高中数学人教a版高一必修二第二章《点、直线、平面之间的位置关系习题课》word课时作业

合集下载

高中数学人教版必修二第二章《点、直线、平面之间的位置关系》(含答案)

高中数学人教版必修二第二章《点、直线、平面之间的位置关系》(含答案)

高中数学人教版必修二第二章《点、直线、平面之前的位置关系》(含答案)一、选择题1.下列说法正确的个数是()①若直线a,b相交,b,c相交,则a,c相交;②若a∥b,则a,b与c所成的角相等;③若a⊥b,b⊥c,则a∥c.A.3B.2C.1 D.0【解析】①中a与c也可能异面,③中a与c也可能相交或异面,②正确.【答案】C2.a、b为异面直线是指①a∩b=∅,且a不平行于b;②a⊂平面α,b⊄平面α,且a∩b =∅;③a⊂平面α,b⊂平面β,且α∩β=∅;④不存在平面α能使a ⊂α,且b⊂α成立.()A.①②③B.①③④C.②③ D.①④【解析】②③中的a,b有可能平行,①④符合异面直线的定义.【答案】D3.下列选项中,点P,Q,R,S分别在正方体的四条棱上,并且是所在棱的中点,则直线PQ与RS是异面直线的一个图是()【解析】易知选项A,B中PQ∥RS,选项D中RS与PQ相交,只有选项C中RS与PQ是异面直线.【答案】C4.如图2119所示,在正方体ABCDA1B1C1D1中,E、F、G、H 分别为AA1、AB、B1B、B1C1的中点,则异面直线EF与GH所成的角等于()图2119A.45°B.60°C.90°D.120°【解析】连接A1B,BC1,因为E、F、G、H分别是AA1、AB、BB1、B1C1的中点.A1B∥EF,BC1∥GH.∴A1B和BC1所成角为异面直线EF与GH所成角,连接A1C1知,△A1BC1为正三角形,故∠A1BC1=60°.【答案】B5.如图2120,三棱柱ABCA1B1C1中,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是()图2120A.CC1与B1E是异面直线B.C1C与AE共面C.AE与B1C1是异面直线D.AE与B1C1所成的角为60°【解析】由于CC1与B1E都在平面C1B1BC内,故C1C与B1E 是共面的,所以A错误;由于C1C在平面C1B1BC内,而AE与平面C1B1BC相交于E点,点E不在C1C上,故C1C与AE是异面直线,B错误;同理AE与B1C1是异面直线,C正确;而AE与B1C1所成的角就是AE与BC所成的角,E为BC中点,△ABC为正三角形,所以AE⊥BC,D错误.【答案】C二、填空题6.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是________(写出所有符合要求的图形序号).图229【解析】①设MP中点为O,连接NO.易得AB∥NO,又AB⊄平面MNP,所以AB∥平面MNP.②若下底面中心为O,易知NO∥AB,NO⊄平面MNP,所以AB与平面MNP不平行.③易知AB∥MP,所以AB∥平面MNP.④易知存在一直线MC∥AB,且MC⊄平面MNP,所以AB与平面MNP不平行.【答案】①③7.在如图2210所示的几何体中,三个侧面AA1B1B,BB1C1C,CC1A1A都是平行四边形,则平面ABC与平面A1B1C1平行吗?______(填“是”或“否”).图2210【解析】因为侧面AA1B1B是平行四边形,所以AB∥A1B1,因为AB⊄平面A1B1C1,A1B1⊂平面A1B1C1,所以AB∥平面A1B1C1,同理可证:BC∥平面A1B1C1.又因为AB∩BC=B,AB⊂平面ABC,BC⊂平面ABC,所以平面ABC∥平面A1B1C1.【答案】是三、解答题8.如图2224,在三棱柱ABCA1B1C1中,M是A1C1的中点,平面AB1M∥平面BC1N,AC∩平面BC1N=N.求证:N为AC的中点.图2224【证明】因为平面AB1M∥平面BC1N,平面ACC1A1∩平面AB1M=AM,平面BC1N∩平面ACC1A1=C1N,所以C1N∥AM,又AC∥A1C1,所以四边形ANC1M为平行四边形,所以AN=C1M=21A1C1=21AC,所以N为AC的中点.9.如图2225,平面EFGH分别平行于CD,AB,E,F,G,H 分别在BD,BC,AC,AD上,且CD=a,AB=b,CD⊥AB.(1)求证:EFGH是矩形.(2)设DE=m,EB=n,求矩形EFGH的面积.图2225【解】(1)证明:因为CD∥平面EFGH,而平面EFGH∩平面BCD=EF,所以CD∥EF.同理HG∥CD,所以EF∥HG.同理HE∥GF,所以四边形EFGH是平行四边形.由CD∥EF,HE∥AB,所以∠HEF为CD和AB所成的角.又因为CD⊥AB,所以HE⊥EF.所以四边形EFGH是矩形.(2)由(1)可知在△BCD中,EF∥CD,DE=m,EB=n,所以CD EF =DB BE .又CD =a ,所以EF =m +n n a . 由HE ∥AB ,所以AB HE =DB DE .又因为AB =b ,所以HE =m +n mb .又因为四边形EFGH 为矩形,所以S 矩形EFGH =HE ·EF =m +n m b ·m +n n a =(m +n2mn ab .10.对于直线m 、n 和平面α,下列命题中正确的是( )A .如果m ⊂α,n ⊄α,m 、n 是异面直线,那么n ∥αB .如果m ⊂α,n ⊄α,m 、n 是异面直线,那么n 与α相交C .如果m ⊂α,n ∥α,m 、n 共面,那么m ∥nD .如果m ∥α,n ∥α,m 、n 共面,那么m ∥n【解析】 对于A ,如图(1)所示,此时n 与α相交,故A 不正确;对于B ,如图(2)所示,此时m ,n 是异面直线,而n 与α平行,故B 不正确;对于D ,如图(3)所示,m 与n 相交,故D 不正确.故选C.图(1) 图(2) 图(3)【答案】 C11.如图2226,三棱柱ABCA 1B 1C 1中,底面是边长为2的正三角形,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2,当点M 在何位置时,BM ∥平面AEF .图2226【解】如图,取EC的中点P,AC的中点Q,连接PQ,PB,BQ,则PQ∥AE.因为EC=2FB=2,所以PE=BF.所以四边形BFEP为平行四边形,所以PB∥EF.又AE,EF⊂平面AEF,PQ,PB⊄平面AEF,所以PQ∥平面AEF,PB∥平面AEF.又PQ∩PB=P,所以平面PBQ∥平面AEF.又BQ⊂平面PBQ,所以BQ∥平面AEF.故点Q即为所求的点M,即点M为AC的中点时,BM∥平面AEF.。

人教A版高中数学必修二第二章 点、直线、平面之间的位置关系

人教A版高中数学必修二第二章 点、直线、平面之间的位置关系

的直线与另一个平面垂直
二面角二 范围 面: 角[的0°平,面18角0°]
专题突破
专题一 空间中的位置关系 1.空间中两直线的位置关系:相交、平行、异面. 2.空间中直线与平面的位置关系:直线在平面内、直线 与平面平行、直线与平面相交. 3.两个平面的位置关系:平行、相交.
[例 1] 下面四个命题中,正确命题的个数是( )
如上图,AB∥平面 CDD′C′,BB′∥平
③ × 面 CDD′C′,AB∩BB′=B,即 AB 与
BB′不平行,③不正确
序号 正误
原因分析
如上图,设直线 l 是平面 ABB′A′内与 AB 平行的任一条直线,l 有无数条,即 AB 与 ④× 平面 ABB′A′内的无数条直线平行,但 AB⊂平面 ABB′A′,④不正确
[解析] ∵AB 为⊙O 直径,C 为⊙O 上一点, ∴BC⊥AC,
DBCA⊂⊥平平面面AABBCC⇒DA⊥BC
BC⊥AC
AC∩DA=A
⇒BACF⊂⊥平平面面DDAACC ⇒
BC⊥
AF⊥DC
BC∩DC=C
⇒ABFD⊥⊂平平面面DDCCBB⇒ BD⊥AF
BD⊥AE
AF∩AE=A
判定定理:一个平面内的两条相交直线与另一个平面平行,
则这两个平面平行 平面与平面平行
性质定理:如果两个平行平面同时和第三个平面相交,那么 它们的交线平行
平面与平面之间的位置关系
判定定理:一个平面过另一个平面的垂线,则这两个平面垂直
平面与平面垂直性质定理:两个平面垂直,则一个平面内垂直于交线
[例2] (2011·江苏高考)如图,在四棱锥P-ABCD中,平 面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是 AP,AD的中点.

人教A版高中数学必修二 第二章 点、直线、平面之间的位置关系复习 课件 (共31张PPT)

人教A版高中数学必修二 第二章 点、直线、平面之间的位置关系复习 课件 (共31张PPT)

所以 CC1⊥平面 ABC. 又 AD⊂平面 ABC,所以 CC1⊥AD.
又因为 AD⊥DE,CC1,DE⊂平面 BCC1B1,CC1∩DE=E,
所以 AD⊥平面 BCC1B1.
又 AD⊂平面 ADE,
所以平面 ADE⊥平面 BCC1B1.
(2)因为 A1B1=A1C1,F 为 B1C1 的中点,
所以 A1F⊥B1C1.
因为 CC1⊥平面 A1B1C1,且 A1F⊂平面 A1B1C1, 所以 CC1⊥A1F. 又因为 CC1,B1C1⊂平面 BCC1B1,CC1∩B1C1=C1,
所以 A1F⊥平面 BCC1B1.
由(1)知 AD⊥平面 BCC1B1,所以 A1F∥AD.
又 AD⊂平面 ADE,A1F⊄平面 ADE, 所以 A1F∥平面 ADE.
故CD⊥平面PAC.又AE⊂平面PAC,故CD⊥AE. (2)因为PA=AB=BC,∠ABC=60°,所以PA=AC. 又因为E是PC的中点,所以AE⊥PC. 由(1)知CD⊥AE,CD∩PC=C,从而AE⊥平面PCD, 故AE⊥PD. 因为PA⊥AB,AB⊥AD,所以AB⊥平面PAD, 所以BA⊥PD,又因为BA∩AE=A,所以PD⊥平面ABE.
g a
7部分
g
8部分
b
g
b g
b
a
b
a
例3.如图所示,四棱锥P-ABCD中,PA⊥底面ABCD,
AB⊥AD,AC⊥CD,∠ABC=60°,
PA=AB=BC,E是PC的中点.
求证:(1)CD⊥AE.
(2)PD⊥平面ABE.
证明:(1)因为PA⊥底面ABCD,所以CD⊥PA,又CD⊥AC,PA∩AC=A,
6. 面面平行的判定定理 a a , b a , a∩b, ⇒ a∥b. 由线面平行得面面平行. a∥ b , b∥ b , 7. 面面平行的性质定理 ab, g a = a, ⇒ a∥ b. g b = b, 由面面平行得线线平行.

人教A版高中数学必修2第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系课件

人教A版高中数学必修2第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系课件

C D
B A
C1 D1
B1 A1
知识小结
实例引 入平面
平面的画 法和表示
点和平面的 位置关系
平面三 个公理
空间图形
文字叙述
符号表示
2.1.2空间中两直线的位置 关系
平面有知识(复习 )
判断下列命题对错: 1、如果一条直线上有一个点在一个平面上,则这条直线上
的所有点都在这个平面内。( )
2、将书的一角接触课桌面,这时书所在平面和课桌所在平
直线。(既不相交也不平行的两条直线) 判断:
(1)
m
β
m
l
α
l
直线m和l是异面直线吗?
(2)
,则 与 是异面直线
(3)a,b不同在平面 内,则a与b异面
异面直线的画法:
通常用一个或两个平面来衬托,异面直线
不同在任何一个平面的特点
a
b
b
a
b
a
2、空间中两直线的三种位置关系
1、相交
m P
l
2、平行
m l
b′

a′ θ O

若两条异面直线所成角为90°,则称它们互相垂直。 异面直线a与b垂直也记作a⊥b 异面直线所成角θ的取值范围:
例 3 在正方体ABCD—A1B1C1D1中指出下列各对线段所
成的角:
D1
C1
1)AB与CC1; 2)A1 B1与AC; A1
B1
3)A1B与D1B1。
1)AB与CC1所成的角 = 9 0°
4、平面的基本性质
公理3 如果两个不重合的平面有一个公共点,
那么它们有且只有一条过该点的公共直线.
符号表示为:
P l, Pl.

高一数学人教A版必修二 第二章 点、直线、平面之间的位置关系 2.1.1平面 教学课件

高一数学人教A版必修二  第二章 点、直线、平面之间的位置关系 2.1.1平面 教学课件

解析: ∵M、N 是 AA1、AB 中点, ∴MN∥A1B,A1B∥CD1, ∴MN∥CD1,∴D1M 与 CN 在一个面内 ∴D1M∩CN=P,∴P∈CN,CN⊂平面 ABCD, ∴P∈面 ABCD 同理 P∈平面 ADD1A1 ∴P 在平面 ABCD 与平面 ADD1A1,∴P∈DA. 答案: 共点
3.假设不共面,结合题设推出矛盾,用“反证法”.
2.已知:A∈l,B∈l,C∈l,D∉l,如图,求证:直线 AD,BD,CD 共面.
数学 必修2
第二章 点、直线、平面之间的位置关系
学案·新知自解
教案·课堂探究
练案·学业达标
证明: 因为直线 l 与点 D 可以确定平面 α,所以只需证明 AD,BD,CD 都在平面 α 内.
第二章
点、直线、平面之 间的位置关系
数学 必修2
第二章 点、直线、平面之间的位置关系
学案·新知自解
教案·课堂探究
练案·学业达标
2.1 空间点、直线、平面之间的位置关系 2.1.1 平面
学案·新知自解
数学 必修2
第二章 点、直线、平面之间的位置关系
学案·新知自解
教案·课堂探究
练案·学业达标
1.了解平面的概念,掌握平面的画法及表示方法. 2.能用符号语言描述空间点、直线、平面之间的位置关系. 3.能用图形、文字、符号三种语言描述三个公理,理解三个公理的地位与 作用.
3.如图所示,在正方体 ABCD-A1B1C1D1 中,设线段 A1C 与平面 ABC1D1 交于点 Q,求证:B,Q,D1 三点共线.
解析: 如图所示,连接 A1B,CD1.显然 B∈平面 A1BCD1,D1∈平面 A1BCD1. ∴BD1⊂平面 A1BCD1. 同理 BD1⊂平面 ABC1D1. ∴平面 ABC1D1∩平面 A1BCD1=BD1. ∵A1C∩平面 ABC1D1=Q, ∴Q∈平面 ABC1D1. 又∵A1C⊂平面 A1BCD1, ∴Q∈平面 A1BCD1. ∴Q∈BD1,即 B,Q,D1 三点共线.

