结构力学-力法-PPT
合集下载
大学《结构力学》第6章 力法课件
超超静静定定次次数数==33××51==135
? 超超静静定定次次数数==33××52-=356=120
结构超静定次数的判定方法(拆除约束法)
一般从约束数少的约束开始拆(截断),直到使结构成为一个
无多余约束的几何不变体系(静定结构)为止。
1)去掉一根支座链杆或截断一根桁架杆,相当拆除1个约束;
2)去掉一个固定铰支座或切开一个单铰,相当拆除2个约束;
•
荷载作用下超静定结构的力法计算及内力图绘制与校核;
• (2)难点:根据已知变形条件建立力法典型方程;
•
利用对称性取等效半结构;
§6-1 超静定结构的组成和超静定次数
一、超静定结构 几何特征:多余约束
静力特征:多余力
组成 :有多余联系的几何不变体系。注意多余联系是对几何不变 体而言,可在结构内部或外部,多余联系中产生的力称为多余力。 如果一个结构的支座反力和各截面内力都可以由静力平衡
l
MP
M1
3、力法基本方程-
11 1p 0
11 11 X 1
11 X 1 1P 0
X1 1
4、系数与自由项 1P ,11
1P
M1M P dx ql4
EI
8 EI
5、解方程
l3 3EI
X1
ql 4 8EI
0
11
M1M1 dx l3
EI
3EI
X1
3 8
ql
8
X1
3 8
ql
4
3次超静定
P
X
X
3
2
X
3
X1
X
X
2
1
3.切断一根梁式杆等于去掉三个约束
结构力学第六章 力法
34
四、n次超静定结构的力法典型方程
i1X1 i2 X 2 in X n iP 0(i 1、2、、n)
符号意义同前。 求解内力(作内力图)的公式:
M M1X1 M2X2 Mn Xn M P
FQ FQ1X1 FQ2 X2 FQn Xn FQP
FN FN1 X1 FN 2 X 2 FNn X n FNP 作内力图可以延用第三章的作法:由M→FQ→FN。
通常做法:拆除原结构的所有多余约束,代之 以多余力X,而得到静定结构。
规则: 1)去掉或切断一根链杆,相当于去掉一个约束; 2)去掉一个简单铰,相当于去掉两个约束; 3)去掉一个固定支座或切断一根梁式杆,相当于去 掉三个约束; 4)在梁式杆上加一个简单铰,相当于去掉一个约束。
10
例: a)
X1
X2
37
2、列 力法方程
1211XX11
12 X 2 22 X 2
1P 2P
0 0
(B 0) (C 0)
讨论方程和系数的物理意义。
q
A
D
Δ1P B
C
A
X1=1
δ11 δ21
D
B
C
A
δ12
X2=1 δ22
D
B C
38
位移方程(力法方程)
ΔφB=0 ——B左右截面相对转角等于零。 ΔφC=0 —— C左右截面相对转角等于零。
d)
原结构
X2
X1
X1
X2
n=2
13
e)
原结构
X1 X1 n=1
f)
原结构
n=3
X1
X3
X2
特别注意:不要把原结
构拆成几何可变体系。此
四、n次超静定结构的力法典型方程
i1X1 i2 X 2 in X n iP 0(i 1、2、、n)
符号意义同前。 求解内力(作内力图)的公式:
M M1X1 M2X2 Mn Xn M P
FQ FQ1X1 FQ2 X2 FQn Xn FQP
FN FN1 X1 FN 2 X 2 FNn X n FNP 作内力图可以延用第三章的作法:由M→FQ→FN。
通常做法:拆除原结构的所有多余约束,代之 以多余力X,而得到静定结构。
规则: 1)去掉或切断一根链杆,相当于去掉一个约束; 2)去掉一个简单铰,相当于去掉两个约束; 3)去掉一个固定支座或切断一根梁式杆,相当于去 掉三个约束; 4)在梁式杆上加一个简单铰,相当于去掉一个约束。
10
例: a)
X1
X2
37
2、列 力法方程
1211XX11
12 X 2 22 X 2
1P 2P
0 0
(B 0) (C 0)
讨论方程和系数的物理意义。
q
A
D
Δ1P B
C
A
X1=1
δ11 δ21
D
B
C
A
δ12
X2=1 δ22
D
B C
38
位移方程(力法方程)
ΔφB=0 ——B左右截面相对转角等于零。 ΔφC=0 —— C左右截面相对转角等于零。
d)
原结构
X2
X1
X1
X2
n=2
13
e)
原结构
X1 X1 n=1
f)
原结构
n=3
X1
X3
X2
特别注意:不要把原结
构拆成几何可变体系。此
结构力学课件--6力法
2m 2m
4m
1
4m
125
15
11.3
15
M kN m
Q kN
3.7 75
200
15 147.5
11.3 22.5
11.3 3.7
22.5
2021/4/9竖向力不平衡
147.5
N kN
二、变形条件的校核
25
200
100 60
2
2 30
1
40
1
150
4m
1
1
20 2m 2m
15 4m
11
M kN m
2) 3
4a 3EI
X2 1
22
1 EI
(1 2
a 1
2) 3
a 3EI
M2
12
1 EI
(1 2
a 1 1) 3
a 6EI
1 1 Pa
1 Pa 2 5Pa2
1P
EI
( 2
2
a1 2
2
a ) 3 12EI
2P
1 EI
1 2
Pa 2
a
1) 3
Pa 2 12EI
Pa 2
P 2 MP 1
X1 1 M1
EA
0 E1A1
1P
M1M P EI
ds
=
1P
l N12 dx l 12 dx l
0 E1A1
0 E1A1
E1 A1
11
M12 ds EI
N12 ds EA
l E1 A1
11
l E1 A1
两类拱的比较: 无拉杆 H 1P
11
E1A1 H H 相当于无拉杆
第六章-力法(二) ,同济大学结构力学课件,朱慈勉版教材,吕凤悟老师课件
根据对称结构的受力特征,在对称或反对称荷载作用下,可以取半结构 计算,另外半结构的内力可通过对称或反对称镜像得到。
半结构选取的关键在于正确判别另外半结构对选取半结构的约束作用。 判别方法有两种:
根据对称轴上的杆件和截面的变形(或位移)特征判别。(适用于所有结构)
根据对称轴上的杆件和截面的内力特征判别。 (一般只适用于奇数跨结构)
【例】试用力法求作图示刚架的弯矩图。 各杆 EI C 。
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§6-5 对称性的利用—力法简化计算
【例】试用力法求作图示刚架的弯矩图。各杆 EI C 。
【解】利用对称性简化为一次超静定。
11X1 1p 0
11
144 EI
,
1 p
1800 EI
X1 12.5kN
M M1X1 M p
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§6-5 对称性的利用—力法简化计算
取半结构计算
§6-5 对称性的利用—力法简化计算
对称性的概念
对称结构:几何形状、支承情况、刚度分布均对称的结构。
支承不对称
对称结构
几何对称 支承对称 刚度对称
非对称结构
刚度不对称
对称荷载:作用在对称结构对称轴两侧,大小相等,方向和作用点对称的荷载。 反对称荷载:作用在对称结构对称轴两侧,大小相等,作用点对称,方向
