行测之数量关系-十字交叉法

合集下载

2015国考行测·数量关系:比例问题十字交叉法

2015国考行测·数量关系:比例问题十字交叉法

2015国考行测·数量关系:比例问题十字交叉法2015国考行测·数量关系:比例问题十字交叉法一、十字交叉法的原理将两种不同浓度的同种溶液(浓度分别为a、b,质量分别为A、B)混合,得到的混合溶液浓度为r=(Aa+Bb)/(A+B),化简该式得到(r-b)/(a-r)=A/B,即将各部分的“平均值”和总体的“平均值”交叉做差后得到的比值与这两种溶液的质量之比相等。

用十字交叉法表示如下:质量浓度交叉做差第一种溶液 A a r-br第二种溶液 B b a-r得到(r-b)/(a-r)=A/B二、交叉做差的注意事项1、注意:“大减小”或同时“小减大”交叉做差时,a-r、r-b或者r-a,b-r,也就是说r做一次减数,做一次被减数。

在这三个量都已知时,习惯是“大减小”;当这三个量中因有未知数而无法判断谁大谁小时,只要遵循r做一次减数,做一次被减数的原则即可。

例题1:一批手机,商店按期望获得100%的利润来定价,结果只销售掉70%。

为了尽早销售掉剩下的手机,商店决定打折出售,为了获得的全部利润是原来期望利润的91%,则商店所打的折是:A.六折B.七折C.八五折D.九折解析:利润=收入-成本。

设打折后的利润率为x,则有:第一部分手机 70% 100% 91%-x91%第二部分手机 30% x 9%故有(91%-x)/9%=70%/30%,解得x=70%,所以商店所打的折扣为(1+70%)÷(1+100%)=85%,故选C。

【注释】此处,91%与x交叉做差时如果写成x-90%,会导致结果错误2、注意:涉及增长时,交差所得的比值是基期值例题2:某高校2006年度毕业学生7650名,比上年度增长2%。

其中本科毕业生比上年度减少2%,而研究生毕业生数量比上年度增加10%,那么,这所高校今年毕业的本科生有:A.3920人B.4410人C.4900人D.5490人解析:利用十字交叉法,有:本科毕业生 -2% 8%2%研究生毕业生 10% 4%所以2005年本科毕业生与研究生毕业生人数之比为8%∶4%=2∶1,故今年毕业的本科生有7650÷(1+2%)×(2/3)×(1-2%)=4900人,故选C。

[数量关系] 数量关系之十字交叉法

[数量关系] 数量关系之十字交叉法

行测备考:数量关系之十字交叉法国考行测考试历来被认为是公务员考试中难度最大的一个模块,其中最难的模块之一是数量关系,在数量关系这个模块中,题型多,方法多,短时间内不易掌握,今天,华图教育李冲来带您一起回顾数量关系中的经典方法之十字交叉法:一、初始十字交叉法:“十字交叉法”本身是数学运算中经典的技巧之一,对于符合使用条件的试题几乎有“秒杀”的效果,“十字交叉法”实际上方程的一种简化形式,凡是符合下图方程形式,都可以使用“十字交叉法”的形式来简化:二、真题回顾【例1】某养鸡场计划购买甲、乙两种小鸡苗共2000只进行饲养,已知甲种小鸡苗每只2元,乙种小鸡苗每只3元。

相关资料表明:甲、乙两种小鸡苗的成活率分别为94%和99%。

若要使这批小鸡苗的成活率不低于96%,且买小鸡苗的总费用最小,则应选购甲、乙两种小鸡苗各有( )。

A. 500只、1500只B. 800只、1200只C. 1100只、900只D. 1200只、800只【华图解析】:采用十字交叉法操作:甲乙两种小鸡的数量比为3:2,因此,本题答案为D选项。

【例2】某单位共有职工72人,年底考核平均分数为85分,根据考核分数,90分以上的职工评为优秀职工,已知优秀职工的平均分数为92分,其他职工的平均分数是80分,问优秀职工的人数是多少?( )A.12B.24C.30D.42【华图解析】:根据题意,假设优秀职工的人数为x,非优秀职工的人数为y,则依据十字交叉原理有:则优秀职工:非优秀职工=5:7,总的人数为72人,故优秀职工的人数为30,则答案选择C十字交叉法在特定的题型里面有很好的应用,因此要熟练掌握十字交叉法适用的前提及做法,希望各位考生能够在考场中轻松应对!。

国家公务员考试行测备考:十字交叉法

国家公务员考试行测备考:十字交叉法

国家公务员考试行测备考:十字交叉法
国家公务员考试行测备考:十字交叉法
十字交叉法主要解决公务员考试行测数量关系中的混合平均量问题,运用过程中往往涉及到五列数字:第一列:部分的平均量;第二列:总体的平均量;第三列:部分平均量与总体平均量交叉做差的差值;第四列:差值的最简比;第五列:求得部分平均量的分母所对应的实际量。

