立体图形的视图
苏教版六年级上册数学——立体图形的三视图
一个正方体木块,棱长是15厘米 。如果从它的八个顶点处各截去棱 长分别是1、2、3、4、5、6、7、8 厘米的小正方体。这个木块剩下部 分的表面积最少是多少平方厘米?
主视图
俯视图
左视图
3²×(10+9+8)×2=486 cm²
下列立体图形都是由棱长2厘米的小正方体 堆成的,请分别计算出它们的表面积=144 cm² ③ 2²×(6+4+4)×2=112 cm² ② 2²×(5+5+6)×2=128 cm²
从一个长10cm、宽8cm、高5cm的长方体木 块上挖去一个棱长2cm的小正方体,剩下部 分的表面积是多少?(考虑多种情况)
从立体图形的正面看到的图形,称为 主视图; 从立体图形的上面看到的图形,称为 俯视图; 从立体图形的侧面看到的图形,称为 左视图或右视图。 通常将主视图、俯视图和左视图看作 一个立体图形的三视图。
画一画
主视图
俯视图
左视图
主视图
俯视图
左视图
主视图
俯视图
左视图
做一做
把19个棱长为3厘米的正方体重叠起来, 如图所示,拼成一个立体图形。求这个 立体图形的表面积是多少平方厘米?
① 在角上挖 ② 在棱上挖 ③ 在面上挖
少3个面、多3个面,面积不变。
少2个面、多4个面,面积多2个面。
少1个面、多5个面,面积多4个面。
从一个棱长10厘米的正方体木块上挖去一 个长10厘米、宽2厘米、高2厘米的小长方 体,剩下部分的表面积是多少?(考虑多 种情况)
有一个棱长4厘米的正方体,从它的右 上方截去一个长4厘米、宽2厘米、高1 厘米的长方体,求剩下部分的表面积?
小学六年级立体图形三视图及展开图
立体图形三视图及展开图一、知识点(一)三视图在观察物体的时候,我们往往可以从不同的角度进行观察,角度不同,看到的风景就会不同。
比如:我们可以从正面看、上面看、左面看,看到的图形分别称为正视图、俯视图和左视图,并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是相同的。
对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积(二)正方体的展开图展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等,我们采用不同的剪开方法,共可以得到下面(三)长方体的展开图:观察上图可以发现,长方体的展开图由6个长方形组成,相对面的面积相等,即S上=S下=长×宽,S左=S右=宽×高,S前=S后=长×高。
(四)判断图形折叠后能否围成长方体或正方体的方法判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操作进一步判断。
二、题型(一)展开图与对立面【例1.1】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如下图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。
则“祝”、“你”、“前”分别表示正方体的________________________。
【答案】后面、上面、左面【解析】易知“你”、“程”相对,“前”、“锦”相对,“祝”、“似”相对,因此“祝”、“你”、“前”分别表示正方体的后面、上面、左面。
【例1.2】一个数学玩具的包装盒是正方体,其表面展开图如下。
现在每方格内都填上相应的数字。
已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是___________。
【答案】3、1、2【解析】面上的数是“0”,与“B”相对的面上的数是“2”,与“C"相对的面上的数是“1”。
立体图形的视图.1.由立体图形到视图PPT精品课件
横放时情况又怎样
2021/3/1
8
请你动手操作:画出下列立体图形 的三视图(分组进行)
正方体 圆柱 四棱锥和圆柱 体的三视图如下
解:这个正方体的三视图如下
主视图
左视图
俯视图
2021/3/1
10
解:这个圆柱的三视图如下
主视图
左视图
俯视图
2021/3/1
在水平面内得到的由上
投影面
向下观察物体的视图,
主视图
叫做俯视图(从上面看)
在侧面内得到由左向右观 正面
左视图
察物体的视图,叫做左视
侧面
图(从左面看).
水平面 俯视图
2021/3/1
4
从左面看
主视图
三视图
从上面看
主视图 左视图
正面
高
长
宽
宽
俯视图
从正面看
2021/3/1
5
主视图 左视图 高平齐
高
长
宽
谢谢大家观看
为了方便教学与学习使用,本文档内容可以在下载后随意修改,调整。欢迎下载!
