2017~2018学年第一学期期末市属九年级数学学情调研测试卷

合集下载

2017-2018学年第一学期期末检测九年级数学试题及参考答案

2017-2018学年第一学期期末检测九年级数学试题及参考答案

2017—2018学年度第一学期期末调研考试九年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。

题号一二三20 21 22 23 24 25 26得分一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在下表中.)题号 1 2 3 4 5 6 7 8 答案题号9 10 11 12 13 14 15 16 答案1.自行车车轮要做成圆形,实际上是根据圆的特征A.圆是轴对称图形B.直径是圆中最长的弦C.圆上各点到圆心的距离相等D.圆是中心对称图形2.下列说法中正确的是A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“概率为0.0001的事件”是不可能事件C.“任意画出一个平行四边形,它是中心对称图形”是必然事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次3.两个相似多边形的面积比是9:16,其中小多边形的周长为36cm,则较大多边形的周长为A.48cm B.54cm C.56cm D.64cm4.图中正比例函数和反比例函数的图象相交于A、B两点,分别以A、B两点为圆心,画与y轴相切的两个圆,若点A的坐标为(1,2),则图中两个阴影部分面积的和是A.条件不足,无法求B.π C.4πD.π5.如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有摩擦,则重物上升了A.5πcm B.3πcm C.2πcm D.πcm6.如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2cm B.cm C.2cm D.2cm7.如图,在直角坐标系中,正方形EFOH是正方形ABCD经过位似变换得到的,对角线OE=4,则位似中心的坐标是A.(,)B.(0,0)C.(,)D.(-2,2)8.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是A.2秒钟B.3秒钟C.4秒钟D.5秒钟9.如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A点在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是A.黑(3,3),白(3,1)B.黑(3,1),白(3,3)C.黑(1,5),白(5,5)D.黑(3,2),白(3,3)10.如图,A、B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是A.B.C.D.11.已知关于x的方程kx2+(2k+1)x+(k-1)=0有实数根,则k的取值范围为A.k≥-B.k>-C.k≥-且k≠0D.k<-12.如图,路灯距地面8米,身高1.6米的小明从距离灯底(点O)20米的点A处,沿AO所在直线行走12米到达点B时,小明身影长度A.变长2.5米B.变短2米C.变短2.5米D.变短3米13.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x与反比例函数y=在同一坐标系中的大致图象是A.B.C. D.14.关于二次函数y=ax2+bx+c的图象有下列命题,其中是假命题的个数是①当c=0时,函数的图象经过原点;②当b=0时,函数的图象关于y轴对称;③函数的图象最高点的纵坐标是;④当c>0且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根.A.0个B.1个C.2个D.3个15.如图,在平面直角坐标系中,A(-5,0),B(0,10),C(8,0),⊙A的半径为5.若F是⊙A上的一个动点,线段CF与y轴交于E点,则△CBE面积的最大值是A.B.40 C.20 D.16.如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AE•EG;④若AB=4,AD=5,则CE=1.A.①②③④B.①②③C.①③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.已知方程x2+mx+3=0的一个根是1,则它的另一个根是.18.如图,AB是⊙O的直径,AC是弦,D是AC的中点,若∠BAC=30°,则∠DCA=.19.如图,在平面直角坐标系中,已知点A(-3,0),B(0,4),对△AOB连续作旋转变化,依次得到三角形①、②、③、④、…,则第⑦个三角形的直角顶点的坐标是;第17个三角形的直角顶点的坐标是.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(本题满分8分)小明同学解一元二次方程x2-4x-1=0的过程如下所示问题:(1)小明解方程的方法是,他的求解过程从第步开始出现错误,这一步的运算依据应该是;(2)利用上面的方法正确解这个方程.21.(本题满分9分)在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:小华列出表格如下:回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是:随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?22.(本题满分9分)如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点,旋转角度是度;(2)若连结EF,则△AEF是三角形;(3)若四边形AECF的面积为25,DE=2,求AE的长.23.(本题满分9分)如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD∥CO.(1)求证:△ADB∽△OBC;(2)连结CD,试说明CD是⊙O的切线;(3)若AB=2,,求AD的长.(结果保留根号)24.(本题满分10分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,-2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C (2,n )沿OA 方向平移个单位长度得到点B ,判断四边形OABC的形状并证明你的结论.25.(本题满分11分)足球比赛中,某运动员将在地面上的足球对着球门踢出,图中的抛物线是足球的飞行高度y (m )关于飞行时间x (s )的函数图象(不考虑空气的阻力),已知足球飞出1s 时,足球的飞行高度是2.44m ,足球从飞出到落地共用3s . (1)求y 关于x 的函数关系式;(2)足球的飞行高度能否达到4.88米?请说明理由;(3)假设没有拦挡,足球将擦着球门左上角射入球门,球门的高为2.44m (如图所示,足球的大小忽略不计).如果为了能及时将足球扑出,那么足球被踢出时,离球门左边框12m 处的守门员至少要以多大的平均速度到球门的左边框?26.(本题满分12分)如图,在平面直角坐标系中,二次函数y=x 2+bx+c 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,OA=1,OC=3. (1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,且△QBC 为直角三角形,求点Q 的坐标. (备注:两点()11M x y ,,()22N x y ,之间的距离为()()222121MN x x y y =-+-)参考答案一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)题号 1 2 3 4 5 6 7 8答案 C C A D B D D B题号9 10 11 12 13 14 15 16 答案 B A A D C B A B 二、(本大题有3个小题,共10分.17~18小题每个3分;19小题有2个空,每空2分)17.3;18.30°;19.(24,0),(67,).三、(本大题有7小题,共68分)20. (1)配方法,②,等式的基本性质;解:(2)x2-4x=1,x2-4x+4=1+4,(x-2)2=5,x-2=,x=2±,∴x1=2+,x2=2-.21.(1)不放回(2)(3,2)解:(3)小明获胜的可能性大.理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,∴概率为:=;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,∴概率为:=,∵>∴小明获胜的可能性大.22. (1)A、90.(2)等腰直角.解:(3)由题意得:△ADE≌△ABF,∴S四边形AECF=S正方形ABCD=25,∴AD=5,又∵∠D=90°,DE=2,∴.23.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,。

江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版)

江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版)

