数学分析 第二十二章 课件 各种积分间的关系与场论的初步
数学分析简明教程22 各种积分间的联系与场论初步
页脚内容1第二十二章 各种积分间的联系与场论初步§1 各种积分间的联系1.应用格林公式计算下列积分:(1)ydx x dy xy L ⎰-22,其中L 为椭圆22a x +22by =1取正向;(2),)()(⎰-++Ldy y x dx y x L 同(1);(3)dy y x dx y x L)()(222+-+⎰, L 是顶点为)5,2(),2,3(),1,1(C B A 的三角形的边界,取正向;(4),1,)()(223333=+--+⎰y x L dy y x dx y x L为取正向;(5),sin sin ydy e xdx e x Ly -+⎰ L 为矩形d y c b x a ≤≤≤≤, 的边界,取正向;(6)],))cos(sin ())cos(sin [(dy y x xy x dx y x xy y e Lxy +++++⎰其中L 是任意逐段光滑闭曲线.解(1)原式 =()()d xdy y x dxdy x y DD⎰⎰⎰⎰+=--2222)(=ab()r dr r b r a d ⎰⎰+122222220sin cos θθθπ(广义极坐标变换)=())(3sin cos 3122202222b a ab d b a ab +=+⎰πθθθπ.(2)⎰-++Ldy y x dx y x )()(=⎰⎰=-Ddxdy 0)11(.(3)原式 ⎰⎰+-=Ddxdy y x x ))(22(页脚内容2⎪⎪⎭⎫ ⎝⎛+-=-=⎰⎰⎰⎰⎰⎰-+-+215231143124322yy y y D dx ydy dx ydy ydxdy 9143))5(127)(47(2252221-=-+--=⎰⎰dy y y dy y y . (4)原式π23)(3)33(2222-=+-=--=⎰⎰⎰⎰DD dxdy y x dxdy y x .(5)原式 dxdy x e y e Dy x ⎰⎰--=-)cos sin ()cos sin (⎰⎰⎰⎰+-=-b ad cdcydy b ax e dx x ydy dx e)sin )(sin ()cos )(cos 11(a b e e c d ee cd b a --+--=. (6))]cos(sin [),(y x xy ye y x P xy ++=,)]cos(sin [),(y x xy x e y x Q xy ++=,)]sin(cos [sin )]cos(sin [y x xy xy xy e y x xy x ye xQxy xy --++++=∂∂ )]sin()cos(sin )cos (sin [y x y x y xy xy xy xy e xy --+++=,)]sin(cos [sin )]cos(sin [y x xy xy xy e y x xy y xe yPxy xy +-++++=∂∂ )]sin(cos sin )cos (sin [y x xy x xy xy xy xy e xy +-+++=,)cos()(y x x y e yPx Q xy +-=∂∂-∂∂, 所以,原式⎰⎰+-=Dxy dxdy y x x y e ,)cos()( 其中D 为L 包围的平面区域.页脚内容32.利用格林公式计算下列曲线所围成的面积: (1)双纽线θ2cos 22a r =;(2)笛卡尔叶形线)0(333>=+a axy y x ;(3)t t a x sin )cos 1(2+=,t t a y cos sin 2⋅=,π≤≤20t .解(1)⎰⎰⎰⎰==12||D Ddxdy dxdy D ⎰-⨯=L ydx xdy 212 ⎰=--=44)]sin (sin cos cos [ππθθθθθd r r r r 24424422cos a d a d r ===⎰⎰--ππππθθθ,其中1D 由θ=2cos 22a r ,44π≤θ≤π-所围成. (2)作代换,tx y =则得曲线的参数方程为313tatx +=,3213t at y +=.所以, dt t t a dx 233)1()21(3+-=,dt t t at dy 233)1()2(3+-=, 从而,dt t t a ydx xdy 2322)1(9+=-,于是,面积为 D =⎰C x y y x d -d 21=dt t t a ⎰∞++02322)1(29=223a . (3)D =⎰-cydx xdy 21=页脚内容4{}⎰-++⋅--⋅+π2022322]sin )sin (cos 2cos )cos 1[(cos sin )sin cos sin 2(sin )cos1(21dt t t t t t a t t a t t t a t t a{}⎰π-++⋅--⋅+2022322]sin )sin (cos 2cos )cos 1[(cos sin )sin cos sin 2(sin )cos1(21dt t t t t t a t t a t t t a t t a=21tdt t t a 2cos )cos 1(sin 22022+⎰π=24a π 3.利用高斯公式求下列积分: (1)y x z x z y z y x sd d d d d d 222++⎰⎰.其中(a )S 为立方体a z y x ≤≤,,0的边界曲面外侧;(b )S 为锥面)0(222h z z y x ≤≤=+,下侧. 解:(a )y x z x z y z y x sd d d d d d 222++⎰⎰=2⎰⎰++vdxdydz z y x )(=2⎰⎰⎰++aa a dz z y x dy dx 0)(=43a(b)补充平面1S :h z h y x =≤+,222的上侧后,1S S +成为闭曲面的外侧, 而⎰⎰++1222S dxdy z dzdx y dydz x =⎰⎰xyD dxdy h 2=22h h π⋅= π4h 所以 :⎰⎰++Sdxdy z dzdx y dydz x 222+π4h页脚内容5=⎰⎰+++1222S S dxdy z dzdx y dydz x=2z y x z y x V⎰⎰⎰++d d )d (=2⎰⎰xyD dxdy⎰+++h y x z z y x 22)d (=⎰⎰++xyD y x y x y x y x h y x h d )]d (- )+2(-+)+([222222=⎰⎰π-θ+θ-+θ+θθ20222])sin (cos 2)sin (cos 2[hrdr r r h hr d=1214h θ+θ+θ⎰πd 20)3sin 2cos 2(=2π4h 所以⎰⎰++Sdxdy z dzdx y dydz x 222=442h h π-π=42h π- (2)⎰⎰++Sdxdy z dzdx y dydz x 333, 其中S 是单位球面的外侧;解:⎰⎰++Sdxdy z dzdx y dydz x 333=3⎰⎰⎰++Vz y x z y x d d )d (=3⎰⎰⎰ππρρϕϕθ2014sin d d d=512π (3)设S 是上半球面222y x a z --=的上侧,求 (a )⎰⎰++Sy x z x z y z y x d d d d d d(b)⎰⎰++-+Sy x z y xy x z z y x z y xzd )d (2d )d (d d 2222页脚内容6解:补充平面1S :222,0a y x z ≤+=,下侧后,1S S +成为闭曲面的外侧,而 (a )⎰⎰=++10S zdxdy ydzdx xdydz所以⎰⎰=++Szdxdy ydzdx xdydz ⎰⎰+=++1S S zdxdy ydzdx xdydz 3⎰⎰⎰Vdxdydz=213433⋅π⋅a =2π3a(b)⎰⎰++-+1d )d (2d )d (d d 2222S y x z y xy x z z y x z y xz =⎰⎰xyD xydxdy 2=2⎰π20d θr r a⎰θθ03d cos sin =0所以 ⎰⎰++-+Sy x z y xy x z z y x z y xzd )d (2d )d (d d 2222=⎰⎰+++-+1d )d (2d )d (d d 2222S S y x z y xy x z z y x z y xz =⎰⎰⎰++Vdxdydz z y x )(222=⎰π20d θ⎰20πsin ϕd ϕ⎰a4 d ρρ=554a π(4)⎰⎰+-++-++-Sy x y x z x z x z y z y y x d )d (d )d (d )d z (222222,S 是 2222)()()(R c z b y a x =-+-+- 的外侧.解:⎰⎰+-++-++-Sy x y x z x z x z y z y y x d )d (d )d (d )d z (222222,=3⎰⎰⎰V dxdydz =V 3=3343R π⋅=4π3R4.用斯托克斯公式计算下列积分:页脚内容7(1)⎰++Lzdz dy dx y x 32, 其中(a )L 为圆周0,222==+z a y x ,方向是逆时针;(b )L 为y x z y ==+,122 所交的椭圆,沿x 轴正向看去,按逆时针方向; 解: (a )取平面0=z 上由交线围成的平面块为S ,上侧,由Stokes 公式⎰++Lzdz dy dx y x 32=⎰⎰Szy x z y x dxdydzdxdydz1///32∂∂∂∂∂∂ =⎰⎰-Sdxdy y x 223=⎰⎰----ax a xa dy y dx x 02222223=dx x a x a3222)(2⎰--=616a π-(b )取平面y x =上由交线围成的平面块为S ,上侧,由由Stokes 公式⎰++Lzdz dy dx y x32=⎰⎰∂∂∂∂∂∂Szy x z y x dxdy dzdx dydz 132=⎰⎰-Sdxdy y x 223=⎰⎰-xyD dxdy y x 223=616a π-页脚内容8(2)dz y x dy x z dx z y L)()()(-+-+-⎰,L 是从)0,0,(a 经)0,,0(a 至),0,0(a 回到)0,0,(a 的三角形;解: 三角形所在的平面为a z y x =++,取平面a z y x =++上由以上三角形围成的平面块为S ,取上侧,由stokes 公式dz y x dy x z dx z y L)()()(-+-+-⎰=⎰⎰---∂∂∂∂∂∂Syx x z z y z y x dxdy dzdx dydz=⎰⎰++-S dxdy dzdx dydz 2 =2-(⎰⎰Sdydz +⎰⎰Sdzdx +⎰⎰Sdxdy )=2-(⎰⎰yzD dydz +⎰⎰zx D dzdx +⎰⎰xyD dxdy )=23a -(3)dz y x dy y x dx z y L)()()(222222+++++⎰,其中(a )L 为1=++z y x 与三坐标轴的交线,其方向与所围平面区域上侧构成右手法则;(b )L 是曲线Rx z y x 2222=++, rx y x 222=+ (0,0><<z R r ),它的方向与所围曲面的上侧构成右手法则;解:(a )中取平面1=++z y x 上与三坐标面交线所围平面块为S ,上侧;(b )中取曲面Rx z y x 2222=++上由L 所围曲面块为S ,上侧, 则由stokes 公式,得页脚内容9dz y x dy y x dx z y L)()()(222222+++++⎰=⎰⎰+++∂∂∂∂∂∂Sy x x z z y z y x dxdy dzdx dydz 222222 ⎰⎰-+-+-=Sdxdy y x dzdx x z dydz z y )()()(2=2))()()((dxdy y x dzdx x z dydz z y SSS⎰⎰⎰⎰⎰⎰-+-+-则(a )⎰+++++Ldz y x dy z x dx z y )()()(222222= dS y x x z z y S⎰⎰γ-+β-+α-]cos )(cos )(cos )[(2=0 (因为cos α=cos β=cos γ=31)(b ) 注意到球面的法线的方向余弦为: R R x -=αcos , R y =βcos ,Rz=γcos ,所以 dz y x dy z x dx z y L)()()(222222+++++⎰=2⎰⎰-+-+-SdS y x x z z y ]cos )(cos )(cos )[(γβα =2⎰⎰-SdS y z )(由于曲面S 关于oxz 平面对称,故⎰⎰=SydS .0 又⎰⎰⎰⎰π⋅=γ=SSrR dS R zdS 2cos页脚内容10于是dz y x dy z x dx z y L)()()(222222+++++⎰=22r R π(4)xdz zdy dx y L++⎰,L 是2222a z y x =++,0=++z y x ,从x 轴正向看去圆周是逆时针方向.解:平面0=++z y x 的法线的方向余弦为 cos 31cos cos ===γβα,于是,dS xz y z y x xdz zdy ydx L S⎰⎰⎰∂∂∂∂∂∂γβα=++cos cos cos =⎰⎰++-SdS )cos cos (cos γβα=332a π-=23a π-5. 设L 为平面上封闭曲线L ,l 为平面的任意方向,证明:⎰=Lds l n 0),cos(,其中n 是L 的外法线方向。
《数学分析》(华师大二版)课本上的习题22
第二十二章 曲线积分与曲面积分P.361 第一型曲线积分与第一型曲面积分 1. 计算下列第一型曲线积分: (1))1,0(),0,1(),0,0(,)(B A O L ds y x L是以其中⎰+为顶点的三角形;(2)⎰+Lds y x2122)(,其中L 是以原点为中心,R 为半径的右半圆周;(3)⎰L xyds ,其中L 为椭圆12222=+by a x 在第一象限中的部分;(4)⎰Lds y ,其中L 为单位圆122=+y x ;(5)ds z y x L)(222⎰++,其中L 为螺旋线)20(,sin ,cos π≤≤===t bt z t a y t a x 的一段; (6)⎰Lxyzds ,其中L 为曲线)10(21,232,22≤≤===t t z t y t x 的一段; (7)⎰+Lds z y 222,其中L 是2222a z y x =++与y x =相交的圆周.2. 求曲线)0,10(21,,2>≤≤===a t at z at y a x 的质量.设其线密度为.2az =ρ 3. 求摆线⎩⎨⎧≤≤-=-=)0()cos 1()sin (πt t a y t t a x 的重心,设其质量分布是均匀的.4. 计算下列第一类型曲面积分: (1)⎰⎰++SdS z y x )(,其中S 是上半圆面0,2222≥=++z a z y x ; (2)⎰⎰+SdS y x )(22,其中S 为立体122≤≤+z y x 的边界曲面; (3),⎰⎰+S yx dS 22其中S 为柱面222R y x =+被平面H z z ==,0所截取的部分; (4)⎰⎰SxyzdS ,其中S 为平面1=++z y x 在第一卦限中的部分;5. 若曲线以极坐标))((21θθθθρρ≤≤=表示,试给出计算⎰Lds y x f ),(的公式,并用此公式计算下列曲线积分: (1)⎰+Ly x ds e22,其中L 为曲线)4(πθρ≤≤=a 的一段;(2)⎰Lxds ,其中L 为对数螺线)0(>=k ae k θρ在圆a r =内的部分.6. 设有一质量分布不均匀的半圆弧)0(sin ,cos πθθθ≤≤==r y r x ,其线密度θρa =(a 为常数),求它对原点)0,0(处质量为m 的质点的引力.7. 证明:若函数f 在光滑曲线],[),(),(:βα∈==t t y y t x x L 上连续,则存在点L y x ∈),(00,使得L y x f dS y x f L∆=⎰),(),(00,其中L ∆为L 的长.8. 计算dS z S⎰⎰2,其中S 为圆锥表面的一部分: ⎩⎨⎧≤≤≤≤⎪⎩⎪⎨⎧===,20,0:;cos sin sin sin cos :πϕθθϕθϕa r D r z r y r x S这里θ为常数).20(πθ≤≤P.371 第二型曲线积分1. 计算第二型曲线积分: (1)⎰-L ydx xdy ,其中L 为本节例2中的三种情形.(2)⎰+-Ldy dx y a )2(,其中L 为摆线)20)(cos 1(),sin (π≤≤-=-=t t a y t t a x 沿t 增加方向的一段; (3)⎰++-L y x ydy xdx 22,其中L 为圆周222a y x =+,依逆时针方向;(4)⎰+Lxdy ydx sin ,其中L 为)0(sin π≤≤=x x y 与x 轴所围的闭曲线,依顺时针方向; (5)⎰++Lzdz ydy xdx ,其中L :从(1,1,1)到(2,3,4)的直线段.2. 设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比.若质点由)0,(a 沿椭圆移动到),0(b ,求力所作的功。
场论初步课件
m r
为引力势.
