结构力学下册课件
合集下载
结构力学基础讲义PPT(共270页,图文)
alMM
B bM l
a l
b M
l
17
2. 多跨静定梁: 关键在于正确区分基本部分和附
属部分,熟练掌握截面法求控制截面 弯矩,熟练掌握区段叠加法作单跨梁 内力图。
多跨静定梁——由若干根梁用铰相连, 并用若干支座与基础相连而组成的静 定结构。
17:11
18
附属部分--依赖基本 部分的存在才维持几 何不变的部分。
17:11
24
3. 静定平面刚架 (1) 求反力。
切断C铰,考虑右边平衡,再分析左 边部分。求得反力如图所示:
C
17:11
25
3. 静定平面刚架
(2)作M图 (3)做Q、N图 (4) 校核
17:11M图
N图
Q图
26
§1-4 静定桁架
17:11
27
§1-4 静定桁架
* 桁架的定义:
——由若干个以铰(Pins)结点连接而成的 结构,外部荷载只作用在结点上。
对只有轴力的结构(桁架):
1组7:1合1 结构则应分别对待。
61
§1-5静定结构位移计算
3. 荷载作用下的位移计算
例:求△cy 1. 建立力状态,在C点加单位 EI
竖向力。
2. 建立各杆内力方程:
EI
3. 求位移:
17:11
62
§1-5静定结构位移计算
3. 荷载作用下的位移计算
积分注意事项:
⒈ 逐段、逐杆积分。 ⒉ 两状态中内力函数服从同一坐标系。 ⒊ 弯矩的符号法则两状态一致。
2. 三铰拱的数解法
* 内力计算: ⑴任一截面K(位置):KK截 截面 面形 形心 心处 坐拱 标X轴K切、线YK的倾角 K
结构力学(全套课件131P) ppt课件
的两根链杆的杆轴可以平行、交叉,或延长线交于
一点。
当两个刚片是由有交汇点的虚铰相连时,两个刚
片绕该交点(瞬时中心,简称瞬心)作相对转动。
从微小运动角度考虑,虚铰的作用相当于在瞬时
中心的一个实铰的作用。
19
20
规则二 (三刚片规则): 三个刚片用不全在一条直线上的三个单铰(可以
是虚铰)两两相连,组成无多余约束的几何不变体 系。
两个平行链杆构成沿平行方向上的无穷远虚铰。
三个刚片由三个单铰两两相连,若三个铰都有交 点,容易由三个铰的位置得出体系几何组成的结论 。当三个单铰中有或者全部为无穷远虚铰时,可由 分析得出以下依据和结论:
1、当有一个无穷远虚铰时,若另两个铰心的连 线与该无穷远虚铰方向不平行,体系几何不变;若 平行,体系瞬变。
3、通过依次从外部拆除二元体或从内部(基础、 基本三角形)加二元体的方法,简化体系后再作分 析。
41
第一部分 静定结构内力计算
静定结构的特性: 1、几何组成特性 2、静力特性 静定结构的内力计算依据静力平衡原理。
第三章 静定梁和静定刚架
§3-1 单 跨 静 定 梁
单跨静定梁的类型:简支梁、伸臂梁、悬臂梁 一、截面法求某一指定截面的内力
15
1、单约束(见图2-2-2) 连接两个物体(刚片或点)的约束叫单约束。
1)单链杆(链杆)(上图) 一根单链杆或一个可动铰(一根支座链杆)具
有1个约束。 2)单铰(下图)
一个单铰或一个固定铰支座(两个支座链杆) 具有两个约束。 3)单刚结点
一个单刚结点或一个固定支座具有3个约束。
16
2、复约束 连接3个(含3个)以上物体的约束叫复约束。
三、对体系作几何组成分析的一般途径
结构力学 PPT课件
总复习
1
NaA 2
1 1m×4=4m
解:取1-1以右为分离体 ∑Y=0 NC=-10kN 取2-2以右为分离体
O
∑Y=6+YB+YC=0
6kN
YB=0
∑MO=0 NA=0
a
2
6kN
8kN
6kN
总复习
第八章 静定结构影响线
一、影响线的定义:
定义:当单位荷载(P=1)在结构上移动时,表示结构某一指
定截面中某项内力变化规律的曲线,称为该项内力的影响线。
二、叠加法绘制弯矩图
Q M AB M BA Q0
AB
l
AB
•首先求出两杆端弯矩,连一虚线, •然后以该虚线为基线, •叠加上简支梁在跨间荷载作用下的弯矩图。
三、内力图形状特征 1、在自由端、铰支座、铰结点处,无集中力偶作用,截
面弯矩等于零,有集中力偶作用,截面弯矩等于集中力偶的值。
总复习
M M 0 Hy
Q Q0 cos H sin N Q0 sin H cos
2、在拱的左半跨取正右半跨取负;
3、仍有 Q=dM/ds 即剪力等零处弯矩达极值;
4、 M、Q、N图均不再为直线。
5、集中力作用处Q图将发生突变。
6、集中力偶作用处M图将发生突变。
四、三铰拱的合理轴线 在给定荷载作用下使拱内各截面弯矩
2、刚结点上各杆端弯矩及集中力偶应满足结点的力矩平 衡。两杆相交刚结点无m作用时,两杆端弯矩等值,同侧受拉。
3、具有定向连结的杆端剪力等于零,如无横向荷载作用, 该端弯矩为零。
4.无何载区段 5.均布荷载区段 6.集中力作用处 7.集中力偶作用处
平行轴线
Q图
结构力学课件.ppt
FNAB =FNAC =FP 2FNsina=FP FN =FP /(2 sina )
例2-3-2 对下列图示体系作几何组成分析(说明 刚片和约束的恰当选择的影响).
