)=a-b,
2a+2b 2(a+b)
2
当 a=2- 3,b=2+ 3时,
原式=2-
3-2- 2
3=-22
3=-
3- 3-2
2+24--33
= 2-1+ 3- 2+2- 3
=1.
,3-4 5分母有理化结
期末专题复习(二) 勾股定理
(时间:45分钟 满分:100分)
一、选择题(每小题 5 分,共 25 分)
1.(百色期末)在直角三角形中,若两直角边分别为 7 和 24,则斜边为
(A )
A.25
B.26
C.17
5.★如图是英国牧师佩里加尔证明勾股定理的“水
车翼轮法”,在 Rt△ABC 中,∠ACB=90°,互相垂直
的线段 MN,PQ 将正方形 BFHC 分为面积相等的四部分,
这四个部分和以 AC 为边的正方形恰好拼成一个以 AB
为边的正方形.若正方形 ACDE 的面积为 5,△CQM
的面积为 1,则正方形 CBFH 的面积为 ( C )
个平行四边形(其中的一个平行四边形是正方形)组
成.用七巧板可以拼出丰富多彩的图形,图中的正
方形 ABCD 就是由七巧板拼成的,那么正方形 EFGH 1
的面积与正方形 ABCD 的面积的比值为__ 8 __.
10.★(宁都县期中)已知,在矩形 ABCD 中,AB=5,BC=4,P 是边 CD 上
A.11 B.12
C.13
D.14

江岸区2020~2021学年度第二学期期末考试八年级数学试卷(含答案) 2022

江岸区2020~2021学年度第二学期期末考试八年级数学试卷(含答案) 2022

江岸区2020~2021学年度第二学期期末考试八年级数学试卷一、选择题(每小题3分,共30分)1.在实数范围内有意义,则x 的取值范围是( ) A.3x >B.3x ≥C.3x <D.3x ≤2.下列各式中,运算正确的是( )=9=C.3= =3.以下列长度的线段为边,不能组成直角三角形的是( )A.6、8、9C.1D.8、15、174.近日来,武汉市网红打卡点“武汉小锻仓”吸引众多市民前来拍照打卡,洪山区交警大队加强了该区域的交通管制,控制车辆速度,确保市民安全.某交警在该路口统计的某个时段,来往的27辆车行驶速度的分布如条形图所示这些车辆速度的众数是( ) A.53 B.52C.55D.515.将直线22y x =-向上平移4个单位长度后,所得的直线的解析式为( ) A.2y x =B.24y x =-C.22y x =+D.26y x =-6.下列性质中,矩形具有、正方形也具有、但是菱形却不具有的性质是( ) A.对角线互相垂直B.对角线互相平分C.对角线长度相等D.一组对角线平分一组对角7.水龙头关闭不严会造成滴水,已知漏水量与漏水时间为一次函数关系,八(6)班的同学进行了以下实验,在滴水的水龙头下放置一个能显示水量的容器,每10分钟记录一次容器中的水量,下表是一位同学的记录结果,老师发现有一组数据记录有较大偏差,它是( )A.第2组B.第3组C.第4组D.第5组8.如图Rt ABC ∆中,90ABC ∠=︒,BC =5AC =,分别以三边为直径画半圆,则两月形图案的面积之和(阴影部分的面积)是( ) A.5πB.10πC.5D.10第8题图 第9题图9.如图,在矩形ABCD 中,E 是BC 的中点,将ABE ∆折叠后得到AFE ∆,点F 在矩形内部,延长AF 交CD 于点H ,若4AD =,43CH =,则折痕AE 的长为( )B.C.3D.10.已知函数2y x a =-(a 为常数),当13x ≤≤时,y 有最小值为5,则a 的值为( ) A.3或1-B.3或4C.2-或1-D.2-或4二、填空题(每小题3分,共18分)11.= .12.某学校欲招聘一名教师,对应聘者甲进行了笔试和面试,其笔试和面试的成绩分别为80分和90分,若按笔试成绩占30%,面试成绩占70%计算综合成绩,则甲的综合成绩为 分.13.平行四边形ABCD 两角线AC 、BD 交于点O ,ABO ∆为等边三角形,且2AB =,则BC 的长为 .14.如图,已知函数2y x =和4y ax =+(a 为常数,且0a ≠)的图象相交于点()1,2A ,则关于x 的不等式42ax x +≥的解集为 .第14题图 第15题图 第16题图15.如图,甲.乙两个工程队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程.设工程总量为单位1,工程进度满足如图所示的函数关系,设n =甲的工作效率乙的工作效率,则n 的值为 .16.如图,在ABC ∆中,60BAC ∠=︒,45ABC ∠=︒,AD 平分CAB ∠交BC 于点D .P 为直线AB 上一动点.以DP 、BD 为邻边构造平行四边形DPQB ,连接CQ ,若4AC =.则CQ 的最小值为 . 三、解答题(72分)17.计算: ;(2)(42+18.如图,在ABC ∆中,90BAC ∠=︒,点D 、E 分别是边BC 、AC 的中点,过点A 作//AF BC ,交DE 的延长线于F 点,连接AD 、CF .求证:四边形ADCF 是菱形.19.武汉市教育局举办中小学生经典诵读活动,微发了同学们的读书热情.为了引导学生生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的数量最少的是5本,最多的是8本,并根据调查结果绘制了如图不完整的图表.(1)补全条形统计图,扇形统计图中的a = .(2)本次抽样调查中,中位数是 ,扇形统计图中课外阅读6本的扇形的圆心角大小为 度; (3)若该校八年级共有1200名学生,请估计该校八年级学生课外阅读至少7本的人数.20.如图,在所给的正方形网格中,每个小正方形的边长均为1个单位.每个小正方形的顶点称为格点,如图格点()3,5A -,()7,2B -,()0,2D ,用无刻度的直尺作图. (1)作平行四边形ABCD ,则点C 的坐标为 .(2)作出BD 的中点E ,并直接写出直线OE 的解析式 ; (3)在x 轴上作出点N ,使得180BNO ANO ∠+∠=︒.21.如图,在平面直角坐标系xoy 中,已知()0,4A ,()4,0B ,一次函数2y x =-的图象与直线AB 交于点P . (1)求P 点的坐标;(2)若M 点是y 轴上一点,且PMA ∆的面积等于10,求点M 的坐标;(3)若直线2y x b =-+与AOB ∆的三边恰好有两个公共点.直接写出b 的取值范围 .22.5月22日以来,大理市漾濞县连发多次地震,其中A 、B 两乡镇受灾非常严重.C 、D 两市获知A 、B 两乡镇分别需要救灾物资180吨和290吨后,决定调运物资支援A 、B 两乡镇.已知C 市有救灾物资220吨,D 市有救灾物资250吨,现将这些物资全部运往A 、B 两乡镇.已知从C 市运往A 、B 两乡镇的费用分别是每吨22元和18元,从D 市运往A 、B 两乡镇的费用分别是24元和25元,设D 市运往B 乡镇的救灾物资为x 吨. (1)请填写下表(2)设C 、D 两市运往A 、B 两乡镇的救灾物资总运费为w 元,求总运费最小时的运输方案及最小运费; (3)经过紧急抢修,D 市运往B 乡镇的路况得到改善,缩短了运输时间,每吨运费减少了t 元()0t >,具体路线运费不变.