江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版) 1 / 22江苏盐城市2017-2018学年度第一学期期末学情调研九年级数学试卷一、选择题(本大题共6小题,共18.0分)1. 在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是( ) A. 95 B. 90 C. 85 D. 80 2. 下列多边形一定相似的是( )A. 两个平行四边形B. 两个菱形C. 两个矩形D. 两个正方形3. 一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,则从袋子中随机摸出一个球是白球的概率为( )A.B.C.D.4. ⊙O 的直径为15cm ,O 点与P 点的距离为8cm ,点P 的位置( )A. 在⊙ 外B. 在⊙ 上C. 在⊙ 内D. 不能确定5. 为治理大气污染,保护人民健康.某市积极行动,调整产业结构,压减钢铁生产总量,2013年某市钢铁生产量为9700万吨,计划到2015年钢铁生产量设定为5000万吨,设该市每年钢铁生产量平均降低率为x ,依题意,下面所列方程正确的是( )A. B. C. D.6. 在平面直角坐标系中,将抛物线y =x 2先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为( )A. B. C. D.二、填空题(本大题共10小题,共30.0分)7. 方程x 2-3x =0的解是______.8. 已知抛物线y =2x 2-5x +3与y 轴的交点坐标是______. 9.10. 一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是______.11. 如图,AB ∥CD ,AD 与BC 相交于点O ,若AO =2,DO =4,BO =2.5,则CO =______. 12. 如图,圆锥体的高h = cm ,底面半径r =1cm ,则圆锥体的侧面积为______cm 2.13.如图,抛物线y=ax2+bx+c(与x轴的一个交点A在点(-2,0)和(-1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则a的取值范围是______.14.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为______.15.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为______.16.如图,O是半圆的圆心,半径为4.C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.若∠COA=60°,则FG=______.三、计算题(本大题共1小题,共8.0分)17.学生甲与乙学习概率初步知识后设计了如下游戏:甲手中有6、8、10三张扑克牌,乙手中有5、8、9三张扑克牌,每局比赛时,两人从各自手中随机取一张牌进行比较,数字大的则本局获胜.(1)若每人随机取出手中的一张牌进行比较,请列举出所有情况;(2)求学生乙一局比赛获胜的概率.四、解答题(本大题共10小题,共94.0分)江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版) 18.解方程:x2-2x+3=0.19.如图,边长为1的正方形网格纸中,△ABC为格点三角形(顶点都在格点上).在网格纸中,以O为位似中心画出△ABC的一个位似图形,使△ABC与其位似图形的相似比为1:2(不要求写画法).并直接写出△ABC的面积.20.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方()计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?3 / 2221.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出不等式ax2+bx+c>0的解集;(2)写出y随x的增大而减小的自变量x的取值范围;(3)分别求出a、b、c的值.22.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:=1.414,=1.732,=2.449)23.某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?(2)根据物价不门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版) 5 / 2224. 在△ABC 中,AB =AC ,∠BAC =100°.将线段CA 绕着点C 逆时针旋转得到线段CD ,旋转角为α,且0°<α<360°,连接AD 、BD .(1)如图1,当α=60°时,∠CBD 的大小为______;(2)如图2,当α=20°时,∠CBD 的大小为______;(提示:可以作点D 关于直线BC 的对称点)(3)当α为______°时,可使得∠CBD 的大小与(1)中∠CBD 的结果相等.25. 如图,在Rt △ABC 中,∠B =90°,点O 在边AB 上,以点O为圆心,OA 为半径的圆经过点C ,过点C 作直线MN ,使∠BCM =2∠A .(1)判断直线MN 与⊙O 的位置关系,并说明理由; (2)若OA =6,∠BCM =60°,求图中阴影部分的面积.26. 如图,矩形OABC 的顶点O 、A 、C 都在坐标轴上,点B 的坐标为(8,3),M 是BC 边的中点.(1)求出点M 的坐标和△COM 的周长;(2)若点Q 是矩形OABC 的对称轴MN 上的一点,使以O 、M 、C 、Q 为顶点的四边形是平行四边形,求出符合条件的点Q 的坐标;(3)若P 是OA 边上一个动点,它以每秒1个单位长度的速度从A 点出发,沿AO 方向向点O 匀速运动,设运动时间为t 秒.是否存在某一时刻,使以P 、O 、M 为顶点的三角形与△COM 相似或全等?若存在,求出此时t 的值;若不存在,请说明理由.27.如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-6,0)、B(2,0)、C(0,6)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D 重合),过点P作y轴的垂线,垂足为点E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果点P的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)过点P(-3,m)作x轴的垂线,垂足为点F,连接EF,把△PEF沿直线EF 折叠,点P的对应点为点Pʹ,求出Pʹ的坐标.(直接写出结果)江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版)答案和解析1.【答案】B【解析】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选:B.众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.考查了众数的定义,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.2.【答案】D【解析】解:要判断两个多边形是否相似,需要看对应角是否相等,对应边的比是否相等.矩形、菱形、平行四边形都属于形状不唯一确定的图形,即对应角、对应边的比不一定相等,故不一定相似,A、B、C错误;而两个正方形,对应角都是90°,对应边的比也都相当,故一定相似,D正确.故选:D.利用相似多边形的对应边的比相等,对应角相等分析.本题考查相似多边形的识别.判定两个图形相似的依据是:对应边的比相等,对应角相等.两个条件必须同时具备.3.【答案】C【解析】解:∵一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,∴从袋子中随机摸出一个球是白球的概率为:=.故选:C.由一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其他完全相同,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.7 / 224.【答案】A【解析】解:∵⊙O的直径为15cm,∴⊙O的半径为7.5cm,∵O点与P点的距离为8cm,∴点P在⊙O外.故选:A.由⊙O的直径为15cm,O点与P点的距离为8cm,根据点与圆心的距离与半径的大小关系,即可求得答案.此题考查了点与圆的位置关系.注意点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.5.【答案】D【解析】解:设该市每年钢铁生产量平均降低率为x,则2014年的产量为9700(1-x),2015年的产量为9700(1-x)2,故选:D.首先根据降低率表示出2014年的产量,然后表示出2015年的产量,令其等5000即可列出方程.本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.6.【答案】C【解析】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向右平移2个单位,再向上平移2个单位后得到的点的坐标为(2,2),所以所得的抛物线的解析式为y=(x-2)2+2.故选:C.先确定抛物线y=2x2的顶点坐标为(0,0),再把点(0,0)先向右平移2个单位,江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版)再向上平移2个单位后得到的点的坐标为(2,2),然后根据顶点式写出平移后抛物线的解析式.本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.【答案】x1=0,x2=3【解析】解:原式为x2-3x=0,x(x-3)=0,x=0或x-3=0,x1=0,x2=3.∴方程x2-3x=0的解是x1=0,x2=3.x2-3x有公因式x可以提取,故用因式分解法解较简便.本题考查简单的一元二次方程的解法,在解一元二次方程时应当注意要根据实际情况选择最合适快捷的解法.8.【答案】(0,3)【解析】解:当x=0时,y=3,即交点坐标为(0,3).y轴上点的坐标特点为横坐标为0,纵坐标为y,把x=0代入即可求得交点坐标为(0,3).本题考查了函数图象上的点的坐标与函数解析式的关系,要明确y轴上点的坐标横坐标为0.9.【答案】丙【解析】解:∵0.14<0.25<0.38,∴丙的方差最小,∴这四人中丙发挥最稳定,故答案为:丙根据方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布越稳定进行比较即可.9 / 22本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.【答案】【解析】解:∵地面被等分成15份,其中阴影部分占5份,∴根据几何概率的意义,落在阴影区域的概率==.故答案为:.首先确定在图中阴影区域的面积在整个面积中占的比例,根据这个比例即可求出停在阴影方砖上的概率.本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率;此题将概率的求解设置于几何图象或游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.11.【答案】5【解析】解:∵AB∥CD,∴;∵AO=2,DO=4,BO=2.5,∴,解得:CO=5,故答案为;5平行线分线段成比例定理,得到;利用AO、BO、DO的长度,求出CO的长度.该题主要考查了平行线分线段成比例定理及其应用问题.掌握平行于三角形江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版)11 / 22一边的直线截其他两边(或两边的延长线),所得的对应线段成比例是解题的关键.12.【答案】2π【解析】解:圆锥的母线长是=2(cm ),底面周长是2π, 则圆锥体的侧面积是:×2×2π=2π(cm 2).故答案是:2π.根据圆锥的底面半径和高求出圆锥的母线长,再根据圆锥的底面周长等于圆锥的侧面展开扇形的弧长,最后利用扇形的面积计算方法求得侧面积.本题考查了圆锥的侧面积的计算方法,解决本题的关键是根据已知条件求出圆锥的母线长和侧面展开扇形的弧长,然后用弧长与母线长乘积的一半求扇形的面积.13.【答案】【解析】 解:∵顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,∴当顶点C 与D 点重合,顶点坐标为(1,3),则抛物线解析式y=a (x-1)2+3, ∴ 解得-≤a≤-;当顶点C 与F 点重合,顶点坐标为(3,2),则抛物线解析式y=a (x-3)2+2, ∴解得-≤a≤-;∵顶点可以在矩形内部,∴-≤a≤-.故答案为:-≤a≤-. 顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,当顶点C 与D 点重合,可以知道顶点坐标为(1,3)且抛物线过(-1,0),则它与x 轴的另一个交点为(3,0),由此可求出a ;当顶点C 与F 点重合,顶点坐标为(3,2)且抛物线过(-2,0),则它与x轴的另一个交点为(8,0),由此也可求a,然后由此可判断a的取值范围.本题主要考查了抛物线的解析式y=ax2+bx+c中a、b、c对抛物线的影响,在对于抛物线的顶点在所给图形内进行运动的判定,充分利用了利用形数结合的方法,展开讨论,加以解决.14.【答案】5【解析】解:由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧于点H、I,再连接OF,在矩形ABCD中,AD∥BC,而IG⊥BC,∴IG⊥AD,∴在⊙O中,FH=EF=4,设求半径为r,则OH=8-r,在Rt△OFH中,r2-(8-r)2=42,解得r=5,故答案为:5.首先由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧于点H、I,再连接OF,易求得FH的长,然后设求半径为r,则OH=8-r,然后在Rt△OFH中,r2-(16-r)2=82,解此方程即可求得答案.此题考查了切线的性质、垂径定理以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.15.【答案】【解析】解:∵Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC===5,∵DE垂直平分AC,垂足为O,∴OA=AC=,∠AOD=∠B=90°,∵AD∥BC,江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版)13 / 22∴∠A=∠C ,∴△AOD ∽△CBA , ∴=,即=,解得AD=. 故答案为:. 先根据勾股定理求出AC 的长,再根据DE 垂直平分AC 得出OA 的长,根据相似三角形的判定定理得出△AOD ∽△CBA ,由相似三角形的对应边成比例即可得出结论.本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.16.【答案】【解析】解:作GH ⊥AB ,连接EO .∵EF ⊥AB ,EG ⊥CO ,∴∠EFO=∠EGO=90°, ∴G 、O 、F 、E 四点共圆,所以∠GFH=∠OEG ,又∵∠GHF=∠EGO ,∴△GHF ∽△OGE ,∵CD ⊥AB ,GH ⊥AB ,∴GH ∥CD , ∴, 又∵CO=EO ,∴CD=GF .∵半径为4.∠COA=60°, ∴CD=2, ∴GF=,故答案为:2. 首先根据四点共圆的性质得出GOFE 四点共圆,进而求出△GHF ∽△OGE ,再利用GH ∥CD,得出,即可求出答案.此题主要考查了相似三角形的判定以及其性质和四点共圆的性质,根据已知得出GOFE四点共圆是解题关键.17.【答案】解:(1)每人随机取一张牌共有9种情况,分别为(10,9);(10,7);(10,5);(8,9);(8,7);(8,5);(6,9);(6,7);(6,5),(2)学生乙获胜的情况有(8,9);(6,9);(6,7)共3种,则学生乙获胜的概率为P==;【解析】(1)根据题意可以写出所有的可能性;(2)根据(1)中的结果可以得到乙本局获胜的可能性,从而可以解答本题.此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.18.【答案】解:配方,得(x-)2=0.解得x1=x2=.【解析】根据配方法,可得方程的解.本题考查了解一元二次方程,配方法解一元二次方程的步骤是:移项,二次项系数化为1,配方,开方.19.【答案】解:如图△EFG或△MNH即为所求;S△ABC=2×3-×1×2-×1×2-×3×1=.【解析】根据位似中心,位似比,确定A、B、C的对应点即可解决问题,注意有两种情形;江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版)本题考查作图-位似变换,解题的关键是熟练掌握基本知识,属于中考常考题型,注意有两种情形.20.【答案】解:(1)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是:(分),从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是:(分),由上可得,甲组的成绩最高.【解析】(1)根据表格可以求得各小组的平均成绩,从而可以将各小组的成绩按照从大到小排列;(2)根据题意可以算出各组的加权平均数,从而可以得到哪组成绩最高.本题考查算术平均数、加权平均数、统计表,解题的关键是明确题意,找出所求问题需要的条件.21.【答案】解:(1)观察图象可知,不等式ax2+bx+c>0的解集为1<x<3;(2)抛物线的对称轴为直线x=2,所以当x>2时,y随x的增大而减小;(3)∵抛物线经过(1,0),(2,2),(3,0),∴ ,解得.【解析】(1)写出抛物线在x轴上方所对应的自变量的范围即可;(2)根据二次函数的性质求解;(3)利用待定系数法即可解决问题;15 / 22本题考查了二次函数与不等式(组),解题的关键是学会利用图象法解不等式,熟练掌握待定系数法确定函数解析式,属于中考常考题型.22.【答案】解:在Rt△ABC中,∵AB=5,∠ABC=45°,∴AC=AB sin45°=5×=,在Rt△ADC中,∠ADC=30°,∴AD==5=5×1.414=7.07,AD-AB=7.07-5=2.07(米).答:改善后滑滑板约会加长2.07米.【解析】在Rt△ABC中,根据AB=5米,∠ABC=45°,求出AC的长度,然后在Rt△ADC 中,解直角三角形求AD的长度,用AD-AB即可求出滑板加长的长度.本题主要考查了解直角三角形的应用,利用这两个直角三角形公共的直角边解直角三角形是解答本题的关键.23.【答案】解:(1)由题意,得:w=(x-20)×y=(x-20)•(-10x+500)=-10x2+700x-10000=-10(x-35)2+2250.答:当销售单价定为35元时,每月可获得最大利润为2250元;(2)由题意,得:-10x2+700x-10000=2000,解得:x1=30,x2=40,又∵单价不得高于32元,∴销售单价应定为30元.答:李明想要每月获得2000元的利润,销售单价应定为30元.【解析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式,利用配方法得出最值;(2)令w=2000,然后解一元二次方程,从而求出销售单价.此题考查二次函数的性质及其应用以及抛物线的基本性质,将实际问题转化为求函数最值问题,从而来解决实际问题是解题关键.24.【答案】30°30°60或20或140或300【解析】江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版) 17 / 22解:(1)∵∠BAC=100°,AB=AC ,∴∠ABC=∠ACB=40°,当α=60°时, 由旋转的性质得AC=CD ,∴△ACD 是等边三角形,∴∠DAC=60°, ∴∠BAD=∠BAC-∠DAC=100°-60°=40°, ∵AB=AC ,AD=AC ,∴∠ABD=∠ADB==70°,∴∠CBD=∠ABD-∠ABC=70°-40°=30°, 故答案为:30°;(2)如图2所示;作点D 关于BC 的对称点M ,连接AM 、BM 、CM 、AM .则△CBD ≌△CBM ,∴∠BCM=∠BCD=∠ACD=20°,CD=CA=CM , ∴∠ACM=60°, ∴△ACM 是等边三角形,∴AM=AC=AB ,∠MAC=60°, ∴∠BAM=40°, ∵∠CAD=∠CDA=(180°-20°)=80°, ∴∠BAD=∠MAD=20°, ∵AD=AD ,∴△DAB ≌△DAM ,∴BD=DM ,∵BD=BM ,∴BD=DM=BM ,∴∠DBM=60°, ∴∠DBC=∠CBM=30°, 故答案为30°(3)①由(1)可知,∠α=60°时可得∠BAD=100°-60°=40°,∠ABC=∠ACB=90°-=40°,∠ABD=90°-∠BAD=120°-=70°,∠CBD=∠ABD-∠ABC=30°.②如图3,翻折△BDC到△BD1C,则此时∠CBD1=30°,∠BCD=60°-∠ACB=-30°=20°,∠α=∠ACB-∠BCD1=∠ACB-∠BCD=-20°=20°;③以C为圆心CD为半径画圆弧交BD1的延长线于点D2,连接CD2,∠CDD2=∠CBD+∠BCD=30°+-30°=50°,∠DCD2=180°-2∠CDD2=180°-100°=80°,∠α=60°+∠DCD2=140°.④当点D旋转到BD的延长线上时,也满足条件,同法可得α=300°综上所述,α为60°或20°或140°或300°时,∠CBD=30°.故答案为60或20或140或300.(1)想办法求出∠ABD,∠ABC即可解决问题;(2)如图2所示;作点D关于BC的对称点M,连接AM、BM、CM、AM.想办法证明△ACM是等边三角形,△DAB≌△DAM,△DBM是等边三角形即可解决问题;(3)分三种情形分别讨论求解即可解决问题;本题是一道几何结论探究题,解答这类题目的关键是要善于从探究特殊结论江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版) 19 / 22 中归纳出一般性解题方法,并灵活运用这种方法解答一般性的问题,真正达到举一反三的目的.25.【答案】解:(1)MN 是⊙O 切线.理由:连接OC .∵OA =OC ,∴∠OAC =∠OCA ,∵∠BOC =∠A +∠OCA =2∠A ,∠BCM =2∠A ,∴∠BCM =∠BOC ,∵∠B =90°,∴∠BOC +∠BCO =90°,∴∠BCM +∠BCO =90°,∴OC ⊥MN ,∴MN 是⊙O 切线.(2)由(1)可知∠BOC =∠BCM =60°,∴∠AOC =120°,在RT △BCO 中,OC =OA =6,∠BCO =30°,∴BO = OC =3,BC =3 ,∴S 阴=S 扇形OAC -S △OAC =- •6 =12π-9 .【解析】(1)MN 是⊙O 切线,只要证明∠OCM=90°即可.(2)求出∠AOC 以及BC ,根据S 阴=S 扇形OAC -S △OAC 计算即可.本题考查直线与圆的位置关系、扇形面积、三角形面积等知识,解题的关键是记住切线的判定方法,扇形的面积公式,属于中考常考题型.26.【答案】解:(1)∵四边形OABC 是矩形,∴CB ∥OA .CB =OA ,∵B 点坐标为(8,3),M 为BC 中点,∴M 点坐标为(4,3),0C =AB =3,CM = BC =4,在Rr △OMC 中,∠C =90°,∴OM =5,∴△OMC的周长=OM+CM+CO=3+4+5=12,∴点M的坐标为(4,3),△OMC的周长为12.(2)如图①,分情况讨论:①当四边形是以OC,OM为边的平行四边形COMQ,则MQ∥OC,MQ=OC=3,此时Q点坐标为(4,6),②当四边形是以OC,CM为边的平行四边形COMQ,则Q点与对称轴MN与x轴的交点,此时Q点坐标为(4,0);③当四边形是以OM,CM为边的平行四边形CMOQ,这时Q点不在对称轴MN上,不符合条件;综上所述,符合条件的点Q的坐标为(4,6),(4,0).(3)存在.如图②,由题意知∠MOP不可能等于90°,分两种情况:①当∠PMO=90°时,△OMP∽△MCO,∴,∴OP=,∴AP=OA-OP=,②当∠MPO=90°时,△OMP∽△MOC,∴,∴OP=MC=4,∴AP=OA-OP=8-4=4,综上所述,当t为4s或s时,△OMP与△MOC相似【解析】(1)根据四边形OABC是矩形和M是BC边的中点,求出点M的坐标,根据勾股定理求出OM的长,得到△COM的周长;(2)分以OC,OM为边的平行四边形COMQ和以OM,CM为边的平行四边形CMOQ两种情况讨论即可;江苏盐城市2017-2018学年第一学期期末学情调研九年级数学试卷(解析版) 21 / 22(3)分∠PMO=90°和∠MPO=90°两种情况,根据相似三角形的性质解答即可. 本题考查的是矩形、平行四边形知识的综合应用,掌握矩形的性质和平行四边形的判定定理是解题的关键,注意分情况讨论思想的正确运用. 27.【答案】解:(1)∵抛物线y =ax 2+bx +c 经过点A (-6,0),B (2,0),C (0,6)三点,∴ ,解得:,∴抛物线解析式为:y = x 2-2x +6, ∵ ,,∴抛物线的顶点D (-2,8);(2)∵A (-6,0),D (-2,8),∴设AD 的解析式y =2x +12,∵点P 在AD 上,∴P (x ,2x +12),∴S △APE = PE •y P = ×(-x )•(2x +12)=-x 2-6x , 当x = 时, 最大 ;(3)P ′( , ).点P 在AD 上,∴当-3时,y =2×(-3)+12=6,∴点P (-3,6),∴PF =6,PE =3,过点P ′作P ′M ⊥y 轴于点M ,∵△PEF 沿EF 翻折得△P ′EF ,∴∠PFE =∠P ′FE ,PF =P ′F =6,PE =P ′E =3,∵PF ∥y 轴,∴∠PFE =∠FEN ,∵∠PFE =∠P ′FE ,∴∠FEN =∠P ′FE ,∴EN =FN ,设EN =a ,则FN =a ,P ′N =6-a ,在Rt △P ′EN 中,P ′N 2+P ′E 2=EN 2,即(6-a )2+32=a 2,解得:a = , ∵S △P ′EN = P ′N •P ′E = EN •P ′M ,∴P ′M = ,在Rt △EMP ′中,EM = ,∴OM=EO-EM=6-=,∴P′(,).【解析】(1)根据待定系数法求抛物线的解析式,再根据顶点公式求出点D的坐标即可;(2)根据待定系数法求得AD的解析式,进而用含x的式子表示点P的坐标,利用三角形的面积公式,用含x的式子表示出△APE的面积,利用二次函数的最大值求得S的最大值即可;(3)根据点P在AD上,求得点P的坐标,再利用翻折的性质及平行线的性质证得∠FEN=∠P′FE,进而得EN=FN,设EN=a,再根据勾股定理求得a的值,利用等积法求出P′M的值,在Rt△EMP′中利用勾股定理求出EM的长,进而求得OM的长,即可得到点P′的坐标.本题主要考查二次函数的综合应用,解决第(3)题的关键是能根据翻折的性质及灵活运用勾股定理得出各条线段的长度,要求点的坐标,只要求得该点分别到x轴和y轴的距离即可.。

2017-2018学年第一学期九年级期末检测数学试卷(附答案)

2017-2018学年第一学期九年级期末检测数学试卷(附答案)

2017—2018学年度第一学期期末考试九年级数学试题全卷满分150分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的县(市、区)、学校、姓名、准考证号填写在答题卡和试卷规定的位置上.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.一、选择题(每小题4分,共48分)1、下列图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.4、如图,在44⨯的正方形网格中,每个小正方形的边长为1,若将∆,则的长为()。

∆绕点O顺时针旋转900得到BODAOCA.πB.6πC.3πD.1.5π5、如图,已知O=AB,M是AB上任意一点,Θ的半径为10,弦12则线段OM的长可能是( )A. 5B. 7C. 9D. 116、某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为,则可列方程为()。

A: 36482=+x)1()1(482=-x B: 36C: 48)1(362=+x-x D: 48)1(362=7、二次函数n+=2)(a的图象如图,则一次函数y=mx+n的图象经过y+mxA. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限7题图8题图9题图10题图8、在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作半径交BC于点M、N,半圆O与AB、AC相切,切点分别为D、E,则半圆O 的半径和MND∠的度数分别为()。

