福建省2020届高三数学模拟考试试题文(含解析)
2020届福建省高三毕业班3月质量检测考试数学(理)试题(解析版)

2.若复数 满足
,则
A.
B.
C.
D.1
【答案】D
【解析】把已知等式变形,利用复数代数形式的乘除运算化简求得 z,再由复数模的计
算公式求解.
【详解】
由(z+1)i=1+i,得 z+1
,
∴z=﹣i,则|z|=1.
故选:D.
【点睛】
本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.
3.经统计,某市高三学生期末数学成绩
则
,解得 n
,
∵CC′∥BB′,
∴S△BB′C′=S△BB′C
,
令 f(k)
(k
),则 f′(k)
,
令 f′(k)=0 可得 k
或 k (舍),
∴当 k
时,f′(k)>0,当
k
时,f′(k)<0,
∴当 k
时,f(k)取得最大值 f( )
.
故选:D.
【点睛】 本题考查了余弦定理,函数单调性判断与最值计算,考查了用解析法解决几何问题的方 法,属于较难题.
2020 届福建省高三毕业班 3 月质量检测考试数学(理)试题
一、单选题
1.已知集合
,
,则
A.
B.
C.
【答案】C
【解析】可求出集合 A,B,然后进行交集的运算即可.
【详解】
= D.
,
;
∴A∩B={x|1<x≤2}. 故选:C. 【点睛】
考查描述法的定义,对数函数的定义域,一元二次不等式的解法,交集的运算.
14.若 【答案】60
展开式的二项式系数之和为 64,则展开式中的常数项是______.
【解析】由题意利用二项式系数的性质求得 n 的值,在二项展开式的通项公式中,令 x
2020届全国100所名校高三模拟金典卷(一)数学(文)试题(解析版)

2020届全国100所名校高三模拟金典卷(一)数学(文)试题一、单选题1.已知集合{|24},{|22}A x x B x x =-<≤=-≤<,则A B =U ( ) A .{|22}x x -<< B .{|24}x x -≤≤ C .{|22}x x -≤≤ D .{|24}x x -<≤【答案】B【解析】直接利用并集的定义计算即可. 【详解】由已知,集合{|24},{|22}A x x B x x =-<≤=-≤<,所以{|24}A B x x ⋃=-≤≤. 故选:B 【点睛】本题考查集合的并集运算,考查学生的基本计算能力,是一道基础题.2.已知a 是实数,()11a a i -++是纯虚数,则复数z a i =+的模等于( )A .2B CD .1【答案】C【解析】()11a a i -++是纯虚数可得1a =,则1z i =+,再根据模的计算的公式计算即可. 【详解】()11a a i -++是纯虚数,则实部为0,虚部不为0,即1a =,所以1z i =+,||z =故选:C 【点睛】本题考查复数模的计算,涉及到复数的相关概念,是一道容易题.3.某产品的宣传费用x (万元)与销售额y (万元)的统计数据如下表所示:根据上表可得回归方程ˆ9.6 2.9yx =+,则宣传费用为3万元时销售额a 为( ) A .36.5 B .30C .33D .27【答案】D【解析】由题表先计算出x ,将其代入线性回归方程即可. 【详解】 由已知,1(4235) 3.54x =+++=, 由回归方程过点(),x y ,故36.5y =, 即1(452450)36.54y a =+++=,解得27a =. 故选:D 【点睛】本题考查线性回归方程的简单应用,回归方程一定过样本点的中心(,)x y ,考查学生的基本计算能力,是一道容易题.4.已知在等差数列{}n a 中,34576, 11a a a a ++==,则1a =( ) A .3 B .7C .7-D .3-【答案】C【解析】由3456a a a ++=,可得42,a =结合7 11a =,可得公差d ,再由413a a d =+可得1a . 【详解】由等差数列的性质,得345436a a a a ++==, 所以42,a =公差7493743a a d -===-, 又4132a a d =+=,所以17a =-. 故选:C 【点睛】本题考查等差数列的性质及等差数列基本量的计算,考查学生的运算能力,是一道容易题.5.已知抛物线24y x =的准线与圆2260x y x m +--=相切,则实数m 的值为( ) A .8 B .7 C .6 D .5【答案】B【解析】由题可得准线方程为1x =-,再利用圆心到直线的距离等于半径计算即可得到答案. 【详解】由已知,抛物线的准线方程为1x =-,圆2260x y x m +--=的标准方程为22(3)9x y m -+=+,由1x =-与圆相切,所以圆心到直线的距离()314d =--==, 解得7m =. 故选:B 【点睛】本题主要考查抛物线的定义,涉及到直线与圆的位置关系,考查学生的运算求解能力,是一道容易题.6.已知平面向量a r ,b r满足a =r ,||3b =r ,(2)a a b ⊥-r r r ,则23a b -r r ( )A .BC .4D .5【答案】A【解析】由(2)0a a b ⋅-=r r r,可得2a b ⋅=r r,将其代入|23|a b -==r r .【详解】由题意可得||2a ==r ,且(2)0a a b ⋅-=r r r,即220a a b -⋅=r r r,所以420a b -⋅=r r, 所以2a b ⋅=r r.由平面向量模的计算公式可得|23|a b -==r r==故选:A 【点睛】本题考查利用数量积计算向量的模,考查学生的数学运算能力,是一道容易题. 7.已知定义在R 上的函数()y f x =,对于任意的R x ∈,总有()()123f x f x -++=成立,则函数()y f x =的图象( ) A .关于点()1,2对称 B .关于点33,22⎛⎫⎪⎝⎭对称 C .关于点()3,3对称 D .关于点()1,3对称【答案】B【解析】设(,)A x y 是()y f x =图象上任意一点,A 关于(,)a b 对称的点为()'2,2A a x b y --也在()y f x =的图象上,再结合()()123f x f x -++=简单推导即可得到. 【详解】设(,)A x y 是()y f x =图象上任意一点,A 关于(,)a b 对称的点为()'2,2A a x b y --也在()y f x =的图象上,则(2)(1(21))3(221)f a x f x a f x a -=--+=-+-+3(32)2()f a x b f x =--+=-,所以有23,320b a =-=,解得33,22a b ==.所以函数()y x =的图象关于点33,22⎛⎫⎪⎝⎭对称. 故选:B 【点睛】本题考查函数图象的对称性,考查学生的逻辑推理能力,当然也可以作一个示意图得到,是一道中档题.8.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生【答案】C【解析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.9.函数||4x e y x=的图象可能是( )A .B .C .D .【答案】C【解析】由函数的奇偶性可排除B ;由(1),(3)f f 可排除选项A 、D. 【详解】设||()4x e f x x =,定义域为{|0}x x ≠,||()()4x e f x f x x-=-=-,所以()f x 为奇函数,故排除选项B ;又(1)14e f =<,排除选项A ;3(3)112e f =>,排除选项D.故选:C 【点睛】本题考查由解析式选函数图象的问题,涉及到函数的性质,此类题一般从单调性、奇偶性、特殊点的函数值入手,是一道容易题.10.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .163πB .3π C .29π D .169π【答案】D【解析】由三视图可知该几何体为底面是圆心角为23π的扇形,高是4的圆锥体,再利用圆锥体积公式计算即可. 【详解】从三视图中提供的图形信息与数据信息可知:该几何体的底面是圆心角为23απ=的扇形,高是4的圆锥体, 容易算得底面面积2112442233S r παπ==⨯⨯=,所以其体积111644339V ππ=⨯⨯⨯=. 故选:D 【点睛】本题考查三视图还原几何体以及几何体体积的计算,考查学生的空间想象能力、数学运算能力,是一道中档题.11.已知函数()sin 3(0)f x x x ωωω=+>的图象上存在()()12,0,,0A x B x 两点,||AB 的最小值为2π,再将函数()y f x =的图象向左平移3π个单位长度,所得图象对应的函数为()g x ,则()g x =( ) A .2sin 2x - B .2sin2xC .2cos 26x π⎛⎫-⎪⎝⎭D .2sin 26x π⎛⎫- ⎪⎝⎭【答案】A【解析】()2sin 3f x x πω⎛⎫=+⎪⎝⎭,由min ||2AB π=可得T π=,2ω=,再由平移变换及诱导公式可得()g x 的解析式.【详解】()sin 3cos 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,因为||AB 的最小值为12222T ππω=⨯=,解得2ω=. 因为函数()y f x =的图象向左平移3π个单位长度, 所得图象对应的函数为()g x , 所以()2sin 22sin(2)2sin 233g x x x x πππ⎡⎤⎛⎫=++=+=- ⎪⎢⎥⎝⎭⎣⎦. 故选:A 【点睛】本题考查三角函数图象的变换,涉及到辅助角公式、诱导公式的应用,考查学生的逻辑推理能力,是一道中档题.12.如图所示,在棱锥P ABCD -中,底面ABCD 是正方形,边长为2,22PD PA PC ===,.在这个四棱锥中放入一个球,则球的最大半径为( )A .2B 21C .2D 21【答案】D【解析】由题意,最大的球应与四棱锥各个面都相切,设球心为S ,连接SD ,SA SB SC SP 、、、,则把此四棱锥分为五个棱锥,设它们的高均为R ,求出四棱锥的表面积S 以及四棱锥的体积P ABCD V -,利用公式13P ABCD V S -=⨯R ⨯,计算即可. 【详解】由已知,22PD AD PA ===,,所以222PD AD PA +=,所以PD AD ⊥,同理PD CD ⊥,又CD AD D =I ,所以PD ⊥平面ABCD ,PD AB ⊥,又AB AD ⊥,PD AD D ⋂=,所以AB ⊥平面PAD ,所以PA AB ⊥,设此球半径为R ,最大的球应与四棱锥各个面都相切,设球心为S ,连接SD,SA SB SC SP、、、,则把此四棱锥分为五个棱锥,它们的高均为R.四棱锥的体积211222 3323P ABCD ABCDVS PD-⨯=⨯⨯=⨯=W,四棱锥的表面积S22112222222242222PAD PAB ABCDS S S=++=⨯⨯+⨯⨯⨯+=+ V V W,因为13P ABCDV S-=⨯R⨯,所以3222142221P ABCDVRS-====-++.故选:D【点睛】本题考查几何体内切球的问题,考查学生空间想象能力、转化与化归的能力,是一道有一定难度的压轴选择题.二、填空题13.设实数x,y满足约束条件101010yx yx y+≥⎧⎪-+≥⎨⎪++≤⎩,则34z x y=-的最大值是__________.【答案】4【解析】作出可行域,344zy x=-,易知截距越小,z越大,【详解】根据实数x,y满足约束条件101010yx yx y+≥⎧⎪-+≥⎨⎪++≤⎩,画出可行域,如图,平移直线34y x=即可得到目标函数的最大值.344z y x =-,易知截距越小,z 越大,平移直线34y x =,可知当目标函数经过点A 时取得最大值,由11y y x =-⎧⎨=--⎩,解得()0,1A -,所以max 304(1) 4.z =⨯-⨯-=故答案为:4 【点睛】本题考查简单的线性规划及应用,考查学生数形结合的思想,是一道容易题.14.曲线()e 43xf x x =+-在点()(0,)0f 处的切线方程为__________.【答案】52y x =-【解析】直接利用导数的几何意义计算即可. 【详解】因为()02f =-,'()4xf x e =+,所以'0(0)45f e =+=,所以切线方程为()25y --=()0x -,即5 2.y x =- 故答案为:52y x =- 【点睛】本题考查导数的几何意义,考查学生的基本计算能力,是一道容易题.15.已知数列{}n a 满足:11a =,12nn n a a +=+,则数列{}n a 的前n 项和n S =__________.【答案】122n n +--【解析】利用累加法可得数列{}n a 的通项公式,再利用分组求和法求和即可. 【详解】由已知,12nn n a a +-=,当2n ≥时,()()()211213211212222112n n n n n n a a a a a a a a ---=+-+-+⋅⋅⋅+-=+++⋅⋅⋅+==--,又11a =满足上式,所以21nn a =-,()212122222212n n n n S n n n +-=++⋅⋅⋅+-=-=---.故答案为:122n n +-- 【点睛】本题考查累加法求数列的通项以及分组求和法求数列的和,考查学生的运算求解能力,是一道中档题.16.已知双曲线22221x y a b-=(0b a >>)的左、右焦点分别是1F 、2F ,P 为双曲线左支上任意一点,当1222PF PF 最大值为14a时,该双曲线的离心率的取值范围是__________.【答案】【解析】112222111224|24|2PF PF a PF PF aPF a PF ==+++,1PF c a ≥-,分2c a a -≤,2a c a ≥-两种情况讨论,要注意题目中隐含的条件b a >.【详解】由已知,11222111224|24|2PF PF a PF PF aPF a PF ==+++,因为1PF c a ≥-,当2c a a -≤时,21121444a a PF a PF ≤=++,当且仅当12PF a =时,1222PF PF 取最大值14a, 由2a c a ≥-,所以3e ≤;当2c a a ->时,1222PF PF 的最大值小于14a,所以不合题意.因为b a >,所以22211b e a=->,所以2e >,所以2 3.e <≤故答案为:(2,3] 【点睛】本题考查双曲线的离心率的取值范围问题,涉及到双曲线的概念与性质及基本不等式,考查学生的逻辑推理能力,是一道有一定难度的题.三、解答题17.某学校组织高一、高二年级学生进行了“纪念建国70周年”的知识竞赛.从这两个年级各随机抽取了40名学生,对其成绩进行分析,得到了高一年级成绩的频率分布直方图和高二年级成绩的频数分布表.成绩分组 频数[)75,80 2 [)80,85 6[)85,90 16[)90,9514[)95,1002高二(1)若成绩不低于80分为“达标”,估计高一年级知识竞赛的达标率;(2)在抽取的学生中,从成绩为[]95,100的学生中随机选取2名学生,代表学校外出参加比赛,求这2名学生来自于同一年级的概率. 【答案】(1)0.85;(2)715【解析】(1)利用1减去[)75,80的概率即可得到答案;(2)高一年级成绩为[]95,100的有4人,记为1234, , , A A A A ,高二年级成绩为[]95,100的有2名,记为12,B B ,然后利用列举法即可.【详解】(1)高一年级知识竞赛的达标率为10.0350.85-⨯=.(2)高一年级成绩为[]95,100的有0.025404⨯⨯=(名),记为1234, , , A A A A , 高二年级成绩为[]95,100的有2名,记为12,B B .