三种Linux中的常用多线程同步方式浅析
线程同步的3种方法
线程同步的3种方法
多线程编程的一个重要任务就是同步线程的操作,也就是让一个线程等待另一个线程结束才能继续执行。
对于同步线程的操作,有三种方法:信号量、互斥变量和读写锁。
信号量是一种重要的同步原语,它允许一个或多个线程访问受保护的资源。
它用来表示资源池中可用资源的数量,一个线程必须等待,直到有可用资源,然后才能使用资源。
它通常只能用于数据共享,这种数据共享是在不同线程之间进行的。
互斥变量是一种更高效的同步机制,通常被称为互斥锁或互斥量。
它可以使用一段代码包含在其中,该代码只能被一个线程同时执行,其他线程都必须等待它释放,然后才能继续运行。
它可以有效地解决多线程同时对一个变量的访问冲突,也可以用于互斥访问资源,在线程之间共享变量时也是有效的。
读写锁是一种特殊的互斥变量,它可以有效地实现多线程对受保护资源的访问,在多线程之间实现读写的互斥控制。
它的主要思想是分离读和写并发任务,使得读取资源的线程不会被写入资源的线程阻塞,而是可以同时进行。
总之,信号量、互斥变量和读写锁都是用于实现多线程同步操作的重要机制,它们各自有自己的优点和特点,可以根据实际情况更灵活地使用这三种机制来实现同步多线程操作,以实现更高效的程序性能。
- 1 -。
线程同步的方法有哪些
线程同步的方法有哪些线程同步是多线程编程中非常重要的一个概念,它是指多个线程在访问共享资源时,为了避免出现数据不一致或者冲突的情况,需要对线程进行协调和同步。
在实际的开发中,我们常常会遇到需要进行线程同步的情况,因此了解线程同步的方法是非常重要的。
本文将介绍几种常见的线程同步方法,希望能够帮助大家更好地理解和应用线程同步。
1. 互斥锁。
互斥锁是最常见的线程同步方法之一。
它通过对共享资源加锁的方式,保证同一时间只有一个线程可以访问该资源,其他线程需要等待锁的释放才能访问。
互斥锁可以使用操作系统提供的原子操作指令来实现,也可以使用编程语言提供的锁机制来实现,如Java中的synchronized关键字。
2. 信号量。
信号量是另一种常见的线程同步方法。
它可以用来控制对共享资源的访问权限,通过对信号量的值进行操作来实现线程的同步。
当信号量的值大于0时,表示资源可用,线程可以访问;当信号量的值等于0时,表示资源不可用,线程需要等待。
信号量的实现可以使用操作系统提供的信号量机制,也可以使用编程语言提供的信号量类来实现。
3. 条件变量。
条件变量是一种线程同步的高级方法,它可以用来在多个线程之间传递信息和控制线程的执行顺序。
条件变量通常和互斥锁一起使用,当共享资源的状态发生变化时,可以通过条件变量来通知等待的线程。
条件变量的实现通常需要依赖于操作系统提供的条件变量机制或者编程语言提供的条件变量类。
4. 读写锁。
读写锁是一种特殊的互斥锁,它可以提高对共享资源的并发访问性能。
读写锁允许多个线程同时对共享资源进行读操作,但是在进行写操作时需要互斥访问。
通过读写锁,可以有效地提高对共享资源的并发性能,适用于读操作频繁、写操作较少的场景。
5. 原子操作。
原子操作是一种特殊的指令序列,它可以保证在多线程环境下对共享资源的操作是原子性的,不会被中断。
原子操作通常由硬件提供支持,可以保证在执行过程中不会被其他线程打断,从而保证对共享资源的操作是线程安全的。
linux多线程 pthread常用函数详解
linux多线程pthread常用函数详解Linux多线程是指在Linux操作系统中运行的多个线程。
线程是执行程序的基本单位,它独立于其他线程而存在,但共享相同的地址空间。
在Linux中,我们可以使用pthread库来实现多线程程序。
本文将详细介绍pthread库中常用的函数,包括线程的创建、退出、同步等。
一、线程创建函数1. pthread_create函数pthread_create函数用于创建一个新线程。
其原型如下:cint pthread_create(pthread_t *thread, const pthread_attr_t *attr, void*(*start_routine) (void *), void *arg);参数说明:- thread:用于存储新线程的ID- attr:线程的属性,通常为NULL- start_routine:线程要执行的函数地址- arg:传递给线程函数的参数2. pthread_join函数pthread_join函数用于等待一个线程的结束。
其原型如下:int pthread_join(pthread_t thread, void retval);参数说明:- thread:要等待结束的线程ID- retval:用于存储线程的返回值3. pthread_detach函数pthread_detach函数用于将一个线程设置为分离状态,使其在退出时可以自动释放资源。
其原型如下:cint pthread_detach(pthread_t thread);参数说明:- thread:要设置为分离状态的线程ID二、线程退出函数1. pthread_exit函数pthread_exit函数用于退出当前线程,并返回一个值。
其原型如下:cvoid pthread_exit(void *retval);参数说明:- retval:线程的返回值2. pthread_cancel函数pthread_cancel函数用于取消一个线程的执行。