若题中已知其中四个量,对应其位置,便可以求出五个量中的任意一个量,是解决数量关系问题中非常实用的一种方法,下面中公教育专家为大家进行详细讲解。

一、两者十字交叉
常见题型一:平均分问题
[模板] 已知一个班级,男生人数为x 人,平均分为A,女生人数为 y 人,平均分为 B,求这个班级的总体平均分。

(A>B)
[例题] 某学校对其120 名学生进行随机抽查体能测验,平均分是73 分,其中男生的平均分是 75 分,女生的平均分是 63 分,男生比女生多多少人?
A.70
B.80
C.60
D.85
常见题型二:溶液问题
【模板】已知A瓶溶液的浓度为 A%,B瓶的溶液浓度为 B%,分别取 x 和 y 份进行混合,求得到的溶液浓度为多少。

(A>B) 【例题】已知在浓度为90%的甲瓶中取40g 溶液,在浓度为60%的乙瓶中取 20g 溶液,进行混合,得到的溶液的浓度为多少?
A.75%
B.80%
C.85%
D.90%。

公务员—行测—十字交叉法的原理

公务员—行测—十字交叉法的原理

一、十字交叉法的原理(这个有的前辈和大侠有比较详细的讲解,简单易懂,在这里就直接用前辈写的东西来说明了,但是为了符合我的一些习惯,还是做了一定的修改)首先通过例题来说明原理。

某班学生的平均成绩是80分,其中男生的平均城市75分,女生的平均城市85分,求该班男生和女生的比例。

方法一:搞笑(也是高效)的方法。

男生一人,女生一人,总分160分,平均分80分,男生和女生的比例是1:1。

月月讲解:这个就是咱常用的特殊值法吧,不过思路稍微特殊一点。

方法二:假设男生有X,女生有Y。

有(X×75+Y×85)/(X+Y)=80,整理有X=Y,所以男生和女生的比例是1:1。

月月讲解:这个就是常用的列方程法方法二:假设男生有X,女生有Y。

男生:X 75 85-80=580女生:Y 85 80-75=5男生:女生=X:Y=1:1。

月月讲解:这一步前辈说的不是很清楚,补充修正了一下,其实说白了,十字交叉的左侧是各部分的量,右侧是混合后的量。

总结一下,一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。

平均值为C。

求取值为A的个体与取值为B的个体的比例。

假设A有X,B有(1-X)。

AX+B(1-X)=CX=(C-B)/(A-B)1-X=(A-C)/A-B因此:X:(1-X)=(C-B):(A-C)上面的计算过程可以抽象为:A C-BCB A-C这就是所谓的十字相乘法。

月月讲解:这个是大侠的,不过我个人觉得,十字交叉法用溶液问题来讲解更加浅显易懂,怎么说呢,我们还是通过例题来讲解。

有两种溶度浓度的溶液A、B,其浓度为x、y,现将这些溶液混合到一起得到浓度为r的溶液,那么这两种溶液的浓度之比为多少?假设A溶液的质量为X,B溶液的浓度为Y,则有:X*x+Y*y=(X+Y)*r整理有X(x-r)=Y(r-y);所以有X:Y=(r-y):(x-r)上面的计算过程就抽象为:X x r-yrY y x-r这样就看着清楚多了吧,知道是哪个比哪个等于什么值了。

行测资料分析技巧 十字交叉法

行测资料分析技巧 十字交叉法

行测资料分析技巧十字交叉法任何一场考试取得成功都离不开每日点点滴滴的积累,下面由为你精心准备了“行测资料分析技巧:十字交叉法〞,持续将可以持续获取更多的考试资讯!十字交叉法主要解决的就是比值的混合问题,在的过程中,资料分析局部解题经常用的一种解题方法。

它应用起来快速、准确、方便,为我们考试中秒杀题目提供了很大的助力。

那么接下来跟大家一起来学习十字交叉法。

十字交叉法是解决比值混合问题的一种非常简便的方法。

这里需要大家理解“比值〞“混合〞这两个概念。

比值:满足C/D的形式都可以看成是比值;混合:分子分母具有可加和性。

平均数问题、浓度问题、利润问题、增长率问题、比重等混合问题,都可以用十字交叉法来解决。

在该模型中,需要大家掌握以下几个知识点:1、a和b为局部比值、r为整体比值、A和B为实际量2、交叉作差时一定要用大数减去小数,保证差值是一个正数,防止出现错误。

这里假定a>b3、实际量与局部比值的关系实际量对应的是局部比值实际意义的分母。

如:平均分=总分/人数,实际量对应的就是相应的人数;浓度=溶质/溶液,实际量对应的就是相应的溶液质量;增长率=增长量/基期值,实际量对应的就是相应的基期值。

4、在这里边有三组计算关系(1)第一列和第二列交叉作差等于第三列(2)第三列、第四列、第五列的比值相等(3)第1列的差等于第三列的和三组计算关系是我们应用十字交叉法解题的关键,一定要记住并且灵活应用。

1、求a,即总体比值、第二局部比值、实际量之比,求第一局部比值。

例某班有女生30人,男生20人。

期中的数学考试成绩如下,全班总的平均分为76,其中男生的平均分为70。

求全班女生的平均分为多少?解析:平均分=总分/人数,是比值的形式。

此题中,男生的平均分和女生的平均分混合成了全班的平均分,是比值的混合问题,可以用十字交叉法来解题。

2、求b,即总体比值、第一局部比值、实际量之比,求第二局部比值。

例某班有女生30人,男生20人。

公务员考试行测十字交叉法

公务员考试行测十字交叉法

四、十字交叉法我们常说的十字交叉法是一种针对特殊题型的简捷算法,特别适合于两总量、两关系的混合物的计算,用来计算混合物中两种组成成分的比值,可以视作为加权平均问题。

