【精编】2015-2016学年福建省泉州市洛江区七年级(下)期末数学试卷(解析版)
【华东师大版】福建省泉州市洛江区七年级下期末数学试卷及答案
七年级(下)期末数学试卷一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣122.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.45.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y=______(用含x的式子表示).9.一个n边形的内角和是其外角和的2倍,则n=______.10.不等式3x﹣9<0的最大整数解是______.11.三元一次方程组的解是______.12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为______.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了______道题.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=______.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了______次;(2)一共走了______米.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出.20.解方程组:.21.解不等式组:(注:必须通过画数轴求解集)22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=______度;(2)求∠EDF的度数.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=______度(直接写出结果);②∠BDC的度数为______(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB 的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).2015-2016学年福建省泉州市洛江区七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣12【考点】解一元一次方程.【分析】根据解方程的方法两边同时除以3求解.【解答】解:3x=﹣6两边同时除以3,得x=﹣2故选:A.2.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出结论正确的是哪个即可.【解答】解:∵a>b,∴a﹣5>b﹣5,∴选项A不正确;∵a>b,∴3a>3b,∴选项B正确;∵a>b,∴2+a>2+b,∴选项C不正确;∵a>b,∴>,∴选项D不正确.故选:B.3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.4【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90度,从图中可看出∠α度数+∠β的度数+90°=180°;②∠1比∠2大50°,则∠1的度数=∠2的度数+50度.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠α比∠β的度数大50°,得方程x=y+50.可列方程组为.故选:D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠B+∠BAD,再根据∠BAC=∠BAD+∠DAC即可得解.【解答】解:由三角形的外角性质,∠ADC=∠B+∠BAD,∵∠BAC=∠BAD+∠DAC,∠B=∠DAC,∴∠BAC=∠ADC.故选B.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y=2x+5(用含x的式子表示).【考点】解二元一次方程.【分析】将x看做已知数求出y即可.【解答】解:方程﹣2x+y=5,解得:y=2x+5.故答案为:2x+5.9.一个n边形的内角和是其外角和的2倍,则n=6.【考点】多边形内角与外角.【分析】根据多边形内角和公式:(n﹣2)•180 (n≥3且n为整数)结合题意可列出方程180(n﹣2)=360×2,再解即可.【解答】解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;10.不等式3x﹣9<0的最大整数解是2.【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.【解答】解:不等式的解集是x<3,故不等式3x﹣9<0的最大整数解为2.故答案为2.11.三元一次方程组的解是.【考点】解三元一次方程组.【分析】将方程组三个方程相加求出x+y+z的值,进而将每一个方程代入即可求出x,y,z的值.【解答】解:,①+②+③得:2(x+y+z)=22,即x+y+z=11④,将①代入④得:z=6,将②代入④得:x=2,将③代入④得:y=3,则方程组的解为.故答案为:12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为4.【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为30.【考点】平移的性质.【分析】先根据平移的性质得AC=DF,AD=CF=3,于是可判断四边形ACFD为平行四边形,然后根据平行四边形的面积公式计算即可.【解答】解:∵直角△ABC沿BC边平移3个单位得到直角△DEF,∴AC=DF,AD=CF=3,∴四边形ACFD为平行四边形,=CF•AB=3×10=30,∴S平行四边形ACFD即阴影部分的面积为30.故答案为:30.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=15度.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】先根据三角形内角和定理,计算出∠ACB=180°﹣∠A﹣∠B=90°,再根据三角形的高和角平分线的定义,得到∠BCE=∠ACB=45°,∠BDC=90°,于是可计算出∠BCD=30°,然后利用∠DCE=∠BCE﹣∠BCD进行计算即可.【解答】解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了5道题.【考点】二元一次方程的应用.【分析】设答对x道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=20°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD=70°,然后利用互余计算出∠DAD′,从而得到α的值.【解答】解:∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD=180°﹣∠2,而∠2=∠21=110°,∴∠BAD=180°﹣110°=70°,∴∠DAD′=90°﹣70°=20°,即α=20°.故答案为20°.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了11次;(2)一共走了132米.【考点】多边形内角与外角.【分析】根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12﹣1=11次才会回到原的起点,即一共走了12×11=132米.故答案为11,1132.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣【考点】解一元一次方程.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:6y﹣3(y﹣1)=12﹣(y+2)去括号得:6y﹣3y+3=12﹣y﹣2移项得:6y﹣3y+y=12﹣2﹣3合并得:4y=7系数化为1得:.19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先移项,再合并同类项,把x的系数化为1,把不等式的解集在数轴上表示出即可.【解答】解:移项得,5x﹣3x≤3+1,合并同类项得,2x≤4,x的系数化为1得,x≤2.在数轴上表示为:.20.解方程组:.【考点】解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:,①×3+②得,5x=25,解得x=5,把x=5代入①得,5﹣y=3,解得y=2,故方程组的解为.21.解不等式组:(注:必须通过画数轴求解集)【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:,由①得x≥13,由②得x>﹣2,所以原不等式组的解是:x≥13.22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=110度;(2)求∠EDF的度数.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)根据图形平移的性质画出△A1B1C1即可;(2)画出△ABC关于直线m对称的△A2B2C2即可;(3)过点A2B2作直线,此直线与直线m的交点即为所求.【解答】解:作图如下:(1)如图,△A1B1C1.(2)如图,△A2B2C2.(3)如图,点P即为所求.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)【考点】利用轴对称设计图案.【分析】做本题的关键是利用轴对称图形,作出轴对称图案.这里的答案不唯一,只要是轴对称图形就行.做时可以思考先把正方形变成两个面积相等,图形相同的两部分,再分这两部分为相同的轴对称图形.【解答】解:如图所示:.25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【考点】三元一次方程组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以得到x、y的值;(2)由题意可以列出相应的不等式,从而可以得到某营业员至少需要卖出服装的件数;(3)由题意可得相应的三元一次方程组,通过变形即可得到问题的答案.【解答】解:(1)由题意,得,解得即x的值为1800,y的值为3;(2)设某营业员当月卖服装m件,由题意得,1800+3m≥3100,解得,,∵m只能为正整数,∴m最小为434,即某营业员当月至少要卖434件;(3)设一件甲为a元,一件乙为b元,一件丙为c元,则,将两等式相加得,4a+4b+4c=720,则a+b+c=180,即购买一件甲、一件乙、一件丙共需180元.26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=125度(直接写出结果);②∠BDC的度数为90°+α(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB 的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).【考点】三角形综合题.【分析】(1)①根据角平分线定义以及三角形内角和定理计算即可解决问题.②根据角平分线定义以及三角形内角和定理计算即可解决问题.(2)由∠BFC=∠FCE﹣∠FBC=由此即可解决问题.(3)利用(2)的结论即可解决问题.【解答】解:(1)①125°;②结论:,理由:∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠A=90°+α.故答案分别为125°,90°+α.(2)∵BF和CF分别平分∠ABC和∠ACE∴,,∴∠BFC=∠FCE﹣∠FBC)==即.(3)由轴对称性质知:,由(1)②可得,∴.。
2015-2016学年福建省泉州市七年级下期末数学试卷(带解析)
绝密★启用前2015-2016学年福建省泉州市七年级下期末数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:145分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、已知三角形三边长分别为2,x ,13,若此三角形的周长为奇数,则满足条件的三角形个数为( )A .2个B .3个C .13个D .无数个2、小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是( ) A .正三角形 B .正四边形 C .正六边形 D .正八边形3、不等式组的解集在数轴上表示正确的是( )A .B .C . D.4、如图,将正方形ABCD 的一角折叠,折痕为AE ,∠BAD 比大∠BAE 大48°.设∠BAD 和∠BAE 的度数分别为x 、y ,那么x 、y 所适合的一个方程组是( )A .B .C .D .5、数学活动课上,小明将一副三角板按图中方式叠放,则∠α等于( )A .30°B .45°C .60°D .75°6、下列轴对称图形中,对称轴条数最少的是( )A .B .C .D .7、下列各数中,哪个是不等式x+3<2的解( ) A .1 B .0 C .﹣1 D .﹣2第II 卷(非选择题)二、填空题(题型注释)8、已知a=2b+6.①若a <0,则b 的取值范围是b <﹣3;②若b≤3a ,则a 的取值范围是_________.9、如图,已知∠ACF=150°,∠BAC=110°,则∠B=_________度.10、如图,在直角△ABC 中,∠C=90°,BD 平分∠ABC ,DE ⊥AB 于点E ,若DE=5,则DC=_________.11、已知关于x ,y 的方程组的解满足x+y >0,则a 的取值范围是_________.12、等腰三角形的两边长分别为8cm 和3cm ,则它的周长为_________cm .13、在长为10m ,宽为8m 的长方形空地上,沿平行于长方形各边的方向分割出三个形状、大小完全相同的小长方形花圃,其示意图如图所示.求出一个小长方形花圃的面积是_________.14、如图,在矩形ABCD 中,点P 在AB 上,且PC 平分∠ACB .若PB=3,AC=10,则△PAC 的面积为_________.15、八边形的内角和等于_________度.16、已知方程4x ﹣y=1,用含x 的代数式表示y ,则y=_________.17、不等式2x <4的解集是_________.三、解答题(题型注释)18、如图,在△ABC 中,AB=AC ,点E 为BC 边上一动点(不与点B 、C 重合),过点E 作射线EF 交AC 于点F ,使∠AEF=∠B .(1)判断∠BAE 与∠CEF 的大小关系,并说明理由;(2)请你探索:当△AEF 为直角三角形时,求∠AEF 与∠BAE 的数量关系.19、如图1,已知△ABC 中,∠B=90°,AB=BC=4cm ,长方形DEFG 中,DE=6cm ,DG=2cm ,点B 、C 、D 、E 在同一条直线上,开始时点C 与点D 重合,然后△ABC 沿直线BE 以每秒1cm 的速度向点E 运动,运动时间为t 秒,当点B 运动到点E 时运动停止.(友情提示:长方形的对边平行,四个内角都是直角.)(1)直接填空:∠BAC=_________度,(2)当t 为何值时,AB 与DG 重合(如图2所示),并求出此时△ABC 与长方形DEFG 重合部分的面积.(3)探索:当6≤t≤8时,△ABC 与长方形DEFG 重合部分的图形的内角和的度数(直接写出结论及相应的t 值,不必说明理由).20、某小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.5万元;新建3个地上停车位和2个地下停车位共需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过10万元,且地上的停车位要求不少于30个,问共有几种建造方案?(3)对(2)中的几种建造方案中,哪一个方案的投资最少?并求出最少投资金额.21、如图,△ABC 中,AC=BC ,∠ACB=120°,点D 在AB 边上运动(D 不与A 、B 重合),连结CD .作∠CDE=30°,DE 交AC 于点E .(1)当DE ∥BC 时,△ACD 的形状按角分类是直角三角形;(2)在点D 的运动过程中,△ECD 的形状可以是等腰三角形吗?若可以,请求出∠AED 的度数;若不可以,请说明理由.22、如图,OC 平分∠AOB ,CD ⊥OA 于D ,CE ⊥OB 于E ,连接DE ,猜想DE 与OC的位置关系?并说明理由.23、如图,D 是△ABC 的BC 边上的一点,AD=BD ,∠ADC=80°.(1)求∠B 的度数;(2)若∠BAC=70°,判断△ABC 的形状,并说明理由.24、如图,在正方形网格中,点A 、B 、C 、M 、N 都在格点上.(1)作△ABC 关于直线MN 对称的图形;(2)若网格中最小正方形的边长为1,求△ABC 的面积.25、解不等式组,并把它们的解集在数轴上表示出来:.26、(1)解方程:8+2x=5﹣x(2)解方程组:.参考答案1、A2、D3、C4、D5、D6、C7、D8、b<﹣3;a≥﹣.9、4010、511、a>012、1913、8m214、1515、108017、x<2.18、(1)∠BAE=∠FEC(2)2∠AEF与∠BAE的数量关系是互余19、(1)45°(2)6 cm2(3)当t=6时,重合部分为四边形,内角和为360°,当6<t <8时重合部分为五边形,内角和为540°,当t=8时,重合部分为四边形,内角和为360°.20、(1)0.4万元(2)四种方案(3)方案四投资最少,最少投资金额为10.1万元21、(1)见解析(2)△ECD可以是等腰三角形,∠AED=105°22、OC垂直平分DE23、(1)40°(2)△ABC是等腰三角形24、(1)见解析(2)3.25、x>4;26、(1)x=﹣1;(2)【解析】1、试题分析:先根据三角形的三边关系求出x的取值范围,再根据三角形的周长为奇数可知x为正整数,写出符合条件的所有x的值即可.解:∵三角形三边长分别为2,x,13,∴13﹣2<x<13+2,即11<x<15,∴此三角形的周长为奇数,∴x为正整数,∴x的值可以为:12,13,14,当x=12时,三角形的周长=2+12+13=27;当x=13时,三角形的周长=2+13+13=28(舍去);当x=14时,三角形的周长=2+14+13=28.【点评】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,任意两边之差小于第三边.2、试题分析:平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.解:∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∴小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正八边形.故选D.【点评】用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.3、试题分析:根据解不等式组的方法可以解答不等式组,从而可以得到哪个选项是正确.解:由①,得x≥1,由②,得x<﹣3,故原不等式组无解,故选C.【点评】本题考查解一元一次不等式组、在数轴上表示不等式的解集,解题的关键是明确解不等式组的方法.4、试题分析:设∠BAD的度数为x,∠BAE的度数为y,根据∠BAD比大∠BAE大48°,正方形的内角为90°,据此列方程组即可.解:设∠BAD的度数为x,∠BAE的度数为y,由题意得,.故选D.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.5、试题分析:先根据直角三角板的特殊性求出∠ACD的度数,再根据∠α是△ACE的外角进行解答.解:∵图中是一副三角板叠放,∴∠ACB=90°,∠BCD=45°,∴∠ACD=∠ACB﹣∠BCD=90°﹣45°=45°,∵∠α是△ACE的外角,∴∠α=∠A+∠ACD=30°+45°=75°.故选D.【点评】本题考查的是三角形外角的性质及直角三角板的特殊性,用到的知识点为:三角形的外角等于与之不相邻的两个内角的和.6、试题分析:根据轴对称图形的概念分别找出各选项中对称轴的条数,然后选择答案即可.解:A、共有6条对称轴;B、共有2条对称轴;C、共有1条对称轴;D、共有3条对称轴;所以对称轴条数最少的是C选项.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、试题分析:首先解出不等式的解集,然后判断哪个选项的数在解集表示的范围则可.解:移项得x<﹣1,选项中只有﹣2<﹣1,故选:D.【点评】本题考查了一元一次不等式的解法和解集的定义,难度不大.8、试题分析:①由a<0,a=2b+6,可得到2b+6<0,然后解关于b的一元一次不等式即可;②先用a表示b得到b=,再由b≤3a得到≤3a,然后解关于a的一元一次不等式即可.解:①∵a<0,a=2b+6,∴2b+6<0,∴2b<﹣6,∴b<﹣3;②∵b≤3a,而b=,∴≤3a,∴a﹣6≤6a,即5a≥﹣6,∴a≥﹣.故答案为:b<﹣3;a≥﹣.【点评】本题考查了解一元一次不等式:根据不等式的性质,先去分母、括号,再移项,使含未知数的项在不等式左边,然后合并同类项,最后把未知数的系数化为1.9、试题分析:由∠ACF=150°,∠BAC=110°,根据三角形外角的性质,即可求得答案.解:∵∠ACF是△ABC的外角,∴∠ACF=∠B+∠BAC,∵∠ACF=150°,∠BAC=110°,∴∠B=∠ACF﹣∠BAC=40°.故答案为:40.【点评】此题考查了三角形外角的性质.此题比较简单,注意掌握数形结合思想的应用.10、试题分析:从已知条件开始思考,根据角平分线的性质,可得DC=DE的值,于是答案可得.解:根据角平分线的性质,可得DC=DE=5.故答案为:5.【点评】此题考查角平分线的性质:角平分线上的任意一点到角的两边距离相等.题目比较简单,属于基础题.11、试题分析:直接把两式相加得出x+y的值,再由x+y>0即可得出a的取值范围.解:,①+②得,4(x+y)=2a,即x+y=,∵x+y>0,∴>0,解得a>0.故答案为:a>0.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.12、试题分析:分两种情况讨论:①当8为底边,3为腰时,不合题意;②当8为腰,3为底边时;即可得出结论.解:分两种情况讨论:①当8为底边,3为腰时,∵3+3=6<8,不能构成三角形;②当8为腰,3为底边时,∵8+3>8,能构成三角形,周长为8+8+3=19;故答案为:19.【点评】本题考查了等腰三角形的性质和三角形三边关系;注意分类讨论方法的运用,把不符合题意的舍去.13、试题分析:由图形可看出:小矩形的2个长+一个宽=10m,小矩形的2个宽+一个长=8m,设出长和宽,列出方程组即可得答案.解:设小长方形的长为xm,宽为ym.依题意有:,解此方程组得:,故一个小长方形的面积是:4×2=8(m2).故答案是:8m2.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.14、试题分析:过点P作PE⊥AC于E,由角平分线的性质可知PE=PB=3,再由三角形的面积公式即可得出结论.解:过点P作PE⊥AC于E,∵PC平分∠ACB,PB=3,∴PE=PB=3,∴S△PAC=AC•PE=×10×3=15.故答案为:15.【点评】本题考查的是角平分线的性质,即角平分线上的点到角两边的距离相等.15、试题分析:n边形的内角和可以表示成(n﹣2)•180°,代入公式就可以求出内角和.解:(8﹣2)×180°=1080°.故答案为:1080°.【点评】本题主要考查了多边形的内角和公式,是需要熟记的内容.16、试题分析:把x当作已知数,求出关于y的方程的解即可.解:4x﹣y=1,﹣y=1﹣4x,y=﹣1+4x,故答案为:﹣1+4x【点评】本题考查了解二元一次方程和解一元一次方程的应用.17、试题分析:两边同时除以2,把x的系数化成1即可求解.解:两边同时除以2,得:x<2.故答案为:x<2.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.18、试题分析:(1)根据三角形内角与外角的关系可得∠B+∠BAE=∠AEC=∠AEF+∠FEC,再由条件∠AEF=∠B可得∠BAE=∠FEC;(2)分别根据当∠AFE=90°时,以及当∠EAF=90°时利用外角的性质得出即可.解:(1)∠BAE=∠FEC;理由如下:∵∠B+∠BAE=∠AEC,∠AEF=∠B,∴∠BAE=∠FEC;(2)如图1,当∠AFE=90°时,∵∠B+∠BAE=∠AEF+∠CEF,∠B=∠AEF=∠C,∴∠BAE=∠CEF,∵∠C+∠CEF=90°,∴∠BAE+∠AEF=90°,即∠AEF与∠BAE的数量关系是互余;如图2,当∠EAF=90°时,∵∠B+∠BAE=∠AEF+∠1,∠B=∠AEF=∠C,∴∠BAE=∠1,∵∠C+∠1+∠AEF=90°,∴2∠AEF+∠1=90°,即2∠AEF与∠BAE的数量关系是互余.【点评】此题考查了等腰三角形的性质以及外角的性质,此题难度适中,注意掌握分类讨论思想的应用.19、试题分析:(1)根据等腰直角三角形的性质可得∠BAC=45°;(2)首先计算出GH的长,再利用梯形的面积公式可直接得到答案;(3)根据题意画出图形可直接看出重合部分是哪种多边形,进而得到答案.解:(1)在△ABC中,∵∠B=90°,AB=BC,∴∠BAC=45°,故答案为:45°;(2)由题意CD=BC=4cm,4÷1=4(秒),长方形DEFG中,GF∥DE,∠D=90°,∴∠AGH=∠D=90°,由(1)得∠BAC=45°,∴∠AHG=180°﹣∠BAC﹣∠AGH=45°,∴∠BAC=∠AHG,∴GH=AG,∵AG=AD﹣GD=4﹣2=2cm,∴GH=2cm,∴S梯形GDCH=(cm2);(3)如图所示:当t=6时,重合部分为四边形,内角和为360°,当6<t<8时重合部分为五边形,内角和为540°,当t=8时,重合部分为四边形,内角和为360°.【点评】此题主要考查了多边形的内角和,以及梯形的面积计算,关键是掌握多边形内角和公式180°(n﹣2).20、试题分析:(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,根据等量关系可列出方程组,解出即可得出答案.(2)设新建地上停车位y个,则地下停车位(50﹣y)个,根据投资金额超过10万元,且地上的停车位要求不少于30个,可得出不等式组,解出即可得出答案.(3)设投资金额为w,表示出w关于y的表达式,从而根据函数的增减性求解即可.解:(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,由题意得,,解得:,即新建一个地上停车位需0.1万元,新建一个地下停车位需0.4万元;(2)设新建地上停车位y个,则地下停车位(50﹣y)个,由题意得,,解得:30≤y<33,则有四种方案,①地上停车位30个,地下停车位20个;②地上停车位31个,地下停车位19个;③地上停车位32个,地下停车位18个;④地上停车位33个,地下停车位17个.(3)设投资金额为w,则w=0.1y+0.4(50﹣y)=﹣0.3y+20,∵w随y的增大而减小,∴当x取33时,所需要的投资金额最少,投资金额为:﹣0.3×33+20=10.1(万元).答:方案四投资最少,最少投资金额为10.1万元.【点评】本题考查了一元一次不等式组及二元一次方程组的应用,解答本题的关键是仔细审题,将实际问题转化为数学方程或不等式的思想进行求解,有一定难度.21、试题分析:(1)、由DE∥BC得到∠BCD=∠CDE=30°,再由∠ACB=120°,得到∠ACD=120°﹣30°=90°,则△ACD是直角三角形;(2)、分类讨论:当∠CDE=∠ECD 时,EC=DE;当∠ECD=∠CED时,CD=DE;当∠CED=∠CDE时,EC=CD;然后利用等腰三角形的性质和三角形的内角和定理进行计算.试题解析:(1)、∵△ABC中,AC=BC,∴∠A=∠B===30°,∵DE∥BC,∴∠ADE=∠B=30°,又∵∠CDE=30°,∴∠ADC=∠ADE+∠CDE=30°+30°=60°,∴∠ACD=180°﹣∠A﹣∠ADC=180°﹣30°﹣60°=90°,∴△ACD是直角三角形;(2)、△ECD可以是等腰三角形.理由如下:①当∠CDE=∠ECD时,EC=DE,∴∠ECD=∠CDE=30°,∵∠AED=∠ECD+∠CDE,∴∠AED=60°,②当∠ECD=∠CED时,CD=DE,∵∠ECD+∠CED+∠CDE=180°,∴∠CED===75°,∴∠AED=180°﹣∠CED=105°,③当∠CED=∠CDE时,EC=CD,∠ACD=180°﹣∠CED﹣∠CDE=180°﹣30°﹣30°=120°,∵∠ACB=120°,∴此时,点D与点B重合,不合题意.综上,△ECD可以是等腰三角形,此时∠AED的度数为60°或105°考点:(1)、三角形内角和定理;(2)、分类讨论思想的运用;(3)、等腰三角形的判定与性质.22、试题分析:由OC平分∠AOB得∠COD=∠COE,由CD⊥OA、CE⊥OB知∠CDO=∠CEO=90°,从而证△COD≌△COE可得OD=OE,OC=OE,即可说明OC垂直平分DE.试题解析:OC垂直平分DE,∵OC平分∠AOB,∴∠COD=∠COE,又∵CD⊥OA,CE⊥OB,∴∠CDO=∠CEO=90°,在△COD和△COE中,∵,∴△COD≌△COE(AAS),∴OD=OE,OC=OE,∴OC垂直平分DE.考点:(1)、角平分线的性质;(2)、全等三角形的判定与性质;(3)、中垂线的性质23、试题分析:(1)由AD=BD,根据等边对等角的性质,可得∠B=∠BAD,又由三角形外角的性质,即可求得∠B的度数;(2)由∠BAC=70°,易求得∠C=∠BAC=70°,根据等角对等边的性质,可证得△ABC 是等腰三角形.解:(1)∵在△ABD中,AD=BD,∴∠B=∠BAD,∵∠ADC=∠B+∠BAD,∠ADC=80°,∴∠B=∠ADC=40°;(2)△ABC是等腰三角形.理由:∵∠B=40°,∠BAC=70°,∴∠C=180°﹣∠B﹣∠BAC=70°,∴∠C=∠BAC,∴BA=BC,∴△ABC是等腰三角形.【点评】此题考查了等腰三角形的性质与判定以及三角形外角的性质.此题难度不大,注意掌握数形结合思想的应用.24、试题分析:(1)首先确定A、B、C三点关于MN对称的对称点位置,再连接即可;(2)利用三角形AB为底边,再确定高,即可求出面积.解:(1)如图所示:;(2)△ABC的面积:×3×2=3.【点评】此题主要考查了作图﹣﹣轴对称变换,几何图形都可看做是有点组成,我们在画一个图形的轴对称图形时,也就是确定一些特殊点的对称点.25、试题分析:分别求出各不等式的解集,并在数轴上表示出来即可.解:由①得,x>1,由②得,x>4,故不等式组的解集为x>4.在数轴上表示为:.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.26、试题分析:(1)根据一元一次方程点的解法,移项,合并同类项,系数化为1即可得解;(2)根据y的系数互为相反数,利用加减消元法求解即可.解:(1)移项得,2x+x=5﹣8,合并同类项得,3x=﹣3,系数化为1得,x=﹣1;(2),①+②得:7x=14,解得x=2,把x=2代入①得,6+7y=13,解得y=1,所以,方程组的解是.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.。