多线程同步有几种实现方法
多线程同步有几种实现方法
多线程同步有几种实现方法,常见的有以下几种:
1. 互斥锁:通过互斥锁(Mutex)来控制多个线程对共享资源的访问。
同一时间只允许一个线程访问共享资源,其他线程需要等待锁的释放才能进行访问。
2. 条件变量:通过条件变量(Condition Variable)可以使一个线程等待特定的条件发生,当条件满足时,线程重新获得锁并继续执行。
常用的条件变量有信号量和事件。
3. 信号量:信号量(Semaphore)是一种通过计数器来实现线程间同步的机制。
当计数器大于0时,线程可以执行,当计数器等于0时,线程需要等待。
信号量可以用于限制同时访问某个资源的线程数量。
4. 事件:事件(Event)是一种通过线程等待和通知来实现同步的机制。
线程等待某个事件发生后才能继续执行,其他线程可以通过触发事件来通知等待的线程。
5. 自旋锁:自旋锁是一种忙等的方式,线程在获取锁时,如果发现锁被其他线程占用,就会一直循环尝试获取锁,直到成功获取。
6. 屏障:屏障(Barrier)是一种等待所有线程都达到某个状态后再继续执行的机制。
当所有线程都到达屏障点后,屏障才会打开,线程可以继续执行。
这些方法可以根据具体的场景和需求选择合适的方式来进行多线程同步。
多线程同步的几种方法
多线程同步的几种方法
多线程同步的几种方法主要包括临界区、互斥量、信号量、事件和读写锁等。
这些方法可以有效地控制多个线程对共享资源的访问,避免出现数据不一致和线程冲突的问题。
1.临界区:通过临界区实现多个线程对某一公共资源或一段代码的串行访问,可以保证某一时刻只有一个线程访问某一资源,速度快,适合控制数据的访问。
2.互斥量:互斥量是最简单的同步机制,即互斥锁。
多个进程(线程)均可以访问到一个互斥量,通过对互斥量加锁,从而来保护一个临界区,防止其它进程(线程)同时进入临界区,保护临界资源互斥访问。
3.信号量:信号量可以控制有限用户对同一资源的的访问而设计。
4.事件:通过通知线程的有一些事件已经发生,从而可以启动后续的任务执行。
5.读写锁:读写锁适合于使用在读操作多、写操作少的情况,比如数据库。
读写锁读锁可以同时加很多,但是写锁是互斥的。
当有进程或者线程要写时,必须等待所有的读进程或者线程都释放自己的读锁方可以写。
数据库很多时候可能只是做一些查询。
以上信息仅供参考,如有需要,建议咨询专业编程技术
人员。
多线程之线程同步的方法(7种)
多线程之线程同步的⽅法(7种)同步的⽅法:⼀、同步⽅法 即有synchronized关键字修饰的⽅法。
由于java的每个对象都有⼀个内置锁,当⽤此关键字修饰⽅法时,内置锁会保护整个⽅法。
在调⽤该⽅法前,需要获得内置锁,否则就处于阻塞状态。
注: synchronized关键字也可以修饰静态⽅法,此时如果调⽤该静态⽅法,将会锁住整个类。
⼆、同步代码块 即有synchronized关键字修饰的语句块。
被该关键字修饰的语句块会⾃动被加上内置锁,从⽽实现同步代码如:synchronized(object){}注:同步是⼀种⾼开销的操作,因此应该尽量减少同步的内容。
通常没有必要同步整个⽅法,使⽤synchronized代码块同步关键代码即可。
package com.xhj.thread;/*** 线程同步的运⽤** @author XIEHEJUN**/public class SynchronizedThread {class Bank {private int account = 100;public int getAccount() {return account;}/*** ⽤同步⽅法实现** @param money*/public synchronized void save(int money) {account += money;}/*** ⽤同步代码块实现** @param money*/public void save1(int money) {synchronized (this) {account += money;}}}class NewThread implements Runnable {private Bank bank;public NewThread(Bank bank) {this.bank = bank;}@Overridepublic void run() {for (int i = 0; i < 10; i++) {// bank.save1(10);bank.save(10);System.out.println(i + "账户余额为:" + bank.getAccount());}}}/*** 建⽴线程,调⽤内部类*/public void useThread() {Bank bank = new Bank();NewThread new_thread = new NewThread(bank);System.out.println("线程1");Thread thread1 = new Thread(new_thread);thread1.start();System.out.println("线程2");Thread thread2 = new Thread(new_thread);thread2.start();}public static void main(String[] args) {SynchronizedThread st = new SynchronizedThread();eThread();}}=====================================⽰例加讲解同步是多线程中的重要概念。