汇报人:XXX
时间:20XX.XX.XX
2021/3/1
18
(主视图 ) (俯视图 ) (左视图)
2021/3/1
15
练一练
1、画出下列立体图形的三视图。
2、指出左面三个平面图形是右面这个物体的三视图中 的哪个视图。
(主视图 ) (俯视图) (左视图)
解(1)这个球体 (2)这个三棱锥
的三视图如下 的三视图如下
主 视 图
左主
左
视视
视
图图
图
俯
俯
视
视
工程制图课件:立体的三视图
立体的三视图
2. 用平面切割曲面立体 当用单一平面切割曲面立体时,在切割体上产生的断面是一个平面图形,该图形可能是由曲线或直线围成 的,也可能是由曲线和直线共同围成的。其断面形状到底如何,将由曲面立体的类型以及截平面与曲面立体的 相对位置决定。 (1) 平面截切圆球。当平面截切圆球时,无论截平面如何截切,最后在切割体上得到的断面都是圆平面。当 截平面与投影面平行时,所得断面视图反映断面实形;当截平面与投影面垂直时,所得断面视图具有积聚性, 为一直线,直线的长度等于圆的直径;当截平面与投影面倾斜时,所得断面视图为椭圆,如图2-21所示。
立体的三视图 2. 平行投影法 如图2-4所示,若光源移到无穷远处,投射线可视为相互平行,S称为投射方向,这种投射线相互平行的投影
方法,称为平行投影法。
根据投射线是否与投影面垂直,平行投影法又分为正投影法和斜投影法,如图2-4所示。
(完整版)五年级立体几何拓展----三视图专属奥数讲义
学科教师辅导讲义班级:年 级: 五年级 辅导科目:小学思维学科教师:上课时间授课主题 立体几何拓展----三视图一.三视图在观察物体的时候,我们往往可以从不同的角度进行观察.角度不同,看到的风景就会不同.比如:我们可以从正面看,上面看,左面看,看到的图形分别称为正视图,俯视图和左视图.并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是知识图谱错题回顾三视图知识精讲相同的.对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积. 二.正方体的展开图我们采用不同的剪开方法,共可以得到下面11种展开图.三.长方体的展开图观察上图可以发现,长方体的展开图由6个长方形组成,相对面的面积相等,即上面=下面=长×宽,左面=右面=宽×高,前面=后面=长×高. 四.判断图形折叠后能否围成长方体或正方体的方法.判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操作进一步判断.重难点:展开图、三视图及三视图求个数和表面积.上 后 前右左下 展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等.高宽长右面左面 后面下面 前面 上面三点剖析题模精选题模一:展开图与对立面例1.1.1 一个正方体的六个面上分别写着A ,B ,C ,D ,E ,F 六个字母.请你根据图中的三种摆放情况,判断每个字母的对面是______________,______________,______________【答案】 B 与D 相对,E 与A 相对,C 与F 相对 【解析】 由于正方体的6个面上写了6个不同的字母,那么每个字母在正方体的面上只能出现1次,如果2个字母在相邻的面上出现,那么它们一定不能相对.第一步,先看前2种摆放情况:在这2种摆放情况中,只有字母B 出现了2次,那么由第一种摆放可知,B 不与A 相对,也不与F 相对;由第二种摆放可知,B 不与C 相对,也不与E 相对.那么在所有的字母中,B 只能与D 相对.第二步,再看后2种摆放情况:在这2种摆放情况中,只有字母E 出现了2次,那么由第二种摆放可知,E 不与B 相对,也不与C 相对;由第三种摆放可知,E 不与D 相对,也不与F 相对.那么在所有的字母中,E 只能与A 相对.正方体有三个对面,因B 与D 相对,E 与A 相对,那么第三组对面上一定是C 与F 相对.例1.1.2 图中的四个正方体标字母的方式是完全相同的,请你利用图中已知的信息,判断A 、B 、C 的对面分别标的是哪个字母?