选取2名学生的所有可能为121314111223242122343132414212, , , , , , , , , , , , , , A A A A A A A B A B A A A A A B A B A A A B A B A B A B B B ,共15种;其中2名学生来自于同一年级的有12131423243412,,,,,,A A A A A A A A A A A A B B ,共7种. 所以这2名学生来自于同一年级的概率为715. 【点睛】本题考查统计与古典概率的计算,涉及到频率分布直方图和频数分布表,考查学生简单的数学运算,是一道容易题.18.在ABC V 中,角、、A B C 所对的边分别是a b c 、、,且2B A C =+,b =. (1)若3sin 4sin C A =,求c 的值; (2)求a c +的最大值【答案】(1)4;(2)【解析】(1)由已知,易得3B π=,由正弦定理可得34c a =,再由角B 的余弦定理即可得到答案;(2)正弦定理得sin sin sin a c b A C B ===,所以,a A c C ==,sin )a c A C +=+,再利用两角和的正弦公式以辅助角公式可得6a c A π⎛⎫+=+⎪⎝⎭,即可得到最大值.【详解】(1)因为2B A C =+, 又A B C π++=,得3B π=.又3sin 4sin C A =,由正弦定理得34c a =,即34a c =, 由余弦定理2222cosb ac ac B =+-,得22331132442c c c c ⎛⎫=+-⨯⨯⨯ ⎪⎝⎭,解得4c =或4c =-(舍).(2)由正弦定理得sin sin sin a c b A C B ===,,a A c C ∴==,sin )a c A C ∴+=+sin()]A A B =++1sin sin sin sin cos322A A A A A π⎡⎤⎤⎛⎫=++=++⎢⎥ ⎪⎥⎝⎭⎦⎣⎦6A π⎛⎫=+ ⎪⎝⎭,由203A π<<,得5666A πππ<+=,当62A ππ+=,即3A π=时,max ()a c +=.【点睛】本题考查正余弦定理解三角形,涉及到两角和的正弦公式及辅助角公式的应用,考查学生的数学运算求解能力,是一道容易题. 19.在菱形ABCD 中,,3ADC AB a π∠==,O 为线段CD 的中点(如图1).将AOD △沿AO 折起到'AOD △的位置,使得平面'AOD ⊥平面ABCO ,M 为线段'BD 的中点(如图2).(Ⅰ)求证:'OD BC ⊥; (Ⅱ)求证:CM ∥平面'AOD ; (Ⅲ)当四棱锥'D ABCO -的体积为32时,求a 的值. 【答案】(Ⅰ)见解析. (Ⅱ)见解析. (Ⅲ) 2a =.【解析】(Ⅰ)证明OD '⊥AO . 推出OD '⊥平面ABCO . 然后证明OD '⊥BC .(Ⅱ)取P 为线段AD '的中点,连接OP ,PM ;证明四边形OCMP 为平行四边形,然后证明CM ∥平面AOD ';(Ⅲ)说明OD '是四棱锥D '﹣ABCO 的高.通过体积公式求解即可. 【详解】(Ⅰ)证明:因为在菱形ABCD 中,3ADC π∠=,O 为线段CD 的中点,所以'OD AO ⊥. 因为平面'AOD ⊥平面ABCO 平面'AOD I 平面ABCO AO =,'OD ⊂平面'AOD ,所以'OD ⊥平面ABCO . 因为BC ⊂平面ABCO ,所以'OD BC ⊥. (Ⅱ)证明:如图,取P 为线段'AD 的中点,连接OP,PM ; 因为在'ABD ∆中,P ,M 分别是线段'AD ,'BD 的中点, 所以//PM AB ,12PM AB =. 因为O 是线段CD 的中点,菱形ABCD 中,AB DC a ==,//AB DC , 所以122a OC CD ==. 所以OC //AB ,12OC AB =. 所以//PM OC ,PM OC =.所以四边形OCMP 为平行四边形, 所以//CM OP ,因为CM ⊄平面'AOD ,OP ⊂平面'AOD ,所以//CM 平面'AOD ;(Ⅲ)由(Ⅰ)知'OD ⊥平面ABCO .所以'OD 是四棱锥'D ABCO -的高,又S=23332228a a a a ⎛⎫+ ⎪⎝⎭= ,'2a OD = 因为3133'3162a V S OD =⨯⨯==, 所以2a =. 【点睛】本题考查线面平行与垂直的判定定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力,是基础题20.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,过右焦点F 作与x 轴垂直的直线,与椭圆的交点到x 轴的距离为32. (1)求椭圆C 的方程;(2)设O 为坐标原点,过点F 的直线'l 与椭圆C 交于A B 、两点(A B 、不在x 轴上),若OE OA OB =+u u u r u u u r u u u r,求四边形AOBE 面积S 的最大值.【答案】(1)22143x y +=;(2)3. 【解析】(1)由12c a =,232b a =结合222a bc =+解方程组即可;(2)设':1l x ty =+,联立直线'l 与椭圆的方程得到根与系数的关系,因为OE OA OB =+u u u r u u u r u u u r,可得四边形AOBE为平行四边形,12122||2AOB S S OF y y =⨯-==△将根与系数的关系代入化简即可解决. 【详解】 (1)由已知得12c a =, Q 直线经过右焦点,2222231,||2c y b y a b a ∴+===, 又222a b c =+Q,2,1a b c ∴===,故所求椭圆C 的方程为22143x y +=.(2)Q 过()1,0F 的直线与椭圆C 交于A B 、两点(A B 、不在x 轴上), ∴设':1l x ty =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩,得22(34)690t y ty ++-=,设()()1122,,,A x y B x y ,则122122634934t y y t y y t -⎧+=⎪⎪+⎨-⎪=⎪+⎩,OE OA OB =+u u u r u u u r u u u rQ ,∴四边形AOBE 为平行四边形,122122||234AOBS OF y y t S =∴⨯-===+△1m =≥, 得2621313m S m m m==++,由对勾函数的单调性易得当1m =,即0t =时,max 32S =. 【点睛】本题考查直线与椭圆的位置关系,涉及到椭圆的方程、椭圆中面积的最值问题,考查学生的逻辑推理能力,是一道中档题.21.设函数()2a 2xf x x alnx (a 0)x -=-+>. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)记函数()f x 的最小值为()g a ,证明:()g a 1<.【答案】(I )()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增;(II )详见解析. 【解析】(I )对函数()f x 求导,解导函数所对应的不等式即可求出结果; (II )由(I )先得到()g a ,要证()1g a <,即证明1ln 1a a a a--<,即证明2111ln a a a--<, 构造函数()211ln 1h a a a a=++-,用导数的方法求函数()h a 的最小值即可. 【详解】(Ⅰ)显然()f x 的定义域为()0,+∞.()()()()222242332222221x x a x x a x a x x f x a x x x x x+----++=-⋅='-+=. ∵220x +>,0x >,∴若()0,x a ∈,0x a -<,此时()0f x '<,()f x 在()0,a 上单调递减; 若(),x a ∈+∞,0x a ->,此时()0f x '>,()f x 在(),a +∞上单调递增; 综上所述:()f x 在()0,a 上单调递减,在(),a +∞上单调递增. (Ⅱ)由(Ⅰ)知:()()min 1ln f x f a a a a a==--, 即:()1ln g a a a a a=--. 要证()1g a <,即证明1ln 1a a a a --<,即证明2111ln a a a--<, 令()211ln 1h a a a a =++-,则只需证明()211ln 10h a a a a=++->,∵()()()22333211122a a a a h a a a a a a'-+--=--==,且0a >, ∴当()0,2a ∈,20a -<,此时()0h a '<,()h a 在()0,2上单调递减; 当()2,a ∈+∞,20a ->,此时()0h a '>,()h a 在()2,+∞上单调递增, ∴()()min 1112ln21ln20244h a h ==++-=->.∴()211ln 10h a a a a=++->.∴()1g a <. 【点睛】本题主要考查导数在函数中的应用,通常需要对函数求导,用导数的方法研究函数的单调性,最值等,属于常考题型.22.在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线2:cos 4sin (0)C a a ρθθ=>,直线的参数方程为21x ty t=-+⎧⎨=-+⎩,(t 为参数).直线l 与曲线C 交于M N ,两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程.(2)设()2,1P --,若||,||,||PM MN PN 成等比数列,求a 和的||MN 值.【答案】(1)22cos 4sin (0)a a ρθρθ=>,10x y -+=;(2)10.【解析】(1)利用直角坐标、极坐标、参数方程互化公式即可解决;(2)将直线参数方程标准化,联立抛物线方程得到根与系数的关系,再利用直线参数方程的几何意义即可解决. 【详解】(1)曲线2:cos 4sin (0)C a a ρθθ=>,两边同时乘以ρ,可得22cos 4sin (0)a a ρθρθ=>,化简得24(0)x ay a =>;直线l 的参数方程为21x ty t =-+⎧⎨=-+⎩(t 为参数),消去参数t ,可得1x y -=-,即10x y -+=.(2)直线l 的参数方程21x ty t=-+⎧⎨=-+⎩(t 为参数)化为标准式为21x y ⎧=-⎪⎪⎨='+'⎪-⎪⎩('t 为参数),代入24(0)x ay a =>并整理得'2'1)8(1)0t a t a -+++=, 设M N ,两点对应的参数为''12, t t ,由韦达定理可得''121)t t a +=+,''128(1)0t t a ⋅=+>, 由题意得2||||||MN PM PN =⋅,即2''''1212t t t t -=⋅, 可得()2''''''1212124t t t t t t +-⋅=⋅, 即232(1)40(1)a a +=+,0a >,解得1,4a =所以2''121||81104MN t t ⎛⎫=⋅=+= ⎪⎝⎭,||MN =【点睛】本题考查极坐标与参数方程的应用,涉及到极坐标方程、普通方程、参数方程的互化,以及直线参数方程的几何意义求距离的问题,是一道容易题. 23.已知函数()|||2|f x x a x =-++. (1)当1a =时,求不等式()3f x ≤的解集; (2)()00,50x f x ∃∈-≥R ,求实数a 的取值范围. 【答案】(1){|21}x x-#;(2)[7,3]-【解析】(1)当1a =时,()|1||2|f x x x =-++,分2x -≤,21x -<<,1x ≥三种情况讨论即可;(2)()00,50x f x ∃∈-≥R ,则()min 5f x ≥,只需找到()f x 的最小值解不等式即可. 【详解】(1)当1a =时,()|1||2|f x x x =-++,①当2x -≤时,()21f x x =-- ,令()3f x ≤,即213x --≤,解得2x ≥-,所以2x =-, ②当21x -<<时,()3f x =,显然()3f x ≤成立,21x ∴-<<,③当1x ≥时,()21f x x =+,令()3f x ≤,即213x +≤,解得1x ≤,所以1x =. 综上所述,不等式的解集为{|21}x x-#.(2)0()|||2||()(2)||2|,f x x a x x a x a x =-++--+=+∃∈R Q …,有()050f x -…成立,∴要使()05f x ≥有解,只需|2|5a +≤,解得73a ≤≤-, ∴实数a 的取值范围为[7,3]-.【点睛】本题考查解绝对值不等式以及不等式能成立问题,考查学生的基本计算能力,是一道容易题.。
精品解析:2020届全国100所名校最新高考模拟示范卷高三理科数学模拟测试试题(二)(解析版)

故答案为:
【点睛】本题考查简单的线性规划问题;考查运算求解能力和数形结合思想;根据图形,向下平移直线 找到使目标函数取得最大值的点是求解本题的关键;属于中档题、常考题型.
15.已知函数 ,点 和 是函数 图象上相邻的两个对称中心,则 _________.
【答案】
【解析】
【分析】
1.若集合 , ,则 ()
A. B. C. D.
【答案】D
【解析】
【分析】
求解分式不等式解得集合 ,再由集合并运算,即可求得结果.
【详解】因为 ,所以 .
故选:D.
【点睛】本题考查集合的并运算,涉及分式不等式的求解,属综合基础题.
2. 是虚数单位, ,则 ()
A. 3B. 4C. 5D. 6
【答案】C
方差 43.2,
所以选项C的说法是错误的.
故选:C.
【点睛】本题考查由茎叶图求中位数、平均数、方差以及众数,属综合基础题.
4.若双曲线 的左、右焦点分别为 ,离心率为 ,点 ,则 ( )
A. 6B. 8C. 9D. 10
【答案】C
【解析】
【分析】
根据题意写出 与 坐标,表示出 ,结合离心率公式计算即可.
【分析】
根据题意,利用函数奇偶性的定义判断函数 的奇偶性排除选项 ;利用 排除选项A即可.
【详解】由题意知,函数 的定义域为 ,其定义域关于原点对称,
因为
又因为 ,
所以 ,即函数 为偶函数,故排除 ;
又因为 ,故排除A.
故选:B
【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.
2021届全国新高考仿真模拟试题(二)数学(文)(解析版)

∴CD⊥平面
ABD,∴CD
是三棱锥
C
ABD
的高,∴VC
ABD=13×12×2×2×sin
60°×2=2 3, 3
故选 A.
8.答案:C
解析:由射线测厚技术原理公式得I20=I0e-7.6×0.8μ,∴12=e-6.08μ,-ln 2=-6.08μ,μ≈0.114,
故选 C.
9.答案:C
解析:从题图(1)可以看出,该品牌汽车在 1 月份所对应的条形图最高,即销售量最多,
商品销售 25.0 30.0 34.0 37.0 39.0 41.0 42.0 44.0 48.0 y10
额 y/万元
且已知 错误!i=380.0
(1)求第 10 年的年收入 x10. (2)若该城市居民年收入 x 与该种商品的销售额 y 之间满足线性回归方程y^=363x+^a,
254 (ⅰ)求该种商品第 10 年的销售额 y10; (ⅱ)若该城市居民年收入为 40.0 亿元,估计这种商品的销售额是多少?(精确到 0.01) 附:①在线性回归方程y^=b^x+^a中,b^=错误!,^a=-y -b^-x ;
(1)求轨迹Γ的方程; (2)过点 F 作互相垂直的直线 AB 与 CD,其中直线 AB 与轨迹Γ交于点 A,B,直线 CD 与轨迹Γ交于点 C,D,设点 M,N 分别是 AB 和 CD 的中点,求△FMN 的面积的最小值.
-5-
21.(12 分)[2020·安徽省示范高中名校高三联考]函数 f(x)=aex+x2-ln x(e 为自然对数的底数,a 为常 数),曲线 f(x)在 x=1 处的切线方程为(e+1)x-y=0.