数学分析 第二十二章 曲面积分
高等教育出版社
§4 场论初步 场的概念 梯度场
散度场
旋度场
管量场与有势场
散度场 ur 设 A( x, y, z) P( x, y, z) i Q( x, y, z) j R( x, y, z) k
为 V 上的一个向量场. 称如下数量函数:
D( x, y, z) P Q R
则同时有 M M0 , 对上式取极限, 得到
Ò ur
div A(M0 )
lim V M0
1 V
ur uur A dS .
S
(2)
这个等式可以看作是散度的另一种定义形式.
数学分析 第二十二章 曲面积分
高等教育出版社
§4 场论初步 场的概念 梯度场
散度场
旋度场
管量场与有势场
ur 散度的物理意义 联系本章§2中提到的, 流速为 A
后退 前进 目录 退出
§4 场论初步 场的概念 梯度场
散度场
旋度场
管量场与有势场
相对应. 这里 P, Q, R 为所定义区域上的数量函数,
并假定它们有一阶连续偏导数.
设 L 为向量场中一条曲线. 若 L 上每点 M 处的切线 ur
方向都与向量函数 A 在该点的方向一致, 即
dx dy dz ,
方向上的方向导数.
数学分析 第二十二章 曲面积分
高等教育出版社
§4 场论初步 场的概念 梯度场
散度场
旋度场
管量场与有势场
因为数量场 u( x, y, z) 的等值面 u( x, y, z) c 的法线
方向为
u x
,
u y
,
数学分析PPT
从而 r r ∫ a dl = ∫∫ rota dS .
L S
Yunnan University
§3. 场论初步
注:散度与坐标的选择无关. r r r u r 例1. 设a = 3i + 20 j − 15k , 对下列数量场ϕ 分别求出
gradϕ 及div (ϕ a ) , 其中ϕ = ( x 2 + y 2 + z
2 2
3 − 2 2
)
+ 15 z ( x + y + z
2 2
3 − 2 2
)
例 2.
设 u ( x , y , z ) = xyz .
(1)求u ( x , y , z ) 在点P1 ( 0, 0, 0 ) , P2 ( 1,1,1) 及P3 ( 2,1,1) 处 r r r u r 沿b = 2i + 3 j − 4k的方向导数。
( )
( )
( )
∂P ∂Q ∂R = ∫∫∫ + + dV x ∂y ∂z V ∂
r ∂P ∂Q ∂R 向量 + + 称为向量a的散度,它形成一个数量场,记为 ∂x ∂y ∂z r ∂P ∂Q ∂R . diva = + + ∂x ∂y ∂z
Yunnan University
( )
( )
( )
r ∂R ∂Q ∂P ∂R ∂ Q ∂R , , 称向量 − − − 为向量a的旋度, ∂y ∂z ∂z ∂x ∂x ∂y r 记为rot a .
Yunnan University
§3. 场论初步
即 r i r ∂ rot a = ∂x P r j ∂ ∂y Q r u k ∂ . ∂z R
《数学分析》课件
函数与极限
函数
函数是数学分析中的基本概念之一,它是一个从定义域到值域的映射。根据定义域和值域的不同,函数可以分为 不同的类型,如连续函数、可微函数等。
极限
极限是数学分析中描述函数在某一点的行为的工具。极限的定义包括数列的极限和函数的极限,它们都是描述函 数在某一点附近的行为。极限的概念是数学分析中最重要的概念之一,它是研究函数的连续性、可导性、可积性 等性质的基础。
复合函数的导数
复合函数的导数是通过对原函数进行 求导,再乘以中间变量的导数得到的 。
微分及其应用
微分的定义
微分是函数在某一点附近的小变化量 ,可以理解为函数值的近似值。
微分的应用
微分在近似计算、误差估计、求切线 、求极值等方面有着广泛的应用。例 如,在求极值时,可以通过比较一阶 导数在极值点两侧的正负性来确定极 值点。
数列的极限
总结词
数列极限的定义与性质
详细描述
数列极限是数学分析中的一个基本概念,它描述了数列随 着项数的增加而趋近于某个固定值的趋势。极限具有一些 重要的性质,如唯一性、四则运算性质、夹逼定理等。
总结词
数列极限的证明方法
详细描述
证明数列极限的方法有多种,包括定义法、四则运算性质 、夹逼定理、单调有界定理等。这些方法可以帮助我们证 明数列的极限并理解其性质。
含参变量积分的概念与性质
含参变量积分的概念
含参变量积分是指在积分过程中包含一个或多个参数的积分。这种积分在处理一些具有参数的物理问题时非常有 用。
含参变量积分的性质
含参变量积分具有一些重要的性质,如参数可分离性、参数连续性、参数积分区间可变性等。这些性质使得含参 变量积分在解决实际问题时更加灵活和方便。
反常积分与含参变量积分的计算方法
数学分析简明教程22 各种积分间的联系与场论初步
数学分析简明教程22各种积分间的联系与场论初步第二十二章 各种积分间的联系与场论初步§1 各种积分间的联系1.应用格林公式计算下列积分:(1)ydx x dy xy L ⎰-22,其中L 为椭圆22a x +22by =1取正向;(2),)()(⎰-++Ldy y x dx y x L 同(1);(3)dy y x dx y x L)()(222+-+⎰, L 是顶点为)5,2(),2,3(),1,1(C B A 的三角形的边界,取正向;(4),1,)()(223333=+--+⎰y x L dy y x dx y x L为取正向;(5),sin sin ydy e xdx e x Ly -+⎰ L 为矩形d y c b x a ≤≤≤≤, 的边界,取正向;(6)],))cos(sin ())cos(sin [(dy y x xy x dx y x xy y e Lxy +++++⎰其中L 是任意逐段光滑闭曲线.解(1)原式 =()()d xdy y x dxdy x y DD⎰⎰⎰⎰+=--2222)(=ab()r dr r b r a d ⎰⎰+122222220sin cos θθθπ(广义极坐标变换)=())(3sin cos 3122202222b a ab d b a ab +=+⎰πθθθπ.(2)⎰-++Ldy y x dx y x )()(=⎰⎰=-Ddxdy 0)11(.(3)原式 ⎰⎰+-=Ddxdy y x x ))(22(⎪⎪⎭⎫ ⎝⎛+-=-=⎰⎰⎰⎰⎰⎰-+-+215231143124322yy y y D dx ydy dx ydy ydxdy 9143))5(127)(47(2252221-=-+--=⎰⎰dy y y dy y y .(4)原式π23)(3)33(2222-=+-=--=⎰⎰⎰⎰DD dxdy y x dxdy y x .(5)原式 dxdy x e y e Dy x ⎰⎰--=-)cos sin ()cos sin (⎰⎰⎰⎰+-=-b ad cdcydy b ax e dx x ydy dx e)sin )(sin ()cos )(cos 11(a b e e c d ee c d b a --+--=. (6))]cos(sin [),(y x xy y e y x P xy ++=,)]cos(sin [),(y x xy x e y x Q xy ++=,)]sin(cos [sin )]cos(sin [y x xy xy xy e y x xy x ye xQxy xy --++++=∂∂ )]sin()cos(sin )cos (sin [y x y x y xy xy xy xy e xy --+++=,)]sin(cos [sin )]cos(sin [y x xy xy xy e y x xy y xe yPxy xy +-++++=∂∂ )]sin(cos sin )cos (sin [y x xy x xy xy xy xy e xy +-+++=,)cos()(y x x y e yPx Q xy +-=∂∂-∂∂, 所以,原式⎰⎰+-=Dxy dxdy y x x y e ,)cos()( 其中D 为L 包围的平面区域.2.利用格林公式计算下列曲线所围成的面积: (1)双纽线θ2cos 22a r =;(2)笛卡尔叶形线)0(333>=+a axy y x ;(3)t t a x sin )cos 1(2+=,t t a y cos sin 2⋅=,π≤≤20t . 解(1)⎰⎰⎰⎰==12||D Ddxdy dxdy D ⎰-⨯=L ydx xdy 212 ⎰=--=44)]sin (sin cos cos [ππθθθθθd r r r r 24424422cos a d a d r ===⎰⎰--ππππθθθ,其中1D 由θ=2cos 22a r ,44π≤θ≤π-所围成. (2)作代换,tx y =则得曲线的参数方程为313tatx +=,3213t at y +=.所以, dt t t a dx 233)1()21(3+-=,dt t t at dy 233)1()2(3+-=,从而,dt t t a ydx xdy 2322)1(9+=-,于是,面积为D =⎰C x y y x d -d 21=dt t t a ⎰∞++02322)1(29=223a . (3)D =⎰-cydx xdy 21= {}⎰-++⋅--⋅+π2022322]sin )sin (cos 2cos )cos 1[(cos sin )sin cos sin 2(sin )cos1(21dtt t t t t a t t a t t t a t t a{}⎰π-++⋅--⋅+2022322]sin )sin (cos 2cos )cos 1[(cos sin )sin cos sin 2(sin )cos1(21dt t t t t t a t t a t t t a t t a=21tdt t t a 2cos )cos 1(sin 22022+⎰π=24a π 3.利用高斯公式求下列积分: (1)y x z x z y z y x sd d d d d d 222++⎰⎰.其中(a )S 为立方体a z y x ≤≤,,0的边界曲面外侧; (b )S 为锥面)0(222h z z y x ≤≤=+,下侧. 解:(a )y x z x z y z y x sd d d d d d 222++⎰⎰=2⎰⎰++vdxdydz z y x )(=2⎰⎰⎰++aa a dz z y x dy dx 0)(=43a(b)补充平面1S :h z h y x =≤+,222的上侧后,1S S +成为闭曲面的外侧, 而 ⎰⎰++1222S dxdy z dzdx y dydz x =⎰⎰xyD dxdy h 2=22h h π⋅= π4h所以 : ⎰⎰++Sdxdy z dzdx y dydz x 222+π4h=⎰⎰+++1222S S dxdy z dzdx y dydz x=2z y x z y x V⎰⎰⎰++d d )d (=2⎰⎰xyD dxdy⎰+++h y x z z y x 22)d (=⎰⎰++xyD y x y x y x y x h y x h d )]d (- )+2(-+)+([222222=⎰⎰π-θ+θ-+θ+θθ20222])sin (cos 2)sin (cos 2[hrdr r r h hr d=1214h θ+θ+θ⎰πd 20)3sin 2cos 2(=2π4h 所以 ⎰⎰++Sdxdy z dzdx y dydz x 222=442h h π-π=42h π-(2)⎰⎰++Sdxdy z dzdx y dydz x 333, 其中S 是单位球面的外侧;解:⎰⎰++Sdxdy z dzdx y dydz x 333=3⎰⎰⎰++Vz y x z y x d d )d (=3⎰⎰⎰ππρρϕϕθ2014sin d d d=512 π (3)设S 是上半球面222y x a z --=的上侧,求(a )⎰⎰++Sy x z x z y z y x d d d d d d(b) ⎰⎰++-+Sy x z y xy x z z y x z y xz d )d (2d )d (d d 2222解:补充平面1S :222,0a y x z ≤+=,下侧后,1S S +成为闭曲面的外侧,而 (a ) ⎰⎰=++10S zdxdy ydzdx xdydz所以 ⎰⎰=++Szdxdy ydzdx xdydz ⎰⎰+=++1S S zdxdy ydzdx xdydz 3⎰⎰⎰Vdxdydz=213433⋅π⋅a =2π3a(b) ⎰⎰++-+1d )d (2d )d (d d 2222S y x z y xy x z z y x z y xz=⎰⎰xyD xydxdy 2=2⎰π20d θr r a⎰θθ03d cos sin =0所以 ⎰⎰++-+Sy x z y xy x z z y x z y xz d )d (2d )d (d d 2222=⎰⎰+++-+1d )d (2d )d (d d 2222S S y x z y xy x z z y x z y xz =⎰⎰⎰++Vdxdydz z y x )(222 =⎰π20d θ⎰20πsin ϕd ϕ⎰a4 d ρρ=554a π(4)⎰⎰+-++-++-Sy x y x z x z x z y z y y x d )d (d )d (d )d z (222222,S 是 2222)()()(R c z b y a x =-+-+- 的外侧.解:⎰⎰+-++-++-Sy x y x z x z x z y z y y x d )d (d )d (d )d z (222222,=3⎰⎰⎰Vdxdydz =V 3=3343R π⋅=4π3R4.用斯托克斯公式计算下列积分: (1)⎰++Lzdz dy dx y x 32, 其中(a )L 为圆周0,222==+z a y x ,方向是逆时针;(b )L 为y x z y ==+,122 所交的椭圆,沿x 轴正向看去,按逆时针方向; 解: (a )取平面0=z 上由交线围成的平面块为S ,上侧,由Stokes 公式⎰++Lzdz dy dx y x 32=⎰⎰Szy x z y x dxdydzdxdydz1///32∂∂∂∂∂∂ =⎰⎰-Sdxdy y x 223=⎰⎰----ax a xa dy y dx x 02222223=dx x a x a3222)(2⎰--=616a π-(b )取平面y x =上由交线围成的平面块为S ,上侧,由由Stokes 公式⎰++Lzdz dy dx y x 32=⎰⎰∂∂∂∂∂∂Szy x z y x dxdy dzdx dydz 132=⎰⎰-Sdxdy y x 223=⎰⎰-xyD dxdy y x 223=616a π-(2)dz y x dy x z dx z y L)()()(-+-+-⎰,L 是从)0,0,(a 经)0,,0(a 至),0,0(a 回到)0,0,(a 的三角形;解: 三角形所在的平面为a z y x =++,取平面a z y x =++上由以上三角形围成的平面块为S ,取上侧,由stokes 公式dz y x dy x z dx z y L)()()(-+-+-⎰=⎰⎰---∂∂∂∂∂∂Syx x z z y z y x dxdy dzdx dydz =⎰⎰++-S dxdy dzdx dydz 2 =2-(⎰⎰Sdydz +⎰⎰Sdzdx +⎰⎰Sdxdy )=2-(⎰⎰yzD dydz +⎰⎰zx D dzdx +⎰⎰xyD dxdy )=23a -(3)dz y x dy y x dx z y L)()()(222222+++++⎰,其中(a )L 为1=++z y x 与三坐标轴的交线,其方向与所围平面区域上侧构成右手法则;(b )L 是曲线Rx z y x 2222=++, rx y x 222=+ (0,0><<z R r ),它的方向与所围曲面的上侧构成右手法则;解:(a )中取平面1=++z y x 上与三坐标面交线所围平面块为S ,上侧;(b )中取曲面Rx z y x 2222=++上由L 所围曲面块为S ,上侧, 则由stokes 公式,得 dz y x dy y x dx z y L)()()(222222+++++⎰=⎰⎰+++∂∂∂∂∂∂Sy x x z z y z y x dxdy dzdx dydz 222222⎰⎰-+-+-=Sdxdy y x dzdx x z dydz z y )()()(2=2))()()((dxdy y x dzdx x z dydz z y SSS⎰⎰⎰⎰⎰⎰-+-+-则(a ) ⎰+++++Ldz y x dy z x dx z y )()()(222222= dS y x x z z y S⎰⎰γ-+β-+α-]cos )(cos )(cos )[(2=0 (因为cos α=cos β=cos γ=31)(b ) 注意到球面的法线的方向余弦为: R R x -=αcos , R y =βcos ,Rz=γcos ,所以dz y x dy z x dx z y L)()()(222222+++++⎰=2⎰⎰-+-+-SdS y x x z z y ]cos )(cos )(cos )[(γβα=2⎰⎰-SdS y z )(由于曲面S 关于oxz 平面对称,故⎰⎰=SydS .0 又⎰⎰⎰⎰π⋅=γ=SSrR dS R zdS 2cos于是dz y x dy z x dx z y L)()()(222222+++++⎰=22r R π(4)xdz zdy dx y L++⎰,L 是2222a z y x =++,0=++z y x ,从x 轴正向看去圆周是逆时针方向.解:平面0=++z y x 的法线的方向余弦为 cos 31cos cos ===γβα,于是,dS xz y z y x xdz zdy ydx L S⎰⎰⎰∂∂∂∂∂∂γβα=++cos cos cos =⎰⎰++-SdS )cos cos (cos γβα=332a π-=23a π-5. 设L 为平面上封闭曲线L ,l 为平面的任意方向,证明:⎰=Lds l n 0),cos(,其中n是L 的外法线方向。
