全国名校高考数学经典复习题汇编(附详解)专题:可行域

合集下载

全国名校高考数学优质试题汇编(附详解)高三数学解答题训练6

全国名校高考数学优质试题汇编(附详解)高三数学解答题训练6

1.(本小题满分12分)(优质试题·宝鸡模拟)已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2).(1)求证:{a n +1+2a n }是等比数列;(2)求数列{a n }的通项公式.【解】 (1)证明:∵a n +1=a n +6a n -1(n ≥2),∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2).又a 1=5,a 2=5,∴a 2+2a 1=15,∴a n +2a n -1≠0(n ≥2),∴a n +1+2a n a n +2a n -1=3(n ≥2), ∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列.(2)由(1)得a n +1+2a n =15×3n -1=5×3n ,则a n +1=-2a n +5×3n ,∴a n +1-3n +1=-2(a n -3n ).又∵a 1-3=2,∴a n -3n ≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列.∴a n -3n =2×(-2)n -1,即a n =2×(-2)n -1+3n (n ∈N *).2.某商场的20件不同的商品中有34的商品是进口的,其余是国产的.在进口的商品中高端商品的比例为13,在国产的商品中高端商品的比例为35.(1)若从这20件商品中按分层(分三层:进口高端与进口非高端及国产)抽样的方法抽取4件,求抽取进口高端商品的件数;(2)在该批商品中随机抽取3件,求恰有1件是进口高端商品且国产高端商品少于2件的概率;(3)若销售1件国产高端商品获利80元,国产非高端商品获利50元,若销售3件国产商品,共获利ξ元,求ξ的分布列及数学期望Eξ. 解:(1)由题意得,进口的商品有15件,其中5件是高端商品,10件是非高端商品,国产的商品有5件,其中3件是高端商品,2件是非高端商品,若从这20件商品中按分层抽样的方法抽取4件,则抽取进口高端商品的件数为1.(2)设事件B 为“在该批商品中随机抽取3件,恰有1件是进口高端商品且国产高端商品少于2件”,事件A 1为“抽取的3件商品中,有1件进口高端商品,0件国产高端商品”,事件A 2为“抽取的3件商品中,有1件进口高端商品,1件国产高端商品”,则P (B )=P (A 1)+P (A 2)=C 15C 212C 320+C 15C 13C 112C 320=55190+30190=1738, 所以在该批商品中随机抽取3件,恰有1件是进口高端商品且国产高端商品少于2件的概率是1738.(3)由于这批商品中仅有5件国产商品,其中3件是高端商品,2件是非高端商品,那么,当销售3件国产商品时,可能有1件高端商品,2件非高端商品,或2件高端商品,1件非高端商品,或3件都是高端商品,于是ξ的可能取值为180,210,240.P (ξ=180)=C 13C 22C 35=310,P (ξ=210)=C 23C 12C 35=610=35, P (ξ=240)=C 33C 35=110. 所以ξ的分布列为故E (ξ)=180×310+210×35+240×110=204.3.在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AD ∥BC ,BC =2AD =4,AB =CD =10.(1)证明:BD ⊥平面P AC ;(2)若二面角A -PC -D 的大小为45°,求AP 的值.解:(1)证明:设O 为AC 与BD 的交点,作DE ⊥BC 于点E .由四边形ABCD 是等腰梯形得CE =BC -AD 2=1, DE =DC 2-CE 2=3,所以BE =DE ,从而得∠DBC =∠BCA =45°.所以∠BOC =90°,即AC ⊥BD .由P A ⊥平面ABCD ,得P A ⊥BD ,又因为P A ∩AC =A ,所以BD ⊥平面P AC .(2)法一:作OH ⊥PC 于点H ,连接DH .由(1)知DO ⊥平面P AC ,故DO ⊥PC .所以PC ⊥平面DOH ,从而得PC ⊥DH .故∠DHO 是二面角A -PC -D 的平面角,所以∠DHO =45°.由∠DBC =∠BCA =45°,BC =4,得OC =2 2.同理可得OA =2,从而得AC =3 2.设P A =x ,则PC =x 2+18.在Rt △DOH 中,由DO =2,∠DHO =45°,得OH = 2.在Rt △P AC 中,由P A PC =OH OC ,可得x x 2+18=222, 解得x =6,即AP = 6.法二:由(1)知AC ⊥BD .以O 为原点,OB ,OC 所在直线为x 轴,y 轴,建立空间直角坐标系O -xyz ,如图所示.由题意知各点坐标如下:A (0,-2,0),B (22,0,0),C (0,22,0),D (-2,0,0).由P A ⊥平面ABCD ,得P A ∥z 轴,故设点P (0,-2,t )(t >0).设向量m =(x ,y ,z )为平面PDC 的法向量,由CD →=(-2,-22,0),PD →=(-2,2,-t ),m ·CD →=m ·PD →=0,得⎩⎪⎨⎪⎧ -2x -22y =0,-2x +2y -tz =0.令y =1,得m =⎝ ⎛⎭⎪⎫-2,1,32t . 又平面P AC 的法向量n =(1,0,0),于是|cos 〈m ,n 〉|=|m·n ||m |·|n |=25+18t 2=22,解得t =6,即AP = 6.4.(优质试题·吉林省吉林市模拟)在极坐标系中,已知圆C 的圆心C ⎝ ⎛⎭⎪⎫2,π4,半径r = 3 .(1)求圆C 的极坐标方程;(2)若α∈⎣⎢⎡⎭⎪⎫0,π4,直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos α,y =2+t sin α(t 为参数),直线l 交圆C 于A 、B 两点,求弦长|AB |的取值范围.10.解 (1)设圆上任意一点坐标(ρ,θ),由余弦定理得:(3)2=ρ2+(2)2-2ρ×2×cos ⎝ ⎛⎭⎪⎫θ-π4,整理得:ρ2-2ρ(cos θ+sin θ)-1=0.(2)∵x =ρcos θ,y =ρsin θ,∴ x 2+y 2-2x -2y -1=0, 将直线的参数方程代入到圆的直角坐标方程中得:(2+t cos α)2+(2+t sin α)2 -2(2+t cos α)-2(2+t sin α)-1=0, 整理得:t 2+(2cos α+2sin α)t -1=0 ,∴t 1+t 2=-2cos α-2sin α,t 1·t 2=-1,∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2 =8+4sin 2α , ∵α∈⎣⎢⎡⎭⎪⎫0,π4,∴2α∈⎣⎢⎡⎭⎪⎫0,π2,∴|AB |∈[22,23).。

历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编解不等式1.(2024∙全国新Ⅰ卷∙高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-2.(2024∙上海∙高考真题)已知,x ∈R 则不等式2230x x --<的解集为 .3.(2023∙全国新Ⅰ卷∙高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}24.(2020∙全国∙高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ( ) A .{4,1}- B .{1,5} C .{3,5}D .{1,3}基本不等式1.(2024∙北京∙高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 2.(2021∙全国乙卷∙高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+D .4ln ln y x x=+3.(2021∙全国新Ⅰ卷∙高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13B .12C .9D .64.(2020∙全国∙高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .32参考答案解不等式1.(2024∙全国新Ⅰ卷∙高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3}C .{3,1,0}--D .{1,0,2}-【答案】A【详细分析】化简集合A ,由交集的概念即可得解.【答案详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-. 故选:A.2.(2024∙上海∙高考真题)已知,x ∈R 则不等式2230x x --<的解集为 . 【答案】{}|13x x -<<【详细分析】求出方程2230x x --=的解后可求不等式的解集. 【答案详解】方程2230x x --=的解为=1x -或3x =, 故不等式2230x x --<的解集为{}|13x x -<<, 故答案为:{}|13x x -<<.3.(2023∙全国新Ⅰ卷∙高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C【详细分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出. 方法二:将集合M 中的元素逐个代入不等式验证,即可解出.【答案详解】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-. 故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .4.(2020∙全国∙高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ( ) A .{4,1}- B .{1,5} C .{3,5} D .{1,3}【答案】D【详细分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ⋂,得到结果. 【答案详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B = , 故选:D.【名师点评】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.基本不等式1.(2024∙北京∙高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 【答案】B【详细分析】根据指数函数和对数函数的单调性结合基本不等式详细分析判断AB ;举例判断CD 即可. 【答案详解】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB :可得121222222x xx x ++>=,即12122202x x y y ++>>, 根据函数2log y x =是增函数,所以121212222log log 222x x y y x x+++>=,故B 正确,A 错误;对于选项D :例如120,1x x ==,则121,2y y ==, 可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故D 错误; 对于选项C :例如121,2x x =-=-,则1211,24y y ==, 可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故C 错误, 故选:B.2.(2021∙全国乙卷∙高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+ D .4ln ln y x x=+【答案】C【详细分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意.【答案详解】对于A ,()2224133y x x x =++=++≥,当且仅当=1x -时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242x x xx y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞ ,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意. 故选:C .【名师点评】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.3.(2021∙全国新Ⅰ卷∙高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C【详细分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【答案详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C . 【名师点评】4.(2020∙全国∙高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .32【答案】B【详细分析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab值,根据2c =等式,即可求得答案. 【答案详解】 2222:1(0,0)x y C a b a b -=>> ∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于D ,E 两点 不妨设D 为在第一象限,E 在第四象限 联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b -∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =≥==当且仅当a b ==∴C 的焦距的最小值:8故选:B.【名师点评】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了详细分析能力和计算能力,属于中档题.。

高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析1.已知实数、满足不等式组,则的最大值是____________.【答案】20【解析】作出不等式组表示的可行域,如图四边形内部(含边界),作直线,平移直线,当过点时,取得最大值20.【考点】线性规划.2.设变量x,y满足约束条件,则的最大值是()A.7B.8C.9D.10【答案】C【解析】画出可行域及直线,如图所示.平移直线,当其经过点时,.选.【考点】简单线性规划3.已知满足不等式设,则的最大值与最小值的差为()A.4B.3C.2D.1【答案】A【解析】作出不等式组所表示的区域,,由图可知,在点取得最小值,在点取得最大值,故的最大值与最小值的差为.【考点】线性规划.4.设变量x、y满足则2x+3y的最大值是________.【答案】55【解析】由得A(5,15),且A为最大解,∴z=2×5+3×15=55max5.已知实数x,y满足则r的最小值为________.【答案】【解析】作出约束条件表示的可行域,如图中的三角形,三角形内(包括边)到圆心的最短距离即为r的值,所以r的最小值为圆心到直线y=x的距离,所以r的最小值为.6.设x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最小值为2,则ab的最大值为 ().A.1B.C.D.【答案】D【解析】由z=ax+by(a>0,b>0)得y=-x+,可知斜率为-<0,作出可行域如图,由图象可知当直线y=-x+经过点D时,直线y=-x+的截距最小,此时z最小为2,由得即D(2,3),代入直线ax+by=2得2a+3b=2,又2=2a+3b≥2,所以ab≤,当且仅当2a=3b=1,即a=,b=时取等号,所以ab的最大值为.7.已知O是坐标原点,点,若点为平面区域上的一个动点,则|AM|的最小值是()A.B.C.D.【答案】A【解析】作出表示的平面区域如图所示,;点A到直线的距离为,选A.【考点】线性规划.8.已知、满足约束条件,则的最小值为()A.B.C.D.【答案】B【解析】作出不等式组所表示的可行域如下图所示,联立,得,作直线,则为直线在轴上的截距的倍,当直线经过可行域上的点时,直线在轴上的截距最小,此时取最小值,即,故选B.【考点】线性规划9.已知实数x,y满足,则r的最小值为()A.B.1C.D.【答案】A【解析】在平面直角坐标系中画出不等式组表示的平面区域D,由于圆经过平面区域D,因此其半径r的最小值为圆心(-1,1)到直线y=x的距离,即.rmin【考点】简单线性规划.10.设变量x,y满足约束条件,则目标函数的最大值为( )A.2B.3C.4D.5【答案】D【解析】画出可行域及直线(如图),平移直线,当其经过时,最大,故选D.【考点】简单线性规划的应用11.设满足条件的点构成的平面区域的面积为,满足条件的点构成的平面区域的面积为(其中,分别表示不大于x,y的最大整数,例如,),给出下列结论:①点在直线左上方的区域内;②点在直线左下方的区域内;③;④.其中所有正确结论的序号是___________.【答案】①③【解析】.如下图所示,当点在A区域时,;当点在B区域时,;当点在C区域时,;当点在D区域时,;当点在E区域时,.所以.,所以点在直线右上方的区域内.所以只有①③正确.【考点】1、新定义;2、平面区域.12.设满足约束条件,则目标函数的最大值是()A.3B.4C.5D.6【答案】D【解析】由约束条件可得区域图像如图所示:则目标函数在点取得最大值6.【考点】线性规划.13.已知非负实数满足,则关于的一元二次方程有实根的概率是()A.B.C.D.【答案】A【解析】关于的一元二次方程有实根,则,又为非负实数,所以,从而.由作出平面区域:由图知,表示非负实数满足的平面区域;表示其中的平面区域. 又,.所以所求概率为.【考点】平面区域、几何概型14.已知约束条件,若目标函数恰好在点处取得最大值,则的取值范围为()A.B.C.D.【答案】A【解析】作不等式组所表示的可行域如图所示,易知点为直线和直线的交点,由于直线仅在点处取得最大值,而为直线在轴上的截距,直线的斜率为,结合图象知,直线的斜率满足,即,解得,故选A.【考点】线性规划15.已知,若向区域上随机投一点P,则点P落入区域A的概率为()A.B.C.D.【答案】A.【解析】因为区域内的点所围的面积是18个单位.而集合A中的点所围成的面积.所以向区域上随机投一点P,则点P落入区域A的概率为.本题是通过集合的形式考察线性规划的知识点,涉及几何概型问题.关键是对集合的理解.【考点】1.集合的知识.2.线性规划问题.3.几何概型问题.16.若、满足约束条件,则目标函数的最大值是 .【答案】.【解析】作不等式组所表示的可行域如下图所示,联立,解得,即点,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,直线在轴上的截距最大,此时取最大值,即.【考点】线性规划17.定义在R上的函数f(x)满足f(4)=1,为函数f(x)的导函数,已知的图像如图所示,若两个正数a,b满足f (2a+b)<1,则的取值范围是()A.B.C.D.【答案】A【解析】由函数的图像可知,时,.时,.所以函数在上单调递减,在上单调递增. 是两个正数,.又f(4)=1,.故.以为横轴,为纵轴,作出由不等式组表示的平面区域.则表示点到点的斜率.由下图可知,点在黄色区域内,则易知,,所以.故选A.【考点】线性规划、斜率公式、导函数与单调性18.在可行域内任取一点,其规则如流程图所示,则能输出数对()的概率是()A.B.C.D.【答案】B【解析】画出可行域,如图所示,正方形内部面积为2,圆内部面积为,由几何概型的面积公式=.【考点】1、二元一次不等式组表示的平面区域;2、圆的方程;3、几何概型.19.已知函数的两个极值点分别为,且,,点表示的平面区域为,若函数的图像上存在区域内的点,则实数的取值范围是()A.B.C.D.【答案】A【解析】的两根为,且,,故有,即,作出区域,如图阴影部分,可得,所以.【考点】1.函数的极值;2.线性规划.20.设满足若目标函数的最大值为14,则=()A.1B.2C.23D.【答案】B【解析】题中约束条件的可行域如下图所示,易知目标函数在图中A点取得最大值,所以,故选B.【考点】1.线性规划求参数的值.21.若函数图像上的任意一点的坐标满足条件,则称函数具有性质,那么下列函数中具有性质的是()A.B.C.D.【答案】C【解析】表示的区域为A选项是的切线,经过原点,经过B区域;B选项经过原点,经过B区域,也是其切线;C选项,在和之间,所以其只经过A区域;D选项,经过B区域.所以最终选C.【考点】1.数形结合思想应用;2.函数的切线方程求解.22.已知实数满足:则的取值范围是___________.【答案】.【解析】实数满足的平面区域如图阴影部分所示,令,即,则直线分别通过点时在轴上的截距最小和最大,即最小值为,最大值为1,则,所以,则.【考点】线性规划.23.抛物线在处的切线与两坐标轴围成三角形区域为(包含三角形内部与边界).若点是区域内的任意一点,则的取值范围是__________.【答案】【解析】由得,所以,,抛物线在处的切线方程为.令,则.画出可行域如图,所以当直线过点时,.过点时,.故答案为.【考点】导数的几何意义,直线方程,简单线性规划的应用.24.设满足约束条件,若目标函数的最大值为,则.【答案】2【解析】不等式组表示的平面区域如图,解方程组得,由,则要目标函数取得最大值10,必有直线过,则,解得.【考点】线性规划,目标函数的最值.25.设的两个极值点分别是若(-1,0),则2a+b的取值范围是()A.(1,7)B.(2,7)C.(1,5)D.(2,5)【答案】B.【解析】由可行域知故选B.【考点】1.函数极值与导数;2.一元二次方程根的分布问题.26.已知变量x,y满足则的值范围是( )A.B.C.D.【答案】A【解析】画出约束条件所表示的平面区域可知,该区域是由点所围成的三角形区域(包括边界),,记点,得,,所以的取值范围是.【考点】线性规划.27.设满足约束条件,若目标函数的最大值为8,则的最小值为_______。