例题1:含糖70%的糖水2 000克和含糖60%的糖水3 000克混合后的浓度是多少?A.59%B.62%C.64%D.68%解题分析:此题为浓度问题。

采用十字交叉法,设混合后糖水的浓度为x,则有:很多类型混合问题都可以采用十字交叉法解决,采用十字交叉法的时候要注意比例的对应以及减数与被减数的顺序。

例题2:某初中2008年共招收学生1 000人,2009年招收的学生总数比2008年增长了1%,其中招收的男生比上年减少了5%,招收的女生比上年增加了10%,问今年招收了男生多少人?A.480B.510C.540D.570解题分析:总体分为两部分,知道部分的变化情况和总体的变化情况,采用十字交叉法。

十字交叉法的原理及衍生定义分析与运用例题1: 教练员中男占90%,运动员中男占80%,在教练员和运动员中男占82%,教练员与运动员人数之比是A.2:5 B.1:3 C.1:4 D.1:5就这个题目我们先通过简单的方程方法来做!假设教练员人数是a, 运动员人数是b90%a+80%b=82%(a+b) 很容易推导出 (90%-82%)a=(82%-80%)b 则 a:b=2%:8% =1:4我们建立十字交叉法如果做呢教练员:a(90%) 82%-80%= 2%总人数a+b(82%)运动员:b(80%) 90%-82%= 8%同样得到了 a:b=2%:8%=1:4在这里我们需要注意这样几个问题,(1) 十字交叉法不仅仅是比例的相减也可以是实际量的相减构成的比例.(2) 相减的方法是交叉相减或者说是建立反比关系(3) 最重得到的比例一定是原始量的比例关系(4) 衍生的定义是注意两者的原始人数之差是其比例和值的一种系数体现针对这一点我们可以通过十字交叉法的表现形式来推演证明:如上述例题,我们看到了十字交叉法后面的部分: 82%-80%=2% 以及 90%-82%=8%,其实不难发现,82%作为总的平均比例是其人数比例的一种反应. 比例肯定是接近人数多的一方的原始比例. 注意当两者相加: (90%-82%)+(82%-80%)=(a+b)M,( 这里的M是自然数系数可以为1,2,3,4,5……)注意这里的a+b是构成比例之后的比例点.其实一步到位很简单的反应出 90-80=(a+b)M 10=(a+b)M 因为M是系数, 最明显的情况可以确定 a+b一定是5的倍数或者2的倍数看选项只有C满足作为衍生的十字交叉法的公式演变我们可以再次举例来证明:某班男生比女生人数多80%,一次考试后,全班平均成绩为75分,而女生的平均分比男的平均分高20%,则此班女生的平均分是()A:84 B:85 C:86 D:87就这个题目你可以建立十字交叉法来解答假设男生平均成绩是a,女生就是1.2a 男生人数跟女生人数之比就是最终之比 1.8:1=9:5男生: a 1. 2a-75全班平均成绩(75)女生:1.2a 75-a根据交叉法得到的比例 (1.2a-75):(75-a)=9:5 解得a=70 女生就是1.2a=84根据衍生的定义公式我们发现0.2a 是多出来的平均值,这就是两者比例点的和.根据我们上面衍生出来的公式应该=最重比例之和9+5=14 再乘以系数M0.2a=14M a=70M 因为分数不可能超过100 所以M只能=1,即a=70 女生就是1.2a=84十字交叉法的数学原理:对于二元一次方程:Ax+By=(x+y)C 经过整理可以变成:x C - B ----- = --------- y A - C这个公式就是十字交叉法的原理。

行测冲刺:巧用“十字交叉”法

行测冲刺:巧用“十字交叉”法

“十字交叉”法做为数学运算中常用的一种解题思想。

一般情况下,我们是在“溶液问题”中引入“十字交叉法”,我们简单把“十字交叉”法的原理重述一遍。

例:重量分别为 A 和 B 的溶液,浓度分别为 a 和b,混合后的浓度为 r。

例: A 个男生的平均分为 a, B 个女生的平均分为 b,总体平均分为 r 。

上述两个例子,我们均可以用如下的关系表示:(此处假设 a>b)上述“十字交叉”法的操作过程很简单,但是碰到类似的题目,学生很难把握 A 到底放哪个量,因此就很难将复杂的计算转化成简单的“十字交叉”法来操作。

如果学生能理解“十字交叉”法到底适合哪类题型,并且记住接下来讲的做题套路,就可以从“战略”层次提升“十字交叉”法的应用。

从上边的两个例子,我们可以看出,只要一个整体由两个部分构成,题目涉及到某个量在各部分中的比例,以及这个量在整体中的比例,即“混合”问题,均可思考用“十字交叉”法来操作。