若C 、D 两市运往A 、B 两乡镇的救灾物资总运费的最小值为9430元,求t 的值.23.正方形ABCD 中,点E 在边BC 上,点F 在边CD 上.(1)如图1,若60CEF ∠=︒,AP EF ⊥于点P ,当AP AB =时,求AEF ∠的度数;(2)如图2,若AE EF =,点H 在边BC 上,且在点E 右侧,当2CHF HAB ∠=∠时,求证:HFE EAB ∠=∠. (3)T 为正方形ABCD 外一动点,且45ATB ∠=︒,M 为边AD 的中点,当T 运动时,则AMMT的最小值为 .图1 图2 图324.如图1,直线AB 的解析式为6y kx =+,D 点坐标为()8,0,O 点关于直线AB 的对称点C 点在直线AD 上.(1)求直线AD 、AB 的解析式.(2)如图2,若OC 交AB 于点E ,在线段AD 上是否存在一点F ,使△ABC 与△AEF 的面积相等,若存在求出F 点坐标,若不存在,请说明理由.(3)如图3,过点D 的直线:l y mx b =+.当它与直线AB 夹角等于45︒时,求出相应m 的值.图1 图2 图3江岸区2020~2021学年度第二学期期末考试八年级数学试卷(答案)一、选择题1-5:BDBBC 6-10: CCCAD 二、填空题11. 12.87 13. 14.1x ≤15.3216.2三、解答题17.(1);(2)2 18.证明:点D 、E 分别是边BC 、AC 的中点,//DE AB ∴, //AF BC ,∴四边形ABDF 是平行四边形,AF BD ∴=,又BD DC =,则AF DC =, //AF DC ,∴四边形ADCF 是平行四边形;点D 是边BC 的中点,ABC ∆是直角三角形,AD DC ∴=,∴平行四边形ADCF 是菱形.19.(1);20.(2)6;129.6︒. (3)148120052850+⨯=(人) 答:该校八年级学生课外阅读至少7本的人数大约有528人. 20.(1)()4,1--. (2)47y x =-.(3)21.解(1)依题意设直线AB 的解析式为:4y kx =+ 又0(4)B ,在直线AB 上 所以440k += 解得: 1k =-.所以直线AB 解析式为:4y x =-+联立得42y x y x =-+⎧⎨=-⎩,解得:48x y =-⎧⎨=⎩.所以()4,8P -. (2)12PMA P S AM x ∆=⨯, 14102AM ∴⨯⨯=, 5AM ∴=,(0,4)A , (0,9)M ∴或(0,1)-.(3)08b <<.22.(1)70x -;290x -;250x -.(2)22(70)18(290)24(250)25w x x x x =-+-+-+59680x =+070025002900x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩,解得:70250x ≤≤. 当70250x ≤≤ 时,w 随x 的增大而增大所以当 70x =时,w 有最小值,最小运费w 为10030元.答:C 市调往A 乡镇0吨,调往B 乡镇220吨,D 市调往A 乡镇180吨,调往B 乡镇70吨,最小运费为10030元.(3)依题意得:()59680w t x =-+ 70250x ≤≤ 当50t -≥,即5t ≤时,w 随x 的增大而增大 所以当 70x =时,w 有最小值()57096809430t -+=∴⨯,解得:607t = (5t ≤,舍去)当50t -<时,即5t >,w 随x 的增大而减小 所以当250x =时,w 有最小值()525096809430t -⨯+=∴,解得:6t =答:当最小运费为9430时,t 的值为6. 23.解:(1)ABCD 为正方形,AP 垂直于EF ,90B APE ∴∠=∠=︒,AB AP =,AE AE =, ABE APE ∴∆≅∆, AEB AEF ∴∠=∠,60CEF ∠=︒, 120BEF ∴∠=︒, 60AEF ∴∠=︒,(2)连接AF ,作CQ FH ⊥于Q , 设BAH x ∠=,EAH y ∠=, 则2CHF x ∠=,90AHB x ∠=︒-,()180********AHF CHF AHB x x x ∠=︒-∠-∠=︒--︒-=︒-, 90AHB AHF x ∴∠=∠=︒-,即AH 平分BHF ∠, 易证:ABH AQH ∆∆≌,BAH QAH ∴∠=∠,AB AQ =, AQF ADF ∴∆≅∆,AFD AFQ ∴∠=∠,QAF DAF ∠=∠,即AF 平分DAQ ∠,45HAF ∴∠=︒,BAE BAH EAH x y ∠=∠-∠=-, BAH QAH x ∠=∠=,1452QAF DAF QAD x ∠=∠=∠=︒-,45AFD AFQ x ∴∠=∠=︒+,又AE EF =,()4545EAF EFA EAH HAQ QAF y x x y ∴∠=∠=∠+∠+∠=++︒-=︒+ ()4545HFE AFQ AFE x y x y ∠=∠-∠=︒+-︒+=-,BAE HFE ∴∠=∠.(3)3. 24.解(1)6y kx =+,()0,6A ∴,即6OA =,又()8,0D ,8OD ∴=,直线AD 的解析式为364y x =-+.在 Rt ABD ∆中,10AD ==, 点O 、点C 关于直线AB 对称,∴设OB BC a ==,6OA AC ==,4CD =,8BD a ∴=-,在 Rt BCD ∆中,()22248a a +=-,3a ∴=(面积法亦可)()3,0B ∴,∴直线AB 的解析式为26y x =-+.(2)由(1)易求2412,55C ⎛⎫⎪⎝⎭,直线AD 的解析式为:364y x =-+,∴直线OC 的解析式为:12y x =. ABC AEF S S ∆∆=,BEC ECF S S ∆∆∴=,//BF OC ∴,设直线BF 的解析式为:12y x n =+, ()3,0B 在直线BF 上,1302b ∴⨯+=, 32b ∴=-,直线BF 的解析式为:122y x 3=-, 联立得:1322364y x y x ⎧=-⎪⎪⎨⎪=-+⎪⎩,解得:632x y =⎧⎪⎨=⎪⎩.故存在,36,2F ⎛⎫ ⎪⎝⎭.(3)如图,设若直线DE 、DF 与直线AB 夹角等于45︒,即DEF ∆为等腰直角三角形,作EM DM ⊥于M ,FN DN ⊥于N , 易证:DEM FDN ∆∆≌,EM DN ∴=,DM FN =,直线l 过()8,0D ,即08m b =+,解得:8b m =-,∴直线l 的解析式为: 8y mx m =-,设E 坐标为(),26t t -+,则8EM DN t ==-,26DM FN t ==-+,F ∴点坐标为()22,8t t +-,F 点在直线AB 上,()82226t t ∴-=-++,11 解得:2t =,()2,2E ∴,()6,6F -.当直线l 过E 点时,282m m -=,解得:13m =-, 当直线l 过F 点时,686m m -=-,解得:3m =. 所以3m =或13-.。