【华东师大版】福建省泉州市洛江区七年级下期末数学试卷及答案
七年级(下)期末数学试卷一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣122.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.45.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y=______(用含x的式子表示).9.一个n边形的内角和是其外角和的2倍,则n=______.10.不等式3x﹣9<0的最大整数解是______.11.三元一次方程组的解是______.12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为______.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了______道题.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=______.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了______次;(2)一共走了______米.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出来.20.解方程组:.21.解不等式组:(注:必须通过画数轴求解集)22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=______度;(2)求∠EDF的度数.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=______度(直接写出结果);②∠BDC的度数为______(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).2015-2016学年福建省泉州市洛江区七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣12【考点】解一元一次方程.【分析】根据解方程的方法两边同时除以3求解.【解答】解:3x=﹣6两边同时除以3,得x=﹣2故选:A.2.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出结论正确的是哪个即可.【解答】解:∵a>b,∴a﹣5>b﹣5,∴选项A不正确;∵a>b,∴3a>3b,∴选项B正确;∵a>b,∴2+a>2+b,∴选项C不正确;∵a>b,∴>,∴选项D不正确.故选:B.3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.4【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90度,从图中可看出∠α度数+∠β的度数+90°=180°;②∠1比∠2大50°,则∠1的度数=∠2的度数+50度.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠α比∠β的度数大50°,得方程x=y+50.可列方程组为.故选:D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠B+∠BAD,再根据∠BAC=∠BAD+∠DAC即可得解.【解答】解:由三角形的外角性质,∠ADC=∠B+∠BAD,∵∠BAC=∠BAD+∠DAC,∠B=∠DAC,∴∠BAC=∠ADC.故选B.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y= 2x+5 (用含x的式子表示).【考点】解二元一次方程.【分析】将x看做已知数求出y即可.【解答】解:方程﹣2x+y=5,解得:y=2x+5.故答案为:2x+5.9.一个n边形的内角和是其外角和的2倍,则n= 6 .【考点】多边形内角与外角.【分析】根据多边形内角和公式:(n﹣2)•180 (n≥3且n为整数)结合题意可列出方程180(n﹣2)=360×2,再解即可.【解答】解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;10.不等式3x﹣9<0的最大整数解是 2 .【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.【解答】解:不等式的解集是x<3,故不等式3x﹣9<0的最大整数解为2.故答案为2.11.三元一次方程组的解是.【考点】解三元一次方程组.【分析】将方程组三个方程相加求出x+y+z的值,进而将每一个方程代入即可求出x,y,z的值.【解答】解:,①+②+③得:2(x+y+z)=22,即x+y+z=11④,将①代入④得:z=6,将②代入④得:x=2,将③代入④得:y=3,则方程组的解为.故答案为:12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为 4 .【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为30 .【考点】平移的性质.【分析】先根据平移的性质得AC=DF,AD=CF=3,于是可判断四边形ACFD为平行四边形,然后根据平行四边形的面积公式计算即可.【解答】解:∵直角△ABC沿BC边平移3个单位得到直角△DEF,∴AC=DF,AD=CF=3,∴四边形ACFD为平行四边形,=CF•AB=3×10=30,∴S平行四边形ACFD即阴影部分的面积为30.故答案为:30.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE= 15 度.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】先根据三角形内角和定理,计算出∠ACB=180°﹣∠A﹣∠B=90°,再根据三角形的高和角平分线的定义,得到∠BCE=∠ACB=45°,∠BDC=90°,于是可计算出∠BCD=30°,然后利用∠DCE=∠BCE﹣∠BCD进行计算即可.【解答】解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了 5 道题.【考点】二元一次方程的应用.【分析】设答对x道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a= 20°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD=70°,然后利用互余计算出∠DAD′,从而得到α的值.【解答】解:∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD=180°﹣∠2,而∠2=∠21=110°,∴∠BAD=180°﹣110°=70°,∴∠DAD′=90°﹣70°=20°,即α=20°.故答案为20°.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了11 次;(2)一共走了132 米.【考点】多边形内角与外角.【分析】根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12﹣1=11次才会回到原来的起点,即一共走了12×11=132米.故答案为11,1132.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣【考点】解一元一次方程.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:6y﹣3(y﹣1)=12﹣(y+2)去括号得:6y﹣3y+3=12﹣y﹣2移项得:6y﹣3y+y=12﹣2﹣3合并得:4y=7系数化为1得:.19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先移项,再合并同类项,把x的系数化为1,把不等式的解集在数轴上表示出来即可.【解答】解:移项得,5x﹣3x≤3+1,合并同类项得,2x≤4,x的系数化为1得,x≤2.在数轴上表示为:.20.解方程组:.【考点】解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:,①×3+②得,5x=25,解得x=5,把x=5代入①得,5﹣y=3,解得y=2,故方程组的解为.21.解不等式组:(注:必须通过画数轴求解集)【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:,由①得x≥13,由②得x>﹣2,所以原不等式组的解是:x≥13.22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC= 110 度;(2)求∠EDF的度数.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD 沿AD 折叠得到△AED ,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA ﹣∠BDF=100°+100°﹣180°=20°.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得|PA ﹣PC 2|的值最大.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)根据图形平移的性质画出△A 1B 1C 1即可;(2)画出△ABC 关于直线m 对称的△A 2B 2C 2即可;(3)过点A 2B 2作直线,此直线与直线m 的交点即为所求.【解答】解:作图如下:(1)如图,△A 1B 1C 1.(2)如图,△A 2B 2C 2.(3)如图,点P 即为所求.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)【考点】利用轴对称设计图案.【分析】做本题的关键是利用轴对称图形,作出轴对称图案.这里的答案不唯一,只要是轴对称图形就行.做时可以思考先把正方形变成两个面积相等,图形相同的两部分,再分这两部分为相同的轴对称图形.【解答】解:如图所示:.25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【考点】三元一次方程组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以得到x、y的值;(2)由题意可以列出相应的不等式,从而可以得到某营业员至少需要卖出服装的件数;(3)由题意可得相应的三元一次方程组,通过变形即可得到问题的答案.【解答】解:(1)由题意,得,解得即x的值为1800,y的值为3;(2)设某营业员当月卖服装m件,由题意得,1800+3m≥3100,解得,,∵m只能为正整数,∴m最小为434,即某营业员当月至少要卖434件;(3)设一件甲为a元,一件乙为b元,一件丙为c元,则,将两等式相加得,4a+4b+4c=720,则a+b+c=180,即购买一件甲、一件乙、一件丙共需180元.26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数= 125 度(直接写出结果);②∠BDC的度数为90°+α(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).【考点】三角形综合题.【分析】(1)①根据角平分线定义以及三角形内角和定理计算即可解决问题.②根据角平分线定义以及三角形内角和定理计算即可解决问题.(2)由∠BFC=∠FCE﹣∠FBC=由此即可解决问题.(3)利用(2)的结论即可解决问题.【解答】解:(1)①125°;②结论:,理由:∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠A=90°+α.故答案分别为125°,90°+α.(2)∵BF和CF分别平分∠ABC和∠ACE∴,,∴∠BFC=∠FCE﹣∠FBC)==即.(3)由轴对称性质知:,由(1)②可得,∴.。
【华东师大版】福建省泉州市洛江区七年级下期末数学试卷及答案【优选】
七年级(下)期末数学试卷一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣122.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.45.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y=______(用含x的式子表示).9.一个n边形的内角和是其外角和的2倍,则n=______.10.不等式3x﹣9<0的最大整数解是______.11.三元一次方程组的解是______.12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为______.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了______道题.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=______.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了______次;(2)一共走了______米.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出来.20.解方程组:.21.解不等式组:(注:必须通过画数轴求解集)22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=______度;(2)求∠EDF的度数.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=______度(直接写出结果);②∠BDC的度数为______(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).2015-2016学年福建省泉州市洛江区七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3x=﹣6的解是( )A .x=﹣2B .x=﹣6C .x=2D .x=﹣12【考点】解一元一次方程.【分析】根据解方程的方法两边同时除以3求解.【解答】解:3x=﹣6两边同时除以3,得x=﹣2故选:A .2.若a >b ,则下列结论正确的是( )A .a ﹣5<b ﹣5B .3a >3bC .2+a <2+bD .<【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出结论正确的是哪个即可.【解答】解:∵a >b ,∴a ﹣5>b ﹣5,∴选项A 不正确;∵a >b ,∴3a >3b ,∴选项B 正确;∵a >b ,∴2+a >2+b ,∴选项C 不正确;∵a >b ,∴>,∴选项D 不正确.故选:B .3.下列图案既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.4【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90度,从图中可看出∠α度数+∠β的度数+90°=180°;②∠1比∠2大50°,则∠1的度数=∠2的度数+50度.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠α比∠β的度数大50°,得方程x=y+50.可列方程组为.故选:D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠B+∠BAD,再根据∠BAC=∠BAD+∠DAC即可得解.【解答】解:由三角形的外角性质,∠ADC=∠B+∠BAD,∵∠BAC=∠BAD+∠DAC,∠B=∠DAC,∴∠BAC=∠ADC.故选B.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y=2x+5(用含x的式子表示).【考点】解二元一次方程.【分析】将x看做已知数求出y即可.【解答】解:方程﹣2x+y=5,解得:y=2x+5.故答案为:2x+5.9.一个n边形的内角和是其外角和的2倍,则n=6.【考点】多边形内角与外角.【分析】根据多边形内角和公式:(n﹣2)•180 (n≥3且n为整数)结合题意可列出方程180(n ﹣2)=360×2,再解即可.【解答】解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;10.不等式3x﹣9<0的最大整数解是2.【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.【解答】解:不等式的解集是x<3,故不等式3x﹣9<0的最大整数解为2.故答案为2.11.三元一次方程组的解是.【考点】解三元一次方程组.【分析】将方程组三个方程相加求出x+y+z的值,进而将每一个方程代入即可求出x,y,z的值.【解答】解:,①+②+③得:2(x+y+z)=22,即x+y+z=11④,将①代入④得:z=6,将②代入④得:x=2,将③代入④得:y=3,则方程组的解为.故答案为:12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为4.【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为30.【考点】平移的性质.【分析】先根据平移的性质得AC=DF,AD=CF=3,于是可判断四边形ACFD为平行四边形,然后根据平行四边形的面积公式计算即可.【解答】解:∵直角△ABC沿BC边平移3个单位得到直角△DEF,∴AC=DF,AD=CF=3,∴四边形ACFD为平行四边形,=CF•AB=3×10=30,∴S平行四边形ACFD即阴影部分的面积为30.故答案为:30.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=15度.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】先根据三角形内角和定理,计算出∠ACB=180°﹣∠A﹣∠B=90°,再根据三角形的高和角平分线的定义,得到∠BCE=∠ACB=45°,∠BDC=90°,于是可计算出∠BCD=30°,然后利用∠DCE=∠BCE﹣∠BCD进行计算即可.【解答】解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了5道题.【考点】二元一次方程的应用.【分析】设答对x道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=20°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD=70°,然后利用互余计算出∠DAD′,从而得到α的值.【解答】解:∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD=180°﹣∠2,而∠2=∠21=110°,∴∠BAD=180°﹣110°=70°,∴∠DAD′=90°﹣70°=20°,即α=20°.故答案为20°.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了11次;(2)一共走了132米.【考点】多边形内角与外角.【分析】根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12﹣1=11次才会回到原来的起点,即一共走了12×11=132米.故答案为11,1132.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣【考点】解一元一次方程.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:6y﹣3(y﹣1)=12﹣(y+2)去括号得:6y﹣3y+3=12﹣y﹣2移项得:6y﹣3y+y=12﹣2﹣3合并得:4y=7系数化为1得:.19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先移项,再合并同类项,把x的系数化为1,把不等式的解集在数轴上表示出来即可.【解答】解:移项得,5x﹣3x≤3+1,合并同类项得,2x≤4,x的系数化为1得,x≤2.在数轴上表示为:.20.解方程组:.【考点】解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:,①×3+②得,5x=25,解得x=5,把x=5代入①得,5﹣y=3,解得y=2,故方程组的解为.21.解不等式组:(注:必须通过画数轴求解集)【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:,由①得x≥13,由②得x>﹣2,所以原不等式组的解是:x≥13.22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=110度;(2)求∠EDF的度数.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)根据图形平移的性质画出△A1B1C1即可;(2)画出△ABC关于直线m对称的△A2B2C2即可;(3)过点A2B2作直线,此直线与直线m的交点即为所求.【解答】解:作图如下:(1)如图,△A1B1C1.(2)如图,△A2B2C2.(3)如图,点P即为所求.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)【考点】利用轴对称设计图案.【分析】做本题的关键是利用轴对称图形,作出轴对称图案.这里的答案不唯一,只要是轴对称图形就行.做时可以思考先把正方形变成两个面积相等,图形相同的两部分,再分这两部分为相同的轴对称图形.【解答】解:如图所示:.25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【考点】三元一次方程组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以得到x、y的值;(2)由题意可以列出相应的不等式,从而可以得到某营业员至少需要卖出服装的件数;(3)由题意可得相应的三元一次方程组,通过变形即可得到问题的答案.【解答】解:(1)由题意,得,解得即x的值为1800,y的值为3;(2)设某营业员当月卖服装m件,由题意得,1800+3m≥3100,解得,,∵m只能为正整数,∴m最小为434,即某营业员当月至少要卖434件;(3)设一件甲为a元,一件乙为b元,一件丙为c元,则,将两等式相加得,4a+4b+4c=720,则a+b+c=180,即购买一件甲、一件乙、一件丙共需180元.26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=125度(直接写出结果);②∠BDC的度数为90°+α(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).【考点】三角形综合题.【分析】(1)①根据角平分线定义以及三角形内角和定理计算即可解决问题.②根据角平分线定义以及三角形内角和定理计算即可解决问题.(2)由∠BFC=∠FCE﹣∠FBC=由此即可解决问题.(3)利用(2)的结论即可解决问题.【解答】解:(1)①125°;②结论:,理由:∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠A=90°+α.故答案分别为125°,90°+α.(2)∵BF和CF分别平分∠ABC和∠ACE∴,,∴∠BFC=∠FCE﹣∠FBC)==即.(3)由轴对称性质知:,由(1)②可得,∴.。
【华东师大版】福建省泉州市洛江区七年级下期末数学试卷及答案