于 8 月份,所以该公司 7 月份汽车的总销售量比 8 月份少,所以选项 C 是错误的;从题图(1)
福建省福州2020届新高三第一次月考数学文试题版含答案

福州格致中学2016~2017学年度高三年级7月月考数学(文)试卷说明:本试卷共150分,考试时间150分钟。
一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项符合题目要求.)1.设集合{}{}21,0,1,,M N a a =-=,则使M N N =成立的a 的值是A .1B .0C .-1D .1或-12. 设,a R i ∈是虚数单位,则“1a =”是“a ia i+-为纯虚数”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 3.已知命题:R p x ∀∈, sin 1x ≤,则( )A .:R p x ⌝∃∈,sin 1x ≥B .:R p x ⌝∀∈,sin 1x ≥C .:R p x ⌝∃∈,sin 1x >D .:R p x ⌝∀∈,sin 1x >4.已知y x ,满足不等式组⎪⎩⎪⎨⎧≤≥+≤22x y x xy ,则y x z +=2的最大值与最小值的比值为( )A .21B .34C .23 D .25.执行如图所示的程序框图,若输入n 的值为8,则输出S 的值为( ) A .4 B .8 C .10 D .12 6.函数x e x f x ln )(=在点))1(,1(f 处的切线方程是( )A . )1(2-=x e yB .1-=ex yC .)1(-=x e yD .e x y -=7.函数()1cos f x x x x ⎛⎫=- ⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能( ) 8.已知向量(,3)a k =,(1,4)b =,(2,1)c =,且(23)a b c -⊥,则实数k =( ) A .152 B .3 C .0 D . 92- 9.双曲线22221x y a b-=的渐近线与圆22(2)1x y +-=相切,则双曲线离心率为( )(A 2 (B 3 (C )2 (D )310.已知)(x f '是奇函数)(x f 的导函数,0)1(=-f ,当0>x 时,0)()(>-'x f x f x , 则使得0)(>x f 成立的x 的取值范围是( )A.)1,0()1,( --∞B.),1()0,1(+∞-C.)1,0()0,1( -D.),1()1,(+∞--∞ 11.已知函数1ln ()x f x x +=在区间2(,)3a a +(0a >)上存在极值,则实数a 的取值范围是( ) A .(0,1) B .1(,1)3C .1(,1)2D .2(,1)312.已知函数⎩⎨⎧>+-≤+=0,120,1)(2x x x x x x f ,若关于x 的方程0)()(2=-x axf x f 恰有5个不同的实数解,则a 的取值范围是 ( )A .()0,1B .()0,2C .()1,2D .()0,3二、填空题:(本大题共4小题,每小题5分,共20分.把答案填写在答题纸上.) 13.函数x x y ln =的单调减区间是14..一个四棱锥的三视图如图所示,其侧视图是等边三角形.该四棱锥的体积等于 . 15.函数()x x a x f +=ln 在1=x 处取到极值,则a 的值为 16.设12,12,211-+=+==+n n n n n a a b a a a ,*∈N n ,则数列{}n b 的通项=n b . 三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)已知{}n a 是公差不为0的等差数列,11=a 且931,,a a a 成等比数列.⑴求数列{}n a 的通项;⑵求数列{}na 2的前n 项和nS.18.(本小题满分12分)已知函数(1)()ln ,()k x f x x g x x-==. (1)当k e =时,求函数()()()h x f x g x =-的单调区间和极值;; (2)若()()f x g x ≥恒成立,求实数k 的值.19.(本小题满分12分)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图. ⑴从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率.⑵规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成22⨯的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附表:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,(其中d c b a n +++=)20.(本小题满分12分)已知等比数列{n }满足2a 1+a 3=3a 2,且a 3+2是a 2,a 4的等差中项.⑴求数列{a n }的通项公式;⑵若b n =a n +log 21a n,S n =b 1+b 2+…+b n ,求使S n -2n +1+47<0成立的n 的最小值.21.(本小题满分12分)设函数1()ln f x x m x x=--. ⑴若函数()f x 在定义域上为增函数,求实数m 的取值范围; ⑵在⑴的条件下,若函数1()ln h x x x e=--,12,[1,]x x e ∃∈使得12()()f x h x ≥成立,求实数m 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答题时在答题卡上注明所选题目的题号.22.(本小题满分10分) 选修4—1;几何证明选讲.如图,在ABC ∆中,CD 是ACB ∠的角平分线,ADC ∆的外接圆交BC 于点E ,AC AB 2=.⑴求证:AD BE 2=;⑵当6,3==EC AC 时,求AD 的长.23.(本小题满分10分)选修4—4;坐标系与参数方程.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系。
专题04 恒成立问题(文理通用)(含详细答案)

专题04 恒成立问题一、单选题1.若定义在R 上的函数()f x 满足()()2f x f x -=+,且当1x <时,()x xf x e=,则满足()()35f f -的值 A .恒小于0 B .恒等于0 C .恒大于0D .无法判断2.()()(),f x R f x f x x R '∀∈设函数是定义在上的函数,其中的导函数为,满足对于()()f x f x '<恒成立,则下列各式恒成立的是A .2018(1)(0),(2018)(0)f ef f e f <<B .2018(1)(0),(2018)(0)f ef f e f >>C .2018(1)(0),(2018)(0)f ef f e f ><D .2018(1)(0),(2018)(0)f ef f ef3.已知0a >,0b >,下列说法错误的是 A .若1b a a b ⋅=,则2a b +≥ B .若23a b e a e b +=+,则a b > C .()ln ln a a b a b -≥-恒成立D .ln 0b ba a e+≥恒成立 4.若1x =是函数()4312*()1n n n f x a x a x a x n N ++=--+∈的极值点,数列{}n a 满足11a =,23a =,设31log n n b a +=,记[]x 表示不超过x 的最大整数.设12231202*********n n n S b b b b b b +⎡⎤=+++⎢⎥⎣⎦,若不等式n S t 对n +∀∈N 恒成立,则实数t 的最大值为 A .2020 B .2019 C .2018D .1010二、多选题1.若满足()()'0f x f x +>,对任意正实数a ,下面不等式恒成立的是 A .()()2f a f a < B .()()2af a ef a >-C .()()0>f a fD .()()0a f f a e>2.定义在R 上的函数()f x 的导函数为()f x ',且()()()f x xf x xf x '+<对x ∈R 恒成立,则下列选项不正确的是 A .2(2)(1)f f e> B .2(2)(1)f f e< C .()10f >D .()10f ->3.已知函数()cos sin f x x x x =-,下列结论中正确的是 A .函数()f x 在2x π=时,取得极小值1-B .对于[]0,x π∀∈,()0≤f x 恒成立C .若120x x π<<<,则1122sin sin x x x x < D .若sin x a b x <<,对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,则a 的最大值为2π,b 的最小值为14.已知函数()2f x x x=-,()()πcos 5202xg x a a a =+->,.给出下列四个命题,其中是真命题的为A .若[]1,2x ∃∈,使得()f x a <成立,则1a >-B .若R x ∀∈,使得()0g x >恒成立,则05a <<C .若[]11,2x ∀∈,2x ∀∈R ,使得()()12f x g x >恒成立,则6a >D .若[]11,2x ∀∈,[]20,1x ∃∈,使得()()12f x g x =成立,则34a ≤≤ 5.当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的取值可以是 A .2- B .1- C .0D .16.下列不等式中恒成立的有 A .()ln 11xx x +≥+,1x >- B .11ln 2x x x ⎛⎫≤- ⎪⎝⎭,0x > C .1x e x ≥+ D .21cos 12x x ≥-1.函数3()2,()ln 1f x x x c g x x =-+=+,若()()f x g x ≥恒成立,则实数c 的取值范围是___________. 2.若[,)x e ∀∈+∞,满足32ln 0mxx x me -≥恒成立,则实数m 的取值范围为___________.3.已知函数()()21ax x xf x x ++=≥,若()0f x '≥恒成立,则a 的取值范围为___________.4.已知函数()ln f x x x =-,若()10f x m -+≤恒成立,则m 的取值范围为___________. 5.若函数()0x f x e ax =->恒成立,则实数a 的取值范围是___________.6.当[1,2]x ∈-时,32122x x x m --<恒成立,则实数m 的取值范围是___________. 7.若()()220xxx me exeex e ++-≤在()0,x ∈+∞上恒成立,则实数m 的取值范围为___________.8.已知函数()()(ln )xf x e ax x ax =--,若()0f x <恒成立,则a 的取值范围是___________.9.已知函数()1x f x e ax =+-,若0,()0x f x 恒成立,则a 的取值范围是___________.10.不等式()221n n n N *>-∈不是恒成立的,请你只对该不等式中的数字作适当调整,使得不等式恒成立,请写出其中一个恒成立的不等式:___________.11.已知()ln f x x x m x =--,若()0f x >恒成立,则实数m 的取值范围是___________.12.已知函数21,0()2,0x e x f x ax x x ⎧-≥=⎨+<⎩,若()1f x ax ≥-恒成立,则a 的取值范围是___________.13.函数()2cos sin f x x x x x =+-,当3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()f x ax ≤恒成立,则实数a 的取值范围是___________. 14.已知0a <,且()221ln 0ax ax x ax -+≥+恒成立,则a 的值是___________.15.若对任意实数(],1x ∈-∞,2211xx ax e-+≥恒成立,则a =___________.1.已知函数()22ln f x ax x x =-+有两个不同的极值点1x ,2x ,则a 的取值范围___________;且不等式()()1212f x f x x x t +<++恒成立,则实数t 的取值范围___________.2.对任意正整数n ,函数32()27cos 1f n n n n n πλ=---,若(2)0f ≥,则λ的取值范围是___________;若不等式()0f n ≥恒成立,则λ的最大值为___________.3.已知函数1()ln (0)f x ax x a x=+>.(1)当1a =时,()f x 的极小值为___________;(2)若()f x ax ≥在(0,)+∞上恒成立,则实数a 的取值范围为___________. 4.已知函数()()221xf exx x =-+,则()f x 在点()()0,0f 处的切线方程为___________,若()f x ax ≥在()0,∞+上恒成立,则实数a 的取值范围为___________.5.设函数()32f x ax bx cx =++(a ,b ,R c ∈,0a ≠)若不等式()()2xf x af x '-≤对一切R x ∈恒成立,则a =___________,b ca+的取值范围为___________. 6.已知函数()()x x f x x ae e -=-为偶函数,函数()()xg x f x xe -=+,则a =___________;若()g x mx e >-对()0,x ∈+∞恒成立,则m 的取值范围为___________. 五、解答题1.已知函数()sin f x x ax =-,()=ln 1xg x x x e -+,2.71828e =⋅⋅⋅为自然对数的底数. (1)当()0,x π∈,()0f x <恒成立,求a 的取值范围;(2)当0a =时,记()()()h x f x g x =+,求证:对任意()1,x ∈+∞,()0h x <恒成立. 2.已知函数()1x f x ae x =--(1)若()0f x ≥对于任意的x 恒成立,求a 的取值范围 (2)证明:1111ln(1)23n n++++≥+对任意的n N +∈恒成立 3.若对任意的实数k 、b ,函数()y f x kx b =++与直线y kx b =+总相切,则称函数()f x 为“恒切函数”.(1)判断函数()2f x x =是否为“恒切函数”;(2)若函数()()ln 0f x m x nx m =+≠是“恒切函数”,求实数m 、n 满足的关系式;(3)若函数()()1x xf x e x e m =--+是“恒切函数”,求证:104m -<≤. 4.已知函数()(ln )sin x f x e x a x =+-.(1)若()ln sin f x x x ≥⋅恒成立,求实数a 的最大值; (2)若()0f x ≥恒成立,求正整数a 的最大值.专题04 恒成立问题一、单选题1.若定义在R 上的函数()f x 满足()()2f x f x -=+,且当1x <时,()x xf x e=,则满足()()35f f -的值 A .恒小于0 B .恒等于0 C .恒大于0D .无法判断【试题来源】安徽省皖江名校联盟2021届高三第二次联考(理) 【答案】C【分析】当1x <时,求导,得出导函数恒小于零,得出()f x 在(),1-∞内是增函数.再由()()2f x f x -=+得()f x 的图象关于直线1x =对称,从而得()f x 在()1,+∞内是减函数,由此可得选项.【解析】当1x <时,'1()0xx f x e -=->,则()f x 在(),1-∞内是增函数. 由()()2f x f x -=+得()f x 的图象关于直线1x =对称,所以()f x 在()1,+∞内是减函数, 所以()()350f f ->.故选C .2.()()(),f x R f x f x x R '∀∈设函数是定义在上的函数,其中的导函数为,满足对于()()f x f x '<恒成立,则下列各式恒成立的是A .2018(1)(0),(2018)(0)f ef f e f <<B .2018(1)(0),(2018)(0)f ef f e f >>C .2018(1)(0),(2018)(0)f ef f e f ><D .2018(1)(0),(2018)(0)f ef f ef【试题来源】2020届福建省仙游县枫亭中学高三上学期期中考试(理) 【答案】B【分析】构造函数()()xf x F x e =,求出'()0F x >,得到该函数为R 上的增函数,故得(0)(1)F F <,(0)(2018)F F <,从而可得到结论.【解析】设()()x f x F x e =,x R ∈(),所以'()()[]xf x F x e '==()()xf x f x e '-, 因为对于()(),x R f x f x ∀∈<',所以'()0F x >,所以()F x 是R 上的增函数,所以(0)(1)F F <,(0)(2018)F F <,即(1)(0)f f e <,2018(2018)(0)f f e <, 整理得()()10f ef >和()20182018(0f ef >).故故选B .3.已知0a >,0b >,下列说法错误的是 A .若1b a a b ⋅=,则2a b +≥ B .若23a b e a e b +=+,则a b > C .()ln ln a a b a b -≥-恒成立D .ln 0b ba a e+≥恒成立 【试题来源】浙江省杭州市萧山中学2019-2020学年高三下学期返校考试 【答案】D【解析】对于A ,不妨令01a <≤,1b ≥,则1aab bb a aa a ab a b a b ⎛⎫⎛⎫⋅=⋅=⋅= ⎪ ⎪⎝⎭⎝⎭,所以1baa b ⋅=即11b aaab-=,由10b a -≥可知101b aa -<≤,则101ab <≤,所以1≥ab ,2a b +≥,故A 正确; 对于B ,若a b ≤,则0a b e e -≤,320b a ->,故32ab e e b a -≠-即23a b e a e b +≠+,与已知矛盾,故B 正确;对于C ,()ln ln ln 1b b a a b a b a a-≥-⇔-≥-, 令0b x a =>,()()ln 10f x x x x =-->,则()1x f x x-'=, 则()f x 在()0,1上单调递减,在()1,+∞上单调递增, 所以()()10f x f ≥=,所以ln 10b b a a --≥即ln 1b ba a-≥-,故C 正确; 对于D ,设()()ln 0h x x x x =>,()()0x xg x x e=>, 则()ln 1h x x '=+,()1xxg x e -'=, 所以()h x 在()10,e -上单调递减,在()1,e -+∞上单调递增,则()()11h x h e e --≥=-,()g x 在()0,1上单调递增,在()1,+∞上单调递减,则()()11g x g e -≤=,所以()()110h e g e --+<,即当1a b e -==时ln 0bba a e +<,故D 错误.故选D . 4.若1x =是函数()4312*()1n n n f x a x a x a x n N ++=--+∈的极值点,数列{}n a 满足11a =,23a =,设31log n n b a +=,记[]x 表示不超过x 的最大整数.