2023年全国各地高考数学真题+详解分类汇编【第1章 不等式合集】高清解析版

2023年全国各地高考数学真题+详解分类汇编【第1章 不等式合集】高清解析版

第1章集合与不等式1(2023•乙卷)设集合U=R,集合M={x|x<1},N={x|-1<x<2},则{x|x≥2}=()A.∁U (M∪N) B.N∪∁UM C.∁U(M∩N) D.M∪∁U N【解析】:由题意:M∪N={x|x<2},又U=R,∴∁U(M∪N)={x|x≥2}.故选:A.2(2023•甲卷)设集合A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},U为整数集,则∁U(A⋃B)=()A.{x|x=3k,k∈Z}B.{x|x=3k-1,k∈Z}C.{x|x=3k-2,k∈Z}D.∅【解析】:∵A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},∴A∪B={x|x=3k+1或x=3k+2,k∈Z},又U为整数集,∴∁U(A⋃B)={x|x=3k,k∈Z}.故选:A.3(2023•甲卷)设全集U={1,2,3,4,5},集合M={1,4},N={2,5},则N∪∁U M=()A.{2,3,5}B.{1,3,4}C.{1,2,4,5}D.{2,3,4,5}【解析】:因为U={1,2,3,4,5},集合M={1,4},N={2,5},所以∁U M={2,3,5},则N∪∁U M={2,3,5}.故选:A.4(2023•乙卷)设全集U={0,1,2,4,6,8},集合M={0,4,6},N={0,1,6},则M∪∁U N= ()A.{0,2,4,6,8}B.{0,1,4,6,8}C.{1,2,4,6,8}D.U【解析】:由于∁U N={2,4,8},所以M∪∁U N={0,2,4,6,8}.故选:A.5(2023•新高考Ⅰ)已知集合M={-2,-1,0,1,2},N={x|x2-x-6≥0},则M∩N=() A.{-2,-1,0,1} B.{0,1,2} C.{-2} D.{2}【解析】:∵x2-x-6≥0,∴(x-3)(x+2)≥0,∴x≥3或x≤-2,N=(-∞,-2]∪[3,+∞),则M∩N={-2}.故选:C.6(2023•天津)“a2=b2”是“a2+b2=2ab”的()A.充分不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】:a2=b2,即(a+b)(a-b)=0,解得a=-b或a=b,a2+b2=2ab,即(a-b)2=0,解得a=b,故“a2=b2”不能推出“a2+b2=2ab”,充分性不成立,“a2+b2=2ab”能推出“a2=b2”,必要性成立,故“a2=b2”是“a2+b2=2ab”的必要不充分条件.故选:B.7(2023•天津)已知集合U={1,2,3,4,5},A={1,3},B={1,2,4},则∁U B∪A=() A.{1,3,5} B.{1,3} C.{1,2,4} D.{1,2,4,5}【解析】:U={1,2,3,4,5},A={1,3},B={1,2,4},则∁U B={3,5},故∁U B∪A={1,3,5}.故选:A.8(2023•新高考Ⅱ)设集合A={0,-a},B={1,a-2,2a-2},若A⊆B,则a=() A.2 B.1 C.23D.-1【解析】:依题意,a-2=0或2a-2=0,当a-2=0时,解得a=2,此时A={0,-2},B={1,0,2},不符合题意;当2a-2=0时,解得a=1,此时A={0,-1},B={1,-1,0},符合题意.故选:B.9(2023•上海)已知P={1,2},Q={2,3},若M={x|x∈P,x∉Q},则M=()A.{1}B.{2}C.{3}D.{1,2,3}【解析】:∵P={1,2},Q={2,3},M={x|x∈P,x∉Q},∴M={1}.故选:A.10(2023•全国)集合A={-2,-1,0,1,2},B={2k|k∈A},则A∩B=()A.{0}B.{0,2}C.{-2,0}D.{-2,0,2}【解析】:因为集合A={-2,-1,0,1,2},B={2k|k∈A},所以B={-4,-2,0,2,4},则A∩B={-2,0,2}.故选:D.11(2023•上海)已知集合A={1,2},B={1,a},且A=B,则a=.【解析】:集合A={1,2},B={1,a},且A=B,则a=2.故答案为:2.12(2023•天津)若a=1.010.5,b=1.010.6,c=0.60.5,则()A.c>a>bB.c>b>aC.a>b>cD.b>a>c【解析】:y=1.01x,在R上单调递增,0.6>0.5,故1.010.6>1.010.5,所以b>a,y=x0.5,在[0,+∞)上单调递增,1.01>0.6,故1.010.5>0.60.5,即a>c,所以b>a>c.故选:D.13(2023•上海)已知正实数a、b满足a+4b=1,则ab的最大值为 .【解析】:正实数a、b满足a+4b=1,则ab=14×a⋅4b≤14×a+4b22=116,当且仅当a=12,b=18时等号成立.故答案为:116.第2章 复数1(2023•甲卷)若复数(a +i )(1-ai )=2,a ∈R ,则a =()A.-1B.0C.1D.2【解析】:因为复数(a +i )(1-ai )=2,所以2a +(1-a 2)i =2,a =221-a 2即 =0,解得a =1.故选:C .22+i 1(2023•乙卷)设z =+i 2+i5,则z=()A.1-2iB.1+2iC.2-iD.2+i【解析】:∵i 2=-1,i 5=i ,2+i1∴z =+i 2+i 5=2+i i=1-2i ,∴z=1+2i .故选:B .3(2023•乙卷)|2+i 2+2i 3|=()A.1B.2C.5D.5【解析】:由于|2+i 2+2i 3|=|1-2i |=12+(-2)2=5.故选:C .45(1+i 3)(2023•甲卷)(2+i )(2-i )=()A.-1B.1C.1-iD.1+i5(1+i 3)【解析】:(2+i )(2-i )=5(1-i )5=1-i .故选:C .5(2023•新高考Ⅱ)在复平面内,(1+3i )(3-i )对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解析】:(1+3i )(3-i )=3-i +9i +3=6+8i ,(1+3i )(3-i )对应的点的坐标为(6,8),位于第一象限.则在复平面内,故选:A .6(2023•新高考Ⅰ)已知z =21+-2i i,则z -z=()A.-iB.iC.0D.1【解析】:z =21+-2i i =21⋅1-i 1+i (1-i )2=21⋅(1+i )(1-i )=-21i ,则z =21i ,故z -z=-i .故选:A .7(2023•全国)已知(2+i )z=5+5i ,则|z |=()A.5B.10C.52D.55【解析】:由(2+i )z=5+5i ,得z =5+5i 2+i=(5+5i )(2-i )(2+i )(2-i )=15+5i 5=3+i ,则z =3-i ,|z |=32+(-1)2=10.故选:B .8(2023•上海)已知复数z =1-i (i 为虚数单位),则|1+iz |= .【解析】:∵z =1-i ,∴|1+iz |=|1+i (1-i )|=|2+i |=5.故答案为:5.9(2023•天津)已知i 是虚数单位,化简5+14i2+3i的结果为.【解析】:5+14i 2+3i =(5+14i )(2-3i )(2+3i )(2-3i )=52+13i13=4+i .故答案为:4+i .10(2023•上海)已知z 1,z 2∈C 且z 1=i z 2(i 为虚数单位),满足|z 1-1|=1,则|z 1-z 2|的取值范围为.【解析】:设z 1-1=cos θ+i sin θ,则z 1=1+cos θ+i sin θ,因为z 1=i •z 2,所以z 2=sin θ+i (cos θ+1),所以|z 1-z 2|=(cos θ-sin θ+1)2+(sin θ-cos θ-1)2=22sin θ-π4 -1 2=22sin θ-π4 -1 ,显然当sin θ-π4 =22时,原式取最小值0,当sin θ-π4=-1时,原式取最大值2+2,故|z 1-z 2|的取值范围为[0,2+2].故答案为:[0,2+2].。

全国名校高考数学经典复习题汇编(附详解)专题:诱导公式

全国名校高考数学经典复习题汇编(附详解)专题:诱导公式

全国名校高考数学经典复习题汇编(附详解)专题:诱导公式1.(全国名校·山东师大附中模拟)(tan10°-3)sin40°的值为( ) A .-1 B .0 C .1 D .2答案 A解析 (tan10°-3)·sin40°=(sin10°cos10°-sin60°cos60°)·sin40°=-sin50°cos10°·cos60°·sin40°=-2sin40°·cos40°cos10°=-sin80°cos10°=-1.2.(全国名校·广东珠海期末)已知tan (α+π5)=2,tan (β-4π5)=-3,则tan(α-β)=( )A .1B .-57C.57 D .-1答案 D解析 ∵t an(β-4π5)=-3,∴tan (β+π5)=-3.∵tan (α+π5)=2,∴tan (α-β)=tan [(α+π5)-(β+π5)]=tan (α+π5)-tan (β+π5)1+tan (α+π5)tan (β+π5)=2-(-3)1+2×(-3)=-1.故选D.3.(全国名校·湖南永州一模)已知sin (α+π6)+cos α=-33,则cos(π6-α)=( )A .-223B.223 C .-13D.13 答案 C解析 由sin (α+π6)+cos α=-33,得sin (α+π3)=-13,所以cos(π6-α)=cos[π2-(α+π3)]=sin (α+π3)=-13.4.(全国名校·山东,文)函数y =3sin2x +cos2x 的最小正周期为( ) A.π2 B.2π3 C .π D .2π答案 C解析 ∵y =3sin2x +cos2x =2(32sin2x +12cos2x)=2sin(2x +π6),∴T =2π2=π.故选C. 5.在△ABC 中,tanA +tanB +3=3tanAtanB ,则C 等于( ) A.π3 B.2π3 C.π6 D.π4答案 A解析 由已知得tanA +tanB =-3(1-tanAtanB), ∴tanA +tanB1-tanAtanB=-3,即tan(A +B)=- 3.又tanC =tan[π-(A +B)]=-tan(A +B)=3,0<C<π,∴C =π3.6.sin47°-sin17°cos30°cos17°=( )A .-32B .-12C.12D.32答案 C解析 sin47°=sin(30°+17°)=sin30°cos17°+cos30°sin17°,∴原式=sin30°cos17°cos17°=sin30°=12.7.(全国名校·河北冀州考试)(1+tan18°)(1+tan27°)的值是( ) A. 2 B. 3 C .2 D. 5答案 C解析 (1+tan18°)(1+tan27°)=1+tan18°+tan27°+tan18°tan27°=1+tan45°·(1-tan18°tan27°)+tan18°tan27°=2.8.(全国名校·课标全国Ⅰ,理)设α∈(0,π2),β∈(0,π2)且tan α=1+sin βcos β,则( )A .3α-β=π2B .3α+β=π2C .2α-β=π2D .2α+β=π2答案 C解析 ∵α,β∈(0,π2),∴-β∈(-π2,0),∴α-β∈(-π2,π2).∵tan α=1+sin βcos β,∴sin αcos α=1+sin βcos β. 即sin αcos β-cos αsin β=cos α. 化简得sin (α-β)=cos α.∵α∈(0,π2),∴cos α>0,sin (α-β)>0.∴α-β∈(0,π2),得α-β+α=π2,即2α-β=π2,故选C.9.(全国名校·湖北中学联考)4sin80°-cos10°sin10°=( )A. 3 B .- 3 C. 2 D .22-3答案 B 解析4sin80°-cos10°sin10°=4sin80°sin10°-cos10°sin10°=2sin20°-cos10°sin10°=2sin (30°-10°)-cos10°sin10°=- 3.故选B.10.(全国名校·四川自贡一诊)已知cos (α+2π3)=45,-π2<α<0,则sin (α+π3)+sin α=( )A .-435B .-335C.335D.435答案 A 解析 ∵cos (α+2π3)=45,-π2<α<0,∴cos (α+23π)=cos αcos 23π-sin αsin 23π=-12cos α-32sin α=45,∴32sin α+12cos α=-45.∴sin (α+π3)+sin α=32sin α+32cos α=3(32sin α+12cos α)=-435.故选A.11.(全国名校·湖南邵阳二联)若tan π12cos 5π12=sin 5π12-msin π12,则实数m 的值为( )A .2 3B. 3C .2D .3答案 A解析 由tan π12cos 5π12=sin 5π12-msin π12,得sin π12cos 5π12=sin 5π12cos π12-msin π12cos π12,∴12msinπ6=sin(5π12-π12)=sin π3,解得m =2 3. 12.(2013·课标全国Ⅱ,理)设θ为第二象限角,若tan (θ+π4)=12,则sin θ+cos θ=________.答案 -105解析 由tan (θ+π4)=1+tan θ1-tan θ=12,得tan θ=-13,即sin θ=-13cos θ.将其代入sin 2θ+cos 2θ=1,得109cos 2θ=1.因为θ为第二象限角,所以cos θ=-31010,sin θ=1010.所以sin θ+cos θ=-105.13.化简:sin (3α-π)sin α+cos (3α-π)cos α=________.答案 -4cos2α解析 原式=-sin3αsin α+-cos3αcos α=-sin3αcos α+cos3αsin αsin αcos α=-sin4αsin αcos α=-4sin αcos α·cos2αsin αcos α=-4cos2α.14.求值:1sin10°-3sin80°=________.答案 4解析 原式=cos10°-3sin10°sin10°cos10°=2(12cos10°-32sin10°)sin10°cos10°=4(sin30°cos10°-cos30°sin10°)2sin10°cos10°=4sin (30°-10°)sin20°=4.15.已知cos (α+β)cos (α-β)=13,则cos 2α-sin 2β=________.答案 13解析 ∵(cos αcos β-sin αsin β)(cos αcos β+sin αsin β)=13,∴cos 2αcos 2β-sin 2αsin 2β=13.∴cos 2α(1-sin 2β)-(1-cos 2α)sin 2β=13.∴cos 2α-sin 2β=13.16.(全国名校·北京,理)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos (α-β)=________.答案 -79解析 方法一:因为角α与角β的终边关于y 轴对称,所以α+β=2k π+π,k ∈Z ,所以cos (α-β)=cos(2k π+π-2α)=-cos2α=-(1-2sin 2α)=-[1-2×(13)2]=-79.方法二:因为sin α=13>0,所以角α为第一象限角或第二象限角,当角α为第一象限角时,可取其终边上一点(22,1),则cos α=223,又(22,1)关于y 轴对称的点(-22,1)在角β的终边上,所以sin β=13,cos β=-223,此时cos (α-β)=cos αcos β+sin αsin β=223×(-223)+13×13=-79.当角α为第二象限角时,可取其终边上一点(-22,1),则cos α=-223,因为(-22,1)关于y 轴对称的点(22,1)在角β的终边上,所以sin β=13,cosβ=223,此时cos(α-β)=cos αcos β+sin αsin β=(-223)×223+13×13=-79.综上可得,cos (α-β)=-79.17.(全国名校·广东深圳测试)2sin46°-3cos74°cos16°=________.答案 1 解析2sin46°-3cos74°cos16°=2sin (30°+16°)-3sin16°cos16°=cos16°cos16°=1.18.(全国名校·江苏泰州中学摸底)已知0<α<π2<β<π,且sin (α+β)=513,tan α2=12.(1)求cos α的值;(2)证明:sin β>513.答案 (1)35(2)略解析 (1)∵tan α2=12,∴tan α=2tan α21-tan 2α2=2×121-(12)2=43.∴⎩⎪⎨⎪⎧sin αcos α=43,sin 2α+cos 2α=1.又α∈(0,π2),解得cos α=35.(2)证明:由已知得π2<α+β<3π2.∵sin (α+β)=513,∴cos (α+β)=-1213.由(1)可得sin α=45,∴sin β=sin [(α+β)-α]=513×35-(-1213)×45=6365>513.19.(全国名校·江苏南京调研)如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边的锐角α和钝角β的终边分别与单位圆交于点A ,B.若点A 的横坐标是31010,点B 的纵坐标是255.(1)求cos (α-β)的值; (2)求α+β的值. 答案 (1)-55 (2)3π4解析 因为锐角α的终边与单位圆交于A ,且点A 的横坐标是31010,所以由任意角的三角函数的定义可知cos α=31010,从而sin α=1-cos 2α=1010.因为钝角β的终边与单位圆交于点B ,且点B 的纵坐标是255,所以sin β=255,从而cos β=-1-sin 2β=-55.(1)cos (α-β)=cos αcos β+sin αsin β=31010×(-55)+1010×255=-210.(2)sin (α+β)=sin αcos β+cos αcos β=1010×(-55)+31010×255=22. 因为α为锐角,β为钝角,所以α+β∈(π2,3π2),所以α+β=3π4.。