13X 3 23X 3
1 p 2p
0 0
31X1 32 X 2 33 X 3 3 p 0
半结构选取的关键在于正确判别另外半结构对选取半结构的约束作用。 判别方法有两种:
根据对称轴上的杆件和截面的变形(或位移)特征判别。(适用于所有结构)
根据对称轴上的杆件和截面的内力特征判别。 (一般只适用于奇数跨结构)
【例】试用力法求作图示刚架的弯矩图。 各杆 EI C 。
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§6-5 对称性的利用—力法简化计算
【例】试用力法求作图示刚架的弯矩图。各杆 EI C 。
【解】利用对称性简化为一次超静定。
11X1 1p 0
11
144 EI
,
1 p
1800 EI
X1 12.5kN
M M1X1 M p
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§6-5 对称性的利用—力法简化计算
取半结构计算
§6-5 对称性的利用—力法简化计算
对称性的概念
对称结构:几何形状、支承情况、刚度分布均对称的结构。
支承不对称
对称结构
几何对称 支承对称 刚度对称
非对称结构
刚度不对称
对称荷载:作用在对称结构对称轴两侧,大小相等,方向和作用点对称的荷载。 反对称荷载:作用在对称结构对称轴两侧,大小相等,作用点对称,方向
13X 3 23X 3
1 p 2p
0 0
31X1 32 X 2 33 X 3 3 p 0
结构力学讲义ppt课件
x y
x
结点自由度
y
φ
x
y
x
刚片自由度
2)一个刚片在平面内有三个自由度,因为确定 该刚片在平面内的位置需要三个独立的几何参
数x、y、φ。
4. 约束
凡是能减少体系自由度的装置就称为约束。
6
约束的种类分为:
1)链杆
简单链杆 仅连结两个结点的杆件称为简单 链杆。一根简单链杆能减少一个自由度,故一 根简单链杆相当于一个约束。
FyA
特点: 1) 结构在支座截面可以绕圆柱铰A转动 ; 2) x、y方向的反力通过铰A的中心。
29
3. 辊轴支座
A
A
FyA
特点: 1) 杆端A产生垂直于链杆方向的线位移; 2) 反力沿链杆方向作用,大小未知。
30
4. 滑动支座(定向支座)
A 实际构造
A
MA
FyA
A
MA
FyA
特点: 1)杆端A无转角,不能产生沿链杆方向的线 位移,可以产生垂直于链杆方向的线位移;
16
A
I
II
c)
B III C
形成瞬铰B、C的四根链杆相互平行(不等 长),故铰B、C在同一无穷远点,所以三个 铰A、 B、C位于同一直线上,故体系为瞬变 体系(见图c)。
17
二、举例
解题思路: 基础看作一个大刚片;要区分被约束的刚片及
提供的约束;在被约束对象之间找约束;除复 杂链杆和复杂铰外,约束不能重复使用。
高等教育出版社
4
第一章 绪 论
§1-1 结构力学的内容和学习方法
§1-2 结构计算简图
5
§1-1 结构力学的内容和学习方法
一、结构
建筑物或构筑物中 承受、传递荷载而起 骨架作用的部分称为 结构。如:房屋中的 框架结构、桥梁、大 坝等。
x
结点自由度
y
φ
x
y
x
刚片自由度
2)一个刚片在平面内有三个自由度,因为确定 该刚片在平面内的位置需要三个独立的几何参
数x、y、φ。
4. 约束
凡是能减少体系自由度的装置就称为约束。
6
约束的种类分为:
1)链杆
简单链杆 仅连结两个结点的杆件称为简单 链杆。一根简单链杆能减少一个自由度,故一 根简单链杆相当于一个约束。
FyA
特点: 1) 结构在支座截面可以绕圆柱铰A转动 ; 2) x、y方向的反力通过铰A的中心。
29
3. 辊轴支座
A
A
FyA
特点: 1) 杆端A产生垂直于链杆方向的线位移; 2) 反力沿链杆方向作用,大小未知。
30
4. 滑动支座(定向支座)
A 实际构造
A
MA
FyA
A
MA
FyA
特点: 1)杆端A无转角,不能产生沿链杆方向的线 位移,可以产生垂直于链杆方向的线位移;
16
A
I
II
c)
B III C
形成瞬铰B、C的四根链杆相互平行(不等 长),故铰B、C在同一无穷远点,所以三个 铰A、 B、C位于同一直线上,故体系为瞬变 体系(见图c)。
17
二、举例
解题思路: 基础看作一个大刚片;要区分被约束的刚片及
提供的约束;在被约束对象之间找约束;除复 杂链杆和复杂铰外,约束不能重复使用。
高等教育出版社
4
第一章 绪 论
§1-1 结构力学的内容和学习方法
§1-2 结构计算简图
5
§1-1 结构力学的内容和学习方法
一、结构
建筑物或构筑物中 承受、传递荷载而起 骨架作用的部分称为 结构。如:房屋中的 框架结构、桥梁、大 坝等。
结构力学力法PPT_图文
q EI 1次超静定
一个无铰封闭圈有三个多余联系
q
q
q
q
第8章
2、去掉多余联系的方法
(1)去掉支座的一根支杆或切断一根链杆相当于去掉一个联系。 (2)去掉一个铰支座或一个简单铰相当于去掉两个联系。 (3)去掉一个固定支座或将刚性联结切断相当于去掉三个联系。 (4)将固定支座改为铰支座或将刚性联结改为铰联结相当于 去掉一个联系。
1、解题思路
q
2
1
l
原结构
q
x1 基本结构
位移条件: 1P+ 11=0 因为 11= 11X1 ( 右下图) 所以 11X1 +1P =0 X1= -1P/ 11
q 1P
11 x1
11 x1=1
第8章
2、解题步骤
(1)选取力法基本结构; (2)列力法基本方程; (3)绘单位弯矩图、荷载弯矩图; (4)求力法方程各系数,解力法方程; (5)绘内力图。
X1
X2
基本结构(1)
第8章
对应不同的基本结构有不同的力法方程:
A
B
C
D
C1
C2
l A X1
l
l
原结构
B
C
D
C1
C2
X2
解:力法方程:
基本结构(2)
第8章
对应不同的基本结构有不同的力法方程:
A
B
C
D
C1
C2
l
l
原结构
A
B
C
l D
C1
X1
X2
解:力法方程:
基本结构(3)
第8章
四、如何求
A
以基本结构(2)为例:
一个无铰封闭圈有三个多余联系
q
q
q
q
第8章
2、去掉多余联系的方法
(1)去掉支座的一根支杆或切断一根链杆相当于去掉一个联系。 (2)去掉一个铰支座或一个简单铰相当于去掉两个联系。 (3)去掉一个固定支座或将刚性联结切断相当于去掉三个联系。 (4)将固定支座改为铰支座或将刚性联结改为铰联结相当于 去掉一个联系。
1、解题思路
q
2
1
l
原结构
q
x1 基本结构
位移条件: 1P+ 11=0 因为 11= 11X1 ( 右下图) 所以 11X1 +1P =0 X1= -1P/ 11
q 1P
11 x1
11 x1=1
第8章
2、解题步骤
(1)选取力法基本结构; (2)列力法基本方程; (3)绘单位弯矩图、荷载弯矩图; (4)求力法方程各系数,解力法方程; (5)绘内力图。
X1
X2
基本结构(1)
第8章
对应不同的基本结构有不同的力法方程:
A
B
C
D
C1