人教A版高中数学必修2第二章 点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系导学案(1)

人教A版高中数学必修2第二章 点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系导学案(1)

空间点、直线、平面之间的位置关系(知识点)一、四个公理公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.符号语言:,,l B l A ∈∈且.,ααα⊂⇒∈∈l B A图形语言:公理2 过不在一条直线上的三点,有且只有一个平面.图形语言:ABC ∆确定一个平面.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 符号语言:,,l P P =⋂⇒∈∈βαβα且.l P ∈公理4 平行于同一条直线的两条直线互相平行.符号语言:.////,//c a c b b a ⇒二、三个角的定义三角为:异面直线所成的角,线面角,二面角.1 异面直线所成的角:已知两条异面直线b a ,,经过空间任一点O 作直线,//,//b b a a ''把b a ''与所成的锐角(或直角)叫做异面直线b a ,所成的角(或夹角).2 线面角:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.图形语言:3 二面角: 在二面角βα--l 的棱l 上任取一点O ,以点O 为垂直,在半平面 α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角. 图形语言:三、判定定理和性质定理1 线面平行的判定定理文字语言:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.符合语言:.//,//,,αααa b a b a ⇒⎪⎩⎪⎨⎧⊂⊄2 面面平行的判定定理文字语言:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.符合语言:.//////αβααββ⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=⋂⊂⊂b a P b a b a3 线面平行的性质定理文字语言:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.符合语言:.//,,,//b a b a a ⇒⎪⎩⎪⎨⎧=⋂⊂βαβα图形语言: 定理:平面外两条平行直线中的一条平行于这个平面,则另一条直线也平行于这个平面.符合语言:.//////αααb b a b a ⇒⎪⎭⎪⎬⎫⊄4 面面平行的性质定理文字语言:两个平行平面同时和第三个平面相交,那么它们的交线平行.符合语言:.////b a b a ⇒⎪⎭⎪⎬⎫=⋂=⋂γβγαβα定理:夹在两个平行平面间的平行线段相等.5 线面垂直的判定定理文字语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.符合语言:.,αα⊥⇒⎪⎪⎭⎪⎪⎬⎫=⋂⊂⊥⊥a O c b c b c a ba 定理:两平行直线中一条垂直于一个平面,则另一条直线也垂直这个平面. 符合语言:.//αα⊥⇒⎭⎬⎫⊥b a b a6 面面垂直的判定定理文字语言:一个平面过另一个平面的垂线,则这两个平面垂直.符合语言:.βααβ⊥⇒⎭⎬⎫⊂⊥aa7 线面垂直的性质定理文字语言:垂直于同一个平面的两条直线平行.符合语言:.//baba⇒⎭⎬⎫⊥⊥αα定理:垂直于同一条直线的两个平面平行.符合语言:βαβα//⇒⎭⎬⎫⊥⊥aa.定理:一条直线垂直于一个平面,则这条直线垂直这个平面内的任意一条直线.符合语言:.baba⊥⇒⎭⎬⎫⊂⊥αα8 面面垂直的性质定理文字语言:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.符合语言:βαβαβα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊥⊂=⋂⊥alaal.定理:两个相交平面都垂直第三个平面,则两个相交平面的交线也垂直于第三个平面.符合语言:.γβαγβγα⊥⇒⎪⎭⎪⎬⎫=⋂⊥⊥ll。

人教A版高中数学必修二同步学习讲义:第二章 点、直线、平面之间的位置关系2.3.2 Word版含答案

人教A版高中数学必修二同步学习讲义:第二章 点、直线、平面之间的位置关系2.3.2 Word版含答案

2.3.2 平面与平面垂直的判定学习目标1.理解二面角及其平面角的概念,能确认图形中的已知角是否为二面角的平面角.2.掌握二面角的平面角的一般作法,会求简单的二面角的平面角.3.掌握两个平面互相垂直的概念,能用定义和定理判定面面垂直.知识点一二面角思考1观察教室内门与墙面,当门绕着门轴旋转时,门所在的平面与墙面所形成的角的大小和形状.数学上,用哪个概念来描述门所在的平面与墙面所在的平面所形成的角?答案二面角.思考2平时,我们常说“把门开大一点”,在这里指的是哪个角大一点?答案二面角的平面角.梳理二面角的概念(1)定义:从一条直线出发的两个半平面所组成的图形.(2)相关概念:①这条直线叫做二面角的棱,②两个半平面叫做二面角的面.(3)画法:(4)记法:二面角α-l-β或α-AB-β或P-l-Q或P-AB-Q.(5)二面角的平面角:若有①O∈l;②OA⊂α,OB⊂β;③OA⊥l,OB⊥l,则二面角α-l-β的平面角是∠AOB.知识点二平面与平面垂直思考建筑工人常在一根细线上拴一个重物,做成“铅锤”,用这种方法来检查墙与地面是否垂直.当挂铅锤的线从上面某一点垂下时,如果墙壁贴近铅锤线,则说明墙和地面什么关系?此时铅锤线与地面什么关系?答案都是垂直.梳理两面垂直的定义及判定(1)平面与平面垂直①定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.②画法:③记作:α⊥β.(2)判定定理类型一证明面面垂直例1如图,在四棱锥P-ABCD中,底面ABCD是菱形,对角线AC与BD相交于点O,PA⊥平面ABCD,M是P D的中点.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC.证明(1)在△PBD中,O,M分别是BD,PD的中点,所以OM∥PB,因为OM⊄平面PAB,PB⊂平面PAB,所以OM∥平面PAB.(2)因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA⊥BD.因为底面ABCD是菱形,所以AC⊥BD.又因为AC⊂平面PAC,PA⊂平面PAC,AC∩PA=A,所以BD⊥平面PAC.又因为BD⊂平面PBD,所以平面PBD⊥平面PAC.引申探究如图,本例中若底面ABCD改为正方形,另增加条件:PA=AD,其他条件不变.试证明:(1)AM⊥平面PCD;(2)平面ACM⊥平面PCD.证明(1)∵PA=AD,M是PD的中点,∴AM⊥PD.∵PA⊥平面ABCD,∴PA⊥DC,又由于AD⊥DC,PA∩AD=A,∴DC⊥平面PAD,∴DC⊥AM.又PD∩DC=D,∴AM⊥平面PCD.(2)由(1)知AM⊥平面PCD,∵AM⊂平面ACM,∴平面ACM⊥平面PCD.反思与感悟应用判定定理证明平面与平面垂直的基本步骤跟踪训练1如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=1 2AA1,D是棱AA1的中点.证明:平面BDC1⊥平面BDC.证明由题设知BC⊥CC1,BC⊥AC,CC1∩AC=C,所以BC⊥平面ACC1A1. 又DC1⊂平面ACC1A1,所以DC1⊥BC.由题设知∠A 1DC 1=∠ADC =45°,所以∠CDC 1=90°,即DC 1⊥DC .又DC ∩BC =C ,所以DC 1⊥平面BDC .又DC 1⊂平面BDC 1,所以平面BDC 1⊥平面BDC . 类型二求二面角的大小例2如图,已知三棱锥A -BCD 的各棱长均为2,求二面角A -CD -B 的余弦值.解如图,取CD 的中点M ,连接AM ,BM ,则AM ⊥CD ,BM ⊥CD . 由二面角的定义可知∠AMB 为二面角A -CD -B 的平面角.设点H 是△BCD 的中心,则AH ⊥平面BCD ,且点H 在BM 上.在Rt △AMH 中,AM =32×2=3,HM =32×2×13=33,则cos ∠AMB =333=13,即二面角的余弦值为13.反思与感悟(1)求二面角大小的步骤简称为“一作二证三求”.①(定义法):在二面角的棱上找一个特殊点,在两个半平面内分别作垂直于棱的射线.如图(1)所示,∠AOB 为二面角α-a -β的平面角.②(垂线法):过二面角的一个面内一点作另一个平面的垂线,过垂足作棱的垂线,连接该点与垂足,利用线面垂直可找到二面角的平面角或其补角.如图(2)所示,∠AFE 为二面角A -BC -D 的平面角. ③(垂面法):过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条交线所成的角,即为二面角的平面角.如图(3)所示,∠AOB为二面角α-l -β的平面角.(1)(2)(3)跟踪训练2如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上的一点,且PA=AC,求二面角P-BC-A的大小.解由已知PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC.∵AB是⊙O的直径,且点C在圆周上,∴AC⊥BC.又∵PA∩AC=A,∴BC⊥平面PAC.而PC⊂平面PAC,∴PC⊥BC.又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角.由PA=AC知△PAC是等腰直角三角形,∴∠PCA=45°,即二面角P-BC-A的大小是45°.1.直线l⊥平面α,l⊂平面β,则α与β的位置关系是()A.平行B.可能重合C.相交且垂直D.相交不垂直答案C解析由面面垂直的判定定理,得α与β垂直,故选C.2.从二面角内一点分别向二面角的两个面引垂线,则这两条垂线所夹的角与二面角的平面角的关系是() A.互为余角B.相等C.其和为周角D.互为补角答案D解析画图知从二面角内一点分别向二面角的两个面引垂线,则这两条垂线所夹的角与二面角的平面角互为补角,所以选D.3.长方体ABCD-A1B1C1D1的六个面中,与平面ABCD垂直的平面有()A.1个B.3个C.4个D.5个答案C解析与平面ABCD垂直的面有:平面ABB1A1,平面BCC1B1,平面CDD1C1,平面DAA1D1,共4个,故选C.4.三棱锥P-ABC的两侧面PAB、PBC都是边长为2a的正三角形,AC=3 a,则二面角A-PB-C的大小为()A.90°B.30°C.45°D.60°答案D解析如图,取PB的中点为M,连接AM,CM,则AM⊥PB,CM⊥PB,∴∠AMC为二面角A-PB-C的平面角,易得AM=CM=3a,则△AMC为正三角形,∴∠AMC=60°.5.如图所示,在四棱锥S-ABCD中,底面四边形ABCD是平行四边形,SC⊥平面ABCD,E为SA的中点.求证:平面EBD⊥平面ABCD.证明连接AC与BD交于O点,连接OE.∵O为AC的中点,E为SA的中点,∴EO∥SC.∵SC⊥平面ABCD,∴EO⊥平面ABCD.又∵EO⊂平面EBD,∴平面EBD⊥平面ABCD.1.求二面角的步骤简称为“一作二证三求”.2.证明面面垂直常用的方法(1)定义法:即说明两个半平面所成的二面角是直二面角.(2)判定定理法:在其中一个平面内寻找一条直线与另一个平面垂直,即把问题转化为线面垂直.(3)性质法:两个平行平面中的一个垂直于第三个平面,则另一个也垂直于此平面.课时作业一、选择题1.下列不能确定两个平面垂直的是()A.两个平面相交,所成二面角是直二面角B.一个平面垂直于另一个平面内的一条直线C.一个平面经过另一个平面的一条垂线D.平面α内的直线a垂直于平面β内的直线b答案D解析如图所示,在正方体ABCD-A1B1C1D1中,平面A1B1CD内的直线A1B1垂直于平面ABCD内的一条直线BC,但平面A1B1CD与平面ABCD显然不垂直.2.关于直线a,b以及平面M,N,下列命题中正确的是()A.若a∥M,b∥M,则a∥bB.若b∥M,a⊥b,则a⊥MC.若b⊂M,a⊥b,则a⊥MD.若a⊥M,a⊂N,则M⊥N答案D解析A中,当直线a,b都在一个平面上相交,且这个平面与M平行,可推断出A不一定成立;B中,可能存在a⊂M的情况,故B的结论不一定成立;C中,可能存在a∥M的情况,故C项错误;D中,若a⊥M,a⊂N,由面面垂直的判定定理可知M⊥N,故D项中说法正确.3.如图所示,在四面体D-ABC中,若AB=BC,AD=CD,E是AC的中点,则下列命题中正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE,且平面ADC⊥平面BDED.平面ABC⊥平面ADC,且平面ADC⊥平面BDE答案C解析因为AB=BC,且E是AC的中点,所以BE⊥AC.同理,DE⊥AC.又BE∩DE=E,所以AC⊥平面BDE. 因为AC⊂平面ABC,所以平面ABC⊥平面BDE.因为AC⊂平面ACD,所以平面ACD⊥平面BDE.4.如图所示,在△ABC中,AD⊥BC,△ABD的面积是△ACD的面积的2倍.沿AD将△ABC翻折,使翻折后BC⊥平面ACD,此时二面角B-AD-C的大小为()A.30°B.45°C.60°D.90°答案C解析由已知得BD=2CD.翻折后,在Rt△BCD中,∠BDC=60°,而AD⊥BD,CD⊥AD,故∠BDC是二面角B-AD-C的平面角,其大小为60°.5.如图,AB是圆O的直径,PA垂直于圆O所在平面ABC,点C是圆上的任意一点,图中互相垂直平面的对数为()A.4B.3C.2D.1答案B解析∵PA⊥圆O所在平面ABC,∴平面PAB⊥平面ABC,同理可得:平面PAC⊥平面ABC,∵AB是圆O的直径,∴BC⊥AC,又∵PA⊥圆O所在平面ABC,BC⊂平面ABC,∴PA⊥BC.又∵PA∩AC=A,PA,AC⊂平面PAC.∴BC⊥平面PAC.又∵BC⊂平面PBC,∴平面PBC⊥平面PAC.综上相互垂直的平面共有3对.6.过两点与一个已知平面垂直的平面()A.有且只有一个B.有无数个C.有且只有一个或无数个D.可能不存在答案C解析设两点为A,B,平面为α,若直线AB⊥α,则过A、B与α垂直的平面有无数个;若直线AB与α不垂直,即直线AB与α平行、相交或在平面α内,均存在唯一平面垂直于已知平面.7.在正四面体PABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论中不成立的是()A.BC∥平面PDF B.DF⊥平面PAEC.平面PDF⊥平面ABC D.平面PAE⊥平面ABC答案C解析如图所示,∵BC∥DF,∴BC∥平面PDF,∴A正确.由BC⊥PE,BC⊥AE,得BC⊥平面PAE,∴DF⊥平面PAE,∴B正确.∴平面ABC⊥平面PAE(BC⊥平面PAE),∴D正确.8.如图所示,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是()A.PB⊥ADB.平面PAB⊥平面PBCC.直线BC∥平面PAED.直线PD与平面ABC所成的角为45°答案D解析∵PA⊥平面ABC,∴∠ADP是直线PD与平面ABC所成的角.∵六边形ABCDEF是正六边形,∴AD=2AB,即tan∠ADP=PAAD=2AB2AB=1,∴直线PD与平面ABC所成的角为45°.故选D.二、填空题9.已知α,β是两个不同的平面,l是平面α与β之外的直线,给出下列三个论断:①l⊥α,②l∥β,③α⊥β.以其中的两个论断作为条件,余下的一个论断作为结论,写出你认为正确的一个命题:________.(用序号表示)答案①②⇒③解析由l∥β可在平面β内作l′∥l,又l⊥α,∴l′⊥α,∵l′⊂β,∴α⊥β,故①②⇒③.10.下列结论中,所有正确结论的序号是________.①两个相交平面形成的图形叫做二面角;②异面直线a,b分别和一个二面角的两个面垂直,则a,b所成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成的角的最小角;④二面角的大小与其平面角的顶点在棱上的位置没有关系.答案②④解析由二面角及二面角的平面角的定义知①③不正确,④正确;②中所成的角虽不是二面角的平面角,但由平面几何的知识易知②正确.11.如图所示,在长方体ABCD-A1B1C1D1中,BC=2,AA1=1,E,F分别在AD和BC上,且EF∥AB,若二面角C1-EF-C等于45°,则BF=________.答案1解析由题意知EF⊥BC.∵CC1⊥平面ABCD,∴CC1⊥EF,又BC∩CC1=C,∴EF⊥平面CC1F,∴EF⊥C1F.故∠C1FC为二面角C1-EF-C的平面角,即∠C1FC=45°,∵AA1=1,∴CF=1,又BC=2,∴BF=1.12.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)答案DM⊥PC(或BM⊥PC等)解析由定理可知,BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,∴平面MBD ⊥平面PCD .三、解答题13.如图所示,在正三棱柱ABC -A 1B 1C 1中,E 为BB 1的中点,求证:截面A 1CE ⊥侧面ACC 1A 1.证明如图所示,取A 1C 的中点F ,AC 的中点G ,连接FG ,EF ,BG ,则FG ∥AA 1,且GF =12AA 1.因为BE =EB 1,A 1B 1=CB ,∠A 1B 1E =∠CBE =90°,所以△A 1B 1E ≌△CBE ,所以A 1E =CE .因为F 为A 1C 的中点,所以EF ⊥A 1C .又FG ∥AA 1∥BE ,GF =12AA 1=BE ,且BE ⊥BG , 所以四边形BEFG 是矩形,所以EF ⊥FG .因为A 1C ∩FG =F ,所以EF ⊥侧面ACC 1A 1.又因为EF ⊂平面A 1CE ,所以截面A 1CE ⊥侧面ACC 1A 1.14.如图,四棱锥P -ABCD 的底面ABCD 为正方形,PA ⊥底面ABCD ,AC ,BD 交于点E ,F 是PB 的中点.求证:(1)EF ∥平面PCD ;(2)平面PBD ⊥平面PAC .证明(1)∵四边形ABCD 是正方形,∴E 是BD 的中点.又F 是PB 的中点,∴EF ∥PD .又∵EF ⊄平面PCD ,PD ⊂平面PCD ,(2)∵四边形ABCD是正方形,∴BD⊥AC.∵PA⊥平面ABC,∴PA⊥BD.又PA∩AC=A,∴BD⊥平面PAC.又BD⊂平面PBD,∴平面PBD⊥平面PAC.四、探究与拓展15.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1E⊥A1D;(2)求AE等于何值时,二面角D1-EC-D的大小为45°?(1)证明连接D1A,D1B.∵在长方形A1ADD1中,AD=AA1=1,∴四边形A1ADD1为正方形,∴A1D⊥AD1.又由题意知AB⊥A1D,且AB∩AD1=A,∴A1D⊥平面ABD1.∵D1E⊂平面ABD1,∴A1D⊥D1E.(2)解过D作DF⊥EC于点F,连接D1F.∵D1D⊥平面DB,EC⊂平面DB,∴D1D⊥EC.又DF∩D1D=D,∴EC⊥平面D1DF.∵D1F⊂平面D1DF,∴EC⊥D1F,∴∠DFD1为二面角D1-EC-D的平面角,∴∠DFD1=45°,又∠D1DF=90°,D1D=1,∴DF=1.在Rt△DFC中,∵DC=2,∴∠DCF=30°,∴∠ECB=60°.在Rt△EBC中,∵BC=1,∴EB=3,AE=2-3.。