八年级数学下册期末试卷综合测试卷(word含答案)

八年级数学下册期末试卷综合测试卷(word含答案)

八年级数学下册期末试卷综合测试卷(word 含答案)一、选择题1.2a +在实数范围内有意义,实数a 的取值范围是( ) A .a >0 B .a >1 C .a ≥﹣2 D .a >﹣1 2.以下列各组数为边长,不能构成直角三角形的是( )A .1,2,3B .5,12,13C .3,4,5D .1,2,53.如图,在四边形ABCD 中,对角线AC 和BD 相交于点O ,下列条件不能判断四边形ABCD 是平行四边形的是( )A .//AB DC ,ABC ADC ∠=∠ B .AB DC =,AD BC = C .OA OC =,OB OD =D .//AD BC ,AB CD =4.某次竞赛每个学生的综合成绩得分(x )与该学生对应的评价等次如表. 综合成绩(x )=预赛成绩×30%+决赛成绩×70% x ≥90 80≤x <90 评价等次优秀良好小华同学预赛成绩为80,综合成绩位于良好等次,他决赛的成绩可能为( )A .71B .79C .87D .955.如图所示,正方形ABCD 的边长为4,点E 为线段BC 上一动点,连结AE ,将AE 绕点E 顺时针旋转90°至EF ,连结BF ,取BF 的中点M ,若点E 从点B 运动至点C ,则点M 经过的路径长为( )A .2B .22C .23D .46.如图,在Rt △ABC 中,C ∠=90°,沿着过点B 的一条直线BE 折叠△ABC ,使点C 恰好落在AB 的中点D 处,则A ∠的度数为( )A .30°B .45°C .60°D .75°7.如图,在Rt ABC △中,90ACB ∠=︒,D ,E ,F 分别是AC ,BC ,AB 的中点,连接DE ,CF .若1CF =,则DE 的长度为( )A .1B .2C .3D .48.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h )的函数图象如图所示,则a 等于( )A .4.7B .5.0C .5.4D .5.8二、填空题9.△ABC 的三条边长a 、b 、c 满足8c =,460a b -+-=,则△ABC ____直角三角形(填“是”或“不是”)10.菱形的周长为12cm ,它的一个内角为60︒,则菱形的面积为______()2cm .11.在Rt ABC ∆中,90C ∠=︒,4AC =,3BC =,则AB =______.12.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,已知5OD =,6AD =,则该矩形的周长是______.13.设一次函数y =kx +3. 若当x =2时,y =-1,则k =___________ 14.若矩形的边长分别为2和4,则它的对角线长是__. 15.如图,CD 是直线3y x =上的一条动线段,且2CD =,点()23,1A ,连接AC 、AD ,则ACD ∆周长的最小值是_______.16.如图,在菱形 ABCD 中,对角线 AC , BD 交于点O ,过点 A 作 AH ⊥ BC 于点 H ,已知 BD=8,S 菱形ABCD =24,则 AH =_______.三、解答题17.计算:(1)0131|2|8(2020)()3π--+-+-+-;(2)11(124)(320.5)83---; (3)(212)(4818)-⨯+; (4)22()()a b a b ++-.18.《九章算术》中有“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处距竹子底端6尺远,问折断处离地面的高度是多少尺?19.图1、图2均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,在给定的网格中按要求画图,所画图形的顶点均在格点上.(1)在图1中画一个面积为4的菱形;(2)在图2中画一个矩形,使其边长都是无理数,且邻边不相等.20.请在横线上添加一个合适的条件,并写出证明过程:如图,平行四边形ABCD 对角线上有两点E ,F ,AE =CF , ,连接EB ,ED ,FB ,FD .求证:四边形EBFD 为菱形.21.学习了二次根式的乘除后,老师给同学们出了这样一道题:已知a =13,求2221a a a a -+-的值.刘峰想了想,很快就算出来了,下面是他的解题过程:解:∵()()()2221211111a a a a a a a a a a a--+-===---, 又∵a =13,∴13a=, ∴原式=3.你认为刘峰的解法对吗?如果对,请你给他一句鼓励的话;如果不对,请找出错误的原因,并改正.22.小明爸爸为了让小明上学更近,决定在学校附近租套房子居住.现有甲、乙两家出租房屋,甲家已经装修好,每月租金为2500元;乙家未装修,每月租金为1800元,但需要支付装修费14000元.设租用时间为x 个月,所需租金为y 元.(1)请分别写出租用甲、乙两家房屋的租金x 甲、x 乙与租用时间x 之间的函数关系; (2)试判断租用哪家房屋更合算,并说明理由.23.如图1,在平面直角坐标系xOy 中,直线l 1:y =x +6交x 轴于点A ,交y 轴于点B ,经过点B 的直线l 2:y =kx +b 交x 轴于点C ,且l 2与l 1关于y 轴对称. (1)求直线l 2的函数表达式;(2)点D ,E 分别是线段AB ,AC 上的点,将线段DE 绕点D 逆时针α度后得到线段DF . ①如图2,当点D 的坐标为(﹣2,m ),α=45°,且点F 恰好落在线段BC 上时,求线段AE 的长;②如图3,当点D 的坐标为(﹣1,n ),α=90°,且点E 恰好和原点O 重合时,在直线y =3﹣13上是否存在一点G ,使得∠DGF =∠DGO ?若存在,直接写出点G 的坐标;若不存在,请说明理由.24.如图1,矩形OABC 在平面直角坐标系中的位置如图所示,点A ,C 分别在x 轴,y 轴上,点B的坐标为()8,4,点P,Q同时以相同的速度分别从点O,B出发,在边OA,BC 上运动,连接,OQ BP,当点P到达A点时,运动停止.(1)求证:在运动过程中,四边形OPBQ是平行四边形.(2)如图2,在运动过程中,是否存在四边形OPBQ是菱形的情况?若存在,求出此时直线PQ的解析式;若不存在,请说明理由.(3)如图3,在(2)的情况下,直线PQ上是否存在一点D,使得PBD△是直角三角形?如果存在,请直接写出点D的坐标;如果不存在,请说明理由.25.如图,平行四边形ABCD中,连接对角线BD,∠ABD=30°,E为平行四边形外部一点,连接AE、BE、DE,若AE=BE,∠DAE=60°.