2019-2020年中考数学:反比例函数与一次函数综合题(含答案)
人教版中考数学2020 一次函数与反比例函数综合 猛练14题,有答案
1 / 38专题04 一次函数与反比例函数综合一.解答题(共15小题)1.(2020•丰台区一模)在平面直角坐标系xOy 中,一次函数4y x =+的图象与y 轴交于点A ,与反比例函数ky x=的图象的一个交点为M . (1)求点A 的坐标;(2)连接OM ,如果MOA ∆的面积等于2,求k 的值.2.(2020•北京一模)如图,在平面直角坐标系xOy 中,直线3:2l y x =与反比例函数(0)ky x x =>的图象交于点(2,)A a . (1)求a ,k 的值;(2)横,纵坐标都是整数的点叫做整点.点(,)P m n 为射线OA 上一点,过点P 作x 轴,y 轴的垂线,分别交函数(0)k y x x =>的图象于点B ,C .由线段PB ,PC 和函数(0)ky x x=>的图象在点B ,C 之间的部分所围成的区域(不含边界)记为W . ①若PA OA =,求区域W 内的整点个数;②若区域W 内恰有5个整点,结合函数图象,直接写出m 的取值范围.2 / 383.(2020•海淀区一模)在平面直角坐标系xOy 中,直线3x =与直线112y x =+交于点A ,函数(0,0)k y k x x =>>的图象与直线3x =,直线112y x =+分别交于点B ,C . (1)求点A 的坐标.(2)横、纵坐标都是整数的点叫做整点.记函数(0,0)ky k x x=>>的图象在点B ,C 之间的部分与线段AB ,AC 围成的区域(不含边界)为W .①当1k =时,结合函数图象,求区域W 内整点的个数; ②若区域W 内恰有1个整点,直接写出k 的取值范围.4.(2020•平谷区一模)在平面直角坐标系xOy 中,反比例函数(0)ky x x=>的图象G 与直线:24l y x =-交于点(3,)A a . (1)求k 的值;(2)已知点(0P ,)(0)n n >,过点P 作平行于x 轴的直线,与图象G 交于点B ,与直线l 交于点C .横、纵坐标都是整数的点叫做整点.记图象G 在点A ,B 之间的部分与线段AC ,BC 围成的区域(不含边界)为W .①当5n =时,直接写出区域W 内的整点个数;②若区域W 内的整点恰好为3个,结合函数图象,直接写出n 的取值范围.3 / 385.(2020•顺义区一模)已知:在平面直角坐标系xOy 中,函数(0,0)ny n x x=≠>的图象过点(3,2)A ,与直线:l y kx b =+交于点C ,直线l 与y 轴交于点(0,1)B -. (1)求n 、b 的值;(2)横、纵坐标都是整数的点叫做整点.记函数(0,0)ny n x x=≠>的图象在点A ,C 之间的部分与线段BA ,BC 围成的区域(不含边界)为W .①当直线l 过点(2,0)时,直接写出区域W 内的整点个数,并写出区域W 内的整点的坐标; ②若区域W 内的整点不少于5个,结合函数图象,求k 的取值范围.6.(2020•东城区一模)如图,一次函数(0)y kx b k =+≠的图象与反比例函数(0,0)my m x x=≠>的图象在第一象限内交于点A ,B ,且该一次函数的图象与y 轴正半轴交于点C ,过A ,B 分别作y 轴的垂线,垂足分别为D ,E .已知(1,4)A ,14CD CE =. (1)求m 的值和一次函数的解析式;(2)若点M 为反比例函数图象在A ,B 之间的动点,作射线OM 交直线AB 于点N ,当MN 长度最大时,直接写出点M 的坐标.4 / 387.(2020•石景山区一模)如图,在平面直角坐标系xOy 中,直线3y x =+与函数(0)ky x x=>的图象交于点(1,)A m ,与x 轴交于点B .(1)求m ,k 的值;(2)过动点(0P ,)(0)n n >作平行于x 轴的直线,交函数(0)ky x x=>的图象于点C ,交直线3y x =+于点D .①当2n =时,求线段CD 的长;②若CD OB …,结合函数的图象,直接写出n 的取值范围.8.(2020•西城区一模)在平面直角坐标系xOy 中,直线1:2(0)l y kx k k =+>与x 轴交于点A ,与y 轴交于点B ,与函数(0)my x x=>的图象的交点P 位于第一象限. (1)若点P 的坐标为(1,6), ①求m 的值及点A 的坐标;5 / 38②PBPA= ; (2)直线2:22l y kx =-与y 轴交于点C ,与直线1l 交于点Q ,若点P 的横坐标为1, ①写出点P 的坐标(用含k 的式子表示); ②当PQ PA …时,求m 的取值范围.9.(2020•通州区一模)已知:在平面直角坐标系xOy 中,对于任意的实数(0)a a ≠,直线2y ax a =+-都经过平面内一个定点A . (1)求点A 的坐标; (2)反比例函数by x=的图象与直线2y ax a =+-交于点A 和另外一点(,)P m n . ①求b 的值;②当2n >-时,求m 的取值范围.10.(2020•延庆区一模)在平面直角坐标系xOy 中,将点(2,4)A 向下平移2个单位得到点C ,反比例函数(0)my m x=≠的图象经过点C ,过点C 作CB x ⊥轴于点B . (1)求m 的值;(2)一次函数(0)y kx b k =+<的图象经过点C ,交x 轴于点D ,线段CD ,BD ,BC 围成的区域(不含边界)为G ;若横、纵坐标都是整数的点叫做整点. ①3b =时,直接写出区域G 内的整点个数.②若区域G 内没有整点,结合函数图象,确定k 的取值范围.6 / 3811.(2020•房山区一模)在平面直角坐标系xOy 中,反比例函数ky x=的图象与一次函数21y x =-的图象交于A 、B 两点,已知(,3)A m -. (1)求k 及点B 的坐标;(2)若点C 是y 轴上一点,且5ABC S ∆=,直接写出点C 的坐标.12.(2020•门头沟区一模)在平面直角坐标系xOy 中,一次函数(0)y x m m =+≠的图象与y 轴交于点A ,过点(0,2)B m 且平行于x 轴的直线与一次函数(0)y x m m =+≠的图象,反比例函数4my x=的图象分别交于点C ,D .(1)求点D 的坐标(用含m 的代数式表示);(2)当1m =时,用等式表示线段BD 与CD 长度之间的数量关系,并说明理由;7 / 38(3)当BD CD …时,直接写出m 的取值范围.13.(2020•朝阳区一模)在平面直角坐标系xOy 中,直线1y =与一次函数y x m =-+的图象交于点P ,与反比例函数my x=的图象交于点Q ,点(1,1)A 与点B 关于y 轴对称. (1)直接写出点B 的坐标;(2)求点P ,Q 的坐标(用含m 的式子表示);(3)若P ,Q 两点中只有一个点在线段AB 上,直接写出m 的取值范围.14.(2020•密云区一模)如图,在平面直角坐标系xOy 中,直线:1l y x =-的图象与反比例函数(0)k y x x=>的图象交于点(3,)A m . (1)求m 、k 的值;(2)点(p P x ,0)是x 轴上的一点,过点P 作x 轴的垂线,交直线l 于点M ,交反比例函数(0)ky x x =>的图象于点N .横、纵坐标都是整数的点叫做整点.记(0)ky x x=>的图象在点A ,N 之间的部分与线段AM ,MN 围成的区域(不含边界)为W .①当5p x =时,直接写出区域W 内的整点的坐标为;8 / 38②若区域W 内恰有6个整点,结合函数图象,求出p x 的取值范围.15.(2020•大兴区一模)在平面直角坐标系xOy 中,直线5x =与直线3y =,x 轴分别交于点A ,B ,直线(0)y kx b k =+≠经过点A 且与x 轴交于点(9,0)C .(1)求直线y kx b =+的表达式;(2)横、纵坐标都是整数的点叫做整点.记线段AB ,BC ,CA 围成的区域(不含边界)为W . ①结合函数图象,直接写出区域W 内的整点个数;②将直线y kx b =+向下平移n 个单位,当平移后的直线与区域W 没有公共点时,请结合图象直接写出n 的取值范围.专题04 一次函数与反比例函数综合一.解答题(共15小题)9 / 381.(2020•丰台区一模)在平面直角坐标系xOy 中,一次函数4y x =+的图象与y 轴交于点A ,与反比例函数ky x=的图象的一个交点为M . (1)求点A 的坐标;(2)连接OM ,如果MOA ∆的面积等于2,求k 的值.【分析】(1)通过计算自变量为0对应的一次函数值得到A 点坐标;(2)利用一次函数图象上点的坐标特征,设M 点的坐标为(,4)t t +,根据三角形面积公式得到14||22t ⨯⨯=,求出t 得到M 点的坐标,然后利用反比例函数图象上点的坐标特征求k 的值. 【解答】解:(1)当0x =,44y x =+=, (0,4)A ∴;(2)设M 点的坐标为(,4)t t +, MOA ∆Q 的面积等于2,∴14||22t ⨯⨯=,解得1t =或1t =-, M ∴点的坐标为(1,5)或(1,3)-,当M 点的坐标为(1,5)时,155k =⨯=; 当M 点的坐标为(1,3)-时,133k =-⨯=-, 综上所述,k 的值为5或3-.10 / 382.(2020•北京一模)如图,在平面直角坐标系xOy 中,直线3:2l y x =与反比例函数(0)ky x x =>的图象交于点(2,)A a . (1)求a ,k 的值;(2)横,纵坐标都是整数的点叫做整点.点(,)P m n 为射线OA 上一点,过点P 作x 轴,y 轴的垂线,分别交函数(0)k y x x =>的图象于点B ,C .由线段PB ,PC 和函数(0)ky x x=>的图象在点B ,C 之间的部分所围成的区域(不含边界)记为W . ①若PA OA =,求区域W 内的整点个数;②若区域W 内恰有5个整点,结合函数图象,直接写出m 的取值范围.【分析】(1)将点A 坐标代入解析式,可求a ,k 的值;11 / 38(2)①先求出点P 坐标,结合函数图象可求解; ②分两种情况讨论,结合函数图象可求解.【解答】解:(1)Q 直线3:2l y x =与反比例函数(0)ky x x =>的图象交于点(2,)A a .∴3232a =⨯=, ∴点(2,3)A ,Q 反比例函数ky x=过点A , 326k ∴=⨯=;(2)①Q 点P 为射线OA 上一点,且PA OA =,A ∴为OP 中点,(2,3)A Q ,∴点P 的坐标为(4,6),将4x =代入6y x =中,得32y =, 将6y =代入6y x=中,得1x =, PB Q ,PC 分别垂直于x 轴和y 轴,3(4,)2B ∴,(1,6)C ,如图,12 / 38结合函数图象可知,区域W 内有5个整点; ②当点P 在点A 下方时,如图,结合函数图象可知,当213m …时,区域W 内有5个整点;当点P 在点A 上方时,如图,13 / 38结合函数图象可知,当1043m <…时,区域W 内有5个整点; 综上所述:当213m <…或1043m <…时,区域W 内有5个整点;3.(2020•海淀区一模)在平面直角坐标系xOy 中,直线3x =与直线112y x =+交于点A ,函数(0,0)k y k x x =>>的图象与直线3x =,直线112y x =+分别交于点B ,C . (1)求点A 的坐标.(2)横、纵坐标都是整数的点叫做整点.记函数(0,0)ky k x x=>>的图象在点B ,C 之间的部分与线段AB ,AC 围成的区域(不含边界)为W .①当1k =时,结合函数图象,求区域W 内整点的个数; ②若区域W 内恰有1个整点,直接写出k 的取值范围.【分析】(1)根据题意列方程即可得到结论;(2)①当1k=时,求得B、C的坐标,根据图象得到结论;②分两种情况根据图象即可得到结论.【解答】解:(1)直线3x=与直线112y x=+交于点A,∴3112xy x=⎧⎪⎨=+⎪⎩,解得352xy=⎧⎪⎨=⎪⎩,5(3,)2A∴;(2)①当1k=时,根据题意1(3,)3B,(1C-+,14/ 3815 / 38在W 区域内有1个整数点:(2,1); ②若区域W 内恰有1个整点,当C 点在直线3x =的左边时,如图1,在W 区域内有1个整数点:(2,1),12k ∴<…;当C 点在直线3x =的右边时,如图2,在W 区域内有1个整数点:(4,4),1620k ∴<…;综上,当区域W 内恰有1个整点时,12k <…或1620k <…4.(2020•平谷区一模)在平面直角坐标系xOy 中,反比例函数(0)ky x x=>的图象G 与直线:24l y x =-交16 / 38于点(3,)A a . (1)求k 的值;(2)已知点(0P ,)(0)n n >,过点P 作平行于x 轴的直线,与图象G 交于点B ,与直线l 交于点C .横、纵坐标都是整数的点叫做整点.记图象G 在点A ,B 之间的部分与线段AC ,BC 围成的区域(不含边界)为W .①当5n =时,直接写出区域W 内的整点个数;②若区域W 内的整点恰好为3个,结合函数图象,直接写出n 的取值范围.【分析】(1)把(3,)A a 代入24y x =-求得2a =,然后根据待定系数法即可求得k 的值; (2)①当5n =时,得到B 为6(5,5),9(2C ,5),结合图象于是得到结论;②分两种情况,根据图象即可得到结论.【解答】解:(1)反比例函数(0)ky x x =>的图象G 与直线:24l y x =-交于点(3,)A a .2342a ∴=⨯-=,(3,2)A ∴,17 / 38Q 反比例函数(0)ky x x=>的图象G 经过(3,2)A , 326k ∴=⨯=;(2)①当5n =时,则B 为6(5,5),9(2C ,5),∴在W 区域内有3个整数点:(2,4),(3,3),(3,4);②由图1可知,若区域W 内的整点恰好为3个,当P 点在A 点的上方时,则45n <…; 当P 点在A 点的下方时,则01n <<,综上所述,若区域W 内恰有3个整点,n 的取值范围为:45n <…或01n <<5.(2020•顺义区一模)已知:在平面直角坐标系xOy 中,函数(0,0)ny n x x=≠>的图象过点(3,2)A ,与直线:l y kx b =+交于点C ,直线l 与y 轴交于点(0,1)B -. (1)求n 、b 的值;(2)横、纵坐标都是整数的点叫做整点.记函数(0,0)ny n x x=≠>的图象在点A ,C 之间的部分与线段BA,18 / 38BC 围成的区域(不含边界)为W .①当直线l 过点(2,0)时,直接写出区域W 内的整点个数,并写出区域W 内的整点的坐标; ②若区域W 内的整点不少于5个,结合函数图象,求k 的取值范围.【分析】(1)把(3,2)A 代入(0,0)ny n x x=≠>中可得n 的值;把点(0,1)B -代入y kx b =+中可得b 的值;(2)①将(2,0)代入1y kx =-可得:直线解析式为112y x =-,画图可得整点的个数; ②分两种情况:直线l 在OA 的下方和上方,画图计算边界时k 的值,可得k 的取值. 【解答】解:(1)Q 点(3,2)A 在函数ny x=的图象上, 6n ∴=,Q 点(0,1)B -在直线:l y kx b =+上,1b ∴=-;(2)①当直线l 过点(2,0)时,直线解析式为112y x =-, 解方程6112x x =-得11x =-,21x =+(1C +, 而(0,1)B -,如图1所示,区域W 内的整点有(3,1)一个;19 / 38②(ⅰ)当直线l 在BA 下方时,若直线l 与x 轴交于点(3,0),结合图象,区域W 内有4个整点, 此时:310k -=,∴13k =.当直线l 与x 轴的交点在(3,0)右侧时,区域W 内整点个数不少于5个,103k ∴<<.20 / 38(ⅱ)当直线l 在BA 上方时,若直线l 过点(1,4),结合图象,区域W 内有4个整点, 此时14k -=,解得5k =.结合图象,可得5k >时,区域W 内整点个数不少于5个, 综上,k 的取值范围是103k <<或5k >. 6.(2020•东城区一模)如图,一次函数(0)y kx b k =+≠的图象与反比例函数(0,0)my m x x=≠>的图象在第一象限内交于点A ,B ,且该一次函数的图象与y 轴正半轴交于点C ,过A ,B 分别作y 轴的垂线,垂足分别为D ,E .已知(1,4)A ,14CD CE =. (1)求m 的值和一次函数的解析式;(2)若点M 为反比例函数图象在A ,B 之间的动点,作射线OM 交直线AB 于点N ,当MN 长度最大时,直接写出点M 的坐标.【分析】(1)先把A 点坐标代入my x=中求出m 得到反比例函数解析式为4y x =;再证明CDA CEB ∆∆∽,利用相似比求出4BE =,则利用反比例函数解析式确定B 点坐标,然后利用待定系数法求一次函数解析式; (2)利用点A 与点B 关于直线y x =对称,反比例函数4y x=-关于y x =对称可判断当OM 的解析式为y x =时,MN 的长度最大,然后解方程组4y x y x⎧=⎪⎨⎪=⎩得此时M 点的坐标.【解答】解:(1)把(1,4)A 代入my x=得144m =⨯=,21 / 38∴反比例函数解析式为4y x=; BD y ⊥Q 轴,AD y ⊥轴, //AD BE ∴, CDA CEB ∴∆∆∽,∴CD AD CE BE =,即114BE =,4BE ∴=,当4x =时,4414y x ===, (4,1)B ∴,把(1,4)A ,(4,1)B 代入y kx b =+得441k b k b +=⎧⎨+=⎩,解得15k b =-⎧⎨=⎩,∴一次函数解析式为5y x =-+;(2)Q 点A 与点B 关于直线y x =对称,反比例函数4y x=-关于y x =对称,∴当OM 的解析式为y x =时,MN 的长度最大,解方程组4y x y x⎧=⎪⎨⎪=⎩得22x y =⎧⎨=⎩或22x y =-⎧⎨=-⎩, ∴此时M 点的坐标为(2,2).7.(2020•石景山区一模)如图,在平面直角坐标系xOy 中,直线3y x =+与函数(0)ky x x=>的图象交于点(1,)A m ,与x 轴交于点B .(1)求m ,k 的值;22 / 38(2)过动点(0P ,)(0)n n >作平行于x 轴的直线,交函数(0)ky x x=>的图象于点C ,交直线3y x =+于点D .①当2n =时,求线段CD 的长;②若CD OB …,结合函数的图象,直接写出n 的取值范围.【分析】(1)先利用一次函数解析式确定m 的值得到A 点坐标,然后把A 点坐标代入ky x=得到k 的值; (2)①利用C 、D 的纵坐标都为2得到C 点和D 点的横坐标,然后求两横坐标之差得到线段CD 的长; ②先确定(3,0)-,由于C 、D 的纵坐标都为n ,根据一次函数和反比例函数图象上点的坐标特征可表示出4(C n,)n ,(3,)D n n -,讨论:当点C 在点D 的右侧时,先利用CD OB =得到4(3)3n n --=,解得12n =,22n =-(舍去),再结合图象可判断当02n <…时,CD OB …;当点C 在点D 的左侧时,先利用CD OB =得到433n n--=,解得13n =+23n =,再结合图象可判断当3n +…CD OB …. 【解答】解:(1)Q 直线3y x =+经过点(1,)A m , 134m ∴=+=, Q 反比例函数ky x=的图象经过点(1,4)A , 144k ∴=⨯=;(2)①当2n =时,点P 的坐标为(0,2),23 / 38当2y =时,42x=,解得2x =, ∴点C 的坐标为(2,2),当2y =时,32x +=,解得1x =-,∴点D 的坐标为(1,2)-,2(1)3CD ∴=--=;②当0y =时,30x +=,解得3x =-,则(3,0)B -当y n =时,4n x =,解得4x n=, ∴点C 的坐标为4(n,)n ,当y n =时,3x n +=,解得3x n =-,∴点D 的坐标为(3,)n n -,当点C 在点D 的右侧时, 若CD OB =,即4(3)3n n--=,解得12n =,22n =-(舍去), ∴当02n <…时,CD OB …;当点C 在点D 的左侧时, 若CD OB =,即433n n--=,解得13n =+23n =, ∴当3n …时,CD OB …,综上所述,n 的取值范围为02n <…或3n +…24 / 388.(2020•西城区一模)在平面直角坐标系xOy 中,直线1:2(0)l y kx k k =+>与x 轴交于点A ,与y 轴交于点B ,与函数(0)my x x=>的图象的交点P 位于第一象限. (1)若点P 的坐标为(1,6), ①求m 的值及点A 的坐标; ②PB PA = 13; (2)直线2:22l y kx =-与y 轴交于点C ,与直线1l 交于点Q ,若点P 的横坐标为1, ①写出点P 的坐标(用含k 的式子表示); ②当PQ PA …时,求m 的取值范围.【分析】(1)①把(1,6)P 代入函数(0)my x x=>即可求得m 的值,直线1:2(0)l y kx k k =+>中,令0y =,即可求得x 的值,从而求得A 的坐标;②把P 的坐标代入2y kx k =+即可求得k 的值,进而求得B 的坐标,然后根据勾股定理求得PB 和PA ,即可求得PBPA的值; (2)①把1x =代入2y kx k =+,求得3y k =,即可求得(1,3)P k ;②分别过点P 、Q 作PM x ⊥轴于M ,QN x ⊥轴于N ,则点M 、点N 的横坐标1,22k+,若PQ PA =,则1PQ PA =,根据平行线分线段成比例定理则1PQ MN PA MA ==,得出3MN MA ==,即可得到2213k+-=,解25 / 38得1k =,根据题意即可得到当1PQ MNPA MA=…时,1k …,则33m k =…. 【解答】解:(1)①令0y =,则20kx k +=, 0k >Q ,解得2x =-,∴点A 的坐标为(2,0)-,Q 点P 的坐标为(1,6),166m ∴=⨯=;②Q 直线1:2(0)l y kx k k =+>函数(0)my x x=>的图象的交点P ,且(1,6)P , 62k k ∴=+,解得2k =,24y x ∴=+,令0x =,则4y =, (0,4)B ∴,Q 点A 的坐标为(2,0)-,PA ∴==PB ==,∴13PB PA ==, 故答案为13;(2)①把1x =代入2y kx k =+得3y k =, (1.3)P k ∴;②由题意得,222kx k kx +=-,26 / 38解得22x k=+, ∴点Q 的横坐标为22k+, 221(0)k k+>>Q , ∴点Q 在点P 的右侧,如图,分别过点P 、Q 作PM x ⊥轴于M ,QN x ⊥轴于N ,则点M 、点N 的横坐标1,22k+, 若PQ PA =,则1PQPA=, ∴1PQ MNPA MA==, MN MA ∴=,2213k∴+-=,解得1k =, 3MA =Q ,∴当1PQ MNPA MA=…时,1k …, 33m k ∴=…,∴当PQ PA …时,3m ….27 / 389.(2020•通州区一模)已知:在平面直角坐标系xOy 中,对于任意的实数(0)a a ≠,直线2y ax a =+-都经过平面内一个定点A . (1)求点A 的坐标; (2)反比例函数by x=的图象与直线2y ax a =+-交于点A 和另外一点(,)P m n . ①求b 的值;②当2n >-时,求m 的取值范围.【分析】(1)解析式化为2(1)2y ax a a x =+-=+-,即可求得;(2)①根据待定系数法即可求得;②根据反比例函数的性质即可判定点(,)P m n 在第一象限或第三象限两种情况,分别讨论即可.【解答】解:(1)2(1)2y ax a a x =+-=+-Q ,∴当1x =-时,2y =-,∴直线2y ax a =+-都经过平面内一个定点(1,2)A --;(2)①Q 反比例函数by x=的图象经过点A ,28 / 381(2)2b ∴=-⨯-=;②若点(,)P m n 在第一象限,当2n >-时,0m >, 若点(,)P m n 在第三象限,当2n >-时,1m <-, 综上,当2n >-时,0m >或1m <-.10.(2020•延庆区一模)在平面直角坐标系xOy 中,将点(2,4)A 向下平移2个单位得到点C ,反比例函数(0)my m x=≠的图象经过点C ,过点C 作CB x ⊥轴于点B . (1)求m 的值;(2)一次函数(0)y kx b k =+<的图象经过点C ,交x 轴于点D ,线段CD ,BD ,BC 围成的区域(不含边界)为G ;若横、纵坐标都是整数的点叫做整点. ①3b =时,直接写出区域G 内的整点个数.②若区域G 内没有整点,结合函数图象,确定k 的取值范围.【分析】(1)点(2,4)A 向下平移2个单位得到点(2,2)C ,将点C 的坐标代入函数表达式,即可求解; (2)①将点C 的坐标和b 代入一次函数表达式,求出132y x =-+,从而得出(6,0)D ,由图象可得,区域G内只有一个整点(3,1)H ,即可求解;②参考上图可知,区域G 内的有一个整点时,该点坐标为(3,1),将坐标(3,1)代入一次函数表达式y kx b =+,求出1k =-,故若区域G 内没有整点,则1k -….29 / 38【解答】解:(1)Q 点(2,4)A 向下平移2个单位得到点C ,∴点(2,2)C .Q 反比例函数(0)my m x=≠的图象经过点C , 将点C 的坐标代入上式得:22m =, 解得:4m =;(2)①将点C 的坐标代入一次函数y kx b =+得:22k b =+①, 当3b =时,则12k =-,故一次函数的表达式为:132y x =-+,令0y =,则1302x -+=,解得:6x =,即点(6,0)D ,由一次函数表达式作出下图,由图象可得,区域G 内只有一个整点(3,1)H , 故区域G 内的整点个数为1;30 / 38②参考上图可知,区域G 内的有一个整点时,该点坐标为:(3,1), 将坐标(3,1)代入一次函数表达式y kx b =+得:13k b =+②,联立①②并解得:14k b =-⎧⎨=⎩,即1k =-,故若区域G 内没有整点,则1k -….11.(2020•房山区一模)在平面直角坐标系xOy 中,反比例函数ky x=的图象与一次函数21y x =-的图象交于A 、B 两点,已知(,3)A m -. (1)求k 及点B 的坐标;(2)若点C 是y 轴上一点,且5ABC S ∆=,直接写出点C 的坐标.【分析】(1)由直线21y x =-经过点(,3)A m -,把3y =-代入解析式即可求出m 的值;再根据反比例函数经过点A 即可得出k 的值;联立两个函数解析式即可求出点B 的坐标;(2)求出直线AB 与y 轴的交点坐标,再根据A 、B 两点的横坐标以及三角形的面积公式解答即可. 【解答】解:(1)把3y =-代入21y x =-得1x =-, (1,3)A ∴--;31 / 38又反比例函数ky x=的图象经过点A , 3k ∴=,321y x y x ⎧=⎪⎨⎪=-⎩,解得1113x y =-⎧⎨=-⎩,22322x y ⎧=⎪⎨⎪=⎩, 3(2B ∴,2).(2)设直线AB 的解析式为y kx b =+, 则3322k b k b -+=-⎧⎪⎨+=⎪⎩,解得21k b =⎧⎨=-⎩.∴直线AB 的解析式为21y x =-,所以直线AB 与y 轴交于点(0,1)-, 设点C 的纵坐标为y ,当点C 在y 轴的正半轴时,13(1)(1)522y +⨯+=,解得3y =,当点C 在y 轴的负半轴时,13(1)(1)522y --⨯+=,解答5y =-,∴点C 的坐标为(0,3)或(0,5)-.12.(2020•门头沟区一模)在平面直角坐标系xOy 中,一次函数(0)y x m m =+≠的图象与y 轴交于点A ,过点(0,2)B m 且平行于x 轴的直线与一次函数(0)y x m m =+≠的图象,反比例函数4my x=的图象分别交于点C ,D .(1)求点D 的坐标(用含m 的代数式表示);(2)当1m =时,用等式表示线段BD 与CD 长度之间的数量关系,并说明理由;32 / 38(3)当BD CD …时,直接写出m 的取值范围.【分析】(1)直接将点B 的坐标代入反比例函数4my x=中可得点D 的坐标; (2)把1m =代入可得B 和D 的坐标,从而得C 的坐标,根据两点的距离公式可得2BD CD =; (3)根据两点的距离公式,由BD CD …列不等式,解出即可,因为4my x=中0m ≠,可得结论. 【解答】解:(1)Q 过点(0,2)B m 且平行于x 轴的直线与反比例函数4my x=的图象交于点D , ∴点D 的纵坐标为2m ,42mm x∴=,2x =, (2,2)D m ∴;(2)当1m =时,(0,2)B ,(2,2)D ,Q 过点(0,2)B m 且平行于x 轴的直线与一次函数(0)y x m m =+≠的图象交于点C ,2m x m ∴=+,x m =,(,2)C m m ∴,33 / 38(1,2)C ∴,2BD ∴=,1CD ,2BD CD ∴=;(3)(0,2)B m Q ,(,2)C m m ,(2,2)D m ,2BD ∴=,|2|CD m =-, BD CD Q …,|2|2m ∴-…,4m ∴…或0m <.13.(2020•朝阳区一模)在平面直角坐标系xOy 中,直线1y =与一次函数y x m =-+的图象交于点P ,与反比例函数my x=的图象交于点Q ,点(1,1)A 与点B 关于y 轴对称. (1)直接写出点B 的坐标;(2)求点P ,Q 的坐标(用含m 的式子表示);(3)若P ,Q 两点中只有一个点在线段AB 上,直接写出m 的取值范围.【分析】(1)根据关于y 轴对称的两点,其纵坐标相等横坐标互为相反数,即可写出点B 的坐标;(2)把1y =代入y x m =-+,求出x ,进而得到点P 的坐标;把1y =代入my x=,求出x ,进而得到点Q 的坐标;(3)由点P ,Q 的坐标,可知点P 在点Q 的左边.当P ,Q 两点中只有一个点在线段AB 上时,分两种情况进行讨论:①只有P 点在线段AB 上;②只有Q 点在线段AB 上.分别列出关于m 的不等式组,求解即可. 【解答】解:(1)Q 点(1,1)A 与点B 关于y 轴对称,∴点B 的坐标是(1,1)-;34 / 38(2)把1y =代入y x m =-+,得1x m =-+,解得1x m =-,∴点P 的坐标为(1,1)m -;把1y =代入my x=,得1m x =,解得x m =,∴点Q 的坐标为(,1)m ;(3)Q 点P 的坐标为(1,1)m -,点Q 的坐标为(,1)m ,∴点P 在点Q 的左边.当P ,Q 两点中只有一个点在线段AB 上时,分两种情况: ①只有P 点在线段AB 上时,由题意,得1111m m --⎧⎨>⎩剟,解得12m <…;②只有Q 点在线段AB 上时,由题意,得1111m m -<-⎧⎨-⎩剟,解得10m -<….综上可知,所求m 的取值范围是10m -<…或12m <….14.(2020•密云区一模)如图,在平面直角坐标系xOy 中,直线:1l y x =-的图象与反比例函数(0)ky x x=>的图象交于点(3,)A m . (1)求m 、k 的值;(2)点(p P x ,0)是x 轴上的一点,过点P 作x 轴的垂线,交直线l 于点M ,交反比例函数(0)ky x x=>的35 / 38图象于点N .横、纵坐标都是整数的点叫做整点.记(0)ky x x =>的图象在点A ,N 之间的部分与线段AM ,MN 围成的区域(不含边界)为W .①当5p x =时,直接写出区域W 内的整点的坐标为;②若区域W 内恰有6个整点,结合函数图象,求出p x 的取值范围.【分析】(1)将点A 坐标代入解析式,可求m ,k 的值;(2)①根据题意先求M ,N 两点,根据A 、M 、N 点的坐标即求出整点个数.②分两种情况讨论,结合函数图象可求解.【解答】解:(1)Q 直线:1l y x =-的图象与反比例函数(0)k y x x=>的图象交于点(3,)A m .312m ∴=-=,∴点(3,2)A ,Q 反比例函数ky x=过点A , 326k ∴=⨯=;(2)①当5p x =时,M 、N 两点的坐标为(5,4)M 、6(5,)5N .(3,2)A Q .36 / 38∴区域W 内的整点的坐标为(4,2).②当点P 在点A 左边时,如图1,结合函数图象可知,当01p x <<时,区域W 内有6个整点;当点P 在点A 右时,如图2,结合函数图象可知,当67P x <…时,区域W 内有6个整点; 综上所述:当01p x <<或67P x <…时,区域W 内有6个整点.15.(2020•大兴区一模)在平面直角坐标系xOy 中,直线5x =与直线3y =,x 轴分别交于点A ,B ,直线(0)y kx b k =+≠经过点A 且与x 轴交于点(9,0)C .37 / 38(1)求直线y kx b =+的表达式;(2)横、纵坐标都是整数的点叫做整点.记线段AB ,BC ,CA 围成的区域(不含边界)为W . ①结合函数图象,直接写出区域W 内的整点个数;②将直线y kx b =+向下平移n 个单位,当平移后的直线与区域W 没有公共点时,请结合图象直接写出n 的取值范围.【分析】(1)根据图形,可以得到点A 的坐标,再根据直线y kx b =+过点A 和点C ,从而可以得到直线y kx b =+的表达式;(2)①根据题意和图象,可以得到区域W 内的整点个数; ②根据平移的特点和图象,可以得到n 的取值范围. 【解答】解:(1)由图可得,点A 的坐标为(5,3), Q 直线y kx b =+过点(5,3)A ,点(9,0)C ,∴5390k b k b +=⎧⎨+=⎩,得34274k b ⎧=-⎪⎪⎨⎪=⎪⎩,即直线y kx b =+的表达式是32744y x =-+;(2)①由图象可得,区域W内的整点的坐标分别为(6,1),(6,2),(7,1),即区域W内的整点个数是3个;②由图象可知,当点A向下平移3个单位长度时,直线y kx b=+与区域W没有公共点,n….即n的取值范围是338/ 38。
2020年中考数学必考考点专练:一次函数、反比例函数综合题(解析版)