线程同步方法有哪些
线程同步方法有哪些
线程同步的常用方法有:
1. 使用锁:例如使用`Lock`类、`ReentrantLock`类或`synchronized`关键字来实现线程同步。
2. 使用条件变量:例如使用`Condition`类来控制线程等待和唤醒。
3. 使用信号量:例如使用`Semaphore`类来控制线程的并发数。
4. 使用栅栏:例如使用`CyclicBarrier`类来控制多个线程在某个点上同步。
5. 使用阻塞队列:例如使用`BlockingQueue`类来控制线程的顺序执行。
6. 使用计数器:例如使用`CountDownLatch`类来控制线程的等待和唤醒。
7. 使用原子类:例如使用`AtomicInteger`类来保证操作的原子性。
8. 使用同步容器:例如使用`ConcurrentHashMap`类来保证线程安全。
9. 使用线程池:例如使用`ExecutorService`类来调度线程的执行顺序。
10. 使用并发工具类:例如使用`ReadWriteLock`类来实现多线程对某个资源的读写操作。
linux线程间通信的几种方法
linux线程间通信的几种方法Linux是一种开源的操作系统,它支持多线程编程,因此线程间通信是非常重要的。
线程间通信是指在多个线程之间传递数据或信息的过程。
在Linux中,有多种方法可以实现线程间通信,本文将介绍其中的几种方法。
1. 信号量信号量是一种用于线程间同步和互斥的机制。
它可以用来控制对共享资源的访问。
在Linux中,信号量是由sem_t类型的变量表示的。
它有三个主要的操作:初始化、P操作和V操作。
初始化操作用于初始化信号量的值。
P操作用于获取信号量,如果信号量的值为0,则线程会被阻塞,直到信号量的值大于0。
V操作用于释放信号量,将信号量的值加1。
下面是一个使用信号量实现线程间通信的例子:```#include <stdio.h>#include <pthread.h>#include <semaphore.h>sem_t sem;void *thread1(void *arg){sem_wait(&sem);printf("Thread 1\n");sem_post(&sem);pthread_exit(NULL);}void *thread2(void *arg){sem_wait(&sem);printf("Thread 2\n");sem_post(&sem);pthread_exit(NULL);}int main(){pthread_t t1, t2;sem_init(&sem, 0, 1);pthread_create(&t1, NULL, thread1, NULL); pthread_create(&t2, NULL, thread2, NULL); pthread_join(t1, NULL);pthread_join(t2, NULL);sem_destroy(&sem);return 0;}```在这个例子中,我们创建了两个线程,它们都需要获取信号量才能执行。
linux线程间通信方式
linux线程间通信方式
Linux 线程间通信方式包括以下几种:
1. 管道通信:管道是一种半双工的通信方式,只能用于具有亲缘关系的进程之间的通信,父进程创建管道,在进程间传递数据。
2. 信号通信:信号是一种异步通信方式,在进程之间传递简单的信息。
一个进程向另一个进程发送一个信号,另一个进程收到信号后就可以采取相应的操作。
3. 共享内存通信:共享内存是最快的进程间通信方式,可以将内存区域映射到多个进程的地址空间中,实现进程间数据的共享。
需要注意解决信号量、锁等同步问题。
4. 信号量通信:信号量是一种计数器,用来协调多个进程对共享资源的访问。
多个进程需要对信号量进行操作,以实现对共享资源的访问控制。
5. 消息队列通信:消息队列是一种通过消息传递来进行通信的机制,可以在进程之间传递数据块,通常用于进程间的同步和异步通信。
6. 套接字通信:套接字是基于网络通信的一种进程间通信方式,可用于同一主机上进程间通信,也可以在不同主机之间通信。
套接字是基于 TCP/IP 协议栈实现的,需要在数据传输时注意网络传输和数据结构转换等问题。
以上是 Linux 线程间通信的主要方式,开发者可以根据不同的需求和场景选择合适的方式。
linux进程间通讯的几种方式的特点和优缺点
linux进程间通讯的几种方式的特点和优缺点Linux进程间通讯的方式有多种,其优缺点也不尽相同,接受者依赖发送者之时间特性可承载其优端。
下面就讨论几种典型的方式:1、管道(Pipe):是比较传统的方式,管道允许信息在不同进程之间传送,由一端输入,另一端输出,提供全双工式劝劝信息传送,除此之外,伺服端也可以将其服务转换为管道,例如说Web服务程序。
管道的优点:简单易懂、可靠、灵活、容易管理,可以控制发送端和接收端的信息流量。