最新22数学分析课件曲面积分
22数学分析课件曲面积分第二十二章曲面积分目的与要求:1. 掌握第一型曲面积分的定义和计算公式;2. 掌握第二型曲面积分的定义和计算公式,要强调一、二型曲面积分的区别,要讲清确定有向曲面侧的重要性.以及两类曲面积分的联系,3. 学会用高斯公式计算第二型曲面积分,用斯托克斯公式计算第二型曲线积分.重点与难点:本章重点是掌握第一、二型曲面积分的定义和计算公式和用高斯公式计算第二型曲面积分,用斯托克斯公式计算第二型曲线积分.;难点则是用隐式方程或参数方程给出的曲面的第二型曲面积分的计算公式以及两类曲面积分的联系.第一节第一型曲面积分一第一型曲面积分的概念与性质1 背景:求具有某种非均匀密度物质的曲面块的质量时,利用求均匀密度的平面块的质量的方法,通过“分割、近似、求和、取极限”的步骤来得到结果.一类大量的“非均匀”问题都采用类似的方法,从而归结出下面一类积分的定义.2 第一型曲面积分的定义定义设«Skip Record If...»为空间上可求面积的曲面块,«Skip Record If...»为定义在«Skip Record If...»上的函数.对曲面«Skip Record If...»作分割«Skip Record 仅供学习与交流,如有侵权请联系网站删除谢谢2If...»,它把«Skip Record If...»分成«Skip Record If...»个可求面积的小曲面«Skip Record If...»«Skip Record If...»,«Skip Record If...»的面积记为«Skip Record If...»,分割«Skip Record If...»的细度为«Skip Record If...»,在«Skip Record If...»上任取一点«Skip Record If...»«Skip Record If...».若有极限«Skip Record If...»=«Skip Record If...»且«Skip Record If...»的值与分割«Skip Record If...»与点«Skip Record If...»的取法无关,则称此极限为«Skip Record If...»在«Skip Record If...»上的第一型曲面积分,记作«Skip Record If...»(1)3 第一型曲面积分的性质1.线性性: 设«Skip Record If...»,«Skip Record If...»存在,«Skip Record If...», 则«Skip Record If...»存在,且«Skip Record If...»«Skip Record If...»«Skip Record If...»2.可加性: 设«Skip Record If...»存在,«Skip Record If...»,则«Skip Record If...»,«Skip Record If...»存在,且«Skip Record If...»«Skip Record If...»«Skip Record If...»;反之亦然.«Skip Record If...»二第一型曲面积分的计算仅供学习与交流,如有侵权请联系网站删除谢谢3仅供学习与交流,如有侵权请联系网站删除 谢谢4定理22.1 设有光滑曲面«Skip Record If...»:«Skip Record If...»,«Skip Record If...», «Skip Record If...»为定义在«Skip Record If...»上的连续函数,则«Skip Record If...»=«Skip Record If...»证 略例1 计算«Skip Record If...»,其中«Skip Record If...»是球面«Skip Record If...»被平面«Skip Record If...»所截的顶部.解 «Skip Record If...»:«Skip Record If...», «Skip Record If...»«Skip Record If...»«Skip Record If...»=«Skip Record If...»=«Skip Record If...» =«Skip Record If...»=«Skip Record If...»=«Skip Record If...»作业 P282 1,2,3,4.第二节第二型曲面积分一曲面的侧双侧曲面的概念、曲面的侧的概念背景:求非均匀流速的物质流单位时间流过曲面块的流量时,利用均匀流速的物质流单位时间流过平面块的流量的方法,通过“分割、近似、求和、取极限”的步骤,来得到结果.一类大量的“非均匀”问题都采用类似的方法,从而归结出下面一类积分的定义.二第二型曲面积分的概念1 第二型曲面积分的定义定义设函数«Skip Record If...»,«Skip Record If...»,«Skip Record If...»与定义在双侧曲面«Skip Record If...»上的函数.在«Skip Record If...»所指定的一侧作分割«Skip Record If...»它把«Skip Record If...»分成«Skip Record If...»个小曲面«Skip Record If...»,分割«Skip Record If...»的细度«Skip Record If...»,以«Skip Record If...»,«Skip Record If...»,«Skip Record If...»分别为«Skip Record If...»在三个坐标上的投影区域的面积,它们的符号由«Skip Record If...»的方向来确定.如«Skip Record If...»的法线正向与«Skip Record If...»轴正向成锐角时,«Skip Record If...»在«Skip Record If...»平面上的投影区域的面积«Skip Record If...»为正,反之,如«Skip Record If...»的法线正向与«Skip Record If...»轴正向成钝角时,«Skip Record If...»在«Skip Record If...»平面上的投影区域的面仅供学习与交流,如有侵权请联系网站删除谢谢5仅供学习与交流,如有侵权请联系网站删除 谢谢6积«Skip Record If...»为负«Skip Record If...».在每个小曲面«Skip Record If...»任取一点«Skip Record If...»,若极限«Skip Record If...»+«Skip Record If...»+«Skip Record If...»存在且与分割«Skip Record If...»与点«Skip Record If...»的取法无关,则称此极限为函数«Skip Record If...»,«Skip Record If...»,«Skip Record If...»在曲面«Skip Record If...»所指定的一侧上的第二型曲面积分,记为«Skip Record If...» (1)上述积分(1)也可写作«Skip Record If...»+«Skip Record If...»+«Skip Record If...»2 第二型曲面积分的性质1.若«Skip Record If...» «Skip Record If...»都存在,«Skip Record If...»«Skip RecordIf...»,为常数,则有«Skip Record If...»=«Skip Record If...»2.若曲面«Skip Record If...»由两两无公共内点的曲面块«Skip Record If...»所组成,«Skip Record If...» «Skip Record If...»都存在,则«Skip Record If...»也存在,且«Skip Record If...»=«Skip Record If...»仅供学习与交流,如有侵权请联系网站删除 谢谢7三 第二型曲面积分的计算定理22.2设«Skip Record If...»为定义在光滑曲面«Skip Record If...»:«Skip Record If...»,«Skip Record If...»,上的连续函数,以«Skip Record If...»的上侧为正侧(这时«Skip Record If...»的法线正向与«Skip Record If...»轴正向成锐角 ),则有«Skip Record If...»=«Skip Record If...» (2)证 由第二型曲面积分的定义«Skip Record If...»=«Skip Record If...»=«Skip Record If...»这里«Skip Record If...»,因«Skip Record If...»«Skip Record If...»,立刻可推得«Skip Record If...»«Skip Record If...»,由相关函数的连续性及二重积分的定义有«Skip Record If...»=«Skip Record If...»所以 «Skip Record If...»=«Skip Record If...»类似地:«Skip Record If...»为定义在光滑曲面«Skip Record If...»:«SkipRecord If...»,«Skip Record If...»上的连续函数时,而«Skip Record If...»的法线方向与«Skip Record If...»轴的正向成锐角的那一侧为正侧,则有«Skip Record If...»=«Skip Record If...»仅供学习与交流,如有侵权请联系网站删除 谢谢8«Skip Record If...»为定义在光滑曲面«Skip Record If...»:«Skip RecordIf...»,«Skip Record If...»上的连续函数时,而«Skip Record If...»的法线方向与«Skip Record If...»轴的正向成锐角的那一侧为正侧,则有«Skip Record If...»=«Skip Record If...»注:按第二型曲面积分的定义可以知道,如果«Skip Record If...»的法线方向与相应坐标轴的正向成钝角的那一侧为正侧,则相应的公式右端要加“-”号例1计算«Skip Record If...»,其中«Skip Record If...»是球面«Skip Record If...»在«SkipRecord If...»部分并取球面外侧.解 曲面在第一,五卦限间分的方程分别为«Skip Record If...»: «Skip Record If...», «Skip Record If...»«Skip Record If...»:«Skip Record If...»,«Skip Record If...», «Skip Record If...»=«Skip Record If...»+«Skip Record If...»=«Skip Record If...»«Skip Record If...»=«Skip Record If...»=«Skip Record If...»«Skip Record If...».例2计算积分«Skip Record If...»,其中«Skip Record If...»为球面«Skip Record If...»取外侧.解对积分«Skip Record If...», 分别用«Skip Record If...»和«Skip Record If...»记前半球面和后半球面的外侧, 则有«Skip Record If...»:«Skip Record If...»«Skip Record If...»;«Skip Record If...»:«Skip Record If...»«Skip Record If...».因此, «Skip Record If...»=«Skip Record If...»+ «Skip Record If...»= «Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...».对积分«Skip Record If...», 分别用«Skip Record If...»和«Skip Record If...»记右半球面和左半球面的外侧, 则有«Skip Record If...»:«Skip Record If...»«Skip Record If...»;«Skip Record If...»:«Skip Record If...»«Skip Record If...».仅供学习与交流,如有侵权请联系网站删除谢谢9因此, «Skip Record If...»«Skip Record If...»+«Skip Record If...»= «Skip Record If...»«Skip Record If...».对积分«Skip Record If...», 分别用«Skip Record If...»和«Skip Record If...»记上半球面和下半球面的外侧, 则有«Skip Record If...»:«Skip Record If...»«Skip Record If...»;«Skip Record If...»:«Skip Record If...»«Skip Record If...».因此, «Skip Record If...»=«Skip Record If...»+ «Skip Record If...»= «Skip Record If...»«Skip Record If...».综上, «Skip Record If...»=«Skip Record If...»作业 P289 1,2.仅供学习与交流,如有侵权请联系网站删除谢谢10第三节高斯公式与斯托克斯公式一高斯公式定理22.3 设有空间区域«Skip Record If...»由分片光滑的双侧闭曲面«Skip Record If...»围成.若函数«Skip Record If...»,«Skip Record If...»,«Skip Record If...»在«Skip Record If...»上连续,且具有一阶连续偏导数,则=«Skip Record If...»«Skip Record If...»其中«Skip Record If...»取外侧.称为高斯公式证只证«Skip Record If...»=«Skip Record If...»类似可证«Skip Record If...»=«Skip Record If...»和«Skip Record If...»=«Skip Record If...»这些结果相加便得到了高斯公式.先«Skip Record If...»设是一个«Skip Record If...»型区域,即其边界曲面«Skip Record If...»