|类型1| 比较函数值的大小,求自变量取值范围1.[2019·泸州]如图,一次函数y 1=ax+b 和反比例函数y 2=kx 的图象相交于A ,B 两点,则使y 1>y 2成立的x 的取值范围是 ( )A ..-2<x<0或0<x<4B .x<-2或0<x<4C .x<-2或x>4D .-2<x<0或x>4【答案】B【解析】观察函数图象,发现:当x<-2或0<x<4时,一次函数图象在反比例函数图象的上方,∴当y 1>y 2时,x 的取值范围是x<-2或0<x<4.2.如图,一次函数y 1=k 1x+b 1与反比例函数y 2=k2x (x>0)的图象交于A (1,3),B (3,1)两点,若y 1<y 2,则x 的取值范围是 ( )A ..x<1B .x<3C .0<x<3D .x>3或0<x<1【答案】【解析】观察函数图象,发现:当.x>3或0<x<1时,一次函数图象在反比例函数图象的上方,∴当y 1<y 2,时,x 的取值范围是x>3或0<x<13.[2019·扬州]若反比例函数y=-2x 的图象上有两个不同的点关于y 轴的对称点都在一次函数y=-x+m 的图象上,则m 的取值范围是 ( ) A .m>2√2B .m<-2√2C .m>2√2或m<-2√2D .-2√2<m<2√2【答案】C一次函数、反比例函数综合题[解析]∵反比例函数y=-2x图象上的点关于y 轴对称的点都在反比例函数y=2x的图象上,∴反比例函数y=2x的图象与一次函数y=-x+m 的图象有两个不同的交点,两个函数联立得方程组{y =2x ,y =-x +m ,化简得x 2-mx+2=0.∵有两个不同的交点,∴x 2-mx+2=0有两个不等的实根.∴Δ=m 2-8>0, ∴m>2√2或m<-2√2.4.[2019·玉林]如图,一次函数y 1=(k -5)x+b 的图象在第一象限与反比例函数y 2=kx 的图象相交于A ,B 两点,当y 1>y 2时,x 的取值范围是1<x<4,则k= 4 .[解析]观察图象可知{k -5+b =k ,4(k -5)+b =k4,解得{k =4,b =5.5.已知一次函数y=ax+b ,反比例函数y=kx (a ,b ,k 是常数,且ak ≠0),若其中一部分x ,y 的对应值如下表,则不等式-8<ax+b<kx 的解集是 -6<x<-2或0<x<4 .x-4-2 -1 1 2 4 y=ax+b -6 -4 -3 -1 0 2 y=kx-2-4-8842[解析]根据表格可得:当x=-2和x=4时,两个函数值相等,因此直线y=ax+b 与双曲线y=kx 的交点为(-2,-4),(4,2),由表即可得出当x=-6时,一次函数值y=-8,∴不等式-8<ax+b<kx的解集为-6<x<-2或0<x<4.6. 在平面直角坐标系xOy 中,直线y=kx+2k (k>0)与x 轴交于点P ,与双曲线y=3kx (x>0)交于点Q ,若直线y=4kx -2与直线PQ 交于点R (点R 在点Q 右侧),当RQ ≤PQ 时,k 的取值范围是 k ≥15 .[解析]如图,作QM ⊥x 轴于M ,RN ⊥x 轴于N , ∴QM ∥RN ,∴PQQR =PM MN,∵RQ ≤PQ ,∴MN ≤PM ,∵直线y=kx+2k (k>0)与x 轴交于点P , ∴P (-2,0),∴OP=2, 解kx+2k=3kx 得,x 1=-3,x 2=1,∴Q 点的横坐标为1,∴M (1,0),∴OM=1, ∴PM=2+1=3,解kx+2k=4kx -2得,x=2k+23k,∴R 点的横坐标为2k+23k,∴N (2k+23k,0),∴ON=2k+23k,∴MN=2k+23k-1,∴2k+23k-1≤3,解得k ≥15,故答案为k ≥15.7.[2019·巴中]如图,一次函数y 1=k 1x+b (k 1,b 为常数,k 1≠0)的图象与反比例函数y 2=k2x (k 2≠0,x>0)的图象交于点A (m ,8)与点B (4,2). (1)求一次函数与反比例函数的解析式; (2)根据图象说明,当x 为何值时,k 1x+b -k2x <0.解:(1)∵点B (4,2)在反比例函数y 2=k2x (k 2≠0,x>0)的图象上,∴2=k24,解得k 2=8,∴反比例函数解析式为y 2=8x(x>0).当y 2=8时,8=8m,∴m=1,∴点A 坐标为(1,8),将A (1,8),B (4,2)的坐标代入y 1=k 1x+b , 可得{8=k 1+b ,2=4k 1+b ,∴{k 1=-2,b =10,∴一次函数解析式为y 1=-2x+10.(2)由图象可知x 的取值范围为0<x<1或x>4.8.[2019·攀枝花]如图,在平面直角坐标系xOy 中,一次函数y=kx+b 的图象与反比例函数y=mx 的图象在第二象限交于点B ,与x 轴交于点C ,点A 在y 轴上,满足条件:CA ⊥CB ,且CA=CB ,点C 的坐标为(-3,0),cos ∠ACO=√55. (1)求反比例函数的表达式;(2)直接写出当x<0时,kx+b<mx 的解集.解:(1)如图,作BH ⊥x 轴于点H ,则∠BHC=∠BCA=∠COA=90°, ∴∠BCH=∠CAO . ∵点C 的坐标为(-3,0), ∴OC=3. ∵cos ∠ACO=√55, ∴AC=3√5,AO=6. 在△BHC 和△COA 中,{∠BHC =∠COA =90°,∠BCH =∠CAO ,BC =AC ,∴△BHC ≌△COA . ∴BH=CO=3,CH=AO=6. ∴OH=9,即B (-9,3). ∴m=-9×3=-27,∴反比例函数的表达式为y=-27x .(2)∵在第二象限中,B 点右侧一次函数的图象在反比例函数图象的下方,∴当x<0时,kx+b<mx 的解集为-9<x<0.|类型2| 求几何图形面积9.[2019·凉山州]如图,正比例函数y=kx 与反比例函数y=4x 的图象相交于A ,C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则△ABC 的面积等于( )A .8B .6C .4D .2【答案】C[解析]设A 点的坐标为(m ,4m ),则C 点的坐标为(-m ,-4m ),∴S △ABC =S △OAB +S △OBC =12m ×4m +12m ×|-4m |=4,故选C .10.[2019·滁州定远一模]如图,已知反比例函数y=mx 与一次函数y=kx+b 的图象相交于A (4,1),B (a ,2)两点,一次函数的图象与y 轴交于点C ,点D 在x 轴上,其坐标为(1,0),则△ACD 的面积为( )A .12B .9C .6D .5【答案】D[解析]∵点A (4,1)在反比例函数y=mx 图象上,∴m=xy=4×1=4,∴y=4x . 把B (a ,2)代入y=4x得2=4a,∴a=2,∴B (2,2).把A (4,1),B (2,2)代入y=kx+b , 得{1=4k +b ,2=2k +b ,解得{k =-12,b =3,∴一次函数的解析式为y=-12x+3.∵点C 在直线y=-12x+3上, ∴当x=0时,y=3,∴C (0,3). 如图,过点A 作AE ⊥x 轴于点E .∴S △ACD =S 梯形AEOC -S △COD -S △DEA =(1+3)×42-12×1×3-12×1×3=5.11.如图,矩形ABCD 的边BC 在x 轴的负半轴上,顶点D (a ,b )在反比例函数y=kx 的图象上,直线AC 交y 轴点E ,且S △BCE =6,则k 的值为( )A .-12B .-6C .-2D .-3【答案】A[解析]∵矩形ABCD ,D (a ,b ),∴CO=-a ,CD=AB=b ,∵D (a ,b )在反比例函数y=kx 的图象上,∴k=ab ,∵S △BCE =6,∴12BC ·OE=6,即BC ·OE=12, ∵AB ∥OE ,∴BC OC =AB EO ,即BC ·EO=AB ·CO ,∴12=b ·(-a ),即ab=-12,∴k=-12,故选A .12.[2019·乐山]如图,点P 是双曲线C :y=4x (x>0)上的一点,过点P 作x 轴的垂线交直线AB :y=12x -2于点Q ,连接OP ,OQ .当点P 在曲线C 上运动,且点P 在Q 的上方时,△POQ 面积的最大值是 .【答案】3[解析]∵点P 是双曲线C :y=4x(x>0)上的一点,∴可设点P 坐标为(m ,4m),∵PQ ⊥x 轴,Q 在y=12x -2图象上,∴Q 坐标为(m ,12m -2),PQ=4m-(12m -2),∴△POQ 的面积=12m ×[4m -(12m -2)]=-14(m -2)2+3,∴当m=2时,△POQ 面积最大,最大值为3.13.[2019·宁波]如图,过原点的直线与反比例函数y=kx (k>0)的图象交于A ,B 两点,点A 在第一象限,点C 在x 轴正半轴上,连接AC ,交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连接DE ,若AC=3DC ,△ADE 的面积为8,则k 的值为 6 .[解析]连接OE ,OD ,在Rt △ABE 中,点O 是AB 的中点,∴OE=12AB=OA ,∴∠OAE=∠OEA ,∵AE 为∠BAC 的平分线,∴∠OAE=∠DAE , ∴∠OEA=∠DAE ,∴AD ∥OE ,∴S △ADE =S △ADO ,过点A 作AM ⊥x 轴于点M ,过点D 作DN ⊥x 轴于点N ,易得S 梯形AMND =S △ADO =8, ∵△CAM ∽△CDN ,CD ∶CA=1∶3,∴S △CAM =9,延长CA 交y 轴于点P ,易得△CAM ∽△CPO ,可知DC=AP ,∴CM ∶MO=CA ∶AP=3∶1,∴S △CAM ∶S △AMO =3∶1,∴S △AMO =3,∵反比例函数图象在第一、三象限,∴k=6.14.[2019·盐城]如图,一次函数y=x+1的图象交y 轴于点A ,与反比例函数y=kx (x>0)的图象交于点B (m ,2). (1)求反比例函数的表达式; (2)求△AOB 的面积.解:(1)∵一次函数y=x+1的图象经过点B (m ,2), ∴2=m+1,解得m=1,则点B 的坐标为(1,2), ∵点B 在反比例函数y=kx (x>0)的图象上, ∴k=2,∴反比例函数的表达式为y=2x (x>0).(2)易得点A (0,1),∴OA=1, 过点B 作BC ⊥y 轴,垂足为点C ,则BC 就是△AOB 的高,BC=1, ∴S △AOB =12OA ×BC=12×1×1=12.15.[2019·遂宁]如图,一次函数y=x -3的图象与反比例函数y=kx (k ≠0)的图象交于点A 与点B (a ,-4).(1)求反比例函数的表达式;(2)若动点P 是第一象限内双曲线上的点(不与点A 重合),连接OP ,且过点P 作y 轴的平行线交直线AB 于点C ,连接OC ,若△POC 的面积为3,求出点P 的坐标.解:(1)∵点B (a ,-4)在一次函数y=x -3的图象上,∴a=-1,∴B (-1,-4), ∵B (-1,-4)在反比例函数图象上, ∴k=(-1)×(-4)=4,∴反比例函数的表达式为y=4x .(2)如图,设PC 交x 轴于点H ,设P (m ,4m )(m>0),则C (m ,m -3),由{y =4x ,y =x -3,得x 2-3x -4=0,解得x 1=-1,x 2=4,∴A (4,1).∵PC=|4m +3-m |,OH=m ,∴△POC 的面积为3,∴12|4m +3-m |·m=3,∴m 1=2,m 2=1,m 3=5,m 4=-2.∵m>0,点P 与点A 不重合,且A (4,1), ∴m 4=-2不合题意,舍去,∴P 点坐标为(1,4),(2,2),(5,45).。
【精选】2020年中考数学《反比例函数》专题 复习试题(word版有答案)
中考数学《反比例函数》专题 复习试题命题点1 图象与性质1.一台印刷机每年可印刷的书本数量 y(万册)与它的使用时间x(年)成反比例关系,当x =2时,y =20.则y 与x 的函数图象大致是(C)A B C D2.反比例函数y =mx的图象如图所示,以下结论:①常数m <-1;②在每个象限内,y 随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h <k ;④若P(x ,y)在图象上,则P ′(-x ,-y)也在图象上.其中正确的是(C)A .①②B .②③C .③④D .①④3.如图,函数y =⎩⎪⎨⎪⎧1x (x >0),-1x (x <0)的图象所在坐标系的原点是(A)A .点MB .点NC .点PD .点Q4.定义新运算:a ⊕b =⎩⎪⎨⎪⎧a b (b >0),-ab (b <0). 例如:4⊕5=45,4⊕(-5)=45.则函数y =2⊕x(x≠0)的图象大致是(D)A B C D5.如图,若抛物线y =-x2+3与x 轴围成的封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数y =kx(x >0)的图象是(D)A B CD命题点2 反比例函数、一次函数与几何图形综合6.如图,四边形ABCD 是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y =mx(x>0)的图象经过点D ,点P 是一次函数y =kx +3-3k(k ≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算说明一次函数y =kx +3-3k(k ≠0)的图象一定经过点C ;(3)对于一次函数y =kx +3-3k(k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围.(不必写出过程)解:(1)∵B(3,1),C(3,3),四边形ABCD 是平行四边形, ∴AD =BC =2,AD ∥BC ,BC ⊥x 轴.∴AD ⊥x 轴. 又∵A(1,0),∴D(1,2).∵点D 在反比例函数y =mx的图象上,∴m =1×2=2.∴反比例函数的解析式为y =2x.(2)当x =3时,y =kx +3-3k =3,∴一次函数y =kx +3-3k(k ≠0)的图象一定过点C.(3)设点P 的横坐标为a ,则23<a <3.命题点3 反比例函数的实际应用(8年2考)7.(2019·杭州)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数解析式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围;②方方能否在当天11点30分前到达B 地?说明理由.解:(1)∵vt =480,且全程速度限定为不超过120千米/小时,∴v 关于t 的函数解析式为v =480t (t ≥4).(2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时.将t =6代入v =480t,得v =80;将t =245代入v =480t,得v =100.∴小汽车行驶速度v 的范围为80≤v ≤100.②方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480t ,得v =9607.∵9607>120,超速了. 故方方不能在当天11点30分前到达B 地.基础训练1.(2019·柳州)反比例函数y =2x的图象位于(A)A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限2.(2019·哈尔滨)点(-1,4)在反比例函数y =kx的图象上,则下列各点在此函数图象上的是(A)A .(4,-1)B .(-14,1)C .(-4,-1)D .(14,2)3.(2019·邢台模拟)已知甲圆柱型容器的底面积为30 cm 2,高为8 cm ,乙圆柱型容器底面积为x cm 2.若将甲容器装满水,全部倒入乙容器中(乙容器没有水溢出),则乙容器水面高度y(cm)与x(cm 2)之间的大致图象是(C)A B C D4.(2019·唐山乐亭县模拟)若点(x 1,y 1),(x 2,y 2)都是反比例函数y =-6x图象上的点,并且y 1<0<y 2,则下列结论中正确的是(A)A .x 1>x 2B .x 1<x 2C .y 随x 的增大而减小D .两点有可能在同一象限5.(2019·唐山滦南县一模)如图,正比例函数y =x 与反比例函数y =4x的图象交于A ,B 两点,其中A(2,2),当y =x 的函数值大于y =4x的函数值时,x 的取值范围为(D)A .x >2B .x <-2C .-2<x <0或0<x <2D .-2<x <0或x >26.(2019·石家庄模拟)已知反比例函数y =kx的图象过第二、四象限,则一次函数y =kx +k的图象大致是(B)A B C D7.(2019·唐山路北区模拟)已知点P(m ,n)是反比例函数y =-3x图象上一点,当-3≤n <-1时,m 的取值范围是(A)A .1≤m <3B .-3≤m <-1C .1<m ≤3D .-3<m ≤-18.(原创)(2017·河北T15变式)将九年级某班40名学生的数学测试成绩分为5组,第1~4组的频率分别为0.3,0.25,0.15,0.2,第5组的频数记为k ,则反比例y =kx(x >0)的图象是(D)A B C D9.(原创)(2019·河北T12变式)如图,函数y =⎩⎪⎨⎪⎧mx(x >0),-mx(x<0)的图象如图所示,以下结论:①常数m >0;②在每个象限内,y 随x 增大而减小;③若点A(-2,a),B(3,b)在图象上,则a <b ;④若P(x ,y)在图象上,则P ′(-x ,y)也在图象上,其中正确的是(D)A .①②B .②③C .③④D .①④10.(2019·兰州)如图,矩形OABC 的顶点B 在反比例函数y =kx(x >0)的图象上,S 矩形OABC=6,则k =6.11.(2019·北京)在平面直角坐标系xOy 中,点A(a ,b)(a >0,b >0)在双曲线y =k 1x上,点A 关于x 轴的对称点B 在双曲线y =k 2x,则k 1+k 2的值为0.12.(2019·盐城)如图,一次函数y =x +1的图象交y 轴于点A ,与反比例函数y =kx(x >0)的图象交于点B(m ,2).(1)求反比例函数的解析式; (2)求△AOB 的面积.解:(1)∵点B(m ,2)在直线y =x +1上, ∴2=m +1,解得m =1. ∴点B 的坐标为(1,2).∵点B(1,2)在反比例函数y =kx(x >0)的图象上,∴2=k1,解得k =2.∴反比例函数的解析式是y =2x.(2)将x =0代入y =x +1,得y =1,则点A 的坐标为(0,1). ∵点B 的坐标为(1,2),∴△AOB 的面积为12×1×1=12.能力提升13.(2019·石家庄新华区模拟)如图,在平面直角坐标系中,点A(0,2),点P 是双曲线y =kx(x >0)上的一个动点,作PB ⊥x 轴于点B ,当点P 的横坐标逐渐减小时,四边形OAPB 的面积将会(C)A .逐渐增大B .不变C .逐渐减小D .先减小后增大14.(2019·陕西)如图,D 是矩形AOBC 的对称中心,A(0,4),B(6,0).若一个反比例函数的图象经过点D ,交AC 于点M ,则点M 的坐标为(32,4).16.(2019·秦皇岛海港区模拟)如图,在平面直角坐标系中,▱ABCD 的顶点A(1,b),B(3,b),D(2,b +1).(1)点C 的坐标是(4,b +1)(用b 表示);(2)双曲线y =kx过▱ABCD 的顶点B 和D ,求该双曲线的解析式;(3)如果▱ABCD 与双曲线y =4x(x >0)总有公共点,求b 的取值范围.解:(2)∵双曲线y =kx过▱ABCD 的顶点B(3,b)和D(2,b +1),∴3b =2(b +1),解得b =2,即B(3,2),D(2,3).则该双曲线解析式为y =6x .(3)将A(1,b)代入y =4x ,得b =4;将C(4,b +1)代入y =4x ,得b +1=1,即b =0.则▱ABCD 与双曲线y =4x(x >0)总有公共点时,b 的取值范围为0≤b ≤4.17.如图为某公园“水上滑梯”的侧面图,其中BC 段可看成是一段双曲线,建立如图的直角坐标系后,其中,矩形AOEB 为向上攀爬的梯子,OA =5米,进口AB ∥OD ,且AB =2米,出口C 点距水面的距离CD 为1米,则B ,C 之间的水平距离DE 的长度为(D)A .5米B .6米C .7米D .8米18.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.(2)结论应用:①如图2,点M ,N 在反比例函数y =kx(x >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F ,试证明:MN ∥EF ;②若①中的其他条件不变,只改变点M ,N 的位置,如图3所示,请判断MN 与EF 是否平行?解:(1)AB ∥CD.理由:过点C 作CG ⊥AB 于点G ,过点D 作DH ⊥AB 于点H , ∴∠CGA =∠DHB =90°.∴CG ∥DH. ∵△ABC 和△ABD 的面积相等, ∴CG =DH.∴四边形CGHD 是矩形.∴AB ∥CD.(2)①证明:连接MF ,NE ,设M(x 1,y 1),N(x 2,y 2),∵点M ,N 在反比例函数y =kx(x >0)的图象上,∴x 1y 1=k ,x 2y 2=k. ∵ME ⊥y 轴,NF ⊥x 轴,∴EM =x 1,OE =y 1,OF =x 2,NF =y 2.∴S △EFM =12x 1·y 1=12k ,S △EFN =12x 2y 2=12k.∴S △EFM =S △EFN ,由(1)中的结论可知,MN ∥EF.②MN ∥EF ,理由:连接MF ,NE ,设M(x 1,y 1),N(x 2,y 2).∵M ,N 在反比例函数y =kx(k >0)的图象上,∴x 1y 1=k ,x 2y 2=k. ∵ME ⊥y 轴,NF ⊥x 轴,∴EM =x 1,OE =y 1,OF =-x 2,NF =-y 2.∴S △EFM =12x 1·y 1=12k ,S △EFN =12(-x 2)(-y 2)=12k.∴S △EFM =S △EFN .由(1)中的结论可知,MN ∥EF.反比例函数中的面积问题1.(2019·枣庄)如图,在平面直角坐标系中,等腰Rt △ABC 的顶点A ,B 分别在x 轴、y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数y =kx(x >0)的图象上.若AB =1,则k的值为(A)A .1B.22C. 2 D .22.如图,A ,B 两点在双曲线y =4x(x >0)上,分别经过A ,B 两点向x 轴作垂线段,已知S阴影=1,则S 1+S 2=(D)A .3B .4C .5D .63.(2019·黄冈)如图,一直线经过原点O ,且与反比例函数y =kx(k>0)相交于点A ,B ,过点A 作AC ⊥y 轴,垂足为C ,连接BC.若△ABC 面积为8,则k =8.4.如图,A ,B 是反比例函数y =2x的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则(B)A .S =2B .S =4C .2<S <4D .S >45.(2019·郴州)如图,点A ,C 分别是正比例函数y =x 与反比例函数y =4x的图象的交点,过A 点作AD ⊥x 轴于点D ,过C 点作CB ⊥x 轴于点B ,则四边形ABCD 的面积为8.6.如图,AB 是反比例函数y =3x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是1和3,则S △AOB =4.7.(2019·鸡西)如图,在平面直角坐标系中,点O 为坐标原点,▱OABC 的顶点A 在反比例函数y =1x (x >0)的图象上,顶点B 在反比例函数y =5x(x >0)的图象上,点C 在x 轴的正半轴上,则▱OABC 的面积是(C)A.32B.52C .4D .68.如图,在平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x 轴,分别交反比例函数y =3x (x >0),y =kx(x <0)的图象于B ,C 两点.若△ABC 的面积为2,则k 的值为-1.9.(2019·株洲)如图所示,在平面直角坐标系xOy 中,点A ,B ,C 为反比例函数y =k x(k >0)图象上不同的三点,连接OA ,OB ,OC ,过点A 作AD ⊥y 轴于点D ,过点B ,C 分别作BE ,CF 垂直x 轴于点E ,F ,OC 与BE 相交于点M ,记△AOD ,△BOM ,四边形CMEF 的面积分别为S 1,S 2,S 3,则(B)A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 2310.(2019·本溪)如图,在平面直角坐标系中,等边△OAB 的边OA 和菱形OCDE 的边OE 都在x 轴上,点C 在OB 边上,S △ABD =3,反比例函数y =kx (x >0)的图象经过点B ,则k 的值。
2020年沪科版九年级上册一次函数、反比例函数、二次函数中考题汇编(含答案)
2020沪科版一次函数、反比例函数、二次函数中考题汇编(含答案)一、 选择题1. (2019·枣庄)如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过点P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线对应的函数解析式是( )第1题A. y =-x +4B. y =x +4C. y =x +8D. y =-x +82. (2019·包头)如图,在平面直角坐标系中,A(-3,-2),B(0,-2),C(-3,0),M 是线段AB 上的一个动点,连接CM ,过点M 作MN ⊥MC 交y 轴于点N ,若点M ,N 在直线y =kx +b 上,则b 的最大值是( )第2题A. -78B. -34C. -1D. 03. (2019·十堰)如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为A(-8,0),B(-8,4),C(0,4),反比例函数y =kx 的图象分别与线段AB ,BC 交于点D ,E ,连接DE.若点B关于DE 的对称点恰好在OA 上,则k 的值为( )A. -20B. -16C. -12D. -8第3题 第4题4. (2019·黄石)如图,在平面直角坐标系中,点B 在第一象限,BA ⊥x 轴于点A ,反比例函数y =kx (x >0)的图象与线段AB 相交于点C ,且C 是线段AB 的中点,点C 关于直线y =x的对称点C′的坐标为(1,n)(n ≠1).若△OAB 的面积为3,则k 的值为( )A. 13B. 1C. 2D. 3 5. (2019·宿迁)如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 与原点O 重合,顶点B 落在x 轴的正半轴上,对角线AC ,BD 交于点M ,点D ,M 恰好都在反比例函数y =k x (x >0)的图象上,则ACBD的值为( ) 第5题A. 2B. 3C. 2D. 5二、 填空题6. (2019·日照)如图,动点A 在函数y =4x (x>0)的图象上,AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,延长CA 交以点A 为圆心、AB 长为半径的圆弧于点E ,延长BA 交以点A 为圆心、AC 长为半径的圆弧于点F ,直线EF 分别交x 轴、y 轴于点M ,N ,当NF =4EM 时,图中涂色部分的面积为________.第6题7. (2019·本溪)如图,在平面直角坐标系中,等边三角形OAB 和菱形OCDE 的边OA ,OE 都在x 轴上,点C 在OB 边上,S △ABD =3,反比例函数y =kx (x>0)的图象经过点B ,则k 的值为________.第7题8. (2019·荆州)边长为1的8个正方形如图摆放在直角坐标系中,直线y =k 1x 平分这8个正方形所组成的图形的面积,交其中两个正方形的边于A ,B 两点,过点B 的双曲线y =k 2x 的一支交其中两个正方形的边于C ,D 两点,连接OC ,OD ,CD ,则S △OCD =________.第8题9. (2019·江西)在平面直角坐标系中,A ,B ,C 三点的坐标分别为A(4,0),B(4,4),C(0,4),点P 在x 轴上,点D 在直线AB 上,若DA =1,CP ⊥DP 于点P ,则点P 的坐标为________________________.10. (2019·福建)如图,菱形ABCD的顶点A在函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且过B,D两点.若AB=2,∠BAD=30°,则k=__________.第10题11. (2019·潍坊)如图,直线y=x+1与抛物线y=x2-4x+5交于A,B两点,P是y轴上的一个动点,当△PAB的周长最小时,S△PAB=________.第11题三、解答题12. (2019·甘肃)如图,二次函数y=x2+bx+c的图象与x轴交于点A(1,0),B(3,0),与y轴交于点C.(1) 求二次函数的解析式;(2) 若P为二次函数图象上的一点,F为对称轴上的一点,且以A,B,P,F为顶点的四边形为平行四边形,求点P的坐标;(3) E是二次函数图象上在第四象限内的一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.第12题13. (2019·大连)如图,在平面直角坐标系xOy中,直线y=-34x+3与x轴、y轴分别相交于点A ,B ,点C 在射线BO 上,点D 在射线BA 上,且BD =53OC ,以CO ,CD 为邻边作▱COED.设点C 的坐标为(0,m),▱COED 在x 轴下方部分的面积为S.求:(1) 线段AB 的长;(2) S 关于m 的函数解析式,并直接写出自变量m 的取值范围.第13题14. (2019·广东)如图①,在平面直角坐标系中,抛物线y =38x 2+334x -738与x 轴交于点A ,B(点A 在点B 右侧),D 为抛物线的顶点,点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 按顺时针方向旋转得到△CFE ,点A 恰好旋转到点F ,连接BE.(1) 求点A ,B ,D 的坐标.(2) 求证:四边形BFCE 是平行四边形. (3) 如图②,过顶点D 作DD 1⊥x 轴于点D 1,P 是抛物线上一动点,过点P 作PM ⊥x 轴,M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).① 求出一个满足以上条件的点P 的横坐标; ② 直接回答这样的点P 共有几个.第14题15. (2019·金华)如图,在平面直角坐标系中,正六边形ABCDEF 的对称中心P 在反比例函数y =kx(k >0,x >0)的图象上,边CD 在x 轴上,点B 在y 轴上,已知CD =2.(1) 点A 是否在该反比例函数的图象上?请说明理由.(2) 若该反比例函数图象与DE 交于点Q ,求点Q 的横坐标.(3) 平移正六边形ABCDEF ,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.第15题16.(2019·山西)如图,抛物线y =ax 2+bx +6经过点A(-2,0),B(4,0),与y 轴交于点C ,D 是抛物线上一个动点,设点D 的横坐标为m(1<m <4).连接AC ,BC ,DB ,DC.(1) 求抛物线对应的函数解析式.(2) 当△BCD 的面积等于△AOC 的面积的34时,求m 的值.(3) 在(2)的条件下,若M 是x 轴上一动点,N 是抛物线上一动点,试判断是否存在这样的点M ,使得以B ,D ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.第16题17. (2019·黔西南州)已知抛物线y =ax 2+bx +3经过点A(1,0),B(-3,0),与y 轴交于点C ,P 为第二象限内抛物线上的动点.(1) 抛物线对应的函数解析式为______________,抛物线的顶点坐标为________. (2) 如图①,连接OP 交BC 于点D ,当S △CPD ∶S △BPD =1∶2时,求点D 的坐标.(3) 如图②,点E 的坐标为(0,-1),G 为x 轴负半轴上的一点,∠OGE =15°,连接PE.若∠PEG =2∠OGE ,求点P 的坐标.(4) 如图③,是否存在点P ,使四边形BOCP 的面积为8?若存在,请求出点P 的坐标;若不存在,请说明理由.第17题18. (2019·十堰)已知抛物线y =a(x -2)2+c 经过点A(-2,0),C ⎝⎛⎭⎫0,94,与x 轴交于另一点B ,顶点为D.(1) 求抛物线对应的函数解析式,并写出点D 的坐标.(2) 如图,点E ,F 分别在线段AB ,BD 上(点E 不与点A ,B 重合),且∠DEF =∠A ,则△DEF 能为等腰三角形吗?若能,求出BE 的长;若不可能,请说明理由.(3) 若点P 在抛物线上,且S △PBDS △CBD=m ,试确定满足条件的点P 的个数.第18题19. (2019·郴州)已知抛物线y=ax2+bx+3与x轴分别交于A(-3,0),B(1,0)两点,与y轴交于点C.(1) 求抛物线对应的函数解析式及顶点D的坐标.(2) F是线段AD上一个动点.①如图①,设k=AFAD,当k为何值时,CF=12AD?②如图②,以A,F,O为顶点的三角形能否与△ABC相似?若相似,求出点F的坐标;若不相似,请说明理由.第19题20. (2019·淄博)如图①,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(-1,0)两点,与y轴交于点C.(1) 求这条抛物线对应的函数解析式.(2) 在y轴上是否存在一点P,使得△PAM为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.(3) 如图②,在第一象限的抛物线下方有一动点D,满足DA=OA,过点D作DG⊥x轴于点G.设△ADG的内心为I,试求CI的最小值.第20题参考答案一、 1. A 2. A 3. C 4. D 5. A 二、 6. 2.5π 7. 3 8. 119489. (2,0)或(2-22,0)或(2+22,0) 10. 6+23 11.125三、 12. (1) ∵ 二次函数y =x 2+bx +c 的图象与x 轴交于点A(1,0),B(3,0),∴⎩⎪⎨⎪⎧0=1+b +c ,0=9+3b +c.解得⎩⎪⎨⎪⎧b =-4,c =3.