C2
l A X1
l
l
原结构
B
C
D
C1
C2
X2
解:力法方程:
基本结构(2)
第8章
对应不同的基本结构有不同的力法方程:
A
B
C
D
C1
C2
l
l
原结构
A
B
C
l D
C1
X1
X2
解:力法方程:
基本结构(3)
第8章
四、如何求
A
以基本结构(2)为例:
结构力学第六章力法
弯矩图可按悬臂梁画出
M X1 M 1 M P
§6-4 力法计算超静定桁架和组合结构
一 超静定桁架
F Ni l ii EA F N i F N jl ij EA F N i FN P l iP EA
2
桁架各杆只产生轴力,系数
典型方程: 11 X 1 1P 0
9 17 FP , X 2 FP 80 40
叠加原理求弯矩: M X 1 M 1 X 2 M 2 M P
3FPL/40 3FPL/40
FP 9FP/80
23FP/40 FNDC
FQDC 3FPL/80 FQBD
FQCD FNDA
FQBD=-9FP/80
FNBD=-23FP/40
FQDC=3FP/40+FP/2=23FP/40
2 P 3P 0
11 X 1 1P 0 22 X 2 23 X 3 0 X X 0 33 3 32 2
11 X 1 1P 0 X 2 X 3 0
反对称荷载作用下, 沿对称轴截面上正对称内力为0 例: FP FP/2 FP/2 FP/2
1)一般任意荷载作用下
11 X 1 12 X 2 13 X 3 1P 0 21 X 1 22 X 2 23 X 3 2 P 0 X X X 0 33 3 3P 31 1 32 2
11 X 1 1P 0 22 X 2 23 X 3 2 P 0 X X 0 33 3 3P 32 2
M FN
超静定结构的内力分布与梁式杆和二力杆的相对刚度有关。 链杆EA大,M图接近与连续梁,链杆EA小,M图接近与简支梁。 例: 中间支杆的刚度系数为k,求结点B的竖向位移?EI=C
结构力学力法
l 2 (
2 ) (
2F )
2l
2 1 2 Fl
EA
力法
X1=1
11
2
1
1
2
FP
- 2FP
FP 0
0 FP/2
- FP/2
1
FP
FN1
FNP
FP/2
d11
4
1 EA
2l
1
21 2 EA
Fl
(4) 求多余未知力
X1
F 2
Δ1——基本结构在荷载与多余未知力X1共同作用下,B点沿 X1方向的总位移
力法
1 11 1 0 A
Δ11——基本结构在多余未知 力X1单独作用下,B点沿X1方向 的位移;
Δ1P——基本结构在荷载单独 作用下,B点沿X1方向的位移。
〓
FP
+
FP
B
FB
X1
Δ11 X1
Δ1P
力法
δ11 X1=1
F1
F1
F1
X1
F1
X
1
一次超静定
X1
由于去掉多余约束的方式的多样性,所以,在力法计 算中,同一结构的基本结构可有各种不同的形式。
力法
2)去掉的约束必须是对保持其几何不变性来说是多 余的约束,即不要把拆成几何可变体系。
F1
X1
拆成了几何可变体系(×)
力法
超静定次数n n =把原结构变成静定结构时所需撤掉的约束个数
↓
B
Δ1P
δ11——基本结构在X1=1单独作用下,B点沿X1方向
的位移。
1 11 1 0
《力法结构力学》课件
详细描述
力的作用与反作用原理表明,当一个物体对另一个物体施加力时,另一个物体也 会对施力物体施加一个大小相等、方向相反的反作用力。这个原理是牛顿第三定 律的一部分,是理解结构力学中相互作用和平衡状态的基础。
弹性力学的基本假设
总结词
对弹性力学的基本性质和假设的概括。
详细描述
弹性力学的基本假设包括:1) 材料是线弹性的,即应力与应变之间存在线性关系;2) 材料是均匀的,即各部分具有相同的物理性质;3) 材料是无缝的,即不存在内部空隙 或缺陷;4) 材料是连续的,即物质没有离散的间隙或孔洞。这些假设为简化问题和分
来获得结构的响应。
力法结构力学的智能化技术应用
人工智能与机器学习
利用人工智能和机器学习技术对大量 数据进行处理和分析,自动识别结构
的性能特征和优化设计方案。
智能传感器与监测技术
通过智能传感器实时监测结构的性能 状态,实现结构的健康监测和预警。
优化算法与智能决策
将优化算法与人工智能相结合,实现 结构的智能优化设计,提高结构的性
能和可靠性。
感谢您的观看
THANKS03力法结 Nhomakorabea力学的基本方法
静力分析方法
静力分析方法是一种基于平衡条 件的结构分析方法,用于确定结 构在静力荷载作用下的内力和变
形。
静力分析方法主要包括:线弹性 分析、塑性分析和弹塑性分析等
。
静力分析方法广泛应用于各种工 程结构的分析和设计,如桥梁、
房屋、塔架等。
动力分析方法
动力分析方法是一种基于动力 学方程的结构分析方法,用于 确定结构在动力荷载作用下的
总结词
交通工具的力法分析是力法结构力学在交通 运输领域的应用,通过对交通工具进行力法 分析,可以提高交通工具的安全性和舒适性 。
力的作用与反作用原理表明,当一个物体对另一个物体施加力时,另一个物体也 会对施力物体施加一个大小相等、方向相反的反作用力。这个原理是牛顿第三定 律的一部分,是理解结构力学中相互作用和平衡状态的基础。
弹性力学的基本假设
总结词
对弹性力学的基本性质和假设的概括。
详细描述
弹性力学的基本假设包括:1) 材料是线弹性的,即应力与应变之间存在线性关系;2) 材料是均匀的,即各部分具有相同的物理性质;3) 材料是无缝的,即不存在内部空隙 或缺陷;4) 材料是连续的,即物质没有离散的间隙或孔洞。这些假设为简化问题和分
来获得结构的响应。
力法结构力学的智能化技术应用
人工智能与机器学习
利用人工智能和机器学习技术对大量 数据进行处理和分析,自动识别结构
的性能特征和优化设计方案。
智能传感器与监测技术
通过智能传感器实时监测结构的性能 状态,实现结构的健康监测和预警。
优化算法与智能决策
将优化算法与人工智能相结合,实现 结构的智能优化设计,提高结构的性
能和可靠性。
感谢您的观看
THANKS03力法结 Nhomakorabea力学的基本方法
静力分析方法
静力分析方法是一种基于平衡条 件的结构分析方法,用于确定结 构在静力荷载作用下的内力和变
形。
静力分析方法主要包括:线弹性 分析、塑性分析和弹塑性分析等
。
静力分析方法广泛应用于各种工 程结构的分析和设计,如桥梁、
房屋、塔架等。
动力分析方法
动力分析方法是一种基于动力 学方程的结构分析方法,用于 确定结构在动力荷载作用下的
总结词
交通工具的力法分析是力法结构力学在交通 运输领域的应用,通过对交通工具进行力法 分析,可以提高交通工具的安全性和舒适性 。
结构力学--力法 ppt课件
1 EI
l2
2
2l 3
3lE3I
3 ql 8
X
1
3 8
ql
14
2. 力法求解的基本步骤 ① 选取基本未知量 ② 建立力法基本方程
③ 求解系数δ11和自由项△1P
④ 解方程,求基本未知量 ⑤ 作内力图
15
3. 思考与练习
q
MA
F xA
A
B
F yA
F yB
选择不同的多余约束力作为基本未知量,
力法的基本体系?