(1)如图1,若∠C=45°,BC=2,求AB的长;(2)求证:DE=BC;(3)如图2,若∠BCD=15°,连接CE,延长CB与DE交于点F,连接AF,直接写出(AFBF)2的值.【参考答案】一、选择题1.C解析:C【分析】根据二次根式有意义的条件即可求出a的取值范围.【详解】解:由题意可知:a+2≥0,∴a≥-2.故选:C.【点睛】本题考查二次根式有意义,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.2.A解析:A 【分析】分别求出各选项中较小两数的平方和及最大数的平方,比较后即可得出结论. 【详解】解:A 、由于222123+≠,不能作为直角三角形的三边长,符合题意;B 、由于22251213+=,能作为直角三角形的三边长,不符合题意;C 、由于222345+=,能作为直角三角形的三边长,不符合题意;D 、由于22212+=,能作为直角三角形的三边长,不符合题意.故选:A . 【点睛】本题考查了勾股定理的逆定理,解题的关键是牢记“如果三角形的三边长a ,b ,c 满足222+=a b c ,那么这个三角形就是直角三角形”.3.D解析:D 【解析】 【分析】根据平行四边形的判定定理逐项判断即可. 【详解】A 、由//AB DC ,得180ABC ACD ∠+∠=︒,又ABC ADC ∠=∠,得180ADC ACD ∠+∠=︒,得//AD BC ,可得到四边形ABCD 是平行四边形,故A 选项不符合题意B 、由AB DC =,AD BC =,可得到四边形ABCD 是平行四边形,故B 选项不符合题意; C 、由OA OC =,OB OD =,可得到四边形ABCD 是平行四边形,故C 选项不符合题意; D 、由//AD BC ,AB CD =,不可得到四边形ABCD 是平行四边形,故D 选项符合题意. 故选:D . 【点睛】本题主要考查了平行四边形的判定,解题的关键是理解并掌握平行四边形的判定定理,并会灵活运用.4.C解析:C 【解析】 【分析】设他决赛的成绩为x 分,根据综合成绩所处位次得出80≤80×30%+70%x <90,解之求出x 的范围即可得出答案. 【详解】解:设他决赛的成绩为x 分,根据题意,得:80≤80×30%+70%x <90, 解得80≤x <9427,∴各选项中符合此范围要求的只有87, 故选:C . 【点睛】本题主要考查加权平均数,解题的关键是根据加权平均数的定义及综合成绩位次列出关于x 的不等式组.5.B解析:B 【分析】已知EF ⊥AE ,当E 点在线段BC 上运动到两端时,正好是M 点运动的两个端点,由此可以判断M 点的运动轨迹是BC 、CD 中点的连线长. 【详解】解:取BC 、CD 的中点G 、H ,连接GH ,连接BD ∴GH 为△BCD 的中位线,即12GH BD =∵将AE 绕点E 顺时针旋转90°至EF , ∴EF ⊥AE ,当E 点在B 处时,M 点在BC 的中点G 处,当E 点在C 点处时,M 点在CD 中点处, ∴点M 经过的路径长为GH 的长, ∵正方形ABCD 的边长为4, ∴2242BD BC CD =+= ∴1222GH BD ==, 故选B .【点睛】本题主要考查了正方形的性质,勾股定理和中位线定理,解题的关键在于找到M 点的运动轨迹.6.A解析:A 【解析】 【分析】根据题意可知∠CBE =∠DBE ,DE ⊥AB ,点D 为AB 的中点,∠EAD =∠DBE ,根据三角形内角和定理列出算式,计算得到答案. 【详解】解:由题意可知∠CBE =∠DBE , ∵DE ⊥AB ,点D 为AB 的中点, ∴EA =EB , ∴∠EAD =∠DBE , ∴∠CBE =∠DBE =∠EAD , ∴∠CBE +∠DBE +∠EAD =90°, ∴∠A =30°, 故选:A . 【点睛】本题考查的是翻折变换的知识,理解翻折后的图形与原图形全等是解题的关键,注意三角形内角和等于180°.7.A解析:A 【解析】 【分析】根据直角三角形斜边上的中线等于斜边的一半,可得AB 的长,根据三角形中位线定理可得DE 的长. 【详解】依题意,90ACB ∠=︒,D ,E ,F 分别是AC ,BC ,AB 的中点,1CF =,22AB CF ∴==, 112DE AB ==. 故选A . 【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,三角形中位线定理,掌握以上定理是解题的关键.8.B解析:B 【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t ,进而求得a 的值. 【详解】解:设甲乙两地的路程为s ,从甲地到乙地的速度为v ,从乙地到甲地的时间为t ,则 2.71.5v svt s =⎧⎨=⎩ 解得,t =1.8∴a =3.2+1.8=5(小时), 故选B .【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.二、填空题 9.A解析:不是 【解析】 【分析】根据二次根式有意义的条件以及绝对值的非负性,得出,a b 的值,运用勾股定理逆定理验证即可. 【详解】 解:∵460a b -+-=,∴40a -=,60b -=, ∴4,6a b ==, 则22246528+=≠, ∴222a b c +≠,∴△ABC 不是直角三角形, 故答案为:不是. 【点睛】本题考查了二次根式有意义的条件,绝对值的非负性,勾股定理逆定理等知识点,根据题意得出,a b 的值是解本题的关键.10.A 解析:932【解析】 【分析】由菱形的性质和已知条件得出3AB BC CD DA cm ====,AC BD ⊥由含30°角的直角三角形的性质得1322BO AB cm ==,由勾股定理求出OA ,可得BD ,AC 的长度,由菱形的面积公式可求解. 【详解】 如图所示:、∵AB = BC = CD = DA ,130?2BAO BAD ∠=∠=,AC BD ⊥,12OA AC BO DO ==, ∵菱形的周长为12cm , ∴3AB BC CD DA cm ====, ∴1322BO AB cm ==,∴m OA == ∴2AC OA ==,23BD BO cm == ∴菱形ABCD 的面积212AC BD ⨯=.【点睛】本题考查了菱形的性质、含30° 角的直角三角形的性质、勾股定理;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.11.5【解析】 【分析】根据勾股定理222AB AC BC =+即可求得AB 的长度. 【详解】在直角ABC 中,90C ∠=︒, ∴根据勾股定理222AB AC BC =+, ∴5AB =, 故答案为:5. 【点睛】本题考查了勾股定理在直角三角形中的运用,本题中正确的运用勾股定理是解题的关键.12.B解析:28 【分析】先求出BD ,再根据勾股定理求出AB ,即可求矩形的周长. 