∴ 二次函数的解析式为y =x 2-4x +3 (2) ∵ y =x 2-4x +3=(x -2)2-1,∴ 二次函数图象的对称轴为直线x =2.当AB 为平行四边形的一条边时,则PF =AB =2.∴ 点P 的横坐标为4或0.对于y =x 2-4x +3,令x =0,则y =3;令x =4,则y =3.∴ 点P 的坐标为(4,3)或(0,3);当AB 是平行四边形的对角线时,易得点P 的横坐标为2.对于y =x 2-4x +3,令x =2,则y =-1,∴ 点P 的坐标为(2,-1).综上所述,点P 的坐标为(4,3)或(0,3)或(2,-1) (3) 如图,对于二次函数y =x 2-4x +3,令x =0,得y =3.∴ 点C 的坐标为(0,3).又∵ 点B 的坐标为(3,0),∴ 易得直线BC 对应的函数解析式为y =-x +3.设点E 的坐标为(x ,x 2-4x +3)(1<x<3),则点D 的坐标为(x ,-x +3).∴ S 四边形AEBD=12AB ()y D -y E =-x +3-x 2+4x -3=-x 2+3x =-⎝⎛⎭⎫x -322+94.∵ -1<0,∴ 当x =32时,四边形AEBD 的面积有最大值,为94,此时点E 的坐标为⎝⎛⎭⎫32,-34 第12题13. (1) 对于y =-34x +3,当x =0时,y =3;当y =0时,x =4,∴ 点A 的坐标为(4,0),点B 的坐标为(0,3).∴ OA =4,OB =3.∴ AB =32+42=5 (2) ∵ 点C 的坐标为(0,m),∴ OC =|m|.∵ BD =53OC ,∴ BD =53|m|.当CD ∥OA ,m>0时,BD BA =BCBO ,即53m 5=3-m 3,解得m =32.当32< m ≤3时,如图①,过点D 作DF ⊥OB ,垂足为F ,易得△OEH ≌△DCF ,△BDF ∽△BAO ,∴BD BA =DF AO ,即BD DF =BA AO =54 .∴ DF =43m .同理可得BF =m.∴ CF =2m -3.∴ S △CDF =12 D F·CF =12×43 m ×(2m -3)=43 m 2-2m.当 0<m ≤32时,如图②,此时点E 在△AOB 的内部,∴ S =0.当m<0,点D 到达点A 时,OC =-m.∴ 53·(-m)=5,解得m =-3.当-3<m<0时,如图③.易得点D 的坐标为⎝⎛⎭⎫-43m ,3+m .设直线CD 对应的函数解析式为y =kx +b.∴ ⎩⎪⎨⎪⎧m =b ,-43mk +b =3+m ,解得⎩⎪⎨⎪⎧k =-94m ,b =m.∴ y =-94m x +m.令y =0,得x =49m 2.∴S =12×49m 2×(-m)=-29m 3.当m ≤-3时,如图④,易得点D 的坐标为⎝⎛⎭⎫-43m ,3+m .∴ S =12×(-3-m -m)×⎝⎛⎭⎫-43m =43m 2+2m.综上所述,S =⎩⎪⎨⎪⎧43m 2-2m ⎝⎛⎭⎫32<m ≤3,0⎝⎛⎭⎫0<m ≤32,-29m 3(-3<m<0),43m 2+2m (m ≤-3)① ②③④第13题14. (1) 令38x 2+334x -738=0,解得x 1=1,x 2=-7.∵ 点A 在点B 右侧,∴ 点A 的坐标为(1,0),点B 的坐标为(-7,0).∵ y =38x 2+334x -738=38(x +3)2-23,∴ 点D 的坐标为(-3,-23) (2) ∵ △CAD 绕点C 按顺时针方向旋转得到△CFE ,∴ AC =FC ,CD =CE ,∠ACD =∠FCE.又∵ CO ⊥AF ,∴ OF =OA =1.∴ 点F 的坐标为(-1,0),AF =2.设直线CD 对应的函数解析式为y =kx +b.∵ 直线CD 过点D(-3,-23),F(-1,0),∴ ⎩⎨⎧-3k +b =-23,-k +b =0,解得⎩⎨⎧k =3,b = 3.∴ y =3x + 3.令x =0,则y =3,∴ 点C 的坐标为(0,3).∴ AC =OC 2+OA 2=2.∴ AC =AF =FC =2.∴ △ACF 是等边三角形.∴ ∠CFA =∠ACF =∠CAF =60°.∴ ∠ECF =∠ACF =60°.∴ ∠CFA =∠ECF =60°.∴ EC ∥AB.如图①,过点D 作DG ⊥y 轴于点G ,则DG =3.易得∠DCG =30°,∴ CD =2DG =6.∴ CE =CD =6.∵ 点F 的坐标为(-1,0),点B 的坐标为(-7,0).∴ FB =6.∴ FB =CE.∴ 四边形BFCE 是平行四边形 (3) ① 答案不唯一,如当点P 在点B 的左侧时,如图②,设点P 的坐标为⎝⎛⎭⎫x ,38x 2+334x -738,x<-7,若∠PAM =∠DAD 1,则△PAM ∽△DAD 1,∴ PM DD 1=MA D 1A ,即38x 2+334x -73823=1-x 4,解得x 1=1(不合题意,舍去),x 2=-11.∴ 符合条件的一个点P 的横坐标为-11(此外,点P 的横坐标还可以为-53或-373) ② 3个 第14题15. (1) 点A 在该反比例函数的图象上 理由:如图,连接PC ,过点P 作PH ⊥x 轴于点H ,∵ 在正六边形ABCDEF 中,点B 在y 轴上,∴ △OBC 和△PCH 都是含有30°角的直角三角形,BC =PC =CD =2.∴ OC =CH =1,PH = 3.∴ 点P 的坐标为(2,3).∴ k =2 3.∴ 反比例函数的解析式为y =23x(x>0).连接AC ,过点B 作BG ⊥AC 于点G ,∵ ∠ABC =120°,AB =BC =2,∴ BG =1,AG =CG 3.∴ 点A 的坐标为(1,23).当x =1时,y =23,∴ 点A 在该反比例函数的图象上. (2) 如图,过点Q 作QM ⊥x 轴于点M.∵ 六边形ABCDEF 是正六边形,∴ ∠EDM =180°-120°=60°.∴ ∠DQM =30°.设DM =b ,则易得QM =3b.∴ 点Q 的坐标为(b +3,3b).∴ 3b(b +3)=2 3.解得b 1=-3+172,b 2=-3-172(舍去).∴ b +3=3+72.∴ 点Q 的横坐标是3+172(3) 如图,连接AP.∵ AP =BC =EF ,AP ∥BC ∥EF ,∴ 平移过程:将正六边形ABCDEF 先向右平移1个单位长度,再向上平移3个单位长度,或将正六边形ABCDEF 向左平移2个单位长度第15题16. (1) ∵ 抛物线y =ax 2+bx +6经过点A(-2,0),B(4,0),∴ ⎩⎪⎨⎪⎧4a -2b +6=0,16a +4b +6=0,解得⎩⎨⎧a =-34b =32.∴ 抛物线对应的函数解析式为y =-34x 2+32x +6 (2) 如图,过点D 作DE ⊥AB 于点E ,交BC 于点H.∵ 点A 的坐标为(-2,0),∴ OA =2.对于y =-34x 2+32x +6,令x =0,则y =6,∴ 点C 的坐标为(0,6).∴ OC =6.∴ S △AOC =12OA·OC =12×2×6=6.∵ S △BCD =34S △AOC =34×6=92.设直线BC 对应的函数解析式为y =kx +n.将B(4,0),C(0,6)代入y =kx +n ,得⎩⎪⎨⎪⎧4k +n =0,n =6,解得⎩⎪⎨⎪⎧k =-32,n =6.∴ 直线BC 对应的函数解析式为y =-32x +6.设点D 的坐标为⎝⎛⎭⎫m ,-34m 2+32m +6,则点H 的坐标为⎝⎛⎭⎫m ,-32m +6 .∴ DH =-34 m 2+32 m +6-⎝⎛⎭⎫-32m +6=-34 m 2+3m.∵ 点B 的坐标为(4,0),∴ OB =4.∴ S △BCD =12 DH·OB =12⎝⎛⎭⎫-34m 2+3m ×4=-32m 2+6m.∴ -32m 2+6m =92,解得m 1=1(不合题意,舍去),m 2=3.∴ m =3 (3) 存在 点M 的坐标为(8,0)或(0,0)或(14,0)或(-14,0)第16题17. (1) y =-x 2-2x +3 (-1,4) (2) 如图①,过点D 作DG ⊥AB 于点G.对于y =-x 2-2x +3,令x =0,则y =3,∴ 点C 的坐标为(0,3),∴ OC =3.∵ 点B 的坐标为(-3,0),∴ OB =3.∴ OB =OC.∴ ∠CBO =45°,BC =OB 2+OC 2=3 2.∵ S △CPD ∶S △BPD =1∶2,∴ CD ∶BD =1∶2.∴ BD =23 B C =23×32=2 2 .∴ DG =BD·sin ∠CBO =2,BG =BD·cos ∠CBO =2.∴ OG =OB -BG =1.∴ 点D 的坐标为(-1,2)(3) 如图②,设直线PE 与x 轴交于点H.∵ 点E 的坐标为(0,-1),∴ OE =1.∵ ∠OGE =15°,∠PEG =2∠OGE =30°,∴ ∠OHE =45°.∴ OH =OE =1.由H(-1,0),E(0,-1),易得直线HE 对应的函数解析式为y =-x -1.联立⎩⎪⎨⎪⎧y =-x -1,y =-x 2-2x +3,解得⎩⎪⎨⎪⎧x =-1-172,y =17-12或⎩⎪⎨⎪⎧x =-1+172,y =-1-172(不合题意,舍去).∴ 点P 的坐标为⎝ ⎛⎭⎪⎫-1-172,17-12 (4) 不存在 理由:如图③,连接BC ,过点P 作y 轴的平行线交BC 于点M.易得直线BC 对应的函数解析式为y =x +3.设点P 的坐标为(x ,-x 2-2x +3),则点M 的坐标为(x ,x +3).∴ S 四边形BOCP=S △OBC +S △PBC =12×3×3+12(-x 2-2x +3-x -3)×3=8.整理,得3x 2+9x +7=0.∵ Δ=92-4×3×7=-3<0,∴ 该方程无解.故不存在满足条件的点P.③ 第17题18. (1) 将A(-2,0),C ⎝⎛⎭⎫0,94代入y =a(x -2)2+c ,得⎩⎪⎨⎪⎧16a +c =0,4a +c =94,解得⎩⎪⎨⎪⎧a =-316,c =3.∴ 抛物线对应的函数解析式为y =-316 (x -2)2+3.∴ 顶点D 的坐标为(2,3) (2) 能 △DEF 能为等腰三角形.对于y =-316(x -2)2+3,令y =0,解得x 1=6,x 2=-2.∴ 点B 的坐标为(6,0).∵ A(-2,0),D(2,3),B(6,0),∴ AB =8,易得AD =BD =5.∴ ∠A =∠B.∵ ∠DEF =∠A ,∴ ∠DEF =∠B.∵ ∠AED =∠B +∠EDF ,∠BFE =∠DEF +∠EDF ,∴ ∠AED =∠BFE.∵ ∠A =∠B ,∴ △AED ∽△BFE.① 当DE =DF 时,∠DFE =∠DEF =∠B.∴ EF ∥AB ,此时点E 与点B 重合,不符合题意,舍去.② 当DE =EF 时,易得△AED ≌△BFE.∴ BE =AD =5.③ 当DF =EF 时,∠EDF =∠DEF =∠A =∠B ,∴ △FDE ∽△DAB.∴ EF BD =DE AB .∴ EF DE =BD AB =58.∵ △BFE ∽△AED ,∴ BE AD =EF DE =58.∴ BE =58AD =258.∴ 当BE 的长为5或258时,△CFE 为等腰三角形 (3) 如图,当点P 在线段BD 的右侧时,过点D 作DH ⊥AB 于点H ,连接PH.易得S △CBD =12 (2+6)×3-12×2×⎝⎛⎭⎫3-94-12×6×94=92.设点P 的坐标为⎝⎛⎭⎫n ,-316(n -2)2+3,则S △PBD =S △PBH +S △PDH -S △BDH =12×4×[-316 (n -2)2+3]+12×3×(n -2)-12×4×3=-38(n -4)2+32.∵ -38<0,∴ 当n =4时,△PBD 的面积的最大值为32.∵ S △PBD S △CBD=m ,∴ 当点P 在BD 的右侧时,m 的最大值为3292=13.观察图象可知,当0<m <13时,满足条件的点P 的个数为4;当m =13时,满足条件的点P 的个数为3;当m >13时,满足条件的点P 的个数为2(此时点P 在BD 的左侧)第18题19. (1) ∵ 抛物线y =ax 2+bx +3过点A(-3,0),B(1,0),∴ ⎩⎪⎨⎪⎧9a -3b +3=0,a +b +3=0,解得⎩⎪⎨⎪⎧a =-1,b =-2.∴ 抛物线对应的函数解析式为y =-x 2-2x +3.∵ y =-x 2-2x +3=-(x +1)2+4,∴ 顶点D 的坐标为(-1,4) (2) ① 对于y =-x 2-2x +3,令x =0,则y =3,∴点C 的坐标为(0,3).∵ A(-3,0),B(1,0),C(0,3),D(-1,4),∴ AC 2=32+32=18,CD 2=12+12=2,AD 2=22+42=20.∴ AC 2+CD 2=AD 2.∴ △ACD 为直角三角形,且∠ACD =90°.∵ CF =12AD ,∴ F 为AD 的中点.∴ AF AD =12.∴ k =12② 以A ,F ,O 为顶点的三角形能与△ABC 相似 在Rt △ACD 中,tan ∠CAD =DC AC =232=13,在Rt △OBC 中,tan ∠OCB =OB OC =13,∴ ∠CAD =∠OCB.∵ OA =OC ,∴ ∠OAC =∠OCA =45°.∴ ∠FAO =∠ACB.若以A ,F ,O 为顶点的三角形与△ABC 相似,则可分两种情况考虑:当∠AOF =∠ABC 时,△AOF ∽△CBA ,∴ OF ∥BC.设直线BC 对应的函数解析式为y =kx +b ,∴ ⎩⎪⎨⎪⎧k +b =0,b =3,解得⎩⎪⎨⎪⎧k =-3,b =3.∴ 直线BC 对应的函数解析式为y =-3x +3.∴ 直线OF 对应的函数解析式为y =-3x.设直线AD 对应的函数解析式为y =mx +n ,∴ ⎩⎪⎨⎪⎧-3m +n =0,-m +n =4,解得⎩⎪⎨⎪⎧m =2,n =6.∴ 直线AD 对应的函数解析式为y =2x +6.联立方程组,得⎩⎪⎨⎪⎧y =2x +6,y =-3x ,解得⎩⎨⎧x =-65,y =185.∴ 点F 的坐标为⎝⎛⎭⎫-65,185.当∠AOF =∠CAB =45°时,△AOF ∽△CAB.∴ OF ⊥AC.易得直线OF 对应的函数解析式为y =-x.联立方程组,得⎩⎪⎨⎪⎧y =-x ,y =2x +6,解得⎩⎪⎨⎪⎧x =-2,y =2.∴ 点F 的坐标为(-2,2).综合所述,点F 的坐标为⎝⎛⎭⎫-65,185或(-2,2) 20. (1) ∵ 抛物线y =ax 2+bx +3过点A(3,0),B(-1,0),∴ ⎩⎪⎨⎪⎧9a +3b +3=0,a -b +3=0,解得⎩⎪⎨⎪⎧a =-1,b =2.∴ 这条抛物线对应的函数解析式为y =-x 2+2x +3 (2) 存在 ∵ y =-x 2+2x +3=-(x -1)2+4,∴ 顶点M 的坐标为(1,4).∴ AM 2=(3-1)2+42=20.设点P 的坐标为(0,p).∴ AP 2=32+p 2=9+p 2,MP 2=12+(4-p)2=17-8p +p 2.① 若∠PAM =90°,则AM 2+AP 2=MP 2.∴ 20+9+p 2=17-8p +p 2,解得p =-32.∴ 点P 的坐标为⎝⎛⎭⎫0,-32 .② 若∠APM =90°,则AP 2+MP 2=AM 2.∴ 9+p 2+17-8p +p 2=20,解得p 1=1,p 2=3.∴ 点P 的坐标为(0,1)或(0,3).③ 若∠AMP =90°,则AM 2+MP 2=AP 2.∴ 20+17-8p +p 2=9+p 2,解得p =72.∴ 点P 的坐标为⎝⎛⎭⎫0,72.综上所述,当点P 的坐标为⎝⎛⎭⎫0,-32或(0,1)或(0,3)或⎝⎛⎭⎫0,72时,△PAM 为直角三角形 (3) 如图,过点I 作IE ⊥x 轴于点E ,IF ⊥AD 于点F ,IH ⊥DG 于点H.∵ DG ⊥x 轴,∴ ∠HGE =∠IEG =∠IHG =90°.∴ 四边形IEGH 是矩形.∵ 点I 为△ADG 的内心,∴ IE =IF =IH ,AE =AF ,DF =DH ,EG =HG.∴ 矩形IEGH 是正方形.设点I 的坐标为(m ,n),∴ OE =m ,HG =GE =IE =n.∴ AF =AE =OA -OE =3-m.∴ AG =GE +AE =n +3-m.∵ DA =OA =3,∴ DH =DF =DA -AF =3-(3-m)=m.∴ DG =DH +HG =m +n.∵ DG 2+AG 2=DA 2,∴ (m +n)2+(n +3-m)2=32.整理,得m 2-3m +n 2+3n =0.∴ ⎝⎛⎭⎫m -322+⎝⎛⎭⎫n +322=92.∴ 点I(m ,n)与定点Q(32,-32)的距离为322.∴ 点I 在以点Q ⎝⎛⎭⎫32,-32为圆心,半径为322的圆在第一象限的弧上运动.∴ 当点I 在线段CQ 上时,CI 最小.对于抛物线y =-x 2+2x +3,令x =0,得y =3,∴ 点C 的坐标为(0,3).∵ CQ =⎝⎛⎭⎫322+⎝⎛⎭⎫3+322=3102,∴ CI =CQ -IQ =310-322.∴ CI 的最小值为310-322第20题。
2020年中考数学高频重点《反比例函数与一次函数的综合》专题突破精练精解(含答案)
【中考数学】专题07 反比例函数与一次函数的综合【达标要求】1.认识反比例函数是描述具有反比例变化规律的数学模型.2.结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的解析式.3.能画出反比例函数ky x=(k 为常数,0k ≠)的图象,根据图象和解析式探索并理解0k > 和0k <时图象的变化情况.4.能用反比例函数解决简单的实际问题.【知识梳理】知识点1 反比例函数的概念形如 (k 为常数,0k ≠)的函数,叫做反比例函数,其中x 叫自变量,y 是x 的函数.变式:1y kx -=或xy k =(k 为常数,0k ≠). 知识点2 反比例函数的图像和性质知识点3 k的集合意义在反比例函数kyx=(k为常数,0k≠)的图象上任取一点,过这个点分别作x轴、y轴的平行线,两平行线与坐标轴围成的矩形的面积的于知识点4 用待定系数法求反比例函数的解析式先设函数解析式为kyx=(k为常数,0k≠),在根据条件求出未知系数k的值,从而写出这个函数解析式.【精练精解】1.在同一平面直角坐标系中,函数y=﹣x+k与y=(k为常数,且k≠0)的图象大致是()A.B.C.D.2.若反比例函数的图象上有两个不同的点关于y轴对称点都在一次函数y=–x+m的图象上,则m的取值范围是()A.m>B.m<-C.m m><-.m-<<kxxy2-=3.如图,一次函数y=-x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标.4.如图,已知反比例函数y=kx(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A(1,3),B(3,1)两点.(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交一次函数y=﹣x+b的图象于点M,交反比例函数y=kx上的图象于点N.若PM>PN,结合函数图象直接写出a的取值范围.5.已知一次函数y =kx +b 的图象与反比例函数y =mx的图象交于点A ,与x 轴交于点B (5,0),若OB =AB ,且S △OAB =152. (1)求反比例函数与一次函数的表达式;(2)若点P 为x 轴上一点,△ABP 是等腰三角形,求点P 的坐标.6.如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ).(1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1:2,求点P 的坐标.7.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(–1,n)、B(2,–1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=mx上的两点,当x1<x2<0时,比较y2与y1的大小关系.8.如图,四边形ABCD 是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y =mx (x >0)的图象经过点D ,点P 是一次函数y =kx +3-3k(k ≠0)的图象与该反比例函数图象的一个公共点. (1)求反比例函数的解析式;(2)通过计算,说明一次函数y =kx +3-3k(k ≠0)的图象一定经过点C ;(3)对于一次函数y =kx +3-3k(k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围.(不必写出过程)9.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB ,BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段. 请根据图中信息解答下列问题:(1)求这天的温度y 与时间x(0≤x ≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10 ℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?10.如图,已知点D在反比例函数y=的图象上,过点D作DB⊥y轴,垂足为B(0,3),直线y=kx+b经过点A(5,0),与y轴交于点C,且BD=OC,OC:OA=2:5.(1)求反比例函数y=和一次函数y=kx+b的表达式;(2)直接写出关于x的不等式>kx+b的解集.11.如图,矩形ABCD 的两边AD ,AB 的长分别为3,8,E 是DC 的中点,反比例函数y =mx 的图象经过点E ,与AB 交于点F.(1)若点B 坐标为(-6,0),求m 的值及图象经过A ,E 两点的一次函数的解析式; (2)若AF -AE =2,求反比例函数的解析式.12.如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,2),将线段AB 绕点A 顺时针旋转90°得到线段AC ,反比例函数y =(k ≠0,x >0)的图象经过点C .(1)求直线AB 和反比例函数y =(k ≠0,x >0)的解析式;(2)已知点P 是反比例函数y =(k ≠0,x >0)图象上的一个动点,求点P 到直线AB 距离最短时的坐标.13.如图,已知点A在反比例函数(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b 的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.14.如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).(1)求直线与双曲线的解析式.(2)点P在x轴上,如果S△ABP=3,求点P的坐标.15.一次函数y=kx+b的图象经过点A(-2,12),B(8,-3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数的图象相交于点C(x1,y1),D(x2,y2),与轴交于点E,且CD=CE,求m的值.16.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.专题07 反比例函数与一次函数的综合【达标要求】1.认识反比例函数是描述具有反比例变化规律的数学模型.2.结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的解析式.3.能画出反比例函数ky x=(k 为常数,0k ≠)的图象,根据图象和解析式探索并理解0k > 和0k <时图象的变化情况.4.能用反比例函数解决简单的实际问题.【知识梳理】知识点1 反比例函数的概念形如ky x=(k 为常数,0k ≠)的函数,叫做反比例函数,其中x 叫自变量,y 是x 的函数. 变式:1y kx -=或xy k =(k 为常数,0k ≠). 知识点2 反比例函数的图像和性质知识点3 k 的集合意义 在反比例函数ky x=(k 为常数,0k ≠)的图象上任取一点,过这个点分别作x 轴、y 轴的平行线,两平行线与坐标轴围成的矩形的面积的于k || .知识点4 用待定系数法求反比例函数的解析式先设函数解析式为kyx=(k为常数,0k≠),在根据条件求出未知系数k的值,从而写出这个函数解析式.【精练精解】1.在同一平面直角坐标系中,函数y=﹣x+k与y=(k为常数,且k≠0)的图象大致是()A.B.C.D.【答案】C【解析】∵函数y=﹣x+k与y=(k为常数,且k≠0),∴当k>0时,y=﹣x+k经过第一、二、四象限,y=经过第一、三象限,故选项D错误,当k<0时,y=﹣x+k经过第二、三、四象限,y=经过第二、四象限,故选项C正确,选项A、B错误,故选C.【点评】本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用一次函数和反比例函数的性质解答.2.若反比例函数的图象上有两个不同的点关于y轴对称点都在一次函数y=–x+m的图象上,则m的取值范围是()A.m>B.m<-C.m m><-.m-<<kxkxk xkx xy2-=【答案】C【解析】∵反比例函数2y x=-上两个不同的点关于y 轴对称的点,在一次函数y =–x +m 图象上,∴反比例函数2y x=-与一次函数y =–x +m 有两个不同的交点,联立两个函数解方程22220y x m x mx x x y x m⎧=⎪⇒=-+⇒-+=⎨⎪=-+⎩,∵有两个不同的交点,∴有两个不等的根,∴Δ=m 2–8>0,∴m或m <–,故选C .3.如图,一次函数y =-x +3的图象与反比例函数y =kx(k ≠0)在第一象限的图象交于A (1,a )和B 两点,与x 轴交于点C .(1)求反比例函数的解析式;(2)若点P 在x 轴上,且△APC 的面积为5,求点P 的坐标.【解析】(1)把点A (1,a )代入y =-x +3,得a =2,∴A (1,2),把A (1,2)代入反比例函数y =kx,∴k =1×2=2; ∴反比例函数的表达式为y =2x; (2)∵一次函数y =-x +3的图象与x 轴交于点C ,∴C (3,0), 设P (x ,0),∴PC =|3-x |,∴S △APC =12|3-x |×2=5,∴x =-2或x =8, 022=+-mxx∴P 的坐标为(-2,0)或(8,0).【点评】本题考查了反比例函数与一次函数的交点问题,用待定系数法求出反比例函数的解析式等知识点,能用待定系数法求出反比例函数的解析式是解此题的关键.4.如图,已知反比例函数y =kx(k ≠0)的图象与一次函数y =﹣x +b 的图象在第一象限交于A (1,3),B (3,1)两点.(1)求反比例函数和一次函数的表达式;(2)已知点P (a ,0)(a >0),过点P 作平行于y 轴的直线,在第一象限内交一次函数y =﹣x +b 的图象于点M ,交反比例函数y =kx上的图象于点N .若PM >PN ,结合函数图象直接写出a 的取值范围.【解析】(1)∵反比例函数y =kx(k ≠0)的图象与一次函数y =﹣x +b 的图象在第一象限交于A (1,3),B (3,1)两点,∴3=1k,3=﹣1+b ,∴k =3,b =4, ∴反比例函数和一次函数的表达式分别为y =3x,y =﹣x +4; (2)由图象可得:当1<a <3时,PM >PN .【点评】本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.5.已知一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A,与x轴交于点B(5,0),若OB=AB,且S△OAB=152.(1)求反比例函数与一次函数的表达式;(2)若点P为x轴上一点,△ABP是等腰三角形,求点P的坐标.【解析】(1)如图1,过点A作AD⊥x轴于D,∵B(5,0),∴OB=5,∵S△OAB=152,∴12×5×AD=152,∴AD=3,∵OB=AB,∴AB=5,在Rt△ADB中,BD,∴OD=OB+BD=9,∴A(9,3),将点A坐标代入反比例函数y=mx中得,m=9×3=27,∴反比例函数的解析式为y=27x,将点A(9,3),B(5,0)代入直线y=kx+b中,9350k bk b+=⎧⎨+=⎩,∴3434kb⎧=⎪⎪⎨⎪=-⎪⎩,∴直线AB的解析式为y=34x﹣34;(2)由(1)知,AB=5,∵△ABP是等腰三角形,∴①当AB=PB时,∴PB=5,∴P(0,0)或(10,0),②当AB=AP时,如图2,由(1)知,BD=4,易知,点P与点B关于AD对称,∴DP=BD=4,∴OP=5+4+4=13,∴P(13,0),③当PB =AP 时,设P (a ,0), ∵A (9,3),B (5,0),∴AP 2=(9﹣a )2+9,BP 2=(5﹣a )2, ∴(9﹣a )2+9=(5﹣a )2,∴a =658, ∴P (658,0), 即:满足条件的点P 的坐标为(0,0)或(10,0)或(13,0)或(658,0). 【点评】此题是反比例函数综合题,主要考查了待定系数法,勾股定理,三角形的面积,等腰三角形的性质,用分类讨论的思想解决问题是解本题的关键.6.如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ).(1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1:2,求点P 的坐标.【答案】(1)由图象可得:k 1x +b >2k x的x 的取值范围是x <–1或0<x <4; (2)直线解析式y =–x +3,反比例函数的解析式为y =–4x; (3)P (23,73). 【解析】(1)∵点A 的坐标为(–1,4),点B 的坐标为(4,n ).由图象可得:k 1x +b >2k x的x 的取值范围是x <–1或0<x <4; (2)∵反比例函数y =2k x的图象过点A (–1,4),B (4,n ), ∴k 2=–1×4=–4,k 2=4n ,∴n =–1,∴B (4,–1), ∵一次函数y =k 1x +b 的图象过点A ,点B ,∴11441k b k b -+=+=-⎧⎨⎩,解得k =–1,b =3,∴直线解析式y =–x +3,反比例函数的解析式为y =–4x; (3)设直线AB 与y 轴的交点为C ,∴C (0,3),∵S △AOC =12×3×1=32, ∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=152, ∵S △AOP :S △BOP =1:2,∴S △AOP =152×13=52, ∴S △COP =52–32=1,∴12×3x P =1,∴x P =23, ∵点P 在线段AB 上,∴y =–23+3=73,∴P (23,73).【点评】本题考查了反比例函数图象与一次函数图象的交点问题,熟练运用图象上的点的坐标满足图象的解析式是本题的关键.7.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(–1,n)、B(2,–1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=mx上的两点,当x1<x2<0时,比较y2与y1的大小关系.【答案】(1)一次函数的解析式为y=–x+1,反比例函数的解析式为y=–2x.(2)S△ABD=3.(3)y1<y2.【解析】(1)∵反比例函数y=mx经过点B(2,–1),∴m=–2,∵点A(–1,n)在y=2x-上,∴n=2,∴A(–1,2),把A,B坐标代入y=kx+b,则有221k bk b-+=+=-⎧⎨⎩,解得11kb=-=⎧⎨⎩,∴一次函数的解析式为y=–x+1,反比例函数的解析式为y=–2x.(2)∵直线y=–x+1交y轴于C,∴C(0,1),∵D,C关于x轴对称,∴D(0,–1),∵B(2,–1),∴BD∥x轴,∴S △ABD =12×2×3=3. (3)∵M (x 1,y 1)、N (x 2,y 2)是反比例函数y =–2x 上的两点,且x 1<x 2<0,s ∴y 1<y 2. 【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法解决问题,学会利用函数的增减性,比较函数值的大小.8.如图,四边形ABCD 是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y =m x(x >0)的图象经过点D ,点P 是一次函数y =kx +3-3k(k ≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y =kx +3-3k(k ≠0)的图象一定经过点C ;(3)对于一次函数y =kx +3-3k(k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围.(不必写出过程)【解析】:(1)∵B(3,1),C(3,3),四边形ABCD 是平行四边形,∴AD =BC =2,BC ⊥x 轴.∴AD ⊥x 轴.又∵A(1,0),∴D(1,2).∵D 在反比例函数y =m x的图象上, ∴m =1×2=2.∴反比例函数的解析式为y =2x. (2)当x =3时,y =kx +3-3k =3,∴一次函数y =kx +3-3k(k ≠0)的图象一定过点C.(3)设点P 的横坐标为a ,则23<a <3. 归纳:反比例函数中,y 随x 的大小变化的情况,应分x >0与x <0两种情况讨论,而不能笼统地说成“k <0时,y 随x 的增大而增大”.双曲线上的点在每个象限内,y 随x 的变化是一致的.运用反比例函数的性质时,要注意在每一个象限内的要求.9.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB ,BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y 与时间x(0≤x ≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10 ℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?【点拨】 (1)用待定系数法分段求函数解析式;(2)观察图象可得;(3)代入临界值y =10即可.【解答】 解:(1)设线段AB 解析式为y =k 1x +b(k ≠0),∵线段AB 过点(0,10),(2,14),代入,得⎩⎪⎨⎪⎧b =10,2k 1+b =14,解得⎩⎪⎨⎪⎧k 1=2,b =10. ∴AB 解析式为y =2x +10(0≤x <5).∵B 在线段AB 上,当x =5时,y =20.∴B 坐标为(5,20).∴线段BC 的解析式为y =20(5≤x <10). 设双曲线CD 的解析式为y =k 2x(k 2≠0). ∵C(10,20),∴k 2=200.∴双曲线CD 解析式为y =200x(10≤x ≤24). ∴y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧2x +10(0≤x<5),20(5≤x<10),200x (10≤x ≤24).(2)由(1)可知,恒温系统设定恒定温度为20 ℃.(3)把y =10代入y =200x中,解得x =20. ∴20-10=10.答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.归纳:反比例函数实际应用题是近年中考常见的题型,解题时首先要仔细审读题目(或图象)中给予的信息,挖掘题目(或图象)中隐含的条件,提取有用信息,综合运用所学知识解决问题. 10.如图,已知点D 在反比例函数y=的图象上,过点D 作DB ⊥y 轴,垂足为B (0,3),直线y=kx+b 经过点A (5,0),与y 轴交于点C ,且BD=OC ,OC :OA=2:5.(1)求反比例函数y=和一次函数y=kx+b 的表达式;(2)直接写出关于x 的不等式>kx+b 的解集.【分析】(1)由OC、OA、BD之间的关系结合点A、B的坐标可得出点C、D的坐标,由点D的坐标利用反比例函数图象上点的坐标特征可求出a值,进而可得出反比例函数的表达式,再由点A、C的坐标利用待定系数法,即可求出一次函数的表达式;(2)将一次函数表达式代入反比例函数表达式中,利用根的判别式△<0可得出两函数图象无交点,再观察图形,利用两函数图象的上下位置关系即可找出不等式>kx+b的解集.解:(1)∵BD=OC,OC:OA=2:5,点A(5,0),点B(0,3),∴OA=5,OC=BD=2,OB=3,又∵点C在y轴负半轴,点D在第二象限,∴点C的坐标为(0,﹣2),点D的坐标为(﹣2,3).∵点D(﹣2,3)在反比例函数y=的图象上,∴a=﹣2×3=﹣6,∴反比例函数的表达式为y=﹣.将A(5,0)、B(0,﹣2)代入y=kx+b,,解得:,∴一次函数的表达式为y=x﹣2.(2)将y=x ﹣2代入y=﹣,整理得: x 2﹣2x+6=0, ∵△=(﹣2)2﹣4××6=﹣<0,∴一次函数图象与反比例函数图象无交点.观察图形,可知:当x <0时,反比例函数图象在一次函数图象上方,∴不等式>kx+b 的解集为x <0.11.如图,矩形ABCD 的两边AD ,AB 的长分别为3,8,E 是DC 的中点,反比例函数y =m x的图象经过点E ,与AB 交于点F.(1)若点B 坐标为(-6,0),求m 的值及图象经过A ,E 两点的一次函数的解析式;(2)若AF -AE =2,求反比例函数的解析式.【解析】:(1)点B 坐标为(-6,0),AD =3,AB =8,E 为CD 的中点,∴点A(-6,8),E(-3,4).∵函数图象经过点E ,∴m =-3×4=-12.设AE 的解析式为y =kx +b ,将点A ,E 坐标代入,得⎩⎪⎨⎪⎧-6k +b =8,-3k +b =4,解得⎩⎪⎨⎪⎧k =-43,b =0.∴一次函数的解析式为y =-43x. (2)AD =3,DE =4,∴AE =AD 2+DE 2=5.∵AF -AE =2,∴AF =7,BF =1.设点E 坐标为(a ,4),则点F 坐标为(a -3,1),∵E ,F 两点在函数y =m x图象上, ∴4a =a -3,解得a =-1.∴E(-1,4).∴m =-1×4=-4.∴反比例函数的解析式为y =-4x. 12.如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,2),将线段AB 绕点A 顺时针旋转90°得到线段AC ,反比例函数y =(k ≠0,x >0)的图象经过点C . (1)求直线AB 和反比例函数y =(k ≠0,x >0)的解析式;(2)已知点P 是反比例函数y =(k ≠0,x >0)图象上的一个动点,求点P 到直线AB 距离最短时的坐标.【答案】见解析。