高中数学必修二第二章《点、直线、平面之间的位置关系》整合课件人教A版

高中数学必修二第二章《点、直线、平面之间的位置关系》整合课件人教A版
-3-
本章整合
专题一 专题二 专题三 专题四 专题五
知识建构
综合应用
真题放送
应用
如图,在空间四边形ABCD中,E,F分别为AB,AD的中点,点G,H分别 在BC,CD上,且BG∶GC=DH∶HC=1∶2. 求证:(1)E,F,G,H四点共面; (2)EG与HF的交点在直线AC上.
-4-
本章整合
专题一 专题二 专题三 专题四 专题五
知识建构
综合应用
真题放送
证明: 连接CD1,AD1, 因为P,Q分别是CC1,C1D1的中点, 所以PQ∥CD1,且CD1⊄平面BPQ,PQ⊂平面BPQ, 所以CD1∥平面BPQ. 又D1Q=AB=1,D1Q∥AB, 所以四边形ABQD1是平行四边形. 所以AD1∥BQ,且AD1⊄平面BPQ,BQ⊂平面BPQ, 所以AD1∥平面BPQ. 又AD1∩CD1=D1,所以平面ACD1∥平面BPQ. 因为AC⊂平面ACD1,所以AC∥平面BPQ.
知识建构
综合应用
真题放送
证明:(1)因为BG∶GC=DH∶HC,所以GH∥BD. 因为E,F分别为AB,AD的中点, 所以EF∥BD,所以EF∥GH. 故E,F,G,H四点共面. (2)因为G,H不是BC,CD的中点, 所以EF≠GH,且EF∥GH,故EFHG为梯形. 所以EG与FH必相交,设交点为M. 因为EG⊂平面ABC,FH⊂平面ACD, 所以M∈平面ABC,且M∈平面ACD. 因为平面ABC∩平面ACD=AC, 所以M∈AC,即EG与HF的交点在直线AC上.
-6-
本章整合
专题一 专题二 专题三 专题四 专题五
知识建构
综合应用
真题放送
应用1已知a∥平面α,b∥平面β,α∩β=c,则直线a与直线b的位置关 系是 . 答案:平行、相交、异面

人教版高中数学必修二第二章《点、直线、平面之间位置关系》(内含解析)

人教版高中数学必修二第二章《点、直线、平面之间位置关系》(内含解析)

人教版高中数学必修二第二章《点、直线、平面之前的位置关系》(内含解析)一、选择题1.△ABC所在的平面为α,直线l⊥AB,l⊥AC,直线m⊥BC,m⊥AC,则直线l,m的位置关系是()A.相交 B.异面C.平行 D.不确定【解析】因为l⊥AB,l⊥AC且AB∩AC=A,所以l⊥平面ABC.同理可证m⊥平面ABC,所以l∥m,故选C.【答案】C2.设m,n是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β【解析】A中,m,n可能为平行、垂直、异面直线;B中,m,n可能为异面直线;C中,m应与β中两条相交直线垂直时结论才成立.【答案】D3.已知平面α、β和直线m、l,则下列命题中正确的是()A.若α⊥β,α∩β=m,l⊥m,则l⊥βB.若α∩β=m,l⊂α,l⊥m,则l⊥βC.若α⊥β,l⊂α,则l⊥βD.若α⊥β,α∩β=m,l⊂α,l⊥m,则l⊥β【解析】选项A缺少了条件l⊂α;选项B缺少了条件α⊥β;选项C缺少了条件α∩β=m,l⊥m;选项D具备了面面垂直的性质定理的全部条件.故选D.【答案】D4.如图2342,P A⊥矩形ABCD,下列结论中不正确的是()图2342A.PD⊥BD B.PD⊥CDC.PB⊥BC D.P A⊥BD【解析】若PD⊥BD,则BD⊥平面P AD,又BA⊥平面P AD,则过平面外一点有两条直线与平面垂直,不成立,故A不正确;因为P A⊥矩形ABCD,所以P A⊥CD,AD⊥CD,所以CD⊥平面P AD,所以PD⊥CD,同理可证PB⊥BC.因为P A⊥矩形ABCD,所以由直线与平面垂直的性质得P A⊥BD.故选A.【答案】A5.如图2343所示,三棱锥P ABC的底面在平面α内,且AC⊥PC,平面P AC⊥平面PBC,点P,A,B是定点,则动点C的轨迹是()图2343A.一条线段B.一条直线C.一个圆D.一个圆,但要去掉两个点【解析】∵平面P AC⊥平面PBC,AC⊥PC,平面P AC∩平面PBC=PC,AC⊂平面P AC,∴AC⊥平面PBC.又∵BC⊂平面PBC,∴AC⊥BC.∴∠ACB=90°.∴动点C的轨迹是以AB为直径的圆,除去A和B两点.【答案】D二、填空题6.如图239,平面α∩β=CD,EA⊥α,垂足为A,EB⊥β,垂足为B,则CD与AB的位置关系是________.图239【解析】∵EA⊥α,CD⊂α,根据直线和平面垂直的定义,则有CD⊥EA.同样,∵EB⊥β,CD⊂β,则有EB⊥CD.又EA∩EB=E,∴CD⊥平面AEB.又∵AB⊂平面AEB,∴CD⊥AB.【答案】CD⊥AB7.如图2310所示,P A ⊥平面ABC ,在△ABC 中,BC ⊥AC ,则图中直角三角形的个数有________.图2310【解析】 BC ⊂平面ABC PA ⊥平面ABC ⇒PA ∩AC =A AC ⊥BC ⇒BC ⊥平面P AC ⇒BC ⊥PC ,∴直角三角形有△P AB 、△P AC 、△ABC 、△PBC .【答案】 4三、解答题8.如图2311,四边形ABCD 为矩形,AD ⊥平面ABE ,F 为CE 上的点,且BF ⊥平面ACE .求证:AE ⊥BE .图2311【证明】 ∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE .又AE ⊂平面ABE ,∴AE ⊥BC .∵BF ⊥平面ACE ,AE ⊂平面ACE ,∴AE ⊥BF .又∵BF ⊂平面BCE ,BC ⊂平面BCE ,BF ∩BC =B , ∴AE ⊥平面BCE .又BE ⊂平面BCE ,∴AE ⊥BE .9.如图2312所示,三棱锥ASBC 中,∠BSC =90°,∠ASB =∠ASC=60°,SA=SB=SC.求直线AS与平面SBC所成的角.图2312【解】因为∠ASB=∠ASC=60°,SA=SB=SC,所以△ASB与△SAC都是等边三角形.因此AB=AC.如图所示,取BC的中点D,连接AD,SD,则AD⊥BC.设SA=a,则在Rt△SBC中,BC=a,CD=SD=22a.在Rt△ADC中,AD==22a.则AD2+SD2=SA2,所以AD⊥SD.又BC∩SD=D,所以AD⊥平面SBC.因此∠ASD即为直线AS与平面SBC所成的角.在Rt△ASD中,SD=AD=22a,所以∠ASD=45°,即直线AS与平面SBC所成的角为45°.10.(2015·淮安高二检测)如图2313,四棱锥SABCD的底面ABCD 为正方形,SD⊥底面ABCD,则下列结论中正确的有________个.图2313①AC⊥SB;②AB∥平面SCD;③SA与平面ABCD所成的角是∠SAD;④AB与SC所成的角等于DC与SC所成的角.【解析】因为SD⊥底面ABCD,所以AC⊥SD.因为ABCD是正方形,所以AC⊥BD.又BD∩SD=D,所以AC⊥平面SBD,所以AC⊥SB,故①正确.因为AB∥CD,AB⊄平面SCD,CD⊂平面SCD,所以AB∥平面SCD,故②正确.因为AD是SA在平面ABCD内的射影,所以SA与平面ABCD所成的角是∠SAD.故③正确.因为AB∥CD,所以AB与SC所成的角等于DC与SC所成的角,故④正确.【答案】411.如图2314,AB为⊙O的直径,P A垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N为垂足.(1)求证:AN⊥平面PBM;(2)若AQ⊥PB,垂足为Q,求证:NQ⊥PB.图2314【证明】(1)∵AB为⊙O的直径,∴AM⊥BM.又P A⊥平面ABM,∴P A⊥BM.又∵P A∩AM=A,∴BM⊥平面P AM.又AN⊂平面P AM,∴BM⊥AN.又AN⊥PM,且BM∩PM=M,∴AN⊥平面PBM.(2)由(1)知AN⊥平面PBM,PB⊂平面PBM,∴AN⊥PB.又∵AQ⊥PB,AN∩AQ=A,∴PB⊥平面ANQ.又NQ⊂平面ANQ,∴PB⊥NQ.。