第6章 力 法
1
目录
§6-1 超静定结构和超静定次数 §6-2 力法的基本概念 §6-3 力法解超静定刚架和排架 §6-4 力法解超静定桁架和组合结构 §6-5 力法解对称结构 §6-6 力法解两铰拱 §6-7 力法解无铰拱 §6-8 支座移动和温度改变时的力法分析 §6-9 超静定结构位移的计算 §6-10 超静定结构计算的校核 §6-11 用求解器进行力法计算 §6-12 小结
➢土木工程专业的力学可分为两大类,即“结构力学类”和“弹性力学 类”。
“结构力学类”包括理论力学、材料力学和结构力学,其分析方法具有 强烈的工程特征,简化模型是有骨架的体系(质点、杆件或杆系), 其力法基本未知量一般是“力”,方程形式一般是线性方程。
“弹性力学类”包括弹塑性力学和岩土力学,其思维方式类似于高等数 学体系的建构,由微单元体(高等数学中的微分体)入手分析,简化 模型通常是无骨架的连续介质,其力法基本未知量一般是“应力”, 方程形式通常是微分方程。
➢如果一个问题中既有力的未知量,也有位移的未知量,力的部分考虑 位移约束和变形协调,位移的部分考虑力的平衡,这样一种分析方案 称为混合法。
Strucural Analysis
结构力学第8章力法
(b)
式(b)既是两次超静定结构在荷载作 用下的力法方程。
2.n次超静定结构的力法方程
(力法典型方程)
由两次超静定结构的力法方程推广,得:
11 x1 12 x2 1i xi 1 j x j 1n xn 1P 0
…………….. ……………..
21 x1 22 x2 2i xi 2 j x j 2 n xn 2 P 0
例8-2-1 使用力法计算图(a)所示超
静定梁,并作弯矩图。
B A L
(a)
Байду номын сангаас:
(1)判定梁的超静定次数,并确定相应 的力法基本体系。见图(b)。
x 1 A x 2 B
(b)基本体系
(2)写力法方程。
11 x1 12 x2 1 p 0
21 x1 22 x2 2 p 0
力法基本体系
q
A BA
q
B x 1
(a)原结构
(b)基本体系
图8-1-1
如图8-1-1(a)所示为有一个多余约束的 几何不变体系。取B支座链杆为多余约 束,去掉后代以多余力x1,见图(b)。
设想x1是已知的,图(b)所示体系就是 一个在荷载和多余力共同作用下的静定 结构的计算问题。换句话说,如果x1等 于原结构B支座的反力,则图(b)所示体 系就能代替原结构进行分析。
要避免将必要约束拆掉,即最后 不应是几何可变体系或几何瞬变 体系。
例8-1-1 试确定图(a)、(b)所示结
构的基本未知量。
x2 x1 x3 x2 x1 x3
x3 x2
x1
(a)
(a1)
(a2)
x2 x1 x2 x1
式(b)既是两次超静定结构在荷载作 用下的力法方程。
2.n次超静定结构的力法方程
(力法典型方程)
由两次超静定结构的力法方程推广,得:
11 x1 12 x2 1i xi 1 j x j 1n xn 1P 0
…………….. ……………..
21 x1 22 x2 2i xi 2 j x j 2 n xn 2 P 0
例8-2-1 使用力法计算图(a)所示超
静定梁,并作弯矩图。
B A L
(a)
Байду номын сангаас:
(1)判定梁的超静定次数,并确定相应 的力法基本体系。见图(b)。
x 1 A x 2 B
(b)基本体系
(2)写力法方程。
11 x1 12 x2 1 p 0
21 x1 22 x2 2 p 0
力法基本体系
q
A BA
q
B x 1
(a)原结构
(b)基本体系
图8-1-1
如图8-1-1(a)所示为有一个多余约束的 几何不变体系。取B支座链杆为多余约 束,去掉后代以多余力x1,见图(b)。
设想x1是已知的,图(b)所示体系就是 一个在荷载和多余力共同作用下的静定 结构的计算问题。换句话说,如果x1等 于原结构B支座的反力,则图(b)所示体 系就能代替原结构进行分析。
要避免将必要约束拆掉,即最后 不应是几何可变体系或几何瞬变 体系。
例8-1-1 试确定图(a)、(b)所示结
构的基本未知量。
x2 x1 x3 x2 x1 x3
x3 x2
x1
(a)
(a1)
(a2)
x2 x1 x2 x1
《结构力学》第七章力法
A点的位移
沿X1方向:
沿X2方向:
沿X3方向:
据叠加原理,上述位移条件可写成
原结构
基本结构
△1=
(7—2)
(a)
(b)
11
21、22、23和△2P ;
31、32、33和△3P 。
△2=21X1+22X2+23X3+△2P=0 △3=31X1+32X2+33X3+△3P=0
11X1
+12X2
+13X3
11X1+12X2+△1P=0 21X1+22X2+△2P=0 33X3+△3P=0
则 X3=0 。
这表明:对称的超静定结构,在对称的荷载作用下, 只有对称的多余未知力,反对称的多余未知力必为零。
↓
↓
a
a
P
P
↓
↓
P
P
MP图
(2)对称结构作用反 对称荷载
MP图是反对称的,故
2 .确定超静定次数的方法:
解除多余联系的方式通 常有以下几种:
(1)去掉或切断一根链杆,相当于去掉一个联系。
↓
↑
(2)拆开一个单铰,相当 于去掉两个联系。
用力法解超静定结构时,首先必须确定多余联系 或多余未知力的数目。
↓
↑
←
→
多余联系或多余未知力的个数。
多余未知力:
多余联系中产生的力称为多余未 知力(也称赘余力)。
此超静定结构有一个多余联 系,既有一个多余未知力。
此超静定结构有二个多余联 系,既有二个多余未知力。
返 回
*
3. 超静定结构的类型
(1)超静定梁; (2)超静定桁架; (3)超静定拱;
沿X1方向:
沿X2方向:
沿X3方向:
据叠加原理,上述位移条件可写成
原结构
基本结构
△1=
(7—2)
(a)
(b)
11
21、22、23和△2P ;
31、32、33和△3P 。
△2=21X1+22X2+23X3+△2P=0 △3=31X1+32X2+33X3+△3P=0
11X1
+12X2
+13X3
11X1+12X2+△1P=0 21X1+22X2+△2P=0 33X3+△3P=0
则 X3=0 。
这表明:对称的超静定结构,在对称的荷载作用下, 只有对称的多余未知力,反对称的多余未知力必为零。
↓
↓
a
a
P
P
↓
↓
P
P
MP图
(2)对称结构作用反 对称荷载
MP图是反对称的,故
2 .确定超静定次数的方法:
解除多余联系的方式通 常有以下几种:
(1)去掉或切断一根链杆,相当于去掉一个联系。
↓
↑
(2)拆开一个单铰,相当 于去掉两个联系。
用力法解超静定结构时,首先必须确定多余联系 或多余未知力的数目。
↓
↑
←
→
多余联系或多余未知力的个数。
多余未知力:
多余联系中产生的力称为多余未 知力(也称赘余力)。
此超静定结构有一个多余联 系,既有一个多余未知力。
此超静定结构有二个多余联 系,既有二个多余未知力。
返 回
*
3. 超静定结构的类型
(1)超静定梁; (2)超静定桁架; (3)超静定拱;
【结构力学课件】7 力法 对称结构
§7-5 对称结构的计算
11 X 1 12 X 2 1n X n 1 P 0
21 X 1 22 X 2 2 n X n 2 P 0 力法基本方程 n1 X 1 n 2 X 2 nn X n nP 0
X2 X3
11 X 1 12 X 2 13 X 3 1 P 0 21 X 1 22 X 2 23 X 3 2 P 31 X 1 32 X 2 33 X 3 3 P
X1=1 X2=1
0 0
X1 0 X2 0 X 0 3
X3 X 3 X3 X3