七年级(下)期末数学试卷一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3=﹣6的解是()A.=﹣2 B.=﹣6 C.=2 D.=﹣122.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.45.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=°,∠2=y°,则可得到的方程组为()A.B.C.D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2+y=5,则y=______(用含的式子表示).9.一个n边形的内角和是其外角和的2倍,则n=______.10.不等式3﹣9<0的最大整数解是______.11.三元一次方程组的解是______.12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为______.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了______道题.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=______.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了______次;(2)一共走了______米.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣19.解不等式5﹣1≤3+3,并把解集在数轴上表示出.20.解方程组:.21.解不等式组:(注:必须通过画数轴求解集)22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=______度;(2)求∠EDF的度数.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得|PA ﹣PC 2|的值最大.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A :月销售件数200件,月总收入2400元;营业员B :月销售件数300件,月总收入2700元;假设营业员的月基本工资为元,销售每件服装奖励y 元.(1)求、y 的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=______度(直接写出结果);②∠BDC的度数为______(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).2015-2016学年福建省泉州市洛江区七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3=﹣6的解是()A.=﹣2 B.=﹣6 C.=2 D.=﹣12【考点】解一元一次方程.【分析】根据解方程的方法两边同时除以3求解.【解答】解:3=﹣6两边同时除以3,得=﹣2故选:A.2.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出结论正确的是哪个即可.【解答】解:∵a>b,∴a﹣5>b﹣5,∴选项A不正确;∵a>b,∴3a>3b,∴选项B正确;∵a>b,∴2+a>2+b,∴选项C不正确;∵a>b,∴>,∴选项D不正确.故选:B.3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.4【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=°,∠2=y°,则可得到的方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90度,从图中可看出∠α度数+∠β的度数+90°=180°;②∠1比∠2大50°,则∠1的度数=∠2的度数+50度.【解答】解:根据平角和直角定义,得方程+y=90;根据∠α比∠β的度数大50°,得方程=y+50.可列方程组为.故选:D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠B+∠BAD,再根据∠BAC=∠BAD+∠DAC即可得解.【解答】解:由三角形的外角性质,∠ADC=∠B+∠BAD,∵∠BAC=∠BAD+∠DAC,∠B=∠DAC,∴∠BAC=∠ADC.故选B.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2+y=5,则y= 2+5 (用含的式子表示).【考点】解二元一次方程.【分析】将看做已知数求出y即可.【解答】解:方程﹣2+y=5,解得:y=2+5.故答案为:2+5.9.一个n边形的内角和是其外角和的2倍,则n= 6 .【考点】多边形内角与外角.【分析】根据多边形内角和公式:(n﹣2)•180 (n≥3且n为整数)结合题意可列出方程180(n﹣2)=360×2,再解即可.【解答】解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;10.不等式3﹣9<0的最大整数解是 2 .【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.【解答】解:不等式的解集是<3,故不等式3﹣9<0的最大整数解为2.故答案为2.11.三元一次方程组的解是.【考点】解三元一次方程组.【分析】将方程组三个方程相加求出+y+的值,进而将每一个方程代入即可求出,y,的值.【解答】解:,①+②+③得:2(+y+)=22,即+y+=11④,将①代入④得:=6,将②代入④得:=2,将③代入④得:y=3,则方程组的解为.故答案为:12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为 4 .【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为30 .【考点】平移的性质.【分析】先根据平移的性质得AC=DF,AD=CF=3,于是可判断四边形ACFD为平行四边形,然后根据平行四边形的面积公式计算即可.【解答】解:∵直角△ABC沿BC边平移3个单位得到直角△DEF,∴AC=DF,AD=CF=3,∴四边形ACFD为平行四边形,=CF•AB=3×10=30,∴S平行四边形ACFD即阴影部分的面积为30.故答案为:30.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE= 15 度.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】先根据三角形内角和定理,计算出∠ACB=180°﹣∠A﹣∠B=90°,再根据三角形的高和角平分线的定义,得到∠BCE=∠ACB=45°,∠BDC=90°,于是可计算出∠BCD=30°,然后利用∠DCE=∠BCE ﹣∠BCD进行计算即可.【解答】解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了 5 道题.【考点】二元一次方程的应用.【分析】设答对道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a= 20°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD=70°,然后利用互余计算出∠DAD′,从而得到α的值.【解答】解:∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD=180°﹣∠2,而∠2=∠21=110°,∴∠BAD=180°﹣110°=70°,∴∠DAD′=90°﹣70°=20°,即α=20°.故答案为20°.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了11 次;(2)一共走了132 米.【考点】多边形内角与外角.【分析】根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12﹣1=11次才会回到原的起点,即一共走了12×11=132米.故答案为11,1132.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣【考点】解一元一次方程.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:6y﹣3(y﹣1)=12﹣(y+2)去括号得:6y﹣3y+3=12﹣y﹣2移项得:6y﹣3y+y=12﹣2﹣3合并得:4y=7系数化为1得:.19.解不等式5﹣1≤3+3,并把解集在数轴上表示出.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先移项,再合并同类项,把的系数化为1,把不等式的解集在数轴上表示出即可.【解答】解:移项得,5﹣3≤3+1,合并同类项得,2≤4,的系数化为1得,≤2.在数轴上表示为:.20.解方程组:.【考点】解二元一次方程组.【分析】先用加减消元法求出的值,再用代入消元法求出y的值即可.【解答】解:,①×3+②得,5=25,解得=5,把=5代入①得,5﹣y=3,解得y=2,故方程组的解为.21.解不等式组:(注:必须通过画数轴求解集)【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:,由①得≥13,由②得>﹣2,所以原不等式组的解是:≥13.22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC= 110 度;(2)求∠EDF的度数.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD 沿AD 折叠得到△AED ,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA ﹣∠BDF=100°+100°﹣180°=20°.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得|PA ﹣PC 2|的值最大.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)根据图形平移的性质画出△A 1B 1C 1即可;(2)画出△ABC 关于直线m 对称的△A 2B 2C 2即可;(3)过点A 2B 2作直线,此直线与直线m 的交点即为所求.【解答】解:作图如下:(1)如图,△A 1B 1C 1.(2)如图,△A 2B 2C 2.(3)如图,点P 即为所求.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)【考点】利用轴对称设计图案.【分析】做本题的关键是利用轴对称图形,作出轴对称图案.这里的答案不唯一,只要是轴对称图形就行.做时可以思考先把正方形变成两个面积相等,图形相同的两部分,再分这两部分为相同的轴对称图形.【解答】解:如图所示:.25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为元,销售每件服装奖励y元.(1)求、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【考点】三元一次方程组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以得到、y的值;(2)由题意可以列出相应的不等式,从而可以得到某营业员至少需要卖出服装的件数;(3)由题意可得相应的三元一次方程组,通过变形即可得到问题的答案.【解答】解:(1)由题意,得,解得即的值为1800,y的值为3;(2)设某营业员当月卖服装m件,由题意得,1800+3m≥3100,解得,,∵m只能为正整数,∴m最小为434,即某营业员当月至少要卖434件;(3)设一件甲为a元,一件乙为b元,一件丙为c元,则,将两等式相加得,4a+4b+4c=720,则a+b+c=180,即购买一件甲、一件乙、一件丙共需180元.26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数= 125 度(直接写出结果);②∠BDC的度数为90°+α(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).【考点】三角形综合题.【分析】(1)①根据角平分线定义以及三角形内角和定理计算即可解决问题.②根据角平分线定义以及三角形内角和定理计算即可解决问题.(2)由∠BFC=∠FCE﹣∠FBC=由此即可解决问题.(3)利用(2)的结论即可解决问题.【解答】解:(1)①125°;②结论:,理由:∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠A=90°+α.故答案分别为125°,90°+α.(2)∵BF和CF分别平分∠ABC和∠ACE∴,,∴∠BFC=∠FCE﹣∠FBC)==即.(3)由轴对称性质知:,由(1)②可得,∴.。
【华东师大版】福建省泉州市洛江区七年级下期末数学试卷及答案
七年级(下)期末数学试卷一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3=﹣6的解是()A.=﹣2 B.=﹣6 C.=2 D.=﹣122.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.45.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=°,∠2=y°,则可得到的方程组为()A.B.C.D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2+y=5,则y=______(用含的式子表示).9.一个n边形的内角和是其外角和的2倍,则n=______.10.不等式3﹣9<0的最大整数解是______.11.三元一次方程组的解是______.12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为______.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了______道题.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=______.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了______次;(2)一共走了______米.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣19.解不等式5﹣1≤3+3,并把解集在数轴上表示出.20.解方程组:.21.解不等式组:(注:必须通过画数轴求解集)22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=______度;(2)求∠EDF的度数.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得|PA ﹣PC 2|的值最大.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法). 请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A :月销售件数200件,月总收入2400元;营业员B :月销售件数300件,月总收入2700元;假设营业员的月基本工资为元,销售每件服装奖励y 元.(1)求、y 的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=______度(直接写出结果);②∠BDC的度数为______(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).2015-2016学年福建省泉州市洛江区七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3=﹣6的解是()A.=﹣2 B.=﹣6 C.=2 D.=﹣12【考点】解一元一次方程.【分析】根据解方程的方法两边同时除以3求解.【解答】解:3=﹣6两边同时除以3,得=﹣2故选:A.2.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出结论正确的是哪个即可.【解答】解:∵a>b,∴a﹣5>b﹣5,∴选项A不正确;∵a>b,∴3a>3b,∴选项B正确;∵a>b,∴2+a>2+b,∴选项C不正确;∵a>b,∴>,∴选项D不正确.故选:B.3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.4【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=°,∠2=y°,则可得到的方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90度,从图中可看出∠α度数+∠β的度数+90°=180°;②∠1比∠2大50°,则∠1的度数=∠2的度数+50度.【解答】解:根据平角和直角定义,得方程+y=90;根据∠α比∠β的度数大50°,得方程=y+50.可列方程组为.故选:D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠B+∠BAD,再根据∠BAC=∠BAD+∠DAC即可得解.【解答】解:由三角形的外角性质,∠ADC=∠B+∠BAD,∵∠BAC=∠BAD+∠DAC,∠B=∠DAC,∴∠BAC=∠ADC.故选B.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2+y=5,则y= 2+5 (用含的式子表示).【考点】解二元一次方程.【分析】将看做已知数求出y即可.【解答】解:方程﹣2+y=5,解得:y=2+5.故答案为:2+5.9.一个n边形的内角和是其外角和的2倍,则n= 6 .【考点】多边形内角与外角.【分析】根据多边形内角和公式:(n﹣2)•180 (n≥3且n为整数)结合题意可列出方程180(n﹣2)=360×2,再解即可.【解答】解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;10.不等式3﹣9<0的最大整数解是 2 .【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.【解答】解:不等式的解集是<3,故不等式3﹣9<0的最大整数解为2.故答案为2.11.三元一次方程组的解是.【考点】解三元一次方程组.【分析】将方程组三个方程相加求出+y+的值,进而将每一个方程代入即可求出,y,的值.【解答】解:,①+②+③得:2(+y+)=22,即+y+=11④,将①代入④得:=6,将②代入④得:=2,将③代入④得:y=3,则方程组的解为.故答案为:12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为 4 .【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为30 .【考点】平移的性质.【分析】先根据平移的性质得AC=DF,AD=CF=3,于是可判断四边形ACFD为平行四边形,然后根据平行四边形的面积公式计算即可.【解答】解:∵直角△ABC沿BC边平移3个单位得到直角△DEF,∴AC=DF,AD=CF=3,∴四边形ACFD为平行四边形,=CF•AB=3×10=30,∴S平行四边形ACFD即阴影部分的面积为30.故答案为:30.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE= 15 度.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】先根据三角形内角和定理,计算出∠ACB=180°﹣∠A﹣∠B=90°,再根据三角形的高和角平分线的定义,得到∠BCE=∠ACB=45°,∠BDC=90°,于是可计算出∠BCD=30°,然后利用∠DCE=∠BCE﹣∠BCD进行计算即可.【解答】解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了 5 道题.【考点】二元一次方程的应用.【分析】设答对道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a= 20°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD=70°,然后利用互余计算出∠DAD′,从而得到α的值.【解答】解:∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD=180°﹣∠2,而∠2=∠21=110°,∴∠BAD=180°﹣110°=70°,∴∠DAD′=90°﹣70°=20°,即α=20°.故答案为20°.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了11 次;(2)一共走了132 米.【考点】多边形内角与外角.【分析】根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12﹣1=11次才会回到原的起点,即一共走了12×11=132米.故答案为11,1132.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣【考点】解一元一次方程.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:6y﹣3(y﹣1)=12﹣(y+2)去括号得:6y﹣3y+3=12﹣y﹣2移项得:6y﹣3y+y=12﹣2﹣3合并得:4y=7系数化为1得:.19.解不等式5﹣1≤3+3,并把解集在数轴上表示出.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先移项,再合并同类项,把的系数化为1,把不等式的解集在数轴上表示出即可.【解答】解:移项得,5﹣3≤3+1,合并同类项得,2≤4,的系数化为1得,≤2.在数轴上表示为:.20.解方程组:.【考点】解二元一次方程组.【分析】先用加减消元法求出的值,再用代入消元法求出y的值即可.【解答】解:,①×3+②得,5=25,解得=5,把=5代入①得,5﹣y=3,解得y=2,故方程组的解为.21.解不等式组:(注:必须通过画数轴求解集)【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:,由①得≥13,由②得>﹣2,所以原不等式组的解是:≥13.22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC= 110 度;(2)求∠EDF的度数.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD 沿AD 折叠得到△AED ,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA ﹣∠BDF=100°+100°﹣180°=20°.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得|PA ﹣PC 2|的值最大.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)根据图形平移的性质画出△A 1B 1C 1即可;(2)画出△ABC 关于直线m 对称的△A 2B 2C 2即可;(3)过点A 2B 2作直线,此直线与直线m 的交点即为所求.【解答】解:作图如下:(1)如图,△A 1B 1C 1.(2)如图,△A 2B 2C 2.(3)如图,点P即为所求.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)【考点】利用轴对称设计图案.【分析】做本题的关键是利用轴对称图形,作出轴对称图案.这里的答案不唯一,只要是轴对称图形就行.做时可以思考先把正方形变成两个面积相等,图形相同的两部分,再分这两部分为相同的轴对称图形.【解答】解:如图所示:.25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为元,销售每件服装奖励y元.(1)求、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【考点】三元一次方程组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以得到、y的值;(2)由题意可以列出相应的不等式,从而可以得到某营业员至少需要卖出服装的件数;(3)由题意可得相应的三元一次方程组,通过变形即可得到问题的答案.【解答】解:(1)由题意,得,解得即的值为1800,y的值为3;(2)设某营业员当月卖服装m件,由题意得,1800+3m≥3100,解得,,∵m只能为正整数,∴m最小为434,即某营业员当月至少要卖434件;(3)设一件甲为a元,一件乙为b元,一件丙为c元,则,将两等式相加得,4a+4b+4c=720,则a+b+c=180,即购买一件甲、一件乙、一件丙共需180元.26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数= 125 度(直接写出结果);②∠BDC的度数为90°+α(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).【考点】三角形综合题.【分析】(1)①根据角平分线定义以及三角形内角和定理计算即可解决问题.②根据角平分线定义以及三角形内角和定理计算即可解决问题.(2)由∠BFC=∠FCE﹣∠FBC=由此即可解决问题.(3)利用(2)的结论即可解决问题.【解答】解:(1)①125°;②结论:,理由:∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠A=90°+α.故答案分别为125°,90°+α.(2)∵BF和CF分别平分∠ABC和∠ACE∴,,∴∠BFC=∠FCE﹣∠FBC)==即.(3)由轴对称性质知:,由(1)②可得,∴.。
【华东师大版】福建省泉州市洛江区七年级下期末数学试卷及答案
七年级(下)期末数学试卷一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答. 1.方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣122.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.45.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y=______(用含x的式子表示).9.一个n边形的内角和是其外角和的2倍,则n=______.10.不等式3x﹣9<0的最大整数解是______.11.三元一次方程组的解是______.12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为______.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了______道题.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=______.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了______次;(2)一共走了______米.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出来.20.解方程组:.21.解不等式组:(注:必须通过画数轴求解集)22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=______度;(2)求∠EDF的度数.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=______度(直接写出结果);②∠BDC的度数为______(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB 的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).2015-2016学年福建省泉州市洛江区七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣12【考点】解一元一次方程.【分析】根据解方程的方法两边同时除以3求解.【解答】解:3x=﹣6两边同时除以3,得x=﹣2故选:A.2.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出结论正确的是哪个即可.【解答】解:∵a>b,∴a﹣5>b﹣5,∴选项A不正确;∵a>b,∴3a>3b,∴选项B正确;∵a>b,∴2+a>2+b,∴选项C不正确;∵a>b,∴>,∴选项D不正确.故选:B.3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.4【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90度,从图中可看出∠α度数+∠β的度数+90°=180°;②∠1比∠2大50°,则∠1的度数=∠2的度数+50度.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠α比∠β的度数大50°,得方程x=y+50.可列方程组为.故选:D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠B+∠BAD,再根据∠BAC=∠BAD+∠DAC即可得解.【解答】解:由三角形的外角性质,∠ADC=∠B+∠BAD,∵∠BAC=∠BAD+∠DAC,∠B=∠DAC,∴∠BAC=∠ADC.故选B.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y= 2x+5 (用含x的式子表示).【考点】解二元一次方程.【分析】将x看做已知数求出y即可.【解答】解:方程﹣2x+y=5,解得:y=2x+5.故答案为:2x+5.9.一个n边形的内角和是其外角和的2倍,则n= 6 .【考点】多边形内角与外角.【分析】根据多边形内角和公式:(n﹣2)•180 (n≥3且n为整数)结合题意可列出方程180(n ﹣2)=360×2,再解即可.【解答】解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;10.不等式3x﹣9<0的最大整数解是 2 .【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.【解答】解:不等式的解集是x<3,故不等式3x﹣9<0的最大整数解为2.故答案为2.11.三元一次方程组的解是.【考点】解三元一次方程组.【分析】将方程组三个方程相加求出x+y+z的值,进而将每一个方程代入即可求出x,y,z的值.【解答】解:,①+②+③得:2(x+y+z)=22,即x+y+z=11④,将①代入④得:z=6,将②代入④得:x=2,将③代入④得:y=3,则方程组的解为.故答案为:12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为 4 .【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为30 .【考点】平移的性质.【分析】先根据平移的性质得AC=DF,AD=CF=3,于是可判断四边形ACFD为平行四边形,然后根据平行四边形的面积公式计算即可.【解答】解:∵直角△ABC沿BC边平移3个单位得到直角△DEF,∴AC=DF,AD=CF=3,∴四边形ACFD为平行四边形,=CF•AB=3×10=30,∴S平行四边形ACFD即阴影部分的面积为30.故答案为:30.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE= 15 度.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】先根据三角形内角和定理,计算出∠ACB=180°﹣∠A﹣∠B=90°,再根据三角形的高和角平分线的定义,得到∠BCE=∠ACB=45°,∠BDC=90°,于是可计算出∠BCD=30°,然后利用∠DCE=∠BCE﹣∠BCD进行计算即可.【解答】解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了 5 道题.【考点】二元一次方程的应用.【分析】设答对x道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a= 20°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD=70°,然后利用互余计算出∠DAD′,从而得到α的值.【解答】解:∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD=180°﹣∠2,而∠2=∠21=110°,∴∠BAD=180°﹣110°=70°,∴∠DAD′=90°﹣70°=20°,即α=20°.