【答案】 A 的对面标有D ,B 的对面标有F ,C 的对面标有E【解析】 由已知条件,标有C ,D 的两个面不能相对,那么或A 的对面标有D ,或B 的对面标有D .如果标有D ,A 的两个面相对,那么“标有C ,D 的两个面不能相对”,“标有E ,A 的两个面也不能相对”这两个条件都可以满足.注意到当D 在朝右的面,E 在朝上的面时,F 在朝前的面上,那么只能是标有E ,C 的两个面相对,而标有F ,B 的两个面相对.经检验,这种情况满足题目要求.如果标有D ,B 的两个面相对,那么由于标有E ,A 的两个面也不能相对,于是标有A 的对面就是标有F 的面,而标有C 的对面就是标有E 的面.此时D 在朝后的面上,E 在朝左的面上,F 在朝下的面上.我们把六面体旋转,把D 转到朝右的面,并把E 转到朝上的面,BFA EBC FED A BCD CCEAEF D此时朝前的面上标的是A ,而朝后的面上标的是F ,与题意不符.综上所述,满足题意的答案只有一个:A 的对面标有D ,B 的对面标有F ,C 的对面标有E .例1.1.3 如图,第1个方格内放着一个正方体木块,木块六个面上分别写着ABCDEF 六个字母.其中A 与D 相对,B 与E 相对,C 与F 相对.现在将木块标有字母A 的那个面朝上,标有字母D 的那个面朝下放在第1个方格内,然后让木块按照箭头指向,沿着图中方格滚动,当木块滚到21格时,木块向上的面上写的是哪个字母?【答案】 字母A【解析】 发现木块向左滚4格后,各个面上标的字母与初始时的情况完全一致.那么木块朝其它方向滚时也有类似的情况,即木块向任意方向连滚4格,它的各个面上标的字母不变. 所以木块向左滚4格到第5格时,各个面上标的字母与在第1格时的情况完全一致.再向下滚4格到第9格,再向右滚4格到第13格,再向下滚4格到第17格,最后向左滚4格到第21格,每次都是朝同一方向滚4格,因此在第5格,第9格,第13格,第17格,第21格木块向上的面上总是写的字母A .例1.1.4 如图,在一个正方体的表面上写着1~6这6个自然数,并且1对着4,2对着5,3对着6.现在将正方体的一些棱剪开,使它的表面展开图如图所示.如果只知道1和2所在的面,那么6应该在哪个面上(写出字母代号)?【答案】 A【解析】 对于立方体展开图,我们可以把任一个面当作底面,把它还原成立方体的表面.如图1,观察虚线圈住的部分,可以发现写有1,A ,B 的三个面两两相邻;再观察图2的虚线圈住的部分,发现写有A ,B ,C 的三个面也两两相邻.此时,写有1的面与A 面,B 面都相邻,C 面也与A 面,B 面都相邻,因此写有1的面与C 面相对,即C 面上写的是4.1 AB C 2D 3 121A B C 2D1A B C 2D1与C 相对,C 面上写的是421 5920 19观察图3中的虚线圈住的部分,容易看出写有2的面与B 面相对,因此B 面上写的是5.则立方体展开图就如图4所示.还剩下A 面与D 面上的数字没有确定,这两个面上分别写有3和6.由于写有1的面,写有5的面与A 面两两相邻,把这三个面还原到立方体中.在图2所示的立方体中,5与2相对,在立方体朝左的侧面上;1在朝前的侧面上.在展开图中以写有1的面为朝前的侧面,A 面为下底面,则写有5的面恰好在朝左的侧面上.此时写有1的面,写有5的面都对齐了,而原立方体中下底面写有数字6,因此A 面上就是6.例1.1.5 下图是正方体,四边形APQC 是表示用平面截正方体的截面,截面的线表现在展开图的哪里呢?把大致的图形在右面展开图里画出来.【答案】 见解析【解析】 截线在展开图中如图所示:例1.1.6 右图是一个立体图形的平面展开图,图中的每个小方格都是边长为1的正方形.现在将其沿实线...折叠,还原成原来的立体图形,那么立体图形的体积等于_________. 图3 1A B 4 2D2与B 相对, B 面上写的是5图41 A 54 2DBPEAD CB GHQFAEDCB HGFA . 3B . 4C . 5D . 6 【答案】B【解析】 根据实线还原,体积为4. 