高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析1.已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点在△ABC内部,则的取值范围是( )A.(1-,2)B.(0,2)C.(-1,2)D.(0,1+)【答案】A【解析】作出可行域如图中阴影部分所示,由题知C(,2),作出直线:,平移直线,由图知,直线过C时,=1-,过B(0,2)时,=3-1=2,故z的取值范围为(1-,2),故选C.【考点】简单线性规划解法,数形结合思想2.若变量、满足约束条件,且的最大值和最小值分别为和,则()A.B.C.D.【答案】C【解析】作出不等式组所表示的可行域如下图中的阴影部分所表示,直线交直线于点,交直线于点,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,直线在轴上的截距最大,此时取最大值,即;当直线经过可行域上的点时,此时直线在轴上的截距最小,此时取最小值,即.因此,,故选C.【考点】本题考查线性规划中线性目标函数的最值,属于中等题.3.已知 (x+y+4)< (3x+y-2),若x-y<λ恒成立,则λ的取值范围是()A.(-∞,10]B.(-∞,10)C.[10,+∞)D.(10,+∞)【答案】C【解析】已知不等式等价于不等式x+y+4>3x+y-2>0,即,其表示的平面区域如图中的阴影部分(不含区域边界)所示.设z=x-y,根据其几何意义,显然在图中的点A处,z取最大值,由得,A(3,-7),故z<3-(-7)=10,所以λ≥10.4.若满足条件的整点恰有9个(其中整点是指横,纵坐标均为整数的点),则整数的值为()A.B.C.D.0【答案】C【解析】不等式组表示的平面区域如图,要使整点恰有9个,即为,,,,,,,,,故整数的值为.故选C.【考点】简单的线性规划,整点的含义.5.已知,则满足且的概率为 .【答案】【解析】因为满足且的平面区域是一个矩形,面积为,而圆的半径为2,面积为,根据古典概型公式得所求的概率为.【考点】古典概型,简单的线性规划,圆的面积公式.6.(3分)(2011•重庆)设m,k为整数,方程mx2﹣kx+2=0在区间(0,1)内有两个不同的根,则m+k的最小值为()A.﹣8B.8C.12D.13【答案】D【解析】将一元二次方程的根的分布转化为确定相应的二次函数的图象来处理,根据图象可得到关于m和k的不等式组,此时不妨考虑利用不等式所表示的平面区域来解决,但须注意这不是线性规划问题,同时注意取整点.解:设f(x)=mx2﹣kx+2,由f(0)=2,易知f(x)的图象恒过定点(0,2),因此要使已知方程在区间(0,1)内两个不同的根,即f(x)的图象在区间(0,1)内与x轴有两个不同的交点即由题意可以得到:必有,即,在直角坐标系mok中作出满足不等式平面区域,如图所示,设z=m+k,则直线m+k﹣z=0经过图中的阴影中的整点(6,7)时,z=m+k取得最小值,即z=13.min故选D.点评:此题考查了二次函数与二次方程之间的联系,解答要注意几个关键点:(1)将一元二次方程根的分布转化一元二次函数的图象与x轴的交点来处理;(2)将根据不等式组求两个变量的最值问题处理为规划问题;(3)作出不等式表示的平面区域时注意各个不等式表示的公共区域;(4)不可忽视求得最优解是整点.7.已知实数x,y满足约束条件,则的最小值是().A.5B.-6C.10D.-l0【答案】B【解析】当目标函数过点时,目标函数取得最小值,,代入,.【考点】线性规划8.已知实数x,y满足约束条件,则的最小值是().A.5B.-6C.10D.-l0【答案】B【解析】当目标函数过点时,目标函数取得最小值,,代入,.【考点】线性规划9.若,则目标函数的取值范围是()A.B.C.D.【答案】A【解析】作出不等式组所表示的可行域如下图所示,,令,则,为原点与点之间连线的斜率,直线与直线交于点,直线与直线交于点,显然,直线的倾斜角最大,且为锐角,此时取最大值,即,直线的倾斜角最小,且为锐角,此时,取最小值,即,因此,所以,即目标函数的取值范围是,故选A.【考点】1.线性规划;2.斜率10.在平面直角坐标系中,不等式组所表示的平面区域是,不等式组所表示的平面区域是. 从区域中随机取一点,则P为区域内的点的概率是_____.【答案】【解析】在同一坐标作出不等式组所表示的平面区域,与不等式组所表示的平面区域,由图可知,的面积为,与重叠的面积为,故从区域中随机取一点,则P为区域内的点的概率为.【考点】几何概率.11.(2011•湖北)已知向量=(x+z,3),=(2,y﹣z),且⊥,若x,y满足不等式|x|+|y|≤1,则z的取值范围为()A.[﹣2,2]B.[﹣2,3]C.[﹣3,2]D.[﹣3,3]【答案】D【解析】∵=(x+z,3),=(2,y﹣z),又∵⊥∴(x+z)×2+3×(y﹣z)=2x+3y﹣z=0,即z=2x+3y∵满足不等式|x|+|y|≤1的平面区域如下图所示:由图可知当x=0,y=1时,z取最大值3,当x=0,y=﹣1时,z取最小值﹣3,故z的取值范围为[﹣3,3]故选D12.已知变量满足约束条件若取整数,则目标函数的最大值是 .【答案】5【解析】由变量满足约束条件如图可得可行域的范围.目标函数取到最大值则目标函数过点A(2,1)即.【考点】1.线性规划问题.2.列举对比数学思想.13.若,满足约束条件,则的最大值是( )A.B.C.D.【答案】(C)【解析】,满足约束条件如图所示. 目标函数化为.所以z的最大值即为目标函数的直线在y轴的截距最小.所以过点A最小为1.故选(C).【考点】1.线性规划的知识.2.数学结合的数学思想.14.原点和点(2,﹣1)在直线x+y﹣a=0的两侧,则实数a的取值范围是()A.0≤a≤1B.0<a<1C.a=0或a=1D.a<0或a>1【答案】B【解析】∵原点和点(2,﹣1)在直线x+y﹣a=0两侧,∴(0+0﹣a)(2﹣1﹣a)<0,即a(a﹣1)<0,解得0<a<1,故选:B.15.已知变量x,y满足约束条件则的最大值为.【答案】【解析】画出可行域及直线(如图所示).平移直线,当其经过点时,【考点】简单线性规划16.已知为坐标原点,两点的坐标均满足不等式组设与的夹角为,则的最大值为()A.B.C.D.【答案】C【解析】画出可行域,如图所示,当点A,B分别与点重合时,向量与的夹角最大,且是锐角,,则,又,故当时,取到最大值为.【考点】1、二元一次不等式表示的平面区域;2、向量的夹角;3、同角三角函数基本关系式. 17.某旅行社租用A、B两种型号的客车安排900名客人旅行,A、B两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆.则租金最少为是()A. 31200元B. 36000元C. 36800元D. 38400元【答案】C【解析】设租A型车x辆,B型车y辆时租金为z元则z=1600x+2400yx、y满足画出可行域观察可知,直线过点A(5,12)时纵截距最小,∴z=5×1 600+2 400×12=36800,min故租金最少为36800元.选C.18.若实数满足,则的值域是()A.B.C.D.【答案】B【解析】令,则,做出可行域,平移直线,由图象知当直线经过点是,最小,当经过点时,最大,所以,所以,即的值域是,选B.19.设关于x,y的不等式组表示的平面区域内存在点,满足.求得m的取值范围是()A.(-∞,)B.(-∞,)C.(-∞,)D.(-∞,)【答案】C【解析】作出不等式组表示的平面区域(如图)若存在满足条件的点在平面区域内,则只需点A(-m,m)在直线x-2y-2=0的下方,即-m-2m-2>020.设x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则的最小值为()A.B.C.1D.2【答案】A【解析】作出满足条件的可行域(如图)∵a>0,b>0,∴直线ax+by=0的图象过二、四象限,∴平移直线ax+by=0知,目标函数z=ax+by在点M(4,6)处取得最大值12,∴4a+6b=12,即2a+3b=6设m=,把2a+3b=6代入m=并整理得,b2-2b+2-2m=0∵方程有正数解,∴Δ=4-4(2-2m)≥0m≥∴的最小值为21.若不等式组表示的平面区域是一个四边形,则实数的取值范围是_______.【答案】.【解析】作出不等式组所表示的平面区域如下图中的阴影部分所表示,直线交轴于点,交直线于点,当直线与直线在线段(不包括线段端点)时,此时不等式组所表示的区域是一个四边形,将点的坐标代入直线的方程得,即,将点的坐标代入直线的方程得,因此实数的取值范围是.【考点】线性规划22.设不等式组表示的区域为,不等式表示的平面区域为.(1)若与有且只有一个公共点,则=;(2)记为与公共部分的面积,则函数的取值范围是.【答案】,【解析】当直线与圆相切时,与有且只有一个公共点,此时解得.当或时,与有公共部分,为弓形.其面积为扇形面积减去三角形面积.当直线过圆心时,扇形面积最大,三角形面积最小,即弓形面积最大,但直线不过所以函数的取值范围是.【考点】直线与圆位置关系23.设变量满足约束条件,则目标函数的最大值为 .【答案】10【解析】作出可行域如图,令,则,作出目标直线,经过平移,当经过点时,取得最大值,联立得,代入得,∴【考点】线性规划。