设12231202*********n n n S b b b b b b +⎡⎤=+++⎢⎥⎣⎦,若不等式n S t 对n +∀∈N 恒成立,则实数t 的最大值为 A .2020 B .2019 C .2018D .1010【试题来源】新疆维吾尔自治区2021届高三第二次联考数学(理)能力测试试题 【答案】D【分析】由极值点得数列的递推关系,由递推关系变形得数列1{}n n a a +-是等比数列,求得1n n a a +-,由累加法求得n a ,计算出n b ,然后求和122311202020202020n n b b b b b b ++++,利用增函数定义得此式的最小值,从而得出n S 的最小值,再由不等式恒成立可得t 的最大值. 【解析】3212()43n n n f x a x a x a '++=--,所以12(1)430n n n f a a a '++=--=, 即有()2113n n n n a a a a +++-=-,所以{}1n n a a +-是以2为首项3为公比的等比数列, 所以1123n n n a a -+-=⋅,1201111221123232313n n nn n n n n n n a a a a a a a a a a --++---=-+-+-++-+=⋅+⋅++⋅+=所以31log n n b a n +==,所以12231120202020202011120201223(1)n n b b b b b b n n +⎛⎫+++=+++⎪⨯⨯+⎝⎭1111120202020122311n n n n ⎛⎫=-+-++-=⎪++⎝⎭, 又20201ny n =+为增函数,当1n =时,1010n S =,10102020n S ≤<, 若n S t ≥恒成立,则t 的最大值为1010.故选D .【名师点睛】本题考查函数的极值,等比数列的判断与通项公式,累加法求通项公式,裂项相消法求和,函数新定义,不等式恒成立问题的综合应用.涉及知识点较多,属于中档题.解题方法是按部就班,按照题目提供的知识点顺序求解.由函数极值点得数列的递推公式,由递推公式引入新数列是等比数列,求得通项公式后用累加法求得n a ,由对数的概念求得n b ,用裂项相消法求和新数列的前n 项和,并利用函数单调性得出最小值,然后由新定义得n S 的最小值,从而根据不等式恒成立得结论. 二、多选题1.若满足()()'0f x f x +>,对任意正实数a ,下面不等式恒成立的是 A .()()2f a f a < B .()()2af a ef a >-C .()()0>f a fD .()()0af f a e>【试题来源】江苏省扬州中学2019-2020学年高二下学期6月月考 【答案】BD【分析】根据()()'0f x f x +>,设()()xh x e f x =,()()()()xh x ef x f x ''=+,得到()h x 在R 上是增函数,再根据a 是正实数,利用单调性逐项判断.【解析】设()()xh x e f x =,()()()()xh x ef x f x ''=+,因为()()'0f x f x +>,所以()0h x '>,()h x 在R 上是增函数, 因为a 是正实数,所以2a a <,所以()()22aae f a e f a <,因为21a a e e >>, ()(),2f a f a 大小不确定,故A 错误, 因为a a -<,所以()()aa ef a e f a --<,即()()2a f a e f a >-,故B 正确.因为0a >,所以()()()000a e f a e f f >=, 因为1a e >,()(),0f a f 大小不确定.故C 错误.()()()000a e f a e f f >=,因为1a e >,所以()()0af f a e>,故D 正确.故选BD. 【名师点睛】本题主要考查导数与函数单调性比较大小,还考查了运算求解的能力,属于中档题.2.定义在R 上的函数()f x 的导函数为()f x ',且()()()f x xf x xf x '+<对x ∈R 恒成立,则下列选项不正确的是 A .2(2)(1)f f e> B .2(2)(1)f f e< C .()10f >D .()10f ->【试题来源】江苏省盐城市伍佑中学2019-2020学年高二下学期期中 【答案】BCD【分析】构造出函数()()xxf x F x e =,再运用求导法则求出其导数,借助导数与函数单调性之间的关系及题设中()()()f x xf x xf x '+<,从而确定函数()()xxf x F x e =是单调递减函数,然后可判断出每个答案的正误. 【解析】构造函数()()xxf x F x e =, 因为2[()()]()()()()()0()x x x xe f x xf x xe f x f x xf x xf x F x e e '+-+-=='<', 故函数()()xxf x F x e=在R 上单调递减函数, 因为21>,所以212(2)(1)(2)(1)f f F F e e <⇒<,即2(2)(1)f f e<,故A 正确,B 错误; 因为()(1)0F F <,即()10f e<,所以()10f <,故C 错误; 因为()(1)0F F ->,即()110f e--->,所以()10f -<,故D 错误,故选BCD. 【名师点睛】解答本题的难点所在是如何依据题设条件构造出符合条件的函数()()xxf x F x e=,这里要求解题者具有较深的观察力和扎实的基本功,属于较难题. 3.已知函数()cos sin f x x x x =-,下列结论中正确的是 A .函数()f x 在2x π=时,取得极小值1-B .对于[]0,x π∀∈,()0≤f x 恒成立C .若120x x π<<<,则1122sin sin x x x x < D .若sin x a b x <<,对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,则a 的最大值为2π,b 的最小值为1【试题来源】山东省肥城市2019-2020学年高二下学期期中考试 【答案】BCD【分析】先对函数求导,根据022f ππ⎛⎫'=-≠⎪⎝⎭,排除A ;再由导数的方法研究函数单调性,判断出B 选项;构造函数()sin xg x x=,由导数的方法研究其单调性,即可判断C 选项;根据()sin x g x x =的单调性,先得到sin 2x x π>,再令()sin h x x x =-,根据导数的方法研究其单调性,得到sin 1xx<,即可判断D 选项. 【解析】因为()cos sin f x x x x =-,所以()cos sin cos sin f x x x x x x x '=--=-, 所以022f ππ⎛⎫'=-≠⎪⎝⎭,所以2x π=不是函数的极值点,故A 错; 若[]0,x π∈,则()sin 0f x x x '=-≤,所以函数()cos sin f x x x x =-在区间[]0,π上单调递减;因此()()00≤=f x f ,故B 正确; 令()sin x g x x =,则()2cos sin x x x g x x -'=, 因为()cos sin 0f x x x x =-≤在[]0,π上恒成立,所以()2cos sin 0x x xg x x -'=<在()0,π上恒成立,因此函数()sin xg x x=在()0,π上单调递减;又120x x π<<<,所以()()12g x g x >,即1212sin sin x x x x >,所以1122sin sin x x x x <,故C 正确;因为函数()sin x g x x =在()0,π上单调递减;所以0,2x π⎛⎫∈ ⎪⎝⎭时,函数()sin x g x x =也单调递减,因此()sin 22x g x g x ππ⎛⎫=>= ⎪⎝⎭在0,2π⎛⎫⎪⎝⎭上恒成立;令()sin h x x x =-,0,2x π⎛⎫∈ ⎪⎝⎭,则()1cos 0h x x '=-≥在0,2π⎛⎫⎪⎝⎭上恒成立,所以()sin h x x x =-在0,2π⎛⎫⎪⎝⎭上单调递增, 因此()sin 0h x x x =->,即sin 1xx <在0,2π⎛⎫ ⎪⎝⎭上恒成立; 综上,2sin 1x x π<<在0,2π⎛⎫⎪⎝⎭上恒成立,故D 正确.故选BCD . 【名师点睛】本题主要考查导数的应用,利用导数的方法研究函数的极值,单调性等,属于常考题型.4.已知函数()2f x x x=-,()()πcos 5202xg x a a a =+->,.给出下列四个命题,其中是真命题的为A .若[]1,2x ∃∈,使得()f x a <成立,则1a >-B .若R x ∀∈,使得()0g x >恒成立,则05a <<C .若[]11,2x ∀∈,2x ∀∈R ,使得()()12f x g x >恒成立,则6a >D .若[]11,2x ∀∈,[]20,1x ∃∈,使得()()12f x g x =成立,则34a ≤≤ 【试题来源】冲刺2020高考数学之拿高分题目强化卷(山东专版) 【答案】ACD【分析】对选项A ,()f x 在[]1,2上的最小值小于a 即可;对选项B ,()g x 的最小值大于0即可;对选项C ,()f x 在[]1,2上的最小值大于()g x 的最大值即可;对选项D ,[]11,2x ∀∈,[]20,1x ∃∈,()min min ()g x f x ≤,()max max ()g x f x ≥即可.【解析】对选项A ,只需()f x 在[]1,2上的最小值小于a ,()f x 在[]1,2上单调递增,所以min 2()(1)111f x f ==-=-,所以1a >-,故正确; 对选项B ,只需()g x 的最小值大于0,因为[]πcos,2x a a a∈-,所以min ()52530g x a a a =-+-=->,所以503a <<,故错误; 对选项C ,只需()f x 在[]1,2上的最小值大于()g x 的最大值,min ()1f x =-,max ()525g x a a a =+-=-,即15a ->-,6a >,故正确;对选项D ,只需()min min ()g x f x ≤,()max max ()g x f x ≥,max 2()(2)212f x f ==-=,所以[]11,2x ∈,[]1()1,1f x ∈-, []0,1x ∈时,π0,22x π⎡⎤∈⎢⎥⎣⎦,所以()g x 在[]0,1上单调递减, ()min (1)52a g x g ==-,()max (0)5a g x g ==-,所以()[]52,5g x a a ∈--,由题意,52151a a -≤-⎧⎨-≥⎩⇒34a ≤≤,故正确.故选ACD .【名师点睛】本题主要考查不等式恒成立和存在性问题,考查学生的分析转化能力,注意恒成立问题和存在性问题条件的转化,属于中档题.5.当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的取值可以是 A .2- B .1- C .0D .1【试题来源】江苏省南京市2020-2021学年高三上学期期中考前训练 【答案】ABC 【分析】将()41ln ln 3k x x x x --<-+,当1x >时,恒成立,转化为13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,当1x >时,恒成立,令()()3ln ln 1x F x x x x x =++>,利用导数法研究其最小值即可.【解析】因为当1x >时,()41ln ln 3k x x x x --<-+恒成立, 所以13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,当1x >时,恒成立, 令()()3ln ln 1xF x x x x x =++>,则()222131ln 2ln x x x F x x x x x---'=-+=.令()ln 2x x x ϕ=--,因为()10x x xϕ-'=>,所以()x ϕ在()1,+∞上单调递增. 因为()10ϕ<,所以()0F x '=在()1,+∞上有且仅有一个实数根0x , 于是()F x 在()01,x 上单调递减,在()0,x +∞上单调递增, 所以()()000min 00ln 3ln x F x F x x x x ==++.(*) 因为()1ln 3309F -'=<,()()21ln 22ln 4401616F --'==>,所以()03,4x ∈,且002ln 0x x --=,将00ln 2x x =-代入(*)式, 得()()0000min 00023121x F x F x x x x x x -==-++=+-,()03,4x ∈. 因为0011t x x =+-在()3,4上为增函数,所以713,34t ⎛⎫∈ ⎪⎝⎭,即()min1713,41216F x ⎛⎫∈ ⎪⎝⎭. 因为k 为整数,所以0k ≤.故选ABC . 6.下列不等式中恒成立的有 A .()ln 11xx x +≥+,1x >- B .11ln 2x x x ⎛⎫≤- ⎪⎝⎭,0x > C .1x e x ≥+D .21cos 12x x ≥-【试题来源】广东省中山市2019-2020学年高二下学期期末 【答案】ACD 【分析】令10tx ,()1ln 1f t t t=+-,导数方法求出最小值,即可判定出A 正确;令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,0x >,导数方法研究单调性,求出范围,即可判定B 错; 令()1xf x e x =--,导数的方法求出最小值,即可判定C 正确;令()21cos 12f x x x =-+,导数的方法求出最小值,即可判定D 正确. 【解析】A 选项,因为1x >-,令10t x ,()1ln 1f t t t=+-,则()22111t f t t t t -'=-=,所以01t <<时,()210t f t t-'=<,即()f t 单调递减;1t >时,()210t f t t -'=>,即()f t 单调递增; 所以()()min 10f t f ==,即()1ln 10f t t t=+-≥,即1ln t t t -≥,即()ln 11x x x +≥+,1x >-恒成立;故A 正确;B 选项,令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,0x >, 则()()2222211112110222x x x f x x x x x ---⎛⎫'=-+==-≤ ⎪⎝⎭显然恒成立, 所以()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭在0x >上单调递减, 又()10f =,所以当()0,1x ∈时,()()10f x f >=,即11ln 2x x x ⎛⎫>- ⎪⎝⎭,故B 错; C 选项,令()1xf x e x =--,则()1xf x e '=-,当0x >时,()10xf e x ='->,即()f x 单调递增;当0x <时,()10xf e x ='-<,所以()f x 单调递减;则()()00f x f ≥=,即1x e x ≥+恒成立;故C 正确; D 选项,令()21cos 12f x x x =-+,则()sin f x x x '=-+, 所以()cos 10f x x ''=-+≥恒成立,即函数()sin f x x x '=-+单调递增, 又()00f '=,所以当0x >时,()0f x '>,即()21cos 12f x x x =-+单调递增; 当0x <时,()0f x '<,即()21cos 12f x x x =-+单调递减; 所以()()min 00f x f ==,因此21cos 12x x ≥-恒成立,故D 正确;故选ACD . 三、填空题1.函数3()2,()ln 1f x x x c g x x =-+=+,若()()f x g x ≥恒成立,则实数c 的取值范围是___________.【试题来源】【全国区级联考】江苏省徐州市铜山区下学期高二数学(文)期中试题 【答案】2c ≥【解析】由()()f x g x ≥,即32ln 1x x c x -+≥+,即32ln 1c x x x ≥-+++.令()()32ln 10h x x x x x =-+++>,()()()21331x x x h x x'-++=-,故函数()h x 在区间()0,1上递增,在()1,+∞上递减,最大值为()12h =,所以2c ≥.【名师点睛】本题主要考查利用分析法和综合法求解不等式恒成立,问题,考查利用导数研究函数的单调性,极值和最值等知识.首先根据()()f x g x ≥,对函数进行分离常数,这里主要的思想方法是分离常数后利用导数求得另一个部分的最值,根据这个最值来求得参数的取值范围.2.若[,)x e ∀∈+∞,满足32ln 0mxx x me -≥恒成立,则实数m 的取值范围为___________.【试题来源】2020届湖南省长沙市长郡中学高三下学期3月停课不停学阶段性测试(理) 【答案】(,2]e -∞【分析】首先对参数的范围进行讨论,分两种情况,尤其是当0m >时,对式子进行变形,构造新函数,将恒成立问题转化为最值来处理,利用函数的单调性来解决,综述求得最后的结果.【解析】(1)0m ≤,显然成立;(2)0m >时,由32ln 0mxx x me -≥22ln m x m x x e x ⇒≥2ln (2ln )mxx m x e e x⇒≥,由()x f x xe =在[),e +∞为增2ln mx x⇒≥2ln m x x ⇒≤在[),e +∞恒成立, 由()2ln g x x x =在[),e +∞为增,min ()2g x e =,02m e <≤, 综上,2m e ≤,故答案为(,2]e -∞.3.已知函数()()21ax x xf x x ++=≥,若()0f x '≥恒成立,则a 的取值范围为___________.【试题来源】四川省泸州市2020学年下学期高二期末统一考试(文) 【答案】(],3-∞【分析】求函数的导数,根据()0f x ',利用参数分离法进行转化,然后构造函数()g x ,转化为求函数的最值即可.【解析】函数的导数2()21f ax x x '=+-,由()0f x '在1x 上恒成立得2210a x x +-在1x 上恒成立,即221a x x+,得322x x a +在1x 上恒成立,设32()2g x x x =+, 则2()622(31)g x x x x x '=+=+,当1x 时,()0g x '>恒成立,即()g x 在1x 上是增函数, 则当1x =时,()g x 取得最小值()1213g =+=,则3a , 即实数a 的取值范围是(],3-∞,故答案为(],3-∞.【名师点睛】本题主要考查函数恒成立问题,求函数的导数,利用参数分离法以及构造函数,利用导数研究函数的最值是解决本题的关键.属于中档题.4.已知函数()ln f x x x =-,若()10f x m -+≤恒成立,则m 的取值范围为___________. 【试题来源】2020年高考数学选填题专项测试(文理通用) 【答案】[)0,+∞【分析】把()ln f x x x =-,代入()10f x m -+≤,即ln 1m x x ≥-+恒成立,构造()ln 1g x x x =-+,利用导数研究最值,即得解.【解析】()ln f x x x =-,则()10f x m -+≤恒成立,等价于ln 1m x x ≥-+令11()ln 1(0),'()1(0)x g x x x x g x x x x-=-+>=-=> 因此()g x 在(0,1)单调递增,在(1)+∞,单调递减, 故max ()(1)00g x g m ==∴≥,故答案为[)0,+∞.【名师点睛】本题考查了导数在不等式的恒成立问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.5.