人教A版高中数学必修二同步学习讲义:第二章 点、直线、平面之间的位置关系2.2.2 Word版含答案

人教A版高中数学必修二同步学习讲义:第二章 点、直线、平面之间的位置关系2.2.2 Word版含答案

2.2.2 平面与平面平行的判定学习目标1.通过直观感知、操作确认,归纳出平面与平面平行的判定定理.2.掌握平面与平面平行的判定定理,并能初步利用定理解决问题.知识点平面与平面平行的判定定理思考1三角板的一条边所在平面与平面α平行,这个三角板所在平面与平面α平行吗?答案不一定.思考2三角板的两条边所在直线分别与平面α平行,这个三角板所在平面与平面α平行吗?答案平行.思考3如图,平面BCC1B1内有多少条直线与平面ABCD平行?这两个平面平行吗?答案无数条.不平行.梳理面面平行的判定定理类型一面面平行的判定定理例1下列四个命题:(1)若平面α内的两条直线分别与平面β平行,则平面α与平面β平行;(2)若平面α内有无数条直线分别与平面β平行,则平面α与平面β平行;(3)平行于同一直线的两个平面平行;(4)两个平面分别经过两条平行直线,这两个平面平行.其中正确的个数是______________.答案0反思与感悟在判定两平面是否平行时,一定要强调一个平面内的“两条相交直线”这个条件,线不在多,相交就行.跟踪训练1设直线l, m, 平面α,β,下列条件能得出α∥β的有()①l⊂α,m⊂α,且l∥β,m∥β;②l⊂α,m⊂α,且l∥m,l∥β,m∥β;③l∥α,m∥β,且l∥m;④l∩m=P, l⊂α,m⊂α,且l∥β,m∥β.A.1个B.2个C.3个D.0个答案A解析①错误,因为l, m不一定相交;②错误,一个平面内有两条平行直线平行于另一个平面,这两个平面可能相交;③错误,两个平面可能相交;④正确.类型二平面与平面平行的证明例2如图所示,在正方体AC1中,M,N,P分别是棱C1C,B1C1,C1D1的中点,求证:平面MNP∥平面A1BD.证明如图,连接B1C.由已知得A1D∥B1C,且MN∥B1C,∴MN∥A1D.又∵MN⊄平面A1BD,A1D⊂平面A1BD,∴MN∥平面A1BD.连接B1D1,同理可证PN∥平面A1BD.又∵MN⊂平面MNP,PN⊂平面MNP,且MN∩PN=N,∴平面MNP∥平面A1BD.引申探究若本例条件不变,求证:平面CB1D1∥平面A1BD.证明因为ABCD-A1B1C1D1为正方体,所以DD1綊BB1,所以BDD1B1为平行四边形,所以BD∥B1D1.又BD⊄平面CB1D1,B1D1⊂平面CB1D1,所以BD∥平面CB1D1,同理A1D∥平面CB1D1.又BD∩A1D=D,所以平面CB1D1∥平面A1BD.反思与感悟判定平面与平面平行的四种常用方法(1)定义法:证明两个平面没有公共点,通常采用反证法.(2)利用判定定理:一个平面内的两条相交直线分别平行于另一个平面.证明时应遵循先找后作的原则,即先在一个平面内找到两条与另一个平面平行的相交直线,若找不到再作辅助线.(3)转化为线线平行:平面α内的两条相交直线与平面β内的两条相交直线分别平行,则α∥β.(4)利用平行平面的传递性:若α∥β,β∥γ,则α∥γ.跟踪训练2如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分別是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.证明(1)因为G,H分别是A1B1,A1C1的中点,所以GH是△A1B1C1的中位线,所以GH∥B1C1.又因为B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)因为E,F分别是AB,AC的中点,所以EF∥BC.因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.因为A1G∥EB,A1G=EB,所以四边形A1EBG是平行四边形,所以A1E∥GB.因为A1E⊄平面BCHG,GB⊂平面BCHG,所以A1E∥平面BCHG.因为A1E∩EF=E,所以平面EFA1∥平面BCHG.类型三线线平行与面面平行的综合应用命题角度1线线、线面、面面平行的相互转化的证明问题例3如图,在正方体ABCD -A 1B 1C 1D 1中,S 是B 1D 1的中点,E ,F ,G 分别是BC ,DC 和SC 的中点,求证: (1)直线EG ∥平面BDD 1B 1; (2)平面EFG ∥平面BDD 1B 1.证明(1)如图,连接SB .∵E ,G 分别是BC ,SC 的中点, ∴EG ∥SB .又∵SB ⊂平面BDD 1B 1,EG ⊄平面BDD 1B 1, ∴EG ∥平面BDD 1B 1. (2)连接SD .∵F ,G 分别是DC ,SC 的中点, ∴FG ∥SD .又∵SD ⊂平面BDD 1B 1,FG ⊄平面BDD 1B 1, ∴FG ∥平面BDD 1B 1.又EG ∥平面BDD 1B 1,且EG ⊂平面EFG ,FG ⊂平面EFG ,EG ∩FG =G , ∴平面EFG ∥平面BDD 1B 1.反思感悟解决线线平行与面面平行的综合问题的策略(1)立体几何中常见的平行关系是线线平行、线面平行和面面平行,这三种平行关系不是孤立的,而是相互联系、相互转化的.(2)线线平行――→判定线面平行――→判定面面平行所以平行关系的综合问题的解决必须灵活运用三种平行关系的判定定理.跟踪训练3如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为BC ,CC 1,C 1D 1,A 1A 的中点.求证:(1)BF ∥HD 1; (2)EG ∥平面BB 1D 1D ; (3)平面BDF ∥平面HB 1D 1.证明(1)如图,取BB 1的中点M ,连接C 1M ,HM ,易知HMC 1D 1是平行四边形,∴HD 1∥MC 1, 又由已知可得MC 1∥BF ,∴BF ∥HD 1.(2)取BD 的中点O ,连接OE ,D 1O ,则OE 綊12DC .又D 1G 綊12DC ,∴OE 綊D 1G ,∴四边形OEGD 1是平行四边形,∴GE ∥D 1O . 又D 1O ⊂平面BB 1D 1D ,EG ⊄平面BB 1D 1D , ∴EG ∥平面BB 1D 1D .(3)由(1)知HD 1∥BF ,又BD ∥B 1D 1,B 1D 1,HD 1⊂平面HB 1D 1,BF ,BD ⊂平面BDF , 且B 1D 1∩HD 1=D 1,BD ∩BF =B , ∴平面BDF ∥平面HB 1D 1.命题角度2线线与面面平行的探索性问题 例4如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平面PAO ?解当Q 为CC 1的中点时,平面D 1BQ ∥平面PAO .∵Q 为CC 1的中点,P 为DD 1的中点,连接PQ ,如图,易证四边形PQBA 是平行四边形,∴QB ∥PA . 又∵AP ⊂平面APO ,QB ⊄平面APO ,∴QB ∥平面APO .∵P ,O 分别为DD 1,DB 的中点,∴D 1B ∥PO . 同理可得D 1B ∥平面PAO , 又D 1B ∩QB =B , ∴平面D 1BQ ∥平面PAO .反思感悟对于探索性问题,一是可直接运用题中的条件,结合所学过的知识探求;二是可先猜想,然后证明猜想的正确性. 跟踪训练4在底面是平行四边形的四棱锥P -ABCD 中,点E 在PD 上,且PE ∶ED =2∶1,M 为PE 的中点,在棱PC 上是否存在一点F ,使平面BFM ∥平面AEC ?并证明你的结论.解当F 是棱PC 的中点时,平面BFM ∥平面AEC . ∵M 是PE 的中点,∴FM ∥CE . ∵FM ⊄平面AEC ,CE ⊂平面AEC , ∴FM ∥平面AEC . 由EM =12PE =ED ,得E 为MD 的中点,连接BM ,BD ,如图所示,设BD ∩AC =O ,则O 为BD 的中点. 连接OE ,则BM ∥OE .∵BM ⊄平面AEC ,OE ⊂平面AEC , ∴BM ∥平面AEC .又∵FM⊂平面BFM,BM⊂平面BFM,FM∩BM=M,∴平面BFM∥平面AEC.1.下列命题中正确的是()A.一个平面内两条直线都平行于另一平面,那么这两个平面平行B.如果一个平面内任何一条直线都平行于另一个平面,那么这两个平面平行C.平行于同一直线的两个平面一定相互平行D.如果一个平面内的无数多条直线都平行于另一平面,那么这两个平面平行答案B解析如果一个平面内任何一条直线都平行于另一个平面,即两个平面没有公共点,则两平面平行,所以B 正确.2.在正方体中,相互平行的面不会是()A.前后相对侧面B.上下相对底面C.左右相对侧面D.相邻的侧面答案D解析由正方体的模型知前后面、上下面、左右面都相互平行,所以选D.3.在正方体EFGH-E1F1G1H1中,下列四对截面彼此平行的一对是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G答案A解析如图,∵EG∥E1G1,EG⊄平面E1FG1,E1G1⊂平面E1FG1,∴EG∥平面E1FG1.又G1F∥H1E,同理可证H1E∥平面E1FG1,又H1E∩EG=E,∴平面E1FG1∥EGH1.4.如图,已知在三棱锥P-ABC中,D,E,F分别是棱PA,PB,PC的中点,则平面DEF与平面ABC的位置关系是________.答案平行解析在△PAB中,因为D,E分别是PA,PB的中点,所以DE∥AB.又DE⊄平面ABC,因此DE∥平面ABC. 同理可证EF∥平面ABC.又DE∩EF=E,所以平面DEF∥平面ABC.5.如图,在正方体ABCD-A1B1C1D1中,P为DD1中点.能否同时过D1,B两点作平面α,使平面α∥平面PAC?证明你的结论.解能作出满足条件的平面α,其作法如下:如图,连接BD1,取AA1的中点M,连接D1M,则BD1与D1M所确定的平面即为满足条件的平面α.证明如下:连接BD交AC于O,连接PO,则PO∥D1B,故D1B∥平面PAC.又因为M为AA1的中点,所以D1M∥PA,从而D1M∥平面PAC.又因为D1M∩D1B=D1,D1M⊂α,D1B⊂α,所以α∥平面PAC.证明面面平行的方法:(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)两个平面同时平行于第三个平面,那么这两个平面平行.课时作业一、选择题1.直线l∥平面α,直线m∥平面α,直线l与m相交于点P,且l与m确定的平面为β,则α与β的位置关系是() A.相交B.平行C.异面D.不确定答案B解析因为l∩m=P,所以过l与m确定一个平面β.又因l∥α,m∥α,l∩m=P,所以β∥α.2.α、β是两个不重合的平面,a、b是两条不同的直线,则在下列条件下,可判定α∥β的是()A.α、β都平行于直线a、bB.α内有三个不共线的点到β的距离相等C.a,b是α内两条直线,且a∥β,b∥βD.a,b是两条异面直线且a∥α,b∥α,α∥β,b∥β答案D解析A错,若a∥b,则不能断定α∥β;B错,若三点不在β的同一侧,α与β相交;C错,若a∥b,则不能断定α∥β.故选D.3.已知m,n是两条直线,α,β是两个平面,有以下命题:①m,n相交且都在平面α,β外,m∥α,m∥β,n∥α,n∥β,则α∥β;②若m∥α,m∥β,则α∥β;③若m∥α,n∥β,m∥n,则α∥β.其中正确命题的个数是()A.0B.1C.2D.3答案B解析设m∩n=P,记m与n确定的平面为γ.由题意知:γ∥α,γ∥β,则α∥β.故①正确.②、③均错误.4.在正方体ABCD-A1B1C1D1中,M为棱A1D1的动点,O为底面ABCD的中心,E、F分别是A1B1、C1D1的中点,下列平面中与OM扫过的平面平行的是()A.面ABB1A1B.面BCC1B1C.面BCFE D.面DCC1D1答案C解析取AB、DC的中点分别为E1和F1,OM扫过的平面即为面A1E1F1D1(如图),故面A1E1F1D1∥面BCFE.5.六棱柱ABCDEF-A1B1C1D1E1F1的底面是正六边形,则此六棱柱的面中互相平行的有()A.1对B.2对C.3对D.4对答案D解析由图知平面ABB1A1∥平面EDD1E1,平面BCC1B1∥平面FEE1F1,平面AFF1A1∥平面CDD1C1,平面ABCDEF∥平面A1B1C1D1E1F1,∴此六棱柱的面中互相平行的有4对.6.在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,给出下列四个推断:①FG∥平面AA1D1D;②EF∥平面BC1D1;③FG∥平面BC1D1;④平面EFG∥平面BC1D1.其中推断正确的序号是()A.①③B.①④C.②③D.②④答案A解析∵在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,∴FG∥BC1.∵BC1∥AD1,∴FG∥AD1,∵FG⊄平面AA1D1D,AD1⊂平面AA1D1D,∴FG∥平面AA1D1D,故①正确;∵EF∥A1C1,A1C1与平面BC1D1相交,∴EF与平面BC1D1相交,故②错误;∵FG∥BC1,FG⊄平面BC1D1,BC1⊂平面BC1D1,FG∥平面BC1D1,故③正确;∵EF与平面BC1D1相交,∴平面EFG与平面BC1D1相交,故④错误.故选A.7.如图是四棱锥的平面展开图,其中四边形ABCD为正方形,E,F,G,H分别为PA,PD,PC,PB的中点,在此几何体中,给出下面四个结论:①平面EFGH∥平面ABCD;②平面PAD∥BC;③平面PCD∥AB;④平面PAD∥平面PAB.其中正确的有()A.①③B.①④C.①②③D.②③答案C解析把平面展开图还原为四棱锥如图所示,则EH∥AB,所以EH∥平面ABCD.同理可证EF∥平面ABCD,所以平面EFGH∥平面ABCD;平面PAD,平面PBC,平面PAB,平面PDC均是四棱锥的四个侧面,则它们两两相交.∵AB∥CD,∴平面PCD∥AB.同理平面PAD∥BC.二、填空题8.已知平面α、β和直线a、b、c,且a∥b∥c,a⊂α,b、c⊂β,则α与β的关系是_____.答案相交或平行解析b、c⊂β,a⊂α,a∥b∥c,若α∥β,满足要求;若α与β相交,交线为l,b∥c∥l,a∥l,满足要求,故答案为相交或平行.9.已知平面α和β,在平面α内任取一条直线a,在β内总存在直线b∥a,则α与β的位置关系是________.答案平行解析假若α∩β=l,则在平面α内,与l相交的直线a,设a∩l=A,对于β内的任意直线b,若b过点A,则a与b相交,若b不过点A,则a与b异面,即β内不存在直线b∥a.故α∥β.10.已知a和b是异面直线,且a⊂平面α,b⊂平面β,a∥β,b∥α,则平面α与β的位置关系是________.答案平行解析在b上任取一点O,则直线a与点O确定一个平面γ,设γ∩β=l,则l⊂β,∵a∥β,∴a与l无公共点,∴a∥l,∴l∥α.又b∥α,根据面面平行的判定定理可得α∥β.三、解答题11.如图,在正方体ABCD-A1B1C1D1中,M,N,P分别是C1C,B1C1,C1D1的中点,求证:平面PMN∥平面A1BD.证明连接B1D1,B1C.∵P,N分别是D1C1,B1C1的中点,∴PN∥B1D1.又B1D1∥BD,∴PN∥BD.又PN⊄平面A1BD,BD⊂平面A1BD,∴PN∥平面A1BD.同理,MN∥平面A1BD.又PN∩MN=N,∴平面PMN∥平面A1BD.12.已知四棱锥P-ABCD中,底面ABCD为平行四边形,点M,N,Q分别在PA,BD,PD上,且PM∶M A=BN∶ND=PQ∶QD.求证:平面MNQ∥平面PBC.证明∵PM∶MA=BN∶ND=PQ∶QD,∴MQ∥AD,NQ∥BP,而BP⊂平面PBC,NQ⊄平面PBC,∴NQ∥平面PBC.又∵四边形ABCD为平行四边形,∴BC∥AD,∴MQ∥BC,而BC⊂平面PBC,MQ⊄平面PBC,∴MQ∥平面PBC.易知MQ∩NQ=Q,根据平面与平面平行的判定定理,可知平面MNQ∥平面PBC.13.如图,在四棱锥C-ABED中,四边形ABED是正方形,G,F分别是线段EC,BD的中点.(1)求证:GF∥平面ABC;(2)若点P为线段CD的中点,平面GFP与平面ABC有怎样的位置关系?并证明.(1)证明如图,连接AE,由F是线段BD的中点得F为AE的中点,∴GF为△AEC的中位线,∴GF∥AC.又∵AC⊂平面ABC,GF⊄平面ABC,∴GF∥平面ABC.(2)解平面GFP∥平面ABC,证明如下:在CD上取中点P,连接FP,GP.∵F,P分别为BD,CD的中点,∴FP为△BCD的中位线,∴FP∥BC.又∵BC⊂平面ABC,FP⊄平面ABC,∴FP∥平面ABC,又GF∥平面ABC,FP∩GF=F,FP⊂平面GFP,GF⊂平面GFP,∴平面GFP∥平面ABC.四、探究与拓展14.已知l,m是两条不同的直线,α,β是两个不同的平面,有下面四个命题:①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l∥α,m∥l,则m∥α.其中所有真命题的序号是________.答案②解析当l∥m时,平面α与平面β不一定平行,故①错误;②正确;若α∥β,l∥α,则l⊂β或l∥β,故③错误;④中直线m有可能在平面α内,故④错误.15.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,且AB=2CD,在棱AB上是否存在一点F,使平面C1CF∥ADD1A1?若存在,求点F的位置,若不存在,请说明理由.解当F为AB的中点时,平面C1CF∥ADD1A1.理由如下:∵在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,且AB=2CD,F为AB的中点,∴CD綊AF綊C1D1,∴AFCD是平行四边形,且AFC1D1是平行四边形,∴CF∥AD,C1F∥AD1.又CF∩C1F=F,CF,C1F都在平面C1CF内,∴平面C1CF∥平面ADD1A1.。