高考数学压轴专题(易错题)备战高考《不等式》难题汇编附答案解析

高考数学压轴专题(易错题)备战高考《不等式》难题汇编附答案解析

高中数学《不等式》期末考知识点一、选择题1.若变量x ,y 满足2,{239,0,x y x y x +≤-≤≥则x 2+y 2的最大值是A .4B .9C .10D .12【答案】C 【解析】试题分析:画出可行域如图所示,点A (3,-1)到原点距离最大,所以22max ()10x y +=,选C.【考点】简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间的距离等,考查考生的绘图、用图能力,以及应用数学知识解决实际问题的能力.2.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .2 B .52C .3D .32【答案】A 【解析】()220{,440a f x acb b ac >≥∴∴≥∆=-≤Q 恒成立,,且0,0c a >> 又()()()2,00,1f x ax b f b f a b c =+∴'='=>++,()()221241111120b f a c ac f b b +∴=+≥+≥=+='当且仅当()()120f a c f ='时,不等式取等号,故的最小值为3.已知,x y 满足约束条件23023400x y x y y -+≥⎧⎪-+≤⎨⎪≥⎩,若目标函数2z mx ny =+-的最大值为1(其中0,0m n >>),则112m n+的最小值为( ) A .3 B .1C .2D .32【答案】D 【解析】 【分析】画出可行域,根据目标函数z 的最大值求得,m n 的关系式23m n +=,再利用基本不等式求得112m n +的最小值. 【详解】画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=.()111111515193222323232322n m n m m n m n m n m n m n ⎛⎫⎛⎫⎛⎫+=⨯+⨯+=⨯++≥⨯+⋅=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32. 故选:D【点睛】本小题主要考查根据目标函数的最值求参数,考查基本不等式求最值,考查数形结合的数学思想方法,属于中档题.4.已知点P ,Q 分别是抛物线28x y =和圆22(2)1x y +-=上的动点,点(0,4)A ,则2||||PA PQ 的最小值为( ) A .10 B .4C.2 D.1【答案】B 【解析】 【分析】设出点P 的坐标()00,x y ,用0y 表示出PA ;根据圆上一点到定点距离的范围,求得PQ 的最大值,再利用均值不等式求得目标式的最值. 【详解】设点()00,P x y ,因为点P 在抛物线上,所以()200080x y y =≥,因为点(0,4)A ,则()()2222200000||48416PA x y y y y =+-=+-=+.又知点Q 在圆22(2)1x y +-=上,圆心为抛物线的焦点(0,2)F ,要使2||||PA PQ 的值最小,则||PQ 的值应最大,即0max 13PQ PF y =+=+.所以()()222000003632516||||33y y y PA PQ y y +-+++==++ ()002536643y y =++-≥=+ 当且仅当02y =时等号成立.所以2||||PA PQ 的最小值为4.故选:B. 【点睛】本题考查抛物线上一点到定点距离的求解,以及圆上一点到定点距离的最值,利用均值不等式求最值,属综合中档题.5.已知实数x ,y 满足不等式||x y +≥,则22x y +最小值为( )A .2B .4C .D .8【答案】B 【解析】 【分析】先去掉绝对值,画出不等式所表示的范围,再根据22xy +表示圆心在原点的圆求解其最小圆的半径的平方,即可求解. 【详解】 由题意,可得当0y ≥时,22xy +≥; (2)当0y <时,22x y -≥,如图所示,画出的图形,可得不等式表示的就是阴影部分的图形, 又由22xy +最小值即为原点到直线的垂线段的长度的平方,又由2222211d -==+,所以24d =,即22xy +最小值为4.故选:B .【点睛】本题主要考查了线性规划的知识,以及点到直线的距离公式的应用,着重考查了数形结合思想,以及计算能力.6.已知x ,y 满足约束条件1,22,326,x y x y x y +≥⎧⎪-≥-⎨⎪+≤⎩,若22x y z +≥恒成立,则实数z 的最大值为( ) A .22B .25C .12D .2【答案】C 【解析】 【分析】画出约束条件所表示的平面区域,根据22xy +的几何意义,结合平面区域求得原点到直线10x y +-=的距离的平方最小,即可求解.由题意,画出约束条件122326x y x y x y +≥⎧⎪-≥-⎨⎪+≤⎩所表示的平面区域,如图所示,要使得22x y z +≥恒成立,只需()22minz x y≥+,因为22xy +表示原点到可行域内点的距离的平方,结合平面区域,可得原点到直线10x y +-=的距离的平方最小, 其中最小值距离为2212211d -==+,则212d =,即12z ≤所以数z 的最大值12. 故选:C .【点睛】本题主要考查了简单的线性规划的应用,其中解答中正确作出约束条件所表示的平面区域,结合22x y +的几何意义求解是解答的关键,着重考查了数形结合思想,以及计算能力.7.已知实数x 、y 满足约束条件103300x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .1-B .2C .7D .8【答案】C 【解析】 【分析】作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点C 时,z 取得最大值.【详解】解:作出约束条件表示的可行域是以(1,0),(1,0),(2,3)-为顶点的三角形及其内部,如下图当目标函数经过点()2,3C 时,z 取得最大值,最大值为7.故选:C. 【点睛】本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.8.已知集合{}2230A x x x =-->,(){}lg 11B x x =+≤,则()R A B =I ð( )A .{}13x x -≤<B .{}19x x -≤≤C .{}13x x -<≤D .{}19x x -<<【答案】C 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义得出集合()R A B ⋂ð. 【详解】解不等式2230x x -->,得1x <-或3x >;解不等式()lg 11x +≤,得0110x <+≤,解得19x -<≤.{}13A x x x ∴=-或,{}19B x x =-<≤,则{}13R A x x =-≤≤ð,因此,(){}13R A B x x ⋂=-<≤ð,故选:C. 【点睛】本题考查集合的补集与交集的计算,同时也考查了一元二次不等式以及对数不等式的求解,考查运算求解能力,属于中等题.9.变量,x y 满足约束条件1{2314y x y x y ≥--≥+≤,若使z ax y =+取得最大值的最优解不唯一,则实数a 的取值集合是( ) A .{3,0}- B .{3,1}-C .{0,1}D .{3,0,1}-【答案】B 【解析】若0a =,结合图形可知不合题设,故排除答案A ,C ,D ,应选答案B .10.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】利用基本不等式和充分,必要条件的判断方法判断. 【详解】22x y +≥Q 且224x y+≤ ,422x y ∴≤≤⇒+≤ , 等号成立的条件是x y =,又x y +≥Q ,0,0x y >>21xy ∴≤⇒≤ , 等号成立的条件是x y =,2241x y xy ∴+≤⇒≤,反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件. 故选:C 【点睛】本题考查基本不等式和充分非必要条件的判断,属于基础题型.11.若0a >,0b >,23a b +=,则36a b+的最小值为( ) A .5 B .6C .8D .9【答案】D 【解析】 【分析】 把36a b +看成(36a b +)×1的形式,把“1”换成()123a b +,整理后积为定值,然后用基本不等式求最小值.【详解】∵3613a b+=(36a b+)(a+2b)=13(366b aa b+++12)≥13×(15+266b aa b⋅=)9等号成立的条件为66b aa b=,即a=b=1时取等所以36a b+的最小值为9.故选:D.【点睛】本题考查了基本不等式在求最值中的应用,解决本题的关键是“1”的代换,是基础题12.已知变量,x y满足约束条件121x yx+⎧⎨-⎩剟„,则x yy+的取值范围是( )A.12,23⎡⎤⎢⎥⎣⎦B.20,3⎛⎤⎥⎝⎦C.11,3⎛⎤--⎥⎝⎦D.3,22⎡⎤⎢⎥⎣⎦【答案】B【解析】【分析】作出不等式121x yx+⎧⎨-⎩剟„表示的平面区域,整理得:x yy+1xy=+,利用yx表示点(),x y 与原点的连线斜率,即可求得113xy-<-„,问题得解.【详解】将题中可行域表示如下图,整理得:x yy+1xy=+易知ykx=表示点(),x y与原点的连线斜率,当点(),x y在()1.3A-处时,ykx=取得最小值-3.且斜率k小于直线1x y+=的斜率-1,故31k-≤<-,则113xy-<-„,故23x yy+<„.故选B【点睛】本题主要考查了利用线性规划知识求分式型目标函数的取值范围,考查转化能力,属于中档题.13.已知x,y满足约束条件234x yx yy-≥⎧⎪+≤⎨⎪≥⎩,若z ax y=+的最大值为4,则a=()A.2 B.12C.-2 D.12-【答案】A【解析】【分析】由约束条件可得到可行域,根据图象可知最优解为()2,0A,代入可构造方程求得结果.【详解】由约束条件可知可行域如下图阴影部分所示:当直线:l y ax z=-+经AOBV区域时,当l过点()2,0A时,在y轴上的截距最大,即()2,0A为最优解,42a∴=,解得:2a=.故选:A.【点睛】本题考查线性规划中的根据目标函数的最值求解参数值的问题,关键是能够通过约束条件准确得到可行域,根据数形结合的方式确定最优解.14.若、a b均为实数,则“()0->ab a b”是“0a b>>”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】 【分析】通过列举,和推理证明可以推出充要性. 【详解】若()0ab a b ->中,取12a b --=,=,则推不出0a b >>; 若0a b >>,则0a b ->,则可得出()0ab a b ->; 故“()0ab a b ->”是“0a b >>”的必要不充分条件, 故选:B. 【点睛】本题考查充分必要不条件的定义以及不等式的性质,可通过代入特殊值解决.15.已知2(0,0)x y xy x y +=>>,则2x y +的最小值为( ) A .10 B .9C .8D .7【答案】B 【解析】 【分析】 由已知等式得到211x y +=,利用()2122x y x y x y ⎛⎫+=++ ⎪⎝⎭可配凑出符合基本不等式的形式,利用基本不等式求得最小值. 【详解】 由2x y xy +=得:211x y+=()212222559x y x y x y x y y x ⎛⎫∴+=++=++≥+= ⎪⎝⎭(当且仅当22x y y x =,即x y =时取等号) 2x y ∴+的最小值为9故选:B 【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活对等于1的式子进行应用,配凑成符合基本不等式的形式.16.已知正数x ,y 满足144x y+=,则x y +的最小值是( )A .9B .6C .94D .52 【答案】C【解析】【分析】先把x y +转化成114()4x y x y ⎛⎫+⋅+ ⎪⎝⎭,展开后利用均值不等式即可求解. 【详解】 Q 正数x ,y 满足144x y +=,1141419()1454444y x x y x y x y x y ⎛⎛⎫⎛⎫∴+=+⋅+=++++= ⎪ ⎪ ⎝⎭⎝⎭⎝…, 当且仅当4144y x x y x y⎧=⎪⎪⎨⎪+=⎪⎩,即34x =,32y =时,取等号. 故选:C【点睛】本题主要考查了基本不等式在最值问题中的应用,基本不等式一定要把握好“一正,二定,三相等”的原则,属于基础题.17.设集合{}20,201x M xN x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( ) A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x << 【答案】B【解析】【分析】 根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】 由题意,集合{}20{01},20{|02}1x M x x x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭, 所以{}01M N x x ⋂=<<.故选:B .【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.18.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3 【答案】B【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.19.已知,a b 都是正实数,则222a b a b a b +++的最大值是( ) A.23- B.3- C.1 D .43【答案】A【解析】【分析】设2,2m a b n a b =+=+,将222a b a b a b +++,转化为2222233a b n m a b a b m n +=--++,利用基本不等式求解.【详解】设2,2m a b n a b =+=+, 所以22,33m n n m a b --==,所以2222222333a b n m a b a b m n +=--≤-=-++, 当且仅当233n m m n =时取等号. 所以222a b a b a b +++的最大值是23-. 故选:A【点睛】本题主要考查基本不等式的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.20.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元B .360千元C .400千元D .440千元 【答案】B【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件: 2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值.绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知:目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.。

高考数学压轴专题(易错题)备战高考《不等式》难题汇编附解析

高考数学压轴专题(易错题)备战高考《不等式》难题汇编附解析

新数学《不等式》专题解析(1)一、选择题1.已知x 、y 满足约束条件122326x y x y x y +≥⎧⎪-≥-⎨⎪+≤⎩,若22z x y =+,则实数z 的最小值为( )A .22B .25C .12D .2【答案】C 【解析】 【分析】作出不等式组所表示的可行域,利用目标函数的几何意义求出22x y +的最小值,进而可得出实数z 的最小值. 【详解】作出不等式组122326x y x y x y +≥⎧⎪-≥-⎨⎪+≤⎩所表示的可行域如下图所示,22z x y =+表示原点到可行域内的点(),x y 的距离的平方,原点到直线10x y +-=的距离的平方最小,()222min2122x y⎛⎫+== ⎪ ⎪⎝⎭. 由于22z x y =+,所以,min 12z =. 因此,实数z 的最小值为12. 故选:C.【点睛】本题考查线性规划中非线性目标函数最值的求解,考查数形结合思想的应用,属于中等题.2.若实数,x y 满足不等式组2,36,0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则3x y +的最小值等于( )A .4B .5C .6D .7【答案】A 【解析】 【分析】首先画出可行域,利用目标函数的几何意义求z 的最小值. 【详解】解:作出实数x ,y 满足不等式组2360x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩表示的平面区域(如图示:阴影部分)由200x y x y +-=⎧⎨-=⎩得(1,1)A ,由3z x y =+得3y x z =-+,平移3y x =-, 易知过点A 时直线在y 上截距最小,所以3114min z =⨯+=. 故选:A .【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.3.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .2 B .52C .3D .32【答案】A 【解析】()2200{,440a f x acb b ac >≥∴∴≥∆=-≤Q 恒成立,,且0,0c a >> 又()()()2,00,1f x ax b f b f a b c =+∴'='=>++,()()11111120f a c f b b +∴=+≥+≥=+=' 当且仅当()()120f a c f ='时,不等式取等号,故的最小值为4.若,x y 满足约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则122yx⎛⎫⋅ ⎪⎝⎭的最小值为( )A .116B .18C .1D .2【答案】A 【解析】 【分析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解. 【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A -,(5,1)B ,(3,3)C ,因为1222yxx y -⎛⎫⋅= ⎪⎝⎭,令z x y =-,当直线y x z =-经过A 时,z 取得最小值,所以z 的最小值为min 314z =--=-,则1222yx x y -⎛⎫⋅= ⎪⎝⎭的最小值为41216-=. 故选:A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.5.已知关于x 的不等式()()222240m x m x -+-+>得解集为R ,则实数m 的取值范围是( ) A .()2,6B .()(),26,-∞+∞UC .(](),26,-∞⋃+∞D .[)2,6【答案】D 【解析】 【分析】分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数m 的取值范围.【详解】当20m -=时,即当2m =时,则有40>,该不等式恒成立,合乎题意;当20m -≠时,则()()220421620m m m ->⎧⎪⎨∆=---<⎪⎩,解得26m <<. 综上所述,实数m 的取值范围是[)2,6. 故选:D. 【点睛】本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.6.设实数满足条件则的最大值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.7.已知点P ,Q 分别是抛物线28x y =和圆22(2)1x y +-=上的动点,点(0,4)A ,则2||||PA PQ 的最小值为( ) A .10 B .4C .232D .421【答案】B 【解析】 【分析】设出点P 的坐标()00,x y ,用0y 表示出PA ;根据圆上一点到定点距离的范围,求得PQ 的最大值,再利用均值不等式求得目标式的最值. 【详解】设点()00,P x y ,因为点P 在抛物线上,所以()200080x y y =≥,因为点(0,4)A ,则()()2222200000||48416PA x y y y y =+-=+-=+.又知点Q 在圆22(2)1x y +-=上,圆心为抛物线的焦点(0,2)F ,要使2||||PA PQ 的值最小,则||PQ 的值应最大,即0max 13PQ PF y =+=+.所以()()222000003632516||||33y y y PA PQ y y +-+++==++ ()002536643y y =++-≥=+ 当且仅当02y =时等号成立.所以2||||PA PQ 的最小值为4.故选:B. 【点睛】本题考查抛物线上一点到定点距离的求解,以及圆上一点到定点距离的最值,利用均值不等式求最值,属综合中档题.8.已知函数())2log f x x =,若对任意的正数,a b ,满足()()310f a f b +-=,则31a b+的最小值为( )A .6B .8C .12D .24【答案】C 【解析】 【分析】先确定函数奇偶性与单调性,再根据奇偶性与单调性化简方程得31a b +=,最后根据基本不等式求最值.【详解】0,x x x x ≥-=所以定义域为R ,因为()2log f x =,所以()f x 为减函数 因为()2log f x =,())2log f x x -=,所以()()()f x f x f x =--,为奇函数,因为()()310f a f b +-=,所以()()1313f a f b a b =-=-,,即31a b +=, 所以()3131936b a a b a b a b a b⎛⎫+=++=++ ⎪⎝⎭,因为9926 ba b aa b a b+≥⨯=,所以3112a b+≥(当且仅当12a=,16b=时,等号成立),选C.【点睛】本题考查函数奇偶性与单调性以及基本不等式求最值,考查基本分析求解能力,属中档题. 9.若,x y满足约束条件360,60,1,x yx yy-+≥⎧⎪+-≤⎨⎪≥⎩则z x y=-的最小值为()A.4 B.0 C.2-D.4-【答案】D【解析】【分析】画出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入即可求解.【详解】由题意,画出约束条件360601x yx yy-+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,目标函数z x y=-,可化为直线y x z=-当直线y x z=-经过A时,z取得最小值,又由3601x yy-+=⎧⎨=⎩,解得(3,1)A-,所以目标函数的最小值为min314z=--=-.故选:D.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.10.已知集合{}0lg2lg3P x x=<<,212Q xx⎧⎫=>⎨⎬-⎩⎭,则P QI为( )A .()0,2B .()1,9C .()1,4D .()1,2【答案】D 【解析】 【分析】集合,P Q 是数集,集合P 是对数不等式解的集合,集合Q 是分式不等式解的集合,分别求出解集,再交集运算求出公共部分. 【详解】解:{}19P x x =<<,{}02Q x x =<<;()1,2P Q ∴⋂=.故选:D. 【点睛】本题考查对数函数的单调性及运算性质,及分式不等式的解法和集合交集运算,交集运算口诀:“越交越少,公共部分”. 简单对数不等式问题的求解策略:(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数的值有关,在研究对数函数的单调性时,要按01a <<和1a > 进行分类讨论.分式不等式求解:先将分式化为整式;注意分式的分母不为0.11.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1【答案】C 【解析】 【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()21f x-#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤- 所以a 的最大值为2-. 故选:C. 【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.12.已知ABC V 是边长为1的等边三角形,若对任意实数k ,不等式||1k AB tBC +>u u u r u u u r恒成立,则实数t 的取值范围是( ).A.,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭B.,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C.3⎛⎫+∞ ⎪⎪⎝⎭ D.,3⎛⎫+∞ ⎪⎪⎝⎭【答案】B 【解析】 【分析】根据向量的数量积运算,将目标式转化为关于k 的二次不等式恒成立的问题,由0<n ,即可求得结果. 【详解】因为ABC V 是边长为1的等边三角形,所以1cos1202AB BC ⋅=︒=-u u u r u u u r ,由||1k AB tBC +>u u u r u u u r 两边平方得2222()2()1k AB kt AB BC t BC +⋅+>u u u r u u u r u u u r u u u r,即2210k kt t -+->,构造函数22()1f k k tk t =-+-, 由题意,()22410t t ∆--<=,解得t <或t >. 故选:B. 【点睛】本题考查向量数量积的运算,以及二次不等式恒成立问题求参数范围的问题,属综合中档题.13.已知,x y 满足约束条件24030220x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩则目标函数22x y z -=的最大值为( ).A .128B .64C .164D .1128【答案】B 【解析】 【分析】画出可行域,再求解2x y -的最大值即可. 【详解】不等式组表示的平面区域如下图阴影部分所示.设2x y μ=-,因为函数2xy =是增函数,所以μ取最大值时,z 取最大值.易知2x y μ=-在A 点处取得最大值.联立220,30x y x y +-=⎧⎨+-=⎩解得4,1.x y =⎧⎨=-⎩即(4,1)A -.所以max 42(1)6μ=-⨯-=,所以6max 264z ==.故选:B 【点睛】本题考查线性规划,考查化归与转化思想以及数形结合思想.14.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元 B .360千元C .400千元D .440千元【答案】B 【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件:2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值. 绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知: 目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.15.已知x ,y 满足约束条件02340x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a =( )A .2B .12 C .-2 D .12- 【答案】A【解析】【分析】由约束条件可得到可行域,根据图象可知最优解为()2,0A ,代入可构造方程求得结果.【详解】由约束条件可知可行域如下图阴影部分所示:当直线:l y ax z =-+经AOB V 区域时,当l 过点()2,0A 时,在y 轴上的截距最大, 即()2,0A 为最优解,42a ∴=,解得:2a =.故选:A .【点睛】本题考查线性规划中的根据目标函数的最值求解参数值的问题,关键是能够通过约束条件准确得到可行域,根据数形结合的方式确定最优解.16.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( ) A .12k > B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D【解析】【分析】 联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】 解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021k k k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<. 故选:D .【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.17.若集合()(){}130M x x x =+-<,集合{}1N x x =<,则M N ⋂等于( ) A .()1,3B .(),1-∞-C .()1,1-D .()3,1- 【答案】C【解析】【分析】解一元二次不等式求得M ,然后求两个集合的交集.【详解】由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C.【点睛】本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.18.已知实数x y ,满足1030350x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则()22(4)2z x y =-+-的最小值为( ) A .5 B.5 C .3 D .52【答案】D【解析】【分析】由题意作出其平面区域,22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,求阴影内的点到点(4,2)P 的距离的平方最小值即可.【详解】 解:由题意作出实数x ,y 满足1030350x y x y x y -+⎧⎪+-⎨⎪--⎩……„平面区域, 22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,则22(4)(2)z x y =-+-的最小值为P 到350x y --=的距离的平方,解得,2222523(1)d -⎛⎫+ ⎪= ⎝⎭=⎪; 所以min 52z =故选:D .【点睛】本题考查了简单线性规划,作图要细致认真,用到了表达式的几何意义的转化,属于中档题.19.已知函数()lg f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于( ).A B .C .2 D .【答案】D【解析】 试题分析:因为函数()lg f x x =,0a b >>,()()f a f b =所以lg lg a b =- 所以1a b=,即1ab =,0a b >>22a ba b+-22()2()22()a b ab a b a b a b a b a b -+-+===-+---≥=当且仅当2a b a b-=-,即a b -=时等号成立所以22a b a b+-的最下值为故答案选D考点:基本不等式.20.已知0a b >>,则下列不等式正确的是( )A .ln ln a b b a ->-B .|||b a <C .ln ln a b b a -<-D .|||b a ->【答案】C【解析】【分析】利用特殊值代入法,作差比较法,排除不符合条件的选项,即可求解,得到答案.【详解】由题意,因为0a b >>,取,1a e b ==,则ln 0,ln a b b a e -=-=,1b a e ==-,可排除A 、D 项;取11,49a b ==711812b a ==,可排除B 项; 因为满足0a b >>条件的排除法,可得A 、B 、D 是错误的.故选:C .【点睛】本题主要考查了不等式与不等关系,以及不等式的的基本性质,其中解答中合理赋值,代入排除是解答的关键,着重考查了推理与运算能力.。