11 X 1 12 X 2 1 P 0 21 X 1 22 X 2 2 P 0
33 X 3 3 P 0
例1:P386习题7-3(a)
EI2 EI1 EI1 q q
=
X1
q
基本结构
一、弹性支座:
q q
基本体系
X1
q
q
q
基本体系
X1
q
基本体系
X1
11 X 1 1P 0
11 X 1 1P
q
X 1h EA
11 X1 1P
q
X1 k
h ( 11 ) X 1 1P 0 EA
X1
1 ( 11 ) X 1 1P 0 k
11 X 1 12 X 2 13 X 3 1 P 0 21 X 1 22 X 2 23 X 3 2 P 31 X 1 32 X 2 33 X 3 3 P
X1=1
11 X 1 12 X 2 1n X n 1 P 0
21 X 1 22 X 2 2 n X n 2 P 0 力法基本方程 n1 X 1 n 2 X 2 nn X n nP 0
X2 X3
11 X 1 12 X 2 13 X 3 1 P 0 21 X 1 22 X 2 23 X 3 2 P 31 X 1 32 X 2 33 X 3 3 P
X1=1 X2=1
0 0
X1 0 X2 0 X 0 3
X3 X 3 X3 X3
11 X 1 12 X 2 1 P 0 21 X 1 22 X 2 2 P 0
33 X 3 3 P 0
例1:P386习题7-3(a)
EI2 EI1 EI1 q q
=
X1
q
基本结构
一、弹性支座:
q q
基本体系
X1
q
q
q
基本体系
X1
q
基本体系
X1
11 X 1 1P 0
11 X 1 1P
q
X 1h EA
11 X1 1P
q
X1 k
h ( 11 ) X 1 1P 0 EA
X1
1 ( 11 ) X 1 1P 0 k
11 X 1 12 X 2 13 X 3 1 P 0 21 X 1 22 X 2 23 X 3 2 P 31 X 1 32 X 2 33 X 3 3 P
X1=1
结构力学——力法
故
Y1 Y2
1P 11
2P 22
对称性的利用
例2-2
120
120 120
X1
X3
X2
120
X6
X6
对称结构在反对称荷载作用下,只X存5 在反对称未X知4 力,所以该X体5 系
只有反对称未知力 X3 和 X5 ,列力法方程如下:
33X3 35X5 3P 0 53X3 55X5 5P 0
结构力学
第二章 力法
➢力法与位移法的异同 ➢弹性支承问题 ➢两铰拱问题 ➢温度改变及支座移动问题 ➢对称性的利用 ➢超静定结构的位移计算及最终内力图的校核
力法与位移法的异同
求解思路方面 力法目标:求多余未知力 位移法目标:先求结点未知位移再求内力
建立典型方程的依据不同 力法:按多余约束处的位移协调条件建立 位移法:按附加约束内的反力(矩)的平衡条件建立
4 7 Pa 4 7 Pa
P 2P
Pa
P Pa 2P
P
MP
P
M
37 Pa 37 Pa
超静定结构的位移计算及最终内力图的校核
位移计算 q
该体系的内力图如下
qL2
qL2
12
12
最终内力可视为由某静定的基本
体系在外荷载、未知力共同作用
下迭加而成,故可用静定的基本
结构代替原超静定结构,建立虚
拟状态
qL2
qL2
用不同的静定结构来求解 CH DV DD
1
1
1
CH
DV
DD
超静定结构的位移计算及最终内力图的校核
内力校核 1.平衡条件 2. 位移条件
对无铰封闭框格结构的位移条件:
封闭框格内外侧 ML 图的面积 除以各自的EI后的值应相等
《结构力学(第5版)》第7章 力法
§7-3 力法的基本概念
δ11—表示X1=1时,B点沿X1方向的位移,Δ11= δ11X1。
11 + 1P=0 可写为 11X1 Δ1P 0
力法基本方程
绘出基本结构在X1=1、荷载q作用下 的弯矩图,如图a、b。
11
1 EI
l2 2
2l 3
l3 3EI
Δ1P
1 EI
(1 3
l2 2
l)
ql 4 8EI
各内力图如图c、d。
基本体系
§7-5 力法的计算步骤和示例
计算系数和自由项。
11
5l 3 27 EI
Δ1P
7ql 4 216 EI
解得
X1
7 40
ql
叠加法作弯矩图 M M1 X1 M P
弯矩图如图e。
§7-6 对称性的利用
1、选取对称的基本结构
对称的意义:(1)结构的几何形状和支承情况对称 (2)各杆的刚度(EI、EA等)也对称
基本体系
典型方程为
11X1 12 X 2 13 X 3 Δ1P 0 21X1 22 X 2 23 X 3 Δ2P 0 31X1 32 X 2 33 X 3 Δ3P 0
各弯矩图如图c、d、e、f 。
因 M 3 0,FS3 0,FN1 FN2 FNP 0
故 13 31 0, 23 32 0,Δ3P 0
6次超静定
图a所示结构,在拆开单铰、切断链杆、切开刚结处后,得到图b所示静定结构 同一超静定结构,可以用不同方式去掉多余联系,如图c、d所示静定结构 对于有较多框格的结构,一个封闭无铰的框格,其超静定次数等于3。
21
16
9
次
次
次
超
超
《结构力学力法》课件
解题步骤
力法的解题步骤包括构建基本体系、选择基本未知量、建 立线性方程组和求解线性方程组等。
力法的应用范围
静定结构和超静定结构的分析
01
力法可以用于分析静定结构和超静定结构的内力和位移,特别
是对于超静定结构的分析具有重要意义。
复杂结构的分析
02
对于复杂结构,如组合结构、多跨连续结构和空间结构等,力
法同样适用,能够提供有效的解决方案。
边界条件和支座反力的处理
03
力法能够方便地处理结构的边界条件和支座反力,使得问题得
到完整的解决。
力法的解题步骤
构建基本体系
首先需要将原结构拆分成若干个基本体系,以便 于应用力法公式。
建立线性方程组
根据力的平衡和变形协调条件,建立线性方程组 ,并求解该方程组以得到位移和内力。
《结构力学力法》ppt课件
目录
• 引言 • 力法的基本原理 • 力法的实际应用 • 力法的扩展知识 • 总结与展望
01
引言
结构力学的重要性
1
结构力学是土木工程学科中的重要分支,是研究 结构在各种力和力矩作用下的响应和行为的学科 。
2
结构力学对于工程结构的稳定性、安全性和经济 性具有重要意义,是工程设计和施工的基础。
缺点总结
力法需要预先设定结构的初始应力状态,有时难以确定。 力法对于非线性问题的处理能力有限,对于高度非线性结构可能需要
采用其他方法。 力法在处理复杂边界条件和连接时可能存在困难,需要特别注意。
力法在未来的应用前景
随着科技的不断进步和应 用需求的不断提高,力法 在未来的应用前景广阔。
随着新材料和新结构的出 现,力法将面临更多的挑 战和机遇。
力法的计算机实现
力法的解题步骤包括构建基本体系、选择基本未知量、建 立线性方程组和求解线性方程组等。
力法的应用范围
静定结构和超静定结构的分析
01
力法可以用于分析静定结构和超静定结构的内力和位移,特别
是对于超静定结构的分析具有重要意义。
复杂结构的分析
02
对于复杂结构,如组合结构、多跨连续结构和空间结构等,力
法同样适用,能够提供有效的解决方案。
边界条件和支座反力的处理
03
力法能够方便地处理结构的边界条件和支座反力,使得问题得
到完整的解决。
力法的解题步骤
构建基本体系
首先需要将原结构拆分成若干个基本体系,以便 于应用力法公式。
建立线性方程组
根据力的平衡和变形协调条件,建立线性方程组 ,并求解该方程组以得到位移和内力。
《结构力学力法》ppt课件
目录
• 引言 • 力法的基本原理 • 力法的实际应用 • 力法的扩展知识 • 总结与展望
01
引言
结构力学的重要性
1
结构力学是土木工程学科中的重要分支,是研究 结构在各种力和力矩作用下的响应和行为的学科 。