故答案为20°.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了11 次;(2)一共走了132 米.【考点】多边形内角与外角.【分析】根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12﹣1=11次才会回到原来的起点,即一共走了12×11=132米.故答案为11,1132.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣【考点】解一元一次方程.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:6y﹣3(y﹣1)=12﹣(y+2)去括号得:6y﹣3y+3=12﹣y﹣2移项得:6y﹣3y+y=12﹣2﹣3合并得:4y=7系数化为1得:.19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先移项,再合并同类项,把x的系数化为1,把不等式的解集在数轴上表示出来即可.【解答】解:移项得,5x﹣3x≤3+1,合并同类项得,2x≤4,x的系数化为1得,x≤2.在数轴上表示为:.20.解方程组:.【考点】解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:,①×3+②得,5x=25,解得x=5,把x=5代入①得,5﹣y=3,解得y=2,故方程组的解为.21.解不等式组:(注:必须通过画数轴求解集)【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:,由①得x≥13,由②得x>﹣2,所以原不等式组的解是:x≥13.22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC= 110 度;(2)求∠EDF的度数.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】(1)根据折叠的特点得出∠BAD=∠DAF ,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB 的值,再根据△ABD 沿AD 折叠得到△AED ,得出∠ADE=∠ADB ,最后根据∠EDF=∠EDA+∠BDA ﹣∠BDF ,即可得出答案.【解答】解:(1)∵△ABD 沿AD 折叠得到△AED ,∴∠BAD=∠DAF ,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD 沿AD 折叠得到△AED ,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA ﹣∠BDF=100°+100°﹣180°=20°.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得|PA ﹣PC 2|的值最大.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)根据图形平移的性质画出△A 1B 1C 1即可;(2)画出△ABC 关于直线m 对称的△A 2B 2C 2即可;(3)过点A 2B 2作直线,此直线与直线m 的交点即为所求.【解答】解:作图如下:(1)如图,△A 1B 1C 1.(2)如图,△A 2B 2C 2.(3)如图,点P 即为所求.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)【考点】利用轴对称设计图案.【分析】做本题的关键是利用轴对称图形,作出轴对称图案.这里的答案不唯一,只要是轴对称图形就行.做时可以思考先把正方形变成两个面积相等,图形相同的两部分,再分这两部分为相同的轴对称图形.【解答】解:如图所示:.25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【考点】三元一次方程组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以得到x、y的值;(2)由题意可以列出相应的不等式,从而可以得到某营业员至少需要卖出服装的件数;(3)由题意可得相应的三元一次方程组,通过变形即可得到问题的答案.【解答】解:(1)由题意,得,解得即x的值为1800,y的值为3;(2)设某营业员当月卖服装m件,由题意得,1800+3m≥3100,解得,,∵m只能为正整数,∴m最小为434,即某营业员当月至少要卖434件;(3)设一件甲为a元,一件乙为b元,一件丙为c元,则,将两等式相加得,4a+4b+4c=720,则a+b+c=180,即购买一件甲、一件乙、一件丙共需180元.26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数= 125 度(直接写出结果);②∠BDC的度数为90°+α(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB 的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).【考点】三角形综合题.【分析】(1)①根据角平分线定义以及三角形内角和定理计算即可解决问题.②根据角平分线定义以及三角形内角和定理计算即可解决问题.(2)由∠BFC=∠FCE﹣∠FBC=由此即可解决问题.(3)利用(2)的结论即可解决问题.【解答】解:(1)①125°;②结论:,理由:∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠A=90°+α.故答案分别为125°,90°+α.(2)∵BF和CF分别平分∠ABC和∠ACE∴,,∴∠BFC=∠FCE﹣∠FBC)==即.(3)由轴对称性质知:,由(1)②可得,∴.。
【华东师大版】福建省泉州市洛江区七年级下期末数学试卷及答案
七年级(下)期末数学试卷一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3=﹣6的解是()A.=﹣2 B.=﹣6 C.=2 D.=﹣122.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.45.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=°,∠2=y°,则可得到的方程组为()A.B.C.D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2+y=5,则y=______(用含的式子表示).9.一个n边形的内角和是其外角和的2倍,则n=______.10.不等式3﹣9<0的最大整数解是______.11.三元一次方程组的解是______.12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为______.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了______道题.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=______.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了______次;(2)一共走了______米.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣19.解不等式5﹣1≤3+3,并把解集在数轴上表示出.20.解方程组:.21.解不等式组:(注:必须通过画数轴求解集)22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=______度;(2)求∠EDF的度数.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得|PA ﹣PC 2|的值最大.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A :月销售件数200件,月总收入2400元;营业员B :月销售件数300件,月总收入2700元;假设营业员的月基本工资为元,销售每件服装奖励y 元.(1)求、y 的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=______度(直接写出结果);②∠BDC的度数为______(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).2015-2016学年福建省泉州市洛江区七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3=﹣6的解是()A.=﹣2 B.=﹣6 C.=2 D.=﹣12【考点】解一元一次方程.【分析】根据解方程的方法两边同时除以3求解.【解答】解:3=﹣6两边同时除以3,得=﹣2故选:A.2.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出结论正确的是哪个即可.【解答】解:∵a>b,∴a﹣5>b﹣5,∴选项A不正确;∵a>b,∴3a>3b,∴选项B正确;∵a>b,∴2+a>2+b,∴选项C不正确;∵a>b,∴>,∴选项D不正确.故选:B.3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.4【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=°,∠2=y°,则可得到的方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90度,从图中可看出∠α度数+∠β的度数+90°=180°;②∠1比∠2大50°,则∠1的度数=∠2的度数+50度.【解答】解:根据平角和直角定义,得方程+y=90;根据∠α比∠β的度数大50°,得方程=y+50.可列方程组为.故选:D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠B+∠BAD,再根据∠BAC=∠BAD+∠DAC即可得解.【解答】解:由三角形的外角性质,∠ADC=∠B+∠BAD,∵∠BAC=∠BAD+∠DAC,∠B=∠DAC,∴∠BAC=∠ADC.故选B.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2+y=5,则y= 2+5 (用含的式子表示).【考点】解二元一次方程.【分析】将看做已知数求出y即可.【解答】解:方程﹣2+y=5,解得:y=2+5.故答案为:2+5.9.一个n边形的内角和是其外角和的2倍,则n= 6 .【考点】多边形内角与外角.【分析】根据多边形内角和公式:(n﹣2)•180 (n≥3且n为整数)结合题意可列出方程180(n﹣2)=360×2,再解即可.【解答】解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;10.不等式3﹣9<0的最大整数解是 2 .【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.【解答】解:不等式的解集是<3,故不等式3﹣9<0的最大整数解为2.故答案为2.11.三元一次方程组的解是.【考点】解三元一次方程组.【分析】将方程组三个方程相加求出+y+的值,进而将每一个方程代入即可求出,y,的值.【解答】解:,①+②+③得:2(+y+)=22,即+y+=11④,将①代入④得:=6,将②代入④得:=2,将③代入④得:y=3,则方程组的解为.故答案为:12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为 4 .【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为30 .【考点】平移的性质.【分析】先根据平移的性质得AC=DF,AD=CF=3,于是可判断四边形ACFD为平行四边形,然后根据平行四边形的面积公式计算即可.【解答】解:∵直角△ABC沿BC边平移3个单位得到直角△DEF,∴AC=DF,AD=CF=3,∴四边形ACFD为平行四边形,=CF•AB=3×10=30,∴S平行四边形ACFD即阴影部分的面积为30.故答案为:30.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE= 15 度.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】先根据三角形内角和定理,计算出∠ACB=180°﹣∠A﹣∠B=90°,再根据三角形的高和角平分线的定义,得到∠BCE=∠ACB=45°,∠BDC=90°,于是可计算出∠BCD=30°,然后利用∠DCE=∠BCE﹣∠BCD进行计算即可.【解答】解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了 5 道题.【考点】二元一次方程的应用.【分析】设答对道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a= 20°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD=70°,然后利用互余计算出∠DAD′,从而得到α的值.【解答】解:∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD=180°﹣∠2,而∠2=∠21=110°,∴∠BAD=180°﹣110°=70°,∴∠DAD′=90°﹣70°=20°,即α=20°.故答案为20°.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了11 次;(2)一共走了132 米.【考点】多边形内角与外角.【分析】根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12﹣1=11次才会回到原的起点,即一共走了12×11=132米.故答案为11,1132.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣【考点】解一元一次方程.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:6y﹣3(y﹣1)=12﹣(y+2)去括号得:6y﹣3y+3=12﹣y﹣2移项得:6y﹣3y+y=12﹣2﹣3合并得:4y=7系数化为1得:.19.解不等式5﹣1≤3+3,并把解集在数轴上表示出.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先移项,再合并同类项,把的系数化为1,把不等式的解集在数轴上表示出即可.【解答】解:移项得,5﹣3≤3+1,合并同类项得,2≤4,的系数化为1得,≤2.在数轴上表示为:.20.解方程组:.【考点】解二元一次方程组.【分析】先用加减消元法求出的值,再用代入消元法求出y的值即可.【解答】解:,①×3+②得,5=25,解得=5,把=5代入①得,5﹣y=3,解得y=2,故方程组的解为.21.解不等式组:(注:必须通过画数轴求解集)【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:,由①得≥13,由②得>﹣2,所以原不等式组的解是:≥13.22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC= 110 度;(2)求∠EDF的度数.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD 沿AD 折叠得到△AED ,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA ﹣∠BDF=100°+100°﹣180°=20°.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得|PA ﹣PC 2|的值最大.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)根据图形平移的性质画出△A 1B 1C 1即可;(2)画出△ABC 关于直线m 对称的△A 2B 2C 2即可;(3)过点A 2B 2作直线,此直线与直线m 的交点即为所求.【解答】解:作图如下:(1)如图,△A 1B 1C 1.(2)如图,△A 2B 2C 2.(3)如图,点P即为所求.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)【考点】利用轴对称设计图案.【分析】做本题的关键是利用轴对称图形,作出轴对称图案.这里的答案不唯一,只要是轴对称图形就行.做时可以思考先把正方形变成两个面积相等,图形相同的两部分,再分这两部分为相同的轴对称图形.【解答】解:如图所示:.25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为元,销售每件服装奖励y元.(1)求、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【考点】三元一次方程组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以得到、y的值;(2)由题意可以列出相应的不等式,从而可以得到某营业员至少需要卖出服装的件数;(3)由题意可得相应的三元一次方程组,通过变形即可得到问题的答案.【解答】解:(1)由题意,得,解得即的值为1800,y的值为3;(2)设某营业员当月卖服装m件,由题意得,1800+3m≥3100,解得,,∵m只能为正整数,∴m最小为434,即某营业员当月至少要卖434件;(3)设一件甲为a元,一件乙为b元,一件丙为c元,则,将两等式相加得,4a+4b+4c=720,则a+b+c=180,即购买一件甲、一件乙、一件丙共需180元.26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数= 125 度(直接写出结果);②∠BDC的度数为90°+α(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).【考点】三角形综合题.【分析】(1)①根据角平分线定义以及三角形内角和定理计算即可解决问题.②根据角平分线定义以及三角形内角和定理计算即可解决问题.(2)由∠BFC=∠FCE﹣∠FBC=由此即可解决问题.(3)利用(2)的结论即可解决问题.【解答】解:(1)①125°;②结论:,理由:∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠A=90°+α.故答案分别为125°,90°+α.(2)∵BF和CF分别平分∠ABC和∠ACE∴,,∴∠BFC=∠FCE﹣∠FBC)==即.(3)由轴对称性质知:,由(1)②可得,∴.。
福建省泉州市2015-2016学年七年级下学期期末考试数学试卷
泉港区2016年春季七年级期末教学质量检测数 学 试 题(满分:150分 考试时间:120分钟)一、选择题(每小题4分,共40分)1.下列方程的解为1x =的是…………………………………………………………………( ) A .1102x -= B .221x x -=- C .210x+= D .22x = 2.已知2=x 是关于x 的方程03=+a x 的一个解,则a 的值是…………………………( ) A .-6 B .-3 C .-4 D .-53.对于二元一次方程952=+-y x ,下列说法正确的是…………………………………( ) A. 只有一个解 B .有无数个解C .共有两个解D .任何一对有理数都是它的解4.下面有4个汽车标志图案,其中属于中心对称图形的是………………………………( )5.下列长度的三条线段能组成三角形的是…………………………………………………( ) A .1、2、3 B .3、3、7 C .20、15、8 D .5、15、8 6.不等式组⎩⎨⎧≤>+2523x x 的解在数轴上表示为……………………………………………( )A .B .C .D .7.下列一种正多边形中,能铺满地面的是…………………………………………………( ) A .正五边形 B .正六边形C .正七边形D .正八边形8.已知四边形ABCD 各边长如图所示,且四边形OPEF ≌四边形ABCD .则PE 的长为…( )A .3B .5C .6D .10A .B .C .D .(第8题图)BACD356109.在等腰△ABC 中,AB =5cm ,BC =7cm .则等腰△ABC 的周长为……………………( ) A .12cmB .17cmC .19cmD .17cm 或19cm10.三元一次方程组⎪⎩⎪⎨⎧=-+=+-=+-1327233432z y x z y x z y x 的解为……………………………………………( )A .⎪⎩⎪⎨⎧-==-=312z y xB .⎪⎩⎪⎨⎧=-=-=123z y xC .⎪⎩⎪⎨⎧-=-==231z y xD .⎪⎩⎪⎨⎧-=-==321z y x二、填空题(每题4分,共24分).11.方程121=x 的解为 .12.已知二元一次方程13=+y x ,用含有x 的代数式表示y ,得y = . 13.已知a <b .比较大小:a 8- b 8-(填:“>”“<”或“=”). 14.五边形的外角和等于 度.15.如图,在ABC Rt ∆中,各边的长度如图所示,︒=∠90C ,AD 平分CAB ∠交BC 于点D ,则点D 到AB 的距离是 .16.如图,在△ABC 中,∠ACB =120°,按顺时针方向旋转,使得点E 在AC 上,得到新的三角形记为△DCE .则①旋转中心为点 ;②旋转角度为 .三、解答题(共86分).17.(6分)解方程:x x 2835+=+.18.(6分)解不等式,并将解集在数轴上表示出来:13)1(35<-+x x .(第15题图)36ACD6EBACD(第16题图)19.(6分)如图,在正方形网格中,△ABC 的三个顶点都在方格图的格点上.请画出△C B A ''',使△C B A '''和△ABC 关于直线l 成轴对称.20.(6分)已知n 边形的内角和等于1800º,试求出n 边形的边数.21.(8分)解方程组:⎩⎨⎧=+-=-9232y x y x22.(8分)2016年“地球停电一小时”活动中,某广场举行的烛光晚餐,若将预约的人数按每排坐32人入座,则空26个座位;按每排坐30人入座,则有8人无座位.请问:该广场的座位共有多少排?lCAB23.(10分)已知整数x 满足不等式组⎪⎩⎪⎨⎧-+≤-+≥--12213222)3(25x x x x ,试求出x 的值.24.(10分)如图,在ABC Rt ∆中,︒=∠90C ,︒=∠33A ,将ABC ∆沿AB 方向向右平移得到DEF ∆.(1)试求出E ∠的度数;(2)若cm AE 9=,cm DB 2=.请求出CF 的长度.A BCD EF……① ……②25.(12分)利民便利店欲购进A、B两种型号的LED节能灯共200盏销售,已知每盏A、B两种型号的LED节能灯的进价分别为18元、45元,拟定售价分别为28元、60元.(1)若利民便利店计划销售完这批LED节能灯后能获利2200元,问甲、乙两种LED节能灯应分别购进多少盏?(2)若利民便利店计划投入资金不超过6900元,且销售完这批LED节能灯后获利不少于2600元,请问有哪几种购货方案?并探究哪种购货方案获利最大.26.(14分)如图,互相垂直的两条射线OE 与OF 的端点O 在三角板的内部,与三角板两条直角边的交点分别为点D 、B .(1)填空:若∠ABO =50°,则∠ADO = ;(2)若DC 、BP 分别是∠ADO 、∠ABF 的角平分线,如图1.求证:DC ⊥BP ;(3)若DC 、BP 分别分别是∠ADE 、∠ABF 的角平分线,如图2.猜想DC 与BP 的位置关系,并说明理由.AF B CD OE P(图1)AFBCD OEP(图2)。
泉州市洛江区2015-2016学年七年级下期末数学试卷含答案解析
2015-2016学年福建省泉州市洛江区七年级(下)期末数学试卷一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣122.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.45.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y=______(用含x的式子表示).9.一个n边形的内角和是其外角和的2倍,则n=______.10.不等式3x﹣9<0的最大整数解是______.11.三元一次方程组的解是______.12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为______.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了______道题.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a <90°).若∠1=110°,则a=______.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了______次;(2)一共走了______米.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出来.20.解方程组:.21.解不等式组:(注:必须通过画数轴求解集)22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD 折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=______度;(2)求∠EDF的度数.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=______度(直接写出结果);②∠BDC的度数为______(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).2015-2016学年福建省泉州市洛江区七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣12【考点】解一元一次方程.【分析】根据解方程的方法两边同时除以3求解.【解答】解:3x=﹣6两边同时除以3,得x=﹣2故选:A.2.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出结论正确的是哪个即可.【解答】解:∵a>b,∴a﹣5>b﹣5,∴选项A不正确;∵a>b,∴3a>3b,∴选项B正确;∵a>b,∴2+a>2+b,∴选项C不正确;∵a>b,∴>,∴选项D不正确.故选:B.3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.4【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90度,从图中可看出∠α度数+∠β的度数+90°=180°;②∠1比∠2大50°,则∠1的度数=∠2的度数+50度.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠α比∠β的度数大50°,得方程x=y+50.可列方程组为.故选:D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠B+∠BAD,再根据∠BAC=∠BAD+∠DAC即可得解.【解答】解:由三角形的外角性质,∠ADC=∠B+∠BAD,∵∠BAC=∠BAD+∠DAC,∠B=∠DAC,∴∠BAC=∠ADC.故选B.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y=2x+5(用含x的式子表示).【考点】解二元一次方程.【分析】将x看做已知数求出y即可.【解答】解:方程﹣2x+y=5,解得:y=2x+5.故答案为:2x+5.9.一个n边形的内角和是其外角和的2倍,则n=6.【考点】多边形内角与外角.【分析】根据多边形内角和公式:(n﹣2)•180 (n≥3且n为整数)结合题意可列出方程180(n﹣2)=360×2,再解即可.【解答】解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;10.不等式3x﹣9<0的最大整数解是2.【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.【解答】解:不等式的解集是x<3,故不等式3x﹣9<0的最大整数解为2.故答案为2.11.三元一次方程组的解是.【考点】解三元一次方程组.【分析】将方程组三个方程相加求出x+y+z的值,进而将每一个方程代入即可求出x,y,z 的值.【解答】解:,①+②+③得:2(x+y+z)=22,即x+y+z=11④,将①代入④得:z=6,将②代入④得:x=2,将③代入④得:y=3,则方程组的解为.故答案为:12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为4.【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为30.【考点】平移的性质.【分析】先根据平移的性质得AC=DF,AD=CF=3,于是可判断四边形ACFD为平行四边形,然后根据平行四边形的面积公式计算即可.