2024高考全国卷及各省数学线性规划真题整理-免费(附答案)

2024高考全国卷及各省数学线性规划真题整理-免费(附答案)

2024高考全国卷及自主招生数学高考真题线性规划专题真题整理(附答案解析)1.(17全国卷I ,文数7)设x ,y 满意约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为( )A .0B .1C .2D .3 答案:D解析:如图,由图易知当目标函数z x y =+经过 直线33x y +=和0y =(即x 轴)的交点(3,0)A 时,z 能取到最大值,把(3,0)A 代入z =x +y 可得max 303z =+=,故选D.2.(17全国卷I,理数14题)设x ,y 满意约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 答案:5-解析:不等式组21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩表示的平面区域如图所示。

由32z x y =-变形得322z y x =-。

要求z 的最小值, 即求直线322z y x =-的纵截距的最大值。

由右图,易知 当直线322z y x =-过图中点A 时,纵截距最大。

联立方程组2121x y x y +=-⎧⎨+=⎩,解得A 点坐标为(1,1)-,此时3(1)215z =⨯--⨯=-。

故32z x y =-的最小值是-5.3.(17全国卷Ⅱ,文数7、理数5)设x 、y 满意约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩ .则2z x y =+ 的最小值是( )A. -15B.-9C. 1 D 9答案:A解析:不等式组2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩表示的可行域如图所示,易知当直线2z x y =+过到213y x =+与3y =-交点()63--,时,目标函数2z x y =+取到最小值,此时有()()min 26315z =⨯-+-=-,故所求z 最小值为15-.4.(17全国卷Ⅲ,文数5)设x ,y 满意约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z =x -y 的取值范围是( )A.[-3,0]B.[-3,2]C.[0,2]D.[0,3] 答案:B解析:绘制不等式组表示的可行域,结合目标函数 的几何意义可得目标函数z =x -y 在直线3260x y +-=与 直线0x =(即x 轴)的交点()0,3A 处取得最小值, 此时min 033z =-=-。

全国高三高中数学专题试卷带答案解析

全国高三高中数学专题试卷带答案解析

全国高三高中数学专题试卷班级:___________ 姓名:___________ 分数:___________一、解答题1.求点A(2,0)在矩阵对应的变换作用下得到的点的坐标.2.点(-1,k)在伸压变换矩阵之下的对应点的坐标为(-2,-4),求m 、k 的值.3.已知变换T 是将平面内图形投影到直线y =2x 上的变换,求它所对应的矩阵.4.求曲线y =在矩阵作用下变换所得的图形对应的曲线方程. 5.求直线x +y =5在矩阵对应的变换作用下得到的图形.6.设椭圆F :=1在(x ,y)→(x′,y′)=(x +2y ,y)对应的变换下变换成另一个图形F′,试求F′的解析式.7.设M =,N =,试求曲线y =sinx 在矩阵MN 变换下的曲线方程.8.已知矩阵M =,N =,矩阵MN 对应的变换把曲线y =sin x 变为曲线C ,求曲线C 的方程.9.二阶矩阵M 对应变换将(1,-1)与(-2,1)分别变换成(5,7)与(-3,6). (1)求矩阵M ;(2)若直线l 在此变换下所变换成的直线的解析式l′:11x -3y -68=0,求直线l 的方程.10.在平面直角坐标系xOy 中,直线l :x +y +2=0在矩阵M =对应的变换作用下得到直线m :x -y -4=0,求实数a 、b 的值. 11.已知M =,N =,向量α=.(1)验证:(MN )α=M (Nα);(2)验证这两个矩阵不满足MN =NM .12.在直角坐标系中,已知△ABC 的顶点坐标为A,B,C.求△ABC 在矩阵作用下变换所得到的图形的面积.13.在直角坐标系中,△OAB 的顶点坐标O(0,0)、A(2,0),B(1,),求△OAB 在矩阵MN 的作用下变换所得到的图形的面积,其中矩阵M =,N =.14.已知矩阵M =,N =,在平面直角坐标系中,设直线2x -y +1=0在矩阵MN 对应的变换作用下得到的曲线F ,求曲线F 的方程. 15.已知直线l :ax +y =1在矩阵A =对应的变换作用下变为直线l′:x +by =1.(1)求实数a 、b 的值;(2)若点P(x 0,y 0)在直线l 上,且A =,求点P 的坐标.16.在线性变换=下,直线x +y =k(k 为常数)上的所有点都变为一个点,求此点坐标.17.如图所示,四边形ABCD和四边形AB′C′D分别是矩形和平行四边形,其中各点的坐标分别为A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求将四边形ABCD变成四边形AB′C′D的变换矩阵M.18.已知矩阵M=,向量α=,β=.(1)求向量3α+β在T M作用下的象;(2)求向量4Mα-5Mβ.19.二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).设直线l在变换M作用下得到了直线m:2x-y=4,求l的方程.20.二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).(1)求矩阵M;(2)设直线l在变换M作用下得到了直线m:x-y=4,求l的方程.全国高三高中数学专题试卷答案及解析一、解答题1.求点A(2,0)在矩阵对应的变换作用下得到的点的坐标.【答案】A′(2,0)【解析】矩阵表示横坐标保持不变,纵坐标沿y轴负方向拉伸为原来的2倍的伸压变换,故点A(2,0)变为点A′(2,0)2.点(-1,k)在伸压变换矩阵之下的对应点的坐标为(-2,-4),求m、k的值.【答案】【解析】=,解得3.已知变换T是将平面内图形投影到直线y=2x上的变换,求它所对应的矩阵.【答案】【解析】将平面内图形投影到直线y=2x上,即是将图形上任意一点(x,y)通过矩阵M作用变换为(x,2x),则有=,解得∴T=.4.求曲线y=在矩阵作用下变换所得的图形对应的曲线方程.【答案】x=【解析】设点(x,y)是曲线y=上任意一点,在矩阵的作用下点变换成(x′,y′),则=,所以.因为点(x,y)在曲线y=上,所以x′=,即x=5.求直线x +y =5在矩阵对应的变换作用下得到的图形.【答案】点(0,5)【解析】设点(x ,y)是直线x +y =5上任意一点,在矩阵的作用下点变换成(x′,y′),则=,所以.因为点(x ,y)在直线x +y =5上,所以y′=x +y =5,故得到的图形是点(0,5).6.设椭圆F :=1在(x ,y)→(x′,y′)=(x +2y ,y)对应的变换下变换成另一个图形F′,试求F′的解析式.【答案】2x 2-8xy +9y 2-4=0. 【解析】变换矩阵为,任取椭圆上一点(x 0,y 0), 则=,令则又点(x 0,y 0)在椭圆F 上,故=1,所以2x′2-8x′y′+9y′2-4=0,即F′的解析式为2x 2-8xy +9y 2-4=0. 7.设M =,N =,试求曲线y =sinx 在矩阵MN 变换下的曲线方程.【答案】y =2sin2x 【解析】MN ==,设(x ,y)是曲线y =sinx 上的任意一点,在矩阵MN 变换下对应的点为(x′,y′). 则=,所以即代入y =sinx 得y′=sin2x′,即y′=2sin2x′.即曲线y =sinx 在矩阵MN 变换下的曲线方程为y =2sin2x.8.已知矩阵M =,N =,矩阵MN 对应的变换把曲线y =sinx 变为曲线C ,求曲线C 的方程.【答案】y =sinx 【解析】MN ==,设P(x ,y)是所求曲线C 上的任意一点,它是曲线y =sinx 上点P 0(x 0,y 0)在矩阵MN 变换下的对应点,则有=,即所以又点P(x 0,y 0)在曲线y =sinx 上,故y 0=sinx 0,从而y =sinx.所求曲线C 的方程为y =sinx.9.二阶矩阵M 对应变换将(1,-1)与(-2,1)分别变换成(5,7)与(-3,6). (1)求矩阵M ;(2)若直线l 在此变换下所变换成的直线的解析式l′:11x -3y -68=0,求直线l 的方程. 【答案】(1)(2)x -y -4=0.【解析】(1)不妨设M=,则由题意得=,=,所以故M=.(2)取直线l上的任一点(x,y),其在M作用下变换成对应点(x′,y′),则==,即代入11x-3y-68=0,得x-y-4=0,即l的方程为x-y-4=0.10.在平面直角坐标系xOy中,直线l:x+y+2=0在矩阵M=对应的变换作用下得到直线m:x-y-4=0,求实数a、b的值.【答案】a=2,b=3.【解析】(解法1)在直线l:x+y+2=0上取两点A(-2,0),B(0,-2),A、B在矩阵M对应的变换作用下分别对应于点A′、B′,因为=,所以A′的坐标为(-2,-2b);=,所以B′的坐标为(-2a,-8).由题意A′、B′在直线m:x-y-4=0上,所以解得a=2,b=3.(解法2)设直线l:x+y+2=0上任意一点(x,y)在矩阵M对应的变换作用下对应于点(x′,y′).因为=,所以x′=x+ay,y′=bx+4y.因为(x′,y′)在直线m上,所以(x+ay)-(bx+4y)-4=0,即(1-b)x+(a-4)y -4=0.又点(x,y)在直线x+y+2=0上,所以,解得a=2,b=311.已知M=,N=,向量α=.(1)验证:(MN)α=M(Nα);(2)验证这两个矩阵不满足MN=NM.【答案】(1)见解析(2)见解析【解析】(1)因为MN==,所以(MN)α==.因为Nα==,所以M(Nα)==,所以(MN)α=M(Nα).(2)因为MN=,NM=,所以这两个矩阵不满足MN=NM.12.在直角坐标系中,已知△ABC的顶点坐标为A,B,C.求△ABC在矩阵作用下变换所得到的图形的面积. 【答案】【解析】因为=,=,=,所以A ,B,C在矩阵作用下变换所得到的三个顶点坐标分别为A′,B′,C′.故S △A′B′C′=A′C′|y B ′|=13.在直角坐标系中,△OAB 的顶点坐标O(0,0)、A(2,0),B(1,),求△OAB 在矩阵MN 的作用下变换所得到的图形的面积,其中矩阵M =,N =.【答案】1【解析】由题设得MN =,∴·=,·=,·=.可知O 、A 、B 三点在矩阵MN 作用下变换所得的点分别为O′(0,0)、A′(2,0)、B′(2,-1). 可得△O′A′B′的面积为1.14.已知矩阵M =,N =,在平面直角坐标系中,设直线2x -y +1=0在矩阵MN 对应的变换作用下得到的曲线F ,求曲线F 的方程. 【答案】2x +y +1=0 【解析】由题设得MN ==.设(x ,y)是直线2x -y +1=0上任意一点,点(x ,y)在矩阵MN 对应的变换作用下变为(x′,y′), 则有=,即=,所以. 因为点(x ,y)在直线2x -y +1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0. 所以曲线F 的方程为2x +y +1=0.15.已知直线l :ax +y =1在矩阵A =对应的变换作用下变为直线l′:x +by =1.(1)求实数a 、b 的值;(2)若点P(x 0,y 0)在直线l 上,且A =,求点P 的坐标.【答案】(1)(2)(1,0)【解析】(1)设直线l :ax +y =1上任意一点M(x ,y)在矩阵A 对应的变换作用下的象是M′(x′,y′), 由==,得,又点M′(x′,y′)在l′上, 所以x′+by′=1,即x +(b +2)y =1.依题意解得(2)A =,得解得y 0=0.又点P(x 0,y 0)在直线l 上,所以x 0=1,故点P 的坐标为(1,0).16.在线性变换=下,直线x +y =k(k 为常数)上的所有点都变为一个点,求此点坐标.【答案】(k ,2k) 【解析】由=,得而x +y =k ,所以(k 为常数),所以直线x +y =k(k 为常数)上的所有点都变为一个点(k ,2k).17.如图所示,四边形ABCD 和四边形AB′C′D 分别是矩形和平行四边形,其中各点的坐标分别为A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求将四边形ABCD 变成四边形AB′C′D 的变换矩阵M .【答案】【解析】该变换为切变变换.设矩阵M =,由图知,C C′,则=.所以3k -2=3,解得k =.所以,M =.18.已知矩阵M =,向量α=,β=.(1)求向量3α+β在T M 作用下的象;(2)求向量4Mα-5Mβ. 【答案】(1)(2) 【解析】(1)因为3α+β=3+=+=,所以M==.(2)4Mα-5Mβ=M (4α-5β)==.19.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).设直线l 在变换M 作用下得到了直线m :2x -y =4,求l 的方程. 【答案】x +4=0 【解析】设M =,则有=,=,∴,且,解得和,∴M =,∵==,且m :2x′-y′=4,∴2(x +2y)-(3x +4y)=4,即x +4=0,∴直线l 的方程为x +4=0.20.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在变换M 作用下得到了直线m :x -y =4,求l 的方程. 【答案】(1)(2)x +y +2=0【解析】(1)设M=,则有=,=,所以且解得和所以M=.(2)因为==且m:x′-y′=4,所以(x+2y)-(3x+4y)=4,即x+y+2=0,即直线l的方程为x+y+2=0.。