题模二:三视图求表面积例1.2.1 下图是由5个相同的正方体木块搭成的,从上面看到的图形是( ).A . A 图B . B 图C . C 图D . D 图【答案】C【解析】 5个在原图均已看到,易知C 符合要求.例1.2.2 右图是由18个棱长为1cm 的小正方形拼成的立体图形,它的表面积是( )平方厘米.A . 44B . 46C . 48D . 50【答案】C【解析】 从正面、左面、上面分别可看见8、7、9块,故表面积为()21879248cm ⨯++⨯=.例1.2.3 右图中的一些积木是由16块棱长为2cm 的正方体堆成的,它的表面积是________2cm .【答案】 200D .B .C .A .【解析】 从前到后的3面依次有2块、5块、7块,因此还剩162572---=块,为可看见的1块与其下方的1块.由此易知正视图、俯视图、左视图分别能看到7块、9块、8块,此外离我们最近的2块有两个面从6个方向均无法看到,综上共可看到()7982250++⨯+=个面,表面积为22250200cm ⨯=.例 1.2.4 图中的立体是由大小相同的若干单位正方体积木搭成的.这样的积木一共有多少【答案】 37;三视图如下图所示;102【解析】 将此图分为从左到右的5层,分别有16、9、5、6、1块,故共有16956137++++=块.三视图见答案,分别可看见17、15、16块,其中左视图有3块“被遮挡”,因此表面积为()17151632102+++⨯=⎡⎤⎣⎦.例1.2.5 图中的立体图形由11个棱长为1的立方块搭成,这个立体图形的表面积为_______.【答案】34【解析】 按一定的顺序,从不同的角度来看这个立体图形的表面的面积. 题模三:已知三视图反推个数例1.3.1 这个图形最少是由( )个正方体整齐堆放而成的.正视图 俯视图 左视图A.12B.13C.14D.15【答案】B【解析】从上面看下去,最少需要:122412113++++++=.例1.3.2此图是某几何体从正面和左面看到的图形.若该几何体是由若干个棱长为1的正方体垒成的,则这个几何体的体积最小是________.【答案】6【解析】根据正视图,理论上最少需要6块.而6块可以构造出来,例如,其俯视图如下图所示.因此,体积最小为3166⨯=.例 1.3.3一个立体图形,从前面,上面,右边三个方向看到的图形都如图所示,是一个样的,那么该立体图形最多由__________块小立方体组成.【答案】23【解析】按由上到下逐层分析,各层的小立方体数目分别不超过1个、4个、8个、10个,所以该立体图形最多由23个小立方体组成.例 1.3.4有一些大小相同的正方形木块堆成一堆,从上往下看是图3-1,从前往后看是图3-2,从左往右看是图3-3,那么这堆木块最多有多少块?最少有多少块?1412212从正面看从左面看【答案】16,13【解析】43416+⨯=块,424113+⨯+=块.这堆木块最多有16块,最少有13块.例1.3.5地上有一堆小立方体,从上面看时如图1所示,从前面看时如图2所示,从左边看时如图3所示.这一堆立方体一共有几个?如果每个小立方体的棱长为1厘米,那么这堆立方体所堆成的立体图形表面积为多少平方厘米?【答案】10个;42平方厘米【解析】采用在俯视图上标数的方法来求解,只要知道俯视图上的每格有几块小立方体,就可以很轻松的得到这堆立方体所形成的立体图形的样子.首先从俯视图很容易看出,有3个格子里是没有小立方体的,而其他6个格子里至少有一个小立方体.如下图,将所得信息填入俯视图中.结合俯视图和主视图,不难看出,有两格只有1块小立方体.将所得信息填入俯视图中.同样的,结合俯视图和左视图,又可以知道有一格只有1块小立方体.将所得信息填入俯视图中.图1 图2 图3从前面看1001我们来继续考虑,左视图中最左边一排有2块小立方体,所以俯视图左上角处有2块小立方体.将所得信息填入俯视图中.同理,主视图最右边一排有2块小立方体,所以俯视图最右边中间处有2块小立方体.将所得信息填入俯视图中.不难看出,俯视图中最后剩下的那块有3个小立方体,所以俯视图中每格的小立方体数如下:于是这一堆立方体一共有21321110+++++=个. 接着很容易得到这个立体图形的样子,如下图.