2020北京市中考数学专题复习:一次函数、反比例函数综合题(含答案)
2. (2019 通州区一模)如图,在平面直角坐标系 xOy 中,直线 y =2x 与函数 y = x (x >0)的图象交于点 A (1, (2)过点 A 作 x 轴的平行线 l ,直线 y =2x +b 与直线 l 交于点 B ,与函数 y = (x >0)的图象交于点 C ,与一、简单专题集训一次函数、反比例函数综合题(连续 5 年考查)类型一根据线段关系确定参数取值范围(8 年 2 考:2017.23、2016.21)1. (2019 海淀区二模)如图,在平面直角坐标系 xOy 中,直线 y =x +b 与 x 轴、y 轴分别交于点 A ,B ,2与双曲线 y =x 的交点为 M ,N .(1)当点 M 的横坐标为 1 时,求 b 的值;(2)若 MN ≤3AB ,结合函数图象,直接写出 b 的取值范围.第 1 题图m2).(1)求 m 的值;mxx 轴交于点 D.①当点 C 是线段 BD 的中点时,求 b 的值;②当 BC >BD 时,直接写出 b 的取值范围.第 2 题图3.在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=-2x的图象与直线AB交于点P.(1)求点P的坐标;(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标;(3)若直线y=-2x+m与△AOB三条边只有两个公共点,求m的取值范围.第3题图数 y =x (x <0)的图象经过点 A. (2)若过点 A 的直线 l 平行于直线 OB ,且与函数 y = (x <0)图象的另一个交点为 D. ②横、纵坐标都是整数的点叫做整点.记函数 y =x (x <0)的图象在点 A ,D 之间的部分与线段 AD 围成的类型二根据区域内整点个数确定参数取值范围(8 年 2 考:2019.25、2018.23)1. 在平面直角坐标系 xOy 中,直线 l :y =kx +b (k ≠0)与直线 y =kx (k ≠0)平行,与直线 y =3 相交于点A (3,3).(1)求 k 和 b 的关系式;(2)横、纵坐标都是整数的点叫做整点,记直线 l ∶y =kx +b 、y =kx 、y =3 与 x 轴构成的封闭区域(不含边界)为 W .①当 k =2 时,结合函数图象,求区域 W 内的整点个数;②若区域 W 内恰有 2 个整点,直接写出 k 的取值范围.2. 如图,在平面直角坐标系 xOy 中,B (3,-3),C (5,0),以 OC ,CB 为边作平行四边形 OABC ,函k(1)求 k 的值;kx①求直线 l 的表达式;k区域(含边界)为 W .结合函数图象,直接写出区域 W 内(含边界)的整点个数.第 2 题图3. (2019 延庆区一模)如图,在平面直角坐标系 xOy 中,函数 y =x (x>0)的图象经过边长为 2 的正方形OABC 的顶点 B ,直线 y =mx +m +1 与 y = (x >0)的图象交于点 D (点 D 在直线 BC 的上方),与 x 轴交于点 (2)横、纵坐标都是整数的点叫做整点,记y = (x >0)的图象在点 B 、D 之间的部分与线段 AB 、AE 、DEkkxE .(1)求 k 的值;kx围成的区域(不含边界)为 W .1①当 m =2时,直接写出区域 W 内的整点个数;②若区域 W 内恰有 3 个整点,结合函数图象,求 m 的取值范围.第 3 题图2.(2018石景山区一模)在平面直角坐标系xOy中,函数y=x(x>0)的图象与直线l1:y=x+b交于点类型三根据面积关系确定参数取值范围1.如图,在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)交y轴于点A,交x轴于点B(3,0),平行于y轴的直线x=2交AB于点D,交x轴于点E,点P是直线x=2上一点,且在点D的上方,设P(2,n).(1)求直线l的表达式和点A的坐标;(2)连接AP、BP,若△SABP ≤2△SABO,求n的取值范围.第1题图aA(3,a-2).(1)求a,b的值;(2)直线l2:y=-x+m与x轴交于点B,与直线l1交于点C,若S△ABC≥6,求m的取值范围.1. 如图,直线 y =3x +4 与 x 轴相交于点 A ,与 y 轴相交于点 B.2. (2019 东城区一模)在平面直角坐标系 xOy 中,直线 y =kx (k ≠0)与双曲线 y =x (x >0)交于点 A (2,n ).类型四根据线段、面积、图形求点坐标(8 年 2 考:2015.23、2012.17)2(1)求△AOB 的面积;(2)过点 B 作直线 BC 与 x 轴相交于点 △C ,若 ABC 的面积是 16,求点 C 的坐标.第 1 题图8(1)求 n 及 k 的值;(2)点 B 是 y 轴正半轴上的一点,且△OAB 是等腰三角形,请直接写出所有符合条件的点 B 的坐标.k3.(2019房山区一模)已知一次函数y=2x的图象与反比例函数y=x(k≠0)在第一象限内的图象交于点A(1,m).(1)求反比例函数的表达式;(2)点B在反比例函数的图象上,且点B的横坐标为2.若在x轴上存在一点M,使MA+MB的值最小,求点M的坐标.第3题图k4.(2019西城区二模)在平面直角坐标系xOy中,直线l:y=ax+b与双曲线y=x交于点A(1,m)和点B(-2,-1),点A关于x轴的对称点为点C.(1)①求k的值和点C的坐标;②求直线l的表达式;(2)过点B作y轴的垂线与直线AC交于点D,经过点C的直线与直线BD交于点E.若30°≤∠CED≤45°,直接写出点E的横坐标t的取值范围.1. 解:(1)∵点 M 是双曲线 y = 上的点,且点 M 的横坐标为 1, b2. 解:(1)把 A (1,2)代入函数 y = (x >0)中,把 y =1 代入函数 y =x中,参考答案类型一根据线段关系确定参数取值范围2x∴点 M 的坐标为(1,2).∵点 M 是直线 y =x +b 上的点, ∴b =1;(2)b ≤-1 或 b ≥1.【解法提示】当 b =±1 时,满足 MN =3AB ,如解图,结合函数图象可得, 的取值范围是 b ≤-1 或 b ≥1.第 1 题解图mx解得 m =2;(2)①如解图①,过点 C 作 x 轴的垂线,交直线 l 于点 E ,交 x 轴于点 F . ∵点 C 是线段 BD 的中点, ∴CE =CF =1.∴点 C 的纵坐标为 1.2得 x =2.∴点 C 的坐标为(2,1).把 C (2,1)代入函数 y =2x +b 中得:1=4+b , 解得 b =-3;第 2 题解图①【解法提示】如解图②,当 BC >BD 时,点 C 在 AB 的上方,当 BC =BD 时,y C =2y B =4,∴可得 C (2 ,4).把 C ( ,4)代入函数 y =2x +b 中解得 b =3.∴当 BC >BD 时,b 的取值范围为 b >3.由题意:2·|m -3|·6=6,⎩ ⎩②b >3.112第 2 题解图②3. 解:(1)如解图,∵A (0,3)、点 B (3,0),∴直线 AB 的解析式为 y =-x +3.⎧⎪y =-2x , 由⎨⎪y =-x +3,⎧⎪x =-3, 解得⎨⎪y =6,∴P (-3,6);(2)设 Q (m ,0),1解得 m =5 或 1,∴Q (1,0)或 Q (5,0);(3)当直线 y =-2x +m 经过点 O 时,m =0, 当直线 y =-2x +m 经过点 B 时,m =6,∴若直线 y =-2x +m 与△AOB 三条边只有两个公共点,则 M 的取值范围为 0<m <6.第 3 题解图【解法提示】将函数表达式 y =x与直线表达式 y =-x -5 联立并整理得:x 2+5x +6=0,解得 x =-2类型二根据区域内整点个数确定参数取值范围1. 解:(1)∵直线 l :y =kx +b 过点 A (3,3), ∴3=3k +b .∴k 和 b 的关系式为 b =3-3k ; (2)①如解图所示,当 k =2 时,直线 l 表达式为 y =2x -3,直线 y =kx 为 y =2x , 结合函数图象,区域 W 内的整点个数有 2 个;第 1 题解图②1<k ≤2.【解法提示】当直线 y =kx 过点(2,2)时,此时直线的表达式为 y =x ,∵直线 l :y =kx +b 过点(3,3)且与 y =x 平行,故此时直线 l 的表达式也为 y =x ,区域 w 内没有整点,又由(1)可知,当区域 W 内有 2 个整点时,k =2.综上所述,若区域 W 内恰有 2 个整点时,k 的取值范围为 1<k ≤2.2. 解:(1)∵B (3,-3),C (5,0),四边形 OABC 是平行四边形,∴AB =OC =5.∴点 A 的坐标为(-2,-3). ∴k =6;(2)①设直线 OB 的表达式为 y =mx , 由 B 点坐标(3,-3),可得 m =-1, ∵过点 A 的直线 l 平行于直线 OB , ∴设直线 l 的表达式为 y =-x +b ,把点 A 的坐标(-2,-3)代入上式并解得 b =-5, ∴直线 l 的表达式为 y =-x -5; ②区域 W 内(含边界)有两个整点.6或-3,由(1)知 A (-2,-3),∴点 D 的坐标为(-3,-2),∴区域 W 内(含边界)只有 D 、A 两个整点.3. 解:(1)∵正方形 OABC 的边长为 2,把 B (2,2)代入 y =x(x >0)中,解得 k =2×2=4; 【解法提示】①当 m =2时,则直线 y =mx +m +1 为 y =2 x +2 ,②当直线 y =mx +m +1 过(0,2)时,区域 W 内恰好有 2 个整点,如解图①所示,此时 m =2 ,结合函数图象,区域 W 内恰有 3 个整点,m 的取值范围为2 <m ≤1.∴B (2,2).k(2)①区域 W 内有 2 个整点;1 1 3作出图象如解图①所示,结合函数图象,区域 W 内有 2 个整点.第 3 题解图①3 1当直线 y =mx +m +1 过(0,2)时,区域 W 内恰好有 3 个整点,如解图②所示,第 3 题解图②则 2=m +1,解得 m =1,1∴直线 l 的表达式是 y =-3x +1.∵x =2 时,y =-3 x +1=3 ,且点 P 在点 D 的上方,∴PD =n -3 ,∴△S APD =2AM ·PD =2 ×2×(n -3 )=n -3 ; ∴△S BPD =2×1×(n -3 )=2 (n -3 ), ∴△S P AB =△S APD +△S BPD =2n -2 ; ∵2△S ABO =2×2 ·AO ·BO =1×3=3.当 △S ABP =2△S ABO 时,2n -2 =3,解得 n =3 , 综上所述,当 △S ABP ≤2△S ABO 时,n 的取值范围为3<n ≤3 . 2. 解:(1)∵点 A 在 y = 图象上,类型三根据面积关系确定参数取值范围1. 解:(1)∵直线 l :y =kx +1(k ≠0)交 y 轴于点 A ,交 x 轴于点 B (3,0), ∴0=3k +1.1∴k =-3 .1当 x =0 时,y =1,∴点 A (0,1);(2)如解图,过点 A 作 AM ⊥PD ,垂足为点 M ,则有 AM =2,1 111 1 1 1∵B (3,0),∴点 B 到直线 x =2 的距离为 △1,即 BDP 的边 PD 上的高长为 1,1 1 1 13 113 1 71 7第 1 题解图axa∴a -2=3 .∴a =3.∴A (3,1).∵点 A 在 y =x +b 图象上,⎧x =m +2,解得⎨ ∴C ( 2, ). ∴2 ·(m -2)· 2- (m -2)×1≥6. ⎪ ⎩ 2∴1=3+b .∴b =-2;(2)由(1)知直线 l 1 为 y =x -2.设直线 l 1∶y =x -2 与 x 轴的交点为 D , ∴D (2,0).①当点 C 在点 A 的上方如解图①,第 2 题解图①∵直线 y =-x +m 与 x 轴交点为 B ,∴B (m ,0).∵点 C 在点 A 的上方, ∴m >4.∵直线 y =-x +m 与直线 y =x -2 相交于点 C ,⎧y =x -2, ∴⎨⎪y =-x +m ,2⎩y =m -2.m +2 m -22∵△S ABC =△S BCD -△S ABD ≥6,1 m -2 1 2∴m ≥8;②若点 C 在点 A 下方,如解图②, 此时 m <4.第 2 题解图②∵△S ABC =△S ABD +△S BCD ≥6,1 1 2-m∴2 (2-m )×1+2 (2-m )·2 ∴m ≤-2.综上所述,m ≥8 或 m ≤-2.≥6.1.解:(1)把x=0代入y=x+4得:y=4,把y=0代入y=x+4得:x+4=0,33∴△S AOB=×6×4=12;2∴△S ABC=×4·AC=16,22.解:(1)∵点A(2,n)在双曲线y=上,∴n==4.2(2)点B坐标为(0,8),(0,25),(0,).解得m=,22类型四根据线段、面积、图形求点坐标23∴B(0,4),22解得x=-6,∴A(-6,0),1(2)根据题意得:点B到AC的距离为4,1解得AC=8,即点C到点A的距离为8,∴点C的坐标为(-14,0)或(2,0).8x8∴点A的坐标为(2,4).将A(2,4)代入y=kx,得:4=2k,解得k=2;52【解法提示】分三种情况考虑,过点A作AC⊥y轴于点C,如解图所示.①当AB1=AO时,CO=CB1=4,∴点B1的坐标为(0,8);②当OA=OB2时,∵点A的坐标为(2,4),∴OC=4,AC=2.∴OA=OC2+AC2=25.∴OB2=25.∴点B2的坐标为(0,25);③当B3O=B3A时,设OB3=m(m>0),则CB3=4-m,AB3=m,在Rt△ACB3中,AB3=CB23+AC2,即m2=(4-m)2+22,5∴点B3的坐标为(0,2).将A(1,2)代入反比例函数y=x得k=2,∴反比例函数的表达式为y=x;∴点M的坐标为(3,0).⎪⎩⎩55综上所述:点B的坐标为(0,8),(0,25),(0,2).第2题解图3.解:(1)∵A(1,m)在一次函数y=2x的图象上,∴m=2.k2(2)如解图所示,作点A关于x轴的对称点A′,连接A′B交x轴于点M,此时MA+MB最小,∴点A关于x轴的对称点A′(1,-2),∵B(2,1),⎧-2=n+b,设A′B的表达式为y=nx+b,代入点A′、B得⎨⎪1=2n+b,⎧⎪n=3,解得⎨⎪b=-5,∴直线A′B的表达式为y=3x-5.5第3题解图4. 解:(1)①∵点 B (-2,-1)在双曲线 y = 上, ∵点 A (1,m )在双曲线 y = 上,x⎩ kx∴k =(-2)×(-1)=2.2∴反比例函数解析式为 y =x .2∴m =2.∴A (1,2).∵点 A 关于 x 轴的对称点为点 C , ∴C (1,-2);②∵直线 l :y =ax +b 经过点 A (1,2)和点 B (-2,-1),⎧⎪2=a +b , 得⎨⎪-1=-2a +b ,⎧⎪a =1, 解得⎨⎪⎩b =1.∴直线 l 的解析式为 y =x +1;(2)1- 3 ≤t ≤0 或 2≤t ≤1+ 3 .【解法提示】如解图,∵点 A 关于 x 轴的对称点为点 C , ∴AC ∥y 轴. ∵BD ⊥y 轴,∴∠BDC =90°,D (1,-1). ∵C (1,-2), ∴CD =1.①当点 E 在点 D 左侧时,当∠CED =45°时,DE =CD =1, ∴t =0.当∠CE ′D =30°时,DE ′= 3 CD = 3 , ∴t =1- 3 .∵30°≤∠CED ≤45°, ∴1- 3 ≤t ≤0;②当点 E 在点 D 右侧时,同理可得,2≤t ≤1+ 3 ,综上所述,1- 3 ≤t ≤0 或 2≤t ≤1+ 3 .第4题解图。
2020年中考数学压轴题专题复习:一次函数与反比例函数-答案
2020年中考数学压轴题专题复习:一次函数与反比例函数一、选择题(本大题共6道小题)1. 如图,A 、B 两点在反比例函数y =k 1x 的图象上,C 、D 两点在反比例函数y =k 2x的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =103,则k 2-k 1=( )A. 4B.143 C. 163D. 62. 已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A. k >1,b <0B. k >1,b >0C. k >0,b >0D. k >0,b <03. 下列函数中,满足y 的值随x 的值增大而增大的是( )A. y =-2xB. y =3x -1C. y =1xD. y =x 24. 设函数y =kx (k ≠0,x >0)的图象如图所示,若z =1y,则z 关于x 的函数图象可能为( )5. 二次函数y =ax 2+bx +c (a ,b ,c 为常数且a ≠0)的图象如图所示,则一次函数y =ax+b 与反比例函数y =cx的图象可能是( )6. 若式子k-1+(k-1)0有意义,则一次函数y=(1-k)x+k-1的图象可能是()二、填空题(本大题共5道小题)7. 已知反比例函数y =k x的图象在每一个象限内y 随x 的增大而增大,请写一个符合条件的反比例函数解析式____________.8. 如图所示,已知点C (1,0),直线y =-x +7与两坐标轴分别交于A ,B 两点,D ,E分别是AB ,OA 上的动点,则△CDE 周长的最小值是________.9. 将函数y =2x +b (b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =|2x +b |(b 为常数)的图象,若该图象在直线y =2下方的点的横坐标x 满足0<x <3,则b 的取值范围为____________.10. 如图,一次函数y =kx +b 的图象分别与反比例函数y =a x的图象在第一象限交于点A (4,3),与y 轴的负半轴交于点B ,且OA =OB .(1)求函数y =kx +b 和y =ax的表达式;(2)已知点C (0,5),试在该一次函数图象上确定一点M ,使得MB =MC .求此时点M 的坐标.11. 如图,已知点A ,C 在反比例函数y =a x的图象上,点B ,D 在反比例函数y =b x的图象上,a >b >0,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB =34,CD =32,AB 与CD 间的距离为6,则a -b 的值是________.三、解答题(本大题共4道小题)12. 如图,在平面直角坐标系xOy 中,直线y =-x +3与x 轴交于点C ,与直线AD 交于点A (43,53),点D 的坐标为(0,1). (1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当△BOD 与△BCE相似时,求点E的坐标.13. 九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下,已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.14. 如图,已知抛物线y=x2-(m+3)x+9的顶点C在x轴正半轴上,一次函数y=x+3与抛物线交于A、B两点,与x、y轴分别交于D、E两点.(1)求m的值;(2)求A、B两点的坐标;(3)点P(a,b)(-3<a<1)是抛物线上一点,当△P AB的面积是△ABC面积的2倍时,求a、b的值.15. 如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A、B两点之间的一动点,横坐标为x(2<x<6).写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.答案一、选择题(本大题共6道小题)1. 【答案】A 【解析】设E (x 1,0),F (x 2,0),则A (x 1,k 1x 1),D (x 2,k 2x 2),B (x 2,k 1x 2),C (x 1,k 2x 1),∴AC =k 1-k 2x 1=2,BD =k 2-k 1x 2=3,∴k 1-k 2=2x 1,k 2-k 1=3x 2,∴2x 1+3x 2=0,又∵EF =x 2-x 1=103,∴x 2=43,∴k 2-k 1=3x 2=3×43=4.2. 【答案】A 【解析】原解析式可变形为y =(k -1)x +b ,∵函数值y 随自变量x 的增大而增大,∴k -1>0,∴k >1,∵图象与x 轴正半轴相交,∴b <0,∴满足题意的k 、b 情况为k >1,b <0.3. 【答案】B 【解析】一次函数y =-2x 中,y 随x 增大而减小;一次函数y =3x -1中,y 随x 的增大而增大;反比例函数y =1x 中,在每一个分支上,y 随x 的增大而减小;二次函数y =x 2中,当x >0时,y 随x 增大而增大,当x <0时,y 随x 的增大而减小,故答案为B .4. 【答案】D 【解析】函数y =k x(k ≠0,x >0)的图象在第一象限,则k >0,x >0.由已知得z =1y =1k x=xk,所以z 关于x 的函数图象是一条射线,且在第一象限,故选D.5. 【答案】C 【解析】抛物线开口向上,所以a >0,对称轴在y 轴右侧,所以a 、b异号,所以b <0,抛物线与y 轴交于负半轴,所以c <0,所以直线y =ax +b 过第一、三、四象限,反比例函数y =cx位于第二、四象限,故答案为C.6. 【答案】C 【解析】式子k -1+(k -1)0有意义,则k >1,所以1-k <0,k -1>0,所以一次函数y =(1-k )x +k -1的图象经过第一、二、四象限.二、填空题(本大题共5道小题)7. 【答案】y =-2x(答案不唯一) 【解析】∵反比例函数的图象在每一个象限内y 随x的增大而增大,∴k <0,∴k 可取-2(答案不唯一).8. 【答案】10 【解析】作点C 关于y 轴的对称点C 1(-1,0),点C 关于直线AB 的对称点C 2,连接C 1C 2交OA 于点E ,交AB 于点D ,则此时△CDE 的周长最小,且最小值等于C 1C 2的长.∵OA =OB =7,∴CB =6,∠ABC =45°.∵AB 垂直平分CC 2,∴∠CBC 2=90°,∴C 2的坐标为(7,6).在Rt △C 1BC 2中,C 1C 2=C 1B 2+C 2B 2=82+62=10.即△CDE 周长的最小值是10.9. 【答案】-4<b<-2 【解析】先求出直线y =2与y =|2x +b|的交点的横坐标,再由已知条件列出关于b 的不等式组,便可求出结果.由⎩⎪⎨⎪⎧y =2y =|2x +b|,得⎩⎪⎨⎪⎧y =2y =2x +b或⎩⎪⎨⎪⎧y =2y =-2x -b ,解得x =2-b 2或x =-2+b2,∵0<x<3,∴⎩⎨⎧2-b2<3-b +22>0,解得-4<b<-2.10. 【答案】(1)【思路分析】由点A 的坐标和OA =OB 可得点B 的坐标,用待定系数法即可求出一次函数的解析式;将点A 的坐标代入反比例函数解析式中即可求出反比例函数的解析式.解:∵点A(4,3),∴OA =42+32=5,∴OB =OA =5, ∴B(0,-5),将点A(4, 3),点B(0, -5)代入函数y =kx +b 得,⎩⎪⎨⎪⎧4k +b =3b =-5,解得⎩⎪⎨⎪⎧k =2b =-5,(2分) ∴一次函数的解析式为y =2x -5, 将点A(4, 3)代入y =ax 得,3=a 4, ∴a =12,∴反比例函数的解析式为y =12x, ∴所求函数表达式分别为y =2x -5和y =12x.(4分) (2)【思路分析】由题意可知,使MB =MC 的点在线段BC 的垂直平分线上,故求出线段BC 的垂直平分线和一次函数的交点即可.解:如解图,∵点B 的坐标为(0, -5),点C 的坐标为(0, 5),∴x 轴是线段BC 的垂直平分线, ∵MB =MC ,∴点M 在x 轴上,又∵点M 在一次函数图象上,∴点M 为一次函数的图象与x 轴的交点,如解图所示, 令2x -5=0,解得x =52,(6分)∴此时点M 的坐标为(52, 0).(8分)11. 【答案】3 【解析】设点A 的纵坐标为y 1,点C 的纵坐标为y 2,∵AB ∥CD ∥x轴,∴点B 的纵坐标为y 1,点D 的纵坐标为y 2,∵点A 在函数y =ax 的图象上,点B 在函数y =b x 的图象上,且AB =34,∴a y 1-b y 1=34,∴y 1=4(a -b )3,同理y 2=2(b -a )3,又∵AB与CD 间的距离为6,∴y 1- y 2=4(a -b )3-2(b -a )3=6,解得a -b =3.三、解答题(本大题共4道小题)12. 【答案】解:(1)设直线AD 的解析式为y =kx +b(k≠0), 将D(0,1)、A(43,53)代入解析式得⎩⎪⎨⎪⎧b =143k +b =53, 解得⎩⎪⎨⎪⎧b =1k =12,∴直线AD 的解析式为y =12x +1.(3分) (2)直线AD 的解析式为y =12x +1,令y =0,得x =-2, ∴B(-2,0),即OB =2.∵直线AC 的解析式为y =-x +3,令y =0,得x =3,∴C(3,0),即BC =5,设E(x ,12x +1), ①当E 1C ⊥BC 时,∠BOD =∠BCE 1=90°,∠DBO =∠E 1BC ,∴△BOD ∽△BCE 1,此时点C 和点E 1的横坐标相同,将x =3代入y =12x +1, 解得:y =52, ∴E 1(3,52).(6分) ②当CE 2⊥AD 时,∠BOD =∠BE 2C =90°,∠DBO =∠CBE 2,∴△BOD ∽△BE 2C ,如解图,过点E 2作E 2F ⊥x 轴于点F ,则∠E 2FC =∠BFE 2=90°.∵∠E 2BF +∠BE 2F =90°,∠CE 2F +∠BE 2F =90°,∴∠E 2BF =∠CE 2F ,∴△E 2BF ∽△CE 2F ,则E 2F BF =CF E 2F, 即E 2F 2=CF·BF ,(12x +1)2=(3-x)(x +2),解得:x 1=2,x 2=-2(舍去),∴E 2(2,2);(9分)③当∠EBC =90°时,此情况不存在.综上所述,点E 的坐标为E 1(3,52)或E 2(2,2).(10分)13. 【答案】解:(1)当0≤x≤50时,设商品的售价y 与时间x 的函数关系式为y =kx +b(k 、b 为常数且k≠0),∵y =kx +b 经过点(0,40),(50,90),∴⎩⎪⎨⎪⎧b =4050k +b =90, 解得⎩⎪⎨⎪⎧k =1b =40, ∴y =x +40,∴y 与x 的函数关系式为:y =⎩⎨⎧x +40 (0≤x≤50,且x 为整数)90 (50<x≤90,且x 为整数),(2分) 由数据可知每天的销售量p 与时间x 成一次函数关系.设每天的销售量p 与时间x 的函数关系式为p =mx +n(m ,n 为常数,且m≠0), ∵p =mx +n 过点(60,80),(30,140),∴⎩⎪⎨⎪⎧60m +n =8030m +n =140,解得⎩⎪⎨⎪⎧m =-2n =200, ∴p =-2x +200(0≤x≤90,且x 为整数),(3分)当0≤x≤50时,w =(y -30)·p=(x +40-30)(-2x +200),=-2x 2+180x +2000,当50<x≤90时,w =(90-30)×(-2x +200)=-120x +12000,综上所述,每天的销售利润w 与时间x 的函数关系式是:w =⎩⎨⎧-2x 2+180x +2000 (0≤x≤50,且x 为整数)-120x +12000 (50<x≤90,且x 为整数).(5分) (2)当0≤x≤50时,w =-2x 2+180x +2000=-2(x -45)2+6050,∵a =-2<0且0≤x≤50,∴x =45时,w 最大=6050(元),(6分)当50<x≤90时,w =-120x +12000,∵k =-120<0,∴w 随x 增大而减小.∴x =50时,w 最大=6000(元),∵6050>6000,∴x =45时,w 最大=6050(元),即销售第45天时,当天获得的销售利润最大,最大利润是6050元.(8分)(3)24天.(10分)【解法提示】①当0≤x ≤50,若w 不低于5600元,则w =-2x 2+180x +2000≥5600,解得30≤x ≤60,∴30≤x ≤50;②当50<x ≤90时,若w 不低于5600元,则w =-120x +12000≥5600,解得x ≤1603, ∴50<x ≤1603, 综合①②可得30≤x ≤1603, ∴从第30天到第53天共有24天利润不低于5600元.14. 【答案】解:(1)∵抛物线y =x 2-(m +3)x +9的顶点在x 轴的正半轴上,∴方程x 2-(m +3)x +9=0有两个相等的实数根,∴b 2-4ac =[-(m +3)]2-4×9=0,解得m =3或m =-9,又∵抛物线对称轴大于0,即m +3>0,∴m =3.(3分)(2)由(1)可知抛物线解析式为y =x 2-6x +9,联立一次函数y =x +3,可得⎩⎪⎨⎪⎧y =x 2-6x +9y =x +3, 解得⎩⎪⎨⎪⎧x =1y =4或⎩⎪⎨⎪⎧x =6y =9, ∴A(1,4),B(6,9).(6分)(3)如解图,分别过A 、B 、P 三点作x 轴的垂线,垂足分别为R 、S 、T ,∵A(1,4),B(6,9),C(3,0),P(a ,b),∴AR =4,BS =9,RC =3-1=2,CS =6-3=3,RS =6-1=5,PT =b ,RT =1-a ,ST =6-a ,∴S △ABC =S 梯形ABSR -S △ARC -S △BCS =12×(4+9)×5-12×2×4-12×3×9=15, S △PAB =S 梯形PBST -S 梯形ARTP -S 梯形ARSB =12(9+b)(6-a)-12(b +4)(1-a)-12×(4+9)×5=12(5b -5a -15).(8分)又∵S △PAB =2S △ABC ,∴12(5b -5a -15)=30,即b -a =15, ∴b =15+a ,∵P 点在抛物线上,∴b =a 2-6a +9,∴15+a =a 2-6a +9,解得a =7±732, ∵-3<a<1,∴a =7-732, ∴b =15+7-732=37-732.(10分)15. 【答案】解:(1)∵二次函数y =ax 2+bx 的图象经过点A(2,4)与B(6,0).∴⎩⎪⎨⎪⎧4a +2b =436a +6b =0, 解得⎩⎪⎨⎪⎧a =-12b =3.(4分) (2)如解图①,过点A 作x 轴的垂线,垂足为点D(2,0),连接CD ,过点C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为点E ,点F ,则S △OAD =12OD·AD =12×2×4=4, S △ACD =12AD·CE =12×4×(x -2)=2x -4, S △BCD =12BD·CF =12×4×(-12x 2+3x)=-x 2+6x , 则S =S △OAD +S △ACD +S △BCD =4+(2x -4)+(-x 2+6x)=-x 2+8x.∴S 关于x 的函数表达式为S =-x 2+8x(2<x<6).(10分)∵S =-(x -4)2+16,∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.(12分)图①【一题多解】解法一:由(1)知y =-12x 2+3x ,如解图②,连接AB ,则 S =S △AOB +S △ABC ,其中S △AOB =12×6×4=12, 设直线AB 解析式为y 1=k 1x +b 1,将点A(2,4),B(6,0)代入,易得,y 1=-x +6,过C 作直线l ⊥x 轴交AB 于点D ,∴C(x ,-12x 2+3x),D(x ,-x +6), ∴S △ABC =S △ADC +S △BDC =12·CD·(x -2)+12·CD·(6-x)=12·CD·4=2CD , 其中CD =-12x 2+3x -(-x +6)=-12x 2+4x -6, ∴S △ABC =2CD =-x 2+8x -12,∴S =S △ABC +S △AOB =-x 2+8x -12+12=-x 2+8x =-(x -4)2+16(2<x<6), 即S 关于x 的函数表达式为S =-x 2+8x(2<x<6),∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.图②解法二:∵点C 在抛物线y =-12x 2+3x 上, ∴点C(x ,-12x 2+3x), 如解图③,过点A 作AD ⊥x 轴,垂足为点D ,过点C 作CE ⊥x 轴,垂足为点E ,则 点D 的坐标为(2,0),点E 的坐标为(x ,0),∴S =S △OAD +S 梯形ADEC +S △CEB =12×2×4+12(4-12x 2+3x)(x -2)+12(6-x)(-12x 2+3x)=-x 2+8x ,∵S =-x 2+8x =-(x -4)2+16(2<x<6),∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.图③。