【详解】解:∵四边形ABCD 是矩形, ∴∠BAD=90°,OD =OB =5,即BD =10, ∴8AB =,矩形的周长为()28628⨯+=,故答案为:28.【点睛】本题考查了矩形的性质和勾股定理,解题关键是熟练运用勾股定理求出矩形的边长. 13.-2【分析】把x=2时,y=-1代入一次函数y =kx +3,解得k 的值即可.【详解】解:把x=2时,y=-1代入一次函数y =kx +3得-1=2k +3,解得k =-2.故答案为:-2.【点睛】本题考查待定系数法求一次函数解析式.一般函数解析式中有几个常量不知道,就需要代入几个函数上的点就可以求出函数解析式.14.A【分析】根据矩形的性质得出∠ABC =90°,AC =BD ,根据勾股定理求出AC 即可.【详解】∵四边形ABCD 是矩形,∴∠ABC =90°,AC =BD ,在Rt △ABC 中,AB =2,BC =4,由勾股定理得:AC ∴BD AC ==故答案为【点睛】本题考查了矩形的性质,勾股定理的应用,题目比较好,难度适中.15.+2.【分析】过点A 作AB ⊥CD ,垂足为点B ,当点B 为CD 的中点时,△ACD 的周长最小,利用等腰三角形的性质,勾股定理计算即可.【详解】过点A 作AB ⊥CD ,垂足为点B ,当点B 为CD 的中点时,解析:.【分析】过点A 作AB ⊥CD ,垂足为点B ,当点B 为CD 的中点时,△ACD 的周长最小,利用等腰三角形的性质,勾股定理计算即可.【详解】过点A作AB⊥CD,垂足为点B,当点B为CD的中点时,△ACD的周长最小,如图,延长BA交x轴与点E,过点A作AF⊥x轴,垂足为点F,设点M(3,3)是直线33y x=上一个点,则OM=223+(3)=23,∴∠MOF=30°,∴∠BEF=60°,∠EAF=30°,∵A(2+3,1),∴OF=2+3,AF=1,设AE=2n,则EF=n,根据勾股定理,得2241n n=+,∴EF=33,AE=233,∴OE=OF+EF=2+433,∴BE=12OE=1+233,∴BA=BE-AE=1+233-233=1,∵CB=BD,AB⊥CD,CD=2,∴AC=AD22BC BA+CB=BD=1,∴AC=AD22112+=∴△ACD的周长最小值为2.故答案为:22.【点睛】本题考查了正比例函数的解析式,勾股定理,直角三角形中30°角的性质,等腰三角形的判定和性质,两点间的距离公式,准确确定最小值的情形,并灵活运用勾股定理求解是解题的关键.16.【分析】根据菱形面积=对角线积的一半可求AC,再根据勾股定理求出BC,然后由菱形的面积即可得出结果.【详解】解:∵四边形ABCD 是菱形,BD =8,∴AO =CO ,AC ⊥BD ,OB=OD=4, 解析:245【分析】根据菱形面积=对角线积的一半可求AC ,再根据勾股定理求出BC ,然后由菱形的面积即可得出结果.【详解】解:∵四边形ABCD 是菱形,BD =8,∴AO =CO ,AC ⊥BD ,OB=OD=4,∴S 菱形ABCD =12×AC×BD =24,∴AC =6,∴OC =12AC =3,∴BC5,∵S 菱形ABCD =BC×AH =24,∴AH =245, 故答案为:245. 【点睛】本题考查了菱形的性质、勾股定理以及菱形面积公式;熟练掌握菱形的性质,由勾股定理求出BC 是解题的关键.三、解答题17.(1);(2);(3);(4).【分析】(1)根据负整数幂、零指数幂、立方根和绝对值的性质求解即可; (2)先化成最简二次根式,再合并即可;(3)先化成最简二次根式,再计算乘法即可;(4)根解析:(14;(23)18--4)22a b +.【分析】(1)根据负整数幂、零指数幂、立方根和绝对值的性质求解即可;(2)先化成最简二次根式,再合并即可;(3)先化成最简二次根式,再计算乘法即可;(4)根据完全平方公式展开,再合并即可.【详解】解:(1)011|(2020)()3π--+-213=+-4=;(2)-4(32=-=-=(3)⨯(=⨯=624=--18=--(4)22+a b a b =++-22a b =+.【点睛】本题考查二次根式的混合运算、零指数幂、负整数指数幂,解题的关键是明确各自的计算方法,仔细认真化简,会合并同类项.18.折断处离地面的高度有3.2尺.【分析】根据题意画出图形,设折断处离地面的高度为x 尺,再利用勾股定理列出方程求解即可.【详解】解:如图,设折断处离地面的高度为x 尺,则AB=10-x ,BC=6,解析:折断处离地面的高度有3.2尺.【分析】根据题意画出图形,设折断处离地面的高度为x 尺,再利用勾股定理列出方程求解即可.【详解】解:如图,设折断处离地面的高度为x 尺,则AB =10-x ,BC =6,在Rt△ABC中,AC2+BC2=AB2,即x2+62=(10-x)2.解得:x=3.2.答:折断处离地面的高度有3.2尺.【点睛】本题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.19.(1)见解析;(2)见解析.【解析】【分析】(1)直接利用菱形的性质画出符合题意的菱形;(2)利用网格结合矩形的判定和性质得出答案.【详解】(1)如图1所示:其四边形是菱形,且面积为4;解析:(1)见解析;(2)见解析.【解析】【分析】(1)直接利用菱形的性质画出符合题意的菱形;(2)利用网格结合矩形的判定和性质得出答案.【详解】(1)如图1所示:其四边形是菱形,且面积为4;(2)如图2所示:其四边形是边长为无理数的矩形.【点睛】本题考查应用设计与作图,解题的关键是熟练掌握菱形的性质与矩形的判定和性质.20.,见解析【分析】根据题意和图形,可以在空格处填一个条件,注意填写的条件不唯一,只要可以证明结论成立即可,然后根据菱形的判定方法证明即可.【详解】补充条件:AB =BC ,证明:连接BD 交AC 于解析:AB BC =,见解析【分析】根据题意和图形,可以在空格处填一个条件,注意填写的条件不唯一,只要可以证明结论成立即可,然后根据菱形的判定方法证明即可.【详解】补充条件:AB =BC ,证明:连接BD 交AC 于点O ,如图所示,∵四边形ABCD 是平行四边形,∴OB =OD ,OA =OC ,∵AE =CF ,∴OE =OF ,∴四边形EBFD 是平行四边形,∵AB =BC ,∴∠BAE =∠BCF ,在△BAE 和△BCF 中,BA BC BAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△BAE ≌△BCF (SAS ),∴BE =BF ,∴平行四边形EBFD 是菱形,即四边形EBFD 为菱形.故答案为:AB =BC .【点睛】本题考查菱形的判定、平行四边形的性质、全等三角形的判定与性质,利用数形结合的思想解答是解答本题的关键.21.答案见解析.【解析】【分析】直接利用二次根式的性质化简进而得出答案.【详解】刘峰的解法错误,原因是:错误地运用了=这个公式,正确解法是:∵a==<1,∴a﹣1<0,∴====解析:答案见解析.