三、三个刚片的三个单铰有无穷远虚铰情况:
两个平行链杆构成沿平行方向上的无穷远虚铰。
三个刚片由三个单铰两两相连,若三个铰都有交 点,容易由三个铰的位置得出体系几何组成的结论 。当三个单铰中有或者全部为无穷远虚铰时,可由 分析得出以下依据和结论:
一、术语简介(图2-1-1) 1、 几何不变体系:在荷载作用下能保持其几何形 状和位置都不改变的体系称之。 2、几何可变体系:在荷载作用下不能保持其几何 形状和位置都不改变的体系称之。
3、刚片:假想的一个在平面内完全不变形的刚性 物体叫作刚片。在平面杆件体系中,一根直杆、折 杆或曲杆都可以视为刚片,并且由这些构件组成的 几何不变体系也可视为刚片。
2、截面法
若要求某一横截面上的内力,假想用一平面沿杆 轴垂直方向将该截面截开,使结构成两部分;在截 开后暴露的截面上用力(内力)代替原相互的约束。
对于截开后结构的两部分上,截面上的内力已成 为外力,因此,由任一部分的静力平衡条件,均可 列出含有截面内力的静力平衡方程。解该方程即将 内力求出。
3、截面内力 截开一根梁式杆件的截面上有三个内力(分量),
4、在连续杆(梁式杆)上加一个单铰,相当去 掉一个约束。
例2-3-5 对图示各体系作几何组成分析。
第二章 小 结
一、本章要求 1、了解几何不变体系、几何可变体系、瞬变体
系、刚片、体系的自由度、虚铰、约束及多余约束 的概念;
2、重点理解并掌握平面几何不变体系的简单组 成规则,并能灵活应用到对体系的分析中;
动力荷载:荷载(大小、方向、作用线)随时 间迅速变化,并使结构发生不容忽视的惯性力。 3、按与结构的接触分类:直接荷载,间接荷载。
结构力学-课件
6.6 对称结构
7.渐进法
8.设计实例简单分析
1.虚功原理
2.影响线:
2.1 静力法做影响线
2.2 机动法做影响线
2.3 影响线的应用
3.简支梁的包络图和绝对最大弯矩
4.应用虚力原理求刚体体系的位移
4.1 概念介绍
4.2 荷载作用下的位移计算举例
4.3 图乘法
5.力法求解超静定结构
5.1 超静定结构的组成和超静定次数
5.2 力法的基本思路
5.3 对称结构
5.4 支座移动时的位移计算:
6.位移法求解超静定结构
6.1 基本概念
6.2 等ห้องสมุดไป่ตู้面杆件的刚度方程(形常数、载常数)
6.3 无侧移刚架的计算
6.4.有侧移刚架的计算
6.5 位移法的基本体系
【经典】结构力学ppt课件
§2-3 几何不变体系的基本组成规则
二元体:两根不在一直线上的链杆连接成一个新结点的构 造称为二元体。
二元体规则 在一个体系上增加或拆除二元体,不会改变原有体系的几何构造性质。
铰结点
链杆
链杆 体系
§2-3 几何不变体系的基本组成规则
分析图示铰结体系
以铰结三角形123为基础,增加一个二元体得结点4, 1234为几何不变体系;如此依次增加二元体,最后的体系为几何不变体系,没 有多余联系。
瞬变体系
可变体系
瞬变体系
§2-7 几何构造与静定性的关系
体系
几何不变体系 (形状、位置不变)
几何可变体系 (形状、位置可变)
无多余联系 有多余联系
可变体系 瞬变体系
静定结构 超静定结构
§2-7 几何构造与静定性的关系 分析图a所示体系
分析图b所示体系
无多余联系的几何不变体系 由平衡方程→三个支反力 →截面内力→静定结构 有多余联系的几何不变体系 由平衡方程不能求全部反力
§2-1 概述
一般结构必须是 几何不变体系
几何不变体系—在不考虑材料应变的条件下,体系的位置 和形状是不能改变的。(图a)
几何可变体系—在不考虑材料应变的条件下,体系的位置和 形状是可以改变的。(图b)
§2-2 平面体系的计算自由度 自由度:确定体系位置所需的独立坐标数
一个点的自由度=2
一个刚片的自由度=2
第一章 绪论
§1-1 结构力学的研究对象和任务 §1-2 荷载的分类 §1-3 结构的计算简图 §1-4 支座和结点的类型 §1-5 结构的分类
§1-1 结构力学的研究对象和任务
结构:工程中担负预定任务、支承荷载的建筑物。 如:房屋、塔架、桥梁、隧道、挡土墙、水坝等。
《结构力学教材》课件
随着计算机技术的不断发展,结构力学将与数值 计算方法更加紧密地结合,实现对复杂结构的精 确模拟和分析。