上下各能看到6个面,前后各能看到6个面,左右各能看到6个面,同时注意到立体图形的中间共有6个会互相遮挡的面,所以表面积是()2666642⨯+++=平方厘米.从左边看1 0 0 012 1 0 0 012 1 0 0 2 0 112 1 03 0 2 011随练1.1将一正方体纸盒沿右图所示的粗实线剪开,展开成平面图,其展开图的形状为().A.A图B.B图C.C图D.D图【答案】B【解析】竖向只剪了1刀,故前、后、左、右四个面应在一条线上,排除A、D.易知上、下两面不在一条线上,排除C,故选B.随练1.2水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如下图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面.则“祝”、“你”、“前”分别表示正方体的________________________.【答案】后面、上面、左面【解析】易知你、程相对,前、锦相对,祝、似相对,因此“祝”、“你”、“前”分别表示正方体的后面、上面、左面.随练1.3小明把五颗完全相同的骰子拼摆成一排(如图),那么这五颗骰子底面上的点数之和是__________.【答案】16【解析】根据已知推出(4,5)(1,3)(2,6)互为对立面,所以这五颗骰子底面上的点数之和是6152216++++=.随练1.4右图是由八个相同的小正方体组成而成的几何体,则从正面观察,得到的平面图随堂练习形是__________.序号)【答案】 ②【解析】 从正面看到图②,从上面看到图①,从右面看到图③.所以正确答案是图②.随练1.5 由棱长为1的正方体搭成如图所示的图形,共有__________个正方体,它的表面积是__________.【答案】 10;34【解析】 第一层有8个,第二层有2个,共10个.其三视图分别能看到4、5、8个,故表面积为()11458234⨯⨯++⨯=.随练1.6 如图,有9个边长为1米的正方体,如图所示堆成一个立体图形.该立体图形的表面积等于__________平方米.【答案】 38【解析】 利用三视图.从前面、右面、上面看依次如图所示.所以该立体图形的表面积是()26672138++⨯⨯=平方米.随练1.7 如图6,用若干个棱长为1的小正方体堆成一个大的几何体,这个几何体的表面积(含底面积)是__________.① ② ③ ④【答案】90【解析】根据三视图,大的几何体的表面积等于正视图面积+俯视图面积+右视图面积的2倍,所以是()2++⨯⨯=.1415162190随练 1.8用棱长是1厘米的小立方体拼成如图所示的立体图形,这个图形的表面积是__________平方厘米.【答案】46平方厘米【解析】如图1,从立体图形上方和下方看去,看到的都是9块小正方形.面积是9平方厘米.图1图2从四个侧面看去,看到的是图2形式的7块小正方形,面积是7平方厘米.所以立体图形的表面积为927446⨯+⨯=平方厘米.随练1.9把若干个棱长为1厘米的小正方体木块搭成一个图形,从上面和前面看到的都是如图所示的情形,这个图形最多需要__________个这样的小正方体,最少需要__________个这样的小正方体.【答案】9;7【解析】由从上方看到的结果可知第一层必有5个,且第二层至多5个;由从前面看到的结果可知共有2层,且第二层至少2个.再结合两个视图可知第二层至多4个.综上,最多9个,最少7个.作业1一个数学玩具的包装盒是正方体,其表面展开图如下.现在每方格内都填上相应的数字.已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是_____________.【答案】3,1,2【解析】正方体的平面展开图中,相对面之间一定隔着一个正方形,所以在此正方体上与“A”相对的面上的数是“0”.与“B”相对的面上的数是“2”.与“C”相对的面上的数是“1”.所以A、B、C内的三个数字依次是3,1,2.作业2把1至6各一个分别写在正方形的六个面上,每个面只写一个数字,且1与4相对,2与5相对,3与6相对,从某个角度看到的三个面上的数字如图(a)所示,从另一个角度看到的三个面如图(b)所示,那么图(b)中的“?”