【解答】解:∵直角△ABC沿BC边平移3个单位得到直角△DEF,∴AC=DF,AD=CF=3,∴四边形ACFD为平行四边形,=CF•AB=3×10=30,∴S平行四边形ACFD即阴影部分的面积为30.故答案为:30.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=15度.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】先根据三角形内角和定理,计算出∠ACB=180°﹣∠A﹣∠B=90°,再根据三角形的高和角平分线的定义,得到∠BCE=∠ACB=45°,∠BDC=90°,于是可计算出∠BCD=30°,然后利用∠DCE=∠BCE﹣∠BCD进行计算即可.【解答】解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了5道题.【考点】二元一次方程的应用.【分析】设答对x道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a <90°).若∠1=110°,则a=20°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD=70°,然后利用互余计算出∠DAD′,从而得到α的值.【解答】解:∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD=180°﹣∠2,而∠2=∠21=110°,∴∠BAD=180°﹣110°=70°,∴∠DAD′=90°﹣70°=20°,即α=20°.故答案为20°.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了11次;(2)一共走了132米.【考点】多边形内角与外角.【分析】根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12﹣1=11次才会回到原来的起点,即一共走了12×11=132米.故答案为11,1132.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣【考点】解一元一次方程.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:6y﹣3(y﹣1)=12﹣(y+2)去括号得:6y﹣3y+3=12﹣y﹣2移项得:6y﹣3y+y=12﹣2﹣3合并得:4y=7系数化为1得:.19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先移项,再合并同类项,把x的系数化为1,把不等式的解集在数轴上表示出来即可.【解答】解:移项得,5x﹣3x≤3+1,合并同类项得,2x≤4,x的系数化为1得,x≤2.在数轴上表示为:.20.解方程组:.【考点】解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:,①×3+②得,5x=25,解得x=5,把x=5代入①得,5﹣y=3,解得y=2,故方程组的解为.21.解不等式组:(注:必须通过画数轴求解集)【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:,由①得x≥13,由②得x>﹣2,所以原不等式组的解是:x≥13.22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD 折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=110度;(2)求∠EDF的度数.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)根据图形平移的性质画出△A1B1C1即可;(2)画出△ABC关于直线m对称的△A2B2C2即可;(3)过点A2B2作直线,此直线与直线m的交点即为所求.【解答】解:作图如下:(1)如图,△A1B1C1.(2)如图,△A2B2C2.(3)如图,点P即为所求.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)【考点】利用轴对称设计图案.【分析】做本题的关键是利用轴对称图形,作出轴对称图案.这里的答案不唯一,只要是轴对称图形就行.做时可以思考先把正方形变成两个面积相等,图形相同的两部分,再分这两部分为相同的轴对称图形.【解答】解:如图所示:.25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【考点】三元一次方程组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以得到x、y的值;(2)由题意可以列出相应的不等式,从而可以得到某营业员至少需要卖出服装的件数;(3)由题意可得相应的三元一次方程组,通过变形即可得到问题的答案.【解答】解:(1)由题意,得,解得即x的值为1800,y的值为3;(2)设某营业员当月卖服装m件,由题意得,1800+3m≥3100,解得,,∵m只能为正整数,∴m最小为434,即某营业员当月至少要卖434件;(3)设一件甲为a元,一件乙为b元,一件丙为c元,则,将两等式相加得,4a+4b+4c=720,则a+b+c=180,即购买一件甲、一件乙、一件丙共需180元.26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=125度(直接写出结果);②∠BDC的度数为90°+α(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).【考点】三角形综合题.【分析】(1)①根据角平分线定义以及三角形内角和定理计算即可解决问题.②根据角平分线定义以及三角形内角和定理计算即可解决问题.(2)由∠BFC=∠FCE﹣∠FBC=由此即可解决问题.(3)利用(2)的结论即可解决问题.【解答】解:(1)①125°;②结论:,理由:∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠A=90°+α.故答案分别为125°,90°+α.(2)∵BF和CF分别平分∠ABC和∠ACE∴,,∴∠BFC=∠FCE﹣∠FBC)==即.(3)由轴对称性质知:,由(1)②可得,∴.2016年9月24日。
【华东师大版】福建省泉州市洛江区七年级下期末数学试卷及答案
七年级(下)期末数学试卷一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3=﹣6的解是()A.=﹣2 B.=﹣6 C.=2 D.=﹣122.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.45.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=°,∠2=y°,则可得到的方程组为()A.B.C.D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2+y=5,则y=______(用含的式子表示).9.一个n边形的内角和是其外角和的2倍,则n=______.10.不等式3﹣9<0的最大整数解是______.11.三元一次方程组的解是______.12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为______.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了______道题.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=______.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了______次;(2)一共走了______米.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣19.解不等式5﹣1≤3+3,并把解集在数轴上表示出.20.解方程组:.21.解不等式组:(注:必须通过画数轴求解集)22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=______度;(2)求∠EDF的度数.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得|PA ﹣PC 2|的值最大.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A :月销售件数200件,月总收入2400元;营业员B :月销售件数300件,月总收入2700元;假设营业员的月基本工资为元,销售每件服装奖励y 元.(1)求、y 的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=______度(直接写出结果);②∠BDC的度数为______(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).2015-2016学年福建省泉州市洛江区七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3=﹣6的解是()A.=﹣2 B.=﹣6 C.=2 D.=﹣12【考点】解一元一次方程.【分析】根据解方程的方法两边同时除以3求解.【解答】解:3=﹣6两边同时除以3,得=﹣2故选:A.2.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出结论正确的是哪个即可.【解答】解:∵a>b,∴a﹣5>b﹣5,∴选项A不正确;∵a>b,∴3a>3b,∴选项B正确;∵a>b,∴2+a>2+b,∴选项C不正确;∵a>b,∴>,∴选项D不正确.故选:B.3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.4【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=°,∠2=y°,则可得到的方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90度,从图中可看出∠α度数+∠β的度数+90°=180°;②∠1比∠2大50°,则∠1的度数=∠2的度数+50度.【解答】解:根据平角和直角定义,得方程+y=90;根据∠α比∠β的度数大50°,得方程=y+50.可列方程组为.故选:D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠B+∠BAD,再根据∠BAC=∠BAD+∠DAC即可得解.【解答】解:由三角形的外角性质,∠ADC=∠B+∠BAD,∵∠BAC=∠BAD+∠DAC,∠B=∠DAC,∴∠BAC=∠ADC.故选B.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2+y=5,则y= 2+5 (用含的式子表示).【考点】解二元一次方程.【分析】将看做已知数求出y即可.【解答】解:方程﹣2+y=5,解得:y=2+5.故答案为:2+5.9.一个n边形的内角和是其外角和的2倍,则n= 6 .【考点】多边形内角与外角.【分析】根据多边形内角和公式:(n﹣2)•180 (n≥3且n为整数)结合题意可列出方程180(n﹣2)=360×2,再解即可.【解答】解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;10.不等式3﹣9<0的最大整数解是 2 .【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.【解答】解:不等式的解集是<3,故不等式3﹣9<0的最大整数解为2.故答案为2.11.三元一次方程组的解是.【考点】解三元一次方程组.【分析】将方程组三个方程相加求出+y+的值,进而将每一个方程代入即可求出,y,的值.【解答】解:,①+②+③得:2(+y+)=22,即+y+=11④,将①代入④得:=6,将②代入④得:=2,将③代入④得:y=3,则方程组的解为.故答案为:12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为 4 .【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为30 .【考点】平移的性质.【分析】先根据平移的性质得AC=DF,AD=CF=3,于是可判断四边形ACFD为平行四边形,然后根据平行四边形的面积公式计算即可.【解答】解:∵直角△ABC沿BC边平移3个单位得到直角△DEF,∴AC=DF,AD=CF=3,∴四边形ACFD为平行四边形,=CF•AB=3×10=30,∴S平行四边形ACFD即阴影部分的面积为30.故答案为:30.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE= 15 度.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】先根据三角形内角和定理,计算出∠ACB=180°﹣∠A﹣∠B=90°,再根据三角形的高和角平分线的定义,得到∠BCE=∠ACB=45°,∠BDC=90°,于是可计算出∠BCD=30°,然后利用∠DCE=∠BCE ﹣∠BCD进行计算即可.【解答】解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了 5 道题.【考点】二元一次方程的应用.【分析】设答对道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a= 20°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD=70°,然后利用互余计算出∠DAD′,从而得到α的值.【解答】解:∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD=180°﹣∠2,而∠2=∠21=110°,∴∠BAD=180°﹣110°=70°,∴∠DAD′=90°﹣70°=20°,即α=20°.故答案为20°.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了11 次;(2)一共走了132 米.【考点】多边形内角与外角.【分析】根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12﹣1=11次才会回到原的起点,即一共走了12×11=132米.故答案为11,1132.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣【考点】解一元一次方程.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:6y﹣3(y﹣1)=12﹣(y+2)去括号得:6y﹣3y+3=12﹣y﹣2移项得:6y﹣3y+y=12﹣2﹣3合并得:4y=7系数化为1得:.19.解不等式5﹣1≤3+3,并把解集在数轴上表示出.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先移项,再合并同类项,把的系数化为1,把不等式的解集在数轴上表示出即可.【解答】解:移项得,5﹣3≤3+1,合并同类项得,2≤4,的系数化为1得,≤2.在数轴上表示为:.20.解方程组:.【考点】解二元一次方程组.【分析】先用加减消元法求出的值,再用代入消元法求出y的值即可.【解答】解:,①×3+②得,5=25,解得=5,把=5代入①得,5﹣y=3,解得y=2,故方程组的解为.21.解不等式组:(注:必须通过画数轴求解集)【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:,由①得≥13,由②得>﹣2,所以原不等式组的解是:≥13.22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC= 110 度;(2)求∠EDF的度数.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD 沿AD 折叠得到△AED ,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA ﹣∠BDF=100°+100°﹣180°=20°.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得|PA ﹣PC 2|的值最大.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)根据图形平移的性质画出△A 1B 1C 1即可;(2)画出△ABC 关于直线m 对称的△A 2B 2C 2即可;(3)过点A 2B 2作直线,此直线与直线m 的交点即为所求.【解答】解:作图如下:(1)如图,△A 1B 1C 1.(2)如图,△A 2B 2C 2.(3)如图,点P 即为所求.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)【考点】利用轴对称设计图案.【分析】做本题的关键是利用轴对称图形,作出轴对称图案.这里的答案不唯一,只要是轴对称图形就行.做时可以思考先把正方形变成两个面积相等,图形相同的两部分,再分这两部分为相同的轴对称图形.【解答】解:如图所示:.25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为元,销售每件服装奖励y元.(1)求、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【考点】三元一次方程组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以得到、y的值;(2)由题意可以列出相应的不等式,从而可以得到某营业员至少需要卖出服装的件数;(3)由题意可得相应的三元一次方程组,通过变形即可得到问题的答案.【解答】解:(1)由题意,得,解得即的值为1800,y的值为3;(2)设某营业员当月卖服装m件,由题意得,1800+3m≥3100,解得,,∵m只能为正整数,∴m最小为434,即某营业员当月至少要卖434件;(3)设一件甲为a元,一件乙为b元,一件丙为c元,则,将两等式相加得,4a+4b+4c=720,则a+b+c=180,即购买一件甲、一件乙、一件丙共需180元.26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数= 125 度(直接写出结果);②∠BDC的度数为90°+α(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).【考点】三角形综合题.【分析】(1)①根据角平分线定义以及三角形内角和定理计算即可解决问题.②根据角平分线定义以及三角形内角和定理计算即可解决问题.(2)由∠BFC=∠FCE﹣∠FBC=由此即可解决问题.(3)利用(2)的结论即可解决问题.【解答】解:(1)①125°;②结论:,理由:∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠A=90°+α.故答案分别为125°,90°+α.(2)∵BF和CF分别平分∠ABC和∠ACE∴,,∴∠BFC=∠FCE﹣∠FBC)==即.(3)由轴对称性质知:,由(1)②可得,∴.。
【华东师大版】福建省泉州市洛江区七年级下期末数学试卷及答案
七年级(下)期末数学试卷一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3=﹣6的解是()A.=﹣2 B.=﹣6 C.=2 D.=﹣122.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.45.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=°,∠2=y°,则可得到的方程组为()A.B.C.D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2+y=5,则y=______(用含的式子表示).9.一个n边形的内角和是其外角和的2倍,则n=______.10.不等式3﹣9<0的最大整数解是______.11.三元一次方程组的解是______.12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为______.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了______道题.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=______.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了______次;(2)一共走了______米.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣19.解不等式5﹣1≤3+3,并把解集在数轴上表示出.20.解方程组:.21.解不等式组:(注:必须通过画数轴求解集)22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=______度;(2)求∠EDF的度数.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得|PA ﹣PC 2|的值最大.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法). 请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A :月销售件数200件,月总收入2400元;营业员B :月销售件数300件,月总收入2700元;假设营业员的月基本工资为元,销售每件服装奖励y 元.(1)求、y 的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=______度(直接写出结果);②∠BDC的度数为______(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).2015-2016学年福建省泉州市洛江区七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3=﹣6的解是()A.=﹣2 B.=﹣6 C.=2 D.=﹣12【考点】解一元一次方程.【分析】根据解方程的方法两边同时除以3求解.【解答】解:3=﹣6两边同时除以3,得=﹣2故选:A.2.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出结论正确的是哪个即可.【解答】解:∵a>b,∴a﹣5>b﹣5,∴选项A不正确;∵a>b,∴3a>3b,∴选项B正确;∵a>b,∴2+a>2+b,∴选项C不正确;∵a>b,∴>,∴选项D不正确.故选:B.3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.4【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=°,∠2=y°,则可得到的方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90度,从图中可看出∠α度数+∠β的度数+90°=180°;②∠1比∠2大50°,则∠1的度数=∠2的度数+50度.【解答】解:根据平角和直角定义,得方程+y=90;根据∠α比∠β的度数大50°,得方程=y+50.可列方程组为.故选:D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠B+∠BAD,再根据∠BAC=∠BAD+∠DAC即可得解.【解答】解:由三角形的外角性质,∠ADC=∠B+∠BAD,∵∠BAC=∠BAD+∠DAC,∠B=∠DAC,∴∠BAC=∠ADC.故选B.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2+y=5,则y= 2+5 (用含的式子表示).【考点】解二元一次方程.【分析】将看做已知数求出y即可.【解答】解:方程﹣2+y=5,解得:y=2+5.故答案为:2+5.9.一个n边形的内角和是其外角和的2倍,则n= 6 .【考点】多边形内角与外角.【分析】根据多边形内角和公式:(n﹣2)•180 (n≥3且n为整数)结合题意可列出方程180(n﹣2)=360×2,再解即可.【解答】解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;10.不等式3﹣9<0的最大整数解是 2 .【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.【解答】解:不等式的解集是<3,故不等式3﹣9<0的最大整数解为2.故答案为2.11.三元一次方程组的解是.【考点】解三元一次方程组.【分析】将方程组三个方程相加求出+y+的值,进而将每一个方程代入即可求出,y,的值.【解答】解:,①+②+③得:2(+y+)=22,即+y+=11④,将①代入④得:=6,将②代入④得:=2,将③代入④得:y=3,则方程组的解为.故答案为:12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为 4 .【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为30 .【考点】平移的性质.【分析】先根据平移的性质得AC=DF,AD=CF=3,于是可判断四边形ACFD为平行四边形,然后根据平行四边形的面积公式计算即可.【解答】解:∵直角△ABC沿BC边平移3个单位得到直角△DEF,∴AC=DF,AD=CF=3,∴四边形ACFD为平行四边形,=CF•AB=3×10=30,∴S平行四边形ACFD即阴影部分的面积为30.故答案为:30.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE= 15 度.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】先根据三角形内角和定理,计算出∠ACB=180°﹣∠A﹣∠B=90°,再根据三角形的高和角平分线的定义,得到∠BCE=∠ACB=45°,∠BDC=90°,于是可计算出∠BCD=30°,然后利用∠DCE=∠BCE﹣∠BCD进行计算即可.【解答】解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了 5 道题.【考点】二元一次方程的应用.【分析】设答对道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a= 20°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD=70°,然后利用互余计算出∠DAD′,从而得到α的值.【解答】解:∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD=180°﹣∠2,而∠2=∠21=110°,∴∠BAD=180°﹣110°=70°,∴∠DAD′=90°﹣70°=20°,即α=20°.故答案为20°.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了11 次;(2)一共走了132 米.【考点】多边形内角与外角.【分析】根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12﹣1=11次才会回到原的起点,即一共走了12×11=132米.故答案为11,1132.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣【考点】解一元一次方程.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:6y﹣3(y﹣1)=12﹣(y+2)去括号得:6y﹣3y+3=12﹣y﹣2移项得:6y﹣3y+y=12﹣2﹣3合并得:4y=7系数化为1得:.19.解不等式5﹣1≤3+3,并把解集在数轴上表示出.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先移项,再合并同类项,把的系数化为1,把不等式的解集在数轴上表示出即可.【解答】解:移项得,5﹣3≤3+1,合并同类项得,2≤4,的系数化为1得,≤2.在数轴上表示为:.20.解方程组:.【考点】解二元一次方程组.【分析】先用加减消元法求出的值,再用代入消元法求出y的值即可.【解答】解:,①×3+②得,5=25,解得=5,把=5代入①得,5﹣y=3,解得y=2,故方程组的解为.21.解不等式组:(注:必须通过画数轴求解集)【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:,由①得≥13,由②得>﹣2,所以原不等式组的解是:≥13.22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC= 110 度;(2)求∠EDF的度数.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD 沿AD 折叠得到△AED ,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA ﹣∠BDF=100°+100°﹣180°=20°.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得|PA ﹣PC 2|的值最大.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)根据图形平移的性质画出△A 1B 1C 1即可;(2)画出△ABC 关于直线m 对称的△A 2B 2C 2即可;(3)过点A 2B 2作直线,此直线与直线m 的交点即为所求.【解答】解:作图如下:(1)如图,△A 1B 1C 1.(2)如图,△A 2B 2C 2.(3)如图,点P即为所求.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)【考点】利用轴对称设计图案.【分析】做本题的关键是利用轴对称图形,作出轴对称图案.这里的答案不唯一,只要是轴对称图形就行.做时可以思考先把正方形变成两个面积相等,图形相同的两部分,再分这两部分为相同的轴对称图形.【解答】解:如图所示:.25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为元,销售每件服装奖励y元.(1)求、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【考点】三元一次方程组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以得到、y的值;(2)由题意可以列出相应的不等式,从而可以得到某营业员至少需要卖出服装的件数;(3)由题意可得相应的三元一次方程组,通过变形即可得到问题的答案.【解答】解:(1)由题意,得,解得即的值为1800,y的值为3;(2)设某营业员当月卖服装m件,由题意得,1800+3m≥3100,解得,,∵m只能为正整数,∴m最小为434,即某营业员当月至少要卖434件;(3)设一件甲为a元,一件乙为b元,一件丙为c元,则,将两等式相加得,4a+4b+4c=720,则a+b+c=180,即购买一件甲、一件乙、一件丙共需180元.26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数= 125 度(直接写出结果);②∠BDC的度数为90°+α(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).【考点】三角形综合题.【分析】(1)①根据角平分线定义以及三角形内角和定理计算即可解决问题.②根据角平分线定义以及三角形内角和定理计算即可解决问题.(2)由∠BFC=∠FCE﹣∠FBC=由此即可解决问题.(3)利用(2)的结论即可解决问题.【解答】解:(1)①125°;②结论:,理由:∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠A=90°+α.故答案分别为125°,90°+α.(2)∵BF和CF分别平分∠ABC和∠ACE∴,,∴∠BFC=∠FCE﹣∠FBC)==即.(3)由轴对称性质知:,由(1)②可得,∴.。