【解析】【分析】直接利用二次根式的性质化简进而得出答案.【详解】刘峰的解法错误,(0)(0)a aa a⎧⎨-<⎩这个公式,正确解法是:∵a1,∴a﹣1<0,∴=|1|(1)aa a--=1(1)aa a--=﹣1a,∴【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.22.(1),;(2)当租期超过20个月时,租乙家房屋更合算;当租期等于20个月时,租甲家、乙家都可以;当租期低于20个月,租甲家房屋更合算【分析】(1)租金等于每月费用乘以租用月数.(2)租金等于解析:(1)2500y x=甲,180014000y x=+乙;(2)当租期超过20个月时,租乙家房屋更合算;当租期等于20个月时,租甲家、乙家都可以;当租期低于20个月,租甲家房屋更合算【分析】(1)租金等于每月费用乘以租用月数.(2)租金等于每月费用乘以租用月数,有装修费的再加上装修费即可.【详解】(1)根据题意,租用甲家房屋:2500y x =甲;租用乙家房屋:180014000y x =+乙;(2)①由题意,可知:2500180014000x x =+,解得:20x ,即当租用20个月时,两家租金相同.②由2500180014000x x >+,解得:20x >;即当租用时间超过20个月时,租乙家的房屋更合算.③由2500180014000x x <+,解得:20x <,即当租用时间少于20个月时,租甲家的房屋更合算.综上所述,当租期超过20个月时,租乙家房屋更合算;当租期等于20个月时,租甲家、乙家都可以;当租期低于20个月,租甲家房屋更合算.【点睛】本题考查一次函数的具体应用,根据题意找出等量关系是解题关键.23.(1)y=-x+6;(2)①;②,或或,【分析】(1)先求出点A ,B 的坐标,再运用待定系数法求出直线直线l2的函数解析式;(2)①将点D (-2,m )代入y=x+6中,求出D (-2,4),如图2解析:(1)y =-x +6;(2)①4+②1(2G ,3-或2(2,3G 或3(2G ,3 【分析】(1)先求出点A ,B 的坐标,再运用待定系数法求出直线直线l 2的函数解析式;(2)①将点D (-2,m )代入y =x +6中,求出D (-2,4),如图2,作∠DHF =45°,利用AAS 证明△ADE ≌△HFD ,再运用等腰直角三角形性质即可求出答案;②将D (-1,n )代入y =x +6中,得D (-1,5),过D 作DM ⊥x 轴于M ,作FN ⊥DM 于N ,如图3,利用AAS 可证得△FDN ≌△DEM ,进而得出F (4,6),再根据∠DGF =∠DGO 分类讨论即可.【详解】解:(1)6y x =+交x 轴于点A ,交y 轴于点B ,(6,0)A ∴-,(0,6)B ,2l 与1l 关于y 轴对称,)0(6,C ∴,设直线2l 为:y kx b =+,将B 、C 坐标代入得606k b b +=⎧⎨=⎩,解得16k b =-⎧⎨=⎩, ∴直线2l 的函数解析式为:6y x =-+;(2)①将点(2,)D m -代入6y x =+中,得: 26m -+=,解得:4m =,(2,4)D ∴-,如图2,作45DHF ∠=︒,6OA OB ==,45EAD EDF DHF ∴∠=∠=∠=︒,135AED ADE ∴∠+∠=︒,135ADE HDF ∠+∠=︒, AED HDF ∴∠=∠,在ADE ∆和HFD ∆中,EAD DHF AED HDF DE FD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE HFD AAS ∴∆≅∆,22(62)442HF AD ∴=-++=AE HD =, 又6OA OB OC ===,90AOB COB ∠=∠=︒, ABO ∴∆和COB ∆均为等腰直角三角形,45ABO CBO ∴∠=∠=︒,90ABC ∴∠=︒,18090HBF ABC ∴∠=︒-∠=︒,BFH ∴∆是等腰直角三角形,24BH ∴=, 62AB =62442422AE HD AB BH AD ∴==+-=-+ ②将(1,)D n -代入6y x =+中,得:165n =-+=, (1,5)D ∴-,则5DM =,1EM =,过D 作DM x ⊥轴于M ,作FN DM ⊥于N ,如图3,DE DF =,90EDF DME FND ∠=∠=∠=︒,90MDE FDN ∴∠+∠=︒,90MDE DEM ∠+∠=︒, FDN DEM ∴∠=∠,在FDN ∆和DEM ∆中,FND DME FDN DEM DF ED ∠=∠⎧⎪∠=∠⎨⎪=⎩, FDN DEM ∴∆≅∆()AAS ,5FN DM ∴==,1DN EM ==,514BF FN BN ∴=-=-=,516EB MN DM DN ====+=, (4,6)F ∴,当点F 、O 、1G 三点共线时,如图3,11DG O DG F ∠=∠, 设直线EF 的解析式为y mx =,(4,6)F ,46m ∴=, 解得:32m =, ∴直线EF 的解析式为32y x =, 当33132x =2132x = 1213(2G ∴313); 如图4,连接DG 2,FG 2,过点D 作DM ⊥OG 2,DN ⊥FG 2,∵22DG F DG O ∠=∠,∴DM =DN ,又DO =DF ,∴2Rt DG M Rt DFN ≅△△(HL ),∴∠ODM =∠FDN ,又∠ODN +∠FDN =90°, ∴∠ODM +∠ODN =90°,即∠MDN =90°,∴四边形DMG 2N 是正方形,∴∠OG 2F =90°,设2(,313)G a -,22290FG O DG O DG F ∠=∠+∠=︒,22222G O G F OF ∴+=,222222(313)(4)(3136)46a a ∴+-+-+--=+,解得:122a a ==,2(2,313)G ∴-;当3DG 平分3OG F ∠时,如图5,DO DF =,33DG O DG F ∠=∠,33OG FG ∴=,又33DG DG =, 33()DOG DFG SSS ∴∆≅∆,设OF 与3DG 交于点H ,OH FH ∴=,(0,0)O ,(4,6)F ,(2,3)H ∴,设直线DG 解析式为11y k x b =+,(1,5)D -,()2,3H ,∴1111523k b k b -+=⎧⎨+=⎩, 解得:1123133k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线DG 解析式为21333y x =-+,联立方程组213333y x y ⎧=-+⎪⎨⎪=⎩,解得:23x y ⎧=⎪⎨⎪=⎩3(2G ∴,3; 综上所述,符合条件的G的坐标为1(2G,3或2(2,3G或3(2G,3.【点睛】本题是一次函数综合题,考查了运用待定系数法求一次函数解析式,求一次函数图象与坐标轴交点坐标,利用解方程组求两直线交点坐标,等腰直角三角形判定和性质,全等三角形判定和性质,勾股定理等,添加辅助线构造全等三角形,运用分类讨论思想和数形结合思想是解题关键.24.