(精选4套)2017—2018学年度上学期期末考试九年级数学试题

(精选4套)2017—2018学年度上学期期末考试九年级数学试题

16题图2017—2018学年度上学期期末考试九年级数学试题一、选择题(每小题4分,共40分)1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A .B .C .D .2.一元二次方程0182=--x x 配方后可变形为( )A. 17)4(2=+xB. 15)4(2=+xC. 17)4(2=-xD. 15)4(2=-x3.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”,下列说法正确的是( ) A .抽10次必有一次抽到一等奖,B .抽一次不可能抽到一等奖 C .抽10次也可能没有抽到一等奖D .抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖 4.设1x ,2x 是方程2530x x +-=的两个根,则2212x x+的值是()A .19B .25C .31D .305.如图,正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,连接AF ,则∠OFA 的度数是( ) A .15° B .20° C .25° D .30°6.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC 绕点O 顺时针旋转90°得到△BOD ,则AB ︵的长为( )A .πB .6πC .3πD .1.5π7.如图,平面直角坐标系xOy 中,半径为2的⊙P 的圆心P 的坐标为(-3,0),将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为( )A .1B .1或5C .3D.5(第5题图) (第6题图) (第7题图) (第8题图)8.如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB′C′,点B 经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )D9.若A (),B (),C ()是二次函数的图象上的三点,则的大小关系是A .B .C .D .10.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,对称轴是直线x =-1,下列结论:①abc <0;②2a +b =0;③a -b +c >0;④4a -2b +c <0,其中正确的是( )A .①②B . 只有①C .③④D . ①④(第10题图) (第14题图)(第15题图)二、填空题(每小题4分,共32分)11.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是 . 12.一个扇形的弧长是20πcm ,面积是240πcm 2,则扇形的圆心角是 .13.已知整数k <5,若△ABC 的边长均满足关于x 的方程280x -+=,则△ABC 的周长是 . 14.如图,二次函数c bx ax y ++=21(a ≠0)与一次函数m kx y +=2(k ≠0)的图象相交于点A (-2,4),B (8,2),则能使y 1>y 2成立的x 的取值范围是 .15.如图,在Rt △ABC 中,∠ACB =90°,AC =5cm ,BC =12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为 cm .16.如图,在边长为4的正方形ABCD 中,先以点A 为圆心,AD 的长为半径画弧,再以AB 边的中点为圆心,AB 长的一半为半径画弧,则两弧之间的阴影部分面积是 .17.如图,在平面直角坐标系中,抛物线y =221x 经过平移得到抛物线y =x x 2212-,其对称轴与两段抛物线所围成的阴影部分的面积为第17题图18.在如图所示的平面直角坐标系中,△OA 1B 1是边长为2的等边三角形,作△B 2A 2B 1与△OA 1B 1关于点B 1成中心对称,再作△B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,…,如此作下去,则△B 2014A 2015B 2015的顶点A 2015的坐标是 .三、解答题(共7小题,78分) 19.(本题满分10分)解下列方程:(1)03)3(=-+-x x x ; (2)0142=+-x x .20.(本题满分8分)如图,在平面直角坐标系中,A (0,1),B (-3,5),C (-3,1).(1)在图中画出△ABC 以A 为旋转中心,沿顺时针方向旋转90° 后的图形△AB 1C 1,并写出B 1、C 1两点的坐标; (2)在图中画出与△ABC 关于原点对称的图形△A 2B 2C 2, 并写出B 2、C 2两点的坐标.21.(本题满分10分)已知甲同学手中藏有三张分别标有数字21,41,1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片的外形相同,现从甲、乙两人手中各任取一张卡片,并将它们的数字分别记为a 、b .⑴请你用树形图或列表法列出所有可能的结果;⑵现制订这样一个游戏规则,若所选出的a 、b 能使ax 2+bx +1=0有两个不相等的实数根,则称甲胜;否则乙胜,请问这样的游戏规则公平吗?请你用概率知识解释.22.(本题满分12分)已知:函数y =ax 2-(3a +1)x +2a +1(a 为常数). (1)若该函数图象与坐标轴只有两个交点,求a 的值;(2)若该函数图象是开口向上的抛物线,与x 轴相交于点A (x 1,0),B (x 2,0)两点,与y 轴相交于点C ,且x 2-x 1=2.求抛物线的解析式23.(本题满分12分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y (件)与销售单价x (元)满足一次函数关系:y =-10x +1200.(1)求出利润S (元)与销售单价x (元)之间的关系式(利润=销售额-成本); (2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?24.(本题满分12分) 在直角三角形ABC 中,∠C=90°,点O 为AB 上的一点,以点O 为圆心,OA 为半径 的圆弧与BC 相切于点D ,交AC 于点E ,连接AD .证:25.(本题满分14分)如图,抛物线22y ax ax c =-+(a ≠0)与y 轴相交于点C (0,4),与x 轴相交于A 、B两点,点A 的坐标为(4,0). (1)求此抛物线的解析式;(2)抛物线在x 轴上方的部分有一动点Q ,当△QAB 的面积等于12时,求点Q 的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.2017—2018学年度上学期期末考试21.(本题满分8分)22.(本题满分10分)23.(本题满分10分)2017—2018学年度第一学期期末模拟考试卷九年级数学特别提醒:1、考试时间120分钟,满分150分.2、用黑色签字笔在答题卡...上答题,在试卷上答题无效。

2017-2018届福建省福州市九年级上学期期末质检数学试题及答案

2017-2018届福建省福州市九年级上学期期末质检数学试题及答案

福州市2017-2018学年第一学期九年级期末质量检测数学试卷参考答案及评分标准一、选择题(每小题4分,共40分)1.B 2.D 3.A 4.C 5.B 6.C 7.A 8.A 9.D 10.D二、填空题(每小题4分,共20分):11.x ≥1 12. 1 6 13.1 14.100 15.7; 214(正确一个得2分)三、解答题:(满分90分) 16.(每小题7分,共14分)解:(1) 8×12×18÷27 =22×23×32÷3 3 ……………………………………………………………4分=8. ……………………………………………………………………………………7分(2) 9x +6 x4-2x 1x=3x +3x -2x ……………………………………………………………………6分=4x . …………………………………………………………………………………7分 17.解:(1)△A 1B 1C 1如右下图; ………………………………………………………………3分(2)A 1(1,3),B 1(1,0),C 1(3,0); …………………………………………………6分(3) 由抛物线y =ax 2+bx +c 经过点C 、B 1、C 1,可得:⎩⎨⎧c =3a +b +c =09a +3b +c =0, ………………………………………………………………9分解得:⎩⎨⎧a =1b =-4c =3, …………………………………10分∴抛物线的解析式为:y =x 2-4x +3. ……………11分[来源:Z 。

xx 。

](答案用一般式或顶点式表示,否则扣2分) (4) 表格填写合理正确得2分,图像正确得2分.x … 0 1 23[来源:学§科§网]4 …y =x 2-… 3 0 -0 3 …A B C O xy A 1B 1C 1y =x 2-4x +34x +3 1二次函数y =x 2-4x +3的图像如右图.18.解:(1) 列树状图如下:………………3分由树状图可知:所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中x 与y 的积为偶数有6种. …………………………………………………………………………………4分∴小明获胜的概率P (x 与y 的积为偶数)=612 =12. ………………………………6分 (2) 列树状图如下:……………9分由树状图可知,所有可能出现的结果共16种情况,并且每种情况出现1 2 3 5 1235 1235 1235 小明 小强小明 小强1 2 3 5 1235 12 35 12 35 12 35的可能性相等.其中x与y的积为偶数有7种.……………………………………………………………………………10分∴小明获胜的概率P(x与y的积为偶数)=716<12,……………………………11分(或证明716≠916也可)∴游戏规则不公平. (12)分19.解:(1) 设这两年该县旅游纯收入的年平均增长率为x.根据题意得:………………1分2000(1+x)2=2880.…………………………………………………………4分解得:x1=0.2=20%,x2=-2.2 (不合题意,舍去).………………………6分答:这两年该县旅游纯收入的年平均增长率为20%.………………………7分(2) 如果到2015年仍保持相同的年平均增长率,则2015年该县旅游纯收入为2880(1+0.2)2=4147.2(万元).………………………9分答:预测2015年该县旅游纯收入约4147.2万元. ………………………10分20.解:(1) 连接OC . …………………………………………1分∵AB 是⊙O 的直径,∴∠ACB =90°,即∠ACO +∠OCB =90°. ………2分 ∵OA =OC ,∴∠A =∠ACO , ………………………………3分 ∵∠A =∠PCB ,∴∠ACO =∠PCB . ………………………………4分∴∠PCB +∠OCB =∠ACO +∠OCB =90°,即∠PCO =90°. ∴PC ⊥OC . ………………………………5分 又∵OC 为⊙O 的半径,∴PC 是⊙O 的切线. ………………………………6分(2) ∵AC =PC ,∴∠A =∠P , ………………………………………7分 ∴∠PCB =∠A =∠P .∴BC =BP =1. ………………………………………8分 ∴∠CBO =∠P +∠PCB =2∠PCB . 又∵∠COB =2∠A =2∠PCB ,∴∠COB =∠CBO , …………………………………9分 ∴BC =OC . 又∵OB =OC ,∴OB =OC =BC =1,即△OBC 为等边三角形. ……10分A BCOP∴∠COB =60°. ………………………………11分 ∴l ⌒BC = 1×60π 180= 13π. ……………………………12分21.解:(1) DC +CE =2; …………………………………3分(2) 结论成立.连接PC ,如图. …………………………4分[来源:学,科,网Z,X,X,K]∵△ABC 是等腰直角三角形,P 是AB 的中点, ∴CP =PB ,CP ⊥AB ,∠ACP = 12∠ACB =45°.∴∠ACP =∠B =45°,∠CPB =90°. …………………5分 ∴∠BPE =90°-∠CPE . 又∵∠DPC =90°-∠CPE ,∴∠DPC =∠EPB . ………………………………6分 ∴△PCD ≌△PBE .∴DC =EB , …………………………………………7分 ∴DC +CE =EB +CE =BC =2. ……………………8分 (3) △CMN 的周长为定值,且周长为2. …………9分在EB 上截取EF =DM ,如图, …………………10分 由(2)可知:PD =PE ,∠PDC =∠PEB ,∴△PDM ≌△PEF , ………………………………11分 ∴∠DPM =∠EPF ,PM =PF .∵∠NPF =∠NPE +∠EPF =∠NPE +∠DPM=∠DPE -∠MPNA BCD EPA BCD E MPNF=45°=∠NPM .∴△PMN ≌△PFN ,∴MN =NF . ……………………………………………12分 ∴MC +CN +NM =MC +CN +NE +EF=MC +CE +DM =DC +CE =2.∴△CMN 的周长是2. …………………………………13分 22.解:(1) 令y =0,得:x 2-4x +1=0, …………………1分解得:x 1=2+3,x 2=2-3. …………………3分 ∴点A 的坐标为(2-3,0),点B 的坐标为(2+3,0). …4分 ∴AB 的长为23. ………………………………5分(由韦达定理求出AB 也可)(2) 由已知得点C 的坐标为(0,1), 由y =x 2-4x +1=(x ―2)2―3,可知抛物线的对称轴为直线x =2, ……………………6分 设△ABC 的外接圆圆心D 的坐标为(2,n ),连接AD 、CD , ∴DC =DA ,即22+(n -1)2=[2―(2―3)]2+n 2,……………8分 解得:n =1, …………………………………………9分 ∴点D 的坐标为(2,1),∴△ABC 的外接圆⊙D 半径为2. ……………………10分 (3) 解法一:由(2)知,C 是弧MN 的中点.A BCO xyD在半径DN 上截取EN = MG , ……………………11分 又∵DM =DN ,∴DG =DE .则点G 与点E 关于点D 对称,连接CD 、CE 、PD 、PE .由圆的对称性可得:图形PMC 的面积与图形PECN 的面积相等. …………………………………………12分由PC 把图形PMCN (指圆弧⌒MCN 和线段PM 、PN 组成的图形)分成两部分,这两部分面积之差为4.可知△PCE 的面积为4.设点P 坐标为(m ,n ) ∴S △CEP =2S △CDP =2× 1 2·CD ·n -1=4,∴n 1=3,n 2=-1. ……………………………………13分[来源:]由点P 在抛物线y =x 2-4x +1上,得:x 2-4x +1=3,解得:x 1=2+6,x 2=2-6(舍去);或x 2-4x +1=-1,解得:x 3=2+2,x 4=2-2(舍去). ∴点P 的坐标为(2+2,-1)或(2+6,3). ……………14分解法二:设点P 坐标为(m ,n ),点G 坐标为(2,c ),直线PC 的解析式为y =kx +b ,得:⎩⎨⎧b =1n =km +b ,解得:⎩⎨⎧k = n -1m b =1,∴直线PC 的解析式为y = n -1mx +1. …………………11分ABC O xyDE MPNGABC O xyDMPNG。

20172018第一学期期末测试九年级数学试题及答案

20172018第一学期期末测试九年级数学试题及答案

2017—2018学年第一学期期末学业水平测试九年级数学试题:温馨提示分钟。

考试结束后,只分。

考试用时100本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页。

满分为1201. 上交答题卡。

毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写答卷前,考生务必用0.52. 铅笔填涂相应位置。

在答题卡规定的位置上,并用2B把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦2B铅笔3.第Ⅰ卷每小题选出答案后,用干净后,再选涂其他答案标号。