【华东师大版】福建省泉州市洛江区七年级下期末数学试卷及答案
七年级(下)期末数学试卷一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣122.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.45.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y=______(用含x的式子表示).9.一个n边形的内角和是其外角和的2倍,则n=______.10.不等式3x﹣9<0的最大整数解是______.11.三元一次方程组的解是______.12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为______.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了______道题.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=______.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了______次;(2)一共走了______米.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出.20.解方程组:.21.解不等式组:(注:必须通过画数轴求解集)22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=______度;(2)求∠EDF的度数.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=______度(直接写出结果);②∠BDC的度数为______(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).2015-2016学年福建省泉州市洛江区七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣12【考点】解一元一次方程.【分析】根据解方程的方法两边同时除以3求解.【解答】解:3x=﹣6两边同时除以3,得x=﹣2故选:A.2.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出结论正确的是哪个即可.【解答】解:∵a>b,∴a﹣5>b﹣5,∴选项A不正确;∵a>b,∴3a>3b,∴选项B正确;∵a>b,∴2+a>2+b,∴选项C不正确;∵a>b,∴>,∴选项D不正确.故选:B.3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.4【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90度,从图中可看出∠α度数+∠β的度数+90°=180°;②∠1比∠2大50°,则∠1的度数=∠2的度数+50度.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠α比∠β的度数大50°,得方程x=y+50.可列方程组为.故选:D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠B+∠BAD,再根据∠BAC=∠BAD+∠DAC即可得解.【解答】解:由三角形的外角性质,∠ADC=∠B+∠BAD,∵∠BAC=∠BAD+∠DAC,∠B=∠DAC,∴∠BAC=∠ADC.故选B.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y=2x+5(用含x的式子表示).【考点】解二元一次方程.【分析】将x看做已知数求出y即可.【解答】解:方程﹣2x+y=5,解得:y=2x+5.故答案为:2x+5.9.一个n边形的内角和是其外角和的2倍,则n=6.【考点】多边形内角与外角.【分析】根据多边形内角和公式:(n﹣2)•180 (n≥3且n为整数)结合题意可列出方程180(n﹣2)=360×2,再解即可.【解答】解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;10.不等式3x﹣9<0的最大整数解是2.【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.【解答】解:不等式的解集是x<3,故不等式3x﹣9<0的最大整数解为2.故答案为2.11.三元一次方程组的解是.【考点】解三元一次方程组.【分析】将方程组三个方程相加求出x+y+z的值,进而将每一个方程代入即可求出x,y,z的值.【解答】解:,①+②+③得:2(x+y+z)=22,即x+y+z=11④,将①代入④得:z=6,将②代入④得:x=2,将③代入④得:y=3,则方程组的解为.故答案为:12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为4.【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为30.【考点】平移的性质.【分析】先根据平移的性质得AC=DF,AD=CF=3,于是可判断四边形ACFD为平行四边形,然后根据平行四边形的面积公式计算即可.【解答】解:∵直角△ABC沿BC边平移3个单位得到直角△DEF,∴AC=DF,AD=CF=3,∴四边形ACFD为平行四边形,=CF•AB=3×10=30,∴S平行四边形ACFD即阴影部分的面积为30.故答案为:30.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=15度.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】先根据三角形内角和定理,计算出∠ACB=180°﹣∠A﹣∠B=90°,再根据三角形的高和角平分线的定义,得到∠BCE=∠ACB=45°,∠BDC=90°,于是可计算出∠BCD=30°,然后利用∠DCE=∠BCE ﹣∠BCD进行计算即可.【解答】解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了5道题.【考点】二元一次方程的应用.【分析】设答对x道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=20°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD=70°,然后利用互余计算出∠DAD′,从而得到α的值.【解答】解:∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD=180°﹣∠2,而∠2=∠21=110°,∴∠BAD=180°﹣110°=70°,∴∠DAD′=90°﹣70°=20°,即α=20°.故答案为20°.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了11次;(2)一共走了132米.【考点】多边形内角与外角.【分析】根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12﹣1=11次才会回到原的起点,即一共走了12×11=132米.故答案为11,1132.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣【考点】解一元一次方程.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:6y﹣3(y﹣1)=12﹣(y+2)去括号得:6y﹣3y+3=12﹣y﹣2移项得:6y﹣3y+y=12﹣2﹣3合并得:4y=7系数化为1得:.19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先移项,再合并同类项,把x的系数化为1,把不等式的解集在数轴上表示出即可.【解答】解:移项得,5x﹣3x≤3+1,合并同类项得,2x≤4,x的系数化为1得,x≤2.在数轴上表示为:.20.解方程组:.【考点】解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:,①×3+②得,5x=25,解得x=5,把x=5代入①得,5﹣y=3,解得y=2,故方程组的解为.21.解不等式组:(注:必须通过画数轴求解集)【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:,由①得x≥13,由②得x>﹣2,所以原不等式组的解是:x≥13.22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=110度;(2)求∠EDF的度数.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)根据图形平移的性质画出△A1B1C1即可;(2)画出△ABC关于直线m对称的△A2B2C2即可;(3)过点A2B2作直线,此直线与直线m的交点即为所求.【解答】解:作图如下:(1)如图,△A1B1C1.(2)如图,△A2B2C2.(3)如图,点P即为所求.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)【考点】利用轴对称设计图案.【分析】做本题的关键是利用轴对称图形,作出轴对称图案.这里的答案不唯一,只要是轴对称图形就行.做时可以思考先把正方形变成两个面积相等,图形相同的两部分,再分这两部分为相同的轴对称图形.【解答】解:如图所示:.25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【考点】三元一次方程组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以得到x、y的值;(2)由题意可以列出相应的不等式,从而可以得到某营业员至少需要卖出服装的件数;(3)由题意可得相应的三元一次方程组,通过变形即可得到问题的答案.【解答】解:(1)由题意,得,解得即x的值为1800,y的值为3;(2)设某营业员当月卖服装m件,由题意得,1800+3m≥3100,解得,,∵m只能为正整数,∴m最小为434,即某营业员当月至少要卖434件;(3)设一件甲为a元,一件乙为b元,一件丙为c元,则,将两等式相加得,4a+4b+4c=720,则a+b+c=180,即购买一件甲、一件乙、一件丙共需180元.26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=125度(直接写出结果);②∠BDC的度数为90°+α(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).【考点】三角形综合题.【分析】(1)①根据角平分线定义以及三角形内角和定理计算即可解决问题.②根据角平分线定义以及三角形内角和定理计算即可解决问题.(2)由∠BFC=∠FCE﹣∠FBC=由此即可解决问题.(3)利用(2)的结论即可解决问题.【解答】解:(1)①125°;②结论:,理由:∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠A=90°+α.故答案分别为125°,90°+α.(2)∵BF和CF分别平分∠ABC和∠ACE∴,,∴∠BFC=∠FCE﹣∠FBC)==即.(3)由轴对称性质知:,由(1)②可得,∴.。
【华东师大版】福建省泉州市洛江区七年级下期末数学试卷及答案
七年级(下)期末数学试卷一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3=﹣6的解是()A.=﹣2 B.=﹣6 C.=2 D.=﹣122.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.45.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=°,∠2=y°,则可得到的方程组为()A.B.C.D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2+y=5,则y=______(用含的式子表示).9.一个n边形的内角和是其外角和的2倍,则n=______.10.不等式3﹣9<0的最大整数解是______.11.三元一次方程组的解是______.12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为______.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了______道题.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=______.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了______次;(2)一共走了______米.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣19.解不等式5﹣1≤3+3,并把解集在数轴上表示出.20.解方程组:.21.解不等式组:(注:必须通过画数轴求解集)22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=______度;(2)求∠EDF的度数.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得|PA ﹣PC 2|的值最大.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法). 请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A :月销售件数200件,月总收入2400元;营业员B :月销售件数300件,月总收入2700元;假设营业员的月基本工资为元,销售每件服装奖励y 元.(1)求、y 的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=______度(直接写出结果);②∠BDC的度数为______(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).2015-2016学年福建省泉州市洛江区七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3=﹣6的解是()A.=﹣2 B.=﹣6 C.=2 D.=﹣12【考点】解一元一次方程.【分析】根据解方程的方法两边同时除以3求解.【解答】解:3=﹣6两边同时除以3,得=﹣2故选:A.2.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出结论正确的是哪个即可.【解答】解:∵a>b,∴a﹣5>b﹣5,∴选项A不正确;∵a>b,∴3a>3b,∴选项B正确;∵a>b,∴2+a>2+b,∴选项C不正确;∵a>b,∴>,∴选项D不正确.故选:B.3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.4【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=°,∠2=y°,则可得到的方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90度,从图中可看出∠α度数+∠β的度数+90°=180°;②∠1比∠2大50°,则∠1的度数=∠2的度数+50度.【解答】解:根据平角和直角定义,得方程+y=90;根据∠α比∠β的度数大50°,得方程=y+50.可列方程组为.故选:D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠B+∠BAD,再根据∠BAC=∠BAD+∠DAC即可得解.【解答】解:由三角形的外角性质,∠ADC=∠B+∠BAD,∵∠BAC=∠BAD+∠DAC,∠B=∠DAC,∴∠BAC=∠ADC.故选B.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2+y=5,则y= 2+5 (用含的式子表示).【考点】解二元一次方程.【分析】将看做已知数求出y即可.【解答】解:方程﹣2+y=5,解得:y=2+5.故答案为:2+5.9.一个n边形的内角和是其外角和的2倍,则n= 6 .【考点】多边形内角与外角.【分析】根据多边形内角和公式:(n﹣2)•180 (n≥3且n为整数)结合题意可列出方程180(n﹣2)=360×2,再解即可.【解答】解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;10.不等式3﹣9<0的最大整数解是 2 .【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.【解答】解:不等式的解集是<3,故不等式3﹣9<0的最大整数解为2.故答案为2.11.三元一次方程组的解是.【考点】解三元一次方程组.【分析】将方程组三个方程相加求出+y+的值,进而将每一个方程代入即可求出,y,的值.【解答】解:,①+②+③得:2(+y+)=22,即+y+=11④,将①代入④得:=6,将②代入④得:=2,将③代入④得:y=3,则方程组的解为.故答案为:12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为 4 .【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为30 .【考点】平移的性质.【分析】先根据平移的性质得AC=DF,AD=CF=3,于是可判断四边形ACFD为平行四边形,然后根据平行四边形的面积公式计算即可.【解答】解:∵直角△ABC沿BC边平移3个单位得到直角△DEF,∴AC=DF,AD=CF=3,∴四边形ACFD为平行四边形,=CF•AB=3×10=30,∴S平行四边形ACFD即阴影部分的面积为30.故答案为:30.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE= 15 度.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】先根据三角形内角和定理,计算出∠ACB=180°﹣∠A﹣∠B=90°,再根据三角形的高和角平分线的定义,得到∠BCE=∠ACB=45°,∠BDC=90°,于是可计算出∠BCD=30°,然后利用∠DCE=∠BCE﹣∠BCD进行计算即可.【解答】解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了 5 道题.【考点】二元一次方程的应用.【分析】设答对道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a= 20°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD=70°,然后利用互余计算出∠DAD′,从而得到α的值.【解答】解:∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD=180°﹣∠2,而∠2=∠21=110°,∴∠BAD=180°﹣110°=70°,∴∠DAD′=90°﹣70°=20°,即α=20°.故答案为20°.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了11 次;(2)一共走了132 米.【考点】多边形内角与外角.【分析】根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12﹣1=11次才会回到原的起点,即一共走了12×11=132米.故答案为11,1132.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣【考点】解一元一次方程.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:6y﹣3(y﹣1)=12﹣(y+2)去括号得:6y﹣3y+3=12﹣y﹣2移项得:6y﹣3y+y=12﹣2﹣3合并得:4y=7系数化为1得:.19.解不等式5﹣1≤3+3,并把解集在数轴上表示出.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先移项,再合并同类项,把的系数化为1,把不等式的解集在数轴上表示出即可.【解答】解:移项得,5﹣3≤3+1,合并同类项得,2≤4,的系数化为1得,≤2.在数轴上表示为:.20.解方程组:.【考点】解二元一次方程组.【分析】先用加减消元法求出的值,再用代入消元法求出y的值即可.【解答】解:,①×3+②得,5=25,解得=5,把=5代入①得,5﹣y=3,解得y=2,故方程组的解为.21.解不等式组:(注:必须通过画数轴求解集)【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:,由①得≥13,由②得>﹣2,所以原不等式组的解是:≥13.22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC= 110 度;(2)求∠EDF的度数.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD 沿AD 折叠得到△AED ,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA ﹣∠BDF=100°+100°﹣180°=20°.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得|PA ﹣PC 2|的值最大.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)根据图形平移的性质画出△A 1B 1C 1即可;(2)画出△ABC 关于直线m 对称的△A 2B 2C 2即可;(3)过点A 2B 2作直线,此直线与直线m 的交点即为所求.【解答】解:作图如下:(1)如图,△A 1B 1C 1.(2)如图,△A 2B 2C 2.(3)如图,点P即为所求.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)【考点】利用轴对称设计图案.【分析】做本题的关键是利用轴对称图形,作出轴对称图案.这里的答案不唯一,只要是轴对称图形就行.做时可以思考先把正方形变成两个面积相等,图形相同的两部分,再分这两部分为相同的轴对称图形.【解答】解:如图所示:.25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为元,销售每件服装奖励y元.(1)求、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【考点】三元一次方程组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以得到、y的值;(2)由题意可以列出相应的不等式,从而可以得到某营业员至少需要卖出服装的件数;(3)由题意可得相应的三元一次方程组,通过变形即可得到问题的答案.【解答】解:(1)由题意,得,解得即的值为1800,y的值为3;(2)设某营业员当月卖服装m件,由题意得,1800+3m≥3100,解得,,∵m只能为正整数,∴m最小为434,即某营业员当月至少要卖434件;(3)设一件甲为a元,一件乙为b元,一件丙为c元,则,将两等式相加得,4a+4b+4c=720,则a+b+c=180,即购买一件甲、一件乙、一件丙共需180元.26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数= 125 度(直接写出结果);②∠BDC的度数为90°+α(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).【考点】三角形综合题.【分析】(1)①根据角平分线定义以及三角形内角和定理计算即可解决问题.②根据角平分线定义以及三角形内角和定理计算即可解决问题.(2)由∠BFC=∠FCE﹣∠FBC=由此即可解决问题.(3)利用(2)的结论即可解决问题.【解答】解:(1)①125°;②结论:,理由:∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠A=90°+α.故答案分别为125°,90°+α.(2)∵BF和CF分别平分∠ABC和∠ACE∴,,∴∠BFC=∠FCE﹣∠FBC)==即.(3)由轴对称性质知:,由(1)②可得,∴.。
春洛江区七年级数学试卷.doc