多物理场耦合的研究
未来结构力学将更加注重与流体力学、热力学等 其他物理场的耦合研究,以解决多场耦合的复杂 工程问题。
智能化技术的应用
人工智能、机器学习等技术在结构力学中的应用 将逐渐普及,为结构设计和优化提供新的思路和 方法。
结构力学的重要性
结构力学是工程设计中的关键环节,能够确保结构的稳定性 、安全性和经济性。
通过结构力学分析,可以预测结构的性能,优化设计方案, 提高工程质量。
结构力学的历史与发展
结构力学的发展可以追溯到古代的建 筑实践,如中国的长城、埃及的金字 塔等。
随着科学技术的发展,结构力学不断 吸收新的理论和方法,如有限元方法 、计算机辅助设计等,推动了结构力 学的进步和应用。
结构力学在工程实践中的挑战与机遇
复杂结构的分析
随着工程结构的日益复杂化,对结构 力学在复杂结构分析方面的要求也越 来越高,这既是一个挑战也是一个机 遇。
耐久性与安全性
绿色与可持续发展
随着对环境保护的重视,结构力学在 绿色建筑、节能减排等领域的应用将 更加广泛,为可持续发展提供技术支 持。
工程结构的耐久性与安全性是结构力 学的重要研究内容,未来将面临更多 的挑战和机遇。
02
结构力学的基本原理
静力学原理
静力学原理总结
静力学是研究物体在静止状态下受力与变形 的关系。
静力学基本概念
静力学涉及到的基本概念包括力、力矩、力 偶、约束等。
静力学平衡条件
静力学平衡条件是物体在力的作用下保持静 止或匀速直线运动的状态。
静力学应用
静力学原理广泛应用于工程结构、机械系统 等领域。
多物理场耦合的研究
未来结构力学将更加注重与流体力学、热力学等 其他物理场的耦合研究,以解决多场耦合的复杂 工程问题。
智能化技术的应用
人工智能、机器学习等技术在结构力学中的应用 将逐渐普及,为结构设计和优化提供新的思路和 方法。
结构力学的重要性
结构力学是工程设计中的关键环节,能够确保结构的稳定性 、安全性和经济性。
通过结构力学分析,可以预测结构的性能,优化设计方案, 提高工程质量。
结构力学的历史与发展
结构力学的发展可以追溯到古代的建 筑实践,如中国的长城、埃及的金字 塔等。
随着科学技术的发展,结构力学不断 吸收新的理论和方法,如有限元方法 、计算机辅助设计等,推动了结构力 学的进步和应用。
结构力学在工程实践中的挑战与机遇
复杂结构的分析
随着工程结构的日益复杂化,对结构 力学在复杂结构分析方面的要求也越 来越高,这既是一个挑战也是一个机 遇。
耐久性与安全性
绿色与可持续发展
随着对环境保护的重视,结构力学在 绿色建筑、节能减排等领域的应用将 更加广泛,为可持续发展提供技术支 持。
工程结构的耐久性与安全性是结构力 学的重要研究内容,未来将面临更多 的挑战和机遇。
02
结构力学的基本原理
静力学原理
静力学原理总结
静力学是研究物体在静止状态下受力与变形 的关系。
静力学基本概念
静力学涉及到的基本概念包括力、力矩、力 偶、约束等。
静力学平衡条件
静力学平衡条件是物体在力的作用下保持静 止或匀速直线运动的状态。
静力学应用
静力学原理广泛应用于工程结构、机械系统 等领域。
结构力学讲义ppt课件
x y
x
结点自由度
y
φ
x
y
x
刚片自由度
2)一个刚片在平面内有三个自由度,因为确定 该刚片在平面内的位置需要三个独立的几何参
数x、y、φ。
4. 约束
凡是能减少体系自由度的装置就称为约束。
6
约束的种类分为:
1)链杆
简单链杆 仅连结两个结点的杆件称为简单 链杆。一根简单链杆能减少一个自由度,故一 根简单链杆相当于一个约束。
FyA
特点: 1) 结构在支座截面可以绕圆柱铰A转动 ; 2) x、y方向的反力通过铰A的中心。
29
3. 辊轴支座
A
A
FyA
特点: 1) 杆端A产生垂直于链杆方向的线位移; 2) 反力沿链杆方向作用,大小未知。
30
4. 滑动支座(定向支座)
A 实际构造
A
MA
FyA
A
MA
FyA
特点: 1)杆端A无转角,不能产生沿链杆方向的线 位移,可以产生垂直于链杆方向的线位移;
16
A
I
II
c)
B III C