管道的缺点:线程之间的信息量不能太大,也只能在本机上使用,不能通过网络发送信息。
2、消息队列(Message queue):消息队列主要应用在大型网络中,支持多种消息队列协议,广泛用于在远程机器上的进程间的交互、管理进程间的数据和同步问题。
消息队列的优点:主要优点是这种方式可以将消息发送给接收端,然后接收端可以从距离发送端远的地方网络上接收消息,通过消息队列可以较好的管理和控制进程间的数据流量和同步问题。
消息队列的缺点:缺点是消息队里的管理复杂,并且有一定的延迟,而且它使用时应避免共享内存,对于多处理器和跨网络环境, TCP 传输数据时也比不上消息队列的传输效率高。
3、共享内存(Share Memory):是最高效的进程间通信方式,也是最常用的,它使进程在通信时共享一个存储地址,双方都可以以该存储地址作为参数进行读写操作。
共享内存的优点:实现高性能,数据同步操作快、数据可以高速传输,可以解决多处理器以及跨网络环境的通信。
共享内存的缺点:由于进程间直接使用物理内存,没有任何保护,所需要使用较复杂的同步机制来完成数据的可靠传输。
总的来说,每种进程通讯方式都有各自的优缺点,不同的系统需求也许需要多种方案的相互配合才能有效的处理系统间通信的问题。
系统设计者应根据具体系统需求,选择合适的进程通信方式来实现更好的进程间通信。
Linux系统线程创建及同步互斥方法简要说明(供查考)
Linux系统线程创建及同步互斥方法简要说明(供查考)1、.POSIX线程函数的定义在头文件pthread.h中,所有的多线程程序都必须通过使用#include<pthread.h>包含这个头文件2、用gcc编译多线程程序时,必须与pthread函数库连接。
可以使用以下两种方式编译(建议使用第一种)(1)gcc –D_REENTRANT -o 编译后的目标文件名源文件名-lpthread例如:gcc –D_REENTRANT -o pthread_create pthread_create.c -lpthread (执行该编译结果的方式为:./pthread_create)(2)gcc -pthread -o 编译后的文件名源文件名例如:gcc -pthread -o example example.c一、需要用到的函数的用法提示1、创建线程函数pthread_t a_thread; /*声明a_thread变量,用来存放创建的新线程的线程ID(线程标识符)*/int res=pthread_create(&a_thread,NULL,thread_function,NULL);/*创建一个执行函数thread_function的新线程,线程ID存放在变量a_thread */ 2、退出线程函数pthread_exit(NULL);/*那个线程在执行中调用了该方法,那个线程就退出*/创建和退出线程实例3、连接(等待)线程函数int error;int *exitcodeppthread_t tid; /*用来表示一个已经存在的线程*/error=pthread_join(tid,&exitcodep); /*执行该方法的线程将要一直等待,直到tid 表示的线程执行结束,exitcodep 存放线程tid退出时的返回值*/4、返回线程ID的函数pthread_t t/*声明表示线程的变量t */t=pthread_self( ) /*返回调用该方法的线程的线程ID*/5、判断两个线程是否相等的函数(pthread_equal)int pthread_equal(pthread_t t1, pthread_t t2);/*判断线程t1与线程t2是否线程ID相等*/二、线程同步1、使用互斥量同步线程(实现互斥)(1)互斥量的创建和初始化pthread_mutex_t a_mutex=PTHREAD_MUTEX_INITIALIZER/*声明a_mutex为互斥量,并且初始化为PTHREAD_MUTEX_INITIALIZER */ (2)锁定和解除锁定互斥量pthread_mutex_t a_mutex=PTHREAD_MUTEX_INITIALIZER/*声明互斥量a_mutex*/int rc=pthread_mutex_lock(&a_mutex) /*锁定互斥量a_mutex*/ ………………………………/*锁定后的操作*/int rd= pthread_mutex_unlock(&a_mutex) /*解除对互斥量a_mutex的锁定*/例子:利用互斥量来保护一个临界区pthread_mutex_t a_mutex=PTHREAD_MUTEX_INITIALIZER;pthread_mutex_lock(&a_mutex) /*锁定互斥量a_mutex*//*临界区资源*/pthread_mutex_unlock(&a_mutex) /*解除互斥量a_mutex的锁定*/(3)销毁互斥量Int rc=pthread_mutex_destory(&a_mutex) /*销毁互斥量a_mutex*/2、用条件变量同步线程(实现真正的同步)条件变量是利用线程间共享的全局变量进行同步的一种机制,主要包括两个动作:一个线程等待"条件变量的条件成立"而挂起;另一个线程使"条件成立"(给出条件成立信号)。
linux 文件同步 方法
inux 文件同步 方法
在Linux系统中,有多种方法可以实现文件的同步。以下是几种常见的方法:
1. rsync命令:rsync是一个强大的文件同步工具,可以在本地或远程主机之间进行文件同 步。它可以通过SSH协议进行安全的文件传输,并且只会传输已更改的部分文件,从而提高 传输效率。使用rsync命令可以通过指定源文件和目标文件的路径来进行文件同步。
无论使用哪种方法,都需要根据实际需求和网络环境来选择合适的文件同步方式。同时 ,需要注意文件权限和安全性,确保文件在传输和同步过程中的完整性和保密性。
2. scp命令:scp是基于SSH协议的文件传输工具,可以在本地和远程主机之间进行文件 复制和同步。使用scp命令可以通过指定源文件和目标文件的路径来进行文件同步。
inux 文件同步 方法
3. FTP或SFTP:FTP(文件传输协议)和SFTP(SSH文件传输协议)是常用的文件传输 协议,可以使用专门的FTP客户端或SFTP客户端在本地和远程主机之间进行文件同步。通过 连接到远程主机,可以上传或下载文件来实现同步。
linux中的同步机制
linux中的同步机制Linux中的同步机制在Linux操作系统中,同步机制是一种重要的机制,用于控制并发访问共享资源的顺序和互斥。
它确保多个进程或线程能够有序地访问共享资源,避免数据竞争和不一致的结果。
本文将介绍Linux中常用的同步机制,包括互斥锁、条件变量、信号量和屏障等。
一、互斥锁(Mutex)互斥锁是一种最常见的同步机制,用于保护共享资源的访问。
在互斥锁的帮助下,只有一个进程或线程能够获得锁,其他进程或线程需要等待锁的释放。
Linux提供了多种互斥锁的实现,如pthread_mutex_t和std::mutex等。
使用互斥锁需要注意避免死锁和竞态条件等问题。
二、条件变量(Condition Variable)条件变量是一种用于线程间通信的同步机制,它允许线程在满足特定条件之前等待,从而避免了忙等待的问题。
在Linux中,条件变量通常与互斥锁一起使用。
当某个线程发现条件不满足时,它可以调用条件变量的等待函数将自己阻塞,直到其他线程满足条件并发出信号,唤醒等待的线程。
三、信号量(Semaphore)信号量是一种用于控制并发访问的同步机制,它可以实现对资源的计数和管理。
Linux提供了两种类型的信号量:二进制信号量和计数信号量。
二进制信号量只有两种状态(0和1),用于互斥访问共享资源;计数信号量可以有多个状态,用于限制并发访问的数量。
通过使用信号量,可以实现进程或线程之间的同步和互斥。
四、屏障(Barrier)屏障是一种用于线程同步的机制,它在多个线程到达指定点之前将它们阻塞,直到所有线程都到达后才继续执行。
屏障可以用于并行计算中的阶段同步,确保每个阶段的计算完成后再进行下一阶段的计算。
在Linux中,可以使用pthread_barrier_t来创建和操作屏障。
五、读写锁(ReadWrite Lock)读写锁是一种特殊的锁机制,用于在读操作和写操作之间提供更好的并发性。
读写锁允许多个线程同时读取共享资源,但只允许一个线程进行写操作。
linux和windows通用的多线程方法
linux和windows通用的多线程方法
多线程是一种在计算机程序中处理多个相似或相关的任务的技术。
无论是在Linux还是Windows中,多线程的实现都是类似的。
以下是一些通用的多线程方法:
1. 创建线程:使用线程库中提供的函数,例如在Linux中使用pthread_create(),在Windows中使用CreateThread()。
2. 同步线程:使用同步机制来保护共享资源,例如在Linux中使用pthread_mutex_lock()和pthread_mutex_unlock(),在Windows 中使用CriticalSection。
3. 线程间通信:使用消息传递或共享内存等机制来实现线程间通信。
在Linux中,可以使用管道、共享内存和信号量等。
在Windows 中,可以使用命名管道和邮槽等。
4. 线程池:创建一个线程池来管理多个线程,这样可以避免频繁地创建和销毁线程,提高效率。
5. 轮询:使用循环不断地检查线程是否完成任务,从而避免阻塞主线程。
总的来说,多线程在Linux和Windows中的实现都是类似的,只要掌握了基本的多线程概念和方法,就可以在两个操作系统中进行开发。
多线程同步与互斥 方法
多线程同步与互斥方法
多线程同步和互斥是为了保证多个线程能够安全地访问共享资源而采取的措施。
下面是几种常见的多线程同步与互斥的方法:
1. 锁(lock):通过加锁的方式来保护临界区,只有获得锁的线程才能进入临界区执行代码,其他线程需要等待锁的释放。
常见的锁包括互斥锁(mutex)和读写锁(read-write lock)。
2. 信号量(semaphore):允许多个线程同时访问某个资源,但要限制同时访问的线程数量,通过信号量进行计数来实现。
3. 条件变量(condition variable):允许线程在某个条件满足时等待,直到其他线程发出信号通知它们继续执行。
4. 互斥量(mutex):一种特殊的锁,用于确保某段代码只能被一个线程执行,其他线程需要等待。
5. 读写锁(read-write lock):允许多个线程同时读取共享资源,但只允许一个线程写入共享资源。
6. 自旋锁(spin lock):不会引起线程的阻塞,在尝试获取锁时,会一直处于循环中直到获取到锁为止。