2015-2016学年度初一年下学期期末质量检测数 学 试 题(满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答. 1.方程63-=x 的解是( )A .2-=xB .6-=xC .2=xD .12-=x 2.若a >b ,则下列结论正确的是( ).A.55-<-b aB. b a 33>C. b a +<+22D.33ba <3.下列图案既是中心对称图形,又是轴对称图形的是( )4.现有3cm 、4cm 、5cm 、7cm 长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是( ) A . 1 B . 2 C . 3 D . 4 5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购 其中某一种地砖镶嵌地面,可供选择的地砖共有( ) A .1种 B .2种 C .3种 D .4种6.一副三角板如图方式摆放,且∠1的度数比∠2的度数大50°,设1,2x y ︒︒∠=∠=,则可得方程组为( )50.180x y A x y =-⎧⎨+=⎩ 50.180x y B x y =+⎧⎨+=⎩ 50.90x y C x y =+⎧⎨+=⎩ 50.90x y D x y =-⎧⎨+=⎩7.已知,如图,△ABC 中,∠B =∠DAC ,则∠BAC 和∠ADC 的关系是( )A .∠BAC <∠ADCB .∠BAC =∠ADC C . ∠BAC >∠ADCD . 不能确定 二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.若25x y -+=,则________=y (用含x 的式子表示). 9.一个n 边形的内角和是其外角和的2倍,则n = . 10.不等式93-x <0的最大整数....解是 .第6题图11.三元一次方程组⎪⎩⎪⎨⎧=+=+=+895x z z y y x 的解是 .12.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 .13.如图,在△ABC 中,∠B =90°,AB =10.将△ABC 沿着BC 的方向平移至△DEF ,若平移的距离是3,则图中阴影部分的面积为 .14.如图,CD 、CE 分别是△ABC 的高和角平分线,∠A =30°,∠B =60°,则∠DCE = ______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了 道题.16.如图,将长方形ABCD 绕点A 顺时针旋转到长方形AB ′C ′D ′的位置,旋转角为α (90<<αo ),若∠1=110°,则α=______°.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)解方程:62221+-=--y y y19.(9分)解不等式3315+≤-x x ,并把解集在数轴上表示出来.20.(9分)解方程组:⎩⎨⎧=+=-16323y x y x第16题DEA BCB第12题图第13题图第14题图第17题图21.(9分)解不等式组: 338213(1)8x x x-⎧+≥⎪⎨⎪--<-⎩(注:必须通过画数轴求解集)22.(9分)如图,在△ABC 中,点D 是BC 边上的一点,∠B =50°,∠BAD =30°,将△ABD沿AD 折叠得到△AED ,AE 与BC 交于点F . (1)填空:∠AFC = 度; (2)求∠EDF 的度数.23.(9分)如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得||2PC PA -的值最大.24.(9分)为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:⑴分割后的整个图形必须是轴对称图形;⑵四块图形形状相同;⑶四块图形面积相等.现已有两种不同的分法:⑴分别作两条对角线(如图中的图⑴);⑵过一条边的四等分点作这边的垂线段(图⑵)(图⑵中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图⑶、图⑷两个正方形中画出另外两种不同的分割方法.............(正确画图,不写画法)ACDB E F25.(13分)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A :月销售件数200件,月总收入2400元; 营业员B :月销售件数300件,月总收入2700元; 假设营业员的月基本工资为x 元,销售每件服装奖励y 元. (1)求x 、y 的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件? (3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.(13分)在ABC ∆中,已知A α∠=.(1)如图1,ACB ABC ∠∠、的平分线相交于点D .①当70α=时,∠②BDC ∠α的代数式表示);(2)如图2,若ABC ∠的平分线与ACE ∠角平分线交于点F ,求BFC ∠的度数(用含α的代数式表示).(3)在(2)的条件下,将FBC ∆以直线BC 为对称轴翻折得到GBC ∆,GBC ∠的角平分线与GCB ∠的角平分线交于点M (如图3),求BMC ∠的度数(用含α的代数式表示).BACBAA图1图2。
【华东师大版】福建省泉州市洛江区七年级下期末数学试卷及答案
七年级(下)期末数学试卷一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣122.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.45.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y=______(用含x的式子表示).9.一个n边形的内角和是其外角和的2倍,则n=______.10.不等式3x﹣9<0的最大整数解是______.11.三元一次方程组的解是______.12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为______.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了______道题.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=______.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了______次;(2)一共走了______米.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出.20.解方程组:.21.解不等式组:(注:必须通过画数轴求解集)22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=______度;(2)求∠EDF的度数.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=______度(直接写出结果);②∠BDC的度数为______(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB 的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).2015-2016学年福建省泉州市洛江区七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣12【考点】解一元一次方程.【分析】根据解方程的方法两边同时除以3求解.【解答】解:3x=﹣6两边同时除以3,得x=﹣2故选:A.2.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出结论正确的是哪个即可.【解答】解:∵a>b,∴a﹣5>b﹣5,∴选项A不正确;∵a>b,∴3a>3b,∴选项B正确;∵a>b,∴2+a>2+b,∴选项C不正确;∵a>b,∴>,∴选项D不正确.故选:B.3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.4【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90度,从图中可看出∠α度数+∠β的度数+90°=180°;②∠1比∠2大50°,则∠1的度数=∠2的度数+50度.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠α比∠β的度数大50°,得方程x=y+50.可列方程组为.故选:D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠B+∠BAD,再根据∠BAC=∠BAD+∠DAC即可得解.【解答】解:由三角形的外角性质,∠ADC=∠B+∠BAD,∵∠BAC=∠BAD+∠DAC,∠B=∠DAC,∴∠BAC=∠ADC.故选B.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y=2x+5(用含x的式子表示).【考点】解二元一次方程.【分析】将x看做已知数求出y即可.【解答】解:方程﹣2x+y=5,解得:y=2x+5.故答案为:2x+5.9.一个n边形的内角和是其外角和的2倍,则n=6.【考点】多边形内角与外角.【分析】根据多边形内角和公式:(n﹣2)•180 (n≥3且n为整数)结合题意可列出方程180(n﹣2)=360×2,再解即可.【解答】解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;10.不等式3x﹣9<0的最大整数解是2.【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.【解答】解:不等式的解集是x<3,故不等式3x﹣9<0的最大整数解为2.故答案为2.11.三元一次方程组的解是.【考点】解三元一次方程组.【分析】将方程组三个方程相加求出x+y+z的值,进而将每一个方程代入即可求出x,y,z的值.【解答】解:,①+②+③得:2(x+y+z)=22,即x+y+z=11④,将①代入④得:z=6,将②代入④得:x=2,将③代入④得:y=3,则方程组的解为.故答案为:12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为4.【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为30.【考点】平移的性质.【分析】先根据平移的性质得AC=DF,AD=CF=3,于是可判断四边形ACFD为平行四边形,然后根据平行四边形的面积公式计算即可.【解答】解:∵直角△ABC沿BC边平移3个单位得到直角△DEF,∴AC=DF,AD=CF=3,∴四边形ACFD为平行四边形,=CF•AB=3×10=30,∴S平行四边形ACFD即阴影部分的面积为30.故答案为:30.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=15度.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】先根据三角形内角和定理,计算出∠ACB=180°﹣∠A﹣∠B=90°,再根据三角形的高和角平分线的定义,得到∠BCE=∠ACB=45°,∠BDC=90°,于是可计算出∠BCD=30°,然后利用∠DCE=∠BCE﹣∠BCD进行计算即可.【解答】解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了5道题.【考点】二元一次方程的应用.【分析】设答对x道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=20°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD=70°,然后利用互余计算出∠DAD′,从而得到α的值.【解答】解:∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD=180°﹣∠2,而∠2=∠21=110°,∴∠BAD=180°﹣110°=70°,∴∠DAD′=90°﹣70°=20°,即α=20°.故答案为20°.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了11次;(2)一共走了132米.【考点】多边形内角与外角.【分析】根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12﹣1=11次才会回到原的起点,即一共走了12×11=132米.故答案为11,1132.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣【考点】解一元一次方程.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:6y﹣3(y﹣1)=12﹣(y+2)去括号得:6y﹣3y+3=12﹣y﹣2移项得:6y﹣3y+y=12﹣2﹣3合并得:4y=7系数化为1得:.19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先移项,再合并同类项,把x的系数化为1,把不等式的解集在数轴上表示出即可.【解答】解:移项得,5x﹣3x≤3+1,合并同类项得,2x≤4,x的系数化为1得,x≤2.在数轴上表示为:.20.解方程组:.【考点】解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:,①×3+②得,5x=25,解得x=5,把x=5代入①得,5﹣y=3,解得y=2,故方程组的解为.21.解不等式组:(注:必须通过画数轴求解集)【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:,由①得x≥13,由②得x>﹣2,所以原不等式组的解是:x≥13.22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=110度;(2)求∠EDF的度数.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)根据图形平移的性质画出△A1B1C1即可;(2)画出△ABC关于直线m对称的△A2B2C2即可;(3)过点A2B2作直线,此直线与直线m的交点即为所求.【解答】解:作图如下:(1)如图,△A1B1C1.(2)如图,△A2B2C2.(3)如图,点P即为所求.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)【考点】利用轴对称设计图案.【分析】做本题的关键是利用轴对称图形,作出轴对称图案.这里的答案不唯一,只要是轴对称图形就行.做时可以思考先把正方形变成两个面积相等,图形相同的两部分,再分这两部分为相同的轴对称图形.【解答】解:如图所示:.25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【考点】三元一次方程组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以得到x、y的值;(2)由题意可以列出相应的不等式,从而可以得到某营业员至少需要卖出服装的件数;(3)由题意可得相应的三元一次方程组,通过变形即可得到问题的答案.【解答】解:(1)由题意,得,解得即x的值为1800,y的值为3;(2)设某营业员当月卖服装m件,由题意得,1800+3m≥3100,解得,,∵m只能为正整数,∴m最小为434,即某营业员当月至少要卖434件;(3)设一件甲为a元,一件乙为b元,一件丙为c元,则,将两等式相加得,4a+4b+4c=720,则a+b+c=180,即购买一件甲、一件乙、一件丙共需180元.26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=125度(直接写出结果);②∠BDC的度数为90°+α(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB 的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).【考点】三角形综合题.【分析】(1)①根据角平分线定义以及三角形内角和定理计算即可解决问题.②根据角平分线定义以及三角形内角和定理计算即可解决问题.(2)由∠BFC=∠FCE ﹣∠FBC=由此即可解决问题.(3)利用(2)的结论即可解决问题.【解答】解:(1)①125°;②结论:,理由:∵∠ABC ,∠DCB=∠ACB ,∴∠BDC=180°﹣∠DBC ﹣∠DCB=180°﹣(∠ABC +∠ACB )=180°﹣=90°+∠A=90°+α.故答案分别为125°,90°+α.(2)∵BF 和CF 分别平分∠ABC 和∠ACE∴,,∴∠BFC=∠FCE ﹣∠FBC )==即.(3)由轴对称性质知:,由(1)②可得,∴.。
【华东师大版】福建省泉州市洛江区七年级下期末数学试卷及答案【优选】
七年级(下)期末数学试卷一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣122.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.45.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y=______(用含x的式子表示).9.一个n边形的内角和是其外角和的2倍,则n=______.10.不等式3x﹣9<0的最大整数解是______.11.三元一次方程组的解是______.12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为______.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了______道题.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=______.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了______次;(2)一共走了______米.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出来.20.解方程组:.21.解不等式组:(注:必须通过画数轴求解集)22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=______度;(2)求∠EDF的度数.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=______度(直接写出结果);②∠BDC的度数为______(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).2015-2016学年福建省泉州市洛江区七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3x=﹣6的解是( )A .x=﹣2B .x=﹣6C .x=2D .x=﹣12【考点】解一元一次方程.【分析】根据解方程的方法两边同时除以3求解.【解答】解:3x=﹣6两边同时除以3,得x=﹣2故选:A .2.若a >b ,则下列结论正确的是( )A .a ﹣5<b ﹣5B .3a >3bC .2+a <2+bD .<【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出结论正确的是哪个即可.【解答】解:∵a >b ,∴a ﹣5>b ﹣5,∴选项A 不正确;∵a >b ,∴3a >3b ,∴选项B 正确;∵a >b ,∴2+a >2+b ,∴选项C 不正确;∵a >b ,∴>,∴选项D 不正确.故选:B .3.下列图案既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.4【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90度,从图中可看出∠α度数+∠β的度数+90°=180°;②∠1比∠2大50°,则∠1的度数=∠2的度数+50度.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠α比∠β的度数大50°,得方程x=y+50.可列方程组为.故选:D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠B+∠BAD,再根据∠BAC=∠BAD+∠DAC即可得解.【解答】解:由三角形的外角性质,∠ADC=∠B+∠BAD,∵∠BAC=∠BAD+∠DAC,∠B=∠DAC,∴∠BAC=∠ADC.故选B.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y=2x+5(用含x的式子表示).【考点】解二元一次方程.【分析】将x看做已知数求出y即可.【解答】解:方程﹣2x+y=5,解得:y=2x+5.故答案为:2x+5.9.一个n边形的内角和是其外角和的2倍,则n=6.【考点】多边形内角与外角.【分析】根据多边形内角和公式:(n﹣2)•180 (n≥3且n为整数)结合题意可列出方程180(n ﹣2)=360×2,再解即可.【解答】解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;10.不等式3x﹣9<0的最大整数解是2.【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.【解答】解:不等式的解集是x<3,故不等式3x﹣9<0的最大整数解为2.故答案为2.11.三元一次方程组的解是.【考点】解三元一次方程组.【分析】将方程组三个方程相加求出x+y+z的值,进而将每一个方程代入即可求出x,y,z的值.【解答】解:,①+②+③得:2(x+y+z)=22,即x+y+z=11④,将①代入④得:z=6,将②代入④得:x=2,将③代入④得:y=3,则方程组的解为.故答案为:12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为4.【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为30.【考点】平移的性质.【分析】先根据平移的性质得AC=DF,AD=CF=3,于是可判断四边形ACFD为平行四边形,然后根据平行四边形的面积公式计算即可.【解答】解:∵直角△ABC沿BC边平移3个单位得到直角△DEF,∴AC=DF,AD=CF=3,∴四边形ACFD为平行四边形,=CF•AB=3×10=30,∴S平行四边形ACFD即阴影部分的面积为30.故答案为:30.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=15度.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】先根据三角形内角和定理,计算出∠ACB=180°﹣∠A﹣∠B=90°,再根据三角形的高和角平分线的定义,得到∠BCE=∠ACB=45°,∠BDC=90°,于是可计算出∠BCD=30°,然后利用∠DCE=∠BCE﹣∠BCD进行计算即可.【解答】解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了5道题.【考点】二元一次方程的应用.【分析】设答对x道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=20°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD=70°,然后利用互余计算出∠DAD′,从而得到α的值.【解答】解:∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD=180°﹣∠2,而∠2=∠21=110°,∴∠BAD=180°﹣110°=70°,∴∠DAD′=90°﹣70°=20°,即α=20°.故答案为20°.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了11次;(2)一共走了132米.【考点】多边形内角与外角.【分析】根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12﹣1=11次才会回到原来的起点,即一共走了12×11=132米.故答案为11,1132.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣【考点】解一元一次方程.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:6y﹣3(y﹣1)=12﹣(y+2)去括号得:6y﹣3y+3=12﹣y﹣2移项得:6y﹣3y+y=12﹣2﹣3合并得:4y=7系数化为1得:.19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先移项,再合并同类项,把x的系数化为1,把不等式的解集在数轴上表示出来即可.【解答】解:移项得,5x﹣3x≤3+1,合并同类项得,2x≤4,x的系数化为1得,x≤2.在数轴上表示为:.20.解方程组:.【考点】解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:,①×3+②得,5x=25,解得x=5,把x=5代入①得,5﹣y=3,解得y=2,故方程组的解为.21.解不等式组:(注:必须通过画数轴求解集)【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:,由①得x≥13,由②得x>﹣2,所以原不等式组的解是:x≥13.22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=110度;(2)求∠EDF的度数.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)根据图形平移的性质画出△A1B1C1即可;(2)画出△ABC关于直线m对称的△A2B2C2即可;(3)过点A2B2作直线,此直线与直线m的交点即为所求.【解答】解:作图如下:(1)如图,△A1B1C1.(2)如图,△A2B2C2.(3)如图,点P即为所求.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)【考点】利用轴对称设计图案.【分析】做本题的关键是利用轴对称图形,作出轴对称图案.这里的答案不唯一,只要是轴对称图形就行.做时可以思考先把正方形变成两个面积相等,图形相同的两部分,再分这两部分为相同的轴对称图形.【解答】解:如图所示:.25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【考点】三元一次方程组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以得到x、y的值;(2)由题意可以列出相应的不等式,从而可以得到某营业员至少需要卖出服装的件数;(3)由题意可得相应的三元一次方程组,通过变形即可得到问题的答案.【解答】解:(1)由题意,得,解得即x的值为1800,y的值为3;(2)设某营业员当月卖服装m件,由题意得,1800+3m≥3100,解得,,∵m只能为正整数,∴m最小为434,即某营业员当月至少要卖434件;(3)设一件甲为a元,一件乙为b元,一件丙为c元,则,将两等式相加得,4a+4b+4c=720,则a+b+c=180,即购买一件甲、一件乙、一件丙共需180元.26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=125度(直接写出结果);②∠BDC的度数为90°+α(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).【考点】三角形综合题.【分析】(1)①根据角平分线定义以及三角形内角和定理计算即可解决问题.②根据角平分线定义以及三角形内角和定理计算即可解决问题.(2)由∠BFC=∠FCE﹣∠FBC=由此即可解决问题.(3)利用(2)的结论即可解决问题.【解答】解:(1)①125°;②结论:,理由:∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠A=90°+α.故答案分别为125°,90°+α.(2)∵BF和CF分别平分∠ABC和∠ACE∴,,∴∠BFC=∠FCE﹣∠FBC)==即.(3)由轴对称性质知:,由(1)②可得,∴.。
2016年春洛江区七年级数学答案
2015-2016学年度初一年下学期期末质量检测数学试卷参考答案 说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面得分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完涉及应得的累计分数.一、选择题(每题3分,共21分)1.A2.B3.D4.C5.C6.C7.B二、填空题(每题4分,共40分)8.;9.6;10.2; 11.;12.4;13.30;14.15;15.5;16.20; 17.(1)11;52+x ⎪⎩⎪⎨⎧===632z y x (2)120.三、解答题:(89分)18.(9分)解: 62221+-=--y y y ………………3分)2(12)1(36+-=--y y y ………………5分212336--=+-y y y321236--=+-y y y …………………………8分74=y …………………………9分 47=y 19.(9分)解不等式,并把解集在数轴上表示出来.3315+≤-x x 解:……………………2分1335+≤-x x………………………4分 42≤x ………………………6分2≤x 它在数轴上的表示(略)(数轴正确1分,实心及方向2分)………………9分20.(9分)解方程组: ⎩⎨⎧⋯⋯=+⋯⋯⋯⋯=-((((2163213y x y x方法一:用代入法解的得分步骤解:由(1)得 (3)……3分 3+=y x 把(3)代入(2) 得1633(2=++y y ( 解得………6分2=y 把代入(3) 得……8分2=y 5=x 所以原方程的解为……9分⎩⎨⎧==25y x 方法二:用加减法解的得分步骤解:由(2)-(1)×2 得 …………………4分 105=y ……………6分2=y 把代入(1)2=y 得……………………8分5=x 所以原方程的解为……9分 ⎩⎨⎧==25y x21.(9分)解:由(1)得……………………3分13≥x 由(2)得……………………6分2->x 在数轴上表示两个解集(略)………7分所以原不等式组的解是:…………9分13≥x 22.(9分)解:(1)110; ………………………………………… 3分 (2)解法一:∵∠B=50°,∠BAD=30°,∴∠ADB=180°-50°-30°=100°, ……… 5分∵△AED 是由△ABD 折叠得到,∴∠ADE=∠ADB=100°, …………………… 7分 ∴∠EDF=∠EDA+∠BDA-∠BDF=100°+100°-180°=20°. … 9分 解法二:∵∠B=50°,∠BAD=30°,∴∠ADB=180°-50°-30°=100°, ……………………………………… 5分 ∵△AED 是由△ABD 折叠得到,∴∠ADE=∠ADB=100°, …………………………………………………… 6分 ∵∠ADF 是△ABD 的外角,∴∠ADF=∠BAD+∠B=50°+30°=80°,…………………………………… 7分 ∴∠EDF=∠ADE-∠ADF=100°-180°=20°. ……………………………… 9分(注:其它解法按步给分)23.(9分)解:作图如下:24.(9分)答案不惟一. (注:画对一个得5分,两个得9分)P A CD BEF (1)正确画出△A 1B 1C 1. ………………3分(2)正确画出△A 2B 2C 2. ………………6分(3)正确画出点P . ……………………9分∵只能为正整数∴最小为434m 答:他当月至少要卖434件.………………………………………………10分(3)设一件甲为元,一件乙为元,一件丙为元,则 a b c …………………………………………………………11分 ⎩⎨⎧=++=++3703235023c b a c b a 将两等式相加得720444=++c b a 则180=++c b a 答:购买一件甲、一件乙、一件丙共需180元.………………………………13分26.(13分)解:(1)①;②;………………………………4分 125α2190+ (2)∵和分别平分和BF CF ABC ∠ACE ∠ ∴,……………5分 ABC FBC ∠=∠21ACE FCE ∠=∠21 ∴……………………………6分 FBC FCE BFC ∠-∠=∠ )(21ABC ACE ∠-∠= ……………………………………………7分 A ∠=21 即………………………………………………8分 α21=∠BFC (3)由轴对称性质知:………………10分 α21=∠=∠BFC BGC由(1)②可得………………12分 BGC BMC ∠+=∠2190∴.……………………………………13分 α4190+=∠ BMC。