2020年中考数学二轮专项——反比例函数综合题(含答案)
2020年中考数学二轮专项——反比例函数综合题1. (2019成华区一诊)如图,点A 在反比例函数y =kx (x <0)的图象上,作Rt △ABC ,直角边BC 在x 轴上,点D 为斜边AC 的中点,直线BD 交y 轴于点E ,若△BCE 的面积为8,则k =________.第1题图2. (2018威海)如图,直线AB 与双曲线y =kx (k <0)交于点A ,B ,点P 是直线AB 上一动点,且点P 在第二象限,连接PO 并延长交双曲线于点C.过点P 作PD ⊥y 轴,垂足为点D.过点C 作CE ⊥x 轴,垂足为点E .若点A 的坐标为(-2,3),点B 的坐标为(m ,1),设△POD 的面积为S 1,△COE 的面积为S 2.当 S 1>S 2时,点P 的横坐标x 的取值范围为________.第2题图3. (2019乐山)如图,点P 是双曲线C :y =4x (x >0)上的一点,过点P 作x 轴的垂线交直线 AB :y =12x -2于点Q ,连接OP ,OQ .当点P 在双曲线C 上运动,且点P 在点Q 的上方时,△POQ 面积的最大值是________.第3题图4. (2019成华区二诊)如图,曲线l 是由函数y =6x 在第一象限内的图象绕坐标原点O 逆时针旋转45°得到的,过点A (-42,42),B (22,22)的直线与曲线l 相交于点M 、N ,则△OMN 的面积为________.第4题图5. (2019成都黑白卷)若点P 是△ABC 内部或边上的点(顶点除外),在△P AB ,△PBC ,△PCA 中,若至少有一个三角形与三角形ABC 相似,则称点P 为△ABC 的自相似点.如图所示,点M 为反比例函数y =kx 图象上的点,过点M 作MN ⊥x 轴于点N ,点P 是OM 上一点,若点P 为△MON 的自相似点,且P (34,34),则k 的值为________.第5题图6. 定义“[a ]表示不大于a 的最大整数”,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=mx (m ≠0)的图象交于A (2,1)、B (-1,n )两点,动点P 在直线AB 上,且在反比例函数图象的下方,当点P 横坐标大于0时,其坐标对应的所有有序对([x ],[y ])是________.7. 如图,已知正比例函数和反比例函数的图象都经过点M (-2,-1),且P (-1,-2),Q 为双曲线上的两点,P A 垂直于x 轴,QB 垂直于y 轴,垂足分别为点A 、B ,当点Q 在第一象限的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,则平行四边形OPCQ 周长的最小值为________.第7题图8. (2019金牛区一诊)如图,在平面直角坐标系中,点A 在反比例函数y 1=kx (x >0)的图象上,点A ′与点A 关于点O 对称,直线AA ′的解析式为y 2=mx ,将直线AA ′绕点A ′顺时针旋转,与反比例函数图象交与点B ,直线A ′B 的解析式为y 3=m2x +n ,若△AA ′B 的面积为3,则k 的值为________.第8题图9. (2019龙泉驿区一诊)如图,在直角坐标系中有菱形OABC ,A 点的坐标为(10,0),对角线OB 、AC 相交于点D ,双曲线y =kx(x >0)经过点D ,交BC 的延长线于点E ,且OB ·AC =160,则点E 的坐标为________.第9题图10. (2019新都区5月监测)如图,已知点A 是反比例函数y =23x 的图象在第一象限上的动点,连接AO并延长交另一分支于点B ,以AB 为边作等边△ABC 使点C 落在第二象限,且边BC 交x 轴于点D ,若△ACD 与△ABD 的面积之比为1∶2,则点C 的坐标为________.第10题图11. (2019成都黑白卷)若一条直线与两坐标轴、反比例函数的图象均有交点,我们称直线与反比例函数图象的交点到直线与x 轴的交点的距离为该点的“横距”,称直线与反比例函数图象的交点到直线与y 轴的交点的距离为该点的“纵距”.如图,一次函数y =k 1x +7(k 1<0)的图象分别与坐标轴交于A 、B 两点,与反比例函数y =k 2x (k 2>0)的图象交于M 、N 两点,过点M 作MC ⊥y 轴于点C ,已知CM =1,若点M 的“纵距”与点M 的“横距”的比为1∶4,则反比例函数的解析式为________.第11题图12. (2019武侯区二诊)如图,已知直线AB 交x 轴于点A ,分别与函数y =a x (x >0,a >0)和y =bx (x >0,b>a >0)的图象相交于点B 、C ,过点B 作BD ∥x 轴交函数y =bx 的图象于点D ,过点C 作CE ∥x 轴交函数y=a x 的图象于点E ,连接AD ,BE ,若BC AB =12,S △ABD =2,则S △BCE =________.第12题图13. 两个已知图形G 1、G 2,在G 1上任取一点P ,在G 2上任取一点Q ,当线段PQ 的长度最小时,我们称这个最小长度为G 1、G 2的“密距”.如图,A (-2,3),B (1,3),C (1,0),则点A 与射线OC 之间的“密距”为13,点B 与射线OC 之间的“密距”为3.如果直线y =x -1和双曲线y =k x 之间的“密距”为522,则k 值为________.第13题图14. (2019都江堰区二诊)如图,在直角坐标系xOy 中,以点O 为圆心,半径为2的圆与反比例函数y =k x (x >0)的图象交于A 、B 两点,若AB ︵的长为13π,则k 的值为________.第14题图15. (2019武侯区一诊)如图,将双曲线y =kx (k <0)在第四象限的一支沿直线y =-x 方向向上平移到点E处,交该双曲线在第二象限的一支于A ,B 两点,连接AB 并延长交x 轴于点C ,双曲线y =mx (m >0)与直线y =x 在第三象限的交点为D ,将双曲线y =mx 在第三象限的一支沿射线OE 方向平移,D 点刚好可以与C 点重合,此时该曲线与前两支曲线围成一条“鱼”(如图中阴影部分),若C 点坐标为(-5,0),AB =32,则mk 的值为________.第15题图16. (2019福建)如图,菱形ABCD 的顶点A 在函数y =3x (x >0)的图象上,函数y =kx (k >3,x >0)的图象关于直线AC 对称,且过B ,D 两点.若AB =2,∠BAD =30°,则k =________.第16题图17. 已知点A ,B 分别是x 轴,y 轴上的动点,点C ,D 是某函数图象上的点,当四边形ABCD (A ,B ,C ,D 各点依次排列)为正方形时,称这个正方形为此函数图象的“伴侣正方形”.如图,正方形ABCD 是反比例函数y =2x图象上的其中一个伴侣正方形,则这个伴侣正方形的边长是________.第17题图参考答案1. 16 【解析】∵BD 为Rt △ABC 的斜边AC 上的中线,∴BD =DC ,∴∠DBC =∠ACB ,又∵∠BOE =∠CBA =90°,∴△BOE ∽△CBA ,OB BC =OE BA ,即BC ·OE =OB ·BA .又∵S △BEC =8,∴12BC ·OE =8,∴BC ·OE=16=BO ·BA =|k |.∵反比例函数图象在第三象限,∴k >0,∴k =16.2. -6<x <-2 【解析】当点P 在反比例函数图象上时,△POD 和△COE 的面积相等,当直线在双曲线下方时,即当点P 在反比例函数图象内侧时,△POD 比△COE 的面积小,当直线在双曲线上方时,即当点P 在外侧时,△POD 比△COE 的面积大,根据此结论,当S 1>S 2,说明点P 在曲线的外侧,故在线段AB 上,点A ,B 在反比例函数图象上,∴-2×3=m ×1,∴m =-6,∴P 点横坐标的取值范围为-6<x <-2.3. 3 【解析】点P 在双曲线y =4x 上 ,令PQ 与x 轴的交为点G ,P (x ,4x ),则Q (x ,12x -2),则S △OPG=12·x ·4x =2为定值,S △OGQ =12·x ·(2-x 2)=x -x 24=-14(x -2)2+1,当x -2=0即x =2时,S △OGQ 有最大值为1,∴S △POQ =S △OGQ +S △OPG =1+2=3,∴△POQ 面积的最大值是3.4. 8 【解析】∵A (-42,42),B (22,22),∴OA ⊥OB ,建立如解图所示的直角坐标系,OB 为x ′轴,OA 为y ′轴.在坐标系中,A (0,8),B (4,0),∴直线AB 的解析式为y ′=-2x ′+8,联立⎩⎪⎨⎪⎧y ′=-2x ′+8y ′=6x ′,解得⎩⎪⎨⎪⎧x ′=1y ′=6或⎩⎪⎨⎪⎧x ′=3y ′=2,∴M (1,6),N (3,2),∴S △OMN =S △OBM -S △OBN =12×4×6-12×4×2=8.第4题解图5. 33 【解析】∵点P 为△MON 的自相似点,∴△ONP ∽△OMN ,∴NP ⊥OM .如解图,过点P 作PD ⊥x 轴于点D ,由题意,tan ∠POD =PD OD =3434=3,∴∠POD =60°,∴∠OPD =30°,∴OP =2OD =32,在Rt △OPN 中,ON =OPcos60°=3212=3,MN =ON ·tan60°=3×3=3,∴M (3,3),∴k =3×3=3 3.第5题解图6. (0,-1),(1,0) 【解析】将A (2,1)代入反比例函数解析式y 2=mx (m ≠0),得m =2,∴反比例函数解析式为y 2=2x ,∴n =2-1=-2,∴B (-1,-2),∵直线y 1=kx +b (k ≠0)经过A (2,1)、B (-1,-2)两点,∴直线的解析式为y =x -1,∴直线与x 轴交于点(1,0),∵动点P 在直线AB 上,且在反比例函数图象的下方,点P 横坐标大于0,∴0<x <2,-1<y <1,∴坐标对应的所有有序对([x ],[y ])是 (0,-1),(1,0).7. 25+4 【解析】设正比例函数解析式为y =kx ,将点M (-2,-1)代入得k =12,∴正比例函数解析式为y =12x ,同理可得,反比例函数解析式y =2x ,∵四边形OPCQ 是平行四边形,∴OP =CQ ,OQ =PC ,而点P (-1,-2)是定点,∴OP 的长也是定长,∴要求平形四边形OPCQ 周长的最小值就只需求OQ 的最小值,∵点Q 在第一象限中的双曲线上,∴可设点Q 的坐标为Q (n ,2n ),由勾股定理可得OQ 2=n 2+4n 2=(n-2n )2+4,∴当(n -2n )2=0即n -2n =0时,OQ 2有最小值4,又∵OQ 为正值,∴OQ 有最小值2,由勾股定理得OP =5,∴平行四边形OPCQ 周长的最小值是2(OP +OQ )=2(5+2)=25+4.8. 2 【解析】设点A (a ,k a )(a >0),∵点A 和点A ′关于原点对称,∴点A ′的坐标为(-a ,-ka ),∵点A ′在y 2=mx 的图象上,∴点A ′的坐标为(-a ,-am ).∴-ka=-am ,a 2m =k .∵直线AA ′绕点A ′顺时针旋转,与反比例函数图象交于点B ,∴⎩⎨⎧y =a 2m xy =m2x +n,∴点B 的坐标为(2a ,k2a ),如解图,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D ,连接BO ,∵O 为AA ′中点,∴S △AOB =12S △ABA ′=32,∵点A 、B 在双曲线上,∴S △AOC=S △BOD ,∴S △AOB =S 四边形ACDB =32,由已知点A 、B 坐标分别为(a ,k a )、(2a ,k 2a ),∴12×(k 2a +k a )·a =32,∴k =2.第8题解图9. (4,8) 【解析】如解图,过点C 作CF ⊥x 轴于点F ,∵OB ·AC =160,A 点的坐标为(10,0),OA=AB =BC =OC =10,∴OA ·CF=12OB ·AC =12×160=80,∴CF =8,在Rt △OCF 中,∵OC =10,CF =8,∴OF=OC 2-CF 2=102-82=6,∴C (6,8),∵D 是线段AC 的中点,∴D 点坐标为(10+62,82),即(8,4),∵双曲线y =k x (x >0)经过D 点,∴4=k 8,即k =32,∴双曲线的解析式为y =32x (x >0),∵CF =8,∴直线CB 的解析式为y =8,∴联立⎩⎪⎨⎪⎧y =8y =32x ,解得⎩⎪⎨⎪⎧x =4y =8,∴E 点坐标为(4,8).第9题解图10. (-6,3) 【解析】如解图,过点C 作CM ⊥x 轴于点M ,过点A 作AE ⊥x 轴于点E ,过点D 作DF ⊥AB 于点F ,连接CO ,根据题意得AO =BO ,∵S △ACD ∶S △ADB =1∶2,∴CD ∶DB =1∶2即DB =2CD ,∵△ABC 为等边三角形且AO =BO ,∴∠CBA =60°,CO ⊥AB 且DF ⊥AB ,∴DF ∥CO ,∴DF CO =BF BO =BDBC =23,∴DF =23CO ,BF =23BO ,即FO =13BO .∵∠CBA =60°,CO ⊥AB ,∴CO =3BO ,∴DF =233BO ,∵∠DOF =∠AOE ,∠DFO =∠AEO =90°,∴△DFO ∽△AEO ,∴AE OE =DFOF =233BO 13BO =23,∴AE =23OE ,∵点A是反比例函数y =23x 的图象在第一象限上的动点,∴AE ·OE =23,∴AE =23,OE =1,∵∠COM +∠AOE=90°,∠AOE +∠EAO =90°,∴∠COM =∠EAO ,且∠CMO =∠AEO =90°,∴△COM ∽△OAE ,CM OE =MOEA =COOA=3,∴CM =3,MO =6,且点M 在第二象限,∴C (-6,3).第10题解图11. y =285x 【解析】∵MC ⊥y 轴于点C ,且CM =1,∴M 的横坐标为1,当x =1时,y =k 1+7,∴M (1,k 1+7),∵M 在反比例函数的图象上,∴1×(k 1+7)=k 2,∴k 2-k 1=7,∴k 1=k 2-7;由定义可得AM BM =14,∴BM=4AM .∴AM AB =AM AM +BM =AM AM +4AM =15.∵CM ∥OB ,∵△ACM ∽△AOB .∴CM OB =AM AB =15.∵CM =1,∴OB=5.∴B (5,0).∵点B 在一次函数y =k 1x +7的图象上,∴5k 1+7=0,解得k 1=-75.∴k 2=-75+7=285.∴反比例函数的解析式y =285x.12.23 【解析】如解图,过点A 分别作BD 和EC 的垂线交DB 和CE 的延长线于点G 、F ,∵BC AB =12,∴AG GF =21.∴设D 的坐标为(b m ,m ),则B (a m ,m ),则BD =b m -a m =b -a m ,AG =m ,GF =m 2.设点C 的坐标为(b n,n ),则E (a n ,n ),则CE =b n -a n =b -a n ,FG =n -m =m 2∴m =23n .∴FG =13n ,∵S △ABD =2,∴b -a m ×m ×12=2,∴b -a =4.∴S △BCE =b -a n ×13n ×12=23.第12题解图13. -9 【解析】根据“密距”的定义可知双曲线图象在二、四象限,且直线y =x -1与双曲线离第四象限最近,设双曲线上点D 到直线y =x -1距离最近,如解图,设直线y =x -1与y 轴交于点E ,过D 作直线y =x -1的平行线,交y 轴于点G ,过D 作直线y =x -1的垂线,垂足为F ,过F 作EH ⊥DG ,垂足为H ,则由题意可知DF =EH =522,又∵∠OEF =45°,∴∠EGH =45°,∴EH =HG =522,∴EG =2EH=2×522=5,又∵OE =1,∴OG =6,∴直线DG 的解析式为y =x -6,联立直线DG 和双曲线解析式可得⎩⎪⎨⎪⎧y =k xy =x -6,消去y 整理可得x 2-6x -k =0,∵直线DG 与双曲线只有一个交点,∴方程x 2-6x -k =0有两个相等的实数根,∴b 2-4ac =0,即(-6)2+4k =0,解得k =-9.第13题解图14. 3 【解析】如解图,连接OA 、OB ,∵AB ︵的长度为13π,OA =OB =2,∴nπ×2180°=13π,解得n =30°,即∠AOB =30°,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥y 轴于点D ,∵点A 、B 均在反比例函数y =kx 的图象上,∴BD ×OD =AC ×OC =k ,∵OB =OA ,∴点A 和点B 关于直线y =x 对称,∴BD =AC ,OD =OC , ∴△AOC ≌△BOD ,∴∠AOC =90°-∠AOB 2=90°-30°2=30°,设A (a ,b ),则OC =a =OA ·cos30°=2×32=3,AC =b =OA ·sin30°=2×12=1,k =ab =3×1= 3.第14题解图15. -25 【解析】如解图,连接CD ,过点A 作AF ⊥x 轴于点F ,过点D 作DH ⊥x 轴于点H ,设AB 与EO 的交点为G ,∵C 点坐标为(-5,0),AB =32,∴OC =5,AG =BG =322,∵直线OE 的解析式为y =-x ,直线OD 的解析式为y =x ,∴∠COE =∠COD =∠ACO =∠DCO =45°,∴DH =OH =52,CG =522,∴D (-52,-52),AC =CG +AG =42,∴AF =CF =22×42=4,∴OF =OC -CF =1,∴A (-1,4),把A (-1,4)代入y =k x 中,得k =-4,把D (-52,-52)代入y =m x 中,得m =254,∴mk =-25.第15题解图16. 6+23 【解析】如解图,连接OC ,过点B 作x 轴的垂线,垂足为点E ,过点A 作AF ⊥BE 于点F ,∵四边形ABCD 为菱形,函数y =kx (k >3,x >0)的图象关于直线AC 对称,且经过点B ,D 两点,∴直线AC 的表达式是y =x ,∠CAF =45°,∵∠BAD =30°,∴∠BAC =12∠BAD =15°,∴∠BAF =30°,∵AB =2,∴BF =AB ·sin30°=1,AF =AB ·cos30°=3,∵函数y =3x(x >0)与直线AC 有交点,联立⎩⎪⎨⎪⎧y =x y =3x,解得⎩⎨⎧x =3y =3.∴A (3,3),∴B (23,3+1),将点B 的坐标代入函数y =k x ,得3+1=k23,∴k =23×(3+1)=6+2 3.第16题解图17. 2 【解析】如解图,过点C 作CF ⊥y 轴于点F ,过点D 作DE ⊥x 轴于点E ,∴∠CFB =∠DEA=∠AOB =90°,∴∠FCB +∠FBC =90°,∠BAO +∠ABO =90°,∠DAE +∠ADE =90°,∵四边形ABCD 为正方形,∴CB =AB =AD ,∠CBA =∠BAD =90°,∴∠FBC +∠ABO =90°,∠BAO +∠DAE =90°,∴∠FCB =∠ABO =∠DAE ,∴△BFC ≌△AOB ≌△DEA ,∴FC =OB =AE ,FB =OA =DE ,由点C ,D 在反比例函数y =2x 图象上,故设C (a ,2a ),D (b ,2b ),∴FC =OB =AE =a ,FB =OA =DE =2b,又∵FB =DE =OA =OE -AE =b -a ,∴2b =b -a ,即b 2-ab =2①,又∵OF =FB +OB =2a ,∴b -a +a =2a,即ab =2②,将②代入①得b 2=4,解得b 1=2,b 2=-2(不合题意,舍去),将b =2代入②得a =1,∴CF =1,FB =b -a =1,在Rt △BCF 中,根据勾股定理得BC =CF 2+BF 2=2,则这个伴侣正方形的边长为 2.第17题解图。
2019中考数学狙击重难点系列专题24----反比例函数与一次函数综合(含答案)
反比例函数与一次函数综合1. 如图,一次函数 ( )与反比例函数( )的图象交于点 , .(1)求这两个函数的表达式;(2)在 轴上是否存在点 ,使 为等腰三角形?若存在,求 的值;若不存在,说明理由.2. 如图,一次函数 的图象与反比例函数的图象交于点A ﹙−2,−5﹚、C ﹙5,n ﹚,交y 轴于点B ,交x 轴于点D .(1)求反比例函数和一次函数 的表达式; (2)连接OA 、OC .求△AOC 的面积.3. 如图,一次函数y=kx+b 与反比例函数( ) 的图象交于A (m ,6),B (3,n )两点. (Ⅰ)求一次函数的解析式;(Ⅱ)根据图象直接写出的x 的取值范围; (Ⅲ)求△AOB 的面积.4. 已知正比例函数y=2x 的图象与反比例函数y=(k≠0)在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为P 点,已知△OAP 的面积为1. (1)求反比例函数的解析式;(2)如果点B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且点B 的横坐标为2,在x 轴上求一点M ,使MA+MB 最小.5. 已知:一次函数y=﹣2x+10的图象与反比例函数(k >0)的图象相交于A ,B 两点(A 在B 的右侧).(1)当A (4,2)时,求反比例函数的解析式及B 点的坐标;(2)在1的条件下,反比例函数图象的另一支上是否存在一点P ,使△PAB 是以AB 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.(3)当A (a ,﹣2a+10),B (b ,﹣2b+10)时,直线OA 与此反比例函数图象的另一支交于另一点C ,连接BC 交y 轴于点D .若,求△ABC 的面积.6. 已知:如图,直线AB 与x 轴y 轴分别交于A ,B 两点,与双曲线y=在第一象限内交于点C ,BO=2AO=4,△AOC 的面积为2 +2.(1)求点C 的坐标和k 的值;(2)若点P 在双曲线y=上,点Q 在y 轴上,且以A ,B ,P ,Q 为顶点的四边形为平行四边形,求所有符合题意的点Q 的坐标.7. 如图,反比例函数y=的图象与一次函数y=x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积。
中考数学反比例函数综合经典题及答案
中考数学反比例函数综合经典题及答案一、反比例函数1.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.2.如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y= 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【答案】(1)解:把点A(4,3)代入函数y= 得:a=3×4=12,∴y= .OA= =5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)解:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【解析】【分析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .3.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.4.如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)解:∵点A(1,a)在一次函数y=﹣x+3的图象上,∴a=﹣1+3=2,∴点A(1,2).∵点A(1,2)在反比例y= (k为常数,且k≠0)的图象上,∴k=1×2=2,∴反比例函数的表达式为y= .联立一次函数与反比例函数关系式成方程组,得:,解得:,,∴点B(2,1)(2)解:作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,如图所示.∵点B、B′关于x轴对称,∴PB=PB′.∵点A、P、B′三点共线,∴此时PA+PB取最小值.设直线AB′的函数表达式为y=mx+n(m≠0),将A(1,2)、B(2,﹣1)代入y=mx+n,,解得:,∴直线AB′的函数表达式为y=﹣3x+5.当y=﹣3x+5=0时,x= ,∴满足条件的点P的坐标为(,0).【解析】【分析】(1)将x=1代入直线AB的函数表达式中即可求出点A的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式,联立两函数表达式成方程组,通过解方程组即可求出点B的坐标;(2)作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,由两点之间线段最短可得出此时PA+PB 取最小值,根据点A、B′的坐标利用待定系数法可求出直线AB′的函数表达式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.5.【阅读理解】我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2 (当a=b时取等号),【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2(1)【直接应用】若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________(3)【探索应用】在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S①求S与x之间的函数关系式;②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.【答案】(1)1;2(2)4(3)解:①设P(x,),则C(x,0),D(0,),∴AC=x+3,BD= +2,∴S= AC•BD= (x+3)( +2)=6+x+ ;②∵x>0,∴x+ ≥2 =6,∴当x= 时,即x=3时,x+ 有最小值6,∴此时S=6+x+ 有最小值12,∵x=3,∴P(3,2),C(3,0),D(0,2),∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,∴四边形ABCD为菱形.【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S 与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.6.如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是________四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,a=,b= ,试判断a,b的大小关系,并说明理由.【答案】(1)平行(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)将x= 带入y=k1x得y= ,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴ = ,两边平方得: +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)解:∵P(x1, y1),Q(x2, y2)(x2>x1>0)是函数y= 图象上的任意两点,∴y1= ,y2= ,∴a= = = ,∴a﹣b= ﹣ = = ,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.【解析】【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;【分析】(1)由直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出 = ,两边平分得 +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,得到y1= ,y2= ,求出a= = = ,得到a﹣b= ﹣ = = >0,即可得到结果.7.如图所示,在平面直角坐标系xoy中,直线y= x+ 交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).(1)当直线l与直线y= x+ 平行时,求出直线l的解析式;(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.【答案】(1)解:当直线l与直线y= x+平行时,设直线l的解析式为y= x +b,∵直线l经过点C(1,0),∴0=+b,∴b=,∴直线l的解析式为y=x−(2)解:①对于直线y= x+,令x=0得y=,令y=0得x=−1,∴A(0,),B(−1,0),∵C(1,0),∴AC=,②如图1中,作CE∥OA,∴∠ACE=∠OAC,∵tan∠OAC=,∴∠OAC=30°,∴∠ACE=30°,∴α=30°(3)解:①如图2中,当α=15°时,∵CE∥OD,∴∠ODC=15°,∵∠OAC=30°,∴∠ACD=∠ADC=15°,∴AD=AC=AB,∴△ADB,△ADC是等腰三角形,∵OD垂直平分BC,∴DB=DC,∴△DBC是等腰三角形;②当α=60°时,易知∠DAC=∠DCA=30°,∴DA=DC=DB,∴△ABD、△ACD、△BCD均为等腰三角形;③当α=105°时,易知∠ABD=∠ADB=∠ADC=∠ACD=75°,∠DBC=∠DCB=15°,∴△ABD、△ACD、△BCD均为等腰三角形;④当α=150°时,易知△BDC是等边三角形,∴AB=BD=DC=AC,∴△ABD、△ACD、△BCD均为等腰三角形,综上所述:当α=15°或60°或105°或150°时,△ABD、△ACD、△BCD均为等腰三角形.【解析】【分析】(1)设直线l的解析式为y= x+b,把点C(1,0)代入求出b即可;(2)①求出点A的坐标,利用两点间距离公式即可求出AC的长;②如图1中,由CE∥OA,推出∠ACE=∠OAC,由tan∠OAC=,推出∠OAC=30°,即可解决问题;(3)根据等腰三角形的判定和性质,分情况作出图形,进行求解即可.8.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.9.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB 对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB•OC=4HB,∴HB= ,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC= = =当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB= ,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+HC的最大值.10.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G.设NG=n,则NE=3﹣n.∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m的最小值为:;如下图所示,当点N与点D重合时,m取得最大值.过C作CG⊥ED于G.∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.故:m≤5.【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.11.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(2)在(1)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【答案】(1)解:如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ACB=∠ABD=90°,∴△ABC∽△ADB,∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,∴△ABC∽△BDC,∴∵A(﹣3,0),C(1,0),∴AC=4,∵BC=AC.∴BC=3,∴AB===5,∵,∴,∴CD=,∴AD=AC+CD=4+ =,∴OD=AD﹣AO=,∴点D的坐标为:(,0);(2)解:如图2,当∠APC=∠ABD=90°时,∵∠APC=∠ABD=90°,∠BAD=∠PAQ,∴△APQ∽△ABD,∴,∴∴m=,如图3,当∠AQP=∠ABD=90°时,∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,∴△APQ∽△ADB,∴,∴∴m=;综上所述:当m=或时,△APQ与△ADB相似.【解析】【分析】(1)如图1,过点B作BD⊥AB,交x轴于点D,可证△ABC∽△ADB,可得∠ABC=∠ADB,可证△ABC∽△BDC,可得,可求CD 的长,即可求点D坐标;(2)分两种情况讨论,由相似三角形的性质可求解.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。