人教A版高中数学必修2第二章 点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系课件(5)

人教A版高中数学必修2第二章 点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系课件(5)
4.等角定理的推论是什么? 如果两条相交直线和另两条相交直线分别平行, 那么这两条直线所成的锐角(或直角)相等.
5.什么是异面直线?什么是异面直线所成的角?
什么是异面直线垂直?
精品PPT
一、研探新知
(1)一支笔所在直线与一个作业本所在 的平面,可能有几种位置关系?
(2)如图,线段A´B所在直线与长方体 ABCD-A´B´C´D´的六个面所在平面有几 种位置关系?
图形
b
a
文字语言(读法)
两直线共面且无公 共点两直线平行
符号语言
a∥b
Ab
a
两直线共面且有一个 公共点两直线相交
aIbA
b
a
两直线不共面且无 公共点两直线异面
a、b异面
精品PPT
(3)空间中线与面的位置关系
图形
a
a
A
文字语言(读法)
直线与平面无公共点 直线与平面平行
直线与平面有一个公 共点直线与平面相交
③ 精品PPT
如何用符号语言表示直线与平面的位置关系:
(1)直线在平面内-----有无数个公共点
a 如图:
a
a (2)直线在平面外:
a
.A
①直线a和面α相交 :
a A 如图:
②直线a和面α平行 :
a
a // 如图:
精品PPT
三、尝试 练习
X X X
例1、判断下列命题的正确
(1)若直线l上有无数个点不在平面 内,则
2、若直线a在平面α外,则a ∥α; ( ) ×
3、若直线a∥b,直线b α,则a∥α; ( ) ×
4、若直线a∥b,b α,那么直线a就平行于平面α内
的无数条直线;