(1)证明见解析;(2)存在,;(3)存在,或.【解析】【分析】(1)说明出后,再利用矩形的性质得到,即可完成求证;(2)先设,依次表示各点坐标与相应线段长,再利用菱形的判定,令一组邻边相等 解析:(1)证明见解析;(2)存在,210y x =-+;(3)存在,()4,2D 或()0,10D .【解析】【分析】(1)说明出BQ OP =后,再利用矩形的性质得到//BQ OP ,即可完成求证;(2)先设=BQ OP x =,依次表示各点坐标与相应线段长,再利用菱形的判定,令一组邻边相等建立关于x 的方程,解方程后,则各点坐标得以确定,然后利用待定系数法即可求出直线PQ 的解析式;(3)先设出D 点坐标,再分别表示出2BP 、2PD 、2BD ,利用勾股定理的逆定理分类讨论求解即可.【详解】解:(1)证:∵点P ,Q 同时以相同的速度分别从点O ,B 出发,∴BQ OP =,又∵矩形OABC ,∴//BQ OP ,∴四边形OPBQ 是平行四边形.(2)存在;理由:∵矩形OABC 且点B 的坐标为()8,4,∴8OA CB ==,4OC AB ==;设=BQ OP x =∴8AP x =-,∴()2222284BP AP AB x =+=-+, 当四边形OPBQ 是菱形时,则=BP OP ,∴()22284x x =-+, 解得:=5x ,∴8=3CQ BC BQ x =-=-,∴()5,0P ,()3,4Q ,设直线PQ 的解析式为:y kx b =+;∴5034k b k b +=⎧⎨+=⎩,解得:210k b =-⎧⎨=⎩, ∴直线PQ 的解析式为:210y x =-+;(3)由(2)知=5BP OP =,设(),210D m m -+,∴()()22225210550125PD m m m m =-+-+=-+, ()()2222=82104540100BD m m m m -+-+-=-+, 当222=BD BP PD +时,2225401005550125m m m m -+=+-+,解得:5m =,此时2100m -+=,∴()5,0D ,此时D 点与P 点重合,不合题意,故舍去;当222=BP BD PD +时,2225540100550125m m m m =-++-+,解得:14m =,25m =(舍去),此时,2102m -+=,∴()4,2D ;当222=PD BD BP +时,2225501255401005m m m m -+=-++,解得:0m =,此时,21010m -+=,∴()0,10D ;综上可得:()4,2D 或()0,10D .【点睛】本题综合考查了矩形的性质、待定系数法求一次函数解析式、平行四边形的判定定理、菱形的判定定理、勾股定理及其逆定理等内容,同时涉及到了解一元二次方程等知识,本题综合性较强,要求学生具备一定的综合分析能力和计算能力,本题蕴含了分类讨论和数形结合的思想方法等.25.(1);(2)证明见解析;(3)【分析】(1)过点D 作DF ⊥AB 于F ,有等腰直角三角形和含30度角的直角三角形的性质,利用勾股定理求出AF 和BF 的长即可求解.(2)过点E 作EF ⊥AB 于F ,过点解析:(1)62+;(2)证明见解析;(3)43-【分析】(1)过点D 作DF ⊥AB 于F ,有等腰直角三角形和含30度角的直角三角形的性质,利用勾股定理求出AF 和BF 的长即可求解. (2)过点E 作EF ⊥AB 于F ,过点A 作AG ⊥BD 交BD 延长线于G ,先证明△GAD ≌△FAE ,再证明三角形ADE 时等边三角形,即可得到答案;(3)过点A 作AP ⊥DE 于P ,过点D 作DN ⊥BF 于点N ,可证明∠BDN =∠DBN =45°,∠FDN =30°,以及EF =BF ,设FN =m ,根据勾股定理,用含m 的式子分别表示出2AF 和2BF ,即可得出结果.【详解】解:(1)如图,过点D 作DF ⊥AB 于F ,∴∠AFD =∠BFD =90°∵四边形ABCD 是平行四边形,∠C =45°,BC =2∴∠A =∠C =45°,AD =BC =2∴AF =DF ,∵∠DBA =30°,∴BD =2DF ,在直角三角形AFD 中,222AF DF AD +=,∴224AF =,∴2AF DF ==,∴222BD DF ==,在直角三角形DFB 中,226BF BD DF =-=,∴62AB AF BF =+=+;(2)过点E 作EF ⊥AB 于F ,过点A 作AG ⊥BD 交BD 延长线于G ,∵AE =BE ,∴12A FB A BF ==, ∵∠G =90°,∠DBA =30°,∴12AG AB =,∠DAB =60° ∴AG AF =,∵∠DAE =60°,∴∠GAD =∠FAE =60°-∠DAF ,∵∠G =∠AFE =90°,∴△GAD ≌△FAE (ASA ),∴AD =AE ,∴三角形ADE 时等边三角形,∴AD =DE ,∴DE =BC ;(3)如图,过点A 作AP ⊥DE 于P ,过点D 作DN ⊥BF 于点N ,则∠APE =∠APF =∠DNF =∠DNB =90°,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠ABF =∠C =15°,∠DFB =∠ADF =60°,∴∠DBN =∠ABF +∠ABD =45°,∠FDN =30°,∴∠BDN =∠DBN =45°,∴∠EBD =∠EDB =∠FDN +∠BDN =75°,∴∠FEB =180°-75°-75°=30°,∴∠FBE =∠DFB -∠FEB =60°-30°=30°=∠FEB ,∴EF =BF ,设FN =m ,DF =2m , ∴223BN DN DF FN m ==-=, ∴3EF BF m m ==+,33AE DE m m ==, ∴1332m m PE PD DE +=== ∴3332m m m m PF m +-== ∵2AE DE PE ==,∴22223AP AE PE PE =-=, ∴(22222231043AF AP PF PE PF m =+=+=+, ∵()(222343BF m m m ==+, ∴()()22222104343423m AF AF BF BF m +⎛⎫=== ⎪⎝⎭+【点睛】本题主要考查了等腰三角形的性质,等腰直角三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,平行四边形的性质,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.。

专题01 全等三角形(原卷版)

专题01 全等三角形(原卷版)