答案不能答在试题卷上。

毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能第Ⅱ卷必须用0.54. 写在试题卷上;不准使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题)分,在每小题给出的四个选项中,只有一项是正确的,请把正确的小题,共36一、选择题:本大题共12. 3分,选错、不选或选出的答案超过一个均记零分选项选出来.每小题选对得22m的值是x+5x+m-3m+2=0的一个根是0,则1.若关于x的一元二次方程(m-1) 2 D.无解.2 C.1或A.1 B206?x?4?x 2.若把方程的左边配成完全平方的形式,则正确的变形是222253)?9??3)(x(((x?3)?5x?3)?13x? B. C.. A. D张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形、圆,在看不见在63.张,这张卡片上的图形既是中心对称图形又是轴对称图形的概率是图形的情况下随机摸出12111 A. D C.. B.623322?3)?2(x?y个单位后,所得图象的函数表达式个单位,再向下平移2二次函数4.6图象向左平移是2212???2x6x?yxy?2?12x A. B.2218?6x?y??12x?y2?x182?x C. D .三通管的立体图如图所示,则这个几何体的主视图是5.B. A.D. C.下列命题中,假命题的是6. 等弧所对的圆周角相等 A.两条弧的长度相等,它们是等弧 B.位似图形一定有位似中心 C.所有的等边三角形都相似 D. 两点恰好B、C的菱形ABCD绕点A旋转,当7.如图,边长为2A的长度等于AEF落在扇形的弧EF上时,弧BC DEF????23 D. A. B. C.B3324C 1=∠2,那么添加下列任何一个条件:8.如图,若果∠(第7题图)BCABABAC =),)=,(21 (DEADAEAD AED ,(,4)∠C=∠(3)∠B=∠DADE的个数为其中能判定△ABC∽△题图)8(第 A.1 B.2 C.3D.4AB=8是△ABC的边BC上一点,,AD=4,9.如图,点D 的面积为30,那么△ACD的面积为∠∠DAC=B.如果△ABD15 .5 A. B.7.5 C10 D.(第9题图)k的值10.k的图象没有交点,=y=与一次函数若反比例函数yx-3则x可以是-3.-2DB.-1C. A.121?6x?2x?y?xx,上,且<<都在抛物线11.若点、0)y)(Bx,A(x,y212211yy的大小关系为则与21yyyyyy A. C.< D. B.≠>不能判定 2 211126?yy?x?bA(m,n),利用图象的对称性可知它们的另一与一次函数的图象交于点12.若反比例函数x个交点是)n?n)(?m,(((n,m)?n,?m)?m, C. B. A. D.第Ⅱ卷(非选择题)6小题,共24分,只要求填写最后结果,每小题填对得4分.二、填空题:本大题共. 的圆中,垂直平分半径的弦长为13.半径等于823x?y?x?2二次函数的图象如图所示,14. . 0 当y<时,自变量x的取值范围是 15.如图,在同一平面内,将△逆时针绕点AABC 14题图)(第 AB,∥°到△旋转40AED的位置,恰好使得DC.则∠CAB的大小为 . = °°cos30-sin30°tan45计算:16. tan60°2?y的图象上,若,17.点都在,)),(xy,(x)y,(xy321321x yyyx?0?x?x 的大小关系(用“<,,则”连接),321312题图)(第15是 .∠AMN?30,B为弧AN的中点, P上,在⊙,点的直径,是⊙如图,18. MNOOM=2AO是直径MN 上一动点,则PA+PB的最小值为 .三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题5分,本大题满分10分)20?x?93x?12. (1)用配方法解方程:204?x?9x?3. )用公式法解方程:(2 8分)20.(本大题满分据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情ABD处有一探测仪,的上方,在一条笔直公路境中的速度不得超过B点匀速如平面几何图,,第一次探测到一辆轿车从CD得点,测驶,测得秒后到达向点行,结果精确到)求B,C的距离.(1)通过计算,判断此轿车是否超速.(2 (本大题满分12分) 21.24??2x?8xy?已知二次函数,完成下列各题:2+ky=a(x+h)形式,并写出它的顶点坐标、(1)将函数关系式用配方法化为对称轴. ABC的面积.轴交于)若它的图象与xA、B两点,顶点为C,求△(2 分)22.(本大题满分10 ,的直线互相垂直,垂足为D ADCAB如图,为⊙O的直径,为⊙O上一点,和过C点.DAB且AC 平分∠ 1()求证:DC为⊙的切线;O 3O2()若⊙的半径为,CDAD=4,求的长.10分)23.(本大题满分kmx?y??y xA、CBxy(-1 如图,已知直线,与双曲线)分别交于点轴分别交于点(与,轴、<012x D、).,2)1(a 1)分别求出直线及双曲线的解析式;(y?y x.2)利用图象直接写出,当在什么范围内取值时,(21y?ymx?y?. 时的部分用黑色笔描粗一些3)请把直线上(211y k y?x?m?y12x B C D x OA题图)(第2324.(本大题满分10分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元.如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?学年第一学期期末学业水平测试2017—2018九年级数学试题参考答案分)个小题,每小题3分,满分36一、选择题(本大题1212 11 7 8 9 10 题号 1 2345 6CDD答案 CBBB A BCAD4分,满分24分)二、填空题(本大题共6个小题,每小题38 3; 15.70°;;14.-1<x13.<2y?y?; 18. 17.;16.1312个小题,共60分)三、解答题(本大题6分,满分10分)19.(每小题520?x?4x?3解:(1)两边同除以3分. ,得……………………………123?4?x?x.移项,得2222?3?x?4x?2?…………………………2配方,得分,21?(x?2) 3. ……………………………分1x?2??,…………………………4分∵ 5分,x=1. ………………………………∴原方程的解为x=321cba………………………………2 ()∵ 1=3,,=-9分=4.a c b,3×4=33>0 ……………………2分=∴⊿)22-4 =(-9-4×∴方程有两个不相等的实数根……………………………4分333333333?x??x??.…………………,即 5分, =21262626(本大题满分8分) 20.解:,在中,,,即,在中,,即,,m20 6分;则的距离为…………………………………,根据题意得:分则此轿车没有超速.…………………………………8 分)21.(本大题满分122+8x-4y=-2x1)解:(21分 =-2(x-4x)-4 ……………………………=-2(x-4x+4-4)-4 ……………………………32 4分2分=-2(x-2)+4. …………………………… 6分),对称轴为直线x=2. ………………所以,抛物线的顶点坐标为(2,422分,,(x-2)=2 ………………………7令(2)y=0得-2(x-2)+4=022??2?22=…………………………=9x-2=分,x,所以x. 所以21222?2?,0),分B(……x 所以与轴的交点坐标为A10(0). ,122?22?24分= ∴S. ×[()] ×…………………)4=-(12ABC△2分)(本大题满分1022.OC(1)证明:连接OCA, OAC=∠∵OA=OC,∴∠OAC, DAC=∠∵AC平分∠DAB,∴∠AD, ∥∠DAC=OCA,∴OC∴∠,∵AD⊥,CDCD,⊥∴OC 5分…………………与⊙O相切于点C;∴直线CD °.,则∠2)解:连接BCACB=90(∠ACB=90°,,∠∵∠DAC=∠OACADC= ,∽△∴△ADCACB2 AC∴,∴=ADAB?,,AD=4,∴AB=6O∵⊙的半径为3,62,∴AC=22∴CD= ……………………………………10分23.(本大题满分10分)y?x?my?x?3C .-1,2)坐标代入……2分,所以,得1解:()把点m=3(1k2y??y?C)坐标代入2(,所以-1把点,.……………3分 2,得k= —2xx2??y D)把点(24(a,1)坐标代入………………………分,所以a=—2.xy?y1???2?x.…………………………利用图象可知,当时,7分21(3)略. ……………………10分24.(本大题满分10分)x元,根据题意,得解:设第二个月的降价应是80×200+(80-x)(200+10x)+40[800-200-(200+10x)] -50×800=9000………………5分x-20x+100=0,2整理,得解这个方程得x=x=10,………………8分21当x=10时,80-x=70>50,符合题意.分1070答:第二个月的单价应是元. ………………注意:评分标准仅做参考,只要学生作答正确,均可得分。

2017-2018学年度上学期期末考试九年级数学试卷

2017-2018学年度上学期期末考试九年级数学试卷

2017-2018学年度上学期期末考试九年级数学试卷一、选择题1. -7的相反数是( ) A.-71 B.71C.-7D.7 2. 方程9x 2=16的解是( ) A.34 B.43 C.±34 D.±43 3. 下列图形中,是轴对称图形但不是中心对称图形的是( )A.B. C. D.4. 下列运输正确的是( )A.a 3+a 4=a 7B.2a 3•a 4=2a 7C.(2a 4)3=8a 7D.a 8÷a 2=a 45. 将0.00007用科学记数法表示为( )A.7×10-6B.70×10-5C.7×10-5×10-66. 下列几何体中,有一个几何体的主视图和俯视图的形状不一样,这个几何体是( )A.B. C. D.7. 在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:那么这些运动员跳高成绩的中位数是( )8. 如图Rt △ABC 中,∠BAC =90°,将△ABC 绕点A 顺时针旋转90°后得到△A ′B ′C (点A 的对应点是A ',点B 的对应点是B '),连接AA ′,若∠1=25°,则∠BAA ′的大小是( )(m ) 1.50 1.60 1.65 1.70 1.75 1.80 人数124332A.55°B.60°C.65°D.70°9. 已知二次函数y=ax 2+bx+c 的图象如图所示,则下列说法: ①c=0;②该抛物线的对称轴是直线x=-1;③当x=1时,y=2a ;④am 2+bm+a >0(m ≠-1).其中正确的个数是() A.4 B3. C.2 D.110. 在Rt △ABC 中,∠C=90°,AC=1cm,BC=2cm,点P 从点A 出发,以1cm/s 的速度沿折线AC →CB →BA 运动,最终回到点A.设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图象大致是()A.B C. D.二、填空题 11. 抛物线y=21(x+1)2-2的顶点是_____________. 12. 使二次根式3 x 有意义的x 的取值范围是_____________. 13. 分解因式a 3-9a=________________.14. 100件外观相同的产品有5件不合格,从中任意抽出一件进行检测,则抽到不合格产品的概率为____________.15. 如图所示,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的直径是_________cm . 16. 将一列数2,2,6,22,10,……,266.按如图的数表排列,按照该方法进行排列,32的位置可记为(2,3),27的位置可记为(3,2),那么这列数中的最大有理数按此排法的位置可记为(m ,n ),则m+n 的值为_______.2 4………………………三、解答题17. 计算:31)22018(313320+-+--18. 先化简,再求值:⎪⎭⎫⎝⎛+-÷-+-13111222x x x x ,其中x=0.19. 已知一元二次方程x 2-(m+6)x+m 2=0有两个相等的实数根x 1、x 2,且x 1、x 2满足x 1+x 2=x 1x 2,求m 的值.20. 解不等式组⎩⎨⎧+<-≤+--)1(3151215312x x x x 并把它们的解集表示在数轴上.21.某校课外兴趣小组在本校学生中开展“感动中国2013年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下图表:类别A B C D频数30 40 24 b频率 a 0.4 0.24 0.06(1)表中的a=_________ ,b=__________ ;(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?22. 在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?\23. 如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点H,求证:CD=HF.24.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.25. 如图,点M(-3,m)是一次函数y=x+1与反比例函数y=(k≠0)的图象的一个交点.(1)求反比例函数表达式;(2)点P是x轴正半轴上的一个动点,设OP=a(a≠2),过点P作垂直于x轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作x轴的垂线,交反比例函数的图象于点C,△ABC′与△ABC关于直线AB对称.①当a=4时,求△ABC′的面积;②当a的值为多少时,△AMC与△AMC′的面积相等?。

2017-2018第一学期期末九数试卷

2017-2018第一学期期末九数试卷

2017—2018学年度第一学期期末教学质量检测九年级数学试卷注意事项:1.答卷前,先将密封线左侧的项目填写清楚.一、选择题:(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2cos 45°的值等于……………………………………………【 】 (A )2(B )22 (C )42(D )222.一元二次方程x 2 – 2x = 0的解是……………………………………………………【 】 (A )0 (B )0或2 (C )2 (D )此方程无实数解 3.数学课上,老师让学生尺规作图画Rt △ABC ,使其斜边AB =c ,一条直角边BC =a ,小明的作法如图1,你认为这种作法中判断∠ACB 是直角的依据是………………【 】(A ) 勾股定理 (B ) 勾股定理是逆定理 (C ) 直径所对的圆周角是直角 (D ) 90°的圆周角所对的弦是直径4.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图2的统计图.在每天所走的步数这组数据中,众数和中位数分别是…………………………………………………【 】(A )1.2,1.3 (B )1.4,1.3 (C )1.4,1.35 (D )1.3,1.35.如图3,在平面直角坐标系中,已知点O (0,0),A (6,0),B (0,8),以某点为位似中心,作出与△AOB 的位似比为k 的位似△CDE ,则位似中心的坐标和k 的值分别为………………………………………………………………………………【 】图2 图1A N DBC EM 图7 (A )(0,0),2 (B )(2,2),2 (C )(2,2),21 (D )(1,1),21 62】(A )y 轴 (B )直线x =25 (C )直线x =1 (D )直线x =237.在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,恰好既是中心对称图形又是轴对称图形的概率是……………………………【 】(A ) 1 (B ) (C ) (D ) 8.如图4,函数y=xk的图象经过点A (1,﹣3),AB 垂直x 轴 于点B ,则下列说法正确的是………………………【 】 (A )k =3 (B )x <0时,y 随x 增大而增大 (C )S △AOB =3 (D )函数图象关于y 轴对称9.如图5,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =35°,则∠OAC 的度数是…【 】(A )35°(B )70° (C )65° (D )55° 10.某居民院内月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均每户用电………………………………………………………………【 】 (A )41度 (B )42度 (C )45.5度 (D )46度 11.如图6,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是………………【 】 (A )32 cm(B )3 cm(C )332 cm (D )1cm 12.如图7,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则NM ∶MC 等于……………………………………………………………………【 】 (A )1∶2 (B )1∶3 (C )1∶4(D )1∶513.某厂前年缴税30万元,今年缴税36.3万元,若该厂缴税的年平均增长率为x ,则可列方程…………………………………………………………………………………【 】(A ) 30x 2=36.3 (B ) 30(1-x )2=36.3 (C ) 30+30(1+x )+30(1+x )2=36.3 (D ) 30(1+x )2=36.3图6 图5 图414. 如图8,在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且53co s =α, AB = 4, 则AD 的长为…………………………………………………………………………【 】 (A )316 (B )320 (C )3 (D )51615.如图9为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是…………【 】 (A )△ACD 的外心(B )△ABC 的内心 (C )△ACD 的内心 (D )△ABC 的外心 16.如图10,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac <b 2; ②方程ax 2+bx+c =0的两个根是x 1=﹣1,x 2=3;③3a +c >0; ④当y >0时,x 的取值范围是﹣1≤x <3;⑤当x <0时,y 随x 增大而增大; 其中结论正确的个数是……………………………………………………【 】(B )3个(C)2个(D )1个二、填空题:(本大题共3个小题,17-18每小题3分,19每空2分,共10分.把答案写在题中横线上)17.二次函数y =2(x ﹣3)2﹣4的最小值为 . 18.如图11,在△ABC 中,∠ACB =90°,AC =1,AB =2,以 A 为圆心,以AC 为半径画弧,交AB 于D ,则扇形CAD 图10 A B C D E 图8 图9三、解答题(本大题共6个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20. (本题满分9分)已知关于x的一元二次方程x2+3x+1﹣m=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为负整数,求此时方程的根.图13-1 图13-2如图14,某学校的围墙CD 到教学楼AB 的距离CE =22.5米,CD =3米.该学校为了纪念校庆准备彩旗连接线AC ,∠ACE =22°.(1)求彩旗的连接线AC 的长(精确到0.1m );(2)求教学楼高度AB .(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.4)23. (本题满分9分)如图15,在平面直角坐标系中,ABCD 的边AB =2,顶点A 坐标为(1,b ),点D 坐标为(2,b +1).(1)点B 的坐标是_____,点C 的坐标是_____(用b 表示);(2)若双曲线ky x=过ABCD 的顶点B 和D ,求该双曲线的表达式; (3)若 与双曲线4(0)y x x=>总有公共点,求b 的取值范围.图14(1)求证:AE=BD;(2)求证:△BOE∽△COD.(3)已知:CD=10,BE=5,求OE的长.图1625. (本题满分10分)经研究表明,某市跨河大桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,函数图像如图17所示.(1)求当28≤x≤188时,V关于x的函数表达式;(2)求车流量P(单位:辆/时)与车流密度x之间的函数关系式.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)(3)若车流速度V不低于50千米/时,求当车流密度x为多少时,车流量P达到最大,并求出这一最大值.图1726. (本题满分12分)如图18-1,以边长为8的正方形纸片ABCD 的边AB 为直径作⊙O ,交对角线AC 于点E .(1)线段AE =____________;(2)如图18-2,以点A 为端点作∠DAM =30°,交CD 于点M ,沿AM 将四边形ABCM 剪掉,使Rt △ADM 绕点A 逆时针旋转(如图18-3),设旋转角为α(0°<α<150°),旋转过程中AD 与⊙O 交于点F . ①当α=30°时,请求出线段AF 的长;②当α=60°时,求出线段AF 的长;判断此时DM 与⊙O 的位置关系,并说明理由; ③当α=___________°时,DM 与⊙O 相切.图18-1 图18-2 图18-3 备用图 备用图。

新人教版2017—2018学年度上学期期末教学质量监测九年级数学试卷

新人教版2017—2018学年度上学期期末教学质量监测九年级数学试卷

新⼈教版2017—2018学年度上学期期末教学质量监测九年级数学试卷2017—2018学年度上学期期末教学质量监测九年级数学试卷(考试时间90分钟,试卷满分120分)⼀、选择题:(每题3分,计24分)1、⼀元⼆次⽅程2280x -=的解是()1212. 2 . 2 . 2, 2 . A x B x C x x D x x ==-==-==2、在平⾯直⾓坐标系中,点P (2,⼀ 4)关于原点对称的点的坐标是() A.(2,4 ) B.(⼀2,4) C.(⼀2,⼀4) D.(⼀4,2) 3、下列说法中,正确的是()A. 随机事件发⽣的概率为1B.. 概率很⼩的事件不可能发⽣C. 不可能事件发⽣的概率为0D. 投掷⼀枚质地均匀的硬币1000次,正⾯朝上的次数⼀定是500次 4、如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC ,AD,若∠ADC=55°,则∠CAB 的度数为() A.35° B.45° C.55° D.65°5、⼀个不透明的袋中装有除颜⾊外均相同的5个红球和n 个黄球,从中随机摸出⼀个,摸到红球的概率是58,则n 是() A.5 B.8C.3D.136、如图,⊙O 与正⽅形ABCD 的边AB,AD 相切,且DE 与⊙O 相切与点E 。