而对于 A 到底放哪个量,我们可以观察:第 1 个例题, A 是一种溶液的质量,所以 A 是 a 的分母,同样 B 是 b 的分母。

对于第 2 个例题, A 是男生的总人数,同样 A 是a 的分母,同理 B 是 b 的分母。

综上,大家只要记住“十字交叉”法大家在操作时, A 就是 a 的分母, B 是 b 的分母,这样就很容易把“十字交叉”法的各个量放到操作模型中了。

【例题 1】现有含盐 20%的盐水 500g,要把它变成含盐 15%的盐水,应加入 5%的盐水多A.200B.250C.350D.500【答案】 B【解析】这是一道非常典型的溶液问题,溶液由两部分构成,我们可以用“十字交叉”法来操作,如下:【例题 2】一只松鼠采松子,晴天每天采 24 个,雨天每天采 16 个,它一连几天共采168 个松子,平均每天采 21 个,这几天当中晴天有几天?A.3B.4C.5D.6【答案】 C【解析】本题是典型的一个整体由两个部分组成。

行测数学运算之十字交叉、浓度问题和牛吃草

行测数学运算之十字交叉、浓度问题和牛吃草

一、十字交叉法十字交叉法是数算里面的一个重要方法,很多比例问题,都可以用十字交叉法来很快地解决,而在资料分析中,也能够派上很大用场,所以应该认真掌握它。

(一)原理介绍通过一个例题来说明原理。

例:某班学生的平均成绩是80分,其中男生的平均成绩是75,女生的平均成绩是85。

求该班男生和女生的比例。

方法一:男生一人,女生一人,总分160分,平均分80分。

男生和女生的比例是1:1。

方法二:假设男生有A,女生有B。

(A*75+B85)/(A+B)=80整理后A=B,因此男生和女生的比例是1:1。

方法三:男生:75 580女生:85 5男生:女生=1:1。

一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。

平均值为C。

求取值为A的个体与取值为B的个体的比例。

假设A有X,B有(1-X)。

AX+B(1-X)=CX=(C-B)/(A-B)1-X=(A-C)/(A-B)因此:X:(1-X)=(C-B):(A-C)上面的计算过程可以抽象为:X A C-BC1-X B A-C这就是所谓的十字相乘法。

十字相乘法使用时要注意几点:第一点:用来解决两者之间的比例关系问题。

第二点:得出的比例关系是基数的比例关系。

第三点:总均值放中央,对角线上,大数减小数,结果放对角线上。

(二)例题与解析1.某体育训练中心,教练员中男占90%,运动员中男占80%,在教练员和运动员中男占82%,教练员与运动员人数之比是A.2:5B.1:3C.1:4D.1:5答案:C分析:男教练:90%2%82%男运动员:80%8%男教练:男运动员=2%:8%=1:42.某公司职员25人,每季度共发放劳保费用15000元,已知每个男职必每季度发580元,每个女职员比每个男职员每季度多发50元,该公司男女职员之比是多少A.2∶1B.3∶2 C. 2∶3D.1∶2答案:B分析:职工平均工资15000/25=600男职工工资:58030600女职工工资:63020男职工:女职工=30:20=3:23.某城市现在有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%。

公务员行测数量关系十大知识要点

公务员行测数量关系十大知识要点

数量关系十大知识要点一、行程问题1.核心公式:S二V x T,路程二速度x时间2.平均速度二总路程一总时间3.若物体前一半时间以速度VI运动,后一半时间以速度V2V1+V2运动,则全程平均速度为一^4•若物体前一半路程以VI运动,后一半路程以V2运动,则全程平均速度为2V1V2V1+V25.相遇时间二相遇路程一速度和6.追及时间二追及路程一速度差7.直线多次相遇问题:从两地同时出发的直线多次相遇问题中,第n次相遇时,每个人走的路程等于他第一次所走的路程的(2n-l)倍8.环形相遇问题:环形相遇问题中每次相遇所走的路程之和是一圈。

如果最初从同一点出发,那么第n次相遇时,每个人所走的总路程等于第一次相遇时他所走路程的n倍9.流水问题:顺水速度=船速+水速;逆水速度=船速-水速船速二(顺水速度+逆水速度)一2;水速二(顺水速度-逆水速度)一210•火车过桥问题:火车速度X时间二车长+桥长完全在桥上时间二(桥长-车长)一火车速度二、几何问题札占扌absir<-yj:<ir9-l-EcMn上正方廉-1□-S-a5[C"2(i*£■!L翠行OHA需AZ7S"BH©知irF・+=(f番方体GI S=^(»*bc44c}V-a&cIE方体0V-a15»4IT P1ff]讯糧捧&5Jnf*2zrfti廿・Sh*r+(S列戛戟[£%?A(S炖卫独為1.极限理论平面图形:周长一定,趋近于圆,面积越大面积一定,趋近于圆,周长越小立体图形:表面积一定,越趋近于球,体积越大体积一定,越趋近于球,表面积越小2.三角形常见考点两边之和大于第三边,两边之差小于第三边较小的角对应的边也较小3.内角和:N边形的内角和为(N-2)180°4.几何图形的缩放:对于常见的几何图形,若将其边长变为原来的n倍,则其周长变为原来的n倍,面积变为原来的汩倍,体积变为原来的用倍三、十字交叉Aa+Bb={A+B)x匚整理变形后可得" (a>c>b)A c-i用图示可简单表示为其中c为平均值十字交叉法使用时要注意几点:1.用来解决两者之间的比例关系问题2.得出的比例关系是基数的比例关系3.总均值放中央,对角线上,大数减小数,结果放对角线上四、利润问题进价:商品进货的价格定价:商家根据进价定出的商品出售价格售价:商品实际的出售价格利润:售价与进价的差利润率:利润与进价的百分比折扣:售价与定价之比五、方阵问题1.方阵每层总人数=每边人数*4-42.方阵相邻两层人数相差8,实心方阵最外层每边人数为奇数时,从内到外每层人数依次是1,8,16,24……3.在方阵中,若去掉一行一列,去掉的人数=原来每行人数*2-1若去掉两行两列,去掉的人数=原来每行人数*4-2*24.实心方阵总人数二最外层每边人数N的平方5.空心方阵总人数=最外层每边人数的平方-(最内层每边人数-2)的平方或者利用等差数列求和公式,首项为最外层总人数,公差为-8的等差数列六、浓度问题溶液=溶质+溶剂浓度二溶质三溶液高浓度溶液A 与低浓度溶液B 混合,得到溶液C,那么C 的浓度介于 A 和B 之间。