高考数学复习专题 基本不等式

高考数学复习专题 基本不等式

高考数学复习专题基本不等式全国名校高考数学复优质学案、专题汇编(附详解)高考数学复专题:基本不等式一、基本不等式1.基本不等式:对于任意非负实数 $a$ 和 $b$,有 $a+b \geq 2\sqrt{ab}$,等号成立当且仅当 $a=b$。

2.算术平均数与几何平均数:设 $a>0$,$b>0$,则$a$ 和 $b$ 的算术平均数不小于它们的几何平均数。

3.利用基本不等式求最值问题:1)如果积 $xy$ 是定值 $P$,那么当且仅当 $x=y$ 时,$x+y$ 有最小值 $2\sqrt{P}$。

2)如果和 $x+y$ 是定值 $P$,那么当且仅当 $x=y$ 时,$xy$ 有最大值 $\frac{P}{4}$。

4.常用结论:1)$a+b \geq 2ab$($a$,$b$ 为任意实数)。

2)$\frac{b^2}{a}+\frac{a^2}{b} \geq 2(a+b)$($a$,$b$ 为同号实数)。

3)$ab \leq \frac{a^2+b^2}{2} \leq (\frac{a+b}{2})^2$($a$,$b$ 为任意实数)。

4)$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq\frac{3}{2}$($a$,$b$,$c$ 为正实数)。

5)$2(a+b) \geq \sqrt{2}(a+b)$($a$,$b$ 为任意实数)。

6)$\frac{a^2+b^2}{a+b} \geq \frac{a+b}{2}$($a$,$b$ 为任意实数)。

7)$a^2+b^2 \geq ab$($a>0$,$b>0$)。

二、基本不等式在实际中的应用1.问题的背景是人们关心的社会热点问题,如物价、销售、税收等。

题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解。

2.经常建立的函数模型有正(反)比例函数、一次函数、二次函数、分段函数以及 $y=ax+b$($a>0$,$b>0$)等。

高考数学复习简单的线性规划问题专题训练(含答案)题型归纳

高考数学复习简单的线性规划问题专题训练(含答案)题型归纳

高考数学复习简单的线性规划问题专题训练(含答案)题型归纳线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支。

以下是整理的简单的线性规划问题专题训练,请考生练习。

一、填空题1.(____广东高考改编)若变量_,y满足约束条件,则z=2_+y的最大值等于________.[解析] 作出约束条件下的可行域如图(阴影部分),当直线y=-2_+z经过点A(4,2)时,z取最大值为10.[答案] 102.(____扬州调研)已知_,y满足约束条件则z=3_+4y的最小值是________.[解析] 可行区域如图所示.在P处取到最小值-17.5.[答案] -17.53.已知实数_,y满足若z=y-a_取得最大值时的最优解(_,y)有无数个,则a=________.[解析] 依题意,在坐标平面内画出题中的不等式组表示的平面区域,如图所示.要使z=y-a_取得最大值时的最优解(_,y)有无数个,则直线z=y-a_必平行于直线y-_+1=0,于是有a=1.[答案] 14.(____山东高考改编)在平面直角坐标系_Oy中,M为不等式组所表示的区域上一动点,则直线OM斜率的最小值为________.[解析] 线性约束条件表示的平面区域如图所示(阴影部分).由得A(3,-1).当M点与A重合时,OM的斜率最小,kOM=-.[答案] -5.(____陕西高考改编)若点(_,y)位于曲线y=|_|与y=2所围成的封闭区域内,则2_-y的最小值是________.[解析] 曲线y=|_|与y=2所围成的封闭区域如图阴影部分所示.当直线l:y=2_向左平移时,(2_-y)的值在逐渐变小,当l通过点A(-2,2)时,(2_-y)min=-6.[答案] -66.已知点P(_,y)满足定点为A(2,0),则||sinAOP(O为坐标原点)的最大值为________.[解析] 可行域如图阴影部分所示,A(2,0)在_正半轴上,所以||sinAOP即为P 点纵坐标.当P位于点B时,其纵坐标取得最大值.[答案]7.(____兴化安丰中学检测)已知不等式组表示的平面区域S的面积为4,若点P(_,y)S,则z=2_+y的最大值为________.[解析] 由约束条件可作图如下,得S=a2a=a2,则a2=4,a=2,故图中点C(2,2),平移直线得当过点C(2,2)时zma_=22+2=6.[答案] 68.(____江西高考)_,yR,若|_|+|y|+|_-1|+|y-1|2,则_+y的取值范围为________.[解析] 由绝对值的几何意义知,|_|+|_-1|是数轴上的点_到原点和点1的距离之和,所以|_|+|_-1|1,当且仅当_[0,1]时取=.同理|y|+|y-1|1,当且仅当y[0,1]时取=.|_|+|y|+|_-1|+|y-1|2.而|_|+|y|+|_-1|+|y-1|2,|_|+|y|+|_-1|+|y-1|=2,此时,_[0,1],y[0,1],(_+y)[0,2].[答案] [0,2]二、解答题9.(____四川高考改编)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克,B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,试求公司共可获得的最大利润.[解] 设生产甲产品_桶,乙产品y桶,每天利润为z元,则且z=300_+400y.作出可行域,如图阴影部分所示.作直线300_+400y=0,向右上平移,过点A时,z=300_+400y取最大值,由得A(4,4),zma_=3004+4004=2 800.故公司共可获得的最大利润为2 800元.10.(____安徽高考改编)已知实数_,y满足约束条件(1)求z=_-y的最小值和最大值;(2)若z=,求z的取值范围.[解] 作约束条件满足的可行域,如图所示为ABC及其内部.联立得A(1,1).解方程组得点B(0,3).(1)由z=_-y,得y=_-z.平移直线_-y=0,则当其过点B(0,3)时,截距-z最大,即z最小;当过点A(1,1)时,截距-z最小,即z最大.zmin=0-3=-3;zma_=1-1=0.(2)过O(0,0)作直线_+2y=3的垂线l交于点N.观察可行域知,可行域内的点B、N到原点的距离分别达到最大与最小.又|ON|==,|OB|=3.z的取值范围是.简单的线性规划问题专题训练及答案的所有内容就是这些,希望对考生复习数学有帮助。

古典概型专题训练

古典概型专题训练

全国名校高考数学复习优质专题汇编(附详解)古典概型1.(优质试题苏北四市期末)若随机安排甲、乙、丙三人在3天节日中值班,每人值班1天,则甲与丙都不在第一天值班的概率为女生的概率为解析:设2名男生记为A i, A2,2名女生记为B i,B2,任意选择两人在星期六、星期日参加某公益活动,共有A1A2, A1B1, A1B2,A2B1,A2B2,B1B2,A2A1,B i A i,B2A1,B1A2,B2A2,B2B1 12 种情况,而星期六安排一名男生、星期日安排一名女生共有A1B1, A1B2,4 1A2B1, A2B2 4种情况,则发生的概率为p=12=3.4. _________________________________ (优质试题四川高考)从2,3,8,9中任取两个不同的数字,分别记为a, b,则log a b为整数的概率是 ______________________________________ .解析:从2,3,8,9中任取两个不同的数字,分别记为a, b,则(a, b)的所有可能结果为(2,3), (2,8), (2,9), (3,8), (3,9), (8,9),(3,2), (8,2), (9,2), (8,3), (9,3), (9,8),共12种取法,其中logb为整数的有(2,8), (3,9)两种,故P= $= 6.5.投掷两颗骰子,得到其向上的点数分别为m和n,则复数(m+ ni)(n—mi)为实数的概率为______ .解析:因为(m+ ni)(n —mi) = 2mn + (n2—m2) i,所以要使其为实数,须n2= m2,即m= n.由已知得,事件的总数为36, m= n,有(1,1),6 1 (2,2), (3,3), (4,4), (5,5), (6,6)共 6 个,所以所求的概率为P=-=-1答案:16.(优质试题苏州期末)连续2次抛掷一枚骰子(六个面上分别标有数字1,2,3,4,5,6),贝y事件“两次向上的数字之和等于7”发生的概率为解析:设基本事件为(a, b),其中a,b€{1,2,3,4,5,6},共有6X 6=36 个.满足a+ b= 7 的解有 6 组:(1,6), (2,5), (3,4), (4,3),(5,2),6 1(6,1),所以p=36= g.—保咼考,全练题型做到咼考达标1.(优质试题苏北四市摸底)抛掷甲、乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,记底面上的数字分别为X, y,则X为整数的概率是解析:底面上的数字(X, y)共有16种不同的情况:(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (3,4), (4,1),X(4,2), (4,3), (4,4),其中满足y为整数的共有8种不同的情况:(1,1),(2,1), (2,2), (3,1), (3,3), (4,1), (4,2), (4,4),所以所求的概率为P8 _ 116= 2.2.在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为解析:如图,在正六边形ABCDEF的6个顶点中8随机选择4个顶点,共有15种选法,其中构成的四边形是梯形的有ABEF, BCDE, ABCF,CDEF,ABCD, ADEF,共6 226种情况,故构成的四边形是梯形的概率P = —=2答案:23.已知集合M = {1, 2, 3, 4}, N = {(a, b)|a€ M, b€ M}, A 是集合N中任意一点,O为坐标原点,则直线OA与y= X2+1有交点的概率是解析:易知过点(0,0)与y= X2+1相切的直线为y= 2x(斜率小于0的无需考虑),集合N中共有16个元素,其中使直线0A的斜率不小4 1 于2的有(1,2), (1,3), (1,4), (2,4),共4个,故所求的概率为花=-4.(优质试题南通、扬州、泰州、淮安三调)将一颗骰子连续抛掷2次,向上的点数分别为m, n则点P(m, n)在直线y=承下方的概率为解析:连续抛掷一颗骰子两次,得到的基本事件的总数为6X61=36,其中满足点P(m,m在直线y=2x下方的基本事件有(3,1),(4,1),6(5,1), (5,2), (6,1), (6,2),共6个基本事件,故所求的概率为P=—5.(优质试题南京学情调研)从2个红球、2个黄球、1个白球中随机取出两个球,则两球颜色不同的概率是___________ .解析:分别用R i, R2表示2个红球,用丫1, 丫2表示2个黄球,用W表示1个白球,则事件总体包含的基本事件有R I R2, R1Y1, R1Y2,R2Y1, R2Y2, R i W, R2W, 丫1丫2, Y i W, Y2W,共10 个.法一:两球颜色不同所包含的基本事件为R1Y1, R1Y2, R2Y1,8 R2Y2, R1W, R2W, Y1W, Y2W,共8个,故所求事件的概率为P=—法二:两球颜色相同所包含的基本事件为R I R2,丫1丫2,共2个,2 1 1 4则该事件的概率为10=5故所求事件的概率为p= 1—5=5 -答案:416.已知函数f(x) = 3X3+ ax2+ b2x+1,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为解析:对函数f(x)求导可得f (x) = X2+ 2ax+ b2,要满足题意需x2+ 2ax + b2= 0 有两个不等实根,即△= 4(a2—b2)>0,即卩a>b .又(a,b)的取法共有9 种,其中满足a>b 的有(1,0), (2,0), (2,1), (3,0),(3,1),6 2(3,2),共6种,故所求的概率P = 9 = 3.7.从2,3,4,5,6这5个数字中任取3个,则所取3个数之和为偶数的概率为 __________ .解析:依题意,从2,3,4,5,6这5个数字中任取3个,共有10种不同的取法,其中所取3个数之和为偶数的取法共有 1 + 3= 4种(包含两种情形:一种情形是所取的3个数均为偶数,有1种取法;另一种情形是所取的3个数中2个是奇数,另一个是偶数, 有3种取法), 因此所求的概率为1)= I答案:28.现有7名数理化成绩优秀者,分别用A1, A2, A3, B1, B2,C1 , C2表示,其中A1 , A, A3的数学成绩优秀,B1 , B2的物理成绩优秀,C1 , C2的化学成绩优秀.从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛,则A1和B1不全被选中的概率为解析:从这7人中选出数学、物理、化学成绩优秀者各1名,所有可能的结果组成的12个基本事件为:(A1, B1, G), (A1, B1, C2), (A1, B2, C1), (A1, B2, C2), (A2, B1, C1), (A2 , B1 , C2) , (A2 , B2 ,C1), (A2 , B2 , C2), (A3 , B1 , C1), (A3 , B1 , C2), (A3 , B2 , C1), (A3 ,全国名校高考数学复习优质专题汇编(附详解) B 2, C 2).设“A i 和B i 不全被选中”为事件N ,则其对立事件N 表示“A i 和 B i 全被选中”,由于 N ={(A i , B i, C i ), (A i , B i , C 2)},所以 P(N)2 1 —— 1 5 12= 6,由对立事件的概率计算公式得 P(N) = 1-P( N )= 1-6=6・答案:59. 一个盒子里装有三张卡片,分别标记有数字 1,2,3,这三张卡 片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取一张, 将抽取的卡片上的数字依次记为 a , b , c.(1)求“抽取的卡片上的数字满足 a + b = c ”的概率;⑵求“抽取的卡片上的数字a , b , c 不完全相同”的概率.解:(1)由题意,抽取的卡片上的数字(a , b , c )所有可能的结果 为:(1,1,1), (1,1,2), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,1), (1,3,2),(2,1,1), (2,1,2), (2,1,3), (2,2,1), (2,2,2), (2,2,3),(2,3,1),(2,3,3), (3,1,1), (3,1,2), (3,1,3), (3,2,1), (3,2,2), (3,2,3), “抽取的卡片上的数字满足a + b = c ”为事件A ,则事件A 包括(1,1,2), (1,2,3), (2,1,3),共 3 种,3 1所以 P(A) = 27 = Q(1,3,3), (2,3,2),(3,3,1),(3,3,2), (3,3,3),共 27#.1 因此“抽取的卡片上的数字满足a+ b= c”的概率为1⑵设“抽取的卡片上的数字a, b, c不完全相同”为事件B,则事件 B 包括(1,1,1),(2,2,2),(3,3,3),共 3 种,—— 3 8所以P(B)= 1-P(B)= 1-27= 9,8因此“抽取的卡片上的数字a, b, c不完全相同”的概率为9・10.移动公司在国庆期间推出4G套餐,对国庆节当日办理套餐的客户进行优惠,优惠方案如下:选择套餐1的客户可获得优惠200 元,选择套餐2的客户可获得优惠500元,选择套餐3的客户可获得优惠300元.国庆节当天参与活动的人数统计结果如图所示,现将频率视为概率.150 . 厂100 ---------- -p-i50 —1―°套卷1套餐2宾餐3無《种类(1)求从中任选1人获得优惠金额不低于300元的概率;(2)若采用分层抽样的方式从参加活动的客户中选出6人,再从该6人中随机选出2人,求这2人获得相等优惠金额的概率.解:(1)设事件A为“从中任选1人获得优惠金额不低于300150+100 5・元”’则PS) = 50+150+ 100= 6⑵设事件B为“从这6人中选出2人,他们获得相等优惠金额”,由题意按分层抽样方式选出的6人中,获得优惠200元的有1人,获得优惠500元的有3人,获得优惠300元的有2人,分别记为ai, bi,b2, b3, c i, C2,从中选出2人的所有基本事件如下:a i b i, a i b2, a i b s,a i C i, a i C2,b i b2, b i b3, b,C i, de?, b zb, b zG, dq, b s", b sQ, gq,共15 个.其中使得事件B成立的有b i b2, b i b3, b2b3, GS 共4个.4则P(B) =亦.三上台阶,自主选做志在冲刺名校1.(优质试题徐州、连云港、宿迁三检)甲、乙、丙三人一起玩“黑白配”游戏,甲、乙、丙三人每次都随机出“手心(白)”、“手背(黑)”中的一个手势,当其中一个人出示的手势与另外两人都不一样时,这个人胜出;其它情况,不分胜负,则一次游戏中甲胜出的概率是解析:如图所示,甲、乙、丙三人每次都随机出“手心(白)”、“手背(黑)” 一共有8个不同的结果,在一次游戏中甲胜出一共有22 1个不同结果,所以在一次游戏中甲胜出的概率P = 2=才全国名校高考数学复习优质专题汇编(附详解)x 的一元二次函数 f(x) = ax 2— 4bx + 1.(1)设集合P = {1,2,3}和Q = {— 1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b,求函数y = f(x)在区间[1,+3 )上是增函 数的概率;[X + y — 8< 0,(2)设点(a,b)是区域4 x>0, 内的随机点,求函数y = f(x)〔y>0在区间[1,+乂)上是增函数的概率.解:(1)因为函数f(x)= ax 2— 4bx +1的图象的对称轴为x =;a要使f(x)= ax 2 — 4bx + 1在区间[1,+ 3)上为增函数,当且仅当a>0且2b< 1,即2b < a.a若 a = 1,贝J b = — 1; 右 a = 2,贝J b = — 1,1;2.已知关于S ^AOB全国名校高考数学复习优质专题汇编(附详解)若 a = 3,贝J b =- 1,1.所以事件包含基本事件的个数是 1 + 2+ 2 = 5,数是15.S ^C OB1x 8X 82 3 1所以所求事件的概率为 P = = 1 =11X 8x 8因为事件“分别从集合P 和Q 中随机取一个数作为a 和b ”的个51所以所求事件的概率为155= 1⑵由⑴知当且仅当2b <a 且a>0时,函数f (x ) =ax 2-4bx +1 在区间[1, + ^)上为增函数,依条件 \ 6 斎T X /O fi\a / n+(f -8=0可知试验的全部结果所构成的区域为I [ 2+ b — 8< 0,< (a, b) ' a>0, I I lb>0>构成所求事件的区域为如图所示的三角形AOB 部分.1 a + b — 8= 0, 由;b =2,得交点坐标C 16, I J ,解析:随机安排甲、乙、丙三人在3天节日中值班共有6种不同的安排方法:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲, 其中甲与丙都不在第一天值班共有2种不同的安排方法:乙甲丙,乙2 11丙甲,从而甲与丙都不在第一天值班的概率为P = * 2 * 4=2.(优质试题南通、扬州、淮安、宿迁、泰州二调)电视台组织中学生知识竞赛,共设有5个版块的试题,主题分别是:立德树人、社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力.某参赛队从中任选2个主题作答,则“立德树人”主题被该队选中的概率是解析:从5个主题中任选2个专题的所有方法数为10,故所有的基本事件的个数为10,而在所选的主题中含有主题“立德树人”4 2的方法数为4,故所求的概率为10=5・答案:23.从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名S ^AOB。