形成瞬铰B、C的四根链杆相互平行(不等 长),故铰B、C在同一无穷远点,所以三个 铰A、 B、C位于同一直线上,故体系为瞬变 体系(见图c)。
17
二、举例
解题思路: 基础看作一个大刚片;要区分被约束的刚片及
提供的约束;在被约束对象之间找约束;除复 杂链杆和复杂铰外,约束不能重复使用。
高等教育出版社
4
第一章 绪 论
§1-1 结构力学的内容和学习方法
§1-2 结构计算简图
5
§1-1 结构力学的内容和学习方法
一、结构
建筑物或构筑物中 承受、传递荷载而起 骨架作用的部分称为 结构。如:房屋中的 框架结构、桥梁、大 坝等。
x
结点自由度
y
φ
x
y
x
刚片自由度
2)一个刚片在平面内有三个自由度,因为确定 该刚片在平面内的位置需要三个独立的几何参
数x、y、φ。
4. 约束
凡是能减少体系自由度的装置就称为约束。
6
约束的种类分为:
1)链杆
简单链杆 仅连结两个结点的杆件称为简单 链杆。一根简单链杆能减少一个自由度,故一 根简单链杆相当于一个约束。
FyA
特点: 1) 结构在支座截面可以绕圆柱铰A转动 ; 2) x、y方向的反力通过铰A的中心。
29
3. 辊轴支座
A
A
FyA
特点: 1) 杆端A产生垂直于链杆方向的线位移; 2) 反力沿链杆方向作用,大小未知。
30
4. 滑动支座(定向支座)
A 实际构造
A
MA
FyA
A
MA
FyA
特点: 1)杆端A无转角,不能产生沿链杆方向的线 位移,可以产生垂直于链杆方向的线位移;
16
A
I
II
c)
B III C
形成瞬铰B、C的四根链杆相互平行(不等 长),故铰B、C在同一无穷远点,所以三个 铰A、 B、C位于同一直线上,故体系为瞬变 体系(见图c)。
17
二、举例
解题思路: 基础看作一个大刚片;要区分被约束的刚片及
提供的约束;在被约束对象之间找约束;除复 杂链杆和复杂铰外,约束不能重复使用。
高等教育出版社
4
第一章 绪 论
§1-1 结构力学的内容和学习方法
§1-2 结构计算简图
5
§1-1 结构力学的内容和学习方法
一、结构
建筑物或构筑物中 承受、传递荷载而起 骨架作用的部分称为 结构。如:房屋中的 框架结构、桥梁、大 坝等。
结构力学讲义课件
05
结构分析与方法
结构分析概述
定义与意义 发展历程
• 首先明确结构分析的定义,以及它在工程设计 和研究中的重要性。介绍结构分析的主要目的 和方法,以及它如何帮助工程师理解和预测结 构的性能。
• 概述结构分析的历史发展,从早期的经验设计 到现代的计算机辅助分析方法。突出重大进步 和里程碑,如矩阵位移法和有限元法的引入。
为。
03
强度指标
通过轴向拉伸与压缩试验,可以获得材料的强度指标,如弹性极限、屈
服强度和抗压强度。这些指标对于工程设计和材料选择具有重要意义。
剪切与挤压
定义与类型
剪切与挤压是材料在横向方向受 到力的作用,导致材料发生剪切 变形或挤压变形。根据力的作用 方式和方向,剪切与挤压可分为
不同类型。
剪切力与剪切应力
平面问题的基本方程
1 2 3
平面应力问题
物体在平面内受力,且应力分量仅与平面坐标有 关的问题。其基本方程包括平衡方程、几何方程 和物理方程。
平面应变问题
物体在平面内受力,且应变分量仅与平面坐标有 关的问题。其基本方程与平面应力问题类似,但 要考虑材料的横向变形。
平面问题的边界条件
包括应力边界条件和位移边界条件,用于描述物 体在边界上的受力情况和位移情况。
弹性力学初步
弹性力学概述
定义与研究对象
弹性力学是研究物体在弹性变形 阶段外力与变形关系的科学,其
研究对象主要是固体材料。
基本假设
在弹性力学中,通常采用线性弹性 假设,即应力与应变呈线性关系, 并且材料的弹性模量为常数。
研究内容
弹性力学主要研究弹性体的应力、 应变和位移分布规律,以及弹性体 在外力作用下的变形和破坏机理。
结构力学教学PPT
结构力学教学大纲
目
CONTENCT
录
• 结构力学概述 • 结构力学基础知识 • 结构分析方法 • 结构稳定性与优化设计 • 结构动力学与振动控制 • 结构力学在工程中的应用
01
结构力学概述
结构力学定义
结构力学是研究结构在各种力和力矩作用下的响应和行为的科学 。它主要关注结构的内力和变形,以及这些因素对结构性能的影 响。