若⊙O 的半径为5,且AB=12,则DE=()(4题图)A.5B. 6C.7D. 1727、“赶陀螺”是⼀项深受⼈们喜爱的运动,如图所⽰是⼀个陀螺的⽴体结构图,已知底⾯圆的直径AB=6cm ,圆柱体部分的⾼BC=5cm,圆锥体部分的⾼CD=4cm,则这个陀螺的表⾯积是()A. 284cm πB.245cm πC. 274cm πD.254cm π8、已知⼆次函数221y ax ax =--(a 是常数,0a ≠),下列结论正确的是() A.当a = 1时,函数图像经过点(⼀1,0)B. 当a = ⼀2时,函数图像与x 轴没有交点C. 若 0a <,函数图像的顶点始终在x 轴的下⽅D. 若 0a﹥,则当1x ≥时,y 随x 的增⼤⽽增⼤⼆、填空题(每⼩题3分,共21分)9、若m 是⽅程210x x +-=的⼀个根,则代数式22018m m +-=_______________ 10、将抛物线24y x =向左平移3个单位长度,再向下平移2个单位长度,得到的抛物线的解析式_____________________11、在4张完全相同的卡⽚上分别画上①、②、③、④。

2017-2018学第一学期期末学生学业质量调研测试

2017-2018学第一学期期末学生学业质量调研测试

2017-2018学年度第一学期期末学生学业质量调研测试九年级数学试题参考答案及评分说明一.选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1. A2. C3. A4. D5. C6. B7. D8. D9. C 10. B二.填空题(本大题共6小题,每小题4分,共24分.请将下列各题的正确答案填在答题卡第二部分相应题号横线上) 11.51; 12. π12; 13. 32=x ; 14. 70; 15.1-<x 或3>x ; 16. 54三.解答题(本大题共3小题,每小题6分,共18分)17. 解:0)2)(1(=+-x x ……………………………… 2分01=-x 或02=+x ……………………………… 4分∴11=x ,22-=x ……………………………… 6分18. 解:(1)……………………………… 2分描点,连线正确 …………………………………………………… 5分 (2) (1,3) …………………………………………………… 6分 19.证明:过O 作ON ⊥CD 于N ,连接OM ……………………………………… 1分∵⊙O 与BC 相切于点M ∴OM ⊥BC∴∠OMC=∠ONC=90°…………………………………………………………………… 3分 ∵AC 为正方形ABCD 的对角线 ∴∠ACB =∠ACD ∵OC = OC∴△OMC ≌△ONC (AAS )∴ON=OM ,即ON 为半径 ………………………………………………………………… 5分 ∵ON ⊥CD ∴CD 与⊙O 相切 …………………………………………… 6分四.解答题(本大题共3小题,每小题7分,共21分) 20. 解:(1)如图:……………………2分共有16种等可能结果,其中两次取的小球的标号相同的情况有4种,概率为P==.…………………………………………………………………4分(2)如图,共有16种等可能结果,其中两次摸出的小球标号的和等于4的有3种,所有两次摸出的小球标号的和等于4的概率P=.…………………………………………………………7分21. 解:设道路的宽为x 米. ………………………………1分根据题意得:299)15)(25(=--x x ………………………………4分 解得:381=x (不合题意,舍去),22=x答:道路的宽为2米. ………………………………7分 22.(1) 证明:连接BD∵AB 为⊙O 的直径 ∴∠ADB=90° ∴∠CDB=90° ∴∠CDE+∠EDB=90°,∠C +∠EBD=90° ∵∠ABC=90°,OB 为⊙O 的半径 ∴EB 与⊙O 相切∵ED 与⊙O 相切 ∴ED=EB ∴∠EDB=∠EBD ∴∠C=∠CDE ∴ ED=EC∴EC=EB 即点E 是BC 的中点 ……………………………… 3分 (2) 解:∵∠CDB=90°,E 是BC 的中点 ∴BC=2DE=16 ∵∠ABC=90°,AB=12 ∴2016122222=+=+=BC AB AC由面积关系,得BC AB BD AC ⋅=⋅2121 则1612212021⨯⨯=⋅⨯BD 解得6.9=BD在Rt △ABD 中,2.76.9122222=-=-=BD AB AD……………………………… 7分五.解答题(本大题共3小题,每小题9分,共27分) 23. 解:(1)由题意得:()()x x y 51803040--+=180013052++-=x x y (100≤≤x )……………………………………………2分(2)对称轴:13251302=⨯--=-=a b x 因每件售价不能高于50元,即上涨最多只能是10元 ∵1013>,05<-=a∴在对称轴左侧,y 随x 增大而增大∴当10=x 时,元最大值26001800101301052=+⨯+⨯-=y∴每件售价=501040=+元答:当每件售价为50元时,可获得最大利润2600元.………………………………6分 (3)由题意得:2145180013052=++-x x解得: 31=x ,232=x (不符合题意,舍去) ∴每件售价=43340=+元答:每件售价为43元时,每周利润为2145元. ………………………………9分24.(1)证明:连接AO 并延长,交边BC 于点H , ∵=,OA 为半径 ∴AH ⊥BC∵AE 与⊙O 相切 ∴OA ⊥AE∴AE ∥BC ……………………………… 3分 (2)证明:∵=∴AB=AC , ∠B=∠ACB∵AE ∥BC ∴∠EAC=∠ACB ∴∠B=∠EAC ∵∠BAD =∠ACE ∴△ABD ≌△CAE (ASA )∴BD=AE ……………………………… 5分 (3)解:连接OB∵AE ∥BC ,AH ⊥BC ,点E 到BC 边的距离是18 ∴AH=18∵BD=8,DC=2AE ,BD=AE ∴DC=16 ∴BC=24 ∵OH ⊥BC ∴1221==BC BH 设x OB =,则x OH -=18 ……………………………… 7分 由勾股定理,得22212)18(+-=x x 解得13=x∴⊙O 的面积ππ169132=⨯=S .……………………………… 9分25.解:(1)由直线AB :y=x+2 知,A (0,2)由抛物线的顶点坐标为(2,0),可设其解析式为2)2(-=x a y代入A 点坐标得:2)20(2-=a 解得21=a ∴二次函数的解析式为2)2(21-=x y ……………………………… 2分(2)①已知点P 的横坐标为m ,则P (m ,2+m )∵OA ∥PQ ,OA=2∴当PQ=OA=2时,四边形OAPQ 为平行四边形 ∴Q (m ,m )将点Q 坐标代入二次函数2)2(21-=x y ,得2)2(21-=m m 解得531+=m ,532-=m∴m 的值是53±=m . ……………………………… 5分②2221)2(2122+-=-=x x x y 已知点P 的横坐标为m ,则P (m ,2+m ),Q (m ,22212+-m m ) ∴线段m m m m m PQ 321)2221()2(22+-=+--+= 由于点P 在线段AB 上移动,且不与A 、B 重合,所以 0<m <6 设HC 的长为h∵点H 为PQ 的中点,线段m m PQ 3212+-=,线段2+=m PC ∴)321(21)2(2m m m h +--+= 221412+-=m m 47)1(412+-=m ∵0<m <6,该抛物线开口向上∴当1=m 时,h 的值最小,即点H 到达最低位置 此时H 点的坐标为(1,47). ……………………………… 9分H。

浙教版2017-2018学年九年级(上)期末学情分析数学试卷

浙教版2017-2018学年九年级(上)期末学情分析数学试卷

2017-2018学年九年级(上)期末学情分析数学试卷一、仔细选一选(本题共10小题,每3分,共30分)1.(3分)下列y关于x的函数中,属于二次函数的是()A.y=x﹣1 B.y=C.y=(x﹣1)2﹣x2D.y=﹣2x2+12.(3分)已知2x=5y(y≠0),则下列比例式成立的是()A.B.C.D.3.(3分)如图,将长方体表面展开,下列选项中错误的是()A.B.C.D.4.(3分)如图,点A、B、C是⊙O上的点,∠AOB=80°,则∠ACB的度数是()A.30°B.40°C.45°D.80°5.(3分)如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm26.(3分)正三角形外接圆的半径为2,那么它内切圆的半径为()A.1 B.C.D.27.(3分)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30°B.45°C.60°D.90°8.(3分)如图,梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是()A.cm B.cm C.cm D.cm9.(3分)一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三边形,正四边形,正六边形,则另外一个为()A.正三角形B.正四边形C.正五边形D.正六边形10.(3分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤二、认真填一填(共6题,每题4分,共24分)11.(4分)已知A、B两地的实际距离为100千米,地图上的比例尺为1:2000000,则A、B两地在地图上的距离是cm.12.(4分)在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,如果AE=2,△ADE的面积为4,四边形BCED的面积为5,那么AB的长为.13.(4分)如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部宽为2m,坝高为6m,则坝底AB的长为.14.(4分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为弧BC的中点,作DE⊥AC,交AB的延长线于点F,连接DA.若∠F=30°,DF=6,则阴影区域的面积.15.(4分)如图,正方形AEFG与正方形ABCD的边长都为1,正方形AEFG 绕正方形ABCD的顶点A旋转一周,在此旋转过程中,线段DF的长取值范围为.16.(4分)如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为.三、全面解一解〔共8个小,共66分,各小题都必须写出解答过程)17.(6分)计算:|﹣3|+(2011﹣π)0﹣﹣.18.(6分)在一个不透明的小口布袋中装有4个标有1,2,3,4的小球,它们的质地、大小完全相同,小明从布袋里随机摸出一个小球,记下数字为x,小红在剩下的3个小球中随机摸出一个小球,记下数字为y,这样确定了点M的坐标(x,y)(1)画树状图或列表,写出点M所有可能的坐标.(2)小明和小红约定做一个游戏,其规则为:x、y若满足<1,则小明胜;否则,小红胜;这个游戏公平吗?说明理由.19.(6分)如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C 测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)20.(8分)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓,我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台,经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低1元,就可多售出5台,若供货商规定这种空气净化器售价不低于330元/台,代理销售商每月要完成不低于450台的销售任务.(1)若某月空气净化器售价降低30元,则该月可售出多少台?(2)试确定月销售量y(台)与售价x(元/台)之间的函数关系式,并求出售价x的范围;(3)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获的利润w(元)最大,最大利润是多少?21.(8分)如图,BF和CE分别是钝角△ABC(∠ABC是钝角)中AC、AB 边上的中线,又BF⊥CE,垂足是G,过点G作GH⊥BC,垂足为H.(1)求证:GH2=BH•CH;(2)若BC=20,并且点G到BC的距离是6,则AB的长为多少?22.(10分)如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若AC=24,AF=15,求⊙O的半径.(3)在(2)的条件下,求AP.23.(10分)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.解决问题:(1)若直线y=x﹣2与直线y=mx+2互相垂直,求m的值;(2)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.①求该抛物线的解析式;②在抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.24.(12分)二次函数y=(m﹣1)x﹣6x+9的图象与x轴交于点A和点B,以AB为边在x轴下方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.(1)求出m的值并求出点A、点B的坐标.(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.参考答案1.D.2.B.3.C.4.B 5.C 6.A.7.C.8.B.9.B.10.D.11.5.12.3.13.(7+6)m.14.﹣2π..15.≤DF≤+1 16.2﹣2,2+2.17.解:原式=3+1﹣3﹣×=3+1﹣3﹣=﹣.解:(1)画树状图为:共有12种等可能的结果数,它们为(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,2),(3,1),(3,4),(4,1),(4,2),(4,3);(2)这个游戏公平.理由如下:小明胜的概率==,小红胜的概率==,而=,所以这个游戏公平.19.解:(1)作CH⊥BD于H,如图,根据题意得∠DCH=15°,∠BCH=22°,∴∠BCD=∠DCH+∠BCH=15°+22°=37°;(2)易得四边形ABHC为矩形,则CH=AB=30,在Rt△DCH中,tan∠DCH=,∴DH=30tan15°=30×0.268=8.04,在Rt△BCH中,tan∠BCH=,∴BH=30tan22°=30×0.404=12.12,∴BD=12.12+8.04=20.16≈20.1(m).答:教工宿舍楼的高BD为20.1m.解:(1)若某月空气净化器售价降低30元,该月可售出200+5×30=350台.(2)由题意,得:y=200+5(400﹣x)=2200﹣5x.∵售价不低于330元/台∴x≥330∵数量不低于450元∴y≥450,2200﹣5x≥450x≤350∴330≤x≤350.答:y与x之间的函数关系式为:y=2200﹣5x;(3)由题意,得:w=(x﹣200)(2200﹣5x)=﹣5(x﹣320)2+72000,∵a=﹣5<0,∴在对称轴的右侧w随x的增大而减小,∴x=330时,w最大=71500.答:当售价为330元/台时,月利润最大为71500元.21.(1)证明:∵CE⊥BF,GH⊥BC,∴∠CGB=∠CHG=∠BHG=90°,∴∠CGH+∠BGH=90°,∠BGH+∠GBH=90°,∴∠CGH=∠GBH,∴△CGH∽△GBH,∴=,∴GH2=BH•CH;(2)解:作EM⊥CB交CB的延长线于M.设CH=x,HB=y.则有,解得或,∵∠ABC是钝角,∴CH>BH,∴CH=18,BH=2,∵G是△ABC的重心,∴CG=2EG,∵GH⊥BC,EM⊥BC,∴GH∥EM,∴==,∴EM=9,CM=27,∴BM=CM﹣BC=7,∴BE==,∴AB=2BE=2.22.解:(1)AF与⊙O相切,理由:连接OC,∵OC=OB,∴∠OCB=∠OBC,∵OF∥BC,∴∠OCB=∠COF,∠OBC=∠FOA,∴∠COF=∠AOF,在△OCF和△OAF中,,∴△OCF≌△OAF(SAS),∴∠OCF=∠OAF,∵PC是⊙O的切线,∴∠OCF=90°,∴∠OAF=90°,∴AF与⊙O相切;(2)由(1)知△OCF≌△OAF,则∠COE=∠AOE,∵OA=OC,∴OE是等腰△AOC的中线,也是高线,∴AC⊥OE,∵AC=24,∴AE=12,∵AF=15,∴EF=9,∵∠AFO=∠EFA,∠OAF=∠AEF,∴△OAF∽△AEF,∴,即,解得,OA=20,即⊙O的半径是20;(3)∵OA=20,∴AB=40,∵△ABC内接于⊙O,AB是直径,∴∠ACB=90°,∵AC=24,∴BC=32,∵OA=20,AF=15,∠OAF=90°,∴OF=25,∵OF∥BC,∴,即,解得,PA=,即AP的长是.23.解:(1)∵直线y=x﹣2与直线y=mx+2互相垂直,∴m=﹣1,∴m=﹣4;(2)①抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点,∴,∴,∴抛物线的解析式为y=﹣x2+x+1;②∵A(﹣1,0),B(1,1),∴直线AB的解析式为y=x+,∵△PAB是以AB为直角边的直角三角形,∴当∠PAB=90°时,PA⊥AB,∴直线PA的解析式为y=﹣2x﹣2(Ⅰ),∵抛物线的解析式为y=﹣x2+x+1(Ⅱ),联立(Ⅰ)(Ⅱ)得,,∴(舍)或∴P(6,﹣14),当∠PBA=90°时,PB⊥AB,∴直线PB的解析式为y=﹣2x+3(Ⅲ),∵抛物线的解析式为y=﹣x2+x+1(Ⅳ),联立(Ⅲ)(Ⅳ)得,,∴(舍)或,∴P(4,﹣5),即:点P的坐标为(6,﹣14)或(4,﹣5).24.解:(1)∵二次函数y=(m﹣1)x﹣6x+9,∴m2+m=2且m﹣1≠0,∴m=﹣2,∴二次函数解析式为y=﹣3x2﹣6x+9,令y=0,∴0=﹣3x2﹣6x+9,∴x=1或x=﹣3,∴A(﹣3,0),B(1,0);(2)设PA=t(﹣3<t<0),则OP=3﹣t,∵DP⊥PE,∴∠DPA=∠PEO,∴△DAP∽△POE,∴,即,∴OE=﹣t2+t=﹣(t﹣)2+,∴当t=时,OE有最大值,即P为AO中点时,OE的最大值为;(3)存在.当点P在y轴左侧时,如图1,DE交AB于G点,∵PD=PE,∠DPE=90°,∴△DAP≌△POE,∴PO=AD=4,∴PA=1,OE=1,∵AD∥OE,∴=4,∴AG=,∴S△DAG=××4=,∴P点坐标为(﹣4,0),此时△PED与正方形ABCD重叠部分的面积为;当P点在y轴右侧时,如图2,DE交AB于G点,DP与BC 相交于Q,同理可得△DAP≌△POE,∴PO=AD=4,∴PA=7,OE=7,∵AD∥OE,∴,∴OG=,同理可得BQ=,∴S=×(+1)×4+×4×=四边形DGBQ∴当点P的坐标为(4,0)时,此时△PED与正方形ABCD重叠部分的面积为.当点P和点A重合,此时,点E和点O重合,满足条件,即:P(﹣3,0),此时△PED与正方形ABCD重叠部分的面积为OA×AD= =6,。