山西公务员行测数量关系:运用十字交叉法求解浓度问题

山西公务员行测数量关系:运用十字交叉法求解浓度问题

山西公务员行测数量关系:运用十字交叉法求解浓度问题公务员的笔试考试日渐临近,学员不得不投入紧张的备考中。

学员在有限的备考时间内学习,就需要把精力放在基础的解题方法上,尤其是短时间内容易掌握的数学方法。

数量关系一直是大家在复习过程中比较头疼的一类题型,但我们只需掌握好解题方式和方法,难的题目也会变得简单。

我们在解决数量关系题目的过程中经常会遇到浓度问题,很多题目都会涉及到不同浓度不同质量溶液的混合,遇到此类问题,我们基本的求解方式为通过列方程进行计算,求解方程的过程中计算量难免会比较大,但可以按照列方程计算的问题,均可用十字交叉法计算。

十字交叉法是应用于混合问题中的一种巧算方法。

所谓的混合问题即部分量和部分量混合成总量。

经常见的有平均分的混合、浓度的混合、增长率的混合等。

形如:ax+by=c(x+y)的二元一次方程,求x:y的值。

将原式作如下变形:ax+by=c(x+y)→x:y=(c-b):(a-c),用图进行表示的话可写做:【例题1】现有浓度为20%的盐水500克,要把它变成浓度为12%的盐水,应加入浓度为10%的盐水多少克?A.1500B.1800C.2000D.2400【答案】C。

解析:这是一道非常典型的溶液的混合问题,溶液由两部分混合而成,用十字交叉法进行计算。

设应加浓度为10%的盐水X克,有浓度问题在数量关系的考试中比较常见,我们可以通过十字交叉法进行快速有效的计算。

在使用十字交叉法时一定要找准部分量、总量以及得到的差值所代表的含义。

同时对于熟练关系中平均分数的混合、利润率的混合等等都可以用十字交叉计算,另外在资料分析中,碰到增长率的混合亦可以用十字交叉,得到的差值比是部分量基期值的比值。

希望同学们在数量关系复习的过程中可以举一反三,做到事半功倍。

公务员行测资料分析技巧:十字交叉法

公务员行测资料分析技巧:十字交叉法

公务员⾏测资料分析技巧:⼗字交叉法 ⾏测资料分析技巧有哪些?正在备考⾏测考试的朋友可以来看看,下⾯由店铺⼩编为你准备了“公务员⾏测资料分析技巧:⼗字交叉法”,仅供参考,持续关注本站将可以持续获取更多的内容资讯! 公务员⾏测资料分析技巧:⼗字交叉法 在⾏测资料分析中应⽤时,主要有三层结论,前两层结论主要⽤于定性判断,⽽第三层结论⽤于定量计算。

在前两篇⽂章中,我带着考⽣们分别探讨了⼗字交叉法在资料分析中的应⽤环境以及两层应⽤技巧,今天带⼤家⼀起来学习学习资料分析的最后⼀层应⽤,定量计算: 结论⼀:整体平均数处在部分平均数之间,即部分平均数有些⽐整体平均数⼤,有些⽐整体平均数⼩。