若函数()0x f x e ax =->恒成立,则实数a 的取值范围是___________. 【试题来源】2020届四川省成都七中高三二诊数学模拟(理)试题 【答案】0a e ≤<【分析】若函数()0x f x e ax =->恒成立,即min ()0f x >,求导得'()x f x e a =-,在0,0,0a a a >=<三种情况下,分别讨论函数单调性,求出每种情况时的min ()f x ,解关于a的不等式,再取并集,即得.【解析】由题意得,只要min ()0f x >即可,'()x f x e a =-,当0a >时,令'()0f x =解得ln x a =,令'()0f x <,解得ln x a <,()f x 单调递减, 令'()0f x >,解得ln x a >,()f x 单调递增,故()f x 在ln x a =时,()f x 有最小值,min ()(ln )(1ln )f x f a a a ==-, 若()0f x >恒成立,则(1ln )0a a ->,解得0a e <<; 当0a =时,()0x f x e =>恒成立; 当0a <时,'()x f x e a =-,()f x 单调递增,,()x f x →-∞→-∞,不合题意,舍去.综上,实数a 的取值范围是0a e ≤<.故答案为0a e ≤<6.当[1,2]x ∈-时,32122x x x m --<恒成立,则实数m 的取值范围是___________. 【试题来源】陕西省商洛市洛南中学2019-2020学年高二下学期第二次月考(理) 【答案】(2,)+∞【分析】设()3212,[1,2]2x x x x f x --∈-=,利用导数求得函数的单调性与最大值,结合题意,即可求得实数m 的取值范围.【解析】由题意,设()3212,[1,2]2x x x x f x --∈-=, 则()22(1)(323)x x f x x x --=-+'=,当2[1,)3x ∈--或(1,2]x ∈时,()0f x '>,()f x 单调递增;当2(,1)3x ∈-时,()0f x '<,()f x 单调递减, 又由222(),(2)2327f f -==,即2()(2)3f f -<, 即函数()f x 在区间[1,2]-的最大值为2,又由当[1,2]x ∈-时,32122x x x m --<恒成立,所以2m >, 即实数m 的取值范围是(2,)+∞.故答案为(2,)+∞【名师点睛】本题主要考查了恒成立问题的求解,其中解答中熟练应用函数的导数求得函数的单调性与最值是解答的关键,着重考查推理与运算能力,属于基础题.7.若()()220xxx me exeex e ++-≤在()0,x ∈+∞上恒成立,则实数m 的取值范围为___________.【试题来源】浙江省杭州地区(含周边)重点中学2020-2021学年高三上学期期中 【答案】32m ≤-【分析】对已知不等式进行变形,利用换元法、构造函数法、常变量分离法,结合导数的性质进行求解即可.【解析】()()()()222210xx x x x xme ex e ex me ex e ex e e++++-⇒≤≤ (1), 令x ext e=,因为()0,x ∈+∞,所以0t >, 则不等式(1)化为2221(2)(1)11t t m t t m t --+++≤⇒≤+,设()xex f x e=,()0,x ∈+∞,'(1)()x e x f x e -=,当1x >时,'()0,()f x f x <单调递减, 当01x <<时,'()0,()f x f x >单调递增,因此当()0,x ∈+∞时,max ()(1)1f x f ==, 而(0)0f =,因此当()0,x ∈+∞时,()(0,1]f x ∈,因此(0,1]t ∈,设2221()1t t g t t --+=+,(0,1]t ∈,因此要想()()220x x xme ex e ex e ++-≤在()0,x ∈+∞上恒成立,只需min ()m g t ≤,2'2243()(1)t t g t t ---=+,因为(0,1]t ∈,所以'()0g t <,因此()g t 在(0,1]t ∈时单调递减,所以min 3()(1)2g t g ==-,因此32m ≤-.8.已知函数()()(ln )xf x e ax x ax =--,若()0f x <恒成立,则a 的取值范围是___________.【试题来源】四川省三台中学实验学校2019-2020学年高二下学期期末适应性考试(理) 【答案】1,e e ⎛⎫ ⎪⎝⎭【分析】先由x y e =的图象与ln y x =的图象可得,ln >x e x 恒成立;原问题即可转化为直线y ax =介于x y e =与ln y x =之间,作出其大致图象,由图象得到只需<<OA OB k a k ;根据导数的方法求出OA ,OB 所在直线斜率,进而可得出结果. 【解析】由x y e =的图象与ln y x =的图象可得,ln >x e x 恒成立;所以若()()(ln )0=--<xf x e ax x ax 恒成立,只需0ln 0x e ax x ax ⎧->⎨-<⎩,即直线y ax =介于x y e =与ln y x =之间,作出其大致图象如下:由图象可得,只需<<OA OB k a k ;设11(,)A x y ,由ln y x =得1y x'=,所以111OA x x k y x =='=, 所以曲线ln y x =在点11(,)A x y 处的切线OA 的方程为1111ln ()-=-y x x x x , 又该切线过点O ,所以11110ln (0)1-=-=-x x x ,解得1x e =,所以1=OA k e; 设22(,)B x y ,由x y e =得e x y '=,所以22x OB x x k y e =='=,所以曲线x y e =在点22(,)B x y 处的切线OB 的方程为222()-=-x x y e e x x ,又该切线过点O ,所以2220(0)-=-x x ee x ,解得21x =,所以=OB k e ;所以1a e e <<.故答案为1,e e ⎛⎫⎪⎝⎭. 【名师点睛】本题主要考查由导数的方法研究不等式恒成立的问题,熟记导数的几何意义即可,属于常考题型.9.已知函数()1x f x e ax =+-,若0,()0x f x 恒成立,则a 的取值范围是___________. 【试题来源】黑龙江省七台河市田家炳高级中学2019-2020学年高二下学期期中考试(理)【答案】[1,)-+∞【分析】求导得到()x f x e a '=+,讨论10a +和10a +<两种情况,计算10a +<时,函数()f x 在[)00,x 上单调递减,故()(0)0f x f =,不符合,排除,得到答案. 【解析】因为()1x f x e ax =+-,所以()x f x e a '=+,因为0x ,所以()1f x a '+. 当10a +,即1a ≥-时,()0f x ',则()f x 在[0,)+∞上单调递增,从而()(0)0f x f =,故1a ≥-符合题意;当10a +<,即1a <-时,因为()x f x e a '=+在[0,)+∞上单调递增,且(0)10f a '=+<,所以存在唯一的0(0,)x ∈+∞,使得()00f x '=.令()0f x '<,得00x x <,则()f x 在[)00,x 上单调递减,从而()(0)0f x f =,故1a <-不符合题意.综上,a 的取值范围是[1,)-+∞.故答案为[1,)-+∞.10.不等式()221n n n N *>-∈不是恒成立的,请你只对该不等式中的数字作适当调整,使得不等式恒成立,请写出其中一个恒成立的不等式:___________. 【试题来源】北京市101中学2019-2020学年高三10月月考 【答案】331n n >-【分析】将不等式中的数字2变为3,得出331n n >-,然后利用导数证明出当3n ≥时,33n n ≥即可,即可得出不等式331n n >-对任意的n *∈N 恒成立.【解析】13311>-,23321>-,33331>-,猜想,对任意的n *∈N ,331n n >-.下面利用导数证明出当3n ≥时,33n n ≥,即证ln 33ln n n ≥,即证ln ln 33n n ≤, 构造函数()ln x f x x =,则()21ln xf x x -'=,当3x ≥时,()0f x '<. 所以,函数()ln x f x x =在区间[)3,+∞上单调递减,当3n ≥时,ln ln 33n n ≤.所以,当3n ≥且n *∈N 时,33n n ≥,所以,331n n >-.故答案为331n n >-. 【名师点睛】本题考查数列不等式的证明,考查了归纳法,同时也考查了导数在证明数列不等式的应用,考查推理能力,属于中等题.11.已知()ln f x x x m x =--,若()0f x >恒成立,则实数m 的取值范围是___________. 【试题来源】湖北省襄阳市第一中学2019-2020学年高二下学期5月月考 【答案】(,1)-∞【分析】函数()f x 的定义域为(0,)x ∈+∞,由()0f x >,得ln ||xx m x->,分类讨论,分离参数,求最值,即可求实数m 的取值范围.【解析】函数()f x 的定义域为(0,)x ∈+∞,由()0f x >,得ln ||xx m x->, (ⅰ)当(0,1)x ∈时,||0x m -≥,ln 0xx<,不等式恒成立,所以m R ∈; (ⅰ)当1x =时,|1|0m -≥,ln 0xx=,所以1m ≠; (ⅰ)当1x >时,不等式恒成立等价于ln x m x x <-恒成立或ln xm x x>+恒成立, 令ln ()x h x x x =-,则221ln ()x x h x x'-+=,因为1x >,所以()0h x '>,从而()1h x >, 因为ln xm x x<-恒成立等价于min ()m h x <,所以1m , 令ln ()x g x x x =+,则221ln ()x xg x x+-'=, 再令2()1ln p x x x =+-,则1'()20p x x x=->在(1,)x ∈+∞上恒成立,()p x 在(1,)x ∈+∞上无最大值,综上所述,满足条件的m 的取值范围是(,1)-∞.故答案为(,1)-∞.12.已知函数21,0()2,0x e x f x ax x x ⎧-≥=⎨+<⎩,若()1f x ax ≥-恒成立,则a 的取值范围是___________.【试题来源】陕西省安康市2020-2021学年高三上学期10月联考(理)【答案】4e -⎡⎤⎣⎦【分析】若()1f x ax ≥-,则211,021,0x e ax x ax x ax x ⎧-≥-≥⎨+≥-<⎩,当0x =时,显然成立,当0x ≠时,则2,021,0xe a x xx a x x x ⎧≤>⎪⎪⎨+⎪≥<⎪-⎩,然后构造函数()x e g x x=(0x >),()221x h x x x +=-(0x <),分别求解函数()g x 的最小值和()h x 的最大值,只需()()min max h x a g x ≤≤即可.【解析】若()1f x ax ≥-,则211,021,0x e ax x ax x ax x ⎧-≥-≥⎨+≥-<⎩,当0x =时,显然成立;当0x ≠时,则()2,012,0x e ax x a x x x x ⎧≥>⎪⎨-≥--<⎪⎩,因为当0x <时,20x x ->, 所以只需满足2,021,0xe a x xx a x x x ⎧≤>⎪⎪⎨+⎪≥<⎪-⎩即可,令()x e g x x =(0x >),则()()21x x e g x x-'=, 则()0,1x ∈时,()0g x '<,所以()g x 在()0,1x ∈上递减, 当()1,x ∈+∞时,()0g x '>,则()g x 在()1,+∞上递增, 所以()()1min g x g e ==,所以a e ≤,令()221x h x x x +=-(0x <), 则()()()()()()22222222112221x x x x x x h x x x x x --+-+-'==--,令()0h x '=,得x =x =则当x ⎛∈-∞ ⎝ ⎭时,()0h x '>;当x ⎫∈⎪⎪⎝⎭时,()0h x '<, 所以函数()h x在⎛-∞ ⎝ ⎭上递增,在⎫⎪⎪⎝⎭上递减, 所以()4maxh x h ===-⎝⎭⎝⎭故4a ≥-4a e -≤.故答案为4e -⎡⎤⎣⎦.【名师点睛】本题考查根据不等式恒成立问题求参数的取值范围问题,考查学生分析问题、转化问题的能力,考查参变分离思想的运用,考查利用导数求解函数的最值,属于难题. 解决此类问题的方法一般有以下几种:(1)作出函数的图象,利用数形结合思想加以研究;(2)先进行参变分离,然后利用导数研究函数的最值,即可解决问题,必要时可以构造新函数进行研究.13.函数()2cos sin f x x x x x =+-,当3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()f x ax ≤恒成立,则实数a 的取值范围是___________.【试题来源】河南省名校联盟2020届高三(6月份)高考数学(理)联考试题 【答案】[)0,+∞ 【分析】先根据2x π=时22f a ππ⎛⎫≤⎪⎝⎭得0a ≥,再对函数()f x 求导,研究导函数的单调性、最值等,进而研究函数()f x 单调性,即可解决.【解析】22f a ππ⎛⎫≤ ⎪⎝⎭,02f ⎛⎫= ⎪⎝⎭π,0a ∴≥. 由题意得()()2sin sin cos 1sin cos 1f x x x x x x x x '=-++-=-+-⎡⎤⎣⎦, 令()sin cos 1g x x x x =-+-,则()sin g x x x '=-. 当,2x π⎛⎤∈π⎥⎝⎦时,()0g x '<,()g x 单调递减; 当3,2x ππ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增,()g x ∴的最小值为()1g ππ=--. 又22g π⎛⎫=- ⎪⎝⎭,302g π⎛⎫= ⎪⎝⎭,3,22x ππ⎡⎤∴∈⎢⎥⎣⎦,()0g x ≤,即()0f x '≤, ()f x ∴在区间3,22ππ⎡⎤⎢⎥⎣⎦为减函数.02f π⎛⎫= ⎪⎝⎭,∴当3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()0f x ≤.又当0a ≥,3,22x ππ⎡⎤∈⎢⎥⎣⎦时,0ax ≥,故()f x ax ≤恒成立,因此a 的取值范围是[)0,+∞.14.已知0a <,且()221ln 0ax ax x ax -+≥+恒成立,则a 的值是___________.【试题来源】6月大数据精选模拟卷04(上海卷)(满分冲刺篇) 【答案】e -【分析】把不等式()221ln 0a x ax x ax -+≥+恒成立,转化为函数()()()1ln 0f x ax ax x =+⋅-≥在定义域内对任意的x 恒成立,结合函数的单调性和零点,得出1a-是函数ln y ax x =-的零点,即可求解. 【解析】由题意,不等式()221ln 0a x ax x ax -+≥+恒成立,即函数()()()1ln 0f x ax ax x =+⋅-≥在定义域内对任意的x 恒成立,由ln ,0,0y ax x a x =-<>,则10y a x'=-<,所以ln y ax x =-为(0,)+∞减函数, 又由当0a <,可得1y ax =+为(0,)+∞减函数, 所以1y ax =+ 与ln y ax x =-同为单调减函数,且1a-是函数1y ax =+的零点, 故1a -是函数ln y ax x =-的零点,故110ln a a a ⎛⎫⎛⎫=⋅--- ⎪ ⎪⎝⎭⎝⎭,解得a e =-.【名师点睛】本题主要考查了不等式的恒成立问题,以及函数与方程的综合应用,其中解答中把不等式恒成立问题转化为函数的性质和函数的零点问题是解答的关键,着重考查转化思想,以及推理与运算能力.15.若对任意实数(],1x ∈-∞,2211xx ax e-+≥恒成立,则a =___________. 【试题来源】2020届辽宁省抚顺市高三二模考试(理) 【答案】12-【分析】设()()2211xx ax f x x e-+=≤,结合导数可知当0a <时,()()min 21f x f a =+;由题意可知,()()2122211a a f x f a e++≥+=≥,设()1t g t e t =--,则()0g t ≤,由导数可求出当0t =时,()g t 有最小值0,即()0g t ≥.从而可确定()0g t =,即可求出a 的值.【解析】设()()2211xx ax f x x e -+=≤,则()()()121xx x a f x e --+⎡⎤⎣⎦'=.当211a +≥,即0a ≥时,()0f x '≤,则()f x 在(],1-∞上单调递减, 故()()2211a f x f e -≥=≥,解得102ea ≤-<,所以0a ≥不符合题意; 当211a +<,即0a <时,()f x 在(),21a -∞+上单调递减,在(]21,1a +上单调递增, 则()()min21f x f a =+.因为2211xx ax e -+≥,所以()()2122211a a f x f a e ++≥+=≥. 令211a t +=<,不等式21221a a e++≥可转化为10te t --≤,设()1t g t e t =--, 则()1tg t e '=-,令()0g t '<,得0t <;令()0g t '>,得01t <<,则()g t 在(),0-∞上单调递减,在()0,1上单调递增;当0t =时,()g t 有最小值0, 即()0g t ≥.因为()0g t ≤,所以()0g t =,此时210a +=,故12a =-. 【名师点睛】本题考查了函数最值的求解,考查了不等式恒成立问题.本题的难点在于将已知恒成立问题,转化为()10tg t e t =--≤恒成立.本题的关键是结合导数,对含参、不含参函数最值的求解. 四、双空题1.已知函数()22ln f x ax x x =-+有两个不同的极值点1x ,2x ,则a 的取值范围___________;且不等式()()1212f x f x x x t +<++恒成立,则实数t 的取值范围___________.【试题来源】辽宁省锦州市渤大附中、育明高中2020-2021学年高三上学期第一次联考 【答案】10,2⎛⎫ ⎪⎝⎭[)5,-+∞【分析】求出导函数()2122122ax x f x ax x x-+'=-+=,只需方程22210ax x -+=有两个不相等的正根,满足1212010210x x a x x a ⎧⎪∆>⎪⎪=>⎨⎪⎪+=>⎪⎩,解不等式组可得a 的取值范围;求出 ()()1212f x f x x x +--的表达式,最后利用导数,通过构造函数,求出新构造函数的单调性,最后求出t 的取值范围.【解析】2221()(0)ax x f x x x'-+=>,因为函数()22ln f x ax x x =-+有两个不同的极值点12,x x ,所以方程22210ax x -+=有两个不相等的正实数根,于是有:121248010102a x x a x x a ⎧⎪∆=->⎪⎪+=>⎨⎪⎪=>⎪⎩,解得102a <<.()()221112221212122ln 2ln f x f x x x x ax x x ax x x x +--+--++=--()()212121212()23ln a x x x x x x x x ⎡⎤=+--++⎣⎦21ln 2a a=---, 设21()1ln 2,02h a a a a ⎛⎫=---<< ⎪⎝⎭, 22()0a h a a '-=>,故()h a 在102a <<上单调递增,故1()52h a h ⎛⎫<=-⎪⎝⎭,所以5t ≥-.因此t 的取值范围是[)5,-+∞. 故答案为10,2⎛⎫ ⎪⎝⎭;[)5,-+∞【名师点睛】本题考查了已知函数极值情况求参数取值范围问题,考查了不等式恒成立问题,构造新函数,利用导数是解题的关键,属于基础题.2.对任意正整数n ,函数32()27cos 1f n n n n n πλ=---,若(2)0f ≥,则λ的取值范围是___________;若不等式()0f n ≥恒成立,则λ的最大值为___________. 【试题来源】2021年新高考数学一轮复习学与练 【答案】13,2⎛⎤-∞-⎥⎝⎦132-【分析】将2n =代入求解即可;当n 为奇数时,cos 1n π=-,则转化。