代表的数字是___________.A.2B.3C.4D.5【答案】A【解析】如图,4对面是1,所以在图a中把4翻到底面,顶部变成了1,如图b,而5C 2B 0A 1自我总结课后作业对面是2,所以当6转到正面时,5在左侧,右侧自然是2了,故答案是2..作业3下图由一个正五边形,五个长方形,五个等边三角形组成,它是一个立体图形的平面展开图,那么这个立体图形有__________条棱.【答案】20【解析】此立体图形,示意图如上:共20条棱.作业4用若干个棱长为1cm的小正方体码放成如图所示的立体,则这个立体的表面积(含下底面面积)等于___________2cm.【答案】60【解析】根据三视图,我们可知,此立体图形的前面与后面,左面与右面,上面与下面的表面积分别相等.所以我们只要知道前面有11个正方形,右面有8个正方形,上面有11个面,就可求出它露在外面的面共计()11811260++⨯=个正方形,所以它的表面积是2260160cm⨯=.作业5如图,把19个边长为1厘米正方体重叠起来堆成如图所示的立方体,这个立方体的表面积是______平方厘米.【答案】54【解析】从上下左右前后六个方向看,分别可以看到9、9、8、8、10、10个小正方形面,所以总的表面积为54平方厘米.作业6图中的立体是由大小相同的若干单位正方体积木搭成的.这样的积木一共有多少块?画出它的三视图,表面积是多少?【答案】30;三视图如下图所示;76【解析】将此图分为从左到右的4层,分别有11、7、5、7块,故共有1175730+++=块.三视图见答案,分别可看见13、12、11块,其中左视图有2块“被遮挡”,因此表面积为()1312112276+++⨯=⎡⎤⎣⎦.作业7由若干个相同的正方体木块搭成的立体,从正面和左面看到的图形都是右图,搭这样的立体,最少用()个这样的木块.A.4B.5C.6D.8【答案】A【解析】按如图方式摆放即可.正视图俯视图左视图作业8由若干个棱长为1的正方体堆成的立体图形,其正视图、俯视图和左视图如下所示,请问这个立体图形体积是________.正视图俯视图左视图【答案】5【解析】由正视图和左视图可知共两层,且顶层只有1块,由俯视图可知底层有4块,故共有5块,体积为5.作业9一仓库里堆放着若干个完全相同的正方体货箱,这堆货箱的三视图如图所示,这堆真方体货箱共有______________个.【答案】9【解析】俯视图确定基座,分析每块上的高度.。
华师大版七年级数学上册4.2立体图形的视图课件(共63张PPT)
主视图要在左上边 它的下方应是俯视图 左视图坐落在右边
俯视图
3.三视图的对应规律
高平齐
主视图和俯视图 ----长对正
主视图和左视图 ----高平齐
长对正
主视图 高 长
左视图
宽
宽
俯视图
俯视图和左视图 ----宽相等
宽相等
试一试:你能画出正方体和的三视图吗?
想一想,再动手画一画:
高平齐
主视图
左视图
解:如图是钢管的三视图,其中的虚线表示 钢管的内壁.
小结
反馈
三视图
1、三视图:主视图——从正面看到的图 左视图——从左面看到的图 俯视图——从上面看到的图 2、画物体的三视图时,要符合如下原则: 位置:主视图 左视图
俯视图
大小:长对正,高平齐,宽相等. 虚实:在画图时,看的见部分的轮廓通常画 成实线,看不见部分的轮廓线通常画成虚线.
圆锥的三视图:
主视图
左视图
点不要漏画哦!
俯视图
圆锥的三视图:
主视图
左视图
点不能画哦!
俯视图
挑战自我
画出如图所示四棱锥的三视图。
四菱锥的三视图:
正视图
左视图
俯视图
我相信你一定能 画出这个复杂几 何体的三视图!
随堂练习
• 1找出图中每一物品所对应的主视图。
(A)
(B)
(C)
(D)
正视图(
B
1
3 2
用小正方体搭一个几何体,它的主视图 和俯视图如图所示,最多要多少个小正方体? 最少呢?
1 1 1 1 1 1 2 3
主视图 ∴最小为11 俯视图
由物知图——利用正方体组合提升空间想象力 如图都是由7个小立方体搭成的几何体,从不 同方向看几何体,分别画出它们的主视图、左视 图与俯视图,并在小正方形内填上表示该位置的 小正方体的个数.