结论⼆:整体平均数靠近“分⺟”较⼤的那个分平均。

结论三:求部分量分⺟之⽐ 今天我们要讨论的结论三,关于它的内容表述⽅式和前两种有所不同,我们上⾯的⿊字是在说明它的作⽤,是⽤来求部分量的分⺟之⽐。

⽽具体怎么求,因为不太好⽤⼀句话的⽂字表述。

所有并没有表述在上⾯的⿊体字中。

具体内容展开详解: 1.解决问题:求部分量分⺟之⽐ 我们知道,⼗字交叉法是⽤来解决研究整体平均数和部分平均数之间的关系的题⺫的。

⽐如进出⼝总额的增⻓率和进⼝与出⼝的增⻓率,就分别是整体平均数和部分平均数。

由于任何⼀个平均数都是除法计算得来,⽐如出⼝的增⻓率=出⼝的增⻓率/出⼝的基期量、进⼝的增⻓率=进⼝的增⻓率/进⼝的基期量,则每⼀个平均数在求解时都有其分⺟。

当⼀个整体只分成两个部分,如果题⺫让我们求这两个部分的平均数,分⺟的量的⽐,即为求部分量分⺟之⽐,也就是我们结论三的应⽤环境。

如下题: 例题:2018年某市中学⽣有13.2万⼈,增⻓率1.2%,其中⼥⽣⼈数增⻓了0.8%,男⽣⼈数增⻓了1.5%。

问:2017年该市中学⽣男⽣⼈数与⼥⽣⼈数的⽐例是?A.4:3B.3:4C.5:5D.5:6 解析:题⺫中的“平均数”概念是增⻓率,全体中学⽣⼈数和⼥⽣⼈数男⽣⼈数构成了整体和部分间的关系。

公务员行测数量关系——方法技巧之十字交叉法

公务员行测数量关系——方法技巧之十字交叉法

数,只有 C 选项满足。答案选择 C。
-2-
B ar
B ar
注:1.总均值放中央,对角线上大数减小数,结果放在对角线上;2.A 是与 a 相乘的,B 是与
b 相乘的。
做题时需仔细确定好 A 和 B,切记与其它量混淆。
A 与 B 常见的表示量有:
平均数混合——所得到的比例为数量(人数)之比; 比例混合——所得到的比例为具体量之比; 浓度(溶液)混合——所得到的比例为溶液质量之比; 折扣混合——所得到的比例为原价之比; 增长率混合——所得到的比为基期量之比。 【例 1】(2016 广州)某单位为全体员工进行体检,平均体重是 57.5 公斤。其中,男员工的
3000×(1+9%)=3270(人)。答案选择 C。
解法二:奇偶特性法。由题意可得今年研究生:去年研究生=109:100,可得今年研究生人数
是 109 的倍数,排除 A 选项。因为今年本科生比去年减少 4%,所以,今年本科生:去年本科生=24:
25,可得今年本科生人数为 24 的倍数,是偶数,总数也为偶数,因此今年研究生人数也应该为偶
今年新增的计划招生人数 = 去年本科生招生人数×(-4%)+ 去年研究生招生人数×9% = 去年的
招生总人数×2%,结合十字交叉法,得到:
-1-
去年招生本科生人数:-4%
7%
\/
2%
容易得知,去年本科生:去年研究生=7:6。
/\
去年招生研究生人数:9%
6%
所 以 去 年 的 研 究 生 计 划 招 生 数 为 6500 6 3000 ( 人 ), 那 么 今 年 研 究 生 招 生 计 划 为 67
/\
美术系人数:40%
5%

四川公务员考试:数量关系之十字交叉法

四川公务员考试:数量关系之十字交叉法

四川公务员考试:数量关系之十字交叉法四川华图教育 宋金玲十字交叉法是数学中非常常用的经典技巧,这种方法实际上是简化方程的一种形式,对满足此方法条件的试题有简化计算的效果,一般情况下涉及溶液混合问题、平均数问题等都可以采用十字交叉法,比如我们把溶度为a 的A 溶液和浓度为b 的B 溶液进行混合,混合后的浓度为r ,此时我们可以列出如下等式()A r b Aa Bb A B r B a r -+=+⇒=⇒-A:B:a b r a-r r-b è A B =a-rr-b根据这个十字交叉形式,只要满足A 、B 、a 、b 、r 这个五个量中的任意三个量,我们都可以采用十字交叉法进行简化计算,在这里提醒广大考生一定要注意,进行十字交叉时一定是大数减小数,而且r 一定是介于a 和b 之间,进行十字交叉之后得出的比值一定是原始的量之比,溶液问题浓度混合交叉后得出的比值是溶液之比,平均数问题得出的比值是各自的量之比,溶液问题和平均数问题都是数学运算中的经典题型,但提醒广大考生注意,十字交叉法不仅可以解决数学运算问题,同样资料分析问题中只要涉及这五种相关数据都可以采用十字交叉法进行求解,以下我们通过几道例题来给广大考生进行详细讲解。

一、数学运算中十字交叉法的运用(一)、溶液混合问题例题1:某盐溶液100克,加入20克水稀释,浓度变为50%,然后加入80克浓度为25%的盐溶液,此时,混合后的盐溶液浓度为()。

A.30%B.40%C.45%D.50%观察题干这是一道典型的溶液混合问题,众所周知,溶液混合之前和混合之后的溶质是相等的,假设混合之后的浓度为r,此题我们可以列出如下等式,120⨯50%+80⨯25%=(120+80)r,这个等式满足Aa+Bb=(A+B)r 的形式,我们可以采用十字交叉法进行简化计算,具体交叉形式如下:120 :50% r-25%r 12025%8050%r r-=- 得出r=40%80 :25% 50%-r所以,本题选择B选项。