2020届全国100所名校高三模拟金典卷(三)数学(文)试题(解析版)

2020届全国100所名校高三模拟金典卷(三)数学(文)试题一、单选题1.集合{(,)|1}P x y y x ==+,{}2(,)|Q x y y x ==,则集合P Q I 中元素的个数是( ) A .0个 B .1个C .2个D .3个【答案】C【解析】根据集合,P Q 元素特征,联立方程,判断其解的个数即可. 【详解】P Q I 表示直线1y x =+与抛物线2y x =的图象交点,联立21y x y x=+⎧⎨=⎩,整理得210,1450x x --=∆=+=>, ∴方程有两个不同的实数解,即方程组有两个解,可知两个函数有两个公共点,故集合P Q I 中元素的个数为2. 故选:C. 【点睛】本题考查交集中元素的个数,注意集合元素的特征,属于基础题. 2.若复z 满足(2)23i z i ⋅+=-+(i 是虚数单位),则z 的虚部为( ) A .i B .2iC .1D .2【答案】D【解析】根据复数除法的运算法则,求出z ,即可得出结论. 【详解】∵223i z i i ⋅+=-+,∴212iz i i-+==+, ∴z 的虚部为2. 故选:D. 【点睛】本题考查复数的代数运算及复数的基本概念,属于基础题.3.已知向量()()2332a b ==r r ,,,,则|–|a b =r rA .B .2C .D .50【答案】A【解析】本题先计算a b -r r,再根据模的概念求出||a b -r r .【详解】由已知,(2,3)(3,2)(1,1)a b -=-=-r r,所以||a b -==r r故选A 【点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.4.设等差数列{}n a 的前n 项和为n S ,若75a =,927S =,则公差d 等于( ) A .0 B .1C .12D .32【答案】B【解析】由927S =可求出5a ,结合已知即可求解. 【详解】()199599272a a S a +===,解得53a =, 所以75531752a a d --===-. 故选:B. 【点睛】本题考查等差数列的前n 和、等差数列基本量的运算,掌握公式及性质是解题的关键,属于基础题.5.若双曲线22:19y x C m -=的渐近线方程为23y x =±,则C 的两个焦点坐标为( )A .(0,B .(0)C .(0,D .(【答案】C【解析】根据双曲线渐近线方程,建立m 的等量关系,求出双曲线方程,即可得出结论. 【详解】∵双曲线22:19y x C m -=的渐近线方程为23y x =±,23=,解得4m =, ∴双曲线方程为22149y x -=,∴双曲线C 的两个焦点坐标为(0,. 故选:C. 【点睛】本题考查双曲线的简单几何性质与标准方程的应用,要注意双曲线焦点位置,属于基础题.6.下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:则下列判断中不正确的是( ) A .该公司2018年度冰箱类电器销售亏损B .该公司2018年度小家电类电器营业收入和净利润相同C .该公司2018年度净利润主要由空调类电器销售提供D .剔除冰箱类销售数据后,该公司2018年度空调类电器销售净利润占比将会降低 【答案】B【解析】根据表格提供的数据,逐项分析,即可得出结论. 【详解】选项A ,该公司2018年度冰箱类电器利润率占比为负值, 因此冰箱类销售亏损,所以A 项正确;选项B ,该公司2018年度小家电类电器营业收入和净利润是不同的量,不知道相应的总量,无法比较,所以B 项错误;选项C ,该公司2018年度空调类净利润占比比其它类占比大的多, 因此2018年度净利润主要由空调类电器销售提供,所以C 项正确; 选项D ,剔除冰箱类销售数据后,该公司2018年度总净利润变大, 而空调类电器销售净利润不变,因此利润占比降低,所以选项D 正确. 故选:B. 【点睛】本题考查统计图表与实际问题,考查数据分析能力,属于基础题.7.函数()()11x x e f x x e+=-(其中e 为自然对数的底数)的图象大致为( )A .B .C .D .【答案】A【解析】求得f (x )的奇偶性及f (1)的值即可得出答案. 【详解】∵f (﹣x )()()()111111x x x x x xe e e x e x e x e--+++====-----f (x ), ∴f (x )是偶函数,故f (x )图形关于y 轴对称,排除C ,D ; 又x=1时,()e 111ef +=-<0, ∴排除B , 故选A . 【点睛】本题考查了函数图像的识别,经常利用函数的奇偶性,单调性及特殊函数值对选项进行排除,属于基础题.8.将函数()cos(2)(0)f x A x ϕϕπ=+<<的图象向左平移6π个单位长度后,得到函数()g x 的图象关于y 轴对称,则ϕ=( )A .4π B .34π C .3π D .23π 【答案】D【解析】根据函数平移关系求出()g x ,再由()g x 的对称性,得到ϕ的值,结合其范围,即可求解. 【详解】因为()cos 2cos 263g x A x A x ππϕϕ⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦图象关于y 轴对称, 所以()3k k πϕπ+=∈Z ,因为0ϕπ<<,所以23ϕπ=. 故选:D. 【点睛】本题考查三角函数图象变换关系以及余弦函数的对称性,属于基础题. 9.已知1b a <<,则下列大小关系不正确的是( ) A .b a a a < B .a b b b > C .b b a b > D .b a a b >【答案】D【解析】根据指数函数和幂函数的单调性,逐项验证,即可得出结论. 【详解】∵1b a <<,∴x y a =和x y b =均为增函数, ∴b a a a <,a b b b >,A ,B 项正确,又∵by x =在(0,)+∞为增函数,∴b b a b >, C 项正确; b a 和a b 的大小关系不能确定,如3,2,b aa b a b ==>;4,2,b a a b a b ===;5,2,b a a b a b ==< ,故D 项不正确.故选:D. 【点睛】本题考查比较指数幂的大小关系,应用指数函数与幂函数的性质是解题的关键,属于基础题.10.我国南北朝时期数学家祖暅,提出了著名的祖暅原理:“缘幂势既同,则积不容异也”.“幂”是截面积,“势”是几何体的高,意思是两等高几何体,若在每一等高处的截面积都相等,则两几何体体积相等.已知某不规则几何体与右侧三视图所对应的几何体满足“幂势既同”,其中俯视图中的圆弧为14圆周,则该不规则几何体的体积为( )A .12π+B .136π+ C .12π+D .1233π+ 【答案】B【解析】根据三视图知该几何体是三棱锥与14圆锥体的所得组合体,结合图中数据计算该组合体的体积即可. 【详解】解:根据三视图知,该几何体是三棱锥与14圆锥体的组合体, 如图所示;则该组合体的体积为21111111212323436V ππ=⨯⨯⨯⨯+⨯⨯⨯=+; 所以对应不规则几何体的体积为136π+.故选B .【点睛】本题考查了简单组合体的体积计算问题,也考查了三视图转化为几何体直观图的应用问题,是基础题.11.如图,圆柱的轴截面ABCD 为正方形,E 为弧»BC的中点,则异面直线AE 与BC 所成角的余弦值为( )A .33B .5 C .306D .66【答案】D【解析】取BC 的中点H ,连接,,?EH AH ED ,则异面直线AE 与BC 所成角即为EAD ∠,再利用余弦定理求cos EAD ∠得解.【详解】取BC 的中点H ,连接,,90,EH AH EHA ∠=o设2,AB =则1,5,BH HE AH ===所以6,AE =连接,6,ED ED =因为//,BC AD所以异面直线AE 与BC 所成角即为,EAD ∠在EAD V 中6cos ,226EAD ∠==⨯⨯ 故选:D【点睛】本题主要考查异面直线所成角的计算,考查余弦定理,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.12.已知函数()(ln )xe f x k x x x=+-,若1x =是函数()f x 的唯一极值点,则实数k 的取值范围是( )A .(,]e -∞B .(,)e -∞C .(,)e -+∞D .[,)e -+?【答案】A 【解析】【详解】由函数()()ln xe f x k x x x =+-,可得()211'1x x x e x e x e f x k x x x x ⎛⎫--⎛⎫=+-=- ⎪ ⎪⎝⎭⎝⎭,()f x Q 有唯一极值点()1,'0x f x =∴=有唯一根1x =,0xe k x ∴-=无根,即y k=与()xe g x x =无交点,可得()()21'x e x g x x-=,由()'0g x >得,()g x 在[)1+∞上递增,由()'0g x <得,()g x 在()0,1上递减,()()min 1,g x g e k e ∴==∴≤,即实数k 的取值范围是(],e -∞,故选A. 【方法点睛】已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题 .二、填空题13.设x ,y 满足约束条件001030x y x y x y >⎧⎪>⎪⎨-+>⎪⎪+-<⎩,则3z x y =-的取值范围为_________.【答案】(1,9)-【解析】做出满足条件的可行域,根据图形求出目标函数的最大值和最小值即可. 【详解】做出满足不等式组001030x y x y x y >⎧⎪>⎪⎨-+>⎪⎪+-<⎩表示的平面区域,如下图(阴影部分)所示,根据图形,当目标函数3z x y =-过点(0,1)A 时, 取得最小值为1-,当目标函数3z x y =-过点(3,0)B 时, 取得最大值为9,所以3z x y =-的取值范围为(1,9)-. 故答案为:(1,9)-. 【点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.14.设n S 为等比数列{}n a 的前n 项和,4727a a =,则63S S =_________. 【答案】2827【解析】根据已知求出等比数列的公比,再由等比数列的前n 项和公式,即可求解. 【详解】设等比数列{}n a 的公比为q , 根据题意,有3127q =,解得13q =, 则()()6136331128112711a q S q q S a q q--==+=--. 故答案为:2827. 【点睛】本题考查等比数列的前n项和,考查计算求解能力,属于基础题.A B C D四位同学周五下午参加学校的课外活动,在课外15.高三某班一学习小组的,,,活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A不在散步,也不在打篮球;②B不在跳舞,也不在散步;③“C在散步”是“A在跳舞”的充分条件;④D不在打篮球,也不在散步;⑤C不在跳舞,也不在打篮球.以上命题都是真命题,那么D在_________.【答案】画画【解析】以上命题都是真命题,∴对应的情况是:则由表格知A在跳舞,B在打篮球,∵③“C在散步”是“A在跳舞”的充分条件,∴C在散步,则D在画画,故答案为画画16.设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标. 【详解】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y , 22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.三、解答题17.在ABC V 中,a 、b 、c 分别为角A 、B 、C 所对的边,122cos b a c C=-.(1)求角B 的大小;(2)若2a =,b =,求ABC V 的面积.【答案】(1)3B π=; (2 【解析】(1)由正弦定理将已知等式边化角,再由两角和的正弦公式,即可求解; (2)利用余弦定理,建立c 边方程关系,再由三角形面积公式,即可求出结论. 【详解】 (1)由122cos b a c C=-,得sin 12sin sin 2cos B A C C =-,2sin cos 2sin()sin 2sin cos 2cos sin sin B C B C C B C B C C =+-=+-,∴2cos sin sin B C C =,又∵在ABC V 中,sin 0C ≠, ∴1cos 2B =,∵0B π<<,∴3B π=.(2)在ABC V 中,由余弦定理得2222cos b a c ac B =+-, 即2742c c =+-,∴2230c c --=,解得3c =或1c =-(舍), ∴ABC V 的面积133sin 2S ac B ==. 【点睛】本题考查正、余弦定理以及两角和差公式解三角形,考查计算求解能力,属于基础题. 18.某快递网点收取快递费用的标准是重量不超过1kg 的包裹收费10元,重量超过1kg 的包裹,除收费10元之外,超过1kg 的部分,每超出1kg (不足1kg ,按1kg 计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).(1)求这60天每天包裹数量的平均数和中位数;(2)该快递网点负责人从收取的每件快递的费用中抽取5元作为工作人员的工资和网点的利润,剩余的作为其他费用.已知该网点有工作人员3人,每人每天工资100元,以样本估计总体,试估计该网点每天的利润有多少元? 【答案】(1)平均数和中位数都为260件; (2)1000元.【解析】(1)根据频率分布直方图,求出每组的频率,即可求出平均数,确定中位数所在的组,然后根据中位数左右两边图形面积各占0.5,即可求出中位数;(2)由(1)每天包裹数量的平均数求出网点平均总收入,扣除工作人员工资即为所求. 【详解】(1)每天包裹数量的平均数为0.1500.11500.52500.23500.1450260⨯+⨯+⨯+⨯+⨯=;(0,200)Q 的频率为0.2,[200,300)的频率为0.5中位数为0.32001002600.5+⨯=, 所以该网点每天包裹的平均数和中位数都为260件. (2)由(1)可知平均每天的揽件数为260, 利润为260531001000⨯-⨯=元, 所以该网点平均每天的利润有1000元. 【点睛】本题考查频率分布直方图求中位数、平均数以及简单应用,属于基础题.19.在如图所示的几何体中,已知BAC 90∠=o ,PA ⊥平面ABC ,AB 3=,AC 4=,PA 2.=若M 是BC 的中点,且PQ //AC ,QM //平面PAB .()1求线段PQ 的长度;()2求三棱锥Q AMC -的体积V .【答案】(1)2;(2)2.【解析】()1取AB 的中点N ,连接MN ,PN ,推导出四边形PQMN 为平行四边形,由此能求出线段PQ 的长度.()2取AC 的中点H ,连接QH ,推导出四边形PQHA 为平行四边形,由此能求出三棱锥Q AMC -的体积. 【详解】解:()1取AB 的中点N ,连接MN ,PN ,MN //AC ∴,且1MN AC 22==,PQ //AC Q ,P ∴、Q 、M 、N 确定平面α, QM //Q 平面PAB ,且平面α⋂平面PAB PN =,又QM ⊂平面α,QM //PN ∴,∴四边形PQMN 为平行四边形,PQ MN 2∴==.解:()2取AC 的中点H ,连接QH ,PQ //AH Q ,且PQ=AH=2,∴四边形PQHA 为平行四边形, QH //PA ∴,PA ⊥Q 平面ABC ,QH ∴⊥平面ABC ,AMC 11S AC AB 322=⨯⨯=V Q (),QH PA 2==,∴三棱锥Q AMC -的体积:AMC 11V S QH 32233V =⋅=⨯⨯=.【点睛】本题考查线段长的求法,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题. 20.平面直角坐标系中,O 为坐标原点,已知抛物线C 的方程为22(0)y px p =>. (1)过抛物线C 的焦点F 且与x 轴垂直的直线交曲线C 于A 、B 两点,经过曲线C 上任意一点Q 作x 轴的垂线,垂足为H .求证: 2||||||QH AB OH =⋅;(2)过点(2,2)D 的直线与抛物线C 交于M 、N 两点且OM ON ⊥,OD MN ⊥.求抛物线C 的方程.【答案】(1)见解析;(2)24y x =【解析】(1)设()()00000,,,0,,,Q x y H x QH y OH x ==再根据点Q 在抛物线上可得到结果;(2)联立直线和抛物线得到2280y py p +-=,设()()1122,,,M x y N x y ,OM ON ⊥有12120x x y y +=,根据韦达定理得到结果.【详解】(1)设()()00000,,,0,,,Q x y H x QH y OH x ==2AB p =,从而2200||2QH y px AB OH ===.(2)由条件可知,:4MN y x =-+,联立直线MN 和抛物线C ,有242y x y px=-+⎧⎨=⎩,有2280y py p +-=,设()()1122,,,M x y N x y ,由OM ON ⊥有12120x x y y +=,有()()1212440y y y y --+=,由韦达定理可求得2p =,所以抛物线2:4C y x =. 【点睛】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.21.已知2()2()x f x mx e m R =-∈.(Ⅰ)若()'()g x f x =,讨论()g x 的单调性;(Ⅱ)当()f x 在(1,(1))f 处的切线与(22)3y e x =-+平行时,关于x 的不等式()0f x ax +<在(0,1)上恒成立,求a 的取值范围.【答案】(Ⅰ)()g x 在(ln ,)m +∞上单调递减,在(,ln )m -∞上单调递增. (Ⅱ)(,21]a e ∈-∞-.【解析】试题分析:(Ⅰ)求得函数的导数'()2()xg x m e =-,分0m ≤和0m >两种情况讨论,即可得到函数()g x 的单调性;(Ⅱ)由(Ⅰ)求得1m =,把不等式()0f x ax +<即220xx e ax -+<,得2x e a xx<-在(0,1)上恒成立,设2()xe F x x x=-,利用导数求得函数()F x 的单调性与最值,即可得到实数a 的取值范围. 试题解析:(Ⅰ)因为()()'22xg x f x mx e ==-,所以()()'2xg x m e=-,当0m ≤时,()'0g x <,所以()g x 在R 上单调递减,当0m >时,令()'0g x <,得ln x m >,令()'0g x >,得ln x m <, 所以()g x 在()ln ,m +∞上单调递减,在(),ln m -∞上单调递增. (Ⅱ)由(Ⅰ)得()'122f m e =-,由2222m e e -=-,得1m =,不等式()0f x ax +<即220xx e ax -+<,得2xe a x x<-在()0,1上恒成立.