2
结构力学对于工程结构的稳定性、安全性和经济 性具有重要意义,是工程设计和施工的基础。
缺点总结
力法需要预先设定结构的初始应力状态,有时难以确定。 力法对于非线性问题的处理能力有限,对于高度非线性结构可能需要
采用其他方法。 力法在处理复杂边界条件和连接时可能存在困难,需要特别注意。
力法在未来的应用前景
随着科技的不断进步和应 用需求的不断提高,力法 在未来的应用前景广阔。
随着新材料和新结构的出 现,力法将面临更多的挑 战和机遇。
力法的计算机实现
结构力学 力法
k →∞ k →0
X1 = 5 ql ( ↑ ) 4 X1 = 0
当 当
求解图示加劲梁。 例 5. 求解图示加劲梁。 −4 4 横梁 I = 1 × 10 m
解: δ 11 X 1 + ∆1 P = 0
10.67 12.2 , + δ 11 = EI EA 533 .3 ∆1 P = EI 当 A = 1× 10 −3 m 2 ,
ql 2 20
1
M X1
Mi
ql 2 / 40
∆1 = 0 ∆ 2 = 0
1 1 ql 2 1 ql 2 1 ql 3 θA = ( ⋅l ⋅ ⋅1 − ⋅ l ⋅ ⋅1) = ( EI 2 20 2 40 80 EI
)
(1).位移计算 位移计算
求A截面转角 截面转角 q A ql 22EI EI 20 l M l
X1
P -P/2 a
2/2
X1 = − P / 2
P/2 a 0 0 P P
− 2P
X1 = 1
Hale Waihona Puke 1 0 1− 2 − 2
1 1 1
N1
N = N1 X1 + N P
X1
0
P
P 变形条件仍为: 变形条件仍为: N∆1 = 0 P 对吗? 对吗?
X1 X1
∆1 = −
X 1a EA
求作图示梁的弯矩图。 例 4. 求作图示梁的弯矩图。
P
Pl 2 / 8
l X1 P
l X2 X3
δ 13 = δ 31 = δ 23 = δ 32 = ∆3 P = 0
M 32ds N 32ds kQ32ds l δ 33 = ∫ +∫ +∫ = ≠0 EI EA GA EA X3 = 0 δ 11 X 1 + δ 12 X 2 + ∆1 P = 0 δ 21 X 1 + δ 22 X 2 + ∆ 2 P = 0
X1 = 5 ql ( ↑ ) 4 X1 = 0
当 当
求解图示加劲梁。 例 5. 求解图示加劲梁。 −4 4 横梁 I = 1 × 10 m
解: δ 11 X 1 + ∆1 P = 0
10.67 12.2 , + δ 11 = EI EA 533 .3 ∆1 P = EI 当 A = 1× 10 −3 m 2 ,
ql 2 20
1
M X1
Mi
ql 2 / 40
∆1 = 0 ∆ 2 = 0
1 1 ql 2 1 ql 2 1 ql 3 θA = ( ⋅l ⋅ ⋅1 − ⋅ l ⋅ ⋅1) = ( EI 2 20 2 40 80 EI
)
(1).位移计算 位移计算
求A截面转角 截面转角 q A ql 22EI EI 20 l M l
X1
P -P/2 a
2/2
X1 = − P / 2
P/2 a 0 0 P P
− 2P
X1 = 1
Hale Waihona Puke 1 0 1− 2 − 2
1 1 1
N1
N = N1 X1 + N P
X1
0
P
P 变形条件仍为: 变形条件仍为: N∆1 = 0 P 对吗? 对吗?
X1 X1
∆1 = −
X 1a EA
求作图示梁的弯矩图。 例 4. 求作图示梁的弯矩图。
P
Pl 2 / 8
l X1 P
l X2 X3
δ 13 = δ 31 = δ 23 = δ 32 = ∆3 P = 0
M 32ds N 32ds kQ32ds l δ 33 = ∫ +∫ +∫ = ≠0 EI EA GA EA X3 = 0 δ 11 X 1 + δ 12 X 2 + ∆1 P = 0 δ 21 X 1 + δ 22 X 2 + ∆ 2 P = 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)超静定刚架 (3)超静定桁架 (4)超静定拱 (5)超静定组合结构
s
第 8章
二、超静定次数的确定
1、如何确定超静定次数 去掉超静定结构的多余约束,使其成为静定结构; 则去掉多余约束的个数即为该结构的超静定次数。
2次超静定 7次超静定
s
1次超静定
3次超静定
2次超静定
例 一个结构所具有的多余约束数就是它的超静定次数。 P P
δ11 x1 δ12 x 2 δ1n x n Δ1P 0 δ21 x1 δ22 x 2 δ2n x n Δ2P 0 δ x δ x δ x Δ 0 32 2 3n n 3P 31 1
推广:n次超静定结构
11 X 1 12 X 2 .......... ..... 1n X n 1P 0
A a l b B A B
x1
基本结构(1)
pa
l
b
Ml图
x1=1
原体系
解:力法方程 11 x1 1 p 式中:
11
x1 k
p
1 ll 2l l3 ( )( ) EI 2 3 3 EI
MP图
1 1 2l b pa2 1P ( pa a ) ( ) ( 2l b ) EI 2 3 3 6 EI 3b 3 pa ( 1 ) 1 p 2a x1 11 l 3 (1 3 EI ) kl 3
1 1 l pl pl 2 2P ( ) 1 EI 2 2 2 8 EI 3P 0
2 x 1 pl 2 8
将以上各式代入力法方程组求得: x 1 p 1 内力图如下:
pl 8
pl 4
pl 8
p 2
M图
p 2
Q图
第 8章
例2 试作图示梁的弯矩图。设B端弹簧支座的弹簧刚度系数为k, 梁抗弯刚度EI为常数。 p p
X1
1次超静定
X1
X2
切断一根链杆等于去掉一个约束
P Q
A 2次超静定
P
X1
X2
X1
Q
去掉一个单铰等于去掉两个约束
P
P
X 3X 2 X 3
X1 X X1 2
3次超静定
切断一根梁式杆等于去掉三个约束
P
P X1 X1
1次超静定
在连续杆中加一个单铰等于去掉一个约束
X 3X 2 X 3
X1 X X1 2
难 点
超静定次数的判别、合理基本体系的选取、力法基本 方程的建立、力法方程中系数和自由项的计算
怎样选择对称的基本体系以及简化要点。
第 8章
第8章 力法 8.1超静定结构的概念和超静定次数的确定 一、超静定结构的概念
1、超静定结构的定义 具有几何不变性、而又有多余约束的结构。其反力和内 力只凭静力平衡方程不能确定或不能完全确定。 2、超静定结构的一般特点
将未知问题转化为 已知问题,通过消除已 知问题和原问题的差别, 使未知问题得以解决。 这是科学研究的 基本方法之一。
8.3
用力法计算超静定结构
一、超静定梁的计算 例1 试分析图示超静定梁。设EI为常数。
力法方程:
δ11 x1 δ12 x 2 δ13 x 3 Δ1P 0 δ21 x1 δ22 x 2 δ23 x 3 Δ2P 0 δ x δ x δ x Δ 0 32 2 33 3 3P 31 1
结构力学
STRUCTURE MECHANICS
知识点
超静定结构概述 力法的基本思路 力法的基本体系和基本未知量 力法典型方程 力法计算示例 超静定结构位移计算和力法计算校核 支座移动和温度改变时超静定结构计算 对称性的利用
教学基本要求
熟练掌握力法的基本思路、基本结构的确定、力法方程 的建立及其物理意义、力法方程中的系数和自由项的物 理意义及其计算。 熟练掌握力法解刚架、排架和桁架,了解用力法计算 其它结构计算特点。 掌握超静定结构的位移计算及力法计算结果的校核
2.位移法----以结点位移作为基本未知量.