7. 可重入锁(reentrant lock):允许同一线程多次获取同一个锁而不会发生死锁。
以上方法都是为了解决多线程之间的冲突和竞争条件问题,保证线程安全和数据一致性。
根据具体的场景和需求,选择适合的同步与互斥方法可以提高多线程程序的性能和正确性。
多线程同步的四种方式(史上最详细+用例)
多线程同步的四种⽅式(史上最详细+⽤例)多线程同步的四种⽅式对于多线程程序来说,同步是指在⼀定的时间内只允许某⼀个线程来访问某个资源。
⽽在此时间内,不允许其他的线程访问该资源。
可以通过互斥锁(Mutex)、条件变量(condition variable)、读写锁(reader-writer lock)、信号量(semaphore)来同步资源。
1. 互斥锁(Mutex)互斥量是最简单的同步机制,即互斥锁。
多个进程(线程)均可以访问到⼀个互斥量,通过对互斥量加锁,从⽽来保护⼀个临界区,防⽌其它进程(线程)同时进⼊临界区,保护临界资源互斥访问。
互斥锁需要满⾜三个条件:互斥不同线程的临界区没有重叠⽆死锁如果⼀个线程正在尝试获得⼀个锁,那么总会成功地获得这个锁。
若线程A调⽤lock()但是⽆法获得锁,则⼀定存在其他线程正在⽆穷次地执⾏临界区。
⽆饥饿每⼀个试图获得锁的线程最终都能成功。
#include <stdio.h>#include <stdlib.h>#include <pthread.h>void *function(void *arg);pthread_mutex_t mutex;int counter = 0;int main(int argc, char *argv[]){int rc1,rc2;char *str1="hello";char *str2="world";pthread_t thread1,thread2;pthread_mutex_init(&mutex,NULL);if((rc1 = pthread_create(&thread1,NULL,function,str1))){fprintf(stdout,"thread 1 create failed: %d\n",rc1);}if(rc2=pthread_create(&thread2,NULL,function,str2)){fprintf(stdout,"thread 2 create failed: %d\n",rc2);}pthread_join(thread1,NULL);pthread_join(thread2,NULL);return 0;}void *function(void *arg){char *m;m = (char *)arg;pthread_mutex_lock(&mutex);while(*m != '\0'){printf("%c",*m);fflush(stdout);m++;sleep(1);}printf("\n");pthread_mutex_unlock(&mutex);}2. 条件变量(condition variable)⽣产者消费者问题:每次⽣产⼀个商品,发⼀个信号,告诉消费者“我⽣产商品了,快来消费”,消费者拿到⽣产者的条件变量后每次消费两个商品,然后发出信号“我消费了商品,你可以⽣产了”--_--(发的这个信号是⼀个条件变量,通过发送这个信号可以唤醒阻塞的线程,收到信号后,不满⾜需求也会继续阻塞)为了防⽌竞争,条件变量的使⽤总是和⼀个互斥锁结合在⼀起;条件变量是线程的另⼀种同步机制,它和互斥量是⼀起使⽤的。
linux线程间同步和互斥的方法
linux线程间同步和互斥的方法随着计算机技术的飞速发展,多线程应用已经变得越来越普遍。
在Linux操作系统中,多线程是一种强大的工具,它允许程序同时执行多个任务,从而提高系统的并发性和效率。
然而,多线程应用也带来了一些挑战,如线程间的同步和互斥问题。
本文将介绍Linux线程间同步和互斥的方法。
一、互斥(Mutex)互斥是最基本的同步机制之一,用于保护共享资源,防止多个线程同时访问同一资源而造成数据混乱。
在Linux中,可以使用pthread_mutex_t类型来创建互斥锁。
使用pthread_mutex_lock()函数来锁定互斥锁,确保同一时刻只有一个线程可以访问被保护的资源;使用pthread_mutex_unlock()函数来解锁互斥锁,允许其他线程访问该资源。
二、条件变量(ConditionVariable)条件变量是一种更复杂的同步机制,它允许一个或多个线程在满足某个条件时被唤醒。
在Linux中,可以使用pthread_cond_t类型来创建条件变量。
线程可以通过pthread_cond_wait()函数进入等待状态,直到条件满足时被唤醒。
使用pthread_cond_signal()或pthread_cond_broadcast()函数来通知其他等待的线程。
三、读写锁(Read-WriteLock)读写锁是一种更高效的同步机制,它允许多个读线程同时访问共享资源,但在写操作时只允许一个写线程访问。
在Linux中,可以使用pthread_rwlock_t类型来创建读写锁。
读线程可以同时获取读锁,而写线程必须获取写锁。
当写线程释放写锁时,读线程可以再次获取读锁。
这种机制可以提高并发性能,降低资源争用的开销。