最新2017-2018年九年级上第一次调研考试数学试题含答案

最新2017-2018年九年级上第一次调研考试数学试题含答案

九年级数学第一次诊断考试试卷九年级上第一次调研考试题数学本试卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。

A卷分第I卷和第II卷,第I卷为选择题,第II卷为其他类型的题。

第Ⅰ卷1至2页, 第Ⅱ卷和B卷3至6页。

考试结束时,监考人将答题卡收回。

A卷(共100分)注意事项:1.答卷前,考生务必将密封线内的内容填写清楚,将自己的姓名、准考证号、考试科目等涂写在机读卡上.2.第Ⅰ卷各题均有四个选项,只有一项符合题目要求.答第Ⅰ卷时,每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后再选涂其它答案.3.其它试题用蓝、黑钢笔或圆珠笔直接答在答题卡上.第I卷(选择题,共30分)一、选择题:(本题共10小题,每小题3分,共30分)1.-2016的倒数是()A.-2016 B.2016 C. D.2.下列各式计算正确的是()A. B. C. D.4.已建设的成都第二绕城高速全长超过220公里,串起成都市二、三圈层及周边的广汉、德阳等地,总投资达到290亿元.用科学记数法表示290亿元应为()A.元 B.元 C.元 D.元5.如图,把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A.125°错误!未找到引用源。

B.120°C.140°错误!未找到引用源。

D.130°6.随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学九年级五班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()。

人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案

人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案

E D CBA2017-2018学年第一学期期末测试卷初三数学一、选择题(本题共30分,每小题3分)1.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥ R ,则P 点 A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 把10cm 长的线段进行黄金分割,则较长线段的长(236.25≈, 精确到0.01)是A .3.09cmB .3.82cmC .6.18cmD .7.00cm 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD =4,DB =2,则AE ︰EC 的值为 A . 0.5 B . 2 C . 32 D . 23 4. 反比例函数xky =的图象如图所示,则K 的值可能是 A .21B . 1C . 2D . -1 5. 在Rt △ABC 中,∠C =90°,BC =1,那么AB 的长为A .sin AB .cos AC .1cos AD . 1sin A6.如图,正三角形ABC 内接于⊙O ,动点P 在圆周的劣弧AB 上, 且不与A,B 重合,则∠BPC 等于A .30︒B .60︒ C. 90︒ D. 45︒ 7.抛物线y=21x 2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为 A . y =21x 2+ 2x + 1 B .y =21x 2+ 2x - 2C . y =21x 2 - 2x - 1 D. y =21x 2- 2x + 18. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ; ④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有 A. 2个 B. 3个C. 4个D. 5个9. 如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,下列结论:①∠BAE =30°;②CE 2=AB·CF ;③CF =31FD ;④△ABE ∽△AEF .其中正确的有A. 1个B. 2个C. 3个D. 4个10.如图,已知△ABC 中,BC =8,BC 边上的高h =4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为A. B. C. D.二、填空题(本题共18分, 每小题3分) 11.若5127==b a ,则32ba -= . 12. 两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别 是 , . 13.已知扇形的面积为15πcm 2,半径长为5cm ,则扇形周长为 cm .14. 在Rt △ABC 中,∠C =90°,AC =4, BC =3,则以2.5为半径的⊙C 与直线AB 的位置关系 是 .15. 请选择一组你喜欢的a,b,c 的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满16. 点是 17.18.如图:在Rt△ABC中,∠C=90°,BC=8,∠B=60°, 解直角三角形.19.已知反比例函数x 1k y -=图象的两个分支分别位于第一、第三象限.(1)求k的取值范围;(2)取一个你认为符合条件的K值,写出反比例函数的表达式,并求出当x=﹣6时反比例函数y的值;20.已知圆内接正三角形边心距为2cm,求它的边长.24.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径, D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线 于点E ,且AC 平分∠EAB . 求证:DE 是⊙O 的切线.26. 已知:抛物线y=x 2+bx+c 经过点(2,-3)和(4,5)(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x 轴翻折,得到图象G ,求图象G 的表达式;(3)在(2)的条件下,当-2<x <2时, 直线y =m 与该图象有一个公共点,求m 的值或取值范围.27. 如图,已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点 出发沿AB 方向以1c m /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方 向以2c m /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A,M,N 为顶点的三角形与ACD △相似?若存在,求t 的 值;若不存在,请说明理由.()28.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置 关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与 EF 是否平行?请说明理由.29. 设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的“闭函数”.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的“闭函数”.(1)反比例函数y =x 2016是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由; (2)若二次函数y =22x x k --是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的表达式(用含 m ,n 的代数式表示).图 3一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin 304560︒︒︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分当x=﹣6时,3162x 2y -=-==;---------------------5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分 ∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分B21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △PAD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S ABC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。

2017-2018学年九年级上数学期末试卷及答案解析

2017-2018学年九年级上数学期末试卷及答案解析

)
A.1 个 B.2 个 C.3 个 D.4 个
二、填空题
;④
11、方程
有两个不等的实数根,则 a 的取值范围是________。
12、如图,⊙O 中,弦 AB=3,半径 BO=,C 是 AB上一点且 AC=1,点 P 是⊙O 上一动点,连 PC,则 PC长的最小 值是
B.4
C.5 D.6
8、.已知二次函数 y=ax2+bx+c(a≠0)的图象如图,
有下列 5 个结论:①abc<0;②3a+c>0;
③4a+2b+c>0;④2a+b=0;⑤b2>4ac.
其中正确的结论的有( )
A. 1 个 B. 2 个 C. 3 个 D. 4 个
9、如图,已知 AB=12,点 C,D 在 AB上,且 AC=DB=2,点 P 从点 C 沿线段 CD向点 D 运动(运动到点 D 停止),以 AP、BP为斜边在 AB的同侧画等腰 Rt△APE和等腰 Rt△PBF,连接 EF,取 EF的中点 G,下列说法中正确的有 ()
C.与 x 轴相切、与 y 轴相离 D.与 x 轴、y 轴都相切
7、某口袋中有 20个球,其中白球 x 个,绿球 2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜, 甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则 乙获胜.则当 x=________时,游戏 对甲、乙双方公平 ()
A.3
5、如图,A,B,C是⊙O 上三个点,∠AOB=2∠BOC,则下列说法中正确的是
A. ∠OBA=∠OCA
B. 四边形 OABC内接于⊙O
C.. AB=2BC
D. ∠OBA+∠BOC=90°
6、在平面直角坐标系中,以点(3,2)为圆心,2 为半径的圆与坐标轴的位置关系为( )