高中数学人教A版必修二第二章《 点、直线、平面之间的位置关系》word学案

高中数学人教A版必修二第二章《 点、直线、平面之间的位置关系》word学案

【三维设计】高中数学第二章点、直线、平面之间的位置关系学案新人教A版必修22.1空间点、直线、平面之间的位置关系2.1.1 平面平面[提出问题]宁静的湖面、海面;生活中的课桌面、黑板面;一望无垠的草原给你什么样的感觉?问题1:生活中的平面有大小之分吗?提示:有.问题2:几何中的“平面”是怎样的?提示:从物体中抽象出来的,绝对平,无大小之分.[导入新知]1.平面的概念几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.几何里的平面是无限延展的.2.平面的画法(1)水平放置的平面通常画成一个平行四边形,它的锐角通常画成45°,且横边长等于其邻边长的2倍.如图①.(2)如果一个平面被另一个平面遮挡住,为了增强它的立体感,把被遮挡部分用虚线画出来.如图②.3.平面的表示法图①的平面可表示为平面α、平面ABCD、平面AC或平面BD.[化解疑难]几何里的平面有以下几个特点(1)平面是平的;(2)平面是没有厚度的;(3)平面是无限延展而没有边界的;平面的基本性质[提出问题]问题1:若把直尺边缘上的任意两点放在桌面上,直尺的边缘上的其余点和桌面有何关系?提示:在桌面上.问题2:为什么自行车后轮旁只安装一只撑脚就能固定自行车?提示:撑脚和自行车的两个轮子与地面的接触点不在一条直线上.问题3:两张纸面相交有几条直线?提示:一条.[导入新知]平面的基本性质公理内容图形符号公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内A∈l,B∈l,且A∈α,B∈α⇒l⊂α公理2过不在一条直线上的三点,有且只有一个平面A,B,C三点不共线⇒存在唯一的α使A,B,C∈α公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线P∈α,P∈β⇒α∩β=l,且P∈l[化解疑难]从集合角度理解点、线、面之间的关系(1)直线可以看成无数个点组成的集合,故点与直线的关系是元素与集合的关系,用“∈”或“∉”表示;(2)平面也可以看成点集,故点与平面的关系也是元素与集合的关系,用“∈”或“∉”表示;(3)直线和平面都是点集,它们之间的关系可看成集合与集合的关系,故用“⊂”或“⊄”表示.文字语言、图形语言、符号语言的相互转化[例1] 根据图形用符号表示下列点、直线、平面之间的关系.(1)点P与直线AB;(2)点C与直线AB;(3)点M与平面AC;(4)点A1与平面AC;(5)直线AB与直线BC;(6)直线AB与平面AC;(7)平面A1B与平面AC.[解] (1)点P∈直线AB;(2)点C∉直线AB;(3)点M∈平面AC;(4)点A1∉平面AC;(5)直线AB∩直线BC=点B;(6)直线AB⊂平面AC;(7)平面A1B∩平面AC=直线AB.[类题通法]三种语言的转换方法(1)用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.(2)根据符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.[活学活用]1.根据下列符号表示的语句,说明点、线、面之间的位置关系,并画出相应的图形:(1)A∈α,B∉α;(2)l⊂α,m∩α=A,A∉l;(3)P∈l,P∉α,Q∈l,Q∈α.解:(1)点A在平面α内,点B不在平面α内,如图(1);(2)直线l在平面α内,直线m与平面α相交于点A,且点A不在直线l上,如图(2);(3)直线l经过平面α外一点P和平面α内一点Q,如图(3).点、线共面问题[例2][解] 已知:如图所示,l 1∩l2=A,l2∩l3=B,l1∩l3=C.求证:直线l1、l2、l3在同一平面内.证法1:(纳入平面法)∵l1∩l2=A,∴l1和l2确定一个平面α.∵l2∩l3=B,∴B∈l2.又∵l2⊂α,∴B∈α.同理可证C∈α.又∵B∈l3,C∈l3,∴l3⊂α.∴直线l1、l2、l3在同一平面内.证法2:(辅助平面法)∵l1∩l2=A,∴l1、l2确定一个平面α.∵l2∩l3=B,∴l2、l3确定一个平面β.∵A∈l2,l2⊂α,∴A∈α.∵A∈l2,l2⊂β,∴A∈β.同理可证B∈α,B∈β,C∈α,C∈β.∴不共线的三个点A、B、C既在平面α内,又在平面β内.∴平面α和β重合,即直线l1、l2、l3在同一平面内.[类题通法]证明点、线共面问题的理论依据是公理1和公理2,常用方法有(1)先由部分点、线确定一个面,再证其余的点、线都在这个平面内,即用“纳入法”;(2)先由其中一部分点、线确定一个平面α,其余点、线确定另一个平面β,再证平面α与β重合,即用“同一法”;(3)假设不共面,结合题设推出矛盾,用“反证法”.[活学活用]2.下列说法正确的是( )①任意三点确定一个平面②圆上的三点确定一个平面③任意四点确定一个平面④两条平行线确定一个平面A.①②B.②③C.②④D.③④解析:选C 不在同一条直线上的三点确定一个平面.圆上三个点不会在同一条直线上,故可确定一个平面,∴①不正确,②正确.当四点在一条直线上时不能确定一个平面,③不正确.根据平行线的定义知,两条平行直线可确定一个平面,故④正确.共线问题[例3] 已知△ABC在平面α外,其三边所在的直线满足AB∩α=P,BC∩α=Q,AC∩α=R,如图所示.求证:P,Q,R三点共线.[证明] 法一:∵AB∩α=P,∴P∈AB,P∈平面α.又AB⊂平面ABC,∴P∈平面ABC.∴由公理3可知:点P在平面ABC与平面α的交线上,同理可证Q,R也在平面ABC与平面α的交线上.∴P,Q,R三点共线.法二:∵AP∩AR=A,∴直线AP与直线AR确定平面APR.又∵AB∩α=P,AC∩α=R,∴平面APR∩平面α=PR.∵B∈平面APR,C∈平面APR,∴BC⊂平面APR.∵Q∈BC,∴Q∈平面APR,又Q∈α,∴Q∈PR,∴P,Q,R三点共线.[类题通法]点共线:证明多点共线通常利用公理3,即两相交平面交线的唯一性,通过证明点分别在两个平面内,证明点在相交平面的交线上,也可选择其中两点确定一条直线,然后证明其他点也在其上.[活学活用]3.如图所示,在正方体ABCD­A 1B1C1D1中,设线段A1C与平面ABC1D1交于点Q,求证:B,Q,D1三点共线.证明:如下图所示,连接A1B,CD1.显然B∈平面A1BCD1,D1∈平面A1BCD1.∴BD1⊂平面A1BCD1.同理BD1⊂平面ABC1D1.∴平面ABC1D1∩平面A1BCD1=BD1.∵A1C∩平面ABC1D1=Q,∴Q∈平面ABC1D1.又∵A1C⊂平面A1BCD1,∴Q∈平面A1BCD1.∴Q∈BD1,即B,Q,D1三点共线.2.证明三线共点问题[典例] 如图,在四面体ABCD 中,E ,G 分别为BC ,AB 的中点,F 在CD 上,H 在AD 上,且有DF ∶FC =DH ∶HA =2∶3.求证:EF ,GH ,BD 交于一点.[解题流程]欲证EF 、GH 、BD 交于一点,可先证两条线交于一点,再证此点在第三条直线上.由DF ∶FC =DH ∶HA =2∶3可得GE ∥FH 且GE ≠FH ,即EFHG 是梯形,由此得到GH 与EF 交于一点.证明E 、F 、H 、G 四点共面―→EFHG 为梯形―→GH 和EF 交于一点O ―→证O ∈平面ABD ―→O ∈平面BCD ―→平面ABD ∩平面BCD =BD ―→O ∈BD ―→得出结论. [规范解答]因为E ,G 分别为BC ,AB 的中点,所以GE ∥AC .又因为DF ∶FC =DH ∶HA =2∶3,所以FH ∥AC ,从而FH ∥GE .∴GE ≠FH .(4分)故E ,F ,H ,G 四点共面.又因为GE =12AC ,FH =25AC ,所以四边形EFHG 是一个梯形,设GH 和EF 交于一点O .(6分)因为O 在平面ABD 内,又在平面BCD 内,所以O 在这两平面的交线上,而这两个平面的交线是BD ,(9分)且交线只有这一条,所以点O 在直线BD 上.(10分)这就证明了GH 和EF 的交点也在BD 上,所以EF ,GH ,BD 交于一点.(12分)[名师批注]如何证明四点共面?,根据公理2的推论可知,本题可利用HF ∥GE 即可确定E ,F ,H ,G 四点共面.为什么GH 和EF 交于一点?,因为E ,F ,H ,G 四点共面,且GE 綊12AC ,HF 綊25AC ,所以GE ∥HF 且GE ≠HF ,即EFHG 为梯形,梯形两腰延长线必相交于一点.怎样确定第三条直线也过交点?只要证明交点在第三条直线上,这条直线恰好是分别过GH 和EF 的两个平面的交线.[活学活用]如图所示,在空间四边形各边AD ,AB ,BC ,CD 上分别取E ,F ,G ,H 四点,如果EF ,GH 交于一点P ,求证:点P 在直线BD 上.证明:∵EF ∩GH =P , ∴P ∈EF 且P ∈GH .又∵EF ⊂平面ABD ,GH ⊂平面CBD ,∴P ∈平面ABD ,且P ∈平面CBD ,又P ∈平面ABD ∩平面CBD ,平面ABD ∩平面CBD =BD ,由公理3可得P ∈BD .∴点P 在直线BD 上.[随堂即时演练]1.若点Q 在直线b 上,b 在平面β内,则Q ,b ,β之间的关系可记作( ) A .Q ∈b ∈β B .Q ∈b ⊂β C .Q ⊂b ⊂βD .Q ⊂b ∈β解析:选B ∵点Q (元素)在直线b (集合)上,∴Q ∈b . 又∵直线b (集合)在平面β(集合)内,∴b ⊂β,∴Q ∈b ⊂β. 2.两个平面若有三个公共点,则这两个平面( ) A .相交 B .重合 C .相交或重合D .以上都不对解析:选C 若三个点在同一直线上,则两平面可能相交;若这三个点不在同一直线上,则这两个平面重合.3.下列对平面的描述语句:①平静的太平洋面就是一个平面;②8个平面重叠起来比6个平面重叠起来厚;③四边形确定一个平面;④平面可以看成空间中点的集合,它当然是一个无限集.其中正确的是________.解析:序号正误原因分析①×太平洋面只是给我们以平面的形象,而平面是抽象的,且无限延展的②×平面是无大小、无厚薄之分的③×如三棱锥的四个顶点相连的四边形不能确定一个平面④√平面是空间中点的集合,是无限集答案:④4.设平面α与平面β交于直线l,A∈α,B∈α,且直线AB∩l=C,则直线AB∩β=________.解析:∵α∩β=l,AB∩l=C,∴C∈β,C∈AB,∴AB∩β=C.答案:C5.将下列符号语言转化为图形语言.(1)a⊂α,b∩α=A,A∉a.(2)α∩β=c,a⊂α,b⊂β,a∥c,b∩c=P.解:(1)(2)[课时达标检测]一、选择题1.用符号表示“点A在直线l上,l在平面α外”,正确的是( )A.A∈l,l∉αB.A∈l,l⊄αC.A⊂l,l⊄αD.A⊂l,l∉α解析:选B 注意点与直线、点与平面之间的关系是元素与集合间的关系,直线与平面之间的关系是集合与集合间的关系.2.(2019·福州高一检测)下列说法正确的是( )A.三点可以确定一个平面B.一条直线和一个点可以确定一个平面C.四边形是平面图形D.两条相交直线可以确定一个平面解析:选D A错误,不共线的三点可以确定一个平面.B错误,一条直线和直线外一个点可以确定一个平面.C错误,四边形不一定是平面图形.D正确,两条相交直线可以确定一个平面.3.空间两两相交的三条直线,可以确定的平面数是( )A.1 B.2C.3 D.1或3解析:选D 若三条直线两两相交共有三个交点,则确定1个平面;若三条直线两两相交且交于同一点时,可能确定3个平面.4.下列推断中,错误的是( )A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α,β重合解析:选C A即为直线l上有两点在平面内,则直线在平面内;B即为两平面的公共点在公共直线上;D为不共线的三点确定一个平面,故D也对.5.在空间四边形ABCD的边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF与HG 交于点M,那么( )A.M一定在直线AC上B.M一定在直线BD上C.M可能在直线AC上,也可能在直线BD上D.M既不在直线AC上,也不在直线BD上解析:选A 点M一定在平面ABC与平面CDA的交线AC上.二、填空题6.(2019·福州高一检测)线段AB在平面α内,则直线AB与平面α的位置关系是________.解析:因为线段AB在平面α内,所以A∈α,B∈α.由公理1知直线AB⊂平面α.答案:直线AB⊂平面α7.把下列符号叙述所对应的图形的字母编号填在题后横线上.(1)A∉α,a⊂α________.(2)α∩β=a,P∉α且P∉β________.(3)a⊄α,a∩α=A________.(4)α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O________.解析:(1)图C符合A∉α,a⊂α(2)图D符合α∩β=a,P∉α且P∉β(3)图A符合a⊄α,a∩α=A(4)图B符合α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O答案:(1)C (2)D (3)A (4)B8.平面α∩平面β=l,点A,B∈α,点C∈平面β且C∉l,AB∩l=R,设过点A,B,C三点的平面为平面γ,则β∩γ=________.解析:根据题意画出图形,如图所示,因为点C∈β,且点C∈γ,所以C∈β∩γ.因为点R∈AB,所以点R∈γ,又R∈β,所以R∈β∩γ,从而β∩γ=CR.答案:CR三、解答题9.求证:如果两两平行的三条直线都与另一条直线相交,那么这四条直线共面.解:已知:a∥b∥c,l∩a=A,l∩b=B,l∩c=C.求证:直线a,b,c和l共面.证明:如图所示,因为a∥b,由公理2可知直线a与b确定一个平面,设为α.因为l∩a=A,l∩b=B,所以A∈a,B∈b,则A∈α,B∈α.又因为A∈l,B∈l,所以由公理1可知l⊂α.因为b∥c,所以由公理2可知直线b与c确定一个平面β,同理可知l⊂β.因为平面α和平面β都包含着直线b与l,且l∩b=B,而由公理2的推论2知:经过两条相交直线,有且只有一个平面,所以平面α与平面β重合,所以直线a,b,c和l 共面.10.已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF =Q.求证:(1)D,B,F,E四点共面;(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.证明:如图.(1)连接B1D1.∵EF是△D1B1C1的中位线,∴EF∥B1D1.在正方体AC1中,B1D1∥BD,∴EF∥BD.∴EF、BD确定一个平面,即D,B,F,E四点共面.(2)正方体AC1中,设平面A1ACC1确定的平面为α,又设平面BDEF为β.∵Q∈A1C1,∴Q∈α.又Q∈EF,∴Q∈β.则Q是α与β的公共点,同理P是α与β的公共点,∴α∩β=PQ.又A1C∩β=R,∴R∈A1C.∴R∈α,且R∈β,则R∈PQ.故P,Q,R三点共线.2.1.2 空间中直线与直线之间的位置关系空间两直线的位置关系[提出问题]立交桥是伴随高速公路应运而生的.城市的立交桥不仅大大方便了交通,而且成为城市建设的美丽风景.为了车流畅通,并安全地通过交叉路口,1928年,美国首先在新泽西州的两条道路交叉处修建了第一座苜蓿叶形公路交叉桥.1930年,芝加哥建起了一座立体交叉桥.1931年至1935年,瑞典陆续在一些城市修建起立体交叉桥.从此,城市交通开始从平地走向立体.问题1:在同一平面内,两直线有怎样的位置关系?提示:平行或相交.问题2:若把立交桥抽象成一直线,它们是否在同一平面内?有何特征?提示:不共面,即不相交也不平行.问题3:观察一下,教室内日光灯管所在直线与黑板的左、右两侧所在直线,是否也具有类似特征?提示:是.[导入新知]1.异面直线(1)定义:不同在任何一个平面内的两条直线. (2)异面直线的画法2.空间两条直线的位置关系位置关系 特 点相交 同一平面内,有且只有一个公共点平行 同一平面内,没有公共点 异面直线不同在任何一个平面内,没有公共点[化解疑难]1.对于异面直线的定义的理解异面直线是不同在任何一个平面内的两条直线.注意异面直线定义中“任何”两字,它指空间中的所有平面,因此异面直线也可以理解为:在空间中找不到一个平面,使其同时经过a 、b 两条直线.例如,如图所示的长方体中,棱AB 和B 1C 1所在的直线既不平行又不相交,找不到一个平面同时经过这两条棱所在的直线,故AB 与B 1C 1是异面直线.2.空间两条直线的位置关系①若从有无公共点的角度来看,可分为两类:直线⎩⎨⎧有且仅有一个公共点——相交直线,无公共点——⎩⎪⎨⎪⎧平行直线,异面直线.②若从是否共面的角度看,也可分两类:直线⎩⎨⎧共面直线⎩⎪⎨⎪⎧相交直线,平行直线,不共面直线:异面直线.平行公理及等角定理[提出问题]1.同一平面内,若两条直线都与第三条直线平行,那么这两条直线互相平行.空间中是否有类似规律?提示:有.观察下图中的∠AOB 与∠A ′O ′B ′.问题2:这两个角对应的两条边之间有什么样的位置关系? 提示:分别对应平行.问题3:测量一下,这两个角的大小关系如何? 提示:相等. [导入新知]1.平行公理(公理4)(1)文字表述:平行于同一条直线的两条直线互相平行.这一性质叫做空间平行线的传递性.(2)符号表述:⎭⎪⎬⎪⎫a ∥b b ∥c ⇒a ∥c .2.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.异面直线所成的角(1)定义:已知两条异面直线a ,b ,经过空间任一点O 作直线a ′∥a ,b ′∥b ,我们把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).(2)异面直线所成的角θ的取值范围:0°<θ≤90°. (3)当θ=π2时,a 与b 互相垂直,记作a ⊥b .[化解疑难]对平行公理与等角定理的理解公理4表明了平行的传递性,它可以作为判断两直线平行的依据,同时也给出了空间两直线平行的一种证明方法.等角定理是由平面图形推广到空间图形而得到的,它是公理4的直接应用,并且当这两个角的两边方向分别相同时,它们相等,否则它们互补.两直线位置关系的判定[例1]如图,正方体ABCD—A 1B1C1D1中,判断下列直线的位置关系:①直线A1B与直线D1C的位置关系是________;②直线A1B与直线B1C的位置关系是________;③直线D1D与直线D1C的位置关系是________;④直线AB与直线B1C的位置关系是________.[解析] 直线D1D与直线D1C相交于D1点,所以③应该填“相交”;直线A1B与直线D1C 在平面A1BCD1中,且没有交点,则两直线平行,所以①应该填“平行”;点A1、B、B1在平面A1BB1内,而C不在平面A1BB1内,则直线A1B与直线B1C异面.同理,直线AB与直线B1C 异面.所以②④应该填“异面”.[答案] ①平行②异面③相交④异面[类题通法]1.判定两条直线平行或相交的方法判定两条直线平行或相交可用平面几何的方法去判断,而两条直线平行也可以用公理4判断.2.判定两条直线是异面直线的方法(1)定义法:由定义判断两直线不可能在同一平面内.(2)重要结论:连接平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.用符号语言可表示为A∉α,B∈α,l⊂α,B∉l⇒AB与l是异面直线(如图).[活学活用]1.(2019·台州高一检测)如图,AA1是长方体的一条棱,这个长方体中与AA1异面的棱的条数是( )A.6 B.4C.5 D.8解析:选B 与AA1异面的棱有BC,B1C1,CD,C1D1共4条.2.若a,b,c是空间三条直线,a∥b,a与c相交,则b与c的位置关系是________.解析:在正方体ABCD-A′B′C′D′中,设直线D′C′为直线b,直线A′B′为直线a,满足a∥b,与a相交的直线c可以是直线B′C′,也可以是直线BB′.显然直线B′C′与b相交,BB′与b异面,故b与c的位置关系是异面或相交.答案:异面或相交平行公理及等角定理的应用[例2] 如图,在正方体ABCD-A 1B1C1D1中,M,M1分别是棱AD和A1D1的中点.(1)求证:四边形BB1M1M为平行四边形;(2)求证:∠BMC=∠B1M1C1.[证明] (1)在正方形ADD1A1中,M、M1分别为AD、A1D1的中点,∴MM1綊AA1.又∵AA1綊BB1,∴MM1∥BB1,且MM1=BB1,∴四边形BB1M1M为平行四边形.(2)法一:由(1)知四边形BB1M1M为平行四边形,∴B1M1∥BM.同理可得四边形CC1M1M为平行四边形,∴C1M1∥CM.由平面几何知识可知,∠BMC和∠B1M1C1都是锐角.∴∠BMC=∠B1M1C1.法二:由(1)知四边形BB1M1M为平行四边形,∴B1M1=BM.同理可得四边形CC1M1M为平行四边形,∴C1M1=CM.又∵B1C1=BC,∴△BCM≌△B1C1M1.∴∠BMC=∠B1M1C1.[类题通法]1.证明两条直线平行的方法:(1)平行线定义(2)三角形中位线、平行四边形性质等(3)公理42.空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补,当两个角的两边方向都相同时或都相反时,两个角相等,否则两个角互补,因此,在证明两个角相等时,只说明两个角的两边分别对应平行是不够的.[活学活用]3.如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面; (2)若四边形EFGH 是矩形,求证:AC ⊥BD . 证明:(1)如题图,在△ABD 中, ∵E ,H 分别是AB ,AD 的中点, ∴EH ∥BD .同理FG ∥BD ,则EH ∥GH . 故E ,F ,G ,H 四点共面. (2)由(1)知EH ∥BD ,同理AC ∥GH .又∵四边形EFGH 是矩形,∴EH ⊥GH .故AC ⊥BD .两异面直线所成的角[例3] 11111BD 1和AD 中点,求异面直线CD 1,EF 所成的角的大小.[解] 取CD 1的中点G ,连接EG ,DG ,∵E 是BD 1的中点,∴EG ∥BC ,EG =12BC .∵F 是AD 的中点,且AD ∥BC ,AD =BC ,∴DF ∥BC ,DF =12BC ,∴EG ∥DF ,EG =DF ,∴四边形EFDG 是平行四边形,∴EF ∥DG ,∴∠DGD 1(或其补角)是异面直线CD 1与EF 所成的角.又∵A 1A =AB ,∴四边形ABB 1A 1,四边形CDD 1C 1都是正方形,且G 为CD 1的中点,∴DG ⊥CD 1,∴∠D1GD=90°,∴异面直线CD1,EF所成的角为90°.[类题通法]求两异面直线所成的角的三个步骤(1)作:根据所成角的定义,用平移法作出异面直线所成的角;(2)证:证明作出的角就是要求的角;(3)计算:求角的值,常利用解三角形得出.可用“一作二证三计算”来概括.同时注意异面直线所成角范围是(0°,90°].[活学活用]4.已知ABCD-A1B1C1D1是正方体,求异面直线A1C1与B1C所成角的大小.解:如图所示,连接A1D和C1D,∵B1C∥A1D,∴∠DA1C1即为异面直线A1C1与B1C所成的角.∵A1D,A1C1,C1D为正方体各面上的对角线,∴A1D=A1C1=C1D,∴△A1C1D为等边三角形.即∠C1A1D=60°.∴异面直线A1C1与B1C所成的角为60°.2.探究空间中四边形的形状问题[典例] 如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.[证明] 连接BD.因为EH是△ABD的中位线,所以EH ∥BD ,且EH =12BD .同理,FG ∥BD ,且FG =12BD .因此EH ∥FG . 又EH =FG ,所以四边形EFGH 为平行四边形. [多维探究] 1.矩形的判断本例中若加上条件“AC ⊥BD ”,则四边形EFGH 是什么形状? 证明:由例题可知EH ∥BD ,同理EF ∥AC , 又BD ⊥AC , 因此EH ⊥EF ,所以四边形EFGH 为矩形. 2.菱形的判断本例中,若加上条件“AC =BD ”,则四边形EFGH 是什么形状? 证明:由例题知EH ∥BD ,且EH =12BD ,同理EF ∥AC ,且EF =12AC .又AC =BD , 所以EH =EF .又EFGH 为平行四边形, 所以EFGH 为菱形. 3.正方形的判断本例中,若加上条件“AC ⊥BD ,且AC =BD ”,则四边形EFGH 是什么形状? 证明:由探究1与2可知,EFGH 为正方形.4.梯形的判断若本例中,E 、H 分别是AB 、AD 中点,F 、G 分别是BC ,CD 上的点,且CF ∶FB =CG ∶GD =1∶2,那么四边形EFGH 是什么形状?证明:由题意可知EH 是△ABD 的中位线,则EH ∥BD 且EH =12BD .又CF FB =CG GD =12, ∴FG ∥BD ,FG BD =FC BC =13, ∴FG =13BD ,∴FG ∥EH 且FG ≠EH , ∴四边形EFGH 是梯形. [方法感悟]根据三角形的中位线、公理4证明两条直线平行是常用的方法.公理4表明了平行线的传递性,它可以作为判断两条直线平行的依据,同时也给出空间两直线平行的一种证明方法.[随堂即时演练]1.不平行的两条直线的位置关系是( ) A .相交 B .异面 C .平行D .相交或异面解析:选D 若两直线不平行,则直线可能相交,也可能异面. 2.已知AB ∥PQ ,BC ∥QR ,∠ABC =30°,则∠PQR 等于( ) A .30° B .30°或150° C .150°D .以上结论都不对解析:选B ∠ABC 的两边与∠PQR 的两边分别平行,但方向不能确定是否相同. ∴∠PQR =30°或150°.3.已知正方体ABCD -EFGH ,则AH 与FG 所成的角是________. 解析:∵FG ∥EH ,∴∠AHE =45°,即为AH 与FG 所成的角. 答案:45°4.正方体AC 1中,E ,F 分别是线段C 1D ,BC 的中点,则直线A 1B 与直线EF 的位置关系是________.解析:直线A 1B 与直线外一点E 确定的平面为A 1BCD 1,EF ⊂平面A 1BCD 1,且两直线不平行,故两直线相交.答案:相交5.如图所示,空间四边形ABCD 中,AB =CD ,AB ⊥CD ,E 、F 分别为BC 、AD 的中点,求EF 和AB 所成的角.解:如图所示,取BD 的中点G ,连接EG 、FG . ∵E 、F 分别为BC 、AD 的中点,AB =CD ,∴EG∥CD,GF∥AB,且EG=12CD,GF=12AB.∴∠GFE就是EF与AB所成的角,EG=GF.∵AB⊥CD,∴EG⊥GF.∴∠EGF=90°.∴△EFG为等腰直角三角形.∴∠GFE=45°,即EF与AB所成的角为45°.[课时达标检测]一、选择题1.一条直线与两条异面直线中的一条平行,则它和另一条的位置关系是( )A.平行或异面B.相交或异面C.异面D.相交解析:选B 假设a与b是异面直线,而c∥a,则c显然与b不平行(否则c∥b,则有a∥b,矛盾).因此c与b可能相交或异面.2.如图所示,在三棱锥S—MNP中,E、F、G、H分别是棱SN、SP、MN、MP的中点,则EF与HG的位置关系是( )A.平行B.相交C.异面D.平行或异面解析:选A ∵E、F分别是SN和SP的中点,∴EF∥PN.同理可证HG∥PN,∴EF∥HG.3.(2019·福州高一检测)如图是一个正方体的平面展开图,则在正方体中,AB与CD的位置关系为( )A.相交B.平行C.异面而且垂直D.异面但不垂直解析:选D 将展开图还原为正方体,如图所示.AB与CD所成的角为60°,故选D.①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②如果两条相交直线和另两条直线分别平行,那么这两组直线所成的锐角(或直角)相等;③如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;④如果两条直线同时平行于第三条直线,那么这两条直线互相平行.正确的结论有( )A.1个B.2个C.3个D.4个解析:选B 对于①,这两个角也可能互补,故①错;对于②,正确;对于③,不正确,举反例:如右图所示,BC⊥PB,AC⊥PA,∠ACB的两条边分别垂直于∠APB的两条边,但这两个角既不一定相等,也不一定互补;对于④,由公理4可知正确.故②④正确,所以正确的结论有2个.5.若P是两条异面直线l,m外的任意一点,则( )A.过点P有且仅有一条直线与l,m都平行B.过点P有且仅有一条直线与l,m都垂直C.过点P有且仅有一条直线与l,m都相交D.过点P有且仅有一条直线与l,m都异面解析:选B 逐个分析,过点P与l,m都平行的直线不存在;过点P与l,m都垂直的直线只有一条;过点P与l,m都相交的直线1条或0条;过点P与l,m都异面的直线有无数条.二、填空题6.(2019·连云港高一检测)空间中有一个角∠A的两边和另一个角∠B的两边分别平行,∠A=70°,则∠B=________.解析:∵∠A的两边和∠B的两边分别平行,∴∠A=∠B或∠A+∠B=180°.又∠A=70°,∴∠B=70°或110°.答案:70°或110°7.已知正方体ABCD -A 1B 1C 1D 1中,E 为C 1D 1的中点,则异面直线AE 与A 1B 1所成的角的余弦值为________.解析:设棱长为1,因为A 1B 1∥C 1D ,所以∠AED 1就是异面直线AE 与A 1B 1所成的角.在△AED 1中,AE =12+12+⎝⎛⎭⎪⎫122=32,cos ∠AED 1=D 1E AE =1232=13.答案:138.如图,点P 、Q 、R 、S 分别在正方体的四条棱上,且是所在棱的中点,则直线PQ 与RS 是异面直线的一个图是________.解析:①中PQ ∥RS ,②中RS ∥PQ ,④中RS 和PQ 相交. 答案:③ 三、解答题9.如图所示,E 、F 分别是长方体A 1B 1C 1D 1—ABCD 的棱A 1A ,C 1C 的中点.求证:四边形B 1EDF 是平行四边形. 证明:设Q 是DD 1的中点,连接EQ 、QC 1.∵E 是AA 1的中点, ∴EQ 綊A 1D 1.又在矩形A 1B 1C 1D 1中,A 1D 1綊B 1C 1, ∴EQ 綊B 1C 1(平行公理).∴四边形EQC 1B 1为平行四边形.∴B 1E 綊C 1Q . 又∵Q 、F 是DD 1、C 1C 两边的中点,∴QD 綊C 1F . ∴四边形QDFC 1为平行四边形. ∴C 1Q 綊DF . 又∵B 1E 綊C 1Q , ∴B 1E 綊DF .∴四边形B 1EDF 为平行四边形.10.已知三棱锥A -BCD 中,AB =CD ,且直线AB 与CD 成60°角,点M ,N 分别是BC ,AD 的中点,求直线AB 和MN 所成的角.解:如图,取AC 的中点P ,连接PM ,PN ,因为点M ,N 分别是BC ,AD 的中点,所以PM ∥AB ,且PM =12AB ;PN ∥CD ,且PN =12CD ,所以∠MPN (或其补角)为AB 与CD 所成的角. 所以∠PMN (或其补角)为AB 与MN 所成的角. 因为直线AB 与CD 成60°角, 所以∠MPN =60°或∠MPN =120°. 又因为AB =CD ,所以PM =PN ①,(1)若∠MPN =60°,则△PMN 是等边三角形, 所以∠PMN =60°,即AB 与MN 所成的角为60°. (2)若∠MPN =120°,则易知△PMN 是等腰三角形. 所以∠PMN =30°,即AB 与MN 所成的角为30°. 综上可知:AB 与MN 所成角为60°或30°.2.1.3 & 2.1.4 空间中直线与平面、平面与平面之间的位置关系空间中直线与平面的位置关系[提出问题]应县木塔,在山西应县城佛宫寺内,辽清宁二年(1056年)建.塔呈平面八角形,外观五层,夹有暗层四级,实为九层,总高67.31米,底层直径30.27米,是国内外现存最古老最高大的木结构塔式建筑.塔建在4米高的两层石砌台基上,内外两槽立柱,构成双层套筒式结构,柱头间有栏额和普柏枋,柱脚间有地伏等水平构件,内外槽之间有梁枋相连接,使双层套筒紧密结合.暗层中用大量斜撑,结构上起圈梁作用,加强木塔结构的整体性.问题1:立柱和地面是什么位置关系?提示:相交.问题2:柱脚间有地伏等水平构件看成直线,它和地面有什么关系?提示:在平面内.问题3:直线和平面还有其他关系吗?提示:平行.[导入新知]直线与平面的位置关系位置关系直线a在平面α内直线a在平面α外直线a与平面α相交直线a与平面α平行公共点无数个公共点一个公共点没有公共点符号表示a⊂αa∩α=A a∥α图形表示[化解疑难]1.利用公共点的个数也可以理解直线与平面的位置关系.(1)当直线与平面无公共点时,直线与平面平行.(2)当直线与平面有一个公共点时,直线与平面相交.(3)当直线与平面有两个公共点时,它们就有无数个公共点,这时直线在平面内.2.直线在平面外包括两种情形:a∥α与a∩α=A.空间中平面与平面的位置关系[观察拿在手中的两本书,我们可以想象两本书为两个平面.问题1:两本书所在的平面可以平行吗?公共点的个数是多少?。