四、信号量(Semaphore)信号量是一种用于控制并发访问的计数器。
它通常用于计数有限的资源数量,如文件描述符或磁盘空间。
在Linux中,可以使用sem_t 类型来创建信号量。
使用sem_wait()函数来减少信号量的值,表示消耗了一个资源;使用sem_post()函数来增加信号量的值,表示释放了一个资源。
LinuxC实现多线程同步的四种方式(超级详细)
LinuxC实现多线程同步的四种方式(超级详细)背景问题:在特定的应用场景下,多线程不进行同步会造成什么问题?通过多线程模拟多窗口售票为例:#include <iostream>#include<pthread.h>#include<stdio.h>#include<stdlib.h>#include<string.h>#include<unistd.h>using namespace std;int ticket_sum=20;void *sell_ticket(void *arg){for(int i=0; i<20; i ){if(ticket_sum>0){sleep(1);cout<<'sell the '<<20-ticket_sum1<<'th'<<endl;ticket_sum--;}}return 0;}int main(){int flag;pthread_t tids[4];for(int i=0; i<4; i ){flag=pthread_create(&tids[i],NULL,&s ell_ticket,NULL);if(flag){cout<<'pthread create error ,flag='<<flag<<endl;return flag;}}sleep(20);void *ans;for(int i=0; i<4; i ){flag=pthread_join(tids[i],&ans);if(flag){cout<<'tid='<<tids[i]<<'join erro flag='<<flag<<endl;return flag;}cout<<'ans='<<ans<<endl;}return 0;}分析:总票数只有20张,却卖出了23张,是非常明显的超买超卖问题,而造成这个问题的根本原因就是同时发生的各个线程都可以对ticket_sum进行读取和写入!ps:1.在并发情况下,指令执行的先后顺序由内核决定,同一个线程内部,指令按照先后顺序执行,但不同线程之间的指令很难说清楚是哪一个先执行,如果运行的结果依赖于不同线程执行的先后的话,那么就会形成竞争条件,在这样的情况下,计算的结果很难预知,所以应该尽量避免竞争条件的形成2.最常见的解决竞争条件的方法是将原先分离的两个指令构成一个不可分割的原子操作,而其他任务不能插入到原子操作中!3.对多线程来说,同步指的是在一定时间内只允许某一个线程访问某个资源,而在此时间内,不允许其他线程访问该资源!4.线程同步的常见方法:互斥锁,条件变量,读写锁,信号量一.互斥锁本质就是一个特殊的全局变量,拥有lock和unlock两种状态,unlock的互斥锁可以由某个线程获得,一旦获得,这个互斥锁会锁上变成lock状态,此后只有该线程由权力打开该锁,其他线程想要获得互斥锁,必须得到互斥锁再次被打开之后采用互斥锁来同步资源:#include <iostream>#include<pthread.h>#include<stdio.h>#include<stdlib.h>#include<string.h>#include<unistd.h>using namespace std;int ticket_sum=20;pthread_mutex_tmutex_x=PTHREAD_MUTEX_INITIALIZER;//static init mutexvoid *sell_ticket(void *arg){for(int i=0; i<20; i ){pthread_mutex_lock(&mutex_x);//atomic opreation through mutex lockif(ticket_sum>0){sleep(1);cout<<'sell the '<<20-ticket_sum1<<'th'<<endl;ticket_sum--;}pthread_mutex_unlock(&mutex_x);return 0;}int main(){int flag;pthread_t tids[4];for(int i=0; i<4; i ){flag=pthread_create(&tids[i],NULL,&s ell_ticket,NULL);if(flag){cout<<'pthread create error ,flag='<<flag<<endl;return flag;}}sleep(20);void *ans;for(int i=0; i<4; i ){flag=pthread_join(tids[i],&ans);if(flag){cout<<'tid='<<tids[i]<<'join erro flag='<<flag<<endl;return flag;}cout<<'ans='<<ans<<endl;return 0;}分析:通过为售票的核心代码段加互斥锁使得其变成了一个原子性操作!不会被其他线程影响1.互斥锁的初始化互斥锁的初始化分为静态初始化和动态初始化静态:pthread_mutex_t mutex_x=PTHREAD_MUTEX_INITIALIZER;//static init mutex 动态:pthread_mutex_init函数ps:互斥锁静态初始化和动态初始化的区别?待补充。