由曲面«Skip Record If...»:«Skip Record If...»,«Skip Record If...»«Skip Record If...»:«Skip Record If...»,«Skip Record If...»及垂直于«Skip Record If...»的边界的柱面«Skip Record If...»组成其中«Skip Record If...».于是按三重积分的计算方法有=«Skip Record If...»«Skip Record If...»=«Skip Record If...»=«Skip Record If...»«Skip Record If...»=«Skip Record If...»«Skip Record If...»=«Skip Record If...»«Skip Record If...»其中«Skip Record If...»,«Skip Record If...»都取上侧.又由于«Skip Record If...»在«Skip Record If...»平面上投影区域的面积为零,所以«Skip Record If...»因此=«Skip Record If...»«Skip Record If...»+«Skip Record If...»«Skip Record If...»=«Skip Record If...»对于不是«Skip Record If...»型区域的情形,则用有限个光滑曲面将它分割成若干个«Skip Record If...»型区域来讨论.详细的推导与格林相似.空间区域«Skip Record If...»的体积公式:=«Skip Record If...».«Skip Record If...»=«Skip Record If...»«Skip Record If...»例1 计算«Skip Record If...»,其中«Skip Record If...»是边长为«Skip Rec ord If...»的正立方体表面并取外侧.解应用高斯公式,所求曲面积分等于«Skip Record If...»«Skip Record If...»«Skip Record If...»=«Skip Record If...»=«Skip Record If...» 二 斯托克斯公式双侧曲面«Skip Record If...»的侧与其边界曲线«Skip Record If...»的方向的规定:右手法则.定理22.4 设光滑曲面«Skip Record If...»的边界«Skip Record If...»是按块光滑的连续曲线.若函数«Skip Record If...»,«Skip Record If...»,«Skip Record If...»在«Skip Record If...»(连同«Skip Record If...»)上连续,且有一阶连续偏导数,则«Skip Record If...»=«Skip Record If...» (2)其中«Skip Record If...»的侧与«Skip Record If...»的方向按右手法则确定.证 先证«Skip Record If...»=«Skip Record If...» (3)其中曲面«Skip Record If...»由方程«Skip Record If...»确定,它的正侧法线方向数为«Skip Record If...»,方向余弦为«Skip Record If...»,所以«Skip Record If...»,«Skip Record If...»若«Skip Record If...»在«Skip Record If...»平面上投影区域为«Skip Record If...»,«Skip Record If...»在«Skip Record If...»平面上的投影曲线为«Skip Record If...».现由第二型曲线积分的定义及格林公式有«Skip Record If...»=«Skip Record If...»=«Skip Record If...»因为«Skip Record If...»=«Skip Record If...»所以«Skip Record If...»=«Skip Record If...»由于«Skip Record If...»,从而«Skip Record If...»=«Skip Record If...»=«Skip Record If...»=«Skip Record If...».=«Skip Record If...»综合上述结果,便得所要证明的(3)式.同样对于曲面«Skip Record If...»表示为«Skip Record If...»和«Skip Record If...»时,可证得=«Skip Record If...»(4)«Skip Record If...»=«Skip Record If...»(5)«Skip Record If...»将(3),(4),(5)三式相加即得(2)式.如果曲面«Skip Record If...»不能以«Skip Record If...»的形式给出,则可用一些光滑曲线把«Skip Record If...»分割为若于小块,使每一小块能用这种形式来表示.因而这时(2)式也能成立.该公式称为斯托克斯公式,它也可写成如下形式:«Skip Record If...»=«Skip Record If...»例2 计算«Skip Record If...»,其中«Skip Record If...»为平面«Skip Record If...»与各坐标面的交,取逆时针方向为正向.解应用斯托克斯公式«Skip Record If...»=«Skip Record If...»=«Skip Record If...»=«Skip Record If...».单连通区域:如果区域«Skip Record If...»内任一封闭曲线皆可以不经过«Skip Record If...»以外的点收缩于属于«Skip Record If...»的一点,则称«Skip Record If...»为单连通区域.非单连通区域称为复连通区域.定理 22.5 设«Skip Record If...»为空间单连通区域.若函数«Skip Record If...»,«Skip Record If...»,«Skip Record If...»在上连续,且有一阶连续偏导数,则以下四个条件是等价的:(1)对于 内任一按段光滑的封闭曲线«Skip Record If...»,有«Skip Record If...»=0.(2)对于«Skip Record If...»内任一按段光滑的曲线«Skip Record If...»,曲线积分«Skip Record If...»与路线无关.只与«Skip Record If...»的起点及终点有关。
数学分析ppt课件
有限覆盖定理
总结词
有限覆盖定理是实数完备性定理中的另一个 重要结论,它涉及到实数集的覆盖问题。
详细描述
有限覆盖定理说明,任意一个开覆盖${(a_n, b_n)}$的实数集都可以被有限个开区间覆盖 。换句话说,对于任意一个实数集$S$,都 存在有限的开区间${(a_1, b_1), (a_2, b_2), ldots, (a_n, b_n)}$,使得$S subseteq cup_{i=1}^{n} (a_i, b_i)$。这个定理在证 明紧空间的性质和实数完备性中起到了关键 作用。
3
实数系中的基本运算
实数系中可以进行加法、减法、乘法和 除法等基本运算,这些运算具有交换律 、结合律、分配律等性质。此外,实数 系中还可以定义绝对值、最大值、最小 值等概念。
极限理论
01
极限的定义
极限是数学分析中的一个基本概念,它描述了当自变量趋向某一值时,
函数值的变化趋势。极限的定义包括数列极限和函数极限两种形式。
详细描述
介绍向量值函数和空间曲线的定义,通过实例说明向量值函 数和空间曲线的性质,并解释其在数学分析中的重要性和应 用。
06
实数完备性定理
区间套定理
总结词
区间套定理是实数完备性定理中的一个 重要组成部分,它描述了闭区间套的性 质。
VS
详细描述
区间套定理指出,如果存在一个闭区间套 ,即一列闭区间${[a_n, b_n]}$,满足 $a_n < b_n$且$a_n < a_{n+1} < b_{n+1} < b_n$(对任意$n$),则该区 间套中至少存在一个实数。这个定理在数 学分析中有着广泛的应用,例如在证明连 续函数的性质和极限理论中。
数学分析22.4场论初步(含习题及参考答案)
第二十二章 曲面积分4 场论初步一、场的概念概念:若对全空间或其中某一区域V 中每一点M ,都有一个数量(或向量)与之对应,则称V 上给定了一个数量场(或向量场).温度场和密度场都是数量场. 若数量函数u(x,y,z)的偏导数不同时为0, 则满足方程u(x,y,z)=c(常数)的所有点通常是一个曲面.曲面上函数u 都取同一个值时,称为等值面,如温度场中的等温面.重力场和速度场都是向量场. 设向量函数A(x,y,z)在三坐标轴上投影分别为:P(x,y,z), Q(x,y,z), R(x,y,z), 则A(x,y,z)=(P(x,y,z), Q(x,y,z), R(x,y,z)), 其中P , Q, R 为定义区域上的数量函数,且有连续偏导数.设向量场中的曲线L 上每点M 处的切线方向都与向量函数A 在该点的方向一致,即P dx =Q dy =Rdz, 则称曲线L 为向量场A 的向量场线. 如, 电力线、磁力线等都是向量场线.二、梯度场概念:梯度是由数量函数u(x,y,z)定义的向量函数grad u=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, 且grad u 的方向是使lu∂∂达到最大值的方向, 其大小为u 在这个方向上的方向导数. 所以可定义数量场u 在点M 处的梯度grad u 为在M 处最大的方向导数的方向,及大小为在M 处最大方向导数值的向量. 因为方向导数的定义与坐标系的选取无关,所以梯度定义也与坐标系选取无关. 由梯度给出的向量场,称为梯度场. 又数量场u(x,y,z)的等值面u(x,y,z)=c 的法线方向为⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, 所以 grad u 的方向与等值面正交, 即等值面法线方向. 引进符号向量: ▽=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ,,. 将之视为运算符号时, grad u=▽u.基本性质:若u,v 是数量函数, 则 1、▽(u+v)=▽u+▽v ;2、▽(uv)=u(▽v)+(▽u)v. 特别地▽u 2=2u(▽u);3、若r=(x,y,z), φ=φ(x,y,z), 则d φ=dr ▽φ;4、若f=f(u), u=u(x,y,z), 则▽f=f ’(u)▽u ;5、若f=f(u 1,u 2,…,u n ), u i =u i (x,y,z) (i=1,2,…,n), 则▽f=i ni iu u f∑=∇∂∂1. 证:1、▽(u+v)=⎪⎪⎭⎫ ⎝⎛∂+∂∂+∂∂+∂z v u y v u x v u )(,)(,)(=⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+∂∂∂∂+∂∂z v z u y v y u x v x u ,, =⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,+⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z v y v x v ,,=▽u+▽v. 2、▽(uv)=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z uv y uv x uv )(,)(,)(=⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+∂∂∂∂+∂∂z v u v z u y v u v y u x v u v x u ,,=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z v u y v u x v u,,+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂v z u v y u v x u ,,=u ⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z v y v x v ,,+⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,v=u(▽v)+(▽u)v. 当u=v 时,有▽u 2=▽(uv)=u(▽v)+(▽u)v =2u(▽u).3、∵dr=dx+dy+dz, ▽φ=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,, ∴dr ▽φ=(dx+dy+dz)⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,=dz z dy y dx x ∂∂+∂∂+∂∂ϕϕϕ=d φ. 4、∵▽f=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z f y f x f ,,=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u du df y u du df x u du df ,,, 又▽u=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, f ’(u)=du df, ∴f ’(u)▽u=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z u y u x u du df ,,=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z u du df y u du df x u du df ,,=▽f. 5、▽f =⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z f y f x f ,,=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂∑∑∑===n i i i n i i i n i i i z u u f y u u f x u u f 111,,=∑=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂ni i i i i i i z u u f y u u f x u u f 1,,=∑=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂n i i i i iz u y u x u u f1,,=i n i iu u f∑=∇∂∂1.例1:设质量为m 的质点位于原点, 质量为1的质点位于M(x,y,z), 记OM=r=222z y x ++, 求rm的梯度. 解:rm∇=⎪⎭⎫ ⎝⎛-r z r y r x r m ,,2.注:若以r 0表示OM 上的单位向量,则有r m∇=02r rm -, 表示两质点间引力方向朝着原点, 大小是与质量的乘积成正比, 与两点间的距离的平方成反比. 这说明引力场是数量函数r m 的梯度场. 所以称rm为引力势.三、散度场概念:设A(x,y,z)=(P(x,y,z), Q(x,y,z), R(x,y,z))为空间区域V 上的向量函数, 对V 上每一点(x,y,z), 定义数量函数D(x,y,z)=zRy Q x P ∂∂+∂∂+∂∂, 则 称D 为向量函数A 在(x,y,z)处的散度,记作D(x,y,z)=div A(x,y,z).设n 0=(cos α, cos β, cos γ)为曲面的单位法向量, 则=n 0dS 就称为曲面的面积元素向量. 于是得高斯公式的向量形式:⎰⎰⎰VdivAdV =⎰⎰⋅SdS A .在V 中任取一点M 0, 对⎰⎰⎰VdivAdV 应用中值定理,得⎰⎰⎰VdivAdV =div A(M*)·△V=⎰⎰⋅SdS A , 其中M*为V 中某一点,于是有div A(M*)=VdSA S∆⋅⎰⎰. 