设()2x e F x x x =-,则()2222'x x xe e x F x x --=. 设()222xxh x xe e x =--,则()()'222221xxxxh x xe e e x x e =+--=-,在区间()0,1上,()'0h x >,则函数()h x 递增,所以()()11h x h <=-, 所以在区间()0,1上,()'0F x <,函数()F x 递减.当0x →时,()F x →+∞,而()121F e =-,所以()()21,F x e ∈-+∞, 因为()a F x <在()0,1上恒成立,所以(],21a e ∈-∞-.点睛:本题主要考查导数求解函数的单调区间,利用导数求解不等式的恒成立问题求得,考查了转化与化归思想、逻辑推理能力与计算能力.导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行: (1)利用导数求函数的单调区间,判断单调性;已知单调性,求参数; (2)利用导数求函数的最值(极值),解决函数的恒成立与有解问题; (3)利用导数研究函数的图象与性质,注意数形结合思想的应用.22.在平面直角坐标系xOy 中,已知曲线11C x y +=:与曲线222cos :2sin x C y ϕϕ=+⎧⎨=⎩,(ϕ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)写出曲线1C ,2C 的极坐标方程;(2)在极坐标系中,已知():0l θαρ=>与1C ,2C 的公共点分别为A ,B ,0,2πα⎛⎫∈ ⎪⎝⎭,当4OB OA =时,求α的值. 【答案】(1)1C的极坐标方程为:14ρπθ=⎛⎫+ ⎪⎝⎭;2C 的极坐标方程为:4cos ρθ= (2)4πα=【解析】(1)根据直角坐标与极坐标的互化关系,参数方程与一般方程的互化关系,即得解;(2)将():0l θαρ=>代入1C ,2C 的极坐标方程,求得||,||OA OB 的表达式,代入4OB OA=,即得解.【详解】(1)解:将直角坐标与极坐标互化关系cos sin x y ρθρθ=⎧⎨=⎩代入曲线11C x y +=:得cos sin 1ρθρθ+=,即:14ρπθ=⎛⎫+ ⎪⎝⎭; 所以曲线1C的极坐标方程为:14ρπθ=⎛⎫+ ⎪⎝⎭; 又曲线222cos :2sin x C y ϕϕ=+⎧⎨=⎩(ϕ为参数).利用22sin cos 1ϕϕ+=消去参数ϕ得2240x y x +-=,将直角坐标与极坐标互化关系:cos sin x y ρθρθ=⎧⎨=⎩代入上式化简得4cos ρθ=,所以曲线2C 的极坐标方程为:4cos ρθ=.(2)∵():0l θαρ=>与曲线1C ,2C 的公共点分别为A ,B ,所以将()0θαρ=>代入14ρπθ=⎛⎫+ ⎪⎝⎭及4cos ρθ=得14OA πα=⎛⎫+ ⎪⎝⎭,4cos OB α=, 又4OBOA =,sin 14παα⎛⎫+= ⎪⎝⎭,∴0,2πα⎛⎫∈ ⎪⎝⎭,∴sin cos αα=,4πα=. 【点睛】本题考查了参数方程,极坐标方程的综合应用,考查了学生综合分析,转化与划归,数学运算的能力,属于中档题.23.已知函数()11f x x x =+--, ()22g x x a x b =++-,其中a , b 均为正实数,且2a b +=.(Ⅰ)求不等式()1f x ≥的解集; (Ⅱ)当x ∈R 时,求证()()f x g x ≤.【答案】(1)1,2⎡⎫+∞⎪⎢⎣⎭(2)见解析【解析】(Ⅰ)把()f x 用分段函数来表示,分类讨论,求得()1f x ≥的解集. (Ⅱ)当x ∈R 时,先求得()f x 的最大值为2,再求得()g x )的最小值,根据()g x 的最小值减去()f x 的最大值大于或等于零,可得()()f x g x ≤成立. 【详解】(Ⅰ)由题意, ()2,12,112,1x f x x x x -≤-⎧⎪=-⎨⎪≥⎩<<,(1)当1x ≤-时, ()21f x =-<,不等式()1f x ≥无解;(2)当11x -<<时,()21f x x =≥,解得12x ≥,所以112x ≤<.(3)当1x ≥时, ()21f x =≥恒成立,所以()1f x ≥的解集为1,2⎡⎫+∞⎪⎢⎣⎭. (Ⅱ)当x R ∈时, ()()11112f x x x x x =+--≤++-=;()()222222g x x a x b x a x b a b =++-≥+--=+.而()()()22222222222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭, 当且仅当1a b ==时,等号成立,即222a b +≥,因此,当x R ∈时,()()222f x a b g x ≤≤+≤,所以,当x R ∈时, ()()f x g x ≤.【点睛】本题主要考查带有绝对值的函数,绝对值三角不等式的应用,比较2个数大小的方法,属于中档题.。
2020届九师联盟高三10月质量检测数学(文)试题(解析版)

九师联盟高三10月质量检测数学(文)试题一、单选题1.已知集合3210{}A =,,,,01{}1B =-,,,则A B ⋂=( ) A .{1}0, B .{210},, C .{321},, D .{2}1,【答案】A【解析】根据交集的定义直接运算可得答案. 【详解】因为3210{}A =,,,,01{}1B =-,,, 所以A B ⋂={0,1}. 故选:A 【点睛】本题考查了交集的运算,属于基础题.2.命题“x ∀∈R ,3220x x ->”的否定是( ) A .0x ∃∈R ,32002<0x x - B .0x ∃∈R ,320020x x ≤-C .x ∀∈R ,322<0x x -D .x ∀∈R ,3220x x ≤-【答案】B【解析】根据全称命题的否定是特称命题,否定方法是先改变量词,然后否定结论,可得结论. 【详解】命题“x ∀∈R ,3220x x ->”的否定是“0x ∃∈R ,320020x x ≤-”.故选:B . 【点睛】本题考查了含有一个量词的命题的否定,属于基础题.3.已知函数()f x 是偶函数,且当0x <时,()243f x x x =-,则()1f =( )A .7B .-7C .1D .-1【答案】B【详解】()()()()21141317f f =-=⨯--⨯-=-.故选:B . 【点睛】本题考查了利用偶函数的性质求函数值,属于基础题.4.曲线()2xf x e x x -+=在点()()00f ,处的切线方程是( )A .210x y ++=B .210x y +-= C .210x y -+= D .210x y --= 【答案】C【解析】利用导数的几何意义求得切线的斜率,再由点斜式可求得切线方程. 【详解】因为()21xf x e x '=-+,所以切线的斜率是()02f '=.又()01f =,所以()120y x -=-,即210x y -+=. 故选:C . 【点睛】本题考查了导数的几何意义,考查了直线方程的点斜式,属于基础题.5.已知1sin 33a π⎛⎫+= ⎪⎝⎭,则5cos 23a π⎛⎫+=⎪⎝⎭( )A .13B .3±C .79-D .79【答案】C【解析】利用三角函数诱导公式和二倍角的余弦公式逐步化简求值得解. 【详解】 因为2522cos 2cos 2cos 22sin 13333ππππααπαα⎛⎫⎛⎫⎛⎫⎛⎫+=++=-+=+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.21213⎛⎫=⨯- ⎪⎝⎭79=-.故选C. 【点睛】解掌握水平和计算能力.6.已知在等差数列{}n a 中,5=5a ,3=3a ,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前2019项和是( )A .20202019B .20192020C .20182019 D .20192018【答案】B【解析】设出公差,利用等差数列的通项公式列方程组解出1a 和d ,可得通项公式n a ,再利用裂项求和可得结果. 【详解】设{}n a 的公差为d ,由5353a a =⎧⎨=⎩得114523a d a d +=⎧⎨+=⎩解得111a d =⎧⎨=⎩,则n a n =.则()1111n n a a n n +==+111n n -+. 故前2019项和2019111111112232018201920192020S =-+-++-+-L 12019120202020=-=故选:B . 【点睛】本题考查了等差数列的通项公式的基本量的运算,考查了裂项求和,属于基础题.7.已知向量5168,77AB ⎛⎫= ⎪⎝⎭u u u v ,68,77AC ⎛⎫= ⎪⎝⎭u u u v ,D ,E 是线段BC 上两点,且15BD BC =u u u v u u u v ,13CE CB =u u u v u u u v ,则向量AD uuu v 与AE u u u v的关系是( )A .2AD AE =u u u v u u u vB .12AD AE =u u u v u u u vC .AD AE ⊥u u u v u u u vD .AD uuu v 与AE u u u v 成60︒夹角【答案】A【解析】先求出=6,8AD u u u r (),=3,4AE u u u r (),所以2AD AE =u u u r u u u r ,即得解.【详解】1141()5555AD AB BD AB BC AB AC AB AB AC =+=+=+-=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r111215168268(),,3333377377AE AC CE AC CB AC AB AC AB AC ⎛⎫⎛⎫=+=+=+-=+=+ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r (3,4)=,所以2AD AE =u u u r u u u r. 故选:A. 【点睛】本题主要考查基底法和向量的坐标运算,考查共线向量,意在考查学生对这些知识的理解掌握水平和分析推理能力. 8.函数sin sin 122xxy =+的大致图象是( )A .B .C .D .【答案】D【解析】根据偶函数的定义得函数为偶函数,其图像关于y 对称,由此排除A 选项,根据()2f π和(0)f 的值分别排除选项C 和B ,从而可得答案.【详解】 因为()()()1sin sin sin 1si ()n sin sin ()111222222x xx x xx f x -------=+=+=+()sin sin 122x xf x =+=,且函数sin sin 122x xy +=的定义域为R ,所以函数sin sin 122xxy +=是偶函数,排除A 选项;又sin 222f ππ⎛⎫+ ⎪=⎝⎭11sin 21152222π=+=,排除C 项. sin 00sin 011(0)2211222f =+=+=+=,排除B 项, 故选:D . 【点睛】本题考查了利用函数的奇偶性,考查了利用函数的性质判断函数的图像,属于基础题. 9.在ABC V 中,角A B C ,,的对边分别为a b c ,,,向量)cos (a B α=u r,,cos ()A b β-u r=,,若αβ⊥u r u r ,则ABC V 一定是( ) A .锐角三角形 B .等腰三角形C .直角三角形D .等腰三角形或直角三角形【答案】D【解析】根据向量垂直的坐标表示得cos cos b B a A =,再根据正弦定理边化角以及二倍角的正弦公式可得sin2sin2A B =,根据,A B 为三角形的内角可得22A B =,或22A B π+=,进一步可得答案.因αβ⊥u r u r,所以cos cos 0a A b B -=,所以cos cos b B a A =,由正弦定理可知sin cos sin cos B B A A =,所以sin2sin2A B =. 又(0)A B π∈,,,且()0A B π+∈,,所以22A B =,或22A B π+=, 所以A B =,或2A B π+=.则ABC V 是等腰三角形或直角三角形. 故选:D . 【点睛】本题考查了平面向量垂直的坐标表示,考查了正弦定理,二倍角的正弦公式,属于基础题.10.已知奇函数()()()cos f x x x ωϕωϕ+-+(02πϕω<,>)对任意x ∈R都有()02x f x f π⎛⎫++= ⎪⎝⎭,则当ω取最小值时,6f π⎛⎫⎪⎝⎭的值为( )A .1B .12C D 【答案】C【解析】利用两角差的正弦公式的逆用公式可得()2sin()6f x x πωϕ=+-,根据奇函数的性质可得6π=ϕ,将()02x f x f π⎛⎫++= ⎪⎝⎭化为sin 2x ωπω⎛⎫⎪⎝⎭+=sin x ω-,可得42k ω=-(k ∈Z ),故ω的最小值为2,此时()2sin2f x x =,由此可得6f π⎛⎫= ⎪⎝⎭【详解】因为()cos 2si (n ())()6f x x x x πωϕωϕωϕ=+-+=+-,又()f x 为奇函数,所以()02sin 06f πϕ⎛⎫=-= ⎪⎝⎭,所以6k πϕπ-=(k ∈Z ). 又2πϕ<,所以6π=ϕ.所以()2sin f x x ω=. 又因为对任意x ∈R 都有()02x f x f π⎛⎫++= ⎪⎝⎭, ωπ⎫⎛ωπ⎛⎫所以()212k πωπ=-(k ∈Z ),所以42k ω=-(k ∈Z ).又0>ω,故ω的最小值为2,此时()2sin2f x x =,所以2sin 63f ππ=⎫ ⎪⎝⎭=⎛ 故选:C . 【点睛】本题考查了两角差的正弦公式的逆用,考查了奇函数的性质,考查了诱导公式的应用,属于中档题.11.设函数()326f x x x a -+=,则下列结论不正确的是( )A .函数()f x 在区间(1)-∞-,上单调递增 B .函数()f x 在区间(11)-,上单调递减 C .函数()f x 的极大值是()1f -,极小值是()1f D .存在某一个实数a 的值,使得函数()f x 是偶函数 【答案】D【解析】利用导数可得函数的单调性和极值,可知A ,B ,C 项都是正确的,可以排除A ,B ,C 项,假设存在实数a 的值,使得数()f x 是偶函数,推出矛盾,故D 项错误. 【详解】因为()326f x x x a =-+,所以()266f x x '=-.令()0f x '=,得1x =-或1x =;令()0f x <′,得11x -<<;令()0f x >′,得1x <-或1x >,所以函数()f x 在区间(1)-∞-,和(1)+∞,上单调递增,在区间(11)-,上单调递减.故A ,B 项都是正确的,排除A 、B 项;根据单调性易知,函数()f x 在1x =-处取得极大值,在1x =处取得极小值,所以函数()f x 的极大值是()1f -,极小值是()1f ,故C 项都是正确的,排除C 项; 假设存在实数a 的值,使得数()f x 是偶函数,则由()()f x f x -=对任意x ∈R 恒成立,得()()332626x x a x x a ---+=-+对任意x ∈R 恒成立,这显然不可能,所以不存在实数a 的值,使得数()f x 是偶函数.故D 项错误.【点睛】本题考查了利用导数研究函数的单调性和极值,属于基础题.12.如图所示,矗立于伦敦泰晤士河畔的伦敦眼(The London Eye )是世界上首座、也曾经是世界最大的观景摩天轮,已知其旋转半径60米,最高点距地面135米,运行一周大约30分钟,某游客在最低点的位置坐上摩天轮,则第10分钟时他距地面大约为( )A .95米B .100米C .105米D .110米【答案】C【解析】设人在摩天轮上离地面高度(米)与时间t (分钟)的函数关系为()sin()f t A t B ωϕ=++(0,0,[0,2))A ωϕπ>>∈,根据已知条件求出()f t =60cos7515t π-+,再求(10)f 得解.【详解】设人在摩天轮上离地面高度(米)与时间t (分钟)的函数关系为()sin()f t A t B ωϕ=++(0,0,[0,2))A ωϕπ>>∈,由题意可知60A =,1356075B =-=,230T πω==,所以15πω=,即()60sin 7515f t t πϕ⎛⎫=++⎪⎝⎭. 又因为(0)13512015f =-=, 解得sin 1ϕ=-,故32πϕ=, 所以()f t =360sin 7560cos 7515215t t πππ⎛⎫++=-+⎪⎝⎭, 所以2(10)60cos 751053f π=-⨯+=. 故选C.本题主要考查三角函数解析式的求法,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题13.已知向量a (2,1)k =v ,b (1,3)k =+-v ,若a b v P v,则实数k 的值为________.【答案】17-【解析】由题得2(3)(1)10k k ⨯--+⨯=,解方程即得解. 【详解】由题意,2(3)(1)10k k ⨯--+⨯=,解得17k =-. 故答案为:17- 【点睛】本题主要考查向量平行的坐标表示,意在考查学生对该知识的理解掌握水平. 14.已知函数()()2213f x x f x =+'-,则()2f '=__________.【答案】0【解析】求导后代入1x =,解得()12f '=-,再代入2x =即可得到答案. 【详解】对()2213f x x f x =+'-(),求导得()()221f x x f '=+', 令1x =,得()()12121f f '=⨯+',解得()12f '=-. 所以()24f x x '=-.再代入2x =,即可求得()20f '=. 故答案为:0 【点睛】本题考查了求导公式,考查了求导函数值,属于基础题.15.已知函数()2log 1f x x m ++=(m 为实数)是偶函数,记201612a f -⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭=,()20172b f =,()1c f m +=,则a b c ,,的大小关系为__________.(用“<”连接)【答案】c a b <<()2log 1f x x =+,然后求出,,a b c 的值即可得到答案.【详解】因为函数()2log 1f x x m =++为偶函数,且由0x m +>,得x m ≠-,故函数()2log 1f x x m =++的定义域是()()m m -∞-⋃-+∞,,. 而偶函数的定义域需关于坐标原点对称,所以0m -=,解得0m =. 即()2log 1f x x =+.所以20162016211log 122a f --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝=⎭=+=20162log 212017+=,()2017201722log 212018b f ==+=, ()()211log 11c f m f =+==+=011+=.所以c a b <<. 故答案为:c a b << 【点睛】本题考查了偶函数的定义域特征,考查了对数的运算性质,属于基础题. 16.规定[]t 为不超过t 的最大整数,如[3,1]3=,[2,9]3-=-,若函数2()[][]()f x x x x =-∈R ,则方程2()()2f x f x -=的解集是________.【答案】[1,0)[2,3)-U【解析】由2()()2f x f x -=,得()2f x =或()1f x =-.当()2f x =时,求出方程2()()2f x f x -=的解集,当()1f x =-时,无解.即得方程2()()2f x f x -=的解集.