2020年中考数学试题分类汇编之五 一次函数与反比例函数 含解析
2020年中考数学试题分类汇编之五一次函数与反比函数一、选择题1.(2020安徽)(4分)已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A .(1,2)-B .(1,2)-C .(2,3)D .(3,4)【解答】解:A 、当点A 的坐标为(1,2)-时,32k -+=, 解得:10k =>,y ∴随x 的增大而增大,选项A 不符合题意;B 、当点A 的坐标为(1,2)-时,32k +=-,解得:50k =-<,y ∴随x 的增大而减小,选项B 符合题意; C 、当点A 的坐标为(2,3)时,233k +=,解得:0k =,选项C 不符合题意;D 、当点A 的坐标为(3,4)时,334k +=,解得:103k =>, y ∴随x 的增大而增大,选项D 不符合题意.故选:B .2.(2020广州)一次函数31y x =-+的图象过点11()x y ,,12()x y +1,,13(2)x y +,,则( * ).(A )123y y y <<(B )321y y y <<(C )213y y y << (D )312y y y <<【答案】B3.(2020陕西)在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B ,则△AOB 的面积为( ) A .2B .3C .4D .6【分析】根据方程或方程组得到A (﹣3,0),B (﹣1,2),根据三角形的面积公式即可得到结论.【解答】解:在y =x +3中,令y =0,得x =﹣3, 解得,,∴A (﹣3,0),B (﹣1,2), ∴△AOB 的面积=3×2=3,故选:B .4.(2020天津)若点()1,5A x -,()2,2B x ,()3,5C x 都在反比例函数10y x=的图象上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .231x x x <<C .132x x x <<D .312x x x <<答案:C5.(2020河南)若点()()()1131,,2,,3,A y B y C y -在反比例函数6y x=-的图像上,则123,,y y y 的大小关系为( )A. 123y y y >>B. 231y y y >>C. 132y y y >>D.321y y y >>【答案】C【详解】解:∵点()()()1131,,2,,3,A y B y C y -在反比例函数6y x=-的图象上, ∴1661y =-=-,2632y =-=-,3623y =-=-, ∵326--<<, ∴132y y y >>, 故选:C .6.(2020苏州)如图,平行四边形OABC 的顶点A 在x 轴的正半轴上,点()3,2D 在对角线OB 上,反比例函数()0,0ky k x x=>>的图像经过C 、D 两点.已知平行四边形OABC 的面积是152,则点B 的坐标为( )A. 84,3⎛⎫ ⎪⎝⎭B. 9,32⎛⎫ ⎪⎝⎭C. 105,3⎛⎫⎪⎝⎭D.2416,55⎛⎫ ⎪⎝⎭【答案】B【详解】解:如图,分别过点D 、B 作DE⊥x 轴于点E ,DF⊥x 轴于点F ,延长BC 交y 轴于点H⊥四边形OABC 是平行四边形 ⊥易得CH=AF⊥点()3,2D 在对角线OB 上,反比例函数()0,0ky k x x=>>的图像经过C 、D 两点 ⊥236k =⨯= 即反比例函数解析式为6y x= ⊥设点C 坐标为6,a a ⎛⎫ ⎪⎝⎭⊥DEBF⊥ODE OBF △△ ⊥DE OEBF OF= ⊥236OF a=⊥6392a OF a⨯==⊥9OA OF AF OF HC a a =-=-=-,点B 坐标为96,a a ⎛⎫ ⎪⎝⎭⊥平行四边形OABC 的面积是152⊥96152a a a ⎛⎫-⋅=⎪⎝⎭ 解得122,2a a ==-(舍去) ⊥点B 坐标为9,32⎛⎫⎪⎝⎭故应选:B7.(2020乐山)直线y kx b =+在平面直角坐标系中的位置如图所示,则不等式2kx b +≤的解集是( )A. 2x -≤B. 4x ≤-C. 2x ≥-D. 4x ≥-【答案】C【详解】解:根据图像得出直线y kx b =+经过(0,1),(2,0)两点, 将这两点代入y kx b =+得120b k b =⎧⎨+=⎩,解得112b k =⎧⎪⎨=-⎪⎩,⊥直线解析式为:112y x =-+, 将y=2代入得1212x =-+,解得x=-2,⊥不等式2kx b +≤的解集是2x ≥-, 故选:C .8.(2020杭州)(3分)在平面直角坐标系中,已知函数y =ax +a (a ≠0)的图象过点P (1,2),则该函数的图象可能是( )A .B .C .D .解:∵函数y =ax +a (a ≠0)的图象过点P (1,2), ∴2=a +a ,解得a =1, ∴y =x +1,∴直线交y 轴的正半轴,且过点(1,2),选:A .9.(2020乐山)如图,在平面直角坐标系中,直线y x =-与双曲线ky x=交于A 、B 两点,P 是以点(2,2)C 为圆心,半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ长度的最大值为2,则k 的值为( )A. 12-B. 32-C. 2-D. 14-【答案】A 解:连接BP ,⊥直线y x =-与双曲线ky x=的图形均关于直线y=x 对称, ⊥OA=OB ,⊥点Q 是AP 的中点,点O 是AB 的中点⊥OQ 是⊥ABP 的中位线,当OQ 的长度最大时,即PB 的长度最大, ⊥PB≤PC+BC ,当三点共线时PB 长度最大, ⊥当P 、C 、B 三点共线时PB=2OQ=4, ⊥PC=1, ⊥BC=3,设B 点的坐标为(x ,-x ),则3=,解得1222x x ==-(舍去)故B 点坐标为22⎛⎫- ⎪ ⎪⎝⎭, 代入k y x=中可得:12k =-,故答案为:A .10.(2020贵州黔西南)(4分)如图,在菱形ABOC 中,AB =2,∠A =60°,菱形的一个顶点C 在反比例函数y ═kx (k ≠0)的图象上,则反比例函数的解析式为( )A .y =−3√3xB .y =−√3xC .y =−3xD .y =√3x【分析】根据菱形的性质和平面直角坐标系的特点可以求得点C 的坐标,从而可以求得k 的值,进而求得反比例函数的解析式.【解答】解:∵在菱形ABOC 中,∠A =60°,菱形边长为2, ∴OC =2,∠COB =60°, ∴点C 的坐标为(﹣1,√3),∵顶点C 在反比例函数y ═kx 的图象上,∴√3=k−1,得k =−√3,即y =−√3x,故选:B .11.(2020无锡)反比例函数k y x =与一次函数8161515y x =+的图形有一个交点1,2B m ⎛⎫⎪⎝⎭,则k 的值为( ) A. 1B. 2C.23D.43解:由题意,把B (12,m )代入8161515y x =+,得m=43⊥B (12,43) ⊥点B 为反比例函数k y x=与一次函数8161515y x =+的交点, ⊥k=x·y ⊥k=12×43=23. 故选:C .12.(2020长沙)2019年10月,《长沙晚报》对外发布长沙高铁两站设计方案,该方案以三湘四水,杜鹃花开 ,塑造出杜鹃花开的美丽姿态,该高铁站建设初期需要运送大量的土石方,某运输公司承担了运送总量为6310m 土石方的任务,该运输公司平均运送土石方的速度v (单位:3/m 天)与完成运送任务所需的时间t (单位:天)之间的函数关系式是( )A. 610v t= B. 610v = C. 26110v t =D. 6210v t =解(1)⊥vt=106,⊥v=610t,故选:A .13.(2020湖北武汉)若点()11,A a y -,()21,B a y +在反比例函数(0)ky k x=<的图象上,且12y y >,则a 的取值范围是( ) A. 1a <- B. 11a -<<C. 1a >D. 1a <-或1a >解:⊥反比例函数(0)ky k x=<, ⊥图象经过第二、四象限,在每个象限内,y 随x 的增大而增大, ⊥若点A 、点B 同在第二或第四象限, ⊥12y y >, ⊥a -1>a+1, 此不等式无解;⊥若点A 在第二象限且点B 在第四象限, ⊥12y y >,⊥1010a a -⎧⎨+⎩<>,解得:11a -<<;⊥由y 1>y 2,可知点A 在第四象限且点B 在第二象限这种情况不可能. 综上,a 的取值范围是11a -<<. 故选:B .14.(2020重庆A 卷).如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数(0,0)k y k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE △的面积为18,则k 的值为( )A. 6B. 12C. 18D. 24解:如图,连接BD ,∵四边形ABCD 为矩形,O 为对角线, ∴AO=OD ,∴∠ODA=∠OAD ,又∵AD 为∠DAE 的平分线,∴∠OAD=∠EAD , ∴∠EAD=∠ODA ,∴OB ∥AE , ∵S △ABE =18,∴S △OAE =18, 设A 的坐标为(a ,k a), ∵AF=EF ,∴F 点的纵坐标为2k a, 代入反比例函数解析式可得F 点的坐标为(2a ,2k a), ∴E 点的坐标为(3a ,0), S △OAE =12×3a ×k a=18, 解得k=12, 故选:B .15.(2020上海)(4分)已知反比例函数的图象经过点(2,﹣4),那么这个反比例函数的解析式是( ) A .y =2xB .y =−2xC .y =8xD .y =−8x选:D .16.(2020重庆B 卷)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,C 分别在x 轴,y 轴的正半轴上,点D(-2,3),AD=5,若反比例函数y =kx (k>0,x>0)的图象经过点B ,则k 的值为(FxOAA.163B.8C.10D.323解析:由D(-2,3),AD=5易得A(2,0).设AD 与y 轴交于E ,易得E(0,1.5),作BF 垂直于x 轴于F B(4,83).答案D.17.(2020内蒙古呼和浩特)(3分)在同一坐标系中,若正比例函数y =k 1x 与反比例函数y =的图象没有交点,则k 1与k 2的关系,下面四种表述①k 1+k 2≤0;②|k 1+k 2|<|k 1|或|k 1+k 2|<|k 2|;③|k 1+k 2|<|k 1﹣k 2|;④k 1k 2<0.正确的有( ) A .4个B .3个C .2个D .1个解:∵同一坐标系中,正比例函数y =k 1x 与反比例函数y =的图象没有交点,若k 1>0,则正比例函数经过一、三象限,从而反比例函数经过二、四象限, 则k 2<0,若k 1<0,则正比例函数经过二、四象限,从而反比例函数经过一、三象限, 则k 2>0, 综上:k 1和k 2异号,①∵k 1和k 2的绝对值的大小未知,故k 1+k 2≤0不一定成立,故①错误; ②|k 1+k 2|=||k 1|﹣|k 2||<|k 1|或|k 1+k 2|=||k 1|﹣|k 2||<|k 2|,故②正确; ③|k 1+k 2|=||k 1|﹣|k 2||<||k 1|+|k 2||=|k 1﹣k 2|,故③正确; ④∵k 1和k 2异号,则k 1k 2<0,故④正确; 故正确的有3个, 故选:B .18.(2020宁夏)(3分)如图,函数y 1=x +1与函数y 2=的图象相交于点M (1,m ),N (﹣2,n ).若y 1>y 2,则x 的取值范围是( )A .x <﹣2或0<x <1B .x <﹣2或x >1C .﹣2<x <0或0<x <1D .﹣2<x <0或x >1选:D .19.(2020黑龙江龙东)(3分)如图,菱形ABCD 的两个顶点A ,C 在反比例函数ky x=的图象上,对角线AC ,BD 的交点恰好是坐标原点O ,已知(1,1)B -,120ABC ∠=︒,则k 的值是( )A .5B .4C .3D .2【解答】解:四边形ABCD 是菱形,BA AD ∴=,AC BD ⊥,120ABC ∠=︒,60BAD ∴∠=︒,ABD ∴∆是等边三角形,点(1,1)B -,OB ∴=,tan30OBAO ∴=︒直线BD 的解析式为y x =-,∴直线AD 的解析式为y x =,6OA =∴点A 的坐标为,点A 在反比例函数ky x=的图象上,3k ∴=, 故选:C . 20.(2020广西南宁)(3分)如图,点A ,B 是直线y =x 上的两点,过A ,B 两点分别作x 轴的平行线交双曲线y =(x >0)于点C ,D .若AC =BD ,则3OD 2﹣OC 2的值为( )A.5B.3C.4D.2解:延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,∵点A、B为直线y=x上的两点,∴A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.∵C、D两点在交双曲线y=(x>0)上,则CE=,DF=.∴BD=BF﹣DF=b﹣,AC=﹣a.又∵AC=BD,∴﹣a=(b﹣),两边平方得:a2+﹣2=3(b2+﹣2),即a2+=3(b2+)﹣4,在直角△ODF中,OD2=OF2+DF2=b2+,同理OC2=a2+,∴3OD2﹣OC2=3(b2+)﹣(a2+)=4.故选:C.21.(3分)(2020•徐州)如图,在平面直角坐标系中,函数y=4x(x>0)与y=x﹣1的图象交于点P(a,b),则代数式1a −1b的值为()A.−12B.12C.−14D.14解:由题意得,函数y=4x(x>0)与y=x﹣1的图象交于点P(a,b),∴ab=4,b=a﹣1,∴1a −1b=b−aab=−14;故选:C.22.(2020贵州遵义)(4分)如图,△ABO的顶点A在函数y=kx(x>0)的图象上,∠ABO=90°,过AO边的三等分点M、N分别作x轴的平行线交AB于点P、Q.若四边形MNQP 的面积为3,则k的值为()A.9B.12C.15D.18【解答】解:∵NQ∥MP∥OB,∴△ANQ∽△AMP∽△AOB,∵M、N是OA的三等分点,∴ANAM =12,ANAO=13,∴S△ANQS△AMP =14,∵四边形MNQP的面积为3,∴S△ANQ3+S△ANQ =14,∴S△ANQ=1,∵1S△AOB =(ANAO)2=19,∴S△AOB=9,∴k=2S△AOB=18,故选:D.23.(2020山东滨州)(3分)如图,点A 在双曲线4y x =上,点B 在双曲线12y x=上,且//AB x 轴,点C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为( )A .4B .6C .8D .12解:过A 点作AE y ⊥轴,垂足为E , 点A 在双曲线4y x=上,∴四边形AEOD 的面积为4, 点B 在双曲线线12y x=上,且//AB x 轴,∴四边形BEOC 的面积为12, ∴矩形ABCD 的面积为1248-=.故选:C .24.(3分)(2020•烟台)如图,正比例函数y 1=mx ,一次函数y 2=ax +b 和反比例函数y 3=kx 的图象在同一直角坐标系中,若y 3>y 1>y 2,则自变量x 的取值范围是( )A .x <﹣1B .﹣0.5<x <0或x >1C .0<x <1D .x <﹣1或0<x <1【解答】解:由图象可知,当x <﹣1或0<x <1时,双曲线y 3落在直线y 1上方,且直线y 1落在直线y 2上方,即y 3>y 1>y 2,所以若y 3>y 1>y 2,则自变量x 的取值范围是x <﹣1或0<x <1. 故选:D .25.(2020山西)(3分)已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数y =(k <0)的图象上,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( ) A .y 2>y 1>y 3 B .y 3>y 2>y 1 C .y 1>y 2>y 3 D .y 3>y 1>y 2选:A .26.(3分)(2020•怀化)在同一平面直角坐标系中,一次函数y 1=k 1x +b 与反比例函数y 2=k2x(x >0)的图象如图所示、则当y 1>y 2时,自变量x 的取值范围为( )A .x <1B .x >3C .0<x <1D .1<x <3选:D .27.(2020海南)(3分)下列各点中,在反比例函数y =图象上的是( ) A .(﹣1,8) B .(﹣2,4)C .(1,7)D .(2,4)选:D .二、填空题28.(2020北京)有一个装有水的容器,如图所示.容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系【解析】因为水面高度“匀速”增加,且初始水面高度不为0,故选B29.(2020北京)在平面直角坐标系xOy 中,直线y x =与双曲线my x=交于A ,B 两点.若点A ,B 的纵坐标分别为12,y y ,则12y y +的值为 .【解析】由于正比例函数和反比例函数均关于坐标原点O 对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴021=+y y30.(5分)如图,一次函数(0)y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数ky x=的图象在第一象限内交于点C ,CD x ⊥轴,CE y ⊥轴.垂足分别为点D ,E .当矩形ODCE 与OAB ∆的面积相等时,k 的值为 2 .【解答】解:一次函数(0)y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B ,令0x =,则y k =,令0y =,则x k =-,故点A 、B 的坐标分别为(,0)k -、(0,)k ,则OAB ∆的面积21122OA OB k ==,而矩形ODCE 的面积为k ,则212k k =,解得:0k =(舍去)或2, 故答案为2.31.(2020成都)(4分)一次函数(21)2y m x =-+的值随x 值的增大而增大,则常数m 的取值范围为 12m >. 【解答】解:一次函数(21)2y m x =-+中,函数值y 随自变量x 的增大而增大, 210m ∴->,解得12m >. 故答案为:12m >. 32.(2020成都)(4分)在平面直角坐标系xOy 中,已知直线(0)y mx m =>与双曲线4y x=交于A ,C 两点(点A 在第一象限),直线(0)y nx n =<与双曲线1y x=-交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD 的周长为A 的坐标为 或.【解答】解:联立(0)y mx m=>与4yx=并解得:xy⎧=⎪⎨⎪=±⎩,故点A的坐标为,,联立(0)y nx n=<与1yx=-同理可得:点D,这两条直线互相垂直,则1mn=-,故点D,则点(B,则22255AD mm=+=+,同理可得:2255AB m ADm=+=,则14AB=⨯225552AB mm==+,解得:2m=或12,故点A的坐标为或,故答案为:或.33.(2020福建)设,,,A B C D是反比例函数kyx=图象上的任意四点,现有以下结论:⊥四边形ABCD可以是平行四边形;⊥四边形ABCD可以是菱形;⊥四边形ABCD不可能是矩形;⊥四边形ABCD不可能是正方形.其中正确的是_______.(写出所有正确结论的序号)【答案】⊥⊥【详解】解:如图,反比例函数kyx=图象关于原点成中心对称,,,OA OC OB OD∴==∴四边形ABCD是平行四边形,故⊥正确,如图,若四边形ABCD是菱形,则,AC BD⊥90,COD∴∠=︒显然:COD∠<90,︒所以四边形ABCD不可能是菱形,故⊥错误,如图,反比例函数kyx=的图象关于直线y x=成轴对称,当CD垂直于对称轴时,,,OC OD OA OB∴==,OA OC=,OA OB OC OD∴===,AC BD∴=∴四边形ABCD是矩形,故⊥错误,四边形ABCD不可能是菱形,∴四边形ABCD不可能是正方形,故⊥正确,故答案:⊥⊥.34.(2020陕西)在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y =(k ≠0)的图象经过其中两点,则m 的值为 ﹣1 . 解:∵点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限,点A (﹣2,1)在第二象限,∴点C (﹣6,m )一定在第三象限,∵B (3,2)在第一象限,反比例函数y =(k ≠0)的图象经过其中两点, ∴反比例函数y =(k ≠0)的图象经过B (3,2),C (﹣6,m ), ∴3×2=﹣6m , ∴m =﹣1, 故答案为:﹣1.35.(2020哈尔滨)(3分)已知反比例函数ky x=的图象经过点(3,4)-,则k 的值为 12- . 【解答】解:反比例函数ky x=的图象经过点(3,4)-, 3412k ∴=-⨯=-,故答案为:12-.36.(2020河北)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为1~8的整数).函数ky x=(0x <)的图象为曲线L .(1)若L 过点1T ,则k =_________;(2)若L 过点4T ,则它必定还过另一点m T ,则m =_________;(3)若曲线L 使得18~T T 这些点分布在它的两侧,每侧各4个点,则k 的整数值有_________个.【答案】 (1). -16 (2). 5 (3). 7 【详解】解:(1)由图像可知T 1(-16,1)又⊥.函数ky x=(0x <)的图象经过T 1 ⊥116k=-,即k=-16; (2)由图像可知T 1(-16,1)、T 2(-14,2)、T 3(-12,3)、T 4(-10,4)、T 5(-8,5)、T 6(-6,6)、T 7(-4,7)、T 8(-2,8) ⊥L 过点4T ⊥k=-10×4=40观察T 1~T 8,发现T 5符合题意,即m=5;(3)⊥T 1~T 8的横纵坐标积分别为:-16,-28,-36,-40,-40,-36,-28,-16 ⊥要使这8个点为于L 的两侧,k 必须满足-36<k <-28 ⊥k 可取-29、-30、-31、-32、-33、-34、-35共7个整数值. 故答案为:(1)-16;(2)5;(3)7.37.(2020苏州)若一次函数36y x =-的图像与x 轴交于点(),0m ,则m =__________. 【详解】解:⊥一次函数y=3x -6的图象与x 轴交于点(m ,0), ⊥3m -6=0, 解得m=2. 故答案为:2.38.(2020乐山)我们用符号[]x 表示不大于x 的最大整数.例如:[]1.51=,[]1.52-=-.那么:(1)当[]12x -<≤时,x 的取值范围是______;(2)当12x -≤<时,函数[]223y x a x =-+的图象始终在函数[]3y x =+的图象下方.则实数a 的范围是______.【答案】 (1). 03x ≤< (2). 1a <-或32a ≥【详解】(1)因为[]x 表示整数,故当[]12x -<≤时,[]x 的可能取值为0,1,2. 当[]x 取0时,01x ≤< ;当[]x 取1时,12x ≤< ;当[]x =2时,23x ≤<. 故综上当[]12x -<≤时,x 的取值范围为:03x ≤<.(2)令[]2123y x a x =-+,[]23y x =+,321y y y =-,由题意可知:30y >,[]23(21)y x a x =-++.⊥当10x -≤<时,[]x =1-,23(21)y x a =--+,在该区间函数单调递增,故当1x =-时,min 220y a =--> ,得1a <-.⊥当01x ≤<时,[]x =0,230y x =-< 不符合题意.⊥当12x ≤<时,[]x =1,2321y x a =-++ ,在该区间内函数单调递减,故当x 取值趋近于2时,min 230y a =->,得32a >, 当32a =时,234y x =-+,因为2x ≠ ,故3y ≠0,符合题意. 故综上:1a <-或32a ≥. 39.(2020南京)(2分)将一次函数24y x =-+的图象绕原点O 逆时针旋转90︒,所得到的图象对应的函数表达式是 122y x =+ . 解:在一次函数24y x =-+中,令0x =,则4y =,∴直线24y x =-+经过点(0,4),将一次函数24y x =-+的图象绕原点O 逆时针旋转90︒,则点(0,4)的对应点为(4,0)-, 旋转后得到的图象与原图象垂直,则对应的函数解析式为:12y x b =+, 将点(4,0)-代入得,1(4)02b ⨯-+=, 解得2b =,∴旋转后对应的函数解析式为:122y x =+, 40.(2020贵阳)如图,点A 是反比例函数3y x=图象上任意一点,过点A 分别作x 轴,y 轴的垂线,垂足为B ,C ,则四边形OBAC 的面积为____.解:如图所示:可得OB×AB =|xy|=|k|=3,则四边形OBAC 的面积为:3,故答案为:3.41.(2020贵州黔西南)(3分)如图,正比例函数的图象与一次函数y =﹣x +1的图象相交于点P ,点P 到x 轴的距离是2,则这个正比例函数的解析式是 y =﹣2x .解:∵点P 到x 轴的距离为2,∴点P 的纵坐标为2,∵点P 在一次函数y =﹣x +1上,∴2=﹣x +1,得x =﹣1,∴点跑的坐标为(﹣1,2),设正比例函数解析式为y =kx ,则2=﹣k ,得k =﹣2,∴正比例函数解析式为y =﹣2x ,故答案为:y =﹣2x .42.(2020山东青岛)如图,点A 是反比例函数(0)k y x x=>图象上的一点,AB 垂直于x 轴,垂足为B .OAB 的面积为6.若点(),7P a 也在此函数的图象上,则a =__________.解: OAB 的面积为6.2612,k ∴=⨯= k >0,12,k ∴= 12,y x ∴=把(),7P a 代入12,y x=127,a ∴= 12.7a ∴= 经检验:127a =符合题意. 故答案为:12.743.(2020齐齐哈尔)((3分)如图,在平面直角坐标系中,矩形ABCD 的边AB 在y 轴上,点C 坐标为(2,﹣2),并且AO :BO =1:2,点D 在函数y =k x (x >0)的图象上,则k 的值为 2 .解:如图,∵点C 坐标为(2,﹣2),∴矩形OBCE 的面积=2×2=4,∵AO :BO =1:2,∴矩形AOED 的面积=2,∵点D 在函数y =k x(x >0)的图象上,∴k =2,故答案为2.44.(2020重庆A 卷)A ,B 两地相距240 km ,甲货车从A 地以40km/h 的速度匀速前往B 地,到达B 地后停止,在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A地后停止,两车之间的路程y (km )与甲货车出发时间x (h )之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是()0240,,点D 的坐标是()2.40,,则点E 的坐标是__________.【答案】()4,160解:设乙货车行驶速度为/akm h由题意可知,图中的点D 表示的是甲、乙货车相遇点C 的坐标是()0,240,点D 的坐标是()2.4,0∴此时甲、乙货车行驶的时间为2.4h ,甲货车行驶的距离为40 2.496()km ⨯=,乙货车行驶的距离为24096144()km -=∴144 2.460(/)a km h =÷=∴乙货车从B 地前往A 地所需时间为240604()h ÷=由此可知,图中点E 表示的是乙货车行驶至A 地,EF 段表示的是乙货车停止后,甲货车继续行驶至B 地则点E 的横坐标为4,纵坐标为在乙货车停止时,甲货车行驶的距离,即404160⨯= 即点E 的坐标为(4,160)故答案为:(4,160). 45.(2020上海)(4分)小明从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行 350 米.的【解答】解:当8≤t ≤20时,设s =kt +b ,将(8,960)、(20,1800)代入,得:{8k +b =96020k +b =1800,解得:{k =70b =400, ∴s =70t +400;当t =15时,s =1450,1800﹣1450=350,∴当小明从家出发去学校步行15分钟时,到学校还需步行350米,故答案为:350.46.(2020贵州遵义)(4分)如图,直线y =kx +b (k 、b 是常数k ≠0)与直线y =2交于点A (4,2),则关于x 的不等式kx +b <2的解集为 x <4 .【解答】解:∵直线y =kx +b 与直线y =2交于点A (4,2),∴x <4时,y <2,∴关于x 的不等式kx +b <2的解集为x <4.故答案为x <4.47.(2020上海)(4分)已知f (x )=2x−1,那么f (3)的值是 1 .【解答】解:∵f (x )=2x−1,∴f (3)=23−1=1, 故答案为:1.48.(2020辽宁抚顺)(3分)如图,在△ABC 中,AB =AC ,点A 在反比例函数y =(k >0,x >0)的图象上,点B ,C 在x 轴上,OC =OB ,延长AC 交y 轴于点D ,连接BD ,若△BCD 的面积等于1,则k 的值为 3 .解:作AE ⊥BC 于E ,连接OA ,∵AB =AC ,∴CE =BE ,∵OC =OB ,∴OC =CE ,∵AE ∥OD ,∴△COD ∽△CEA ,∴=()2=4,∵△BCD 的面积等于1,OC =OB ,∴S △COD =S △BCD =,∴S △CEA =4×=1,∵OC =CE ,∴S △AOC =S △CEA =,∴S △AOE =+1=,∵S △AOE =k (k >0),∴k =3,故答案为3.49.(2020江苏泰州)(3分)如图,点P 在反比例函数3y x=的图象上,且横坐标为1,过点P 作两条坐标轴的平行线,与反比例函数(0)k y k x=<的图象相交于点A 、B ,则直线AB 与x 轴所夹锐角的正切值为 3 .【解答】解:点P 在反比例函数3y x =的图象上,且横坐标为1,则点(1,3)P , 则点A 、B 的坐标分别为(1,)k ,1(3k ,3), 设直线AB 的表达式为:y mx t =+,将点A 、B 的坐标代入上式得133k m t km t =+⎧⎪⎨=-+⎪⎩,解得3m =-,故直线AB 与x 轴所夹锐角的正切值为3,故答案为3.50.(3分)(2020•玉林)已知:函数y 1=|x |与函数y 2=1|x|的部分图象如图所示,有以下结论:①当x <0时,y 1,y 2都随x 的增大而增大;②当x <﹣1时,y 1>y 2;③y 1与y 2的图象的两个交点之间的距离是2;④函数y =y 1+y 2的最小值是2.则所有正确结论的序号是 ②③④ .【解答】解:补全函数图象如图:①当x <0时,y 1随x 的增大而增大,y 2随x 的增大而减小;故①错误;②当x <﹣1时,y 1>y 2;故②正确;③y 1与y 2的图象的两个交点之间的距离是2;故③正确;④由图象可知,函数y =y 1+y 2的最小值是2,故④正确.综上所述,正确的结论是②③④.故答案为②③④.51.(3分)(2020•常德)如图,若反比例函数y=kx(x<0)的图象经过点A,AB⊥x轴于B,且△AOB的面积为6,则k=﹣12.【解答】解:∵AB⊥OB,∴S△AOB=|k|2=6,∴k=±12,∵反比例函数的图象在二四象限,∴k<0,∴k=﹣12,故答案为﹣12.52.