令V 收缩到点M 0(记为V →M 0) 则M*→M 0, 因此div A(M 0)=VdSA SM V ∆⋅⎰⎰→0lim.因⎰⎰⋅SdS A 和△V 都与坐标系选取无关,所以散度与坐标系选取无关.由向量场A 的散度div A 构成的数量场,称为散度场.其物理意义:div A(M 0)是流量对体积V 的变化率,并称它为A 在点M 0的流量密度.若div A(M 0)>0, 说明在每一单位时间内有一定数量的流体流出这一点,则称这一点为源.反之,若div A(M 0)<0, 说明流体在这一点被吸收,则称这点为汇. 若向量场A 中每一点皆有div A=0, 则称A 为无源场.向量场A 的散度的向量形式为:div A=▽·A.基本性质:1、若u,v 是向量函数, 则▽·(u+v)=▽·u+▽·v ; 2、若φ是数量函数, F 是向量函数, 则▽·(φF)=φ▽·F+F ·▽φ;3、若φ=φ(x,y,z)是一数量函数, 则▽·▽φ=222222zy x ∂∂+∂∂+∂∂ϕϕϕ.证:1、记u(P 1(x,y,z),Q 1(x,y,z),R 1(x,y,z)), v(P 2(x,y,z),Q 2(x,y,z),R 2(x,y,z)), 则▽·(u+v)=zR R y Q Q x P P ∂+∂+∂+∂+∂+∂)()()(212121 =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P z R y Q x P 222111=▽·u+▽·v. 2、▽·(φF)=z R y Q x P ∂∂+∂∂+∂∂)()()(ϕϕϕ=zR z R y Q y Q x P x P ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂ϕϕϕϕϕϕ =φ⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P +(P ,Q,R)⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z y x ϕϕϕ=φ▽·F+F ·▽φ. 3、∵▽φ=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,, ∴▽·▽φ=⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂z z y y x x ϕϕϕ=222222zy x ∂∂+∂∂+∂∂ϕϕϕ.注:算符▽的内积▽·▽常记作△=▽·▽=222222zy x ∂∂+∂∂+∂∂,称为拉普拉斯算符, 于是有▽·▽φ=△φ.例2:求例1中引力场F=⎪⎭⎫⎝⎛-r z r y r x r m,,2所产生的散度场.解:∵r 2=x 2+y 2+z 2, ∴F=3222)(z y x m ++-(x,y,z),▽·F=-m ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂333r z z r y y r x x =0.注:由例2知,引力场内每一点处的散度都为0(除原点处外).四、旋度场概念:设A(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))为空间区域V 上的向量函数, 对V 上每一点(x,y,z), 定义向量函数F(x,y,z)=⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q y R ,,, 称之为向量函数A 在(x,y,z)处的旋度, 记作rot A.设(cos α,cos β,cos γ)是曲线L 的正向上的单位切线向量t 0的方向余弦, 向量ds =(cos α,cos β,cos γ)ds= t 0dl 称为弧长元素向量. 于是有 斯托克斯公式的向量形式:⎰⎰SdS rotA ·=⎰Lds A ·.向量函数A 的旋度rot A 所定义的向量场,称为旋度场.在流量问题中,称⎰L A ·为沿闭曲线L 的环流量. 表示流速为A 的不可压缩流体在单位时间内沿曲线L 的流体总量,反映了流体沿L 时的旋转强弱程度. 当rot A=0时,沿任意封闭曲线的环流量为0,即流体流动时不成旋涡,这时称向量场A 为无旋场.注:旋度与坐标系的选择无关. 在场V 中任意取一点M 0,通过M 0作平面π垂直于曲面S 的法向量n 0, 且在π上围绕M 0作任一封闭曲线L, 记L 所围区域为D ,则有⎰⎰SrotA ·=⎰⎰DdS n rotA 0·=⎰LA ·. 又由中值定理有 ⎰⎰DdS n rotA 0·=(rotA ·n 0)M*μ(D)=⎰LA ·, 其中 μ(D)为区域D 的面积, M*为D 中的某一点. ∴(rotA ·n 0)M*=)(·D A Lμ⎰.当D 收缩到点M 0(记作D →M 0)时, 有M*→M 0, 即有 (rotA ·n 0)0M =)(·limD A LMD μ⎰→ .左边为rot A 在法线方向上的投影,即为旋度的另一种定义形式. 右边的极限与坐标系的选取无关,所以rot A 与坐标系选取无关.物理意义:⎰⎰DdS n rotA 0·=(rotA ·n 0)M*μ(D)=⎰LA ·, 表明向量场在曲面边界线上的切线投影对弧长的曲线积分等于向量场旋度的法线投影在曲面上对面积的曲面积分. 即流体的速度场的旋度的法线投影在曲面上对面积的曲面积分等于流体在曲面边界上的环流量.刚体旋转问题:设一刚体以角速度ω绕某轴旋转,则角速度向量ω方向沿着旋转轴,其指向与旋转方向的关系符合右手法则,即右手拇指指向角速度ω的方向,其它四指指向旋转方向. 若取定旋转轴上一点O 作为原点,则刚体上任一点P 的线速度v 可表示为v=ω×r, 其中r=OP 是P 的径向量. 设P 的坐标为(x,y,z),便有r=(x,y,z),设ω(ωx ,ωy ,ωz ), ∴v=(ωy z-ωz y,ωz x-ωx z,ωx y-ωy x), ∴rot v=(2ωx ,2ωy ,2ωz )=2ω或ω=21rot v.即线速度向量v 的旋度除去21, 就是旋转的角速度向量ω. 也即 v 的旋度与角速度向量ω成正比.基本性质:rot A=▽×A. 1、若u,v 是向量函数, 则 (1)▽×(u+v)=▽×u+▽×v ;(2)▽(u ·v)=u ×(▽×v)+v ×(▽×u)+(u ·▽)v+(v ·▽)u ; (3)▽·(u ×v)=v ·(▽×u)-u ·(▽×v);(4)▽×(u ×v)=(v ·▽)u-(u ·▽)v+(▽·v)u-(▽·u)v.2、若φ是数量函数, A 是向量函数, 则▽×(φA)=φ(▽×A)+▽φ×A.3、若φ是数量函数, A 是向量函数, 则 (1)▽·(▽×A)=0, ▽×▽φ=0,(2)▽×(▽×A)=▽(▽·A)-▽2A =▽(▽·A)-△A.证:1、记u(P 1(x,y,z),Q 1(x,y,z),R 1(x,y,z)), v(P 2(x,y,z),Q 2(x,y,z),R 2(x,y,z)),则(1)▽×(u+v)=⎪⎪⎭⎫⎝⎛∂+∂-∂+∂∂+∂-∂+∂∂+∂-∂+∂yP P xQ Q xR R zP P zQ Q yR R )()(,)()(,)()(212121212121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR 111111,,+⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q yR 222222,,=▽×u+▽×v. (2)∵▽(u ·v)=▽(P 1P 2+Q 1Q 2+R 1R 2)=⎪⎪⎭⎫⎝⎛∂++∂∂++∂∂++∂z R R Q Q P P y R R Q Q P P x R R Q Q P P )(,)(,)(212121212121212121 = ⎝⎛∂∂+∂∂+∂∂+∂∂+∂∂+∂∂,122112211221x RR x R R x Q Q x Q Q x P P x P P,122112211221y RR y R R y Q Q y Q Q y P P y P P ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂⎪⎭⎫∂∂+∂∂+∂∂+∂∂+∂∂+∂∂z R R z R R z Q Q z Q Q z P P z P P 122112211221.又u ×(▽×v)=u ×⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q yR 222222,, = ⎝⎛∂∂+∂∂-∂∂-∂∂,21212121xRR z P R y P Q xQ Q ⎪⎪⎭⎫∂∂+∂∂-∂∂-∂∂∂∂+∂∂-∂∂-∂∂z Q Q y R Q x R P z P P x R P z P P y P R x Q R 2121212121212121,. v ×(▽×u)= ⎝⎛∂∂+∂∂-∂∂-∂∂,12121212xR R zP R yP Q xQ Q ⎪⎪⎭⎫∂∂+∂∂-∂∂-∂∂∂∂+∂∂-∂∂-∂∂z Q Q y R Q x R P z P P x R P z P P y P R x Q R 1212121212121212,. (u ·▽)v=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P 111v =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y R Q x R P z Q R y Q Q x Q P z P R y P Q x P P 212121212121212121,,(v ·▽)u=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yR Q xR P zQ R yQ Q xQ P zP R yP Q xP P 121212121212121212,,; ∴▽(u ·v)=u ×(▽×v)+v ×(▽×u)+(u ·▽)v+(v ·▽)u. (3)∵▽·(u ×v)=▽·(Q 1R 2-R 1Q 2,R 1P 2-P 1R 2,P 1Q 2-Q 1P 2) =zP Q Q P y R P P R xQ R R Q ∂-∂+∂-∂+∂-∂)()()(212121212121=y P R y R P y R P y P R x R Q x Q R x Q R x R Q ∂∂-∂∂-∂∂+∂∂+∂∂-∂∂-∂∂+∂∂1221122112211221zQP z P Q z P Q z Q P ∂∂-∂∂-∂∂+∂∂+12211221.又v ·(▽×u)=v ·⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR 111111,,=yP R xQ R xR Q zP Q zQ P yR P ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂121212121212;u ·(▽×v)=yPR x Q R x R Q z P Q z Q P yR P ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂212121212121;∴▽·(u ×v)=v ·(▽×u)-u ·(▽×v).(4)∵▽×(u ×v)=▽×(Q 1R 2-R 1Q 2,R 1P 2-P 1R 2,P 1Q 2-Q 1P 2)=⎪⎪⎭⎫⎝⎛∂-∂-∂-∂∂-∂-∂-∂∂-∂-∂-∂y Q R R Q x R P P R x P Q Q P z Q R R Q z R P P R y P Q Q P )()(,)()(,)()(212121212121212121212121= ⎝⎛∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂,1221122112211221zP R zR P zR P zP R yQ P yP Q yP Q yQ P,1221122112211221x QP x P Q x P Q x Q P z R Q z Q R z Q R z R Q ∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂⎪⎪⎭⎫∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂y R Q y Q R y Q R y R Q x P R x R P x R P x P R 1221122112211221; 又(v ·▽)u=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yR Q xR P zQ R yQ Q xQ P zP R yP Q xP P 121212121212121212,,; (u ·▽)v=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y R Q x R P z Q R y Q Q x Q P z P R y P Q xP P 212121212121212121,,;(▽·v)u=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q xP 222u =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y Q R x P R z R Q y Q Q x P Q z R P y Q P xP P 212121212121212121,,; (▽·u)v=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yQ R xP R zR Q yQ Q xP Q zR P yQ P xP P 121212121212121212,,; ∴▽×(u ×v)=(v ·▽)u-(u ·▽)v+(▽·v)u-(▽·u)v. 2、记φ=φ(x,y,z), A=A(P(x,y,z),Q(x,y,z),R(x,y,z)), 则▽×(φA)=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR )()(,)()(,)()(ϕϕϕϕϕϕ=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-∂∂+∂∂∂∂-∂∂-∂∂+∂∂∂∂-∂∂-∂∂+∂∂P yyP Q xxQ R xxR P zzP Q zzQ R yyR ϕϕϕϕϕϕϕϕϕϕϕϕ,,=φ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂P yQ xR xP zQ zR yϕϕϕϕϕϕ,,=φ(▽×A)+▽φ×A.3、记φ=φ(x,y,z), A=A(P(x,y,z),Q(x,y,z),R(x,y,z)), 则(1)▽·(▽×A)=▽·⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,=⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂y P x Q z x R z P y z Q y R x=⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂y P z x Q z x R y z P y z Q x y R x =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂z Q x x Q z y P z z P y x R y y R x =0. ▽×▽φ=▽×⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂x y y x z x x z y z z y ϕϕϕϕϕϕ,,=0. (2)▽×(▽×A)=▽×⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,= ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂z Q y R y x R z P x y P x Q x z Q y R z x R z P z y P x Q y ,, =⎪⎪⎭⎫ ⎝⎛∂∂∂+∂∂-∂∂-∂∂∂∂∂∂+∂∂-∂∂-∂∂∂∂∂∂+∂∂-∂∂-∂∂∂z y Q y R x R z x P y x P x Q z Q y z R x z R z P y P x y Q 222222222222222222,,; 又▽(▽·A)=▽⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z R yQ xP=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂z R y Q x P z z R y Q x P y z R y Q x P x ,,, =⎪⎪⎭⎫⎝⎛∂∂+∂∂∂+∂∂∂∂∂∂+∂+∂∂∂∂∂∂+∂∂∂+∂∂222222222222,,z R y z Q x z P z y R y Q x y P x z R y x Q x P ; ▽2A=△A=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂+∂∂+∂∂∂+∂∂+∂∂222222222222222222,,z R y R x R z Q y Q x Q z P y P x P ;∴▽×(▽×A)=▽(▽·A)-▽2A =▽(▽·A)-△A.