2017-2018学年九年级数学上期末试卷含详细答案解析

2017-2018学年九年级数学上期末试卷含详细答案解析

2017-2018学年九年级数学上期末试卷含详细答案解析数学试卷一、选择题(每小题3分,满分30分)1.在下列四个图案中,不是中心对称图形的是()A.B.C.D.2.ʘO的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定3.抛物线y=﹣2(x﹣3)2+5的顶点坐标是()A.(3,5)B.(3,﹣5)C.(﹣3,5)D.(﹣2,5)4.电脑福利彩票中有两种方式“22选5”和“29选7”,若选种号码全部正确则获一等奖,你认为获一等奖机会大的是()A.“22选5”B.“29选7”C.一样大D.不能确定5.点A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函数y =﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y3 6.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可能是()A.3 B.2 C.1 D.07.已知如图,AB是⊙O的直径,CD是⊙O的弦,∠CDB=40°,则∠CBA的度数为()A.60°B.50°C.40°D.30°8.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+49.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F.S△AEF=3,则S△FCD为()A.6 B.9 C.12 D.2710.如图,△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC.则BN:NQ:QM等于()A.6:3:2 B.2:1:1 C.5:3:2 D.1:1:1二、填空题(每小题3分,满分18分.)11.点A(1,﹣2)关于原点对称的点A′的坐标为.12.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).投篮次数(n)50 100 150 200 250 300 500投中次数(m)28 60 78 104 123 152 251投中频率(m/n)0.56 0.60 0.52 0.52 0.49 0.51 0.5013.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.14.将一个底面半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.15.已知一等腰三角形的底边长和腰长分别是方程x2﹣3x=4(x﹣3)的两个实数根,则该等腰三角形的周长是.16.如图,在平面直角坐标系中,已知点A(4,0)和点B(0,3),点C是AB的中点,点P是线段BO、OA上的动点,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是.三、解答题(本大题共9小题,满分102分)17.(9分)解方程:x2﹣6x+8=0.18.(9分)如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°,若点A、B的对应点分别是点D、E,请直接画出旋转后的三角形简图(不要求尺规作图),并求点A 与点D之间的距离.19.(10分)在湖州创建国家卫生文明城市的过程中,张辉和夏明积极参加志愿者活动,当时有下列四个志愿者工作岗位供他们选择:①清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用A1,A2表示).②宣传类岗位:垃圾分类知识宣传;交通安全知识宣传(分别用B1,B2表示).(1)张辉同学从四个岗位中随机选取一个报名,恰好选择清理类岗位概率为是;(2)若张辉和夏明各随机从四个岗位中选一个报名,请你利用树状图或列表法求出他们恰好都选择同一个岗位的概率.20.(10分)如图,∠A=∠B=30°(1)尺规作图:过点C作CD⊥AC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BD•AB.21.(12分)随着市民环保意识的增强,春节期间烟花爆竹销售量逐年下降.某市2015年销售烟花爆竹20万箱,到2017年烟花爆竹销售量为9.8万箱.(1)求该市2015年到2017年烟花爆竹年销售量的平均下降率;(2)预测该市2018年春节期间的烟花爆竹销售量.22.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点,且∠DBC=∠A=60°,连接OE并延长与⊙O 相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6cm,求弦BD的长.23.(12分)如图,在四边形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且,双曲线y=(k>0)经过点D,交BC于点E(1)求双曲线的解析式;(2)求四边形ODBE的面积.24.(14分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.25.(14分)如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P,Q分别从BC两点同时出发,其中点P沿BC向终点C运动.速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).(1)求x为何值时,PQ⊥AC;(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;(3)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围.参考答案一、选择题1.在下列四个图案中,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.解:A、B、C是中心对称图形,D不是中心对称图形,故选:D.【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.ʘO的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定【分析】根据点与圆的位置关系的判定方法进行判断.解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,即点A到圆心O的距离小于圆的半径,∴点A在⊙O内.故选:B.【点评】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.3.抛物线y=﹣2(x﹣3)2+5的顶点坐标是()A.(3,5)B.(3,﹣5)C.(﹣3,5)D.(﹣2,5)【分析】由抛物线解析式即可求得答案.解:∵y=﹣2(x﹣3)2+5,∴抛物线顶点坐标为(3,5),故选:A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.4.电脑福利彩票中有两种方式“22选5”和“29选7”,若选种号码全部正确则获一等奖,你认为获一等奖机会大的是()A.“22选5”B.“29选7”C.一样大D.不能确定【分析】先计算出“22选5”和“29选7”获奖的可能性,再进行比较,即可得出答案.解:“22选5”福利彩票中,全部获奖的可能性为:,“29选7”福利彩票中,全部获奖的可能性为:,∵<,∴获一等奖机会大的是“29选7”,故选:B.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.5.点A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函数y =﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y3 【分析】利用待定系数法求出函数值即可判断.解:当x=﹣3时,y1=1,当x=﹣1时,y2=3,当x=1时,y3=﹣3,∴y3<y1<y2故选:C.【点评】本题考查反比例函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可能是()A.3 B.2 C.1 D.0【分析】根据判别式的意义得到△=(﹣2)2﹣4m>0,然后解关于m的不等式,最后对各选项进行判断.解:根据题意得△=(﹣2)2﹣4m>0,解得m<1.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.已知如图,AB是⊙O的直径,CD是⊙O的弦,∠CDB=40°,则∠CBA的度数为()A.60°B.50°C.40°D.30°【分析】首先连接AC,由AB是⊙O的直径,可得∠ACB=90°,然后由圆周角定理,求得∠A=∠D,继而求得答案.解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠A=∠CDB=40°,∴∠CBA=90°﹣∠A=50°.故选:B.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.8.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+4【分析】抛物线y=2x2的顶点坐标为(0,0),则把它向左平移3个单位,再向上平移4个单位,所得抛物线的顶点坐标为(﹣3,4),然后根据顶点式写出解析式.解:把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数解析式为y=2(x+3)2+4.故选:A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.9.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F.S△AEF=3,则S△FCD为()A.6 B.9 C.12 D.27【分析】先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.解:∵四边形ABCD是平行四边形,AE:EB=1:2,∴AE:CD=1:3,∵AB∥CD,∴∠EAF=∠DCF,∵∠DFC=∠AFE,∴△AEF∽△CDF,∵S△AEF=3,∴,解得S△FCD=27.故选:D.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.10.如图,△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC.则BN:NQ:QM等于()A.6:3:2 B.2:1:1 C.5:3:2 D.1:1:1【分析】连结MF,如图,先证明MF为△CEA的中位线,则AE=2MF,AE∥MF,利用NE∥MF得到==1,==,即BN=NM,MF =2NF,设BN=a,NE=b,则NM=a,MF=2b,AE=4b,所以AN=3b,然后利用AN∥MF得到===,所以NQ=a,QM=a,再计算BN:NQ:QM的值.解:连结MF,如图,∵M是AC的中点,EF=FC,∴MF为△CEA的中位线,∴AE=2MF,AE∥MF,∵NE∥MF,∴==1,==,∴BN=NM,MF=2NF,设BN=a,NE=b,则NM=a,MF=2b,AE=4b,∴AN=3b,∵AN∥MF,∴===,∴NQ=a,QM=a,∴BN:NQ:QM=a:a:a=5:3:2.故选:C.【点评】本题考查了平行线分线段成比例定理、三角形中位线性质等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,学会利用参数解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,满分18分.)11.点A(1,﹣2)关于原点对称的点A′的坐标为(﹣1,2).【分析】直接利用关于原点对称点的性质进而得出答案.解:点A(1,﹣2)关于原点对称的点A′的坐标为:(﹣1,2).故答案为:(﹣1,2).【点评】此题主要考查了关于原点对称点的性质,正确把握横纵坐标的关系是解题关键.12.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为0.5(精确到0.1).投篮次数(n)50 100 150 200 250 300 500投中次数(m)28 60 78 104 123 152 251投中频率(m/n)0.56 0.60 0.52 0.52 0.49 0.51 0.50【分析】计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.解:由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:≈0.5.故答案为:0.5.【点评】此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.13.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.【分析】由二次函数y=﹣x2+2x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+2x+m=0的解.解:依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=3时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.故答案为:x1=﹣1或x2=3.【点评】本题考查的是关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.14.将一个底面半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是144度.【分析】根据圆锥的侧面积公式得出圆锥侧面积,再利用扇形面积求出圆心角的度数.解:∵将一个半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,∴圆锥侧面积公式为:S=πrl=π×6×15=90πcm2,∴扇形面积为90π=,解得:n=144,∴侧面展开图的圆心角是144度.故答案为:144【点评】此题主要考查了圆锥的侧面积公式应用以及与展开图扇形面积关系,求出圆锥侧面积是解决问题的关键.15.已知一等腰三角形的底边长和腰长分别是方程x2﹣3x=4(x﹣3)的两个实数根,则该等腰三角形的周长是10或11.【分析】因式分解法解方程求得x的值,再分两种情况求解可得.解:解方程x2﹣3x=4(x﹣3),即(x﹣3)(x﹣4)=0得x=3或x =4,若腰长为3时,周长为3+3+4=10,若腰长为4时,周长为4+4+3=11,故答案为:10或11.【点评】本题主要考查解一元二次方程和等腰三角形的能力,解题的关键是熟练掌握因式分解法解一元二次方程的能力和等腰三角形的定义.16.如图,在平面直角坐标系中,已知点A(4,0)和点B(0,3),点C是AB的中点,点P是线段BO、OA上的动点,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是(0,),(2,0),(,0).【分析】分类讨论:当PC∥OA时,△BPC∽△BOA,易得P点坐标为(0,);当PC∥OB时,△ACP∽△ABO,易得P点坐标为(2,0);当PC⊥AB时,如图,由于∠CAP=∠OAB,则Rt△APC∽Rt △ABC,得到=,再计算出AB、AC,则可利用比例式计算出AP,于是可得到OP的长,从而得到P点坐标.解:当PC∥OA时,△BPC∽△BOA,由点C是AB的中点,所以P 为OB的中点,此时P点坐标为(0,);当PC∥OB时,△ACP∽△ABO,由点C是AB的中点,所以P为OA的中点,此时P点坐标为(2,0);当PC⊥AB时,如图,∵∠CAP=∠OAB,∴Rt△APC∽Rt△ABC,∴=,∵点A(4,0)和点B(0,3),∴AB==5,∵点C是AB的中点,∴AC=,∴=,∴AP=,∴OP=OA﹣AP=4﹣=,此时P点坐标为(,0),综上所述,满足条件的P点坐标为(0,),(2,0),(,0).故答案为:(0,),(2,0),(,0).【点评】本题考查了相似三角形的判定:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;有两组角对应相等的两个三角形相似.也考查了坐标与图形性质.注意分类讨论思想解决此题.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤.)17.(9分)解方程:x2﹣6x+8=0.【分析】把方程左边分解得到(x﹣2)(x﹣4)=0,则原方程可化为x﹣2=0或x﹣4=0,然后解两个一次方程即可.解:x2﹣6x+8=0(x﹣2)(x﹣4)=0,∴x﹣2=0或x﹣4=0,∴x1=2 x2=4.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).18.(9分)如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°,若点A、B的对应点分别是点D、E,请直接画出旋转后的三角形简图(不要求尺规作图),并求点A 与点D之间的距离.【分析】首先根据题意画出旋转后的三角形,易得△ACD是等腰直角三角形,然后由勾股定理求得AC的长.解:如图,∵在△ABC中,∠ACB=90°,AB=5,BC=4,∴AC==3,∵将△ABC绕点C顺时针旋转90°,点A,B的对应点分别是点D,E,∴AC=CD=3,∠ACD=90°,∴AD==3.【点评】此题考查了旋转的性质以及勾股定理.注意掌握旋转前后图形的对应关系是解此题的关键.19.(10分)在湖州创建国家卫生文明城市的过程中,张辉和夏明积极参加志愿者活动,当时有下列四个志愿者工作岗位供他们选择:①清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用A1,A2表示).②宣传类岗位:垃圾分类知识宣传;交通安全知识宣传(分别用B1,B2表示).(1)张辉同学从四个岗位中随机选取一个报名,恰好选择清理类岗位概率为是;(2)若张辉和夏明各随机从四个岗位中选一个报名,请你利用树状图或列表法求出他们恰好都选择同一个岗位的概率.【分析】(1)直接利用概率公式求解即可;(2)根据题意先画出树状图,得出所以等可能的结果数,再找出张辉和夏明恰好都选择田赛的结果数,然后根据概率公式求解即可.解:(1)张辉同学选择清理类岗位的概率为:=;故答案为:;(2)根据题意画树状图如下:共有16种等可能的结果数,张辉和夏明恰好选择同一岗位的结果数为4,所以他们恰好选择同一岗位的概率:=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(10分)如图,∠A=∠B=30°(1)尺规作图:过点C作CD⊥AC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BD•AB.【分析】(1)利用过直线上一点作直线的垂线确定D点即可得;(2)根据圆周角定理,由∠ACD=90°,根据三角形的内角和和等腰三角形的性质得到∠DCB=∠A=30°,推出△CDB∽△ACB,根据相似三角形的性质即可得到结论.解:(1)如图所示,CD即为所求;(2)∵CD⊥AC,∴∠ACD=90°∵∠A=∠B=30°,∴∠ACB=120°∴∠DCB=∠A=30°,∵∠B=∠B,∴△CDB∽△ACB,∴=,∴BC2=BD•AB.【点评】本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和相似三角形的判定和性质.21.(12分)随着市民环保意识的增强,春节期间烟花爆竹销售量逐年下降.某市2015年销售烟花爆竹20万箱,到2017年烟花爆竹销售量为9.8万箱.(1)求该市2015年到2017年烟花爆竹年销售量的平均下降率;(2)预测该市2018年春节期间的烟花爆竹销售量.【分析】(1)设该市2015年到2017年烟花爆竹年销售量的平均下降率为x,根据2015年和2017年销售的箱数,列出方程,求解即可.(2)根据(1)中的平均下降率预测该市2018年春节期间的烟花爆竹销售量.解:(1)设该市2015年到2017年烟花爆竹年销售量的平均下降率为x,依题意得:20(1+x)2=9.8,解这个方程,得x1=0.3,x2=1.7,由于x2=1.7不符合题意,即x=0.3=30%.答:该市2015年到2017年烟花爆竹年销售量的平均下降率为30%.(2)由题意,得9.8×(1﹣30%)=6.86(万箱)答:预测该市2018年春节期间的烟花爆竹销售量为6.86万箱.【点评】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点,且∠DBC=∠A=60°,连接OE并延长与⊙O 相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6cm,求弦BD的长.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD的长.(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,∠DBC=∠A=60°,BC⊥OB,∴OC=12,∵△OBC的面积=OC•BE=OB•BC,∴BE=,∴BD=2BE=6,即弦BD的长为6.【点评】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.23.(12分)如图,在四边形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且,双曲线y=(k>0)经过点D,交BC于点E(1)求双曲线的解析式;(2)求四边形ODBE的面积.【分析】(1)作BM⊥x轴于M,作DN⊥x轴于N,利用点A,B的坐标得到BC=OM=2,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA﹣AN=4,得到D点坐标为(4,2),然后把D点坐标代入y=中求出k的值即可得到反比例函数解析式;(2)根据反比例函数k的几何意义和S四边形ODBE=S梯形OABC ﹣S△OCE﹣S△OAD进行计算.解:(1)作BM⊥x轴于M,作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴==,即==,∴DN=2,AN=1,∴ON=OA﹣AN=4,∴D点坐标为(4,2),把D(4,2)代入y=得k=2×4=8,∴反比例函数解析式为y=;(2)S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD=×(2+5)×6﹣×|8|﹣×5×2=12.【点评】本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.24.(14分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.【分析】(1)将抛物线解析式配方成顶点式即可得;(2)①画出函数的大致图象,由图象知直线l经过顶点式时,直线l 与抛物线只有一个交点,据此可得;②画出翻折后函数图象,由直线l与新的图象恰好有三个公共点可得﹣2m+3=﹣7,解之可得;(3)由开口向上及函数值都不小于1可得,解之即可.解:(1)∵y=(m+2)x2﹣2(m+2)x﹣m+5=(m+2)(x﹣1)2﹣2m+3,∴对称轴方程为x=1.(2)①如图,由题意知直线l的解析式为y=n,∵直线l与抛物线只有一个公共点,∴n=﹣2m+3.②依题可知:当﹣2m+3=﹣7时,直线l与新的图象恰好有三个公共点.∴m=5.(3)抛物线y=(m+2)x2﹣2(m+2)x﹣m+5的顶点坐标是(1,﹣2m+3).依题可得解得∴m的取值范围是﹣2<m≤1.【点评】本题主要考查抛物线与x轴的交点及解不等式组得能力,根据题意画出函数的图象,结合函数图象得出对应方程或不等式组是解题的关键.25.(14分)如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P,Q分别从BC两点同时出发,其中点P沿BC向终点C运动.速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).(1)求x为何值时,PQ⊥AC;(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;(3)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围.【分析】(1)若使PQ⊥AC,则根据路程=速度×时间表示出CP和CQ的长,再根据30度的直角三角形的性质列方程求解;若使PQ⊥AB,则根据路程=速度×时间表示出BP,BQ的长,再根据30度的直角三角形的性质列方程求解;(2)首先画出符合题意的图形,再根据路程=速度×时间表示出BP,CQ的长,根据等边三角形的三线合一求得PD的长,根据30度的直角三角形的性质求得PD边上的高,再根据面积公式进行求解;(3)根据(1)中求得的值,确定圆与AB、AC相切时的t的值,即可分情况进行讨论.解:(1)当Q在AB上时,显然PQ不垂直于AC,当Q在AC上时,由题意得,BP=x,CQ=2x,PC=4﹣x;∵AB=BC=CA=4,∴∠C=60°;若PQ⊥AC,则有∠QPC=30°,∴PC=2CQ,∴4﹣x=2×2x,∴x=;当x=(Q在AC上)时,PQ⊥AC;(2)如图②,当0<x<2时,P在BD上,Q在AC上,过点Q作QN⊥BC于N;∵∠C=60°,QC=2x,∴QN=QC×sin60°=x;∵AB=AC,AD⊥BC,∴BD=CD=BC=2,∴DP=2﹣x,∴y=PD•QN=(2﹣x)•x=﹣x2+x;(3)显然,不存在x的值,使得以PQ为直径的圆与AC相离,由(1)可知,当x=时,以PQ为直径的圆与AC相切;当点Q在AB上时,8﹣2x=,解得x=,故当x=或时,以PQ为直径的圆与AC相切,当0≤x<或<x<或<x≤4时,以PQ为直径的圆与AC相交.【点评】本题考查三角形综合题、等边三角形的性质、直角三角形的性质以及直线和圆的位置关系求解.解题的关键是用动点的时间x和速度表示线段的长度,学会利用参数解决问题,属于中考压轴题.。

2017-2018学年第一学期调研考试九年级数学试卷分析

2017-2018学年第一学期调研考试九年级数学试卷分析

2017-2018学年第一学期调研考试九年级数学试卷分析本次期末考试数学命题,试卷难度系数恰当,安排有序,层次合理。

试卷整体质量比较高,体现了省中考纲要对学生掌握知识和应用能力的要求,有利于推进初中数学课堂教学改革和新课程的实施,同时对中考复习指明了一些思路和好的策略。

下面结合我校学生的答题情况作如下的试卷分析:一、基本情况我校参考学生786人,其中及格472人,及格率为60.1%,优秀217人,优秀率27.6%。

二、试题分析本份试题从整体来看,我们认为是一份很成功的试题,具有很强的指导性,主要体现在以下几个方面:1.试卷结构符合中考要求试卷满分120分,选择为16小题,填空3小题,且每题为一空。

试卷难度系数恰当,安排有序,层次合理。

试卷整体质量比较高,体现了省中考纲要对学生掌握知识和应用能力的要求,有利于推进初中数学课堂教学改革和新课程的实施。

2.注重对数学核心素养的考查本试题重视基础知识和基本技能的考查。

如:第一大题中的3、5、6、9、11、15小题,第二大题中的18、19小题,第三大题中的23、24、25小题都是课程标准中要求学生掌握或灵活运用的。

试题注重对数学核心素养的考查,顺应当前数学教育。

3.重视与实际生活相联系数学来源于生活,又应用于生活,能运用数学的思维方式观察、分析、解决日常生活中相关问题,是新课程改革的一项重要内容,试题中的第8题、第13题、第14题、第24题等都是生活中常需解决的问题,使学生经历知识的形成与应用过程,提高学生用数学的意识和能力。