【详解】由2()()2f x f x -=,得[()2][()1]0f x f x -+=, 解得()2f x =或()1f x =-.当()2f x =时,2[][]2x x -=,解得[]2x =或[]1x =-, 当[]2x =时,解得[2,3)x ∈;当()1f x =-时,2[][]1x x -=-,无解.综上,方程2()()2f x f x -=的解集是[1,0)[2,3)-U .故答案为:[1,0)[2,3)-U【点睛】本题主要考查新定义的理解和应用,意在考查学生对该知识的理解掌握水平.三、解答题17.已知函数2()4cos sin cos ()f x x m x x m =+∈R ,且满足44f π⎛⎫=⎪⎝⎭. (1)求m 的值及()f x 的最小正周期;(2)若30,4x π⎡⎤∈⎢⎥⎣⎦,求()f x 的单调区间. 【答案】(1)4m =.最小正周期T π=.(2)单调递增区间为0,8π⎡⎤⎢⎥⎣⎦和53,84ππ⎡⎤⎢⎥⎣⎦;单调递减区间为5,88ππ⎡⎤⎢⎥⎣⎦. 【解析】(1)根据44f π⎛⎫=⎪⎝⎭求出m 的值,再利用三角恒等变换求出()224f x x π⎛⎫=++ ⎪⎝⎭即得()f x 的最小正周期;(2)利用复合函数的单调性原理求出()f x 的单调区间.【详解】(1)由44f π⎛⎫= ⎪⎝⎭,得244m ⨯+=⎝⎭, 解得4m =. 2()4cos 4sin cos f x x x x =+1cos 242sin 22x x +=⨯+ 22cos22sin 2x x =++224x π⎛⎫=++ ⎪⎝⎭,所以函数()f x 的最小正周期T π=.(2)由222()242k x k k πππππ-+≤+≤+∈Z , 得3()88k x k k ππππ-+≤≤+∈Z . 又30,4x π⎡⎤∈⎢⎥⎣⎦时,所以0,8x π⎡⎤∈⎢⎥⎣⎦,或53,84x ππ⎡⎤∈⎢⎥⎣⎦, 即()f x 的单调递增区间为0,8π⎡⎤⎢⎥⎣⎦和53,84ππ⎡⎤⎢⎥⎣⎦; 由3222()242k x k k πππππ+≤+≤+∈Z , 得5()88k x k k ππππ+≤≤+∈Z ,又30,4x π⎡⎤∈⎢⎥⎣⎦, 所以()f x 的单调递减区间为5,88ππ⎡⎤⎢⎥⎣⎦. 【点睛】本题主要考查三角恒等变换和正弦函数的最小正周期的求法,考查三角函数的单调区间的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.已知,,a b c 分别是ABC △的角,,A B C 所对的边,且222,4c a b ab =+-=. (1)求角C ;(2)若22sin sin sin (2sin 2sin )B A C A C -=-,求ABC △的面积.【答案】(1)3C π=(2 【解析】试题分析:(1)由余弦定理得cos C 值,再根据三角形内角范围求角C ;(2)由正弦定理将条件化为边的关系:2224cos b c a ac A +-=,再根据余弦定理得2a b =,代人解得a =,b =2c =,由勾股定理得2B π=,最后根据直角三角形面积公式得ABC V 的面积.试题解析:解:(1)由余弦定理,得222cos 2a b c C ab +-== 22221222a b ab ab ab +-==,又()0,C π∈,所以3C π=. (2)由()22sin sin sin 2sin2sin B A C A C -=-,得222sin sin sin 2sin2sin B C A A C +-=,得222sin sin sin 4sin cos sin B C A A A C +-=,再由正弦定理得2224cos b c a ac A +-=,所以222cos 4b c a A ac +-=.① 又由余弦定理,得222cos 2b c a A bc+-=,② 由①②,得22222242b c a b c a bc bc+-+-=,得42ac bc =,得2a b =, 联立2242a b ab b a ⎧+-=⎨=⎩,得3a =,3b =. 所以222b a c =+.所以2B π=. 所以ABC V的面积1122233S ac ==⨯=. 19.已知函数()321f x x ax bx +-+=(a b ∈,R )在23x -=和2x =处取得极值. (1)求a b ,的值.(2)求()17f x ≤的解集. 【答案】(1)24a b =-⎧⎨=⎩,.(2)(]4-∞, 【解析】(1)求导后,利用可导函数在极值点处的导数值为0可解得24a b =-⎧⎨=⎩,.,然后验证函数在23x -=和2x =处取得极值即可; (2)因式分解即可求得高次不等式的解集.【详解】解:(1)()232f x x ax b '=+-,由题意,得()20320f f⎧⎛⎫'-=⎪ ⎪⎝⎭⎨⎪'=⎩,则22223203332220a b a b ⎧⎛⎫⎛⎫⨯-+⨯--=⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎪⨯+⨯-=⎩,, 解得24a b =-⎧⎨=⎩,. 经检验,此时()32241f x x x x =--+满足在23x =-和2x =处取得极值,符合题意. (2)由(1)得()32241f x x x x =--+, 所以()17f x ≤可化为3224160x x x ---≤,可得2(4)(24)0x x x -++≤,因为2224(1)30x x x ++=++>,所以40x -≤,即4x ≤,所以()17f x ≤的解集是(]4-∞,. 【点睛】本题考查了由可导函数的极值点求参数,考查了利用因式分解法解高次不等式,属于基础题.20.如图,在ABC ∆中,,484C CA CB π=⋅=u u uv u u u v ,点D 在BC 边上,且352,cos 5AD ADB =∠=. (Ⅰ)求,AC CD 的长;(Ⅱ)求cos BAD ∠的值.【答案】(1) 8,2AC CD ==5cos BAD ∠=【解析】试题分析:(1)由34cos ,sin 55ADB ADB ∠=∠=得,进而得2sin 10CAD ∠=,然后利用正弦定理求边长;(2)由48CA CB ⋅=u u u v u u u v ,得62CB =. 52BD =余弦定理得210AB =,从而5cos BAD ∠=试题解析:(Ⅰ)在ABD ∆中,∵34cos ,sin 55ADB ADB ∠=∴∠=.∴()sin CAD sin ADB ACD ∠=∠-∠ sin cos cos sin 44ADB ADB ππ=∠-∠43525210=⨯-⨯=. 在ADC ∆中,由正弦定理得sin sin sin AC CD AD ADC CAD ACD==∠∠∠,即45AC ==,解得8,AC CD ==(Ⅱ)∵48CA CB ⋅=u u u v u u u v ,∴848CB ⋅=,解得CB =∴BD CB CD =-=ABC ∆中,AB ==ABD ∆中,222cos BAD +-∠==.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.21.已知在等比数列{a n }中,2a =2,,45a a =128,数列{b n }满足b 1=1,b 2=2,且{12n n b a +}为等差数列. (1)求数列{a n }和{b n }的通项公式;(2)求数列{b n }的前n 项和【答案】(1)1232;2,212n n n n a b n n --==-⋯(=,,);(2)213312442n n T n n -=+-+. 【解析】(1)根据等比数列的性质得到7a =64,2a =2,进而求出公比,得到数列{a n }的通项,再由等差数列的公式得到结果;(2)根据第一问得到通项,分组求和即可.【详解】(1)设等比数列{a n }的公比为q .由等比数列的性质得a 4a 5=27a a =128,又2a =2,所以7a =64.所以公比2q ===. 所以数列{a n }的通项公式为a n =a 2q n -2=2×2n -2=2n -1. 设等差数列{12n n b a +}的公差为d . 由题意得,公差221111113221122222d b a b a ⎛⎫⎛⎫⎛⎫⎛⎫=+-+=+⨯-+⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 所以等差数列{12n n b a +}的通项公式为()()11113331122222n n b a b a n d n n ⎛⎫+=++-=+-⋅= ⎪⎝⎭. 所以数列{b n }的通项公式为12313132222222n n n n b n a n n --=-=-⋅=-(n =1,2,…). (2)设数列{b n }的前n 项和为T n .由(1)知,2322n n b n -=-(n =1,2,…). 记数列{32n }的前n 项和为A ,数列{2n -2}的前n 项和为B ,则 ()33322124n n A n n ⎛⎫+ ⎪⎝⎭==+,()1112122122n n B --==--. 所以数列{b n }的前n 项和为()1213133112242442n n n T A B n n n n --=-=+-+=+-+. 【点睛】 这个题目考查了数列的通项公式的求法,以及数列求和的应用,常见的数列求和的方法有:分组求和,错位相减求和,倒序相加等.22.已知函数()()21f x x x a x=-+. (1)证明:对任意a ∈R ,函数()f x 的导函数()f x '是偶函数;(2)若0a <,()()11ln 9g x f x x x =--,讨论函数()g x 的零点个数 【答案】(1)见解析(2)零点个数为0.【解析】(1)求导后,利用偶函数的定义可证结论;(2)对()g x 求导,再通分并对分子构造函数求导,利用导数求得函数()g x 的单调性,利用单调性求得函数()g x 的最小值,根据最小值大于0可得函数的零点个数.【详解】(1)证明:函数()()21f x x x a x=-+的定义域是(0)(0)-∞+∞,,U . 则()2213f x x a x'=--,函数()f x '的定义域是(0)(0)-∞+∞,,U , 因为对任意a ∈R ,都有()()22221133x a x a x x ---=---, 即()()f x f x '-='. 因此,对任意a ∈R ,导函数()f x '是偶函数.(2)解:()()31ln 09g x x ax x x =-->,()3212791399x ax g x x a x x --'=--=, 令()()327910h x x ax x =--≥,则()2819h x x a '=-. 因为0a <,所以()0h x '>.所以()h x 在[0)+∞,上单调递增. 因为3111279130333h a a ⎛⎫⎛⎫=⨯-⋅-=-> ⎪ ⎪⎝⎭⎝⎭,()010h =-<, 所以一定存在0103x ⎛⎫∈ ⎪⎝⎭,,使得()300027910h x x ax =--=. 所以在0(0)x ,上,()0h x <,()0g x '<,函数()g x 单调递减;在0()x +∞ ,上,()0h x >,()0g x '>,函数()g x 单调递增,所以()()0min g x g x =. 又()300001ln 9g x x ax x =--中,300x >,00ax ->,01ln 09x ->, 所以()00g x >,即()0min g x >,所以函数()g x 的零点个数为0.【点睛】本题考查了利用导数公式求函数的导函数,考查了用定义证明函数为偶函数,考查了利用导数研究函数的单调性和最值,考查了求函数零点的个数,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【点睛】本题考查根据统计图表解决实际问题,涉及到增长率、中位数和平均数的计算,属 于基础题.
5.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到, 任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去
掉,这样,原来的一条线段就变成了 4 条小线段构成的折线,称为“一次构造”;用同样的 方法把每条小线段重复上述步骤,得到 16 条更小的线段构成的折线,称为“二次构造”,
21.4 万台, B 错误;
对于 C ,公共类电动汽车充电桩保有量的平均数为
4.9 14.1 21.4 30.0 44.7 23.02
5
万台, C 错误;
对于 D ,从 2017 年开始,私人类电动汽车充电桩占比分别为 52.0% , 61.4% , 57.5% ,
均超过 50% , D 正确. 故选: D .
线垂直于弦.
8.关于函数 f (x) x sin x , x [ , ] ,有下列三个结论:① f (x) 为偶函数;② f (x) 有 3
个零点;③
f
(x)
在
0,
2
上单调递增.其中所有正确结论的编号是(
).
A. ①② 【答案】D
B. ①③
C. ②③
D. ①②③
【解析】
【分析】
由奇偶性定义可知①正确;令 f x 0 可求得零点,知②正确;根据导函数恒正可确定③正
当
x
0,
2
时,
sin
x
0
,
cos
x
0
,
f
x
0
,
f
x 在
0,
2
上单调递增,③正确.
故选: D .
【点睛】本题考查函数性质与零点的相关知识,涉及到奇偶性和单调性的判断、零点的求解
等知识;关键是能够熟练掌握奇偶性和函数单调性的判断方法,同时熟悉正弦函数的相关知
识.
9.已知圆锥 SC 的高是底面半径的 3 倍,且圆锥 SC 的底面直径、体积分别与圆柱 OM 的底
故选:B.
【点睛】本题考查了新定义应用,降幂公式及诱导公式化简三角函数式的应用,属于中档题.
ln x 2, x 0
11.已知
f
(
x)
2x
1,x0 2
,则满足 2 f ( f (m)) 1 2 f (m)1 的实数 m 的取值范围是(
).
A. (, 1]
B. (, 1] 0,e2
C. (,1]
…,如此进行“ n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长 度达到初始线段的 1000 倍,则至少需要通过构造的次数是( ).(取 lg 3 0.4771 ,
lg 2 0.3010 )
A. 16 【答案】D
B. 17
C. 24
D. 25
【解析】
【分析】
由折线长度变化规律可知“
故选: B . 【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于基础题.
7.已知直线
ax
y
1
0
将圆 C
:
(x
1)2
(y
2)2
4
平分,则圆 C
中以点
a 3
,
a 3
为中
点的弦的弦长为( ).
A. 2
B. 2 2
C. 2 3
D. 4
【答案】C
【解析】
【分析】
由直线平分圆可知其过圆心,从而求得 a ,根据圆心与弦中点连线垂直于弦,可利用勾股定
理求得半弦长,进而得到弦长.
【详解】 直线
ax
y
1
0
平分圆
C
,直线
ax
y
1
0
过圆
C
C
的圆心
1,
2 ,
a 2 1 0 ,解得: a 3 ,
圆心
C
1,
2到点
a 3
,
a 3
的距离为
112 2 12 1
,
所求弦长为 2 4 1 2 3 .
故选: C .
【点睛】本题考查直线被圆截得弦长的求解,关键是熟练掌握圆的性质,即圆心与弦中点连
造原则得到每次构造后所得折线长度成等比数列的特点.
6.执行如图所示的程序框图,若输入的 a 的值为 4,则输出的 a 的值为( ).
A. 6 【答案】B 【解析】 【分析】
B. 7
C. 8
D. 9
按照程序框图运行程序,直到不满足 M N 时输出结果即可.
【详解】按照程序框图运行程序,输入 a 4 , M 100 , N 1,满足 M N ,循环; M 100 4 104 , N 1 4 4 , a 5 ,满足 M N ,循环; M 104 5 109 , N 4 5 20 , a 6 ,满足 M N ,循环; M 109 6 115 , N 20 6 120 , a 7 ,不满足 M N ,输出 a 7 .
圆锥 SC 与圆柱 OM 的侧面积之比为 10 r2 : r2 10 :1. 故选: A .
【点睛】本题考查圆锥和圆柱侧面积的求解问题,涉及到圆锥和圆柱体积公式的应用,属于
基础题.
10.对于集合
x1
,
x2
,
,
xn
,定义:
cos2
x1
x0
cos2
x2
n
x0
cos2
xn
x0
为集合 x1 ,
x2 ,,
面半径、体积相等,则圆锥 SC 与圆柱 OM 的侧面积之比为( ).
A. 10 :1
【答案】A 【解析】 【分析】
B. 3 :1
C. 2 :1
D. 10 : 2
设圆锥 SC 的底面半径为 r ,可求得圆锥的母线长,根据圆锥侧面积公式求得侧面积;由圆
锥体积与圆柱体积相等可构造程求得圆柱的高,进而根据圆柱侧面积公式求得圆柱侧面积, 从而求得比值.
2m 1 0 当 m 0 时, 2 ,解得: m 1;
综上所述: m 的取值范围为 , 1 0, e2 .
故选: B .
【点睛】本题考查根据方程有解求解参数范围问题,关键是能够采用换元法将问题转化为函
数不等式的求解问题,进而利用分类讨论构造不等式求得结果.
3.下列是函数
f
(x)
tan
2x
4
的对称中心的是(
).
A.
4
,
0
【答案】D
B.
4
,
0
C. (0, 0)
D.
3 8
,
0
【解析】
【分析】
2x k k Z
令 42
解出 x 后可得函数的对称中心,对应各个选项可得结果.
2x k k Z
x k k Z
【详解】令 4 2
,解得: 8 4
,
f
x的对称中心为
8
k 4
,
0
,
k
Z
,
当k
1时, 8
k 4
3 8
3 ,故 8
,
0
是
f
x 的一个对称中心.
故选: D .
【点睛】本题考查正切型函数对称中心的求解问题,关键是熟练掌握整体对应的方式,属于 基础题. 4.下图统计了截止到 2019 年年底中国电动汽车充电桩细分产品占比及保有量情况,关于这 5 次统计,下列说法正确的是( )
【详解】由韦恩图可知所求阴影部分为 A∩ ðU B ,
A
2,
1,
0,1,
2,
3,
4
,
B
集合表示所有
2
的倍数,
A
ðU
B
1,1,
3
.
阴影部分所表示的集合的元素个数为 3 个.
故选: B .
【点睛】本题考查集合运算中的交集和补集运算,涉及到根据韦恩图确定所求集合,属于基
础题.
2.若复数
z
2 ai 1i
确.
f x x sin x x sin x f x f x
【详解】
,
为偶函数,①正确;
令 f x 0 ,则 x 0 或 sin x 0 ,
当 sin x 0 时, x 0 或 x 或 x ,
f
x 的零点为
x
0
或
x
或
x
,共 3 个,②正确;
f x sin x x cos x ,
4 3
n
a
,
若得到的折线长度为初始线段长度的1000 倍,则
4 3
n
a
1000a
,即
4 3
n
1000
,
lg
4 3
n
n
lg
4 3
n lg
4
lg 3
n 2 lg
2
lg
3
lg1000
3
,
n
3
24.02
即 2 0.3010 0.4771
,至少需要 25 次构造.
故选: D .
【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构
【详解】设圆锥 SC 的底面半径为 r ,则高为 3r ,圆锥 SC 的母线长
l r2 9r2 10r , 圆锥 SC 的侧面积为 rl 10 r2 ;
圆柱 OM 的底面半径为 2r ,高为 h ,
V
又圆锥的体积
1r2 3
3r
r3
,4 r2h
r
3
,
h
r 4
,
圆柱 OM 的侧面积为 2 2rh 4 rh r2 ,