五、管量场与有势场概念:对无源场A ,即div A=0,由高斯公式知,此时沿任何闭曲面的曲面积分都为0,这样的向量场称为管量场. 因为 在向量场A 中作一向量管,即由向量线围成的管状曲面, 用断面S 1, S 2截它,以S 3表示所截出的管的表面,即得到 由S 1, S 2, S 3围成的封闭曲面S ,于是有⎰⎰⋅SdS A =⎰⎰⋅外侧1S dS A +⎰⎰⋅外侧2S dS A +⎰⎰⋅外侧3S dS A =0. 又由向量线与曲面S 3的法线正交知,⎰⎰⋅外侧3S dS A =0.∴⎰⎰⋅外侧1S dS A +⎰⎰⋅外侧2S dS A =0, 即⎰⎰⋅内侧1S dS A +⎰⎰⋅外侧2S dS A . 等式说明,流体通过向量管的任意断面流量相同,∴称场A 为管量场. 如例2,由梯度rm ∇所成的引力场F 是管量场.概念:对无旋场A ,即rot A=0,由斯托克斯公式知,这时在空间单连通区域内沿任何封闭曲线的曲线积分都等于0,该向量场称为有势场. 因为当rot A=0时,由定理22.7推得此时空间曲线积分与路线无关, 且有u(x,y,z), 使得du=Pdx+Qdy+Rdz, 即grad u=(P ,Q,R), u 称为势函数. 所以,若向量场A 的旋度为0,则必存在某势函数u ,使得grad u=A. 这也是一个向量场是某个数量场的梯度场的充要条件. 例1中引力势u=r m 就是势函数. ∴▽u=F=-⎪⎭⎫⎝⎛r z r y r x r m ,,2. 又▽×▽u ≡0, ∴▽×F=0, 它也是引力场F 是有势场的充要条件.若向量场A 既是管量场,又是有势场,则称其为调和场.例2中的引力场F 就是调和场. 若A 是一个调和场,则必有 ▽·A=0, ▽u=A. 显然▽·▽u=▽2u=△u=0, 即必有势函数u 满足222222z uy u x u ∂∂+∂∂+∂∂=0, 这时称函数u 为调和函数. 习题1、若r=222z y x ++, 计算▽r, ▽r 2, ▽r1, ▽f(r), ▽r n (n ≥3). 解:∵x r ∂∂=r x , y r ∂∂=r y , z r ∂∂=r z, ∴▽r=⎪⎭⎫ ⎝⎛r z r y r x ,,=r1(x,y,z); 记u=r 2=x 2+y 2+z 2, ∵x u ∂∂=2x, y u ∂∂=2y, zu ∂∂=2z, ∴▽r 2=▽u=2(x,y,z);记v=r1, ∵x v ∂∂=-3r x , y v ∂∂=-3r y , z v∂∂=-3rz , ∴▽r 1=▽v=31r -(x,y,z);∵x f ∂∂=f ’(r)r x , y f ∂∂=f ’(r)ry , z f∂∂=f ’(r)r z , ∴▽f(r)=f ’(r)r 1(x,y,z); ∴▽r n =nr n-1⎪⎭⎫ ⎝⎛r z r y r x ,,=nr n-2(x,y,z), (n ≥3).2、求u=x 2+2y 2+3z 2+2xy-4x+2y-4z 在O(0,0,0), A(1,1,1), B(-1,-1,-1)处的梯度,并求梯度为0的点. 解:∵x u ∂∂=2x+2y-4, y u ∂∂=4y+2x+2, zu∂∂=6z-4,∴在O(0,0,0), grad u=(-4,2,-4); 在A(1,1,1), grad u=(0,8,2); 在B(-1,-1,-1), grad u=(-8,-4,-10);又由2x+2y-4=0, 4y+2x+2=0, 6z-4=0, 解得x=5, y=-3, z=32, ∴在(5,-3,32), |grad u|=0.3、证明梯度的基本性质1~5. 证:见梯度的基本性质.4、计算下列向量场A 的散度与旋度:(1)A=(y 2+z 2,z 2+x 2,x 2+y 2);(2)A=(x 2yz,xy 2z,xyz 2);(3)A=⎪⎪⎭⎫⎝⎛++xy z zx y yz x . 解:(1)∵P=y 2+z 2, Q=z 2+x 2, R=x 2+y 2; ∴div A=x ∂∂(y 2+z 2)+y ∂∂(z 2+x 2)+z ∂∂(x 2+y 2)=0;又y ∂∂(x 2+y 2)-z ∂∂(z 2+x 2)=2y-2z; z ∂∂(y 2+z 2)-x∂∂(x 2+y 2)=2z-2x; x∂∂(z 2+x 2)-y ∂∂(y 2+z 2)=2x-2y. ∴rot A=2(y-z,z-x,x-y).(2)∵P=x 2yz, Q=xy 2z, R=xyz 2; ∴div A=x ∂∂(x 2yz)+y ∂∂(xy 2z)+z∂∂(xyz 2)=6xyz ;又y ∂∂(xyz 2)-z ∂∂(xy 2z)=x(z 2-y 2); z ∂∂(x 2yz)-x∂∂(xyz 2)=y(x 2-z 2); x∂∂(xy 2z)-y ∂∂(x 2yz)=z(y 2-x 2). ∴rot A=(x(z 2-y 2),y(x 2-z 2),z(y 2-x 2)).(3)A=⎪⎪⎭⎫ ⎝⎛++xy z zx y yz x . ∵P=yz x , Q=zxy, R=xy z ;∴div A=⎪⎪⎭⎫ ⎝⎛∂∂yz x x +⎪⎭⎫ ⎝⎛∂∂zx y y +⎪⎪⎭⎫ ⎝⎛∂∂xy z z =xyzx yz 111++; 又⎪⎪⎭⎫ ⎝⎛∂∂xy z y -⎪⎭⎫ ⎝⎛∂∂zx y z =22xy z xz y -; ⎪⎪⎭⎫ ⎝⎛∂∂yz x z -⎪⎪⎭⎫ ⎝⎛∂∂xy z x =22yz x y x z-; ⎪⎭⎫ ⎝⎛∂∂zx y x -⎪⎪⎭⎫ ⎝⎛∂∂yz x y =z x y z y x 22-. ∴rot A=⎪⎪⎭⎫⎝⎛---x y y x z x x z y z z y xyz 222222,,1.5、证明散度的基本性质1~3. 证:见散度的基本性质.6、证明旋度的基本性质1~3. 证:见旋度的基本性质.7、证明:场A=(yz(2x+y+z),zx(x+2y+z),xy(x+y+2z))是有势场并求其势函数.证:P=yz(2x+y+z), Q=zx(x+2y+z), R=xy(x+y+2z),y ∂∂[xy(x+y+2z)]-z∂∂[zx(x+2y+z)]=x 2+2xy+2xz-x 2-2xy-2xz=0; z ∂∂[yz(2x+y+z)]-x∂∂[xy(x+y+2z)]=2xy+y 2+2yz-2xy-y 2-2yz=0; x∂∂[zx(x+2y+z)]-y ∂∂[yz(2x+y+z)]=2xz+2yz+z 2-2xz-2yz-z 2=0.∴对空间任一点(x,y,z)都有rot A=(0,0,0)=0i+0j+0k=0, ∴A 是有势场. 由d[xyz(x+y+z)]=yz(2x+y+z)dx+xz(x+2y+z)dy+xy(x+y+2z)dz 知, 其势函数为u(x,y,z)=xyz(x+y+z)+C.8、若流体流速A=(x 2,y 2,z 2), 求单位时间内穿过81球面x 2+y 2+z 2=1, x>0,y>0,z>0的流量.解:设S 为所给81球面,S 1, S 2, S 3分别是S 在三个坐标面上的投影, 则 所求流量为:⎰⎰⋅SdS n A 0+⎰⎰⋅11S dS n A +⎰⎰⋅22S dS n A +⎰⎰⋅33S dS n A =⎰⎰⎰⎪⎭⎫ ⎝⎛球体81V divAdV=⎰⎰⎰++Vdxdydz z y x )(2=⎰⎰⎰++103202sin )cos sin sin cos (sin 2dr r d d ϕϕθϕθϕϕθππ=⎰⎥⎦⎤⎢⎣⎡++2021)sin (cos 421πθθθπd =83π.注:其中n 0, n 1, n 2, n 3分别是S, S 1, S 2, S 3的单位法矢,显然有A|n i (i=1,2,3),∴A ·n i =0,从而⎰⎰⋅iS i dS n A =0 (i=1,2,3), 于是所求流量为:⎰⎰⋅SdS n A 0=83π.9、设流速A=(-y,x,c) (c 为常数),求环流量: (1)沿圆周x 2+y 2 =1, z=0;(2)沿圆周(x-2)2+y 2 =1, z=0.解:(1)圆周x 2+y 2 =1, z=0的向径r 适合方程r=costi+sintj+0k(0≤t ≤2π). ∵A ·dr=(-sinti+costj+ck)·(-sinti+costj+0k)dt=dt, ∴所环流量为⎰⋅c dr A =⎰π20dt =2π.(2)圆周(x-2)2+y 2 =1, z=0的向径r=(2+cost)i+sintj+0k (0≤t ≤2π); ∵A ·dr=[-sinti+(2+cost)j+ck]·(-sinti+costj+0k)dt=(2cost+1)dt, ∴所环流量为⎰⋅c dr A =⎰+π20)1cos 2(dt t =2π.。
数学分析简明教程22 各种积分间的联系与场论初步
第二十二章 各种积分间的联系与场论初步§1 各种积分间的联系1.应用格林公式计算下列积分:(1)ydx x dy xy L ⎰-22,其中L 为椭圆22a x +22by =1取正向;(2),)()(⎰-++Ldy y x dx y x L 同(1);(3)dy y xdx y x L)()(222+-+⎰, L 是顶点为)5,2(),2,3(),1,1(C B A 的三角形的边界,取正向;(4),1,)()(223333=+--+⎰y x L dy y x dx y x L为取正向;(5),sin sin ydy exdx e xLy-+⎰L 为矩形d y c b x a ≤≤≤≤, 的边界,取正向;(6)],))cos(sin ())cos(sin [(dy y x xy x dx y x xy y e L xy+++++⎰其中L 是任意逐段光滑闭曲线.解(1)原式 =()()d xdy y x dxdy x yDD⎰⎰⎰⎰+=--2222)(=ab()r dr r b r a d ⎰⎰+122222220sin cos θθθπ(广义极坐标变换)=())(3sin cos 3122202222b a ab d b a ab +=+⎰πθθθπ.(2)⎰-++Ldy y x dx y x )()(=⎰⎰=-Ddxdy 0)11(.(3)原式 ⎰⎰+-=Ddxdy y x x ))(22(⎪⎪⎭⎫ ⎝⎛+-=-=⎰⎰⎰⎰⎰⎰-+-+215231143124322yy y y D dx ydy dx ydy ydxdy9143))5(127)(47(2252221-=-+--=⎰⎰dy y y dy y y .(4)原式π23)(3)33(2222-=+-=--=⎰⎰⎰⎰DD dxdy y x dxdy y x . (5)原式 dxdy x e y e Dy x ⎰⎰--=-)cos sin ( )cos sin (⎰⎰⎰⎰+-=-bad cdcydy b axe dx x ydy dx e)sin )(sin ()cos )(cos 11(a b e e c d ee cd b a --+--=.(6))]cos(sin [),(y x xy y e y x P xy ++=,)]cos(sin [),(y x xy x e y x Q xy++=,)]sin(cos [sin )]cos(sin [y x xy xy xy e y x xy x ye xQxy xy --++++=∂∂ )]sin()cos(sin )cos (sin [y x y x y xy xy xy xy e xy --+++=,)]sin(cos [sin )]cos(sin [y x xy xy xy e y x xy y xe yPxy xy +-++++=∂∂ )]sin(cos sin )cos (sin [y x xy x xy xy xy xy e xy +-+++=,)cos()(y x x y e yPx Q xy +-=∂∂-∂∂, 所以,原式⎰⎰+-=Dxy dxdy y x x y e ,)cos()( 其中D 为L 包围的平面区域. 2.利用格林公式计算下列曲线所围成的面积: (1)双纽线θ2cos 22a r =;(2)笛卡尔叶形线)0(333>=+a axy y x ;(3)t t a x sin )cos 1(2+=,t t a y cos sin 2⋅=,π≤≤20t . 解(1)⎰⎰⎰⎰==12||D Ddxdy dxdy D ⎰-⨯=L ydx xdy 212 ⎰=--=44)]sin (sin cos cos [ππθθθθθd r r r r 24424422cos a d a d r ===⎰⎰--ππππθθθ,其中1D 由θ=2cos 22a r ,44π≤θ≤π-所围成. (2)作代换,tx y =则得曲线的参数方程为313tatx +=,3213t at y +=.所以, dt t t a dx 233)1()21(3+-=,dt t t at dy 233)1()2(3+-=, 从而,dt t t a ydx xdy 2322)1(9+=-,于是,面积为 D =⎰C x y y x d -d 21=dt t t a ⎰∞++02322)1(29=223a .(3)D =⎰-cydx xdy 21= {}⎰-++⋅--⋅+π2022322]sin )sin (cos 2cos )cos 1[(cos sin )sin cos sin 2(sin )cos1(21dtt t t t t a t t a t t t a t t a{}⎰π-++⋅--⋅+2022322]sin )sin (cos 2cos )cos 1[(cos sin )sin cos sin 2(sin )cos1(21dt t t t t t a t t a t t t a t t a=21tdt t t a 2cos )cos 1(sin 22022+⎰π=24a π 3.利用高斯公式求下列积分:(1)y x z x z y z y x sd d d d d d 222++⎰⎰。
数学分析教案(华东师大版)第二十二章曲面积分
第二十二章曲面积分教学目的:1.理解第一、二型曲面积分的有关概念,并掌握其计算方法,同时明确它们的联系;2•掌握高斯公式与斯托克斯公式;3.理解有关场的概念,掌握梯度场、散度场、旋度场、管理场与有势场的性质及应用。
教学重点难点:本章的重点是曲面积分的概念、计算;难点是第二型曲面积分。