公务员考试数量关系——十字交叉法

公务员考试数量关系——十字交叉法

公务员考试数量关系——十字交叉法【答题妙招】我们常说的十字交叉法实际上是十字交叉相比法,它是一种图示方法。

十字交叉图示法实际上是代替求和公式的一种简捷算法,它特别适合于两总量、两关系的混合物的计算,用来计算混合物中两种组成成分的比值。

第一部分的平均值为a ,第一部分的平均值为b (这里假设a>b ),混合后的平均值为r 。

平均值 交叉做差后 对应量得到等式:BA r a b r =--【例1】烧杯中装了100克浓度为10%的盐水,每次向该烧杯中加入不超过14克浓度为50%的盐水。

问最少加多少次之后,烧杯中的盐水浓度能达到25%( )(假设烧杯中盐水不会溢出)A.6B.5C.4D.3【答案】B。

若每次加入的50%的盐水不超过14g,又要求加入次数最少,则每次加入尽可能多的盐水,不妨设每次加入14g50%的盐水。

方法一:十字交叉法。

求得要配比出25%的盐水,需要10%和25%的食盐水的配比为5:3,现有100g10%的盐水,则恰好60g50%的盐水,若每次加入的50%的盐水不超过14g,则至少需要5次才能到60g。

方法二:方程法,根据溶液浓度计算,设加入x次14g的盐水,则有:100×10%+14x×50%=(100+14x)×25%,求解方程即可。

【例2】某单位原有45名职工,从下级单位调入5名党员职工后,该单位的党员人数占总人数的比重上升了6个百分点。

如果该单位又有2名职工入党,那么该单位现在的党员人数占总人数的比重为多少()A.50%B.40%C.70%D.60%【答案】A。

方法一:方程法,设原有党员x名,x÷45+6%=(x+5)÷50,解得x=18。

则18+2+5=25,则为50%。

方法二:十字交叉法,设原有党员比例为x,则新添进来的5名党员比例为1,而融合后的比例为x+5。

则:则有(100-x-6)÷6=45÷5,解得x=40,则最开始党员数为40%×45=18。

2016国家公务员考试行测速解技巧之十字交叉法

2016国家公务员考试行测速解技巧之十字交叉法

2016国家公务员考试行测速解技巧之十字交叉法数量关系是大家公认的公务员考试行测中的难点,因此如何运用技巧快速解题是行测数量关系备考必啃的“硬骨头”。

十字交叉法是可以将复杂的方程运算转化为简便的比例关系式,从而实现快速运算的一种方法,该方法主要解决求平均问题,例如平均分问题、利润平均问题、溶液混合问题、资料分析问题等,中公教育专家在此进行指点。

一、十字交叉法的原理
十字交叉法实际上是由方程方法总结推导出的一种简洁运算。

我们通过一个例子来看一下十字交叉法的原理。

例:10%的溶液和30%的溶液混合为浓度为26%的溶液,那么这两种溶液的质量之比为多少?。

十字分析法

十字分析法

数量关系是大家公认的公务员考试行测难点,因此如何运用技巧快速解题是行测数量关系备考的重点。

中公教育专家将结合例题给大家讲解十字交叉法的应用,帮助各位考生有效备考。

原理:十字交叉法可以代替求和公式的简捷算法,实际上是一种图示法,特别适合于两总量、两关系的混合物的计算,用来计算混合物中两种组成成分的比值。

如:X%的溶液和Y%的溶液(X%〉Y%)混合为浓度为Z%的溶液,那么这两种溶液的质量之比为多少?假设X%的溶液质量为A,Y%的溶液质量为B,则AX%+BY%=(A+B)Z%十字交叉法是可以将复杂的方程运算转化为简便的比例关系式,从而实现快速运算的目的。

在公务员考试行测的数量关系部分,十字交叉法主要是解决混合求平均问题、已知总体或部分的平均量、一共涉及五个量,若题中已知其中四个量,对应其位置,便可以求出五个量中的任意一个量。

在考试中,该方法主要用于平均分问题、利润平均问题、溶液混合问题等。

下面,中公教育专家进行具体说明。

一、十字交叉法应用模型已知部分1的平均量为a,样本数为A;部分2的平均量为b(b<a),样本数为b;整体的平均量为x。

以上五个量具有以下关系:< p="" style="font-size: 12px; font-family: 宋体; margin: 0px auto; padding: 0px; list-style: none; text-decoration: none;"></a),样本数为b;整体的平均量为x。

以上五个量具有以下关系:<>二、十字交叉法应用题型1、平均分问题例1:某学校对其 120 名学生进行随机抽查体能测验,平均分是 73 分,其中男生的平均分是 75 分,女生的平均分是 63 分,男生比女生多多少人?A.70B.80C.60D.85【中公解析】B。

男生部分平均分为75分,样本数为人数;女生部分的平均分为63分,样本数为人数;整体的平均分为73分,差值量之比等于两个部分的人数之比。

行测技巧:十字交叉原理在数量关系中的运用.doc

行测技巧:十字交叉原理在数量关系中的运用.doc

行测技巧:十字交叉原理在数量关系中的运用十字交叉法是公务员考试行测科目中的一种常用方法,主要应用于数学运算和资料分析两大题型当中,解决混合平均的问题,被广大考生称为解决数学问题的六大技巧之一。