3.混合法----以结点位移和多余约束力作为 基本未知量. 4.力矩分配法----近似计算方法. 5.矩阵位移法----结构矩阵分析法之一.
第 8章
6.2
力法原理和力法方程
一、力法涉及到的结构与体系
原结构
原结构体系
基本结构
基本结构体系
第 8章
二、力法原理
1、解题思路
q
2 l 原结构 基本结构 q
q
1P
11
1
x1 x1 11
位移条件: 1P+ 11=0
因为
所以
11= 11X1
11X1 +1P =0 X1= -1P/ 11
( 右下图)
x1=1
第 8章
2、解题步骤
(1)选取力法基本结构; (2)列力法基本方程; (3)绘单位弯矩图、荷载弯矩图; (4)求力法方程各系数,解力法方程;
第 8章
p
A a l b B
x1
A
p
B
原结构 X1=1
A
1 B A
基本结构(2) p
B Pab/l
Ml图 解:力法方程
MP图
11 x1 1 p 1C 0
第 8章
例3
p
A
B k 8m 8m 8m
C
D
k 2m
原结构
A B k C D
p
x2
x1
基本结构(1)
解:力法方程:
x1 11 x1 12 x2 1P 1C k 21 x1 22 x2 1P 1C 0
第 8章
力法基本思路小结
根据结构组成分析,正确判断多余约束个数——超静定 次数。
解除多余约束,转化为静定的基本结构。多余约束代以 多余未知力——基本未知力。
分析基本结构在单位基本未知力和外界因素作用下的位 移,建立位移协调条件——力法典型方程。 从典型方程解得基本未知力,由叠加原理获得结构内力。 超静定结构分析通过转化为静定结构获得了解决。
q C P D P B A B A C q
D
δ31
∙x1
δ21
x2
x3
x1
q
x1=1
δ11
δ32
∙x2
δ22
δ33
∙x3
δ31
P
3P
2P 1P
x2=1
δ12
x3=1
δ31
三次超静定结构力法方程:
力法典型方程:
δ11 x1 δ12 x 2 δ13 x 3 Δ1P 0 δ21 x1 δ22 x 2 δ23 x 3 Δ2P 0 δ x δ x δ x Δ 0 32 2 33 3 3P 31 1
会利用对称性简化计算,掌握半结构的取法。 用力法计算超静定结构在支座移动和温度改变作用下 的自内力。
重 点
理解力法思路,怎样将未知的超静定结构的计算转化 为已知的静定结构的计算。 熟练利用力法计算超静定梁、刚架、桁架和组合结构 在一 般荷载作用下的内力 利用对称性正确选择对称的基本体系,选择对称的 未知力或反对称的未知力作为基本未知量。 计算超静定结构在一般荷载作用下产生的位移;利 用变形条件校核力法的计算结果。
工程常见超静定结构
梁
刚架
桁架
拱
铰接排架
组合结构
第 8章
4、关于超静定结构的几点说明 (1)多余是相对保持几何不变性而言,并非真正多余。 (2)内部有多余联系亦是超静定结构。
(3)超静定结构去掉多余联系后,就成为静定结构。 (4)超静定结构应用广泛。 5、超静定结构的类型 (1)超静定梁
3次超静定 注:基本结构有多种选择
X1
一个无铰封闭圈有三个多余联系
q
q
X1 q X1
q EI 1次超静定
q
X1
第 8章
2、去掉多余联系的方法
(1)去掉支座的一根支杆或切断一根链杆相当于去掉一个联系。 (2)去掉一个铰支座或一个简单铰相当于去掉两个联系。 (3)去掉一个固定支座或将刚性联结切断相当于去掉三个联系。 (4)将固定支座改为铰支座或将刚性联结改为铰联结相当于 去掉一个联系。
第 8章
力法方程:
式中:
δ11 x1 δ12 x 2 δ13 x 3 Δ1P 0 δ21 x1 δ22 x 2 δ23 x 3 Δ2P 0 δ x δ x δ x Δ 0 32 2 33 3 3P 31 1
1 1 2 l3 11 ( l l l) EI 2 3 3 EI 1 l 22 ( l 1 1) EI EI
(5)绘内力图。
第 8章
2
q 2 l 原结构 ql2/2 1
q
基本结构 ql/8
2
x1
l
5ql/8
Ml图
x1=1
ql/8
2
MP图 解:力法方程
M图
Q图
3ql/8
式中:
1 ll 2l l3 11 ( )( ) EI 2 3 3 EI
1P 1 1 ql 2 3 ql 2 ( l )( l) EI 3 2 4 8 EI
21 X 1 22 X 2 .......... ..... 2 n X n 2 P 0 .......... .......... .......... .......... .......... .......... ........ n1 X 1 n 2 X 2 .......... ..... nn X n nP 0
s
第 8章
二、超静定次数的确定
1、如何确定超静定次数 去掉超静定结构的多余约束,使其成为静定结构; 则去掉多余约束的个数即为该结构的超静定次数。
2次超静定 7次超静定
s
1次超静定
3次超静定
2次超静定
例 一个结构所具有的多余约束数就是它的超静定次数。 P P
δ11 x1 δ12 x 2 δ1n x n Δ1P 0 δ21 x1 δ22 x 2 δ2n x n Δ2P 0 δ x δ x δ x Δ 0 32 2 3n n 3P 31 1
推广:n次超静定结构
11 X 1 12 X 2 .......... ..... 1n X n 1P 0
A a l b B A B
x1
基本结构(1)
pa
l
b
Ml图
x1=1
原体系
解:力法方程 11 x1 1 p 式中:
11
x1 k
p
1 ll 2l l3 ( )( ) EI 2 3 3 EI
MP图
1 1 2l b pa2 1P ( pa a ) ( ) ( 2l b ) EI 2 3 3 6 EI 3b 3 pa ( 1 ) 1 p 2a x1 11 l 3 (1 3 EI ) kl 3
1 1 l pl pl 2 2P ( ) 1 EI 2 2 2 8 EI 3P 0
2 x 1 pl 2 8
将以上各式代入力法方程组求得: x 1 p 1 内力图如下:
pl 8
pl 4
pl 8
p 2
M图
p 2
Q图
第 8章
例2 试作图示梁的弯矩图。设B端弹簧支座的弹簧刚度系数为k, 梁抗弯刚度EI为常数。 p p
X1
1次超静定
X1
X2
切断一根链杆等于去掉一个约束
P Q
A 2次超静定
P
X1
X2
X1
Q
去掉一个单铰等于去掉两个约束
P
P
X 3X 2 X 3