有限差分法的基本思想是将偏微分方程离散化为差分方程 ,即将连续的空间离散化为有限个离散点。然后,通过求 解这些差分方程来近似得到偏微分方程的解。
总结词
有限差分法的优点在于它可以处理复杂的边界条件和几何 形状,并且可以模拟非线性行为。
详细描述
有限差分法的优点在于它可以处理复杂的边界条件和几何 形状,并且可以模拟非线性行为,如材料非线性和几何非 线性。此外,有限差分法还具有较高的计算效率和精度。
维护与加固
对已建成的桥梁,结构力 学可以评估其结构性能, 提出维护和加固方案,延 长桥梁的使用寿命。
建筑工程中的应用
结构设计
建筑工程中的结构设计需 要运用结构力学的原理和 方法,确保建筑物的安全 性和稳定性。
抗震设计
结构力学在建筑抗震设计 中具有重要地位,通过合 理设计建筑结构,提高建 筑的抗震性能。
总结词
有限差分法的缺点是需要对每个离散点进行单独的建模和 求解,并且需要较高的编程和数值计算能力。
详细描述
有限差分法的缺点是需要对每个离散点进行单独的建模和 求解,这需要大量的计算资源和时间。此外,有限差分法 需要较高的编程和数值计算能力,因为需要对每个离散点 进行编程和数值计算。
边界元法
总结词
边界元法是一种只对边界进行离散化的方法,通过求解边 界上的离散点来近似得到整个结构的力学行为。
目
CONTENCT
录
• 结构力学概述 • 结构力学基础知识 • 结构分析方法 • 结构稳定性与优化设计 • 结构动力学与振动控制 • 结构力学在工程中的应用
01
结构力学概述
结构力学定义
结构力学是研究结构在各种力和力矩作用下的响应和行为的科学 。它主要关注结构的内力和变形,以及这些因素对结构性能的影 响。
有限差分法的基本思想是将偏微分方程离散化为差分方程 ,即将连续的空间离散化为有限个离散点。然后,通过求 解这些差分方程来近似得到偏微分方程的解。
总结词
有限差分法的优点在于它可以处理复杂的边界条件和几何 形状,并且可以模拟非线性行为。
详细描述
有限差分法的优点在于它可以处理复杂的边界条件和几何 形状,并且可以模拟非线性行为,如材料非线性和几何非 线性。此外,有限差分法还具有较高的计算效率和精度。
维护与加固
对已建成的桥梁,结构力 学可以评估其结构性能, 提出维护和加固方案,延 长桥梁的使用寿命。
建筑工程中的应用
结构设计
建筑工程中的结构设计需 要运用结构力学的原理和 方法,确保建筑物的安全 性和稳定性。
抗震设计
结构力学在建筑抗震设计 中具有重要地位,通过合 理设计建筑结构,提高建 筑的抗震性能。
总结词
有限差分法的缺点是需要对每个离散点进行单独的建模和 求解,并且需要较高的编程和数值计算能力。
详细描述
有限差分法的缺点是需要对每个离散点进行单独的建模和 求解,这需要大量的计算资源和时间。此外,有限差分法 需要较高的编程和数值计算能力,因为需要对每个离散点 进行编程和数值计算。
边界元法
总结词
边界元法是一种只对边界进行离散化的方法,通过求解边 界上的离散点来近似得到整个结构的力学行为。
结构力学课件
M ( x ) F AY x M F (x L)
(0 x l )
FL
x
③根据方程画内力图
注意:弯矩图中正的弯矩值 绘在x轴的下方(即弯矩值绘 在弯曲时梁的受拉侧)。
x
M ( x)
例
图示简支梁受集度为q的满布荷载作用。试作梁的剪力图
和弯矩图。
q
A FA x
l
FA FB ql 2
ME FSE
FBy
Fy 0
F SE F By 0
FSE FBy
F 3
M
o
0
M
E
F By
3a 2
Fa
ME
3Fa 2
剪力和弯矩及其方程
F By
F 3
F Ay
5F 3
FAy FSE FAy 2F FSE
FBy 截面上的剪力等于截 面任一侧外力的代数和。
几何不变且无多余约束: 三链杆(一铰一链杆)不交于一点
常变体系,有一个多余约束
瞬变体系
常变体系
瞬变体系
• 三刚片组成规则 几何不变且无多余约束: 三铰不共于一直线
瞬变体系
瞬变体系
• 基本组成规则的应用技巧 一元体:一个刚片——与一个体系之间仅用三根不相交于一点
(也不相互平行)的链杆联结;
二元体:两个刚片——与一个体系之间仅用三个在一条直线的 铰两两联结。