linux多线程的实现方式
linux多线程的实现方式Linux是一种支持多线程的操作系统,它提供了许多不同的方式来实现多线程。
本文将介绍Linux多线程的几种实现方式。
1. 线程库Linux提供了线程库,包括POSIX线程库(Pthreads)和LinuxThreads。
Pthreads是一种由IEEE组织制定的标准线程库,它提供了一组线程API,可以在不同的操作系统上实现。
LinuxThreads 是Linux内核提供的线程实现,不同于Pthreads,它不是标准线程库,但具有更好的性能。
使用线程库可以方便地创建和管理线程,线程库提供了许多API 函数,例如pthread_create(),pthread_join(),pthread_mutex_lock()等,可以在程序中使用这些API函数来实现多线程。
2. 多进程在Linux中,多进程也是一种实现多线程的方式。
每个进程都可以有自己的线程,进程之间也可以通过IPC机制进行通信。
多进程的优点是可以更好地利用多核CPU,因为每个进程都可以在不同的CPU核心上运行。
但是,多进程的开销比多线程大,因为每个进程都需要拥有自己的地址空间和运行环境。
3. 线程池线程池是一种常见的多线程实现方式。
线程池中有多个线程可以处理任务,任务可以通过任务队列来进行分发。
当任务到达时,线程池中的线程会从任务队列中取出任务并处理。
线程池的优点是可以重复利用线程,减少创建和销毁线程的开销。
线程池还可以控制线程的数量,避免过多线程导致的性能下降。
4. 协程协程是一种轻量级线程,它不需要操作系统的支持,可以在用户空间中实现。
协程基于线程,但是不需要线程上下文切换的开销,因为协程可以在同一个线程内进行切换。
协程的优点是可以更好地利用CPU,因为不需要线程上下文切换的开销。
协程还可以更好地控制并发性,因为协程的切换是由程序员控制的。
总结Linux提供了多种实现多线程的方式,每种方式都有其优点和缺点。
在选择多线程实现方式时,需要考虑到应用程序的特点和需求,选择最适合的实现方式。
linux 文件同步方法
在Linux系统中,有多种方法可以实现文件同步。
以下是一些常见的文件同步方法:
rsync命令:
rsync 是一个强大的文件同步工具,可以在本地和远程系统之间同步文件和目录。
以下是一个简单的使用示例:
rsync -avz /来源目录/ /目标目录/
这个命令将会以递归方式同步两个目录,并保持它们之间的文件一致性。
你可以根据需要调整选项,例如增加--delete 选项以删除目标目录中多余的文件。
scp命令:
scp 是用于在本地系统和远程系统之间安全复制文件的命令。
它基于SSH协议,可以使用如下命令:
scp /本地路径/ 用户@远程主机:/目标路径/
这将从本地复制文件到远程主机。
Unison工具:
Unison 是一个文件同步工具,可以在本地和远程系统之间双向同步文件。
它能够检测文件的更改并确保两边的文件保持同步。
unison /本地路径/ ssh://远程主机/目标路径/
Unison 的一个优势是它可以处理双向同步,确保两边的文件都是最新的。
使用网络共享:
如果你的系统在同一网络中,你可以设置一个网络共享,例如使用NFS(Network File System)或Samba。
这允许多个系统在网络上共享文件夹,并确保它们之间的同步。
这些方法中的选择取决于你的具体需求和环境。
rsync 是一个非常灵活和广泛使用的工具,而scp 则适用于简单的远程复制。
Unison 提供了双向同步的功能,而网络共享则适用于需要实时共享文件的多个系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三种Linux中的常用多线程同步方式浅析
嵌入式linux中文站给大家介绍三种Linux中的常用多线程同步方式:互斥量,条件变量,信号量。
1 互斥锁
互斥锁用来保证一段时间内只有一个线程在执行一段代码。
必要性显而易见:假设各个线程向同一个文件顺序写入数据,最后得到的结果一定是灾难性的。
先看下面一段代码。
这是一个读/写程序,它们公用一个缓冲区,并且假定一个缓冲区只能保存一条信息。
即缓冲区只有两个状态:有信息或没有信息。
void reader_function (void );
void writer_funcTIon (void );
char buffer;
int buffer_has_item=0;
pthread_mutex_t mutex;
struct TImespec delay;
void main (void ){
pthread_t reader;
/* 定义延迟时间*/
_sec = 2;
_nec = 0;
/* 用默认属性初始化一个互斥锁对象*/
pthread_mutex_init (
pthread_create(
writer_funcTIon();
}
void writer_function (void){
while(1){。