X1 X X1 2
3次超静定
切断一根梁式杆等于去掉三个约束
P
P X1 X1
1次超静定
在连续杆中加一个单铰等于去掉一个约束
X 3X 2 X 3
X1 X X1 2
难 点
超静定次数的判别、合理基本体系的选取、力法基本 方程的建立、力法方程中系数和自由项的计算
怎样选择对称的基本体系以及简化要点。
第 8章
第8章 力法 8.1超静定结构的概念和超静定次数的确定 一、超静定结构的概念
1、超静定结构的定义 具有几何不变性、而又有多余约束的结构。其反力和内 力只凭静力平衡方程不能确定或不能完全确定。 2、超静定结构的一般特点
将未知问题转化为 已知问题,通过消除已 知问题和原问题的差别, 使未知问题得以解决。 这是科学研究的 基本方法之一。
8.3
用力法计算超静定结构
一、超静定梁的计算 例1 试分析图示超静定梁。设EI为常数。
力法方程:
δ11 x1 δ12 x 2 δ13 x 3 Δ1P 0 δ21 x1 δ22 x 2 δ23 x 3 Δ2P 0 δ x δ x δ x Δ 0 32 2 33 3 3P 31 1
结构力学
STRUCTURE MECHANICS
知识点
超静定结构概述 力法的基本思路 力法的基本体系和基本未知量 力法典型方程 力法计算示例 超静定结构位移计算和力法计算校核 支座移动和温度改变时超静定结构计算 对称性的利用
教学基本要求
熟练掌握力法的基本思路、基本结构的确定、力法方程 的建立及其物理意义、力法方程中的系数和自由项的物 理意义及其计算。 熟练掌握力法解刚架、排架和桁架,了解用力法计算 其它结构计算特点。 掌握超静定结构的位移计算及力法计算结果的校核
2.位移法----以结点位移作为基本未知量.
3.混合法----以结点位移和多余约束力作为 基本未知量. 4.力矩分配法----近似计算方法. 5.矩阵位移法----结构矩阵分析法之一.
第 8章
6.2
力法原理和力法方程
一、力法涉及到的结构与体系
原结构
原结构体系
基本结构
基本结构体系
第 8章
二、力法原理
1、解题思路
q
2 l 原结构 基本结构 q
q
1P
11
1
x1 x1 11
位移条件: 1P+ 11=0
因为
所以
11= 11X1
11X1 +1P =0 X1= -1P/ 11
( 右下图)
x1=1
第 8章
2、解题步骤
(1)选取力法基本结构; (2)列力法基本方程; (3)绘单位弯矩图、荷载弯矩图; (4)求力法方程各系数,解力法方程;
第 8章
p
A a l b B
x1
A
p
B
原结构 X1=1
A
1 B A
基本结构(2) p
B Pab/l
Ml图 解:力法方程
MP图
11 x1 1 p 1C 0
第 8章
例3
p
A
B k 8m 8m 8m
C
D
k 2m
原结构
A B k C D
p
x2
x1
基本结构(1)
解:力法方程:
x1 11 x1 12 x2 1P 1C k 21 x1 22 x2 1P 1C 0
第 8章
力法基本思路小结
根据结构组成分析,正确判断多余约束个数——超静定 次数。
解除多余约束,转化为静定的基本结构。多余约束代以 多余未知力——基本未知力。
分析基本结构在单位基本未知力和外界因素作用下的位 移,建立位移协调条件——力法典型方程。 从典型方程解得基本未知力,由叠加原理获得结构内力。 超静定结构分析通过转化为静定结构获得了解决。
q C P D P B A B A C q
D
δ31
∙x1
δ21
x2
x3
x1
q
x1=1
δ11
δ32
∙x2
δ22
δ33
∙x3
δ31
P
3P
2P 1P
x2=1
δ12
x3=1
δ31
三次超静定结构力法方程:
力法典型方程:
δ11 x1 δ12 x 2 δ13 x 3 Δ1P 0 δ21 x1 δ22 x 2 δ23 x 3 Δ2P 0 δ x δ x δ x Δ 0 32 2 33 3 3P 31 1
会利用对称性简化计算,掌握半结构的取法。 用力法计算超静定结构在支座移动和温度改变作用下 的自内力。
重 点
理解力法思路,怎样将未知的超静定结构的计算转化 为已知的静定结构的计算。 熟练利用力法计算超静定梁、刚架、桁架和组合结构 在一 般荷载作用下的内力 利用对称性正确选择对称的基本体系,选择对称的 未知力或反对称的未知力作为基本未知量。 计算超静定结构在一般荷载作用下产生的位移;利 用变形条件校核力法的计算结果。
工程常见超静定结构
梁
刚架
桁架
拱
铰接排架
组合结构
第 8章
4、关于超静定结构的几点说明 (1)多余是相对保持几何不变性而言,并非真正多余。 (2)内部有多余联系亦是超静定结构。
(3)超静定结构去掉多余联系后,就成为静定结构。 (4)超静定结构应用广泛。 5、超静定结构的类型 (1)超静定梁
3次超静定 注:基本结构有多种选择
X1
一个无铰封闭圈有三个多余联系
q
q
X1 q X1
q EI 1次超静定
q
X1
第 8章
2、去掉多余联系的方法
(1)去掉支座的一根支杆或切断一根链杆相当于去掉一个联系。 (2)去掉一个铰支座或一个简单铰相当于去掉两个联系。 (3)去掉一个固定支座或将刚性联结切断相当于去掉三个联系。 (4)将固定支座改为铰支座或将刚性联结改为铰联结相当于 去掉一个联系。
第 8章
力法方程:
式中:
δ11 x1 δ12 x 2 δ13 x 3 Δ1P 0 δ21 x1 δ22 x 2 δ23 x 3 Δ2P 0 δ x δ x δ x Δ 0 32 2 33 3 3P 31 1
1 1 2 l3 11 ( l l l) EI 2 3 3 EI 1 l 22 ( l 1 1) EI EI
(5)绘内力图。
第 8章
2
q 2 l 原结构 ql2/2 1
q
基本结构 ql/8
2
x1
l
5ql/8
Ml图
x1=1
ql/8
2
MP图 解:力法方程
M图
Q图
3ql/8
式中:
1 ll 2l l3 11 ( )( ) EI 2 3 3 EI
1P 1 1 ql 2 3 ql 2 ( l )( l) EI 3 2 4 8 EI
21 X 1 22 X 2 .......... ..... 2 n X n 2 P 0 .......... .......... .......... .......... .......... .......... ........ n1 X 1 n 2 X 2 .......... ..... nn X n nP 0