静定结构
超静定结构
几何常变体系
瞬变体系,杆件受过大
练习与简解 2-3
2-2
2-4
提交: 2-2:求W 2-8
第3章 静定结构
§ 3-1 概述
1. 线弹性的静定结构和超静定结构的内力解答都是唯一的:静定 结构的内力仅有静力平衡条件确定;而确定超静定结构的内力除 了静力平衡条件外还需附加变形协调条件。本章研究静定结构内 力的求解方法,它也是确定超静定结构内力的必要基础之一。 2.平面杆系的静力平衡条件为 组合I 组合II
《结构力学教学课件》§8-2等截面直杆的转角位移方程
该方程是结构力学中的基本公式,用于描述等截面直杆在受力作用下的转角位移。通过分 析杆件在不同外力作用下的变形情况,推导出了转角位移方程。
转角位移方程的应用条件
该方程适用于等截面直杆,且假设杆件在受力过程中,轴线始终保持为直线,无弯曲变形 。
转角位移方程的意义
通过转角位移方程,可以方便地计算出杆件任意截面的转角位移,从而进一步分析结构的 内力和变形情况。
04
等截面直杆的转角位移方程与实际工程结 合
等截面直杆在桥梁工程中的应用
转角位移方程在桥梁工程中用于描述 桥梁结构的变形和受力情况,特别是 对于等截面直杆构成的桥梁结构,该 方程具有重要意义。
在实际桥梁工程中,等截面直杆作为 主要的承载构件,其转角位移方程能 够准确反映杆件的变形特征和内力分 布,为桥梁设计、施工和监测提供重 要依据。
等截面直杆在建筑结构中的应用
在建筑结构中,等截面直杆广泛应用于梁、柱等主要承重构件。
转角位移方程在建筑结构分析中,能够准确描述梁、柱等构件的变形和受力状态,为建筑结构的稳定性、安全性和经济性提 供保障。
等截面直杆在其他工程领域的应用
等截面直杆的转角位移方程在其他工 程领域也有广泛应用,如机械工程、 航空航天、船舶工程等。
实例解析中需要注意,转角位移方程只适用于等截面直杆, 且杆件的材料需满足线弹性条件。
转角位移方程的注意事项
使用转角位移方程时,应确保力矩M的方向与杆件的长度L 方向一致,否则会导致计算结果错误。
在实际工程中,结构的真实响应往往受到多种因素的影响 ,如材料非线性、几何非线性和边界条件等,因此在使用 转角位移方程进行计算时,应结合实际情况进行考虑。
《结构力学教学课件》
CONTENTS
• 引言 • 等截面直杆的转角位移方程基
转角位移方程的应用条件
该方程适用于等截面直杆,且假设杆件在受力过程中,轴线始终保持为直线,无弯曲变形 。
转角位移方程的意义
通过转角位移方程,可以方便地计算出杆件任意截面的转角位移,从而进一步分析结构的 内力和变形情况。
04
等截面直杆的转角位移方程与实际工程结 合
等截面直杆在桥梁工程中的应用
转角位移方程在桥梁工程中用于描述 桥梁结构的变形和受力情况,特别是 对于等截面直杆构成的桥梁结构,该 方程具有重要意义。
在实际桥梁工程中,等截面直杆作为 主要的承载构件,其转角位移方程能 够准确反映杆件的变形特征和内力分 布,为桥梁设计、施工和监测提供重 要依据。
等截面直杆在建筑结构中的应用
在建筑结构中,等截面直杆广泛应用于梁、柱等主要承重构件。
转角位移方程在建筑结构分析中,能够准确描述梁、柱等构件的变形和受力状态,为建筑结构的稳定性、安全性和经济性提 供保障。
等截面直杆在其他工程领域的应用
等截面直杆的转角位移方程在其他工 程领域也有广泛应用,如机械工程、 航空航天、船舶工程等。
实例解析中需要注意,转角位移方程只适用于等截面直杆, 且杆件的材料需满足线弹性条件。
转角位移方程的注意事项
使用转角位移方程时,应确保力矩M的方向与杆件的长度L 方向一致,否则会导致计算结果错误。
在实际工程中,结构的真实响应往往受到多种因素的影响 ,如材料非线性、几何非线性和边界条件等,因此在使用 转角位移方程进行计算时,应结合实际情况进行考虑。
《结构力学教学课件》
CONTENTS
• 引言 • 等截面直杆的转角位移方程基
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中南大学
退出
返回
17:31
§10-1 概述
5. 正负号规定(强调)
杆端位移和杆端力的正负号:
结构力学
凡是与单元坐标轴方向一致的位移和力均为正值,
ห้องสมุดไป่ตู้反之为负值。
力矩和转角以逆时针方向为正,反之为负。 作用在结点上的外力和结点位移的正负号:
与整体坐标系方向一致的结点力和结点位移为正, 反之为负。
以逆时针转的结点力矩和结点转角为正值,反之为 负值。
第十章
§10-1 §10-2 §10-3 §10-4
矩阵位移法
概述 单元刚度矩阵 单元刚度矩阵的坐标转换 结构的原始刚度矩阵
结构力学
§10-5 支承条件的引入 §10-6 非结点荷载的处理 §10-7 矩阵位移法的计算步骤及示例 §10-8 几点补充说明
中南大学
退出
返回
17:31
§10-1 概述
一、手算与电算比较:
对于杆系结构,矩阵位移法因易于编制通用的计算程序。
理论基础:位移法 ;分析工具:矩阵 ;
计算手段:计算机
中南大学
退出
返回
17:31
§10-1 概述
三、矩阵位移法的思路 :
结构力学
1)离散,进行单元分析,建立单元杆端力和杆端 位移的关系。 2)集合,进行整体分析,建立结点力与结点位移 的关系。 任务 意义
e xi
( a)
中南大学
退出
返回
17:31
§10-2 单元刚度矩阵
杆端横向位移△ij正负 号规定:使杆的j 端绕 i 端 作顺时针转时为正值。
结构力学
Δij (v je vie )
由两端固定等截面 直杆的转角位移方程有
6 EI e 4 EI e 6 EI e 2 EI e M 4i i 2i 6i 2 vi i 2 v j j l l l l l e e (v j vi ) 6 EI e 2 EI e 6 EI e 4 EI e e e e M j 2i i 4i j 6i 2 vi i 2 v j j l l l l l e 12 EI 6 EI 12 EI 6 EI F yi 3 vie 2 i e 3 v je 2 je l l l l e 12 EI e 6 EI e 12 EI e 6 EI e F yj 3 vi 2 i 3 v j 2 j ( b) l l l l
中南大学
退出
返回
17:31
§10-1 概述
2. 坐标系
结构力学
结构整体坐标系xoy用于描述结构整体的量—— 结点的坐标、结点的位移、作用在结构上的外力等。
单元局部坐标系固定在单元上, x 轴与杆轴重合,自 x 轴逆时针旋转900时的方向为 y 轴正向。用于描述单元的杆 端力和杆端位移等。
2 3
2
3
T
v1
其他任何单元都存在杆端力与杆端位移一一对 应的关系。
中南大学
退出
返回
17:31
§10-1 概述
4. 结点力和结点位移
结构力学
作用于结点上的所有的力的合力 , 沿坐标轴方 向分解为三个分量, 构成该结点的结点力向量。 与结点力向量对应的是结点位移向量,是矩阵 位移法的基本未知量。 注意:结点力和结点位移都是相对于整体坐标系的。
单元 分析 建立杆端力与杆端位移 间的刚度方程,形成单 元刚度矩阵 用矩阵形式表示杆 件的转角位移方程
整体
分析
由变形条件和平衡条件 建立结点力与结点位移 间的刚度方程,形成整
用矩阵形式表示位
移法基本方程
体刚度矩阵
中南大学
退出
返回
17:31
§10-1 概述
四、基本概念
1. 结点和单元
结构力学
单元——最基本的分析部件,最简单的单元是等截面 直杆。 梁单元——受轴力、还受剪力和弯矩作用则称为梁单 元(梁、刚架)。 轴力单元——只受轴力作用的单元(桁架)。 单元与单元之间通过结点联结,结点一经确定,则单 元也就全部确定了。 构造结点 : 杆件的转折点、汇交点、支承点和截面突 变点。 非构造结点 : 一根等截面直杆内的单元与单元之间的 结点。
vi 1 i 1
0 12 EI l3 6 EI l2 0 12 EI l3 6 EI l2 0 6 EI l2 4 EI l 0 6 EI l2 2 EI l
将上述(a)和(b)两式合在一起,写成矩阵形式,有
EA 0 l 12 EI 0 l3 6 EI 0 2 l EA 0 l 12 EI 0 3 l 6 EI 0 l2 0 6 EI l2 4 EI l 0 6 EI l2 2 EI l 0 0 12 EI l3 6 EI 2 l 0 12 EI l3 6 EI 2 l