2024届全国高考数学真题分类专项(立体几何)汇编(附答案)

2024届全国高考数学真题分类专项(立体几何)汇编(附答案)

2024届全国高考数学真题分类专项(立体几何)汇编1.(2024年新课标全国Ⅰ卷)已知圆柱和圆锥的底面半径相等,侧)A .B .C .D .2.(2024年新课标全国Ⅱ卷)已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( )A .12 B .1 C .2 D .33.(2024年高考全国甲卷数学(理))已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙.4.(2024年新课标全国Ⅰ卷)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB =.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD .5.(2024年新课标全国Ⅱ卷)如图,平面四边形ABCD 中,8AB =,3CD =,AD =90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD = ,12AF AB =,将AEF △沿EF 对折至PEF !,使得PC =.(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.6.(2024年高考全国甲卷数学(理))如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M为AD 的中点.(1)证明://BM 平面CDE ; (2)求二面角F BM E --的正弦值.参考答案1.(2024年新课标全国Ⅰ卷)已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高,则圆锥的体积为( )A .B .C .D .【详细详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r =即=,故3r =,故圆锥的体积为1π93⨯=.故选:B.2.(2024年新课标全国Ⅱ卷)已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( ) A .12B .1C .2D .3【详细详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D =可知11111662222ABC A B C S S =⨯⨯==⨯= 设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -==,解得h = 如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,则1AA DN AD AM MN x =--=-,可得1DD ==结合等腰梯形11BCC B 可得22211622BB DD -⎛⎫=+ ⎪⎝⎭,即()221616433x x +=++,解得x = 所以1A A 与平面ABC 所成角的正切值为11tan 1A MA ADAM?=; 解法二:将正三棱台111ABC A B C -补成正三棱锥-P ABC ,则1A A 与平面ABC 所成角即为PA 与平面ABC 所成角,因为11113PA A B PA AB ==,则111127P A B C P ABC V V --=, 可知1112652273ABC A B C P ABC V --==,则18P ABC V -=, 设正三棱锥-P ABC 的高为d,则116618322P ABC V d -=⨯⨯⨯=,解得d =,取底面ABC 的中心为O ,则PO ⊥底面ABC,且AO = 所以PA 与平面ABC 所成角的正切值tan 1POPAO AO∠==. 故选:B.3.(2024年高考全国甲卷数学(理))已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙. 【详细详解】由题可得两个圆台的高分别为)12h r r ==-甲,)12h r r ==-乙,所以((212113143S S h r r V h V h S S h +-====+甲甲甲乙乙乙.4.(2024年新课标全国Ⅰ卷)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB =.(1)若AD PB ⊥,证明://AD 平面PBC ; (2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD . 【详细详解】(1)(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥, 又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB , 而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥, 根据平面知识可知//AD BC , 又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .(2)如图所示,过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF , 因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =, 所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF , 根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即sin 7DFE ∠=,即tan DFE ∠= 因为AD DC ⊥,设AD x =,则CD =2DE =,又242xCE -=,而EFC 为等腰直角三角形,所以2EF=,故22tan DFE∠==x =AD =5.(2024年新课标全国Ⅱ卷)如图,平面四边形ABCD 中,8AB =,3CD =,AD =,90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD = ,12AF AB =,将AEF △沿EF 对折至PEF !,使得PC =.(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.【详细详解】(1)由218,,52AB AD AE AD AF AB ====, 得4AE AF ==,又30BAD ︒∠=,在AEF △中,由余弦定理得2EF =,所以222AE EF AF +=,则AE EF ⊥,即EF AD ⊥, 所以,EF PE EF DE ⊥⊥,又,PE DE E PE DE =⊂ 、平面PDE , 所以EF ⊥平面PDE ,又PD ⊂平面PDE , 故EF ⊥PD ;(2)连接CE ,由90,3ADC ED CD ︒∠===,则22236CE ED CD =+=,在PEC 中,6PC PE EC ===,得222EC PE PC +=,所以PE EC ⊥,由(1)知PE EF ⊥,又,EC EF E EC EF =⊂ 、平面ABCD , 所以PE ⊥平面ABCD ,又ED ⊂平面ABCD ,所以PE ED ⊥,则,,PE EF ED 两两垂直,建立如图空间直角坐标系E xyz -,则(0,0,0),(0,0,(2,0,0),(0,E P D C F A -, 由F 是AB的中点,得(4,B ,所以(4,(2,0,PC PD PB PF =-=-=-=-,设平面PCD 和平面PBF 的一个法向量分别为111222(,,),(,,)n x y z m x y z ==,则11111300n PC x n PD ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,222224020m PB x m PF x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩ ,令122,y x ==11220,3,1,1x z y z ===-=,所以(0,2,3),1,1)n m ==- ,所以cos ,m nm n m n ⋅===设平面PCD 和平面PBF 所成角为θ,则sin θ== 即平面PCD 和平面PBF所成角的正弦值为65.6.(2024年高考全国甲卷数学(理))如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求二面角F BM E --的正弦值.【详细详解】(1)因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;(2)如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =, 结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =, 所以ABM 为等边三角形,O 为AM中点,所以OB =又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =, 四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==,()2,3BE = ,设平面BFM 的法向量为()111,,m x y z =,平面EMB 的法向量为()222,,n x y z =,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m = ,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-,11cos ,13m n m n m n ⋅===⋅,则sin ,m n =故二面角F BM E --的正弦值为13.。

高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析1.已知满足约束条件,当目标函数在该约束条件下取到最小值时,的最小值为()A.5B.4C.D.2【答案】B【解析】画出可行域(如图所示),由于,所以,经过直线与直线的交点时,取得最小值,即,代人得,,所以,时,,选B.【考点】简单线性规划的应用,二次函数的图象和性质.2.若、满足,且的最小值为,则的值为()A.2B.C.D.【答案】D【解析】若,没有最小值,不合题意;若,则不等式组表示的平面区域如图阴影部分,由图可知,直线在点处取得最小值,所以,解得.故选D.【考点】不等式组表示的平面区域,求目标函数的最小值,容易题.3.若变量x,y满足约束条件,则z=2x+y-4的最大值为()A.-4B.-1C.1D.5【答案】C【解析】画出不等式组表示的平面区域(如图中的阴影部分所示)及直线2x+y=0,平移该直线,当平移到经过该平面区域内的点(2,1)(该点是直线x+y-3=0与y=1的交点)时,相应直线在y 轴上的截距最大,此时z=2x+y-4取得最大值,最大值为z=2×2+1-4=1,因此选C.max4.(3分)(2011•重庆)设m,k为整数,方程mx2﹣kx+2=0在区间(0,1)内有两个不同的根,则m+k的最小值为()A.﹣8B.8C.12D.13【答案】D【解析】将一元二次方程的根的分布转化为确定相应的二次函数的图象来处理,根据图象可得到关于m和k的不等式组,此时不妨考虑利用不等式所表示的平面区域来解决,但须注意这不是线性规划问题,同时注意取整点.解:设f(x)=mx2﹣kx+2,由f(0)=2,易知f(x)的图象恒过定点(0,2),因此要使已知方程在区间(0,1)内两个不同的根,即f(x)的图象在区间(0,1)内与x轴有两个不同的交点即由题意可以得到:必有,即,在直角坐标系mok中作出满足不等式平面区域,如图所示,设z=m+k,则直线m+k﹣z=0经过图中的阴影中的整点(6,7)时,=13.z=m+k取得最小值,即zmin故选D.点评:此题考查了二次函数与二次方程之间的联系,解答要注意几个关键点:(1)将一元二次方程根的分布转化一元二次函数的图象与x轴的交点来处理;(2)将根据不等式组求两个变量的最值问题处理为规划问题;(3)作出不等式表示的平面区域时注意各个不等式表示的公共区域;(4)不可忽视求得最优解是整点.5.变量x,y满足约束条件,则目标函数z=3x-y的取值范围是()A.[-,6]B.[-,-1]C.[-1,6]D.[-6,]【答案】A【解析】作出不等式组表示的可行域,如图阴影部分所示,作直线3x-y=0,并向上、下平移,由图可得,当直线过点A时,z=3x-y取最大值;当直线过点B时,z=3x-y取最小值.由,解得A(2,0);由,解得B(,3).∴zmax =3×2-0=6,zmin=3×-3=-.∴z=3x-y的取值范围是[-,6].6.已知x,y,满足,x≥1,则的最大值为.【答案】【解析】因为,又因为构成一个三角形ABC及其内部的可行域,其中而表示可行域内的点到定点连线的斜率,其范围为,所以当时,取最大值为【考点】线性规划,函数最值7.已知点与点在直线的两侧,且,则的取值范围是()A.B.C.D.【答案】A【解析】由已知,,画出可行域,如图所示.表示可行域内的点与定点连线的斜率,观察图形可知的斜率最大为,故选.【考点】简单线性规划的应用,直线的斜率计算公式.8.给定区域:,令点集在上取得最大值或最小值的点,则中的点共确定______个不同的三角形.【答案】25【解析】把给定的区域:画成线性区域如图:,则满足条件的点在直线上有5个,在直线上有2个,能组成不同三角形的个数为.【考点】线性规划、组合问题.9.已知平面直角坐标系xOy上的区域D由不等式组给定. 若为D上的动点,点A的坐标为,则的最大值为()A.3B.4C.D.【答案】B【解析】画出区域D如图所示,则为图中阴影部分对应的四边形上及其内部的点,又,所以当目标线过点时,,故选B.【考点】线性规划10.设是定义在上的增函数,且对于任意的都有恒成立.如果实数满足不等式,那么的取值范围是【答案】(9,49)【解析】是定义在上的增函数,且对于任意的都有恒成立.所以可得函数为奇函数.由可得,..满足m,n如图所示.令.所以的取值范围表示以原点O为圆心,半径平方的范围,即过点A,B两点分别为最小值,最大值,即9和49.【考点】1.线性规划的问题.2.函数的单调性.3.函数的奇偶性.4.恒成立的问题.11.设变量x,y满足约束条件,则目标函数z=2y-3x的最大值为( ) A.-3B.2C.4D.5【答案】C【解析】满足约束条件的可行域如图所示.因为函数z=2y-3x,所以zA =-3,zB=2,zC=4,即目标函数z=2y-3x的最大值为4,故选C. [【考点】线性规划.12.如图,已知可行域为及其内部,若目标函数当且仅当在点处取得最大值,则的取值范围是______.【答案】【解析】根据线性规划的知识,可知目标函数的最优解都是在可行域的端点,所以根据题意,故填【考点】线性规划13.设实数x、y满足,则的最大值是_____________.【答案】9【解析】由可行域知,当时,【考点】线性规划14.若点(x,y)位于曲线y=|x|与y=2所围成的封闭区域,则2x-y的最小值是()A.-6B.-2C.0D.2【答案】A【解析】曲线y =|x|与y =2所围成的封闭区域如图阴影部分所示,当直线l :y =2x 向左平移时,(2x -y)的值在逐渐变小,当l 通过点A(-2,2)时,(2x -y)min =-6.15. 已知x,y 满足条件则的取值范围是( )A .[,9]B .(-∞,)∪(9,+∞)C .(0,9)D .[-9,-]【答案】A【解析】画出不等式组表示的平面区域(如图),其中A(4,1),B(-1,-6),C(-3,2).表示区域内的点与点(-4,-7)连线的斜率.由图可知,连线与直线BD 重合时,倾斜角最小且为锐角;连线与直线CD 重合时,倾斜角最大且为锐角.k BD =,k CD =9,所以的取值范围为[,9].16. 已知正数a ,b ,c 满足:5c -3a≤b≤4c -a ,cln b≥a +cln c ,则的取值范围是________. 【答案】[e,7] 【解析】由题意知作出可行域(如图所示).由得a =,b = c. 此时max=7. 由得a =,b =.此时==e.所以∈[e,7].min17.已知,满足约束条件,若的最小值为,则()A.B.C.D.【答案】A【解析】先根据约束条件画出可行域,设,将最值转化为轴上的截距,当直线经过点B时,最小,由得:,代入直线得,故选A.【考点】简单线性规划.18.已知实数、满足约束条件,则的取值范围是()A.B.C.D.【答案】D【解析】作出不等式组所表示的可行域如下图的阴影部分所示,联立得点,联立得点,作直线,则为直线在轴上截距的倍,当直线经过可行域上点时,此时直线在轴上的截距最小,此时取最小值,即;当直线经过可行域上的点时,此时直线在轴上的截距最大,此时取最大值,即,故的取值范围是,故选D.【考点】简单的线性规划问题19.设变量满足约束条件,则的最大值为( )A.6B.3C.D.1【答案】A【解析】这是线性规划的应用.目标函数是线性约束条件所确定的三角形区域内一点与原点的连线的斜率.先画出三条直线所围成的三角形区域,可知,直线与直线的交点坐标(1,6)代入计算得.【考点】线性规划的应用.20.已知是由不等式组所确定的平面区域,则圆在区域内的弧长为________.【答案】【解析】作出可行域及圆如图所示,图中阴影部分所在圆心角所对的弧长即为所求.易知图中两直线的斜率分别是,得,,得得弧长 (为圆半径).【考点】1.线性规划;2.两角和的正切公式;3.弧长公式.21.设变量x,y满足约束条件其中k(I)当k=1时,的最大值为______;(II)若的最大值为1,则实数k的取值范围是_____.【答案】1,.【解析】目标函数的可行域如图所示:不妨设(由可行域可知,),即,它表示一条开口向上的抛物线,且a的值越大,抛物线的开口就越小. (I)当时,由图象可知当抛物线图象经过点时,有最大值1; (II)表示一条经过点且斜率为k的直线及直线下方的区域,结合(I)可知,当抛物线经过点A时,有最大值1.从而可知,要使有最大值1,抛物线在变化过程中必先经过可行域内的点A,考虑临界状态,即直线与抛物线相切于点,此时,切线斜率,从而有k的取值范围是.【考点】线性规划.22.设满足约束条件,则的最大值为____________.【答案】6【解析】如图所示,在线性规划区域内,斜率为的直线经过该区域并取最大值时,该直线应过点,因此的最大值为6.【考点】线性规划的目标函数最值23.已知实数x,y满足且不等式axy恒成立,则实数a的最小值是.【答案】.【解析】由画出如图所示平面区域,因为区域中,恒成立得恒成立, 令则,函数在上是减函数,在上是增函数所以函数最大值为要使恒成立只要,所以的最小值是.【考点】线性规划,不等式及函数极值.24.已知x,y满足,则的最小值是()A.0B.C.D.2【答案】B【解析】因为,x,y满足,所以,,画出可行域,表示A(-1,-1)到可行域内的点距离的平方,所以,其最小值为A到直线=0的距离的平方,=。