4.注重考查学生的创新意识试题形式多样,渗透数学思想,一方面考查学生的能力,另一方面注意对新课程教学的导向性。

试卷以二次函数24题为重难点题,考查学生的综合数学素养。

25题图形较熟悉,问题设置也较简明,使学生入手容易,但得满分较难,需要较高的数学素养。

26题是压轴题,考查学生的综合数学素养和创新能力。

三、学生答题情况分析1.基础知识落实不到位。

2017~2018学年第一学期期末市属九年级数学学情调研测试卷

2017~2018学年第一学期期末市属九年级数学学情调研测试卷

2017~2018学年第一学期期末市属九年级学情调研测试数 学 试 卷本试卷共6页,共27题;全卷满分120分,考试时间120分钟.注 意 事 项:1.答卷前,考生务必用0.5毫米黑色水笔将自己的姓名、考试号填写在试题答题卷上相应位置.2.考生必须在试题答题卷上各题指定区域内作答,在本试卷上和其他位置作答一律无效.3.如用铅笔作图,必须用黑色水笔把线条描清楚.一、填空题(本大题共有12小题,每小题2分,共计24分.)1.已知013)1(2=+--x x m 是关于x 的一元二次方程,则实数m 的取值范围是 ▲ . 2.8与2的比例中项是 ▲ .3.若一组数据7,3,5,x ,2,9的众数为7,则这组数据的中位数是 ▲ . 4.一个圆锥的底面半径是10,母线长为18,则这个圆锥的侧面积= ▲ .(结果保留π).5.如图,在ABC ∆中,点D 、E 分别在AB 、AC 上,且DE ∥BC ,已知AD =2,DB =4,DE =1,则BC = ▲ .6.如图,⊙O 的内接四边形ABCD 中,AB =BC ,72=∠D °,则BAC ∠ = ▲ °.7.已知二次函数b x x y +++=322的图像与x 轴只有一个公共点,则实数b = ▲ .(第6题)8.抛掷一枚质地均匀的骰子1次,朝上一面的点数不大于2的概率= ▲ . 9.若32yx =,则y x y x +-32= ▲ . 10.如图是二次函数)0( 2<++=a c bx ax y 的图像的一部分,过点(3-,0),对称轴是过点(-1,0)且平行于y 轴的直线,点A ),(121y -、B ),(221y 在图像上.下列说法:①0>ac ;②02=-b a ; ③024<+-c b a ;④21y y >中,正确的是 ▲ .(填序号)11.图中的每个点(包括△ABC 的各个顶点)都在边长为1的小正方形的顶点上,在P 、Q 、G 、H 中找一个点,使它与点D 、E 构成的三角形与△ABC 相似,这个点可以是 ▲ .(写出满足条件的所有的点)12.对于二次函数)0( 4332>--=a x ax y ,若自变量x 分别取两个不同的值x 1,x 2时,所对应的函数值y 相等,则当x 取 x 1+x 2 时,所对应的y 的值是 ▲ .二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,恰有一项符合题目要求.)13.某校规定学生的学期数学成绩由研究性学习成绩与期末卷面成绩共同确定,其中研究性学习成绩占40%,期末卷面成绩占60%,小明研究性学习成绩为80分,期末卷 面成绩为90分,则小明的学期数学成绩是( ▲ ) A .80分 B .82分 C .84分 D .86分(第11题)14.二次函数23432+--=)(x y 的图像的顶点坐标是( ▲ )A .(3,2)B .(-3,2)C .(-3,-2)D .(3,-2)15.一个等腰三角形的三边长分别为n m ,,3,且n m ,是关于x 的一元二次方程 0182=-+-t x x 的两根,则t 的值为( ▲ )A .16B . 18C .16或17D . 18或1916.在平面直角坐标系中,将二次函数2017 2018 2016---=)()(x x y 的图像平移后,所得函数的图像与x 轴的两个交点之间的距离为2个单位,则平移方式为( ▲ ) A .向上平移2017个单位B .向下平移2017个单位C .向左平移2017个单位D .向右平移2017个单位17.【阅读】图①,②,③表示的是平面内两圆相对运动时得到的三种不同的位置关系,分别称为两圆内切、相交、外切.【尝试】已知⊙1O 和⊙2O 的半径分别是4、2.5,圆心1O 、2O 之间的距离为d .通过 观察,写出⊙1O 和⊙2O 相交时d 的取值范围是( ▲ )A .45.1<<dB .45.2<<dC .5.65.1<<dD .5.65.2<<d三、解答题(本大题共有10小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤.) 18.(本小题满分12分)解下列方程:(1)18122=+)(x (2)77)215)(5=-+x x ( (3)021232=+-x x 19.(本小题满分8分)(第17题)③①②王老师要从甲、乙两位同学中选拔一人参加某项竞赛,赛前对他们进行5次测试,下图是两人5次测试成绩的折线统计图. (1)分别填写甲、乙两名学生5次测验成绩的平均数及方差;(2)王老师应选派 ▲ 参加这次竞赛,理由是 ▲ .20.(本小题满分6分)在三张完全相同且不透明的卡片正面分别写了-1,0,1三个数字,背面向上洗匀后随机抽取一张,将卡片上的数字记为a ,然后放回,洗匀后再次随机取出一张,将卡片上的数字记为b ,然后在平面直角坐标系中画出点a M (,)b 的位置. (1)请用树状图或列表的方法,写出点M 所有可能的坐标; (2)求点M 在第二象限的概率. 21.(本小题满分6分)如图,在平面直角坐标系中,以A (3,0)为圆心,5为半径作⊙A ,与y 轴的正半轴交于点B .(1)点B 的坐标为 ▲ ;(2)△AOB 的内切圆半径为 ▲ 个单位长度; (3)将⊙A 在平面直角坐标系内平移,使其与x 轴、y 轴都相切,记平移后的圆的圆心为1A ,则 1AA ▲ 个单位长度. 22.(本小题满分6分)(第19题)某水果店出售一种水果,每只定价20元时,每周可以卖出300只.试销发现:每只水果每降价1元,每周可多卖出25只,如何定价,才能使一周销售收入最多?23.(本小题满分6分)如图,Rt ABC ∆中,12=AB cm ,10=BC cm ,点D 从点A 出发沿AB 以2cm/s 的速度向点B 移动,到达点B处停止运动,在移动过程中始终保持DE ∥BC ,DF ∥AC (点E 、F 分别在AC 、BC 上).点D 出发几秒后四边形DFCE 的面积为20cm 2?24.(本小题满分8分)如图,AB 是⊙O 的直径,点C 在圆上,∠BAD 是ABC ∆的一个外角,它的平分线交⊙O于点E .不使用圆规.....,请你仅用一把不带刻度的直尺.......作出∠BAC 的平分线.并说明理由.25.(本小题满分8分)如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O .M 为AD 中点,连接CM 交BD 于点N ,且ON =2.(1)求OB 的长;(2)若△DCN 与△ABO 相似,求AB 的长.26.(本小题满分9分)【发现】如图1,AB 是⊙O 的切线,A 为切点,点C 、D 在⊙O 上,不难发现当︒=∠90ACD 时,ACD ∠=DAB ∠.小明发现当︒<∠90ACD 时(如图2),AC D ∠与DAB ∠也相等.(第24题)FB EC A23题)M DNOC BA(第25题)图1B A BA【尝试】如图3,AB 是⊙O 的切线,A 为切点,点C 、D 在⊙O 上,若︒>∠90ACD ,小 明发现的结论是否仍然成立?说明理由.【运用】如图4,△ABC 内接于⊙O ,过点A 作⊙O 的切线,交BC 的延长线于点D .若BC =4,AB :AC =5:3,求AD 的长.27.(本小题满分12分)已知:如图1,在平面直角坐标系xOy 中,抛物线)0(2≠++=a c bx ax y 经过点A (2,0), C (0,4)两点,对称轴是过点(3,0)且平行于y 轴的直线,过点A 作AC 的垂线交抛物线于点B ,点P 在BC 上,BC AP ⊥. (1)求抛物线的函数表达式及点B 的坐标;(2)如图2,保持△ABC 的形状和大小不变,将△ABC 的顶点A 、C 分别在x 轴、y轴上向右、向下滑动,当点C 与坐标原点O 重合时,停止滑动.在滑动过程中,过点P 作x 轴的垂线,垂足为H ,交抛物线于点Q ,设OH = t . 求线段PQ 的长y 关于t 的函数表达式.图2(第26题)图3BAC图4B(第27题)。

最新南京2017-2018学年第一学期期末九年级数学试卷

最新南京2017-2018学年第一学期期末九年级数学试卷

2017-2018学年第一学期期末学情分析样题九年级数学(满分:120分 考试时间:120分钟)一、选择题(共6小题,每小题2分,共12分) 1.下列哪个方程是一元二次方程( ▲ )A .2x +y =1B .x 2+1=2xyC .x 2+错误!=3D .x 2=2x -3 2.函数y =3(x ﹣2)2+4的图像的顶点坐标是( ▲ ) A .(3,4)B .(﹣2,4)C .(2,4)D .(2,﹣4)3.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( ▲ )A .95分,95分B .95分,90分C . 90分,95分D .95分,85分 4.如图,四边形ABCD 内接于⊙O ,AC 平分∠BAD ,则下列结论正确的是( ▲ ) A .AB =AD B .BC =CD C .错误!=错误! D .∠BCA =∠DCA5.如图,在平面直角坐标系中,已知点A (﹣3,6)、B (﹣9,﹣3),以原点O 为位似中心,相似比 为13,把△ABO 缩小,则点A 的对应点A ′的坐标是( ▲ ) A .(﹣1,2) B .(﹣9,18)C(﹣9,18)或(9,﹣18)D .(﹣1,2)或(1,﹣2) 6.一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是( ▲ )A .平均数B .众数C .中位数D .方差二、填空题(共10小题,每小题2分,共20分) 7.若 错误!=错误!,则yyx = ▲ . 8.若⊙O 的半径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是 ▲ . 9.若关于x 的一元二次方程x 2+4x +k ﹣1=0有实数根,则k 的取值范围是 ▲ . 10.若方程x 2+2x -11=0的两根分别为m 、n ,则mn (m +n )= ▲ .11.已知P 是线段AB 的黄金分割点,AP >PB ,AB =2,则AP = ▲ .(用根式表示) 12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017~2018学年第一学期期末市属九年级学情调研测试
数 学 试 卷
本试卷共6页,共27题;全卷满分120分,考试时间120分钟.
注 意 事 项:
1.答卷前,考生务必用0.5毫米黑色水笔将自己的姓名、考试号填写在试题答题卷上相应位置.
2.考生必须在试题答题卷上各题指定区域内作答,在本试卷上和其他位置作答一律无效.
3.如用铅笔作图,必须用黑色水笔把线条描清楚.
一、填空题(本大题共有12小题,每小题2分,共计24分.)
1.已知013)1(2=+--x x m 是关于x 的一元二次方程,则实数m 的取值范围是 ▲ . 2.8与2的比例中项是 ▲ .
3.若一组数据7,3,5,x ,2,9的众数为7,则这组数据的中位数是 ▲ . 4.一个圆锥的底面半径是10,母线长为18,则这个圆锥的侧面积= ▲ .(结果保留π).
5.如图,在ABC ∆中,点D 、E 分别在AB 、AC 上,且DE ∥BC ,已知AD =2,DB =4,DE =1,则BC = ▲ .
6.如图,⊙O 的内接四边形ABCD 中,AB =BC ,72=∠D °,则BAC ∠ = ▲ °.
7.已知二次函数b x x y +++=322的图像与x 轴只有一个公共点,则实数b = ▲ .
(第6题)
8.抛掷一枚质地均匀的骰子1次,朝上一面的点数不大于2的概率= ▲ . 9.若
3
2y
x =,则
y x y x +-32= ▲ . 10.如图是二次函数)0( 2<++=a c bx ax y 的图像的一部分,过点(3-,0),对称轴
是过点(-1,0)且平行于y 轴的直线,点A ),(121
y -、B ),(22
1y 在图像上.下列说法:①0>ac ;②02=-b a ; ③024<+-c b a ;④21y y >中,正确的是 ▲ .(填序号)
11.图中的每个点(包括△ABC 的各个顶点)都在边长为1的小正方形的顶点上,在P 、
Q 、G 、H 中找一个点,使它与点D 、E 构成的三角形与△ABC 相似,这个点可以是 ▲ .(写出满足条件的所有的点)
12.对于二次函数)0( 4332>--=a x ax y ,若自变量x 分别取两个不同的值x 1,x 2时,
所对应的函数值y 相等,则当x 取 x 1+x 2 时,所对应的y 的值是 ▲ .
二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项
中,恰有一项符合题目要求.)
13.某校规定学生的学期数学成绩由研究性学习成绩与期末卷面成绩共同确定,其中研
究性学习成绩占40%,期末卷面成绩占60%,小明研究性学习成绩为80分,期末卷 面成绩为90分,则小明的学期数学成绩是( ▲ ) A .80分 B .82分 C .84分 D .86分
(第11题)
14.二次函数234
3
2
+--=)(x y 的图像的顶点坐标是( ▲ )
A .(3,2)
B .(-3,2)
C .(-3,-2)
D .(3,-2)
15.一个等腰三角形的三边长分别为n m ,,3,且n m ,是关于x 的一元二次方程 0182
=-+-t x x 的两根,则t 的值为( ▲ )
A .16
B . 18
C .16或17
D . 18或19
16.在平面直角坐标系中,将二次函数2017 2018 2016---=)()(x x y 的图像平移后,
所得函数的图像与x 轴的两个交点之间的距离为2个单位,则平移方式为( ▲ ) A .向上平移2017个单位
B .向下平移2017个单位
C .向左平移2017个单位
D .向右平移2017个单位
17.【阅读】图①,②,③表示的是平面内两圆相对运动时得到的三种不同的位置关系,
分别称为两圆内切、相交、外切.
【尝试】已知⊙1O 和⊙2O 的半径分别是4、2.5,圆心1O 、2O 之间的距离为d .通过 观察,写出⊙1O 和⊙2O 相交时d 的取值范围是( ▲ )
A .45.1<<d
B .45.2<<d
C .5.65.1<<d
D .5.65.2<<d
三、解答题(本大题共有10小题,共计81分.解答时应写出必要的文字说明、证明过
程或演算步骤.) 18.(本小题满分12分)
解下列方程:
(1)18122=+)(x (2)
77)215)(5=-+x x ( (3)02
1
232=+-x x 19.(本小题满分8分)
(第17题)



王老师要从甲、乙两位同学中选拔一人参加某项竞赛,赛前对他们进行5次测试,下图是两人5次测试成绩的折线统计图. (1)分别填写甲、乙两名学生5次测验
成绩的平均数及方差;
(2)王老师应选派 ▲ 参加这次竞赛,理由是 ▲ .
20.(本小题满分6分)
在三张完全相同且不透明的卡片正面分别写了-1,0,1三个数字,背面向上洗匀后随机抽取一张,将卡片上的数字记为a ,然后放回,洗匀后再次随机取出一张,将卡片上的数字记为b ,然后在平面直角坐标系中画出点a M (,)b 的位置. (1)请用树状图或列表的方法,写出点M 所有可能的坐标; (2)求点M 在第二象限的概率. 21.(本小题满分6分)
如图,在平面直角坐标系中,以A (3,0)为圆心,5为半径作⊙A ,与y 轴的正半
轴交于点B .
(1)点B 的坐标为 ▲ ;
(2)△AOB 的内切圆半径为 ▲ 个单位长度; (3)将⊙A 在平面直角坐标系内平移,使其与x 轴、y 轴
都相切,记平移后的圆的圆心为1A ,则 1AA ▲ 个单位长度. 22.(本小题满分6分)
(第19题)
某水果店出售一种水果,每只定价20元时,每周可以卖出300只.试销发现:每只水果每降价1元,每周可多卖出25只,如何定价,才能使一周销售收入最多?
23.(本小题满分6分)
如图,Rt ABC ∆中,12=AB cm ,10=BC cm ,点D 从点A 出发沿AB 以2cm/s 的速度向点B 移动,到达点B
处停止运动,在移动过程中始终保持DE ∥BC ,DF ∥AC (点E 、F 分别在AC 、BC 上).点D 出发几秒后四边形DFCE 的面积为20cm 2?
24.(本小题满分8分)
如图,AB 是⊙O 的直径,点C 在圆上,∠BAD 是
ABC ∆的一个外角,它的平分线交
⊙O
于点E .不使用圆规.....,请你仅用一把不带刻度的直尺.......作出∠BAC 的平分线.并说明理由.
25.(本小题满分8分)
如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O .M 为AD 中点,连接CM 交BD 于点N ,且ON =2.
(1)求OB 的长;
(2)若△DCN 与△ABO 相似,求AB 的长.
26.(本小题满分9分)
【发现】如图1,AB 是⊙O 的切线,A 为切点,点C 、D 在⊙O 上,不难发现当︒
=∠90ACD 时,ACD ∠=DAB ∠.
小明发现当︒<∠90ACD 时(如图2),A
C D ∠与DAB ∠也相等.
(第24题)
F
B E
C A
23题)
M D
N
O
C B
A
(第25题)
图1
B A B
A
【尝试】如图3,AB 是⊙O 的切线,A 为切点,点C 、D 在⊙O 上,若︒>∠90ACD ,小 明发现的结论是否仍然成立?说明理由.
【运用】如图4,△ABC 内接于⊙O ,过点A 作⊙O 的切线,交BC 的延长线于点D .若BC =4,AB :AC =5:3,求AD 的长.
27.(本小题满分12分)
已知:如图1,在平面直角坐标系xOy 中,抛物线)0(2≠++=a c bx ax y 经过点A (2,0), C (0,4)两点,对称轴是过点(3,0)且平行于y 轴的直线,过点A 作AC 的垂线交抛物线于点B ,点P 在BC 上,BC AP ⊥. (1)求抛物线的函数表达式及点B 的坐标;
(2)如图2,保持△ABC 的形状和大小不变,将△ABC 的顶点A 、C 分别在x 轴、y
轴上向右、向下滑动,当点C 与坐标原点O 重合时,停止滑动.在滑动过程中,过点P 作x 轴的垂线,垂足为H ,交抛物线于点Q ,设OH = t . 求线段PQ 的长y 关于t 的函数表达式.
图2
(第26题)
图3
B
A
C
图4
B
(第27题)。

相关文档
最新文档