中公教育专家提醒考生,想要详细了解这种方法,首先要知道什么是平均问题及混合平均问题,其次了解十字交叉法的本质及表达形式,最后把方法熟记于心,达到灵活运用的目的。

一、平均量、平均问题及混合平均问题所谓平均量是指单位内的量,如平均数=总数÷人数,表示1个人的得分;亩产量=总产量÷种植面积,表示单位面积内的产量;利润率=利润÷成本,表示单位成本获得的利润;增长率=增长量÷基期值,表示单位基期值的增长量……泛泛而言,凡是能表示成A÷B的概念都可以称作平均问题,而由两个或三个平均量混合得到总的平均量就叫做混合平均问题例如:一个班级中有80人,其中男生30人,女生50人,一次数学考试,男生的平均分为88分,女生的平均分为72分,求这个班级的总平均分为多少?此题总平均分由男女平均分两部分混合得到,属于混合平均问题。

二、十字交叉法的本质要想掌握十字交叉法的本质还需要从它的由来说起。

十字交叉法是方程的另一种表达形式,为了计算方便,由方程演变而来。

然以上述例题为例,假设全班的总平均分为x,则等式30×88+50×72=(30+50)×x成立,整理得到关键等式:30×(88-x)=50×(x-72),此等式的含义是:男生比平均分多的总量等于女生比平均分少的总量,使之达到一种平衡状态。

为了方便起见,写成了如下的形式:三、十字交叉法的表达形式十字交叉法是方程的一种表达形式,包含部分平均量、混合平均量、交叉作差项、部分平均量分母的最简比四大关键要素。

部分平均量混合平均量交叉作差项部分平均量分母的最简比在解题过程中,需要考生首先观察题目中是否是平均问题的混合,部分平均量、混合平均量、交叉作差项如何表示,最为关键的一点是要找到部分平均量的分母,使交叉作差项等于部分平均量的分母之比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、十字交叉法的考查方式
十字交叉法的考查范围不止上面的求比例,它还可以求部分的平均量、混合平均量等等。
【例2】烧杯中装了100克浓度为10%的盐水。每次向该烧杯中加入不超过14克浓度为50%的盐水。问最少加多少次之后,烧杯中的盐水浓度能达到25%?(假设烧杯中盐水不2)用十字交叉法的时候,要清楚第一列部分平均量的分母是什么,才能知道得到的比代表什么。千万不要想当然的认为得到的比就是题目要求的。
中公事业单位考试网认为考生们只要在看到题目时多思考一下,一定能够很好地用上十字交叉法,迅速地解题。
热门推荐:职业能力测试考什么
更多精彩内容,请访问事业单位招聘考试网!
一、十字交叉法的适用时机
只要涉及平均量的混合问题都可以用十字交叉法去解,看下面的例子:
【例1】甲部门的平均年龄是30岁,乙部门的平均年龄是40岁,如果两个部门合起来看,则平均年龄为32岁,求甲乙两个部门的人数之比。
解析:从题目条件中可以看到,既有甲部门的平均年龄,又有乙部门的平均年龄,这些都是部分平均量,条件中还有一个平均量是甲乙部门合起来统计的,是总的平均量。这题很显然是平均量的混合问题。用十字交叉法做。
行测之数量关系
在事业单位考试中,行测的大题量要求考生必须在速度上做够功夫,而加快速度的唯一途径就是掌握各种技巧,其中十字交叉法就是一个非常好用的方法,在解决平均量的混合问题过程中有很大用处。掌握十字交叉法需要注意两点:一是什么时候能用十字交叉法;二是十字交叉法的考查内容有哪些。下面,考试吧就为考生详细讲解:
解析:一部分10%的盐水溶液和一部分50%的盐水溶液最终混合成为了25%的盐水溶液。不用去想题目中说的每次加入不超过14g的50%盐水溶液。看作溶液和溶液混合成了总的溶液,也就是平均量的混合问题,可以用十字交叉法。
表格解释:
最简比5:3代表的是第一列分母的比,第一列是浓度,浓度=溶质/溶液。分母为溶液。所以5:3代表的的溶液的比。最开始有100g溶液,按照5:3的比例,需要加入60g浓度为50%的盐水溶液才可以。但是每次最多只能加14g,说明至少要加5次。
通过上面两个题目,我们可以总结出两点:
(1)十字交叉法用在平均量的混合问题上,但是浓度并不是我们常规意义上理解的平均量,所以“平均量的混合”中“平均量”是广义的平均量。因为平均量=总数/份数。所以但凡有A=B/C形式的A量我们都可以看做平均量。比如利润率=利润/成本。工作效率=工作总量/工作时间。我们都可以看做平均量的混合。
表格解释:
(1)第三列十字做差指的是对角线做差,并且一定是大数减小数,关于这里大家可以这样去理解,10%的溶液和30%的溶液混在一起,得到的混合溶液的浓度一定时介于两者之间的,所以我们在用十字做差的时候一定是某个部分平均量减去混合平均量,然后用混合平均量减去另一个部分平均量。
(2)第四列的最简比是把第三列得到的比(8:2)化简的结果,代表的是第一列分母的比。第一列是平均年龄,平均年龄=总年龄/总人数。也就是说第一列的分母是人数,那么我们得到的比就是人数之比。甲:乙=4:1。
相关文档
最新文档