《高一立体几何三视图》课件
三视图在日常生活中的应用
产品描述
在购买产品时,三视图常用于展 示产品的外观和结构,帮助消费
者更好地了解产品的特点。
建筑设计
在建筑设计领域,三视图用于展 示建筑物的外观、内部布局和结构 设计,为建筑师与客户之间的沟通 提供便利。
模型制作
在制作各种模型时,如玩具、家具 或机器部件,三视图是制作精确模 型的关键工具。
建筑学
用于设计和建造建筑物,理解空间关 系和结构。
工程学
在机械、航空等领域,需要利用立体 几何知识进行设计和分析。
学习立体几何的未来发展
• 计算机图形学:在游戏开发、动画制作等领域,立体几何是构建三维场景的基础。
学习立体几何的未来发展
未来趋势
随着科技的发展,立体几何将在虚拟现实、增强现实等领域发挥更大的作用。
俯视图
从物体的上面方向观察,投影 到垂直于投影面的平面上所得 到的视图。
三视图之间的关系
相互依赖
方位关系
正视图、侧视图和俯视图之间是相互 依赖的,任何一个视图的变化都会影 响到其他两个视图。
通过三视图可以判断物体的左右、前 后、上下方位关系。
投影关系
正视图和侧视图之间、侧视图和俯视 图之间、正视图和俯视图之间都存在 投影关系,即“长对正、高平齐、宽 相等”。
《高一立体几何三视图》ppt 课件
目
CONTENCT
录
• 引言 • 三视图基础知识 • 立体几何图形的三视图 • 三视图的运用 • 练习与巩固 • 总结与展望
01
引言
课程简介
课程目标
帮助学生掌握三视图的基本概念和绘制技巧,培养 空间想象力和几何思维能力。
适用对象
高一学生,具备初步的几何知识和空间感知能力。
立体图形的三视图和展开图
用剪刀把正方体纸盒按任意方式沿棱 展开,你能得到哪些不同的展开图?
精选课件
25
第一类,中间四连方,两侧各一 个,共六种。
1
2
3
4
5
6
精选课件
26
第二类,中间三连方,两侧各有一、二个,共三种。
精选课件
27
第三类,中间二连方,两侧各有二个,只有一种。
精选课件
28
第四类,两排各三个,只有一种。
结果: 共有 11 种情况
(2)观察下图经过折叠能否围成一个正方体。
精选课件
32
考考你
1、如果“你”在前面,那么谁在后面?
了!
太棒
你们
精选课件
KEY: 棒
33
2、“坚”在下,“就”在后,胜利在哪里?
坚
持就是
胜
利
精选课件
34
下图是一个正方体的展开图,标注了字母 A的面是正方体的正面,如果正方体的左面与
右面所标注代数式的值相等,求 x 的值.
-2
3 -4 1
A 3x-2
精选课件
35
1、学会了从不同方向观察立体图形。
2、 学会了简单几何体(如棱柱,正方体 等)的平面展开图,知道按不同的方式展 开会得到不同的展开图。
3、学会了动手实践,与同学合作。
4、友情提醒:不是所有立体图形都有平面展 开图,比如球体。
精选课件
36
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
8
俯视图
左视图
主视图
精选课件
9Байду номын сангаас
正视图
左精视选课图件
俯视图
立体图形的视图
汇报人:文小库
2023-11-10
CONTENTS
• 立体图形的基础知识 • 立体图形的正视图 • 立体图形的侧视图 • 立体图形的俯视图 • 立体图形的其他视图 • 立体图形与视图的关系
01
立体图形的基础知识
立体图形的定义与特点
立体图形的定义
立体图形是三维空间中定义的形状,它们可以通过长、宽和高三个方向的尺寸 来描述。
不同视角和细节。
在机械设计中,工程师会使用 CAD软件来创建零件的3D模型 ,并通过视图来检查其尺寸、形
状和结构的准确性。
在游戏开发中,游戏设计师会使 用3D模型和视图来创建游戏场景 、角色和物品,并通过不同角度 的视图来调整游戏的视觉效果。
谢谢您的聆听
THANKS
步骤
首先确定物体的位置和方向,然后将物体放置在投影面上,接着调整投影角度,最后观察并记录物体在平面上的 投影。
正视图的应用与实例
应用
正视图在机械制图、建筑设计、模型制 作等领域中广泛应用,是设计和制造过 程中重要的参考视图之一。
VS
实例
例如,在机械制图中,正视图经常被用来 表示机械零件的轮廓和尺寸;在建筑设计 中,正视图可以用来表示建筑物的外形和 结构;在模型制作中,正视图可以用来观 察和调整模型的比例和形状。
实例
例如,在城市规划中,通过俯视图可以观察城市的空 间布局和建筑物分布情况,为城市规划提供参考依据 ;在机械设计中,俯视图可以显示机械装置的整体结 构和形状,方便进行分析和设计。
05
立体图形的其他视图
后视图的概念与特点
概念
后视图是立体图形的一种视图,它从物体的后面观察, 与物体的正面相对。在后视图中,物体的背面和侧面被 展示出来,而物体的正面则看不到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主
左
视
视
图
图
俯 视 图
【例题】
【例】将下面四个正方体摆放在一起有几种不同的摆放方 法? 你能画出各种摆放方式的三视图吗?(列出4种答案即可)
摆放方式及视图举例
⑴
⑵
主视图
左视图
俯视图
主视图
左视图
俯视图
摆放方式及视图举例
⑶
⑷
主视图
左视图
俯视图
注:答案不唯一
主视图
左视图
俯视图
一辆汽车从小明的面前经过,小明拍摄了一组照片,请按 照汽车被摄入镜头的先后顺序给下面的照片编号,并与同 伴交流.