教学时数:18学时§ 1 第一型曲面积分一. 第一型面积分的定义:1.几何体的质量:已知密度函数,分析平面区域、空间几何体的质量定义及计算2.曲面的质量:3.第一型面积分的定义:定义及记法.,面积分J[血忙.4.第一型面积分的性质:第一型面积分的计算1. 第一型曲面积分的计算Th22.2设有光滑曲面-; .1,上二.T.:「为一7■上的连续函数,则例4 计算积分',其中■是球面iv J,-被平面_ : '工所截的顶部. P281§第二型曲面积分曲面的侧:1.单侧曲面与双侧曲面:2.双侧曲面的定向:曲面的上、下侧,左、右侧,前、后侧.设法向量为二二I…I . ■ ■ I,则上侧法线方向对应第三个分量 ...,即选+ ”号时,应有:«■■■ .■,亦即法线方向与[轴正向成锐角.类似确定其余各侧的法线方向闭合曲面分内侧和外侧.第二型曲面积分:1. 稳流场的流量:以磁场为例.P2842.第二型曲面积分的定义:P284 .闭合曲面上的积分及记法.3.第二型曲面积分的性质:线性,关于积分曲面块的可加性.第二型曲面积分与第一型曲面积分的关系:4.设丹为曲面£的指定法向,贝U^P{^y.z)dydz + Q(扎y ⑵沏x+ R(扎恥)必妙二心力益”刃+ R(x,y r2)cos(«,z)^.三第二型曲面积分的计算:----- 三.Th22!.2 设R(XJ⑵是定义在光滑曲面S :Z = Z(X J),(兀刃E D 0上的连续函数,以S的上侧为正侧(即co论⑵〉0),则有⑵必妙二禺如.证P类似地,对光滑曲面&廿⑵,(丿⑵E D』,在其前侧上的积分丿⑵妙必=卩(粉必)妙血.对光滑曲面J .m . J : - D :,在其右侧上的积分计算积分][--'■■-:-■ ' 「匚二 二…J 时,通常分开来计算三个积分为此,分别把曲面投影到YZ 平面,ZX 平面和XY 平面上化为二重积分进行计算•投影域的侧由曲面、的定向决定.P287 例2 计算积分二,_为球面-I ;-- 「— 取外侧.解 对积分 1分别用 石和 门记前半球面和后半球面的外侧,则有 -:f T…一计算积分 '/是球面"''7,- -丨在因此,外侧,因此,H—‘IL + It...=对积分则有\i ---亠",分别用二:「H」—=乍和一二记右半球面和左半球面的-2 1 ■S *J J0 -12 -y 2d^dy = -JZ S 3 . 综上,[]'- ■■§ 3 Gauss 公式和Stokes 公式一.Gauss 公式:Th22.6 设空间区域V 由分片光滑的双侧封闭曲面 J 围成.若函数P,Q,R 在 V上连续,且有连续的一阶偏导数,则对积分 分别用一和 :-记上半球面和下半球面的外侧 则有因此,『’八―J =—dxdydz = + Qdzdx + Bdxdy ,其中、取外侧•称上述公式为 Gauss 公式或 OcTporpa —G CKU 公式.设V 是矽型区域(即Z-型体),其边界曲面£由曲面:「一二〔:下侧,,> ■ --7; ■.>;;.-■; 上 侧,,■. ■< -.: [IT —」厂「「「Fa* 3曙dP dQ 3R dxdy __ 以及垂直于二'平面的柱面-. .(外侧)组成. 注意到只证dy az dxdydz-I ■■-.--'取外侧.解 一「: :- -■. .vi<, 一匚:卷1堂彳込1今兰+聖芒訂dx f dy f 3z dx dy dz由Gauss 公式 什’例2 计算积分\ [■-■ ■ ■ ■■'■ ■.■ -,其中J 是边 长为」的正方体V 的表面取外侧.V : :. .■ _ : _ i . P291解 应用Gauss 公式,有可类证 「F 必矽曲=妙也,[存dxdydz =只Qdzdx以上三式相加,即得Gauss 公式.一为球面面下方的部分,取外法线方向V 的表面外侧,由Gauss 公式,有=3j 『xdy 占二弘锥体v 的体积=3'yjr = 64兀;JJ xdydz + ydzdx + zdxdy = 4例1 设v 是三维空间的区域,其内任何封闭曲面都可不通过 v 外的点连续收缩为V 上的一点.又设函数「二二匚1、 J 二「匚I 和 工二二匚1在V 上有 连续的偏导数•「表示V 内任一不自交的光滑封闭曲面,•是:■的外法线•试证 明:对V 内任意曲面:'恒有£[Pc 阳(丹卫)+Q CO 5(MJ ) + Rc 阳(加⑵肉=0、3F 3Q SR A的充要条件是 1-在V 内处处成立.8x dy 3z a 位屮”)必妙必= ay^—a dy = a计算积分『一二一一…;,一为锥面二二在平解设:"为圆■ _' ■.■ : ■取上侧 则]•/构成由其所围锥体=64兀[0 + X )必= 因而,低户亦他耳+ 肮0£(科⑵= ^Pdydz + Qdzdx+ &te妙.—:由Gauss公式直接得到.-:反设不然,即存在点二:.「.二_二V使/ 3P 3Q QR r■ - - 亠,' 3x dy dz叫、、「、dP dQ dR yf w不妨设其.I.l.由■'' 在点丄,一连续,存在以点丄,一为中心且在V dy azf3P 3Q 3R、、一.内的小球f ,使在其内有.以一表示小球1::的表面外侧,5x dy dz就有IT J谄逍呼卜处>。
数学分析定积分课件
定积分在物理中的应 用
• 定积分在物理中的应用 • 求解物体的位移 • 求解物体的速度 • 求解物体的加速度
定积分在工程中的应 用
• 定积分在工程中的应用 • 求解工程问题的累积效应 • 求解工程问题的优化问题 • 求解工程问题的概率分布
数06学分析定积分习题精选
与解答
习题精选与解题思路
习题精选
连续函数的定积分与间断函数的定积分
连续函数的定积分
• 如果函数f(x)在[a, b]上连续,则定积分∫[a, b] f(x) dx存在 • 连续函数的定积分可以通过基本积分公式、换元积分法和分部积分法求解
间断函数的定积分
• 如果函数f(x)在[a, b]上存在间断点,则定积分∫[a, b] f(x) dx可能存在 • 间断函数的定积分可以通过黎曼和和勒贝格积分求解
基本积分公式的应用
• 求解简单的定积分问题 • 通过换元法求解复杂积分问题
换元积分法及其应用
换元积分法的基本原理
• 通过换元将复杂的积分问题转化为简单的积分分法的应用实例
• 将三角函数转换为幂函数 • 将指数函数转换为幂函数 • 将多项式函数转换为幂函数
定积分的极限存在性
• 如果函数f(x)在[a, b]上连续,则定积分∫[a, b] f(x) dx存 在 • 如果函数f(x)在[a, b]上单调有界,则定积分∫[a, b] f(x) dx存在
定积分的唯一性
• 如果函数f(x)在[a, b]上连续,则定积分∫[a, b] f(x) dx的 值唯一 • 如果函数f(x)在[a, b]上单调有界,则定积分∫[a, b] f(x) dx的值唯一
分部积分法及其应用
分部积分法的基本原理
• 将复杂的积分问题分解为简单的积分问题 • 通过分部积分求解定积分
第二十二章各种积分间的联系与场论初步
第二十二章 曲面积分§22.1 第一型曲面积分1.计算下列第一型曲面积分: (1)22()Sx y dS +∫∫,其中S 1z ≤≤的边界曲面; (2) 2SdS 2x y +∫∫,其中为柱面S 222x y R +=被平面0z =和z H =所截取的部分; (3) 32||Sx yz dS ∫∫,其中为曲面S 22z x y =+被1z =割下的部分;(4),其中为螺旋面的一部分:2Sz dS ∫∫S cos ,sin ,x u v y u v z ==v = (0,02)u a v π≤≤≤≤;(5)22()Sx y dS +∫∫,是球面S 2222x y z R ++=. 2.求抛物面壳221()2z x y =+,01z ≤≤的质量.设此壳的密度z ρ=. 3.计算球面三角形2222x y z a ++=,的围线的重心坐标.设线密度0,0,0x y z >>>1ρ=.4.求均匀球壳2222x y z ++=)a (0z ≥对轴的转动惯量.z 5.求均匀球面(0,0,z =)x y x y a ≥≥+≤的重心坐标.§22.2 第二型曲面积分1.计算下列第二型曲面积分: (1)22()()Sy x z dydz x dzdx y xz dxdy −+++∫∫,其中为S 0x y z ===,x y z a ===六个平面所围的正立方体的外测;(2)()()()Sx y dydz y z dzdx z x dxdy +++++∫∫,其中是以原点为中心,边长为2的正立方体表面的外测;S(3) Syzdzdx ∫∫,为S 2222221x y z a b c ++=的上半部分的上测;(4) ,为柱面Szdxdy xdydz ydzdx ++∫∫S 221x y +=被平面0z =及所截部分的外测;3z =(5)Sxydydz yzdzdx xzdxdy ++∫∫,是由平面S 0x y z ===和1x y z ++=所围的四面体表面的外测;(6) 333Sx dydz y dzdx z dxdy ++∫∫,为球面S 2222x y z a ++=的外测; (7)222Sx dydz y dzdx z dxdy ++∫∫,S 是球面222()()()2x a y b z c R −+−+−=的外测. 2.设某流体的流速为,求单位时间内从球面(,,0)v k y =2224x y z ++=的内部流过球面的流量.3.设流体的流速为55(,0,)xv xy z x =,求穿过柱面222()x y a h z h +=−≤≤外测的流量.§22.3 高斯公式与斯托克斯公式1. 利用高斯公式求下列积分: (1)222Sx dydz y dzdx z dxdy ++∫∫,其中 (a) 为立方体S 0,,x y z a ≤≤的边界曲面外侧; (b) 为锥面S 222(0)x y z z h +=≤≤,下侧.(2)333Sx dydz y dzdx z dxdy ++∫∫,其中是单位球面的外侧; S (3) 设是上半球面S z =(a) Sxdydz ydzdx zdxdy ++∫∫,(b) ()()22222Sxz dydz x y z dzdx xy y z dxdy +−++∫∫; (4)()()()222222Sx yz dydz y z x dzdx z x y dxdy −++−++−+∫∫,是S ()()()2222x a y b z c −+−+−=R 的外侧.2. 用斯托克斯公式计算下列积分: (1)23Lx y dx dy zdz ++∫v ,其中(a) L 为圆周,方向是逆时针,222,x y a z +==0(b) L 为221,y z x +==y 所交的椭圆,从x 轴正向看去,按逆时针方向;(2)()()()Ly z dx z x dy x y dz −+−+−∫v ,L 是从(),0,0a 经()0,,0a 至()0,0,a 回到(),0,0a 的三角形;(3)()()()222222Lyz dx x z dy x y dz +++++∫v ,其中(a) L 为1x y z ++=与三坐标轴的交线,其方向与所围平面区域上侧构成右手法则,(b) L 是曲线,它的方向与所围曲面的上侧构成右手法则;222222,2(0,0)x y z Rx x y rx r R z ++=+=<<>(4),Lydx zdy xdz ++∫v L 是2222,0x y z a x y z ++=++=,从x 轴正向看去圆周是逆时针方向.3. 设L 为平面上封闭曲线,l 为平面上任意方向,证明()cos ,0Ln l ds =∫ ,其中是n L 的外法线方向.4. 设是封闭曲面,为任意固定方向,证明S l ()cos ,0Sn l dS =∫∫. 5. 求()()cos ,cos ,LI x n x y n y ds =+⎡⎤⎣⎦∫v ,L 为包围有界区域的光滑闭曲线,n 为D L 的外法向.8.证明高斯积分()cos0,Lds rr n =∫v ,其中L 是平面上一单连通区域σ的边界,而是r L 上一点到σ外某一定点的距离,是nL的外法线方向.又若表示r L 上一点到σ内某一定点的距离,则这个积分之值等于2π.9.计算高斯积分()2cos,SdS r r n ∫∫,其中为简单封闭光滑曲面,为曲面上在点S n S(),,ξηζ处的外法向,()()(),x y z r r i j k r ξηζ=−+−+−=.试对下列两种情形进行讨论:(1) 曲面包围的区域不含S (),,x y z 点; (2) 曲面包围的区域含(S ),,x y z 点. 10.求证:()1cos 2,V Sdxdydz dS r r n =∫∫∫∫∫w ,其中是包围V 的分片光滑封闭曲面,为的外法线方向.r S n S =(),,x y z ,r r =.分下列两种情形精心讨论:(1) 中不含原点(0,0,0);V (2) 中含原点(0,0,0)时,令V lim 0VV V dxdydz dxdydzr rεε−=+→∫∫∫∫∫∫, 其中V ε是以原点为心,以ε为半径的球.11.利用高斯公式变换以下积分: (1)Sxydxdy xzdzdx yzdydz ++∫∫;(2)cos cos cos S u u udS x y z αβγ⎛⎞∂∂∂++⎜⎟∂∂∂⎝⎠∫∫, 其中cos α,cos β,cos γ是曲面的外法线方向余弦.12.设是具有二阶连续偏导数的函数,并设()(,,,u x y v x y )2222u u u x y∂∂Δ=+∂∂.证明:(1)l uudxdy ds nσ∂Δ=∂∫∫∫; (2)l u v u v uv udxdy dxdy ds x x y y n σσ⎛⎞∂∂∂∂∂Δ=−++⎜⎟∂∂∂∂∂⎝⎠∫∫∫∫∫v ;(3)()l u v u v v u dxdy vu ds nn σ∂∂⎛⎞Δ−Δ=−−⎜⎟∂∂⎝⎠∫∫∫v .其中σ为闭曲线l 所围的平面区域,,u vn n∂∂∂∂为沿l 外法线的方向导数. 13.设222222,u u uu x y z∂∂∂Δ=++∂∂∂S 是V 的边界曲面,证明:(1)VSuudxdydz dS n∂Δ=∂∫∫∫∫∫; (2) 222S V V uu u u u dS dxdydz u udxdydz n x y z ⎡⎤⎛⎞∂∂∂∂⎛⎞⎛⎞=+++Δ⎢⎥⎜⎟⎜⎟⎜⎟∂∂∂∂⎝⎠⎝⎠⎢⎥⎝⎠⎣⎦∫∫∫∫∫∫∫∫.式中u 在V 及其边界曲面上有连续的二阶偏导数,S un∂∂为沿曲面的外法线的方向导数. S 14.计算下列曲面积分:(1) ()()()22222Sx y dydz y z dzdx z y x dxdy −+−+−∫∫,其中是S 2222221x y z a b c ++= 下侧;(0z ≥)(2)()()()cos cos cos ,Sx y dydz y z dzdx z x dxdy S +++++∫∫是立体Ω的边界面,而立体由Ω1x y z ++=和三坐标面围成;(3),其中SdS F n ⋅∫∫333,x y z F i j k =++n 2是的外法向,S 为S 222x y z a +=+上侧;(0z ≥)(4) 3333233222,S x y z yz dydz z x dzdx x y dxdy S a b c ⎛⎞⎛⎞⎛⎞+++++⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠∫∫是2222221x y z a b c ++=后侧.(0x ≥)15.证明由曲面所包围的体积等于S ()1cos cos cos 3SV x y z αβγ=++∫∫dS , 式中cos α,cos β,cos γ为曲面的外法线的方向余弦.S 16.若L 是平面cos cos cos 0x y z p αβγ++−=上的闭曲线,它所包围区域的面积为,求S cos cos cos Ldx dy dz xy zαβγ∫v , 其中L 依正向进行.17.设有连续偏导数,且对任意光滑闭曲面,有 ,,P Q R S.0SPdydz Qdzdx Rdxdy ++=∫∫证明0P Q R x y z∂∂∂++=∂∂∂. 18.设在全平面上有连续偏导数,而且以任意点()(,,,P x y Q x y )()00,x y 为中心,以任意正数为半径的上半圆l :r 00cos ,sin x x r y y r θθ=+=+ (0)θπ≤≤,恒有,()(),,lP x y dx Q x y dy +=∫0求证:(),0,QP x y 0x∂≡≡∂. 19.验证下列积分与路径无关,并求它们的值: (1) ()(()())1,10,0x y dx dy −−∫;(2)()()1,222,1ydx xdyx−∫沿在右半平面的路径; (3)()()6,8221,0xdx ydyx y++∫沿不通过原点的路径; (4) ()(()()),0,0a b f x y dx dy ++∫,式中()f u 是连续函数;(5) ()()()()1,22,1x dx y dy ϕψ+∫,其中ϕ,ψ为连续函数;(6) ()()6,1,11,2,3yzdx xzdy xydz ++∫; (7) ()()2,3,4231,1,1xdx y dy z dz −+−∫;(8)()()222111,,,,x y z x y z ∫,其中()111,,x y z ,()222,,x y z 在球面2222x y z a ++=上.20.求下列全微分的原函数:(1) ()(222222)x xy y dx x xy y dy +−+−−;(2) ()()222cos sin 2cos sin x y y x dx y x x y dy −+−;(3)2a b by ax dx dy dz z z z −−++; (4) ()()()222222x yz dx y xz dy z xy dz −+−+−; (5) ();(22sin 2cos 2x x e y xy dx e y x y dy +++)(6) ()()232222221123x y 35x dx y dy z dz x y x y x y ⎡⎤⎡⎤⎢⎥⎢⎥−++−++⎢⎥⎢⎥−−⎣⎦⎣⎦. 21.函数应满足什么条件才能使微分式(,F x y )()(),F x y xdx ydy +是全微分. 22.验证22122xdy ydxPdx Qdy Ax Bxy Cy−+=++ 适合条件P Q y x∂∂=∂∂,其中A ,B ,C 为常数,20AC B −>. 求奇点()0,0的循环常数. 23.求22L xdx ydy I x y +=+∫v ,其中L 是不经过原点的简单闭曲线,取正向. 设L 围成的区域为.D (1) 不包含原点;D (2) 包含原点在其内部. D 6.求()()()()()22222222222222L x y y x I dx dy x y x y x y x y ⎡⎤⎡⎤−+−=+++⎢⎥⎢⎥−+++−+++⎢⎥⎢⎥⎣⎦⎣⎦∫v , 其中L 是不经过()和点的简单闭曲线.2,0−(2,0))24.设在单连通区域上有二阶连续偏导数,证明(,u x y D (),u x y 在内有D 22220u ux y ∂∂+=∂∂的充要条件是对内任一简单光滑闭曲线D L ,都有 0L u ds n ∂=∂∫v ,其中un∂∂为L 沿外法线的方向导数. 25.计算积分()()22Lx y dx x y dy I x y ++−=+∫,其中L 是从点到的一条不通过原点的光滑曲线,它的方程是()1,0A −(1,0B )()() 11y f x x =−≤≤.26.计算积分()()2222ln 1ln 1LI x x y dx y x y d =+−++−∫y ,其中L 是被积函数的定义域内从点()2,0至()0,2的逐段光滑曲线.。