(3分)(2020•荆门)如图,矩形OABC的顶点A、C分别在x轴、y轴上,B(﹣2,1),将△OAB绕点O顺时针旋转,点B落在y轴上的点D处,得到△OED,OE交BC于点G,若反比例函数y=kx(x<0)的图象经过点G,则k的值为−12.解:∵B(﹣2,1),∴AB=1,OA=2,∵△OAB绕点O顺时针旋转,点B落在y轴上的点D处,得到△OED,∴DE=AB=1,OE=OA=2,∠OED=∠OAB=90°,∵∠COG=∠EOD,∠OCG=∠OED,∴△OCG∽△OED,∴CGDE =OCOE,即CG1=12,解得CG=12,∴G(−12,1),把G(−12,1)代入y=kx得k=−12×1=−12.故答案为−1 2.53.(2020四川自贡)(4分)如图,直线y=−√3x+b与y轴交于点A,与双曲线y=kx在第三象限交于B、C两点,且AB•AC=16.下列等边三角形△OD1E1,△E1D2E2,△E2D3E3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=4√3,前25个等边三角形的周长之和为60.【解答】解:设直线y=−√3x+b与x轴交于点D,作BE⊥y轴于E,CF⊥y轴于F.∵y=−√3x+b,∴当y=0时,x=√33b,即点D的坐标为(√33b,0),当x=0时,y=b,即A点坐标为(0,b),∴OA=﹣b,OD=−√33b.∵在Rt△AOD中,tan∠ADO=OAOD=√3,∴∠ADO=60°.∵直线y=−√3x+b与双曲线y=kx在第三象限交于B、C两点,∴−√3x+b=k x,整理得,−√3x2+bx﹣k=0,由韦达定理得:x1x2=√33k,即EB•FC=√33k,∵EBAB=cos60°=12,∴AB=2EB,同理可得:AC=2FC,∴AB•AC=(2EB)(2FC)=4EB•FC=4√33k=16,解得:k=4√3.由题意可以假设D1(m,m√3),∴m2•√3=4√3,∴m=2∴OE1=4,即第一个三角形的周长为12,设D2(4+n,√3n),∵(4+n)•√3n=4√3,解得n=2√2−2,∴E1E2=4√2−4,即第二个三角形的周长为12√2−12,设D3(4√2+a,√3a),由题意(4√2+a)•√3a=4√3,解得a=2√3−2√2,即第三个三角形的周长为12√3−12√2,…,∴第四个三角形的周长为12√4−12√3,∴前25个等边三角形的周长之和12+12√2−12+12√3−12√2+12√4−12√3+⋯+12√25−12√24=12√25=60,故答案为4√3,60.54.(2020浙江宁波)(5分)如图,经过原点O的直线与反比例函数y=ax(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=bx(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为24,ba 的值为−13.【解答】解:如图,连接AC ,OE ,OC ,OB ,延长AB 交DC 的延长线于T ,设AB 交x 轴于K .由题意A ,D 关于原点对称,∴A ,D 的纵坐标的绝对值相等, ∵AE ∥CD ,∴E ,C 的纵坐标的绝对值相等,∵E ,C 在反比例函数y =bx 的图象上,∴E ,C 关于原点对称, ∴E ,O ,C 共线,∵OE =OC ,OA =OD ,∴四边形ACDE 是平行四边形, ∴S △ADE =S △ADC =S 五边形ABCDE ﹣S 四边形ABCD =56﹣32=24, ∴S △AOE =S △DEO =12,∴12a −12b =12,∴a ﹣b =24,∵S △AOC =S △AOB =12, ∴BC ∥AD ,∴BC AD=TB TA,∵S △ACB =32﹣24=8,∴S △ADC :S △ABC =24:8=1:3, ∴BC :AD =1:3,∴TB :TA =1:3,设BT =a ,则AT =3a ,AK =TK =1.5k ,BK =0.5k , ∴AK :BK =3:1,∴S △AOK S △BKO=12a −12b =13,∴a b=−13.故答案为24,−13.55.(2020浙江温州)(5分)点P ,Q ,R 在反比例函数y =kx (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的 值为275.【解答】解:∵CD =DE =OE , ∴可以假设CD =DE =OE =a , 则P (k 3a,3a ),Q (k2a,2a ),R (ka,a ),∴CP =3k 3a ,DQ =k 2a ,ER =k a, ∴OG =AG ,OF =2FG ,OF =23GA , ∴S 1=23S 3=2S 2, ∵S 1+S 3=27, ∴S 3=815,S 1=545,S 2=275, 故答案为275.56.(4分)(2020•株洲)如图所示,在平面直角坐标系xOy 中,四边形OABC 为矩形,点A 、C 分别在x 轴、y 轴上,点B 在函数y 1=kx(x >0,k 为常数且k >2)的图象上,边AB 与函数y 2=2x (x >0)的图象交于点D ,则阴影部分ODBC 的面积为 k ﹣1 .(结果用含k 的式子表示)【解答】解:∵D 是反比例函数y 2=2x (x >0)图象上一点∴根据反比例函数k 的几何意义可知:△AOD 的面积为12×2=1.∵点B 在函数y 1=kx (x >0,k 为常数且k >2)的图象上,四边形OABC 为矩形,∴根据反比例函数k 的几何意义可知:矩形ABCO 的面积为k . ∴阴影部分ODBC 的面积=矩形ABCO 的面积﹣△AOD 的面积=k ﹣1. 故答案为:k ﹣1.三、解答题57.(2020北京)在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(1,2). (1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围.【解析】(1)∵一次函数)0(≠+=k b kx y 由x y =平移得到,∴1=k 将点(1,2)代入b x y +=可得1=b ,∴一次函数的解析式为1+=x y .(2)当1>x 时,函数)0(≠=m mx y 的函数值都大于1+=x y ,即图象在1+=x y 上方,由下图可知:临界值为当1=x 时,两条直线都过点(1,2),∴当2,1>>m x 时.)0(≠=m mx y 都大于1+=x y .又∵1>x ,∴m 可取值2,即2=m ,∴m 的取值范围为2≥m58.(2020成都)(10分)在平面直角坐标系xOy 中,反比例函数(0)my x x=>的图象经过点(3,4)A ,过点A 的直线y kx b =+与x 轴、y 轴分别交于B ,C 两点. (1)求反比例函数的表达式;(2)若AOB ∆的面积为BOC ∆的面积的2倍,求此直线的函数表达式.【解答】解:(1)反比例函数(0)my x x=>的图象经过点(3,4)A , 3412k ∴=⨯=,∴反比例函数的表达式为12y x=; (2)直线y kx b =+过点A , 34k b ∴+=,过点A 的直线y kx b =+与x 轴、y 轴分别交于B ,C 两点, (bB k∴-,0),(0,)C b ,AOB ∆的面积为BOC ∆的面积的2倍,∴114||2||||22b bb k k⨯⨯-=⨯⨯-⨯, 2b ∴=±,当2b =时,23k =, 当2b =-时,2k =,∴直线的函数表达式为:223y x =+,22y x =-. 59.(2020成都)(8分)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,1224)x <满足一次函数的关系,部分数据如下表:(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润. 【解答】解:(1)y 与x 满足一次函数的关系,∴设y kx b =+,将12x =,1200y =;13x =,1100y =代入得:120012110013k b k b =+⎧⎨=+⎩,解得:1002400k b =-⎧⎨=⎩,y ∴与x 的函数关系式为:1002400y x =-+;(2)设线上和线下月利润总和为m 元,则2400(210)(10)4004800(1002400)(10)100(19)7300m x y x x x x x =--+-=-+-+-=--+,∴当x 为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元.60.(2020广州)(本小题满分12分)如图9,平面直角坐标系xOy 中,OABC 的边OC 在x 轴上,对角线AC ,OB 交于点M ,函数ky x=0x >()的图象经过点A (3,4)和点M .(1)求k 的值和点M 的坐标; (2)求OABC 的周长.【详解过程】解:(1)∵函数ky x=0x >()的图象经过点A (3,4)∴k =xy =3×4=12.∴12y x=。
2019年中考数学 一次函数与反比例函数专题卷(含答案)
2019年中考数学一次函数与反比例函数专题卷(含答案)一、解答题(共3题;共15分)1.如图,一次函数y=x+1的图象与反比例函数y=(k为常数,且k≠0)的图象都经过点A(m,2).(1)求点A的坐标及反比例函数的表达式;(2)设一次函数y=x+1的图象与x轴交于点B,若点P是x轴上一点,且满足△ABP的面积是2,直接写出点P的坐标.2.如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,﹣2),tan∠BOC=.(1)求该反比例函数和一次函数的解析式.(2)求△BOC的面积.(3)P是x轴上的点,且△PAC的面积与△BOC的面积相等,求P点的坐标.3.如图,直线y=x+1与y轴交于A点,与反比例函数y=(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=.(1)求k的值;(2)设点N(1,a)是反比例函数y=(x>0)图象上的点,在y轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.二、综合题(共12题;共125分)4.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y= (m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标.5.如图,一次函数y=kx+b(k<0)与反比例函数y= 的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.6.如图,直线y= x+2与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.7.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y= (x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y= 的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.8.在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y= (k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH= ,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.9.如图,在平面直角坐标系xOy中,双曲线y= 与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.10.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y= 的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.11.如图,一次函数y=kx+b的图象与反比例函数y= (x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.12.如图,在平面直角坐标系中A点的坐标为(8,y),AB⊥x轴于点B,sin∠OAB=,反比例函数y=的图象的一支经过AO的中点C,且与AB交于点D.(1)求反比例函数解析式(2)若函数y=3x与y=的图象的另一支交于点M,求三角形OMB与四边形OCDB的面积的比13.如图,一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.(1)求该一次函数的解析式;(2)若反比例函数y=的图象与该一次函数的图象交于二、四象限内的A、B两点,且AC=2BC,求m的值.14.如图,正比例函数y=2x的图象与反比例函数y=的图象交于A、B两点,过点A作AC垂直x轴于点C,连结BC.若△ABC的面积为2.(1)求k的值;(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.15.如图,反比例函数(k>0)与正比例函数y=ax相交于A(1,k),B(﹣k,﹣1)两点.(1)求反比例函数和正比例函数的解析式;(2)将正比例函数y=ax的图象平移,得到一次函数y=ax+b的图象,与函数(k>0)的图象交于C (x1,y1),D(x2,y2),且|x1﹣x2|•|y1﹣y2|=5,求b的值.答案解析部分一、解答题1.解:(1)∵一次函数图象过A点,∴2=m+1,解得m=1,∴A点坐标为(1,2),又反比例函数图象过A点,∴k=1×2=2,∴反比例函数解析式为y=.(2)∵S△ABP=×PB×y A=2,A(1,2),∴2PB=4,∴PB=2,由y=x+1可知B(﹣1,0),∴点P的坐标为(1,0)或(﹣3,0).2.解:(1)过B作x轴的垂线,垂足为D,∵B的坐标为(n,﹣2),∴BD=2,∵tan∠BOC=,∴OD=4,∴B的坐标为(﹣4,﹣2)把B(﹣4,﹣2)代入y=得:k=8,∴反比例函数为y=,把A(2,m)代入y=得:m=4,∴A(2,4),把A(2,4)和B(﹣4,﹣2)代入y=ax+b得:解得:a=1,b=2,∴一次函数的解析式为:y=x+2;(2)在y=x+2中,令y=0,得x=﹣2,∴CO=2,∴S△BOC=CO•BD=×2×2=2;(3)设P点的坐标为P(a,0)则由S△PAC=S△BOC得:PC×4=2,∴PC=1,即||a+2|=1,解得:a=﹣3或a=﹣1,即P的坐标为(﹣3,0)或(﹣1,0).3.解:(1)由y=x+1可得A(0,1),即OA=1,∵tan∠AHO==,∴OH=2,∵MH⊥x轴,∴点M的横坐标为2,∵点M在直线y=x+1上,∴点M的纵坐标为3,即M(2,3),∵点M在y=上,∴k=2×3=6;(2)∵点N(1,a)在反比例函数y=的图象上,∴a=6,即点N的坐标为(1,6),过N作N关于y轴的对称点N1,连接MN1,交y轴于P(如图),此时PM+PN最小,∵N与N1关于y轴的对称,N点坐标为(1,6),∴N1的坐标为(﹣1,6),设直线MN1的解析式为y=kx+b,把M,N1的坐标得,解得:,∴直线MN1的解析式为y=﹣x+5,令x=0,得y=5,∴P点坐标为(0,5).二、综合题4.(1)解:过点A作AD⊥x轴,垂足为D由A(n,6),C(﹣2,0)可得,OD=n,AD=6,CO=2∵tan∠ACO=2∴=2,即=2∴n=1∴A(1,6)将A(1,6)代入反比例函数,得m=1×6=6∴反比例函数的解析式为将A(1,6),C(﹣2,0)代入一次函数y=kx+b,可得解得∴一次函数的解析式为y=2x+4(2)解:由可得解得x1=1,x2=﹣3∵当x=﹣3时,y=﹣2∴点B坐标为(﹣3,﹣2)5.(1)解:∵点A(4,1)在反比例函数y= 的图象上,∴m=4×1=4,∴反比例函数的解析式为y= .(2)解:∵点B在反比例函数y= 的图象上,∴设点B的坐标为(n,).将y=kx+b代入y= 中,得:kx+b= ,整理得:kx2+bx﹣4=0,∴4n=﹣,即nk=﹣1①.令y=kx+b中x=0,则y=b,即点C的坐标为(0,b),∴S△BOC= bn=3,∴bn=6②.∵点A(4,1)在一次函数y=kx+b的图象上,∴1=4k+b③.联立①②③成方程组,即,解得:,∴该一次函数的解析式为y=﹣x+3.6.(1)解:把A(m,3)代入直线解析式得:3= m+2,即m=2,∴A(2,3),把A坐标代入y= ,得k=6,则双曲线解析式为y=(2)解:对于直线y= x+2,令y=0,得到x=﹣4,即C(﹣4,0),设P(x,0),可得PC=|x+4|,∵△ACP面积为3,∴|x+4|•3=3,即|x+4|=2,解得:x=﹣2或x=﹣6,则P坐标为(﹣2,0)或(﹣6,0).7.(1)解:设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),∵点C为线段AO的中点,∴点C的坐标为(2,).∵点C、点D均在反比例函数y= 的函数图象上,∴,解得:.∴反比例函数的解析式为y=(2)解:∵m=1,∴点A的坐标为(4,4),∴OB=4,AB=4.在Rt△ABO中,OB=4,AB=4,∠ABO=90°,∴OA= =4 ,cos∠OAB= =(3)解:∵m=1,∴点C的坐标为(2,2),点D的坐标为(4,1).设经过点C、D的一次函数的解析式为y=ax+b,则有,解得:.∴经过C、D两点的一次函数解析式为y=﹣x+38.(1)解:由OH=3,tan∠AOH= ,得AH=4.即A(﹣4,3).由勾股定理,得AO= =5,△AHO的周长=AO+AH+OH=3+4+5=12(2)解:将A点坐标代入y= (k≠0),得k=﹣4×3=﹣12,反比例函数的解析式为y= ;当y=﹣2时,﹣2= ,解得x=6,即B(6,﹣2).将A、B点坐标代入y=ax+b,得,解得,一次函数的解析式为y=﹣x+1.9.(1)解:∵点A的坐标是(﹣1,a),在直线y=﹣2x+2上,∴a=﹣2×(﹣1)+2=4,∴点A的坐标是(﹣1,4),代入反比例函数y= ,∴m=﹣4.(2)解:解方程组解得:或,∴该双曲线与直线y=﹣2x+2另一个交点B的坐标为(2,﹣2)10.(1)解:∵OB=4,OE=2,∴BE=OB+OE=6.∵CE⊥x轴,∴∠CEB=90°.在Rt△BEC中,∠CEB=90°,BE=6,tan∠ABO= ,∴CE=BE•tan∠ABO=6× =3,结合函数图象可知点C的坐标为(﹣2,3).∵点C在反比例函数y= 的图象上,∴m=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣.(2)解:∵点D在反比例函数y=﹣第四象限的图象上,∴设点D的坐标为(n,﹣)(n>0).在Rt△AOB中,∠AOB=90°,OB=4,tan∠ABO= ,∴OA=OB•tan∠ABO=4× =2.∵S△BAF= AF•OB= (OA+OF)•OB= (2+ )×4=4+ .∵点D在反比例函数y=﹣第四象限的图象上,∴S△DFO= ×|﹣6|=3.∵S△BAF=4S△DFO,∴4+ =4×3,解得:n= ,经验证,n= 是分式方程4+ =4×3的解,∴点D的坐标为(,﹣4).11.(1)解:把A(2,﹣1)代入反比例解析式得:﹣1= ,即m=﹣2,∴反比例解析式为y=﹣,把B(,n)代入反比例解析式得:n=﹣4,即B(,﹣4),把A与B坐标代入y=kx+b中得:,解得:k=2,b=﹣5,则一次函数解析式为y=2x﹣5.(2)解:∵A(2,﹣1),B(,﹣4),直线AB解析式为y=2x﹣5,∴AB= = ,原点(0,0)到直线y=2x﹣5的距离d= = ,则S△ABC= AB•d= .12.(1)解:∵A点的坐标为(8,y),∴OB=8,∵AB⊥x轴于点B,sin∠OAB=,∴=,∴OA=10,由勾股定理得:AB==6,∵点C是OA的中点,且在第一象限内,∴C(4,3),∵点C在反比例函数y=的图象上,∴k=12,∴反比例函数解析式为:y=;(2)解:将y=3x与y=联立成方程组,得:,解得:,,∵M是直线与双曲线另一支的交点,∴M(﹣2,﹣6),∵点D在AB上,∴点D的横坐标为8,∵点D在反比例函数y=的图象上,∴点D的纵坐标为,∴D(8,),∴BD=,连接BC,如图所示,∵S△MOB=•8•|﹣6|=24,S四边形OCDB=S△OBC+S△BCD=•8•3+••4=15,∴.13.(1)解:∵一次函数y=kx+b(k<0)的图象经过点C(3,0),∴3k+b=0①,点C到y轴的距离是3,∵k<0,∴b>0,∵一次函数y=kx+b的图象与y轴的交点是(0,b),∴×3×b=3,解得:b=2.把b=2代入①,解得:k=,则函数的解析式是y=x+2.故这个函数的解析式为y=x+2;(2)解:如图,作AD⊥x轴于点D,BE⊥x轴于点E,则AD∥BE.∵AD∥BE,∴△ACD∽△BCE,∴=2,∴AD=2BE.设B点纵坐标为﹣n,则A点纵坐标为2n.∵直线AB的解析式为y=x+2,∴A(3﹣3n,2n),B(3+n,﹣n),∵反比例函数y=的图象经过A、B两点,∴(3﹣3n)•2n=(3+n)•(﹣n),解得n1=2,n2=0(不合题意舍去),∴m=(3﹣3n)•2n=﹣3×4=﹣12.14.(1)解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=2÷2=1,又∵A是反比例函数y=图象上的点,且AC⊥x轴于点C,∴△AOC的面积=|k|,∴|k|=1,∵k>0,∴k=2.故这个反比例函数的解析式为y=;(2)x轴上存在一点D,使△ABD为直角三角形.将y=2x与y=联立方程组得:,解得,∴A(1,2),B(-1,-2)①当AD⊥AB时,如图1设直线AD的关系式为y=-x+b ,将A(1,2)代入上式得:b=,∴直线AD的关系式为y=-x+,令y=0得:x=5,∴D(5,0);②当BD⊥AB时,如图2,设直线BD的关系式为y=-x+b,将B(﹣1,﹣2)代入上式得:b=-,∴直线AD的关系式为y=-x-,令y=0得:x=﹣5,∴D(﹣5,0);③当AD⊥BD时,如图3,∵O为线段AB的中点,∴OD=AB=OA,∵A(1,2),∴OC=1,AC=2,由勾股定理得:OA=∴OD=,∴D=(,0)根据对称性,当D为直角顶点,且D在x轴负半轴时,D(-,0);故x轴上存在一点D,使△ABD为直角三角形,点D的坐标为:(5,0)或(-5,0)或(,0)或(-,0).15.(1)解:据题意得:点A(1,k)与点B(﹣k,﹣1)关于原点对称,∴k=1,∴A(1,1),B(﹣1,﹣1),∴反比例函数和正比例函数的解析式分别为,y=x;(2)解:∵一次函数y=x+b的图象过点(x1,y1)、(x2,y2),∴,②﹣①得,y2﹣y1=x2﹣x1,∵|x1﹣x2|•|y1﹣y2|=5,∴|x1﹣x2|=|y1﹣y2|=,由得x2+bx﹣1=0,解得,x1=,x2=,∴|x1﹣x2|=|﹣|=||=,解得b=±1.。
2020年中考数学复习解答题专项训练---一次函数与反比例函数
一次函数与反比例函数1.(2019∙湘西)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象在第一象限交于点A(3,2),与y轴的负半轴交于点B,且OB=4.(1)求函数y=mx和y=kx+b的解析式;(2)结合图象直接写出不等式组0<mx<kx+b的解集。
2. (2019∙盐城)如图,一次函数y=x+1的图象交y轴于点A,与反比例函数y= kx (x>0)的图象交于点B(m,2).(1)求反比例函数的表达式;(2)求△AOB的面积。
3. (2019∙广东)如图,一次函数y=kx+b的图象与反比例函数y=k2x的图象相交于A.B两点,其中点A的坐标为(-1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足kx+b> k2x的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP :S△BOP=1:2,求点P的坐标。
4. (2019∙东营)如图,在平面直角坐标系中,直线y=mx与双曲线y= nx相交于A(−2,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是2.(1)求m、n的值;(2)求直线AC的解析式。
5. (2019∙岳阳)如图,双曲线y= m经过点P(2,1),且与直线y=kx−4(k<0)有两x个不同的交点。
(1)求m的值。
(2)求k的取值范围。
(k≠0)在第6. (2019∙常德)如图,一次函数y=−x+3的图象与反比例函数y=kx一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标。
的图象相交7. (2019∙宿迁)如图,一次函数y=kx+b的图象与反比例函数y=−5x于点A(−1,m)、B(n,−1)两点。
(1)求一次函数表达式;(2)求△AOB的面积。
的图象在第一、8.(2019∙襄阳)如图,已知一次函数y1=kx+b与反比例函数y2=mx三象限分别交于A(3,4),B(a,-2)两点,直线AB与y轴、x轴分别交于C,D两点.(1)求一次函数和反比例函数的解析式;(2)比较大小:AD______BC(填“>”“ <”或“=”);(3)直接写出y1<y2时x的取值范围.9.(2019∙贵港)如图,菱形ABCD的边AB在x轴上,点A的坐标为(1,0),点D(4,4)在反比例函数y=kx (x>0)的图象上,直线y=23x+b经过点C,与y轴交于点E,连接AC,AE.(1)求k,b的值;(2)求△ACE的面积。
2020年中考数学二轮专项——反比例函数与一次函数结合(含答案)
2020年中考数学二轮专项——反比例函数与一次函数结合1. 如图,一次函数y =kx +3的图象分别交x 轴、y 轴于点C 、D ,与反比例函数y =mx 的图象在第四象限相交于点P ,并且P A ⊥x 轴于点A ,PB ⊥y 轴于点B ,已知B (0,-6)且S △DBP =27.(1)求一次函数与反比例函数的表达式;(2)若反比例函数y =nx的图象与△ABP 总有公共点,直接写出n 的取值范围.第1题图2. (2019金牛区一诊)如图,正比例函数y =kx 与反例函数y =mx (x >0)的图象有一个交点A ,AB ⊥x 轴于点B ,平移正比例函数y =kx 的图象,使其经过点B (2,0),得到直线l ,直线l 与y 轴交于点C (0,-3).(1)求k 和m 的值;(2)点M 是直线OA 上一点,过点M 作MN ∥AB ,交反比例函数y =mx (x >0)的图象于点N ,若线段MN=3,求点M 的坐标.第2题图3. (2019成都黑白卷)一次函数y =ax +b 与反比例函数y =kx (x >0)的图象分别交于点A (1,4)和点B (4,n ),与坐标轴分别交于点C 和点D.(1)求一次函数和反比例函数的表达式;(2)若点P 是x 轴上一动点,当△ABP 为直角三角形时,求点P 的坐标.第3题图4. (2019武侯区一诊)如图,已知一次函数y =mx -4(m ≠0)的图象分别交x 轴,y 轴于A (-4,0),B 两点,与反比例函数y =kx(k ≠0)的图象在第二象限的交点为C (-5,n ).(1)分别求一次函数和反比例函数的表达式;(2)点P 在该反比例函数的图象上,点Q 在x 轴上,且P ,Q 两点在直线AB 的同侧.若以B ,C ,P ,Q 为顶点的四边形是平行四边形,求满足条件的点P 和点Q 的坐标.第4题图5. (2019襄阳)如图,已知一次函数y 1=kx +b 与反比例函数y 2=mx 的图象在第一、第三象限分别交于A (3,4),B (a ,-2)两点,直线AB 与y 轴,x 轴分别交于C , D 两点.(1)求一次函数和反比例函数的解析式; (2)比较大小:AD ____BC (填“>”或“<”或“=”); (3)直接写出y 1<y 2时x 的取值范围.第5题图6. (2019广元)如图,在平面直角坐标系中,直线AB 与y 轴交于点B (0,7),与反比例函数y =-8x 在第二象限内的图象相交于点A (-1,a ).(1)求直线AB 的解析式;(2)将直线AB 向下平移9个单位后与反比例函数的图象交于点C 和点E ,与y 轴交于点D ,求△ACD 的面积;(3)设直线CD 的解析式为y =mx +n ,根据图象直接写出不等式mx +n ≤-8x的解集.第6题图7. (2019内江)如图,一次函数y =mx +n (m ≠0)的图象与反比例函数y =kx (k ≠0)的图象交于第二、四象限内的点A (a ,4)和点B (8,b ).过点A 作x 轴的垂线,垂足为点C ,△AOC 的面积为4.(1)分别求出a 和b 的值;(2)结合图象直接写出mx +n <kx的解集;(3)在x 轴上取点P ,使P A -PB 取得最大值时,求出点P 的坐标.第7题图8. (2019青羊区一诊)如图,在平面直角坐标系xOy 中,B (3,-1)是反比例函数y =kx 图象上的一点,过B 点的一次函数y =-x +b 与反比例函数交于另一点A.(1)求一次函数和反比例函数的表达式; (2)求△AOB 面积;(3)在A 点左边的反比例函数图象上求点P ,使得S △POA ∶S △AOB =3∶2.第8题图参考答案1. 解:(1)∵一次函数y =kx +3的图象交y 轴于点D , ∴OD =3, ∵B (0,-6), ∴BD =3+6=9, ∵S △DBP =27, ∴BP =6,∴P 点的坐标是(6,-6),把P (6,-6)代入y =kx +3得k =-32,∴一次函数的表达式是y =-32x +3,把P (6,-6)代入y =mx 得m =-36,∴反比例函数的表达式是y =-36x;(2)∵A (6,0),B (0,-6),P (6,-6),反比例函数y =nx 的图象与△ABP 总有公共点,当反比例函数图象过P 点时,n =-36,∴n 的取值范围是-36≤n <0.第1题解图2. 解:(1)∵平移正比例函数y =kx 的图象,得到直线l ,直线l 与y 轴交于点C (0,-3), ∴直线l 的解析式为y =kx -3, ∵点B (2,0)在直线l 上, ∴2k -3=0,解得k =32,由题意知AB =OC =3, 则点A (2,3), ∴m =2×3=6;(2)由(1)知直线OA 的解析式为y =32x ,反比例函数的解析式为y =6x,设点M (a ,32a ),则N (a ,6a ),∴MN =|32a -6a|=3,解得a =1+5或a =5-1(负值舍去), 则点M 的坐标为(1+5,3+352或(5-1,35-32). 3. 解:(1)∵点A (1,4)在y =kx 的图象上,∴k =1×4=4,∴反比例函数的表达式为y =4x ,∵点B (4,n )在y =4x 的图象上,∴n =1,即A (1,4),B (4,1),把A 、B 两点坐标代入y =ax +b 中得⎩⎪⎨⎪⎧a +b =44a +b =1,解得⎩⎪⎨⎪⎧a =-1b =5,∴一次函数的表达式为y =-x +5; (2)设P (x ,0),①当∠ABP =90°时,AB 2+BP 2=AP 2,即(4-1)2+(1-4)2+(4-x )2+12=(x -1)2+(-4)2, 解得x =3, ∴P (3,0);②当∠P AB =90°时,P A 2+AB 2=PB 2,即(x -1)2+(-4)2 +(4-1)2+(1-4)2=(4-x )2+12, 解得x =-3, ∴P (-3,0);③当∠APB =90°时,P A 2+PB 2=AB 2,即(x -1)2+(-4)2+(4-x )2+12=(4-1)2+(1-4)2, 化简得x 2-5x +8=0, ∵b 2-4ac =-7<0,∴方程无解,故此时P 点不存在.综上所述,点P 的坐标为(3,0)或(-3,0). 4. 解:(1)∵点A 在一次函数y =mx -4的图象上,∴-4m -4=0, ∴m =-1.∴一次函数的解析式为y =-x -4. ∵点C (-5,n )在直线y =-x -4上, ∴n =-(-5)-4=1, ∴C (-5,1).∵点C (-5,1)在反比例函数y =kx (k ≠0)的图象上,∴k =-5×1=-5.∴反比例函数的表达式为y =-5x;(2)由(1)知,C (-5,1),直线AB 的解析式为y =-x -4, ∴B (0,-4).设点Q (q ,0),P (p ,-5p),∵以B ,C ,P ,Q 为顶点的四边形是平行四边形,且P ,Q 两点在直线AB 的同侧, ①当BP 与CQ 是对角线时, ∵BP 与CQ 互相平分, ∴⎩⎪⎨⎪⎧p +02=q -52-5p -42=1+02,解得⎩⎪⎨⎪⎧p =-1q =4,∴P (-1,5),Q (4,0); ②当BQ 与CP 是对角线时, ∵BQ 与CP 互相平分, ∴⎩⎪⎨⎪⎧q +02=p -520-42=-5p +12,解得⎩⎪⎨⎪⎧p =1q =-4,∴P (1,-5),Q (-4,0),此时,点C ,Q ,B ,P 在同一条线上,不符合题意,舍去,即若以B ,C ,P ,Q 为顶点的四边形是平行四边形,则点P (-1,5),点Q (4,0).5. 解:(1)∵点A (3,4)在反比例函数的图象上, ∴m =3×4=12.∴反比例函数的解析式为y 2=12x. ∴点B 的坐标为(-6,-2).将点A (3,4)、B (-6,-2)代入一次函数中得,⎩⎪⎨⎪⎧3k +b =4-6k +b =-2,解得⎩⎪⎨⎪⎧k =23b =2, ∴一次函数的解析式为y 1=23x +2;(2)=;【解法提示】当x =0时,y 1=2.当y 1=0时,x =-3.∴点C 的坐标为(0,2),点D 的坐标为(-3,0).∴AD =42+(3+3)2=213,BC =62+(2+2)2=213.∴AD =BC .(3)x <-6或0<x <3.【解法提示】观察函数图象可知,当x <-6或0<x <3时,反比例函数图象在一次函数图象的上方,即y 1<y 2.6. 解:(1)∵点A (-1,a )在反比例函数y =-8x 的图象上,∴a =-8-1=8,∴A (-1,8), ∵点B (0,7),∴设直线AB 的解析式为y =kx +7, ∵直线AB 过点A (-1,8), ∴8=-k +7,解得k =-1, ∴直线AB 的解析式为y =-x +7;(2)∵将直线AB 向下平移9个单位后得到直线CD 的解析式为y =-x -2, ∴D (0,-2), ∴BD =7+2=9, 联立⎩⎪⎨⎪⎧y =-x -2y =-8x ,解得⎩⎪⎨⎪⎧x =-4y =2或⎩⎪⎨⎪⎧x =2y =-4, ∴C (-4,2),E (2,-4),如解图,连接BC ,则△CBD 的面积=12×9×4=18,由平行线间的距离处处相等可得△ACD 与△CDB 面积相等, ∴△ACD 的面积为18; (3)∵C (-4,2),E (2,-4),∴不等式mx +n ≤-8x的解集是-4≤x <0或x ≥2.第6题解图7. 解:(1)由第二象限的点A (a ,4)及△AOC 的面积为4,易得a =-2. 又∵A (-2,4)在反比例函数y =kx 的图象上,∴k =-8,∴反比例函数的解析式为y =-8x,又∵B (8,b )在反比例函数y =-8x 的图象上,∴b =-1;(2)-2<x <0或x >8;(3)∵A (-2,4)关于x 轴对称的点A ′(-2,-4), 则直线A ′B 与x 轴交点即为所求P 点. ∵ B (8,-1),设直线A ′B 的解析式为y =cx +d (c ≠0),∴⎩⎪⎨⎪⎧-2c +d =-48c +d =-1, 解得⎩⎨⎧c =310d =-175,∴直线A ′B 的解析式为y =310x -175,∴直线A ′B 与x 轴的交点为(343,0),即点P 的坐标为(343,0).8. 解:(1)∵一次函数y =-x +b 过B (3,-1), ∴-3+b =-1,b =2,∴一次函数的表达式为y =-x +2;∵B (3,-1)是反比函数y =kx 图象上的一点,∴k =3×(-1)=-3,∴反比例函数的表达式为y =-3x ;(2)由⎩⎪⎨⎪⎧y =-3xy =-x +2,解得⎩⎪⎨⎪⎧x =3y =-1或⎩⎪⎨⎪⎧x =-1y =3,∴A (-1,3).如解图,设直线y =-x +2与y 轴交于点C ,则C (0,2), ∴S △AOB =S △AOC +S △COB =12×2×1+12×2×3=4;(3)如解图,连接P A ,过点A 作AM ⊥x 轴于点M ,过点P 作PN ⊥x 轴于点N ,则S △AOM =S △PON =32.∵S △POA +S △PON =S 四边形AMNP +S △AOM , ∴S △POA =S 四边形AMNP , ∵S △POA ∶S △AOB =3∶2, ∴S △POA =32S △AOB =32×4=6.设P (x ,-3x ),∵A (-1,3),∴S 四边形AMNP =12(NP +AM )·MN =6,∴12(-3x +3)·(-1-x )=6, 解得x =-2± 5, ∵点P 在A 点左边, ∴x <-1, ∴x =-2- 5,∴P (-2- 5,3 5-6).第8题解图。