看到的图形是(
)
答案:选A.
A
B
C
D
2.(宜宾·中考)如图是由若干个大小相同的小正 方体堆砌而成的几何体.那么其三种视图中面积最小 的是( )
A.主视图 B.左视图 C.俯视图 D.三种一样 【解析】选B.主视图是由5个小正方形构成的平面图形; 左视图是由3个小正方形构成的平面图形;俯视图是由5 个小正方形构成的平面图形.
俯视图
5.画出下面三视图所示的立体图形. 主 视 图
左视图
俯视图
通过本节课的学习,要求: 1. 会从不同方向看立体图形并能说出看到的平面图形; 2.能通过物体的三视图说出三视图要描述的立体图形; 3.通过立体图形与三视图之间的转换体会立体图形与平 面图形之间的关系.
上
正
从
从上面看
三
个
方
向
看
同 从左侧看
一
几
何
体
从正面看
画出几何体的视图
从上面看到的投影,称为俯视图 主 视 图
左 视 图
从左侧看到的投影,
称为左视图
俯 视
图
从正面看到的投影, 称为主视图
【跟踪训练】
画出几何体的视图
主 视 图
左 视 图
俯 视 图
画出几何体的视图
主 视 图
左 视 图
俯 视 图
画出几何体的视图
主视图
左视图
俯视图
主视图
左视图
俯视图
主视图
左视图 俯视图
主视图
左视图
俯视图
从视图画立体图形的思维方式
从主视图观察,画出物体的前面. 从俯视图观察,画出物体的上面. 从左(右)视图观察,画出物体的左(右)面.
1.(武汉·中考)如图所示,李老师办公桌上放着一个
圆柱形茶叶盒和一个正方体的墨水盒,小芳从上面看,
4.2 立体图形的视图
1.会从不同的方向看立体图形并能说出看到的平面图形; 2.能通过物体的三视图说出三视图要描述的立体图形; 3.通过立体图形与三视图之间的转换,体会立体图形与 平面图形之间的关系.
从不同的方向看
从正面看 从左面看
从右面看 从后面看
从不同的方向看
正
后
上
左
右
请说出下面三幅图分别是从哪个方向看到的? 左
3.(济宁·中考)如图,是由几个相同的小正方体搭成的 几何体的三种视图,则搭成这个几何体的小正方体的个数 是( ) A. 3个 B. 4个 C. 5个 D. 6个
【解析】选B.从三种视图上可以判断,这个几何体共两 层,它的底层有三个正方体,上层有一个正方体.
4.画出所示立体图形的三视图
主视图
左视图
1
2
3
4பைடு நூலகம்
5
行 驶 过 程 演 示
【例题】 由视图到立体图形
就是根据视图来描述物体的形状.
例1 根据下面的三视图确定物体的形状
主 视 图
左 视 图
俯 视 图
【跟踪训练】
主
由物体的三视图说出物体的形状.
视 图
左 视 图
俯 视 图
由物体的三视图说出物体的形状.
主视图
左视图
●
俯视图
由物体的三视图说出物体的形状.