各种积分间的联系与场论初步
各种积分间的联系与场论初步下面的图表给出了各种积分间的联系,在计算中可以根据这些关系,将一种积分转化为另一种积分。
例 1 设L 为平面上封闭曲线,l 为平面上任意方向,n是L 的外法线方向。
证明y⎰=Lds l n 0),cos(x证明 )},cos(),,{cos(y n x n n=,)},cos(),,{cos(y x τττ= 因为 ),(),(y x n τ =, ),(),(),(x x y n τπτ-=-= 则 ),cos(),cos(y x n τ =, ),cos(),cos(x y n τ-=l n l n ⋅=),cos()},cos(),,{cos(y n x n =)},cos(),,{cos(y l x l ⋅ )},cos(),,{cos(x y ττ -=)},cos(),,{cos(y l x l ⋅ ),cos(),cos()},cos(),cos(y x l x y l ττ +-=00),cos(),cos(),cos( ==+-=⎰⎰⎰⎰DLLdxdy dy x l dx y l ds l n注1 此例给出了平面上闭曲线切线正向和外法线矢量的关系:(这个结果在7、8、12题都要用到)),cos(),cos(y x n τ =, ),cos(),cos(x y n τ-= 注2 利用这个关系,可得格林公式的另一种形式:⎰⎰⎰∂∂+∂∂=+D L dxdy y Qx P ds y n Q x n P ][)],cos(),cos([或(用外法向矢量)⎰⋅Lds n Q P },{ ⎰⎰∂∂+∂∂=D dxdy y Qx P ][试比较(用正向的切线矢量)⎰⎰⎰⎰∂∂-∂∂=⋅=+D L L dxdy x Px Q ds Q P Qdy Pdx ][},{ τ事实上=+⎰Lds y n Q x n P )],cos(),cos([⎰-Lds x Q y P )],cos(),cos([ττ⎰⎰⎰∂∂+∂∂=+-=DLdxdy yQ x P Pdy Qdx ][注3 我们已经知道,格林公式是斯托克司公式当L 是平行于Oxy 坐标面的平面曲线时的特殊情形。
第二十二章各种积分间的联系和场论初步
第二十二章 各种积分间的联系和场论初步§1 各种积分间的联系一 Green 公式定义1 一个平面区域D ,如果全落在此区域内的任一条封闭曲线都可以不经过D 以外的点而连续地收缩为一点,则称此区域D 为单连通的,否则称为复连通的。
定理 1 设D 是以光滑曲线l 为边界的平面单连通区域,设函数(),P x y ,(),Q x y 在D 及l 上连续并具有关于自变量x 和y 的连续偏导数,则有:lD Q P dxdy Pdx Qdy x y ⎛⎫∂∂-=+ ⎪∂∂⎝⎭⎰⎰⎰这里右端积分路径的方向是和区域正相联系的,既当一人沿着曲线l 行走时区域D 恒在他的左边。
注:Green 公式同时揭示了平面上某区域内的二维积分与该边界上的一个特定的第二类曲线积分之间的关系; 注:常用于第二类曲线积分,有时用来计算二重积分在Green 公式中。
例:求第二类曲线积分I=22Cxy dy x ydx -⎰,C 是上半圆周:221,0x y y +=≥ 方向从()()1,01,0→-。
例:设函数u ,v 有其二阶连续偏导数,记2222yux u u ∂∂+∂∂=∆,证明 (i)ds n uv dxdy y v y u x v x u udxdy v DDD⎰⎰⎰⎰⎰∂∂∂∂+∂∂∂∂+∂∂⋅∂∂--=∆; (ii)⎰⎰⎰∂∂∂-=∆DD ds n u udxdy ;(3)ds n v u n u v udxdy v v u D D∂∂-∂∂=∆-∆⎰⎰⎰∂。
例:(用Green 公式求曲面的面积)求曲线333x y xy +=所围图形的面积。
注:在使用Green 公式时,应注意“助线法”的使用。
二 Gauss 公式定理 2 设空间二维单连通有界闭区域V 的边界曲面S 是光滑的,又设函数(),,P x y z ,(),,Q x y z ,(),,R x y z 在V 及S 上具有关于,,x y z 的连续偏导数,则有:()()()cos ,cos ,cos ,VSSP Q Rdxdydz x y z Pdydz Qdzdx RdxdyP n x Q n y R n z dS∂∂∂++∂∂∂=++=++⎡⎤⎣⎦⎰⎰⎰⎰⎰⎰⎰这里n 为曲面S 的外法线方向,第二个积分沿曲面S 的外侧。
微积分学PPt标准课件22-第22讲定积分的概念
定理 1 若 f (x) C([a,b]), 则 f (x) R([a,b]) .
若 f (x) 在[a,b] 上单调、有界, 则 f (x) R([a,b]) .
定理 2 f (x) 在[a,b] 上有界, 且仅有有限个(一类)
间断点, 则 f (x) R([a,b]) .
y
第五章 一元函数的积分
第一节 定积分的概念
一. 曲边梯形的面积 二. 定积分的定义 三. 定积分的性质
第五章 一元函数的积分
第一节 定积分的概念和性质
在我国古代南北朝(公元 429 — 500 年)时, 南朝的科学家祖冲之运用逐渐增加圆内多边形的边 数,算出正多边形的面积,逼近相应的圆的面积, 得到了π 近似值.
b
f (x)d x
b
f (y)d y
b f (t)dt .
a
a
a
(3) || x || 0时, 分点个数 n , 但是, 当分点 个数 n 时, 却不一定有|| x || 0.
(4) 若将非均匀变化的事物看成是均匀变化时, 可以表示为两个变量的乘积形式, 则该非均 匀变化问题可以用定积分方法处理: 分划— 代替 —求和— 取极限
O a c bx
定理 3
若 f (x) R([a,b]), 则 | f (x) | R([a,b]) .
定理 3的逆不真.
例如,
f
( x)
1, 1,
x 为有理数, x 为无理数.
定理 4 若 f (x) R([a,b]), 则 [c,d ] [a,b] ,
f (x) R([c,d]) . y
a f (x)d x 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考虑
其中V 如图22-9,它的边界由下,上,中三部分S1, S2 ,S3 构成。上部为S2 ,由方程 下部为S1 ,由方程 给出, 给出,中间由母线
平行于Z 轴的柱面S3 构成。S1 与S2 在Oxy平面上由公 式投影D. V可表为
V的边界曲面S的外侧可表为 下侧, 上侧, 以D的边界为准线夹在S1与S2 之间的柱面外侧
R Q Q P P R y z dydz z x dzdx x y dxdy S
Pdx Qdy Rdz
L
其中S 的侧与 L 的方向按右手法则确定
P P 证明: 先证 dzdx dxdy L Pdx z y S
P Q y x
利用格林公式 , 得
D D L
Q Q L P d x Q d y D ( x x )d xd y
0
证毕
xdy ydx 在区域 D : a / 2 x 2 y 2 2a 上考察积分 I L 2 2 例. x y
意义
i 对D 内任一条不包含奇点 A 的闭曲线 L,由格林公式, 有
Pdx Qdy 0
L
和 L2 ii 环绕奇点 A 的任意两条简单闭曲线 L1 的正向的积分 相等, 即
L1
Pdx Qdy Pdx Qdy
L2
(iii) 环绕某一奇点 n 圈的光滑闭曲线 L,其中 n1 圈是正向,n2 圈是负向
2 2
L (1) 为 从 a,0 到 a,0 沿上半圆周 L1 其中
(2) a,0 到 a,0 沿下半圆周 L2 从 解: 圆的方程:x a cos , y a sin (1)I
0
(2)I L d
2
1 a cos a cos a 2 sin 2 d a2
L l
P P z P P cos dxdy xy dxdy xy y z y y z cos P dxdy P P P cos cos cos cos dS xy z S z y y cos P P dzdx dxdy S z y
1. 梯度场
梯度:
grad u
u x
,
u y
,
u z
u
称为梯度场, 又称 u x, y, z 为梯度场的势函数, 记 则
= , , x y z
称为函数u x, 的梯度,它定义了一个向量场, y, z
gradu= u
证明 (3)
(4)
设存在函数 u ( x , y ) 使得
则
d u P dx Q d y u u P( x, y ), Q ( x, y ) x y
P, Q 在 D 内具有连续的偏导数, 从而在D内每一点都有
P Q y x
证明 (4)
(1)
设L为D中任一分段光滑闭曲线, 所围区域为 D D (如图) , 因此在 D上
同理可证
Q Q L Qdy S x dxdy z dydz R R L Rdz S y dydz x dzdx
把三个公式加起来,便得斯托克斯公式。证毕!
斯托克斯公式建立了函数在空间曲面S上的第二型曲面积 分与其“原函数”在S的边界曲线L上的第二型曲线积分 之间的联系,因此也是牛顿-莱布尼茨公式的一种高维的 推广。利用两种曲面积分之间的关系,常把它写成如下便 于记忆的形式:
gradu gradu cos l
其中 为 l 与梯度 gradu 之间的夹角。
2.散度场
散度: div A P Q R A x y z
设 F x, y, z P, Q, R 是空间区域 V 上的向量场, 在 V 上
2
I 在区域 D : x 2 y 2 2a 2上考察上述积分: L
这时 D 是单连通的, 为什么仍有 L
1
xdy ydx x2 y 2 ,
L2
实际上:D不满足 定理中关于 P,及其偏导数的连续性 Q 条件。我们注意:若有破坏连续性条件的“奇点”,我们将 这些点从区域中除去,于是区域 D 就变为含有点“洞”的 区域 D1 ,而在 D1 上具有了连续性。从而 可化为上面的情形
由三重积分的积算方法及第二型曲面积分的积算方法得:
上面第四个等式成立是因为S3 在Oxy面上得投影面积
为零,所以
同理可证
Q V y dxdydz S Qdzdx,
3、stokes公式
Th 22.3
光滑曲面 S 的边界为光滑曲线L ,函数 P, Q, R 在 S 及 L 上具有连续的一阶偏导数, 则
L Pd x Qd y 0 .
(2) 对D 中任一分段光滑曲线 L, 曲线积分
与路径无关, 只与起止点有关.
L Pd x Qd y
的全微分,
(3)
即
在 D 内是某一函数
d u( x, y) P d x Q d y P Q (4) 在 D 内每一点都有 . y x
设曲面 S 的方程为 z f ( x, y) 它在 Oxy 面上得投影为 xy , 与过
xy 的点且平行于 z 轴的直线只交于以点。L 是 S 的边界,它
它在 Oxy 面上的投影为 l. 取 S 的上侧为正侧,则单位法向量为
n cos , cos , cos
1 z z 1 x y
(3)
在 D 内是某一函数
的全微分,
即 d u( x, y) P d x Q d y P Q . (4) 在 D 内每一点都有 y x
定理22.4的证明
1-4:设D 是平面单连通区域, 函数
在D 内 具有一阶连续偏导数, 则以下四个条件等价:
(1) 沿D 中任意光滑闭曲线 L , 有
函数 u x, y, z 沿
l cos ,cos ,cos
u 的方向导数, l :
u u u u cos cos cos l x y z
利用梯度得:
u u u u , , cos ,cos ,cos l x y z
Pdx Qdy
L S
x P
Q P y dxdy dxdy x y S Q
第二节 曲线积分与路径无关
背景:在力学里, 质点在保守力场中移动时, 场力场所做的功和所走的路径无关,而只与质 点运动的起点和终点有关,而此时功可用第二 型曲线积分表示。因此,要讨论问题:在什么 条件下,第二型曲线积分与积分路径无关(只 依赖曲线的端点)
证明 (1) 设
(2)
L1 , L2 为D 内任意两条由A 到B 的有向分段光滑曲
线, 则
L
1
Pd x Qd y
L2
Pd x Qd y
L2
B
L1
A
L1 L 2
Pd x Qd y
(根据条件(1))
L2
Pd x Qd y
说明: 积分与路径无关时, 曲线积分可记为
第二十二章 各种积分间的联系与场论初步
§1 各种积分间的联系
1、格林公式
单连通区域 ( 无“洞”区 区域 D 分类 域 ) 复连通区域 ( 有“洞”区 域) 区域 D 边界L 的正向: 域的内部靠左
L D
定理22.1(格林公式)
设区域 D 是由逐段光滑闭曲线 L 围成的平面单 连通闭区域,函数 在 D 上具有连续一阶偏导数, 则有
D
x P
P cos , x Q cos y dxdy Pdx Qdy L L Q P cos n, y Q cos
, y ds
n, x ds
ቤተ መጻሕፍቲ ባይዱ
L
其中: 为切向量(与同向);
P Q R 每一点 x, y, z , 定义向量场的散度为 x y z ,记为 divF
A P, Q, R
散度构成了V 的一个数量场。 利用 Hamilton算子有
divF F
Gauss 公式可写成
说明: 1 记忆:
dydz dzdx dxdy cos Pdx Qdy Rdz x y z x L S S P Q R P 2 N L 公式的推广
3
cos y Q
cos ds z R
格林公式的推广, 即格林公式为其特例
AB Pdx Qd y A Pdx Qd y
B
证明 (2)
(3) 和任一点B( x, y ), 因曲线积分
在D内取定点 与路径无关, 有函数
B( x, y )
A( x0 , y0 )
( x x , y ) ( x, y )
C ( x x, y )
则
x u u( x x, y) u ( x, y )
n 为外法线
2、高斯公式
定理22.2. 设空间闭区域 V 由分片光滑的 双侧闭曲
面S 所围成, 函数 P, Q, R 在V 及 S上具有连续的一阶 偏导数数,则有
P d y d z Q d z d x Rdx d y
S
(Gauss 公式)
证明:P377仿照格林公式的证明,先对简单的区域证明
n1 n2 n, 则积分 I Pdx Qdy 等于该点循环常数的 n1 n2 倍。