人教A版高中数学必修二第二章点、直线、平面之间的位置关系习题课

人教A版高中数学必修二第二章点、直线、平面之间的位置关系习题课

数学必修2编号19 时间___________ 班级___ 组别___ 姓名________编制人: 审核人: 下科行政:1.如图5所示,AF 、DE 分别是⊙O 、⊙1O 的直径,AD 与两圆所在的平面均垂直,8AD =.BC 是⊙O 的直径,6AB AC ==,//OE AD . (I)求二面角B ADF --的大小; (II)求直线BD 与EF 所成的角.2. 如图:在矩形ABCD 中,AB =5,BC =3,沿对角线BD 把△ABD 折起,使A 移到A 1点,过点A 1作A 1O ⊥平面BCD ,垂足O 恰好落在CD 上. (1)求证:BC ⊥A 1D ;(2)求直线A 1B 与平面BCD 所成角的正弦值. 3.如图(1),在直角梯形ABCP 中,AP BC //,BC AB ⊥,AP CD ⊥,2===PD DC AD , G F E 、、分别是线段BC PD PC 、、的中点, 现将PDC ∆折起,使平面⊥PDC 平面ABCD , 如图(2)所示. 在图(2)中,(1)求证://AP 平面EFG ;•••(((2)求异面直线AP 与FG 所成角的余弦值. (3)求二面角D EF G --的大小.4.如图, 在直三棱柱111ABC A B C -中,3AC =,5AB =,4BC =,14AA =, 点D 是AB 的中点. ⑴、求证:1AC BC ⊥; ⑵、求证:1//AC 平面1CDB ; ⑶、求二面角1C AB C --的正切值.5.如图,在直三棱柱ABC A B C '''-中, 已知4AA '=, 2AC BC ==,90ACB ∠=︒,D 是AB 的中点. (Ⅰ)求证:CD AB '⊥;(Ⅱ)求二面角A AB C ''--的大小;B。