EA l 0 0 e [K ] EA l 0 0
(10-7)
[ K e ]称为局部坐标系中的单元刚度矩阵(简称单刚)。
[ K e ] 的行数等于杆端力向量的分量数, 列数等于杆端位
移向量的分量数,
[ K e ] 的每一个元素称为单元刚度系数,其表示了一个力。
结构力学
(16,17,18) 5 (13,14,15) 6
6
2 1
3
5
4 (10,11,12)
3 (7,8,9)
4
Y X
1 (1,2,3)
2 (4,5,6)
中南大学
退出
返回
17:31
§10-1 概述
3. 杆端位移和杆端力
结构力学
不忽略单元的轴向变形时,平面结构中每个刚结 点都有 3 个独立的位移( 2 个独立线位移、 1 个角位 移),每一个铰结点则有2个独立线位移。
中南大学
退出
返回
17:31
§10-2 单元刚度矩阵
ui 1
EA l 0 0 e [K ] EA l 0 0
结构力学
u j 1 v j 1 j 1
EA l 0 0 EA l 0 0 12 EI 6 EI 3 l l2 6 EI 2 EI 2 l l 0 0 12 EI 6 EI 2 l3 l 6 EI 4 EI 2 l l 66 0 0
e
•集零为整
结点外力
单元杆端力 结点外力 单元杆端位移
(杆端位移=结点位移) 结点外力 结点位移
中南大学
退出
返回
17:31
§10-2 单元刚度矩阵
结构力学
1. 建立单元杆端力与杆端位移之间的关系
截面直杆单元e , 其杆端位移列向量与杆端力列 向量分别为 T
{δ e } uie vie i e u je v je je e e e e {F e } Fxi Fyi M ie Fxj Fyj
手算:小型、简单问题,讲究技巧。
结构力学
超静定结构分析: 力法,位移法,力矩分配法。
电算:大型、复杂问题,要求方法具有系统性、 通用性。 结构力学中的电算方法 —结构矩阵分析方法 (杆件有限元法) 结构矩阵分析方法是以传统结构力学理论为基础、 以矩阵作为数学表述形式、以电子计算机作为计算手 段大规模的计算方法。
结构力学
u j 1 v j 1 j 1
EA l 0 0 EA l 0 0 12 EI 6 EI 3 l l2 6 EI 2 EI 2 l l 0 0 12 EI 6 EI l3 l2 6 EI 4 EI 2 l l 66 0 0
返回
17:31
§10-1 概述
结构力学
平面桁架铰结点只有两个独立的线位移,与此 对应,桁架单元的杆端力只有轴力和剪力与其对应, 但实际上桁架单元的剪力总是为零的,所以有
FN 1 1 e 2 FN 2
{F e } FNi
杆端力向量
0 FNj
0 (10-3)
T
u1
1
e
2
u2 v2
杆端位移向量
{δe } ui vi uj v j (10-4)
结构力学
EA l 0 0 EA l 0 0 6 EI l2 2 EI l 0 6 EI 2 l 4 EI l
u ie ve i e i u je v je e j
=
——单元在局部坐标系中的单元刚度方程。 它可记为
{F e } [K e ]{δ e }
退出 返回
(10-6a)
中南大学
17:31
§10-2 单元刚度矩阵
其中
ui 1
vi 1 i 1
0 12 EI l3 6 EI l2 0 12 EI l3 6 EI l2 0 6 EI l2 4 EI l 0 6 EI l2 2 EI l
vi 1 i 1
0 12 EI l3 6 EI l2 0 12 EI l3 6 EI l2 0 6 EI l2 4 EI l 0 6 EI l2 2 EI l
e 任一元素 kij 表示当j号位移为一单位时引起杆端沿i 号 位移方向的反力。
中南大学
退出
返回
17:31
§10-2 单元刚度矩阵
ui 1
EA l 0 0 e [K ] EA l 0 0
结构力学
u j 1 v j 1 j 1
EA l 0 0 EA l 0 0 12 EI 6 EI 3 l l2 6 EI 2 EI 2 l l 0 0 12 EI 6 EI l3 l2 6 EI 4 EI 2 l l 66 0 0