2020届中考数学专题训练一次函数、反比例函数综合问题(含答案)
专题训练一次函数、反比例函数综合问题|类型1|一次函数、反比例函数与线段、三角形1.[2019·泉州]如图T3-1,已知点A(-8,0),B(2,0),点C在直线y=-x+4上,则使△ABC是直角三角形的点C的个数为()图T3-1A.1B.2C.3D.42.[2019·福建名校联合模拟]如图T3-2,线段AB是两个端点在y=(x>0)图象上的一条动线段,且AB=1.若A,B的横坐标分别为a,b,则[1-(b-a)2](a2b2+4)的值是()图T3-2A.1B.2C.3D.43.[2019·厦门质检]在平面直角坐标系xOy中,直线y=x与双曲线y=(k>0,x>0)交于点A.过点A作AC⊥x轴于点C,过双曲线上另一点B作BD⊥x轴于点D,作BE⊥AC于点E,连接AB.若OD=3OC,则tan∠ABE=.4.[2019·莆田仙游东屏中学二模]如图T3-3是反比例函数y=(x>0)的图象,点C的坐标为(0,2).若点A是函数y=图象上一点,点B是x轴正半轴上一点,当△ABC是等腰直角三角形时,点B的坐标为.图T3-35.[2019·南平适应性检测]如图T3-4,已知反比例函数y=的图象经过第一象限内的一点A(n,4),过点A作AB⊥x 轴于点B,且△AOB的面积为2.(1)求m和n的值;(2)若一次函数y=kx+2的图象经过点A,并且与x轴相交于点C,求线段AC的长.图T3-46.[2019·泉州质检]在平面直角坐标系中,已知反比例函数y=(x>0,k>0),图象上的两点(n,3n),(n+1,2n).(1)求n的值;(2)如图T3-5,直线l为正比例函数y=x的图象,点A在反比例函数y=(x>0,k>0)的图象上,过点A作AB⊥l于点B,过点B作BC⊥x轴于点C,过点A作AD⊥BC于点D.记△BOC的面积为S1,△ABD的面积为S2,求S1-S2的值.图T3-5|类型2|一次函数、反比例函数与四边形7.[2019·泉州质检]如图T3-6,反比例函数y=的图象经过正方形ABCD的顶点A和中心E,若点D的坐标为(-1,0),则k的值为()图T3-6A.2B.-2C.D.-8.[2019·眉山]如图T3-7,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB,BC于点D,E.若四边形ODBE的面积为12,则k的值为.图T3-79.[2019·广州]如图T3-8,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(-1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=-的图象相交于A,P两点.图T3-8(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.10.[2019·莆田]如图T3-9,反比例函数y=(x>0)的图象与直线y=x交于点M,∠AMB=90°,其两边分别与两坐标轴的正半轴交于点A,B,四边形OAMB的面积为6.(1)求k的值.(2)点P在反比例函数y=(x>0)的图象上,若点P的横坐标为3,∠EPF=90°,其两边分别与x轴的正半轴,直线y=x 交于点E,F,问是否存在点E,使得PE=PF?若存在,求出点E的坐标;若不存在,请说明理由.图T3-9参考答案1.C[解析]如图,①当∠A为直角时,过点A作垂直于x轴的直线与直线y=-x+4的交点为W(-8,10);②当∠B为直角时,过点B作垂直于x轴的直线与直线y=-x+4的交点为S(2,2.5);③若∠C为直角,则点C在以线段AB为直径的圆与直线y=-x+4的交点处.设E为AB的中点,过点E作垂直于x轴的直线与直线y=-x+4的交点为F-3,,则EF=, ∵直线y=-x+4与x轴的交点M为,0,∴EM=,MF==.∵E到直线y=-x+4的距离d==5,以AB为直径的圆的半径为5,∴圆与直线y=-x+4恰好有一个交点.∴直线y=-x+4上有一点C满足∠ACB=90°.综上所述,使△ABC是直角三角形的点C的个数为3.故选C.2.D[解析]∵A a,,B b,,∴(a-b)2+2=1,整理得:a2b2(a-b)2+4(a-b)2-a2b2=0,∴[1-(b-a)2](a2b2+4)=4.故选D.3.[解析]∵直线y=x过点A,∴可设A(a,a),∵AC⊥x轴于点C,BD⊥x轴于点D,OD=3OC,∴B点横坐标为3a.∵双曲线y=(k>0,x>0)过点A,点B,∴B点纵坐标为=a,∴B3a,a.在Rt△ABE中,∵∠AEB=90°,BE=3a-a=2a,AE=a-a=a,∴tan∠ABE===.故答案为:.4.(4,0)或,0或(-1+,0)[解析](1)当∠CAB=90°时,如图①,作AE⊥x轴于E点,作AD⊥y轴于D点,则∠DAE=90°.∵∠DAE=∠CAB=90°,∴∠DAC=∠EAB,在△ADC和△AEB中:∵∴△ADC≌△AEB,∴AD=AE,BE=CD,则A的横坐标与纵坐标相等,设A的坐标是(a,a),代入函数解析式得:a=,解得:a=3或-3(舍去).则A的坐标是(3,3).∴OD=3,CD=OD-OC=3-2=1,∴BE=CD=1,OB=OE+BE=3+1=4,则B的坐标是(4,0);(2)当∠ACB=90°时,如图②,作AD⊥y轴于D.∵∠ACB=90°,∴∠ACD+∠BCO=90°,又∵∠ACD+∠CAD=90°,∴∠CAD=∠BCO.在△ACD和△CBO中,∵∴△ACD≌△CBO,∴AD=OC=2,则点A的横坐标是2,把x=2代入y=得:y=, ∴OD=,CD=OD-OC=-2=,∴OB=CD=,则B的坐标是,0;(3)当∠ABC=90°时,如图③,作AD⊥x轴,同(2)可以证得:△OBC≌△DAB,∴BD=OC=2,OB=AD,设OB=AD=x,则OD=x+2,则A的坐标是(x+2,x),代入y=,得:x=,解得:x=-1+或-1-(舍去), 则B的坐标是(-1+,0).故B的坐标是(4,0)或,0或(-1+,0).5.解:(1)由点A(n,4),AB⊥x轴于点B,且点A在第一象限内,得AB=4,OB=n, 所以S△AOB=AB·OB=×4n=2n,由S△AOB=2,得n=1,所以A(1,4),把A(1,4)的坐标代入y=中,得m=4;(2)由直线y=kx+2过点A(1,4),得k=2,所以一次函数的解析式为y=2x+2.令y=0,得x=-1.所以点C的坐标为(-1,0),由(1)可知OB=1,所以BC=2,在Rt△ABC中,AC===2.6.解:(1)∵反比例函数y=(x>0,k>0)图象上的两点(n,3n),(n+1,2n),∴n·3n=(n+1)·2n,解得n=2或n=0(舍去),∴n的值为2;(2)易求反比例函数解析式为y=,设B(m,m),∵OC=BC=m,∴△OBC为等腰直角三角形.∴∠OBC=45°,∵AB⊥OB,∴∠ABO=90°,∴∠ABC=45°,∴△ABD为等腰直角三角形,设BD=AD=t,则A(m+t,m-t).∵A(m+t,m-t)在反比例函数y=的图象上,∴(m+t)(m-t)=12,即m2-t2=12,∴S1-S2=m2-t2=×12=6.7.B8.4[解析]由题意得:E,M,D位于反比例函数图象上,则S△OCE=|k|,S△OAD=|k|, 过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S矩形ONMG=|k|,又∵M为矩形OABC对角线的交点,∴S矩形OABC=4S矩形ONMG=4|k|,∵函数图象在第一象限,∴k>0,则+12=4k,∴k=4.9.解:(1)将点P(-1,2)的坐标代入y=mx,得:2=-m,解得m=-2,∴正比例函数解析式为y=-2x; 将点P(-1,2)的坐标代入y=-, 得:2=-(n-3),解得:n=1,∴反比例函数解析式为y=-.解方程组--得--∴点A的坐标为(1,-2).(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴∠CPD=90°,∠DCP=∠BAP,即∠DCP=∠OAE.∵AB⊥x轴,∴∠AEO=∠CPD=90°,∴△CPD∽△AEO.(3)∵点A的坐标为(1,-2),∴AE=2,OE=1,AO==.∵△CPD∽△AEO,∴∠CDP=∠AOE,∴sin∠CDB=sin∠AOE===.10.解:(1)如图①,过点M作MC⊥x轴于点C,MD⊥y轴于点D,则∠MCA=∠MDB=90°,∠AMC=∠BMD,MC=MD,∴△AMC≌△BMD,∴S四边形OCMD=S四边形OAMB=6,∴k=6.(2)存在点E,使得PE=PF.由题意,得点P的坐标为(3,2).①如图②,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,∴△PGE≌△FHP,∴FH=PG=2.则FK=OK=3-2=1,GE=HP=2-1=1,∴OE=OG+GE=3+1=4,∴E(4,0);②如图③,过点P作PG0⊥x轴于点G0,过点F作FH0⊥PG0于点H0,交y轴于点K0.∵∠PG0E=∠FH0P=90°,∠EPG0=∠PFH0,PE=PF,∴△PG0E≌△FH0P,∴FH0=PG0=2.则FK0=OK0=3+2=5,G0E=H0P=5-2=3, ∴OE=OG0+G0E=3+3=6,∴E(6,0).综上所述,存在点E(4,0)或(6,0),使得PE=PF.。
重庆市合川中学2019-2020年中考九年级数学典型压轴题专练:一次函数与反比例函数(含答案)
重庆市合川中学2019-2020 学年中考九年级数学典型压轴题专练:一次函数与反比率函数1、如,在平面直角坐系xOy 中,双曲y=与直y=2x+2 交于点 A( 1,a).(1)求 a, m的;(2)求双曲与直 y= 2x+2 另一个交点 B 的坐.2、如,已知直y1=x+1 与 x 交于点A,与直y2=x 交于点 B.(1)求△ AOB的面;( 2)求 y1> y2x 的取范.3、在平面直角坐系中,把横坐都是整数的点称“整点”.(1)直接写出函数 y= 象上的全部“整点” A1, A2, A3,⋯的坐;(2)在( 1)的全部整点中任取两点,用状或列表法求出两点对于原点称的概率.4、环保局对某公司排污状况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超出最高同意的 1.0mg/L .环保局要求该公司立刻整顿,在15 天之内(含15 天)排污达标.整悔过程中,所排污水中硫化物的浓度y( mg/L)与时间x(天)的变化规律如图所示,此中线段AB表示前 3 天的变化规律,从第 3 天起,所排污水中硫化物的浓度y 与时间 x 成反比率关系.(1)求整悔过程中硫化物的浓度y 与时间 x 的函数表达式;(2)该公司所排污水中硫化物的浓度,可否在15天之内不超出最高同意的1.0mg/L ?为什么?5、如图,在平面直角坐标xOy 中,正比率函数y=kx 的图象与反比率函数y=的图象都经过点 A( 2,﹣ 2).(1)分别求这两个函数的表达式;(2)将直线 OA向上平移 3 个单位长度后与 y 轴交于点 B,与反比率函数图象在第四象限内的交点为 C,连结 AB, AC,求点 C 的坐标及△ ABC的面积.6、请用学过的方法研究一类新函数y=(k为常数,k≠ 0)的图象和性质.(1)在给出的平面直角坐标系中画出函数y=的图象;(2)对于函数y=,当自变量x 的值增大时,函数值y 如何变化?7、△ ABC的极点坐标为 A(﹣ 2,3)、B(﹣ 3,1)、C(﹣ 1,2),以坐标原点 O为旋转中心,顺时针旋转 90°,获得△ A′B′ C′,点 B′、 C′分别是点 B、 C 的对应点.(1)求过点 B′的反比率函数分析式;(2)求线段 CC′的长.8、如图,已知一次函数y= x+b 的图象与反比率函数y=(x<0)的图象交于点A(﹣ 1,2)和点 B,点 C 在 y 轴上.(1)当△ ABC的周长最小时,求点 C 的坐标;(2)当x+b<时,请直接写出x 的取值范围.9 、如图,直线 AB 与坐标轴分别交于 A(﹣ 2 , 0 ), B( 0 , 1 )两点,与反比率函数的图象在第一象限交于点 C( 4 , n ),求一次函数和反比例函数的解析式.10、如图,在平面直角坐标系中,直线AB与 x 轴交于点B,与 y 轴交于点A,与反比率函数 y=的图象在第二象限交于点C, CE⊥ x 轴,垂足为点E, tan ∠ ABO= , OB=4,OE=2.(1)求反比率函数的分析式;(2)若点 D 是反比率函数图象在第四象限上的点,过点 D 作 DF⊥y 轴,垂足为点F,连结OD、 BF.假如 S△BAF=4S△DFO,求点 D的坐标.11、如图,直线y=x﹣与x,y轴分别交于点A, B,与反比率函数y=(k>0)图象交于点 C, D,过点 A 作 x 轴的垂线交该反比率函数图象于点E.(1)求点 A 的坐标.(2)若 AE=AC.①求 k 的值.②试判断点 E 与点 D 能否对于原点 O成中心对称?并说明原因.12、在平面直角坐标系中,一次函数y=ax+b( a≠ 0)的图形与反比率函数y=(k≠ 0)的图象交于第二、四象限内的A、 B 两点,与 y 轴交于 C 点,过点 A 作 AH⊥ y 轴,垂足为H,OH=3, tan ∠ AOH= ,点 B 的坐标为( m,﹣ 2).(1)求△ AHO的周长;(2)求该反比率函数和一次函数的分析式.13、如图, Rt△ ABO的极点 O在座标原点,点B在 x 轴上,∠ ABO=90°,∠ AOB=30°, OB=2,反比率函数y=(x>0)的图象经过OA的中点 C,交 AB于点 D.(1)求反比率函数的关系式;(2)连结 CD,求四边形CDBO的面积.14、如图,直线y=ax+b 与反比率函数y=(x>0)的图象交于A( 1, 4), B( 4, n)两点,与 x 轴、 y 轴分别交于C、 D 两点.(1) m= x2,则 y1 ,n=;若M(x1,y1),N(x2,y2)是反比率函数图象上两点,且y2(填“<”或“ =”或“>”);0< x1<(2)若线段CD上的点 P 到 x 轴、 y 轴的距离相等,求点P 的坐标.15、如图,直线y=x+与两坐标轴分别交于A、 B 两点.(1)求∠ ABO的度数;(2)过 A 的直线 l 交 x 轴半轴于 C, AB=AC,求直线 l 的函数分析式.16、如图,点A( m, 4), B(﹣ 4, n)在反比率函数y=(k>0)的图象上,经过点A、 B的直线与x 轴订交于点C,与 y 轴订交于点D.(1)若 m=2,求 n 的值;(2)求 m+n的值;(3)连结 OA、OB,若 tan ∠ AOD+tan∠ BOC=1,求直线 AB的函数关系式.17、如图 1 所示,已知:点A(﹣ 2,﹣ 1)在双曲线C: y=上,直线l 1: y=﹣ x+2,直线l 2与 l 1对于原点成中心对称,F1( 2, 2), F2(﹣ 2,﹣ 2)两点间的连线与曲线C在第一象限内的交点为B, P 是曲线 C 上第一象限内异于 B 的一动点,过P 作 x 轴平行线分别交l 1,l 2于 M, N 两点.(1)求双曲线 C 及直线l 2的分析式;(2)求证:PF2﹣PF1=MN=4;(3)如图 2 所示,△ PF1F2的内切圆与F1F2,PF1,PF2三边分别相切于点Q,R,S,求证:点Q与点 B 重合.(参照公式:在平面坐标系中,如有点A( x1, y1), B( x2,y2),则 A、 B 两点间的距离公式为AB= .)参照答案:1、解:( 1)∵点 A 的坐标是(﹣1, a),在直线y=﹣2x+2 上, [ 根源 :Z 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年中考数学:反比例函数与一次函数综合题(含答案) 针对演练1. 如图,一次函数y =kx +1(k ≠0)与反比例函数y =mx (m ≠0)的图象有公共点A (1,2),直线l ⊥x 轴于点N (3,0),与一次函数和反比例函数的图象分别相交于点B ,C ,连接AC . (1)求k 和m 的值; (2)求点B 的坐标; (3)求△ABC 的面积.第1题图2. 已知正比例函数y =2x 的图象与反比例函数y =kx (k ≠0)在第一象限内的图象交于点A ,过点A 作x 轴的垂线,垂足为点P ,已知△OAP 的面积为1.(1)求反比例函数的解析式;(2)有一点B 的横坐标为2,且在反比例函数图象上,则在x 轴上是否存在一点M ,使得MA +MB 最小?若存在,请求出点M 的坐标;若不存在,请说明理由.第2题图3. 如图,反比例函数2yx=的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1、-2,一次函数图象与y轴交于点C,与x轴交于点D.(1)求一次函数的解析式;(2)对于反比例函数2yx=,当y<-1时,写出x的取值范围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA?若存在,请求出点P的坐标;若不存在,请说明理由.第3题图4. (2016巴中10分)已知,如图,一次函数y =kx +b (k 、b 为常数, k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴,垂足为D .若OB =2OA =3OD =6.(1)求一次函数与反比例函数的解析式; (2)求两函数图象的另一个交点坐标; (3)直接写出不等式:kx +b ≤nx 的解集.第4题图5. 如图,点A (-2,n ),B(1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx 的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围;(3)若C 是x 轴上一动点,设t =CB -CA ,求t 的最大值,并求出此时点C 的坐标.第5题图6. 如图,直线y 1=14x +1与x 轴交于点A ,与y 轴交于点C ,与反比例函数y 2=mx (x >0)的图象交于点P ,过点P 作PB ⊥x 轴于点B ,且AC =BC .(1)求点P 的坐标和反比例函数y 2的解析式; (2)请直接写出y 1>y 2时,x 的取值范围;(3)反比例函数y 2图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.第6题图7. 如图,直线y =x +b 与x 轴交于点C(4,0),与y 轴交于点B ,并与双曲线y =mx (x <0)交于点A (-1,n ). (1)求直线与双曲线的解析式; (2)连接OA ,求∠OAB 的正弦值;(3)若点D 在x 轴的正半轴上,是否存在以点D 、C 、B 构成的三角形△OAB 相似?若存在求出D 点的坐标,若不存在,请说明理由.第7题图8. (2016金华8分)如图,直线y=33x-3与x,y轴分别交于点A,B,与反比例函数y=kx(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标;(2)若AE=AC.①求k的值;②试判断点E与点D是否关于原点O成中心对称?并说明理由.第8题图9. 如图,已知双曲线y =kx 经过点D (6,1),点C 是双曲线第三象限上的动点,过点C 作CA ⊥x 轴,过点D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC . (1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由.第9题图10. 如图,点B 为双曲线y =kx (x >0)上一点,直线AB 平行于y 轴,交直线y =x 于点A ,交x 轴于点D ,双曲线y =kx 与直线y =x 交于点C ,若OB 2-AB 2=4. (1)求k 的值;(2)点B 的横坐标为4时,求△ABC 的面积;(3)双曲线上是否存在点P ,使△APC ∽△AOD ?若存在,求出点P 的坐标;若不存在,请说明理由.第10题图【答案】1.解:(1)∵点A (1,2)是一次函数y =kx +1与反比例函数y =mx 的公共点,∴k +1=2,1m=2,∴k =1,m =2;(2)∵直线l ⊥x 轴于点N (3,0),且与一次函数的图象交于点B , ∴点B 的横坐标为3,将x =3代入y =x +1,得y =3+1=4, ∴点B 的坐标为(3,4);(3)如解图,过点A 作AD ⊥直线l ,垂足为点D , 由题意得,点C 的横坐标为3, ∵点C 在反比例函数图象上,∴y =2x=23, ∴C 点坐标为(3,23),∴BC =BN -CN =4-23=103, 又∵AD =3-1=2,∴S △ABC =12BC ·AD =12×103×2=103.第1题解图2.解:(1)设A 点的坐标为(x ,y ),则OP =x ,P A =y , ∵△OAP 的面积为1, ∴12xy =1, ∴xy =2,即k =2, ∴反比例函数的解析式为2y x=; (2)存在,如解图,作点A 关于x 轴的对称点A ′,连接A ′B ,交x 轴于点M ,此时MA +MB 最小,∵点B 的横坐标为2, ∴点B 的纵坐标为y =22=1, 即点B 的坐标为(2,1).又∵两个函数图象在第一象限交于A 点, ∴22x x=, 解得x 1=1,x 2=-1(舍去). ∴y =2,∴点A 的坐标为(1,2),∴点A 关于x 轴的对称点A ′(1,-2),设直线A ′B 的解析式为y =kx +b ,代入A ′(1,-2),B (2,1)得,23,215k b k k b b +=-=⎧⎧⎨⎨+==-⎩⎩解得, ∴直线A ′B 的解析式为y =3x -5,令y =0,得x =53,∴直线y =3x -5与x 轴的交点为(53,0), 即点M 的坐标为(53,0).第2题解图3.解:(1)∵反比例函数y =2x图象上的点A 、B 的横坐标分别为1、-2,∴点A 的坐标为(1,2),点B 的坐标为(-2,-1), ∵点A (1,2)、B (-2,-1)在一次函数y =kx +b 的图象上,∴21,211k b k k b b +==⎧⎧⎨⎨-+=-=⎩⎩解得,∴一次函数的解析式为y =x +1; (2)由图象知,对于反比例函数2y x=,当y <-1时,x 的取值范围是-2<x <0;(3)存在.对于y =x +1,当y =0时,x =-1,当x =0时,y =1, ∴点D 的坐标为(-1,0),点C 的坐标为(0,1), 设点P (m ,n ),∵S △ODP =2S △OCA ,∴12×1×(-n )=2×12×1×1, ∴n =-2,∵点P (m ,-2)在反比例函数图象上,∴-2= 2m ,∴m =-1,∴点P 的坐标为(-1,-2). 4.解:(1)∵OB =2OA =3OD =6, ∴OA =3,OD =2.∴A (3,0),B (0,6),D (-2,0). 将点A (3,0)和B (0,6)代入y =kx +b 得,302,66k b k b b +==-⎧⎧⎨⎨==⎩⎩解得, ∴一次函数的解析式为y =-2x +6. ……………………(3分) 将x =-2代入y =-2x +6,得y =-2×(-2)+6=10, ∴点C 的坐标为(-2,10). 将点C (-2,10)代入y =nx ,得10=2n-,解得n =-20,∴反比例函数的解析式为20y x=-;………………………(5分)(2)将两个函数解析式组成方程组,得26,20y x y x =-+⎧⎪⎨=-⎪⎩解得x 1=-2,x 2=5. ………………………………………(7分) 将x =5代入204,y x=-=- ∴两函数图象的另一个交点坐标是(5,-4); …………… (8分) (3)-2≤x <0或x ≥5. …………………………………… (10分) 【解法提示】不等式kx +b ≤n x 的解集,即是直线位于双曲线下方的部分所对应的自变量x 的取值范围,也就是-2≤x <0或x ≥5.5.解:(1)∵点A (-2,n ),B (1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx 的图象的两个交点,∴m =-2,∴反比例函数解析式为2y x=-, ∴n =1, ∴点A (-2,1),将点A (-2,1),B (1,-2)代入y =kx +b ,得211,21k b k k b b -+==-⎧⎧⎨⎨+=-=-⎩⎩解得, ∴一次函数的解析式为y =-x -1;(2)结合图象知:当-2<x <0或x >1时,一次函数的值小于反比例函数的值;(3)如解图,作点A 关于x 轴的对称点A ′,连接BA ′延长交x 轴于点C ,则点C 即为所求,∵A (-2,1), ∴A ′(-2,-1),设直线A ′B 的解析式为y =mx +n , 1123,253m m n m n n ⎧=-⎪-=-+⎧⎪⎨⎨-=+⎩⎪=-⎪⎩解得, ∴y =-13x -53, 令y =0,得x =-5, 则C 点坐标为(-5,0),∴t 的最大值为A ′B =(-2-1)2+(-1+2)2=10.第5题解图6.解:(1)∵一次函数y 1=14x +1的图象与x 轴交于点A ,与 y 轴交于点C , ∴A (-4,0),C (0,1), 又∵AC =BC ,CO ⊥AB ,∴O 为AB 的中点,即OA =OB =4,且BP =2OC =2,∴点P 的坐标为(4,2),将点P (4,2)代入y 2=mx ,得m =8,∴反比例函数的解析式为y 2=8x;(2)x >4;【解法提示】由图象可知,当y 1>y 2时,即是直线位于双曲线上方的部分,所对应的自变量x 的取值范围是x >4.(3)存在.假设存在这样的D 点,使四边形BCPD 为菱形,如解图,连接DC 与PB 交于点E ,∵四边形BCPD 为菱形, ∴CE =DE =4, ∴CD =8,∴D 点的坐标为(8,1),将D (8,1)代入反比例函数8y x,D 点坐标满足函数关系式,即反比例函数图象上存在点D ,使四边形BCPD 为菱形,此时 D 点坐标为(8,1).第6题解图7.解:(1)∵直线y =x +b 与x 轴交于点C (4,0), ∴把点C (4,0)代入y =x +b ,得b =-4,∴直线的解析式为y =x -4, ∵直线也过A 点,∴把点A (-1,n )代入y =x -4,得n =-5, ∴A (-1,-5),将A (-1,-5)代入y =mx (x <0),得m =5, ∴双曲线的解析式为5y x; (2)如解图,过点O 作OM ⊥AC 于点M , ∵点B 是直线y =x -4与y 轴的交点, ∴令x =0,得y =-4,∴点B (0,-4),∴OC =OB =4, ∴△OCB 是等腰直角三角形, ∴∠OBC =∠OCB =45°,∴在△OMB 中,sin45°=OM OB =4OM ,∴OM =22,∵AO =12+52=26,∴在△AOM 中,sin ∠OAB =OM OA =2226=21313;第7题解图(3)存在.如解图,过点A 作AN ⊥y 轴于点N ,则AN =1,BN =1, ∴AB =12+12=2, ∵OB =OC =4, ∴BC =42+42=42, 又∵∠OBC =∠OCB =45°, ∴∠OBA =∠BCD =135°,∴△OBA ∽△BCD 或△OBA ∽△DCB , ∴OB BC =BA CD 或OB DC =BA BC ,即442=CD 或4DC =242, ∴CD =2或CD =16, ∵点C (4,0),∴点D 的坐标是(6,0)或(20,0).8.解:(1)当y =0时,得0=33x -3,解得x =3.∴点A 的坐标为(3,0); ……………………………………(2分) (2)①如解图,过点C 作CF ⊥x 轴于点F . 设AE =AC =t , 点E 的坐标是(3,t ). 在Rt △AOB 中, tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t , ∴点C 的坐标是(3+32t ,12t ). ∵点C 、E 在y =kx 的图象上, ∴(3+32t )×12t =3t , 解得t 1=0(舍去),t 2=23,∴k =3t =63; …………………………………………… (5分) ②点E 与点D 关于原点O 成中心对称,理由如下: 由①知,点E 的坐标为(3,23), 设点D 的坐标是(x ,33x -3),∴x (33x -3)=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是(-3,-23),∴点E 与点D 关于原点O 成中心对称.…………………(8分)第8题解图9.解:(1)∵双曲线y =k x 经过点D (6,1), ∴6k =1,解得k =6; (2)设点C 到BD 的距离为h ,∵点D 的坐标为(6,1),DB ⊥y 轴,∴BD =6,∴S △BCD =12×6×h =12,解得h =4,∵点C 是双曲线第三象限上的动点,点D 的纵坐标为1, ∴点C 的纵坐标为1-4=-3, ∴6x=-3,解得x =-2, ∴点C 的坐标为(-2,-3),设直线CD 的解析式为y =kx +b ,则123,2612k b k k b b ⎧-+=-=⎧⎪⎨⎨+=⎩⎪=-⎩解得, ∴直线CD 的解析式为y =12x -2;(3)AB ∥CD .理由如下:∵CA ⊥x 轴,DB ⊥y 轴,点D 的坐标为(6,1),设点C 的坐标为(c ,6c), ∴点A 、B 的坐标分别为A (c ,0),B (0,1),设直线AB 的解析式为y =mx +n ,则10,11mc n m c n n ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩解得, ∴直线AB 的解析式为y =-1x c+1, 设直线CD 的解析式为y =ex +f ,则16,661e ec f c c c e f f c ⎧=-⎧⎪+=⎪⎪⎨⎨+⎪⎪+==⎩⎪⎩解得, ∴直线CD 的解析式为y =-1x c +6c c+, ∵AB 、CD 的解析式中k 都等于1c-, ∴AB 与CD 的位置关系是AB ∥CD .10.解:(1)设D 点坐标为(a ,0),∵AB ∥y 轴,点A 在直线y =x 上,B 为双曲线y =k x (x >0)上一点,∴A 点坐标为(a ,a ),B 点坐标为(a ,k a ),∴AB =a -k a ,BD =k a ,在Rt △OBD 中,OB 2=BD 2+OD 2=(k a )2+a 2,∵OB 2-AB 2=4,∴(k a )2+a 2-(a -k a )2=4,∴k =2;(2)如解图,过点C 作CM ⊥AB 于点M , ,2y x y x =⎧⎪⎨=⎪⎩联立 2222x x y y ⎧⎧==-⎪⎪⎨⎨==-⎪⎪⎩⎩解得或(舍去), ∴C 点坐标为(2,2),∵点B 的横坐标为4,∴A 点坐标为(4,4),B 点坐标为(4,12), ∴AB =4-12=72,CM =4-2, ∴S △ABC =12CM ·AB =12×(4-2)×72=7-724;第10题解图(3)不存在,理由如下:若△APC ∽△AOD ,∵△AOD 为等腰直角三角形,∴△APC 为等腰直角三角形,∠ACP =90°,∴CM =12AP , 设P 点坐标为(a ,2a),则A 点坐标为(a ,a ), ∴AP =|a -2a|, ∵C 点坐标为(2,2),∴CM =|a -2|,∴|a -2|=12|a -2a|, ∴(a -2)2=14×222(2)a a-,即(a -2)2=14×222((a a a +⨯-, ∴4a 2-(a +2)2=0,解得a =2或a =-23(舍去), ∴P 点坐标为(2,2),则此时点C 与点P 重合,所以不能构成三角形,故不存在.。