人教A版高中数学必修二同步学习讲义:第二章 点、直线、平面之间的位置关系2.3.1 Word版含答案

人教A版高中数学必修二同步学习讲义:第二章 点、直线、平面之间的位置关系2.3.1 Word版含答案

2.3.1直线与平面垂直的判定学习目标1.理解直线与平面垂直的定义.2.掌握直线与平面垂直的判定定理的内容及其应用.3.应用直线与平面垂直的判定定理解决问题.知识点一直线与平面垂直的定义思考在阳光下观察直立于地面的旗杆及它在地面上的影子,随着时间的变化,影子的位置在移动,在各个时刻旗杆所在的直线与其影子所在的直线夹角是否发生变化,为多少?答案不变,90°.梳理知识点二直线和平面垂直的判定定理将一块三角形纸片ABC沿折痕AD折起,将翻折后的纸片竖起放置在桌面上(BD,DC与桌面接触).如图,观察折痕AD与桌面的位置关系.思考1折痕AD与桌面一定垂直吗?答案不一定.思考2当折痕AD 满足什么条件时,AD 与桌面垂直? 答案当AD ⊥BD 且AD ⊥CD 时,折痕AD 与桌面垂直. 梳理知识点三直线与平面所成的角类型一直线与平面垂直的定义例1如图,已知PA 垂直于⊙O 所在的平面,AB 是⊙O 的直径,C 是⊙O 上任意一点,求证:BC ⊥平面PAC .证明∵PA ⊥平面ABC ,∴PA ⊥BC . 又∵AB 是⊙O 的直径,∴BC ⊥AC . 而PA ∩AC =A ,∴BC ⊥平面PAC .引申探究若本例中其他条件不变,作AE ⊥PC 交PC 于点E ,求证:AE ⊥平面PBC .证明由例1知BC⊥平面PAC,又∵AE⊂平面PAC,∴BC⊥AE.∵PC⊥AE,且PC∩BC=C,∴AE⊥平面PBC.反思与感悟(1)使用直线与平面垂直的判定定理的关键是在平面内找到两条相交直线都与已知直线垂直,即把线面垂直转化为线线垂直来解决.(2)证明线面垂直的方法①线面垂直的定义.②线面垂直的判定定理.③如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.④如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.跟踪训练1如图,已知PA垂直于⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,过点A作AE⊥PC于点E,作AF⊥PB于F,求证:PB⊥平面AEF.证明由引申探究知AE⊥平面PBC.∵PB⊂平面PBC,∴AE⊥PB,又AF⊥PB,且AE∩AF=A,∴PB⊥平面AEF.类型二直线与平面所成的角例2如图,在正方体ABCD-A1B1C1D1中,(1)求A1B与平面AA1D1D所成的角;(2)求A1B与平面BB1D1D所成的角.解(1)∵AB⊥平面AA1D1D,∴∠AA1B就是A1B与平面AA1D1D所成的角,在Rt△AA1B中,∠BAA1=90°,AB=AA1,∴∠AA 1B =45°,∴A 1B 与平面AA 1D 1D 所成的角是45°. (2)连接A 1C 1交B 1D 1于点O ,连接BO .∵A 1O ⊥B 1D 1,BB 1⊥A 1O , ∴A 1O ⊥平面BB 1D 1D ,∴∠A 1BO 就是A 1B 与平面BB 1D 1D 所成的角. 设正方体的棱长为1,则A 1B =2,A 1O =22.又∵∠A 1OB =90°,∴sin ∠A 1BO =A1O A1B =12,又∠A 1BO ∈[0°,90°],∴∠A 1BO =30°,∴A 1B 与平面BB 1D 1D 所成的角是30°. 反思与感悟求斜线与平面所成角的步骤(1)作图:作(或找)出斜线在平面内的射影,作射影要过斜线上一点作平面的垂线,再过垂足和斜足作直线,注意斜线上点的选取以及垂足的位置要与问题中已知量有关,才能便于计算. (2)证明:证明某平面角就是斜线与平面所成的角.(3)计算:通常在垂线段、斜线和射影所组成的直角三角形中计算. 跟踪训练2如图,在三棱锥A -SBC 中,∠BSC =90°,∠ASB =∠ASC =60°,SA =SB =SC ,求直线AS 与平面SBC 所成的角.解因为∠ASB =∠ASC =60°,SA =SB =SC , 所以△ASB 与△SAC 都是等边三角形. 因此,AB =AC .如图,取BC 的中点D ,连接AD ,SD ,则AD ⊥BC .设SA =a ,则在Rt △SBC 中,BC =2a ,CD =SD =22a .在Rt △ADC 中,AD =AC2-CD2=22a ,则AD 2+SD 2=SA 2,所以AD ⊥SD . 又BC ∩SD =D ,所以AD ⊥平面SBC .因此,∠ASD 即为直线AS 与平面SBC 所成的角. 在Rt △ASD 中,SD =AD =22a ,所以∠ASD =45°.1.下面叙述中:①若直线垂直于平面内的两条直线,则这条直线与平面垂直; ②若直线与平面内的任意一条直线都垂直,则这条直线与平面垂直;③若直线垂直于梯形的两腰所在的直线,则这条直线垂直于两底边所在的直线; ④若直线垂直于梯形的两底边所在的直线,则这条直线垂直于两腰所在的直线. 其中正确的有()A .1个B .2个C .3个D .4个 答案B解析①中若两条直线为平行直线,则这条直线不一定与平面垂直,所以不正确;②由定义知正确;③中直线与梯形的两腰所在直线垂直,则与梯形所在平面垂直,由定义知也与两底边所在直线垂直,所以正确;④中直线与梯形两底边所在直线垂直,则不一定与梯形所在平面垂直,故不一定与两腰所在直线垂直,不正确.故选B.2.直线l ⊥平面α,直线m ⊂α,则l 与m 不可能() A .平行B .相交 C .异面D .垂直 答案A解析若l ∥m ,l ⊄α,m ⊂α,则l ∥α, 这与已知l ⊥α矛盾. 所以直线l 与m 不可能平行.3.如图所示,若斜线段AB 是它在平面α上的射影BO 的2倍,则AB 与平面α所成的角是()A .60°B .45°C .30°D .120° 答案A解析∠ABO 即是斜线AB 与平面α所成的角,在Rt △AOB 中,AB =2BO ,所以cos ∠ABO =12,即∠ABO=60°.故选A.4.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,AP =AB =2,BC =22,E ,F分别是AD ,PC 的中点.证明:PC ⊥平面BEF .证明如图,连接PE ,EC ,在Rt △PAE 和Rt △CDE 中,PA =AB =CD ,AE =DE ,所以PE =CE ,即△PEC 是等腰三角形. 又F 是PC 的中点,所以EF ⊥PC . 又BP =AP2+AB2=22=BC ,F 是PC 的中点,所以BF ⊥PC . 又BF ∩EF =F ,所以PC ⊥平面BEF .1.线线垂直和线面垂直的相互转化2.证明线面垂直的方法 (1)线面垂直的定义.(2)线面垂直的判定定理.(3)如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.(4)如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.课时作业一、选择题1.下列说法中正确的个数是()①若直线l与平面α内的一条直线垂直,则l⊥α;②若直线l与平面α内的两条直线垂直,则l⊥α;③若直线l与平面α内的两条相交直线垂直,则l⊥α;④若直线l与平面α内的任意一条直线垂直,则l⊥α.A.4B.2C.3D.1答案B解析对于①②不能断定该直线与平面垂直,该直线与平面可能平行,也可能斜交,也可能在平面内,所以①②是错误的;易知③④是正确的.2.如果一条直线垂直于一个平面内的下列各种情况,能保证该直线与平面垂直的是()①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边.A.①③B.②C.②④D.①②④答案A解析由线面垂直的判定定理知,直线垂直于①③图形所在的平面.而②④图形中的两边不一定相交,故该直线与它们所在的平面不一定垂直.3.如果一条直线l与平面α的一条垂线垂直,那么直线l与平面α的位置关系是()A.l⊂αB.l⊥αC.l∥αD.l⊂α或l∥α答案D解析结合正方体模型,直线l与平面α的位置关系是平行或在平面内,故选D.4.若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A.平面OAB B.平面OACC.平面OBC D.平面ABC答案C解析∵OA⊥OB,OA⊥OC且OB∩OC=O,∴OA⊥平面OBC.5.如图所示,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是()B.垂直相交C.垂直但不相交D.相交但不垂直答案C解析连接AC.因为ABCD是菱形,所以BD⊥AC.又MC⊥平面ABCD,则BD⊥MC.因为AC∩MC=C,所以BD⊥平面AMC.又MA⊂平面AMC,所以MA⊥BD.显然直线MA与直线BD不共面,因此直线MA与BD的位置关系是垂直但不相交.6.在正方体ABCD-A1B1C1D1中,下面结论错误的是()A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1DD.异面直线AD与CB1所成的角为45°答案C解析由正方体的性质得BD∥B1D1,且BD⊄平面CB1D1,所以BD∥平面CB1D1,故A正确;因为BD⊥平面ACC1A1,所以AC1⊥BD,故B正确;异面直线AD与CB1所成的角即为AD与DA1所成的角,故为45°,所以D正确.7.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点棱锥体积最大时,直线BD和平面ABC 所成的角的大小为()A.90°B.60°C.45°D.30°答案C解析如图,当DO⊥平面ABC时,三棱锥D-ABC的体积最大.∴∠DBO为直线BD和平面ABC所成的角,∵在Rt△DOB中,OD=OB,∴直线BD和平面ABC所成的角大小为45°.8.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m答案B解析根据定理,两条平行线中一条直线垂直于一个平面,则另一条直线也垂直于这个平面,故选B.9.在直三棱柱ABC —A 1B 1C 1中,BC =CC 1,当底面A 1B 1C 1满足条件________时,有AB 1⊥BC 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况) 答案∠A 1C 1B 1=90°解析如图所示,连接B 1C ,由BC =CC 1,可得BC 1⊥B 1C ,因此,要证AB 1⊥BC 1,则只要证明BC 1⊥平面AB 1C ,即只要证AC ⊥BC 1即可,由直三棱柱可知,只要证AC ⊥BC 即可.因为A 1C 1∥AC ,B 1C 1∥BC ,故只要证A 1C 1⊥B 1C 1即可.(或者能推出A 1C 1⊥B 1C 1的条件,如∠A 1C 1B 1=90°等)10.如图所示,AB 是⊙O 的直径,PA ⊥⊙O 所在的平面,C 是圆上一点,且∠ABC =30°,PA =AB ,则直线PC 与平面ABC 所成角的正切值为________.答案2解析因为PA ⊥平面ABC ,所以AC 为斜线PC 在平面ABC 上的射影,所以∠PCA 即为PC 与平面ABC 所成的角.在△PAC 中,AC =12AB =12PA ,所以tan ∠PCA =PAAC=2.11.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C 1MN =______.答案90°解析∵B 1C 1⊥平面ABB 1A 1,∴B 1C 1⊥MN . 又∵MN ⊥B 1M ,∴MN ⊥平面C 1B 1M . 又C 1M ⊂平面C 1B 1M , ∴MN ⊥C 1M ,∴∠C 1MN =90°. 三、解答题12.如图所示,在四棱锥P -ABCD 中,底面ABCD 是矩形.已知AD =2,PA =2,PD =22,求证:AD⊥平面PAB .证明在△PAD 中,由PA =2,AD =2,PD =22,可得PA 2+AD 2=PD 2,即AD ⊥PA . 又AD ⊥AB ,PA ∩AB =A , 所以AD ⊥平面PAB .13.如图,正方体ABCD -A 1B 1C 1D 1的棱长为2.(1)求证:AC ⊥B 1D ; (2)求三棱锥C -BDB 1的体积. (1)证明∵ABCD -A 1B 1C 1D 1为正方体, ∴BB 1⊥平面ABCD .∵又AC ⊂平面ABCD ,∴BB 1⊥AC . 又∵底面ABCD 为正方形,∴AC ⊥BD . ∵BB 1∩BD =B ,∴AC ⊥平面BB 1D . ∵B 1D ⊂平面BDB 1,∴AC ⊥B 1D . (2)解.11--=C BDB B BDC V V∵B 1B ⊥平面ABCD ,∴B 1B 是三棱锥B 1-BDC 的高. ∵1-B BDCV =13S △BDC ·BB 1=13×12×2×2×2=43, ∴三棱锥C -BDB 1的体积为43.四、探究与拓展14.如图所示,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是()A .AC ⊥SBB .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角D .AB 与SC 所成的角等于DC 与SA 所成的角答案D解析对于选项A ,由题意得SD ⊥AC ,AC ⊥BD ,SD ∩BD =D ,∴AC ⊥平面SBD ,故AC ⊥SB ,故A 正确;对于选项B ,∵AB ∥CD ,AB ⊄平面SCD ,∴AB ∥平面SCD ,故B 正确;对于选项C ,由对称性知SA 与平面SBD 所成的角与SC 与平面SBD 所成的角相等,故C 正确.15.如图,PA ⊥矩形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点.(1)求证:MN ∥平面PAD ;(2)若PD 与平面ABCD 所成的角为45°,求证:MN ⊥平面PCD .证明(1)取PD 的中点E ,连接NE ,AE ,如图.又∵N 是PC 的中点,∴NE 綊12DC . 又∵DC 綊AB ,AM =12AB , ∴AM 綊12CD ,∴NE 綊AM , ∴四边形AMNE 是平行四边形,∴MN ∥AE .∵AE ⊂平面PAD ,MN ⊄平面PAD ,∴MN ∥平面PAD .(2)∵PA ⊥平面ABCD ,∴∠PDA 即为PD 与平面ABCD 所成的角,∴∠PDA =45°,∴AP =AD ,∴AE ⊥PD .又∵MN ∥AE ,∴MN ⊥PD .∵PA ⊥平面ABCD ,∴PA ⊥CD .又∵CD ⊥AD ,∴CD ⊥平面PAD .∵AE⊂平面PAD,∴CD⊥AE,∴CD⊥MN.又CD∩PD=D,∴MN⊥平面PCD.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学人教a 版高一必修二第二章《点、直线、平面之间的位置关系习题课》【课时目标】 1.能熟练应用直线、平面平行与垂直的判定及性质进行有关的证明.2.进一步体会化归思想在证明中的应用.位置关系 判定定理(符号语言) 性质定理(符号语言) 直线与平面平行 a ∥b 且________⇒a ∥α a ∥α,________________⇒a ∥b平面与平面平行 a ∥α,b ∥α,且________________⇒α∥βα∥β,________________⇒a ∥b直线与平面垂直 l ⊥a ,l ⊥b ,且________________⇒l ⊥α a ⊥α,b ⊥α⇒________平面与平面垂直 a ⊥α, ⇒α⊥βα⊥β,α∩β=a ,____________⇒b ⊥β一、选择题1.不同直线M 、n 和不同平面α、β.给出下列命题:①⎭⎪⎬⎪⎫α∥βm ⊂α⇒M ∥β; ②⎭⎪⎬⎪⎫m ∥n m ∥β⇒n ∥β; ③⎭⎪⎬⎪⎫m ⊂αn ⊂β⇒M ,n 异面; ④⎭⎪⎬⎪⎫α⊥βm ∥α⇒M ⊥β. 其中假命题的个数为( )A .0B .1C .2D .32.下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行.其中正确命题的个数有( )A .4B .1C .2D .33.若a 、b 表示直线,α表示平面,下列命题中正确的个数为( ) ①a ⊥α,b ∥α⇒a ⊥b ;②a ⊥α,a ⊥b ⇒b ∥α; ③a ∥α,a ⊥b ⇒b ⊥α.A .1B .2C .3D .04.过平面外一点P :①存在无数条直线与平面α平行;②存在无数条直线与平面α垂直;③有且只有一条直线与平面α平行;④有且只有一条直线与平面α垂直,其中真命题的个数是( )A .1B .2C .3D .45.如图所示,正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是( )A .线段B 1C B .线段BC 1C .BB 1的中点与CC 1的中点连成的线段D .BC 的中点与B 1C 1的中点连成的线段6.已知三条相交于一点的线段PA 、PB 、PC 两两垂直,点P 在平面ABC 外,PH ⊥面ABC 于H ,则垂足H 是△ABC 的( )A .外心B .内心C .垂心D .重心二、填空题7.三棱锥D -ABC 的三个侧面分别与底面全等,且AB =AC =3,BC =2,则二面角A -BC -D 的大小为________.8.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”,在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是________.9.如图所示,在正方体ABCD -A 1B 1C 1D 1中,P 为BD 1的中点,则△PAC 在该正方体各个面上的射影可能是________.(填序号)三、解答题10.如图所示,△ABC 为正三角形,EC ⊥平面ABC ,BD ∥CE ,且CE =CA =2BD ,M 是EA 的中点,求证: (1)DE =DA ;(2)平面BDM ⊥平面ECA ; (3)平面DEA ⊥平面ECA .11.如图,棱柱ABC -A 1B 1C 1的侧面BCC 1B 1是菱形,B 1C ⊥A 1B . (1)证明:平面AB 1C ⊥平面A 1BC 1; (2)设D 是A 1C 1上的点且A 1B ∥平面B 1CD ,求A 1DDC 1的值.能力提升12.四棱锥P—ABCD的顶点P在底面ABCD中的投影恰好是A,其三视图如图:(1)根据图中的信息,在四棱锥P—ABCD的侧面、底面和棱中,请把符合要求的结论填写在空格处(每空只要求填一种):①一对互相垂直的异面直线________;②一对互相垂直的平面________;③一对互相垂直的直线和平面________;(2)四棱锥P—ABCD的表面积为________.13.如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点.(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;(3)求四面体B-DEF的体积.转化思想是证明线面平行与垂直的主要思路,其关系为即利用线线平行(垂直),证明线面平行(垂直)或证明面面平行(垂直);反过来,又利用面面平行(垂直),证明线面平行(垂直)或证明线线平行(垂直),甚至平行与垂直之间的转化.这样,来来往往,就如同运用“四渡赤水”的战略战术,达到了出奇制胜的目的.习题课直线、平面平行与垂直答案知识梳理a⊄α,b⊂αa⊂β,α∩β=b a⊂β,b⊂β,a∩b=P α∩γ=a,β∩γ=b a⊂α,b⊂α,a∩b=P a∥b a⊂βb⊥a,b⊂α作业设计1.D [命题①正确,面面平行的性质;命题②不正确,也可能n⊂β;命题③不正确,如果m、n有一条是α、β的交线,则m、n共面;命题④不正确,m与β的关系不确定.]2.C [(2)和(4)对.]3.A [①正确.]4.B [①④正确.]5.A [连接AC,AB1,B1C,∵BD⊥AC,AC⊥DD1,BD∩DD1=D,∴AC⊥面BDD1,∴AC⊥BD1,同理可证BD1⊥B1C,∴BD1⊥面AB1C.∴P∈B1C时,始终AP⊥BD1,选A.]6.C [如图所示,由已知可得PA⊥面PBC,PA⊥BC,又PH⊥BC,∴BC⊥面APH,BC⊥AH.同理证得CH⊥AB,∴H为垂心.]7.90°解析由题意画出图形,数据如图,取BC 的中点E ,连接AE 、DE ,易知∠AED 为二面角A —BC —D 的平面角.可求得AE =DE =2,由此得AE 2+DE 2=AD 2. 故∠AED=90°. 8.36解析 正方体的一条棱长对应着2个“正交线面对”,12条棱长共对应着24个“正交线面对”;正方体的一条面对角线对应着1个“正交线面对”,12条面对角线对应着12个“正交线面对”,共有36个.9.①④10.证明 (1)如图所示,取EC 的中点F ,连接DF ,∵EC⊥平面ABC , ∴EC⊥BC,又由已知得DF∥BC,∴DF⊥EC.在Rt △EFD 和Rt △DBA 中,∵EF=12EC =BD ,FD =BC =AB ,∴Rt △EFD≌Rt △DBA, 故ED =DA .(2)取CA 的中点N ,连接MN 、BN ,则MN 綊12EC ,∴MN∥BD,∴N 在平面BDM 内,∵EC⊥平面ABC ,∴EC⊥BN.又C A⊥BN, ∴BN⊥平面ECA ,BN ⊂平面MNBD , ∴平面MNBD⊥平面ECA . 即平面BDM⊥平面ECA .(3)∵BD 綊12EC ,MN 綊12EC ,∴BD 綊MN ,∴MNBD 为平行四边形,∴DM∥BN,∵BN⊥平面ECA ,∴DM⊥平面ECA ,又DM ⊂平面DEA , ∴平面DEA⊥平面ECA .11.(1)证明 因为侧面BCC 1B 1是菱形,所以B 1C⊥BC 1.又B 1C⊥A 1B ,且A 1B∩BC 1=B ,所以B 1C⊥平面A 1BC 1.又B 1C ⊂平面AB 1C ,所以平面AB 1C⊥平面A 1BC 1.(2)解 设BC 1交B 1C 于点E ,连接DE ,则DE 是平面A 1BC 1与平面B 1CD 的交线. 因为A 1B∥平面B 1CD ,所以A 1B∥DE.又E 是BC 1的中点,所以D 为A 1C 1的中点, 即A 1DDC 1=1. 12.(1)①PA⊥BC(或PA⊥CD 或AB⊥PD) ②平面PAB⊥平面ABCD(或平面PAD⊥平面ABCD 或平面PAB⊥平面PAD 或平面PCD⊥平面PAD 或平面PBC⊥平面PAB) ③PA⊥平面ABCD(或AB⊥平面PAD 或CD⊥平面PAD 或AD⊥平面PAB 或BC⊥平面PAB)(2)2a 2+2a 2解析 (2)依题意:正方形的面积是a 2,S △PAB =S △PAD =12a 2.又PB =PD =2a ,∴S △PBC =S △PCD =22a 2. 所以四棱锥P —ABCD 的表面积是S =2a 2+2a 2. 13.(1)证明 如图,设AC 与BD 交于点G ,则G 为AC 的中点.连接EG ,GH ,由于H 为BC 的中点,故GH 綊12AB .又EF 綊12AB ,∴EF 綊GH .∴四边形EFHG 为平行四边形.∴EG∥FH.而EG ⊂平面EDB ,FH ⊄平面EDB ,∴FH∥平面EDB .(2)证明 由四边形ABCD 为正方形,得AB⊥BC. 又EF∥AB,∴EF⊥BC.而EF⊥FB,∴EF⊥平面BFC . ∴EF⊥FH.∴AB⊥FH.又BF =FC ,H 为BC 的中点,∴FH⊥BC. ∴FH⊥平面ABCD .∴FH⊥AC.又FH∥EG,∴AC⊥EG.又AC⊥BD,EG∩BD=G , ∴AC⊥平面EDB .(3)解 ∵EF⊥FB,∠BFC=90°∴BF⊥平面CDEF . ∴BF 为四面体B -DEF 的高. 又BC =AB =2,∴BF=FC =2.V B -DEF =13×12×1×2×2=13.。

相关文档
最新文档