高考数学专题课:可行域秒杀

高考数学专题课:可行域秒杀

②代点到Z=3+2y中分别得到不同的值 6,-3,-18
③容易知道最大值是6
1.求交点(几何意义)
2.代交点(检验)
提 醒
3.算最值
效率 :60秒 准确率:100% 推荐度:⭐⭐
2017年全国1卷数学高考卷理 科数学
第14题
①.求交点(1/3,1/3), (-1/3.-1/3),(-1,1) ②代交点得到1/3,-1/3,-5
可行域:截距式秒杀
教师:李飞月 2019年 3月22日21:30-22:00
难度系数 :⭐⭐ 高考分值:5分 考试频率:80%
2018年全国1卷理科数学第13题,文科数学第14题
1.不等式 2.截距式题,文科数学第14题
解 析
①求交点(2,0);(-1,0); (-4,-3)
③所以最小值是-5
文科
可以直接利用秒杀法求解吗
除此之外,你还能怎 么证明呢?
理科
可以直接利用秒杀法求解吗
除此之外,你还能怎 么证明呢?
THANKS

高三数学关于高考线性规划归类解析知识点分析 试题

高三数学关于高考线性规划归类解析知识点分析 试题

2021年高考线性规划归类解析制卷人:打自企; 成别使; 而都那。

审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。

线性规划问题是解析几何的重点,每年高考必有一道小题。

一、线性约束条件,探求线性目的关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,那么yx z 32+=的最大值为 。

解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目的函数z 最大值为18点评:此题主要考察线性规划问题,由线性约束条件画出可行域,然后求出目的函数的最大值.,是一道较为简单的送分题。

数形结合是数学思想的重要手段之一。

二、线性约束条件,探求非线性目的关系最值问题例2、1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩那么22x y +的最小值是 .解析:如图2,只要画出满足约束条件的可行域,而22x y +表示可行域内一解。

22x y+点到原点的间隔 的平方。

由图易知A 〔1,2〕是满足条件的最优的最小值是为5。

点评:此题属非线性规划最优解问题。

求解关键是在挖掘目的关系几何意义的前提下,作出可行域,寻求最优解。

三、约束条件设计参数形式,考察目的函数最值范围问题。

图2图1例3、在约束条件024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s ≤≤时,目的函数32z x y =+的最大值的变化范围是〔〕A.[6,15]B. [7,15]C. [6,8]D. [7,8]解析:画出可行域如图3所示,当34s ≤<时, 目的函数32z x y =+在(4,24)B s s --处获得最大值, 即max 3(4)2(24)4[7,8)z s s s =-+-=+∈;当45s ≤≤时,目的函数32z x y =+在点(0,4)E 处获得最大值,即max 30248z =⨯+⨯=,故[7,8]z ∈,从而选D; 点评:此题设计有新意,作出可行域,寻求最优解条件,然后转化为目的函数Z 关于S 的函数关系是求解的关键。

精编30题:高考数学根据线性规划求最值或范围专题集训含答案

精编30题:高考数学根据线性规划求最值或范围专题集训含答案

精编高考数学30题根据线性规划求最值或范围专题集训含答案例题详解若x ,y 满足约束条件⎪⎩⎪⎨⎧≥≤-+≥-0020y y x y x 则z=3x-4y 的最小值为________。

解:由题,画出可行域如图目标函数为z=3x-4y ,则直线443z x y -=纵截距越大,值越小 由图可知:在A(1,1)处取最小值,故z min =3×4-4×1=-1巩固练习1、(2023全国乙卷)若x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≤+-≤-739213y x y x y x ,则z=2x-y 的最大值为______。

答案:82、(2023全国甲卷)若x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≤+-≥+3233321y x y x y x ,设z=3x+2y 的最大值为_________。

答案:153、(2022全国乙卷)若x ,y 满足约束条件⎪⎩⎪⎨⎧≥≤+≥+0422y y x y x ,则z=2x-y 的最大值是______。

答案:84、(2022浙江)若实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤--≤-+≥-0207202y x y x x ,则z=3x+4y 的最大值是_____。

答案:185、(2021浙江)若实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤--≤-≥+0132001y x y x x ,则z=x-21y 的最小值是______。

答案:23-6、(2020全国Ⅰ卷)若x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≥--≤-+0101022y y x y x ,则z=x+7y 的最大值为________。

答案:17、(2020新课标Ⅱ)若x ,y 满足约束条件⎪⎩⎪⎨⎧≤--≥--≥+1211y x y x y x ,则z=x+2y 的最大值是______。

答案:88、(2020新课标Ⅲ)若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥-≥+1020x y x y x ,则z=3x+2y 的最大值为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国名校高考数学经典复习题汇编(附详解)专题:可行域
1.(全国名校·沈阳四校联考)下列各点中,与点(1,2)位于直线x +y -1=0的同一侧的是( )
A .(0,0)
B .(-1,1)
C .(-1,3)
D .(2,-3)
答案 C
解析 点(1,2)使x +y -1>0,点(-1,3)使x +y -1>0,所以此两点位于x +y -1=0的同一侧.故选C.
2.不等式(x +2y +1)(x -y +4)≤0表示的平面区域为(
)
答案 B
解析 方法一:可转化为①⎩⎪⎨⎪⎧x +2y +1≥0,x -y +4≤0或②⎩
⎪⎨⎪⎧x +2y +1≤0,x -y +4≥0.
由于(-2,0)满足②,所以排除A ,C ,D 选项.
方法二:原不等式可转化为③⎩⎪⎨⎪⎧x +2y +1≥0,-x +y -4≥0或④⎩
⎪⎨⎪
⎧x +2y +1≤0,-x +y -4≤0.
两条直线相交产生四个区域,分别为上下左右区域,③表示上面的区域,④表示下面的区域,故选B.
3.(全国名校·天津,理)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y ≥0,
x +2y -2≥0,
x ≤0,y ≤3,则目标函数z =x +y 的
最大值为( ) A.2
3
B .1
C.32 D .3
答案 D
解析 作出约束条件所表示的可行域如图中阴影部分所示,由z =x +y 得y =-x +z ,作出直线y =-x ,平移使之经过可行域,观察可知,最大值在B(0,3)处取得,故z max =0+3=3,选项D 符合.
4.设关于x ,y 的不等式组⎩⎪⎨⎪
⎧2x -y +1>0,x +m<0,y -m>0,表示的平面区域内存在点P(x 0,y 0),满足x 0-2y 0
=2,则m 的取值范围是( ) A .(-∞,4
3)
B .(-∞,1
3)
C .(-∞,-2
3)
D .(-∞,-5
3
)
答案 C
解析 作出可行域如图.
图中阴影部分表示可行域,要求可行域包含y =1
2x -1的上的点,只需要可行域的边界点(-
m ,m)在y =12x -1下方,也就是m<-12m -1,即m<-2
3
.
5.(全国名校·北京,理)若x ,y 满足⎩⎪⎨⎪
⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( )
A .0
B .3
C .4
D .5
答案 C
解析 不等式组⎩⎪⎨⎪
⎧2x -y ≤0,x +y ≤3,x ≥0
表示的可行域如图中阴影部分所示(含边界),
由⎩⎪⎨⎪⎧2x -y =0,x +y =3,解得⎩
⎪⎨⎪⎧x =1,
y =2,故当目标函数z =2x +y 经过点A(1,2)时,z 取得最大值,z max =2×1+2=4.故选C.
6.(全国名校·西安四校联考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -
2x 的最小值为( ) A .-7 B .-4 C .1 D .2
答案 A
解析 画出由x ,y 满足的约束条件⎩⎪⎨⎪
⎧3x +y -6≥0,x -y -2≤0,y -3≤0,
如图所示,得它们的交点分别为A(2,0),B(5,3),C(1,3).
可知z =y -2x 过点B(5,3)时,z 最小值为3-2×5=-7.
7.(全国名校·贵阳监测)已知实数x ,y 满足:⎩⎪⎨⎪
⎧x -2y +1≥0,x<2,x +y -1≥0,
则z =2x -2y -1的取值范围
是( ) A .[5
3,5]
B .[0,5]
C .[5
3,5)
D .[-5
3
,5)
答案 D
解析 画出不等式组所表示的区域,如图中阴影部分所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z<2×2-2×(-1)-1,即z 的取值范围是[-5
3
,5).
8.(全国名校·南昌调研)设变量x ,y 满足约束条件⎩⎪⎨⎪
⎧y ≥x ,x +3y ≤4,x ≥-2,则z =|x -3y|的最大值为( )
A .10
B .8
C .6
D .4
答案 B
解析 不等式组⎩⎪⎨⎪
⎧y ≥x ,x +3y ≤4,x ≥-2,
所表示的平面区域如图中阴影部分所示.
当平移直线x -3y =0过点A 时,m =x -3y 取最大值; 当平移直线x -3y =0过点C 时,m =x -3y 取最小值.
由题意可得A(-2,-2),C(-2,2),所以m max =-2-3×(-2)=4,m min =-2-3×2=-8,所以-8≤m ≤4,所以|m|≤8,即z max =8.
9.(2014·安徽,理)x ,y 满足约束条件⎩⎪⎨⎪
⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不
唯一,则实数a 的值为( ) A.1
2
或-1 B .2或1
2
C .2或1
D .2或-1
答案 D
解析 作出约束条件满足的可行域,根据z =y -ax 取得最大值的最优解不唯一,通过数形结合分析求解.
如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a>0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a<0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.
10.(全国名校·福建)变量x ,y 满足约束条件⎩⎪⎨⎪
⎧x +y ≥0,x -2y +2≥0,mx -y ≤0,若z =2x -y 的最大值为2,则
实数m 等于( ) A .-2 B .-1 C .1 D .2
答案 C
解析 如图所示,目标函数z =2x -y 取最大值2即y =2x -2时,画出⎩
⎪⎨⎪⎧x +y ≥0,
x -2y +2≥0,表示
的区域,由于mx -y ≤0过定点(0,0),要使z =2x -y 取最大值2,则目标函数必过两直线x -2y +2=0与y =2x -2的交点A(2,2),因此直线mx -y =0过点A(2,2),故有2m -2=0,解得m =1.
11.(全国名校·泉州质检)已知O 为坐标原点,A(1,2),点P 的坐标(x ,y)满足约束条件

⎪⎨⎪⎧x +|y|≤1,x ≥0,则z =OA →·OP →的最大值为( )
A .-2
B .-1
C .1
D .2
答案 D
解析 作出可行域如图中阴影部分所示,易知B(0,1),z =OA →·OP →
=x +2y ,平移直线x +2y =0,显然当直线z =x +2y 经过点B 时,z 取得最大值,且z max =2.故选D.
12.已知实数x ,y 满足条件⎩
⎪⎨⎪⎧(x -3)2+(y -2)2
≤1,x -y -1≥0,则z =y
x -2的
最小值为( ) A .3+ 2 B .2+ 2 C.3
4 D.4
3
答案 C
解析 不等式组表示的可行域如图阴影部分所示.目标函数z =y x -2=y -0x -2
表示在可行域取一点与点(2,0)连线的斜率,可知过点(2,0)作半圆的切线,切线的斜率为z =y
x -2的最小值,设切线方程
为y =k(x -2),则A 到切线的距离为1,故1=
|k -2|
1+k 2.解得k =3
4.
13.(全国名校·苏州市高三一诊)实数x ,y 满足⎩⎪⎨⎪
⎧y ≥0,x -y ≥0,2x -y -2≤0,则使得z =2y -3x 取得最小
值的最优解是( ) A .(1,0) B .(0,-2) C .(0,0) D .(2,2)
答案 A
解析 约束条件所表示的可行域为三角形,其三个顶点的坐标分别为(0,0),(1,0),(2,2),将三个顶点的坐标分别代入到目标函数z =2y -3x 中,易得在(1,0)处取得最小值,故取得最小值的最优解为(1,0).
14.(全国名校·湖北宜昌市)设x ,y 满足约束条件⎩⎪⎨⎪
⎧y -x ≤1,x +y ≤3,y ≥m ,若z =x +3y 的最大值与最小值
的差为7,则实数m =( ) A.3
2 B .-32
C.14 D .-14
答案 C。

相关文档
最新文档