2021-2022学年人教版数学八年级上册压轴题专题精选汇编专题01 全等三角形一.选择题1.(2020秋•东城区期末)如图所示,点O是△ABC内一点,BO平分∠ABC,OD⊥BC于点D,连接OA,若OD=5,AB=20,则△AOB的面积是( )A.20B.30C.50D.1002.(2020秋•定西期末)如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为( )A.4B.3C.2D.13.(2020秋•莫旗期末)如图,AB∥CD,BE和CE分别平分∠ABC和∠BCD,AD过点E,且与AB互相垂直,点P为线段BC上一动点,连接PE.若AD=8,则PE的最小值为( )A.8B.5C.4D.24.(2020秋•鞍山期末)如图,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DF⊥AB,垂足为点F,点E在边AC上,若DE=DB,则下列结论不正确的是( )A.DC=DF B.DE=BF C.AC=AF D.AB=AC+CE5.(2020秋•新宾县期末)如图,AB=AD,AC=AE,∠DAB=∠CAE=50°,以下四个结论:①△ADC≌△ABE;②CD=BE;③∠DOB=50°;④点A在∠DOE的平分线上,其中结论正确的个数是( )A.1B.2C.3D.46.(2020秋•金昌期末)如图,AD是△ABC的角平分线,CE⊥AD,垂足为F.若∠CAB=30°,∠B=55°,则∠BDE的度数为( )A.35°B.40°C.45°D.50°7.(2020秋•宜兴市期中)如图,在△ABC中,AB=4,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为( )A.B.C.D.8.(2020秋•江岸区校级月考)如图,方格中△ABC的三个顶点分别在正方形的顶点(格点上),这样的三角形叫格点三角形,图中可以画出与△ABC全等的格点三角形共有( )个.(不含△ABC)A.28B.29C.30D.31二.填空题9.(2020秋•南岗区校级月考)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=5,则CH的长为 .10.(2020•松北区一模)在△ABC中,点D在AC上,AD=5,AB+AC=16,E是BD中点,∠ACB=∠ABC+2∠BCE,则CD= .11.(2020•荷塘区模拟)在△ABC中,若其内部的点P满足∠APB=∠BPC=∠CPA=120°,则称P为△ABC的费马点.如图所示,在△ABC中,已知∠BAC=45°,设P为△ABC的费马点,且满足∠PBA=45°,PA=4,则△PAC的面积为 .12.(2020秋•海珠区校级期中)如图,AD是△ABC的角平分线,DF⊥AB,垂足为点F,DE=DG,△ADG 和△ADE的面积分别为50和39,则△EDF的面积为 .13.(2020秋•青羊区校级月考)如图,在△ABC中,∠C=90°,D是AB中点,FD⊥ED于D,BE=,AF=,则EF= .14.(2020秋•温岭市期中)如图,AD是△ABC的角平分线,DE⊥AC于点E,DF⊥AB于点F,给出下列结论:①DE=DF;②△ADF≌△ADE;③△ABD和△ACD的面积相等.其中正确结论的序号是 .15.(2019秋•南岗区校级月考)如图,在△ABC中,∠ACB=90°,点D在边AB上,AD=AC,点E在BC边上,CE=BD,过点E作EF⊥CD交AB于点F,若AF=2,BC=8,则DF的长为 .16.(2019秋•江汉区期中)如图,AB⊥CD于点E,且AB=CD=AC,若点I是△ACE的角平分线的交点,点F是BD的中点.下列结论:①∠AIC=135°;②BD=BI;③S△AIC =S△BID;④IF⊥AC.其中正确的是 (填序号).17.(2018秋•襄城县期末)如图,△ABC的内角∠ABC和外角∠ACD的平分线相交于点E,BE交AC于点F,过点E作EG∥BD交AB于点G,交AC于点H,连接AE,有以下结论:①∠BEC=∠BAC;②△HEF≌△CBF;③BG=CH+GH;④∠AEB+∠ACE=90°,其中正确的结论有 (将所有正确答案的序号填写在横线上).18.(2019秋•潍坊月考)如图,△ABC中,AB=4,AC=7,M是BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于 .三.解答题19.(2021春•铁岭月考)如图,在四边形ABCD中,∠B+∠ADC=180°,CE平分∠BCD交AB于点E,连接DE.(1)若∠A=50°,∠B=70°,求∠BEC的度数;(2)若∠A=∠1,试说明∠CDE=∠DCE.20.(2021•南岗区模拟)已知:点E,F在BC上,AF=DE,BE=CF,∠AFE=∠DEF.(1)如图1,求证:AB=CD;(2)如图2,连接AC,BD,AE,DF,在不添加任何辅助线的情况下,请直接写出图2中的四组平行线.21.(2020秋•来宾期末)如图,在五边形ABCDE中,AB=DE,AC=AD.(1)请你添加一个与角有关的条件,使得△ABC≌△DEA,并说明理由;(2)在(1)的条件下,若∠CAD=65°,∠B=110°,求∠BAE的度数.22.(2020秋•云南期末)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是152cm2,AB=20cm,AC=18cm,求DE的长.23.(2021春•萧山区月考)如图,在△ABC中,OE⊥AB与点E,OF⊥AC与点F,且OE=OF.(1)如图①,当O为BC中点时,试说明AB=AC;(2)如图②,当点O在△ABC内部,且OB=OC,试判断AB与AC的关系.24.(2021春•南山区校级期中)如图,在△ABC中,AB=AC=3,∠B=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=110°时,∠EDC= ,∠AED= .(2)线段DC的长度为何值时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求∠BDA的度数;若不可以,请说明理由.25.(2021春•沂源县期末)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC 上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.26.(2020秋•腾冲市期末)(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.27.(2020秋•大武口区期末)如图所示,已知△ABC中,点D为BC边上一点,∠1=∠2=∠3,AC=AE,(1)求证:△ABC≌△ADE;(2)若AE∥BC,且∠E=∠CAD,求∠C的度数.28.(2020秋•船营区期末)如图,太阳光线AC与A′C′是平行的,同一时刻两根高度相同的木杆在太阳光照射下的影子一样长吗?说说你的理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档