泉州市洛江区2015-2016学年七年级下期末数学试卷含答案解析
2015-2016学年福建省泉州市洛江区七年级(下)期末数学试卷一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣122.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.45.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y=______(用含x的式子表示).9.一个n边形的内角和是其外角和的2倍,则n=______.10.不等式3x﹣9<0的最大整数解是______.11.三元一次方程组的解是______.12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为______.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了______道题.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a <90°).若∠1=110°,则a=______.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了______次;(2)一共走了______米.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出来.20.解方程组:.21.解不等式组:(注:必须通过画数轴求解集)22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD 折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=______度;(2)求∠EDF的度数.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=______度(直接写出结果);②∠BDC的度数为______(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).2015-2016学年福建省泉州市洛江区七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.1.方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣12【考点】解一元一次方程.【分析】根据解方程的方法两边同时除以3求解.【解答】解:3x=﹣6两边同时除以3,得x=﹣2故选:A.2.若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出结论正确的是哪个即可.【解答】解:∵a>b,∴a﹣5>b﹣5,∴选项A不正确;∵a>b,∴3a>3b,∴选项B正确;∵a>b,∴2+a>2+b,∴选项C不正确;∵a>b,∴>,∴选项D不正确.故选:B.3.下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.4【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.6.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90度,从图中可看出∠α度数+∠β的度数+90°=180°;②∠1比∠2大50°,则∠1的度数=∠2的度数+50度.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠α比∠β的度数大50°,得方程x=y+50.可列方程组为.故选:D.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠B+∠BAD,再根据∠BAC=∠BAD+∠DAC即可得解.【解答】解:由三角形的外角性质,∠ADC=∠B+∠BAD,∵∠BAC=∠BAD+∠DAC,∠B=∠DAC,∴∠BAC=∠ADC.故选B.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.若﹣2x+y=5,则y=2x+5(用含x的式子表示).【考点】解二元一次方程.【分析】将x看做已知数求出y即可.【解答】解:方程﹣2x+y=5,解得:y=2x+5.故答案为:2x+5.9.一个n边形的内角和是其外角和的2倍,则n=6.【考点】多边形内角与外角.【分析】根据多边形内角和公式:(n﹣2)•180 (n≥3且n为整数)结合题意可列出方程180(n﹣2)=360×2,再解即可.【解答】解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;10.不等式3x﹣9<0的最大整数解是2.【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.【解答】解:不等式的解集是x<3,故不等式3x﹣9<0的最大整数解为2.故答案为2.11.三元一次方程组的解是.【考点】解三元一次方程组.【分析】将方程组三个方程相加求出x+y+z的值,进而将每一个方程代入即可求出x,y,z 的值.【解答】解:,①+②+③得:2(x+y+z)=22,即x+y+z=11④,将①代入④得:z=6,将②代入④得:x=2,将③代入④得:y=3,则方程组的解为.故答案为:12.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为4.【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.13.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为30.【考点】平移的性质.【分析】先根据平移的性质得AC=DF,AD=CF=3,于是可判断四边形ACFD为平行四边形,然后根据平行四边形的面积公式计算即可.【解答】解:∵直角△ABC沿BC边平移3个单位得到直角△DEF,∴AC=DF,AD=CF=3,∴四边形ACFD为平行四边形,=CF•AB=3×10=30,∴S平行四边形ACFD即阴影部分的面积为30.故答案为:30.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=15度.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】先根据三角形内角和定理,计算出∠ACB=180°﹣∠A﹣∠B=90°,再根据三角形的高和角平分线的定义,得到∠BCE=∠ACB=45°,∠BDC=90°,于是可计算出∠BCD=30°,然后利用∠DCE=∠BCE﹣∠BCD进行计算即可.【解答】解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了5道题.【考点】二元一次方程的应用.【分析】设答对x道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.16.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a <90°).若∠1=110°,则a=20°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD=70°,然后利用互余计算出∠DAD′,从而得到α的值.【解答】解:∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD=180°﹣∠2,而∠2=∠21=110°,∴∠BAD=180°﹣110°=70°,∴∠DAD′=90°﹣70°=20°,即α=20°.故答案为20°.17.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了11次;(2)一共走了132米.【考点】多边形内角与外角.【分析】根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12﹣1=11次才会回到原来的起点,即一共走了12×11=132米.故答案为11,1132.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.y﹣=2﹣【考点】解一元一次方程.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:6y﹣3(y﹣1)=12﹣(y+2)去括号得:6y﹣3y+3=12﹣y﹣2移项得:6y﹣3y+y=12﹣2﹣3合并得:4y=7系数化为1得:.19.解不等式5x﹣1≤3x+3,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先移项,再合并同类项,把x的系数化为1,把不等式的解集在数轴上表示出来即可.【解答】解:移项得,5x﹣3x≤3+1,合并同类项得,2x≤4,x的系数化为1得,x≤2.在数轴上表示为:.20.解方程组:.【考点】解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:,①×3+②得,5x=25,解得x=5,把x=5代入①得,5﹣y=3,解得y=2,故方程组的解为.21.解不等式组:(注:必须通过画数轴求解集)【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:,由①得x≥13,由②得x>﹣2,所以原不等式组的解是:x≥13.22.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD 折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=110度;(2)求∠EDF的度数.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)根据图形平移的性质画出△A1B1C1即可;(2)画出△ABC关于直线m对称的△A2B2C2即可;(3)过点A2B2作直线,此直线与直线m的交点即为所求.【解答】解:作图如下:(1)如图,△A1B1C1.(2)如图,△A2B2C2.(3)如图,点P即为所求.24.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)【考点】利用轴对称设计图案.【分析】做本题的关键是利用轴对称图形,作出轴对称图案.这里的答案不唯一,只要是轴对称图形就行.做时可以思考先把正方形变成两个面积相等,图形相同的两部分,再分这两部分为相同的轴对称图形.【解答】解:如图所示:.25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【考点】三元一次方程组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以得到x、y的值;(2)由题意可以列出相应的不等式,从而可以得到某营业员至少需要卖出服装的件数;(3)由题意可得相应的三元一次方程组,通过变形即可得到问题的答案.【解答】解:(1)由题意,得,解得即x的值为1800,y的值为3;(2)设某营业员当月卖服装m件,由题意得,1800+3m≥3100,解得,,∵m只能为正整数,∴m最小为434,即某营业员当月至少要卖434件;(3)设一件甲为a元,一件乙为b元,一件丙为c元,则,将两等式相加得,4a+4b+4c=720,则a+b+c=180,即购买一件甲、一件乙、一件丙共需180元.26.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=125度(直接写出结果);②∠BDC的度数为90°+α(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).【考点】三角形综合题.【分析】(1)①根据角平分线定义以及三角形内角和定理计算即可解决问题.②根据角平分线定义以及三角形内角和定理计算即可解决问题.(2)由∠BFC=∠FCE﹣∠FBC=由此即可解决问题.(3)利用(2)的结论即可解决问题.【解答】解:(1)①125°;②结论:,理由:∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠A=90°+α.故答案分别为125°,90°+α.(2)∵BF和CF分别平分∠ABC和∠ACE∴,,∴∠BFC=∠FCE﹣∠FBC)==即.(3)由轴对称性质知:,由(1)②可得,∴.2016年9月24日。
2016年春洛江区七年级数学答案
2015-2016学年度初一年下学期期末质量检测数学试卷参考答案 说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面得分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完涉及应得的累计分数.一、选择题(每题3分,共21分)1.A2.B3.D4.C5.C6.C7.B二、填空题(每题4分,共40分)8.52+x ;9.6;10.2; 11.⎪⎩⎪⎨⎧===632z y x ;12.4;13.30;14.15;15.5;16.20; 17.(1)11; (2)120.三、解答题:(89分)18.(9分)解: 62221+-=--y y y )2(12)1(36+-=--y y y ………………3分212336--=+-y y y ………………5分321236--=+-y y y74=y …………………………8分 47=y …………………………9分 19.(9分)解不等式3315+≤-x x ,并把解集在数轴上表示出来.解:1335+≤-x x ……………………2分42≤x ………………………4分2≤x ………………………6分它在数轴上的表示(略)(数轴正确1分,实心及方向2分)………………9分20.(9分)解方程组:⎩⎨⎧⋯⋯=+⋯⋯⋯⋯=-)()(2163213y x y x方法一:用代入法解的得分步骤 解:由(1)得 3+=y x (3)……3分 把(3)代入(2) 得1633(2=++y y ) 解得2=y ………6分 把2=y 代入(3) 得5=x ……8分 所以原方程的解为⎩⎨⎧==25y x ……9分 方法二:用加减法解的得分步骤 解:由(2)-(1)×2 得 105=y …………………4分 2=y ……………6分 把2=y 代入(1) 得5=x ……………………8分 所以原方程的解为⎩⎨⎧==25y x ……9分21.(9分)解:由(1)得13≥x ……………………3分由(2)得2->x ……………………6分在数轴上表示两个解集(略)………7分所以原不等式组的解是:13≥x …………9分22.(9分)解:(1)110; ………………………………………… 3分(2)解法一:∵∠B=50°,∠BAD=30°, ∴∠ADB=180°-50°-30°=100°, ……… 5分∵△AED 是由△ABD 折叠得到,∴∠ADE=∠ADB=100°, ........................ 7分 ∴∠EDF=∠EDA+∠BDA-∠BDF=100°+100°-180°=20°. (9)分 解法二: ∵∠B=50°,∠BAD=30°,∴∠ADB=180°-50°-30°=100°, ……………………………………… 5分 ∵△AED 是由△ABD 折叠得到,∴∠ADE=∠ADB=100°, …………………………………………………… 6分 ∵∠ADF 是△ABD 的外角,∴∠ADF=∠BAD+∠B=50°+30°=80°,…………………………………… 7分 ∴∠EDF=∠ADE-∠ADF=100°-180°=20°. ……………………………… 9分(注:其它解法按步给分)23.(9分)解:作图如下:24.(9分)答案不惟一.(注:画对一个得5分,两个得9分)PAC DB E F (1)正确画出△A 1B 1C 1. ………………3分 (2)正确画出△A 2B 2C 2. ………………6分(3)正确画出点P . ……………………9分∵只能为正整数∴m 最小为434答:他当月至少要卖434件.………………………………………………10分(3)设一件甲为a 元,一件乙为b 元,一件丙为c 元,则 ⎩⎨⎧=++=++3703235023c b a c b a …………………………………………………………11分 将两等式相加得720444=++c b a则180=++c b a答:购买一件甲、一件乙、一件丙共需180元.………………………………13分26.(13分)解:(1)① 125;②α2190+ ;………………………………4分 (2)∵BF 和CF 分别平分ABC ∠和ACE ∠∴ABC FBC ∠=∠21,ACE FCE ∠=∠21……………5分 ∴FBC FCE BFC ∠-∠=∠……………………………6分 )(21ABC ACE ∠-∠= A ∠=21……………………………………………7分 即α21=∠BFC ………………………………………………8分 (3)由轴对称性质知:α21=∠=∠BFC BGC ………………10分 由(1)②可得BGC BMC ∠+=∠2190 ………………12分 ∴α4190+=∠ BMC .……………………………………13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年福建省泉州市洛江区七年级(下)期末数学试卷一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答. 1.(3分)方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣122.(3分)若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<3.(3分)下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.(3分)现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.45.(3分)商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种 B.2种 C.3种 D.4种6.(3分)一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.7.(3分)已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.(4分)若﹣2x+y=5,则y=(用含x的式子表示).9.(4分)一个n边形的内角和是其外角和的2倍,则n=.10.(4分)不等式3x﹣9<0的最大整数解是.11.(4分)三元一次方程组的解是.12.(4分)如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.13.(4分)如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为.14.(4分)如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=度.15.(4分)一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了道题.16.(4分)如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=.17.(4分)如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了次;(2)一共走了米.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)y﹣=2﹣19.(9分)解不等式5x﹣1≤3x+3,并把解集在数轴上表示出来.20.(9分)解方程组:.21.(9分)解不等式组:(注:必须通过画数轴求解集)22.(9分)如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=度;(2)求∠EDF的度数.23.(9分)如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.24.(9分)为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)25.(13分)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.(13分)在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=度(直接写出结果);②∠BDC的度数为(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC 的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).2015-2016学年福建省泉州市洛江区七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答. 1.(3分)方程3x=﹣6的解是()A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣12【解答】解:3x=﹣6两边同时除以3,得x=﹣2故选:A.2.(3分)若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.3a>3b C.2+a<2+b D.<【解答】解:∵a>b,∴a﹣5>b﹣5,∴选项A不正确;∵a>b,∴3a>3b,∴选项B正确;∵a>b,∴2+a>2+b,∴选项C不正确;∵a>b,∴>,∴选项D不正确.故选:B.3.(3分)下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.(3分)现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1 B.2 C.3 D.4【解答】解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.5.(3分)商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种 B.2种 C.3种 D.4种【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选:C.6.(3分)一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠α比∠β的度数大50°,得方程x=y+50.可列方程组为.故选:D.7.(3分)已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定【解答】解:由三角形的外角性质,∠ADC=∠B+∠BAD,∵∠BAC=∠BAD+∠DAC,∠B=∠DAC,∴∠BAC=∠ADC.故选:B.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.(4分)若﹣2x+y=5,则y=2x+5(用含x的式子表示).【解答】解:方程﹣2x+y=5,解得:y=2x+5.故答案为:2x+5.9.(4分)一个n边形的内角和是其外角和的2倍,则n=6.【解答】解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;10.(4分)不等式3x﹣9<0的最大整数解是2.【解答】解:不等式的解集是x<3,故不等式3x﹣9<0的最大整数解为2.故答案为2.11.(4分)三元一次方程组的解是.【解答】解:,①+②+③得:2(x+y+z)=22,即x+y+z=11④,将①代入④得:z=6,将②代入④得:x=2,将③代入④得:y=3,则方程组的解为.故答案为:12.(4分)如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为4.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.13.(4分)如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是3,则图中阴影部分的面积为30.【解答】解:∵直角△ABC沿BC边平移3个单位得到直角△DEF,∴AC=DF,AD=CF=3,∴四边形ACFD为平行四边形,=CF•AB=3×10=30,∴S平行四边形ACFD即阴影部分的面积为30.故答案为:30.14.(4分)如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=15度.【解答】解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.15.(4分)一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了5道题.【解答】解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.16.(4分)如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a (0°<a<90°).若∠1=110°,则a=20°.【解答】解:∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD=180°﹣∠2,而∠2=∠21=110°,∴∠BAD=180°﹣110°=70°,∴∠DAD′=90°﹣70°=20°,即α=20°.故答案为20°.17.(4分)如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了11次;(2)一共走了120米.【解答】解:∵360÷30=12,∴他需要走12﹣1=11次才会回到原来的起点,即一共走了12×10=120米.故答案为11,120.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)y﹣=2﹣【解答】解:去分母得:6y﹣3(y﹣1)=12﹣(y+2)去括号得:6y﹣3y+3=12﹣y﹣2移项得:6y﹣3y+y=12﹣2﹣3合并得:4y=7系数化为1得:.19.(9分)解不等式5x﹣1≤3x+3,并把解集在数轴上表示出来.【解答】解:移项得,5x﹣3x≤3+1,合并同类项得,2x≤4,x的系数化为1得,x≤2.在数轴上表示为:.20.(9分)解方程组:.【解答】解:,①×3+②得,5x=25,解得x=5,把x=5代入①得,5﹣y=3,解得y=2,故方程组的解为.21.(9分)解不等式组:(注:必须通过画数轴求解集)【解答】解:,由①得x≥13,由②得x>﹣2,所以原不等式组的解是:x≥13.22.(9分)如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=110度;(2)求∠EDF的度数.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°,∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.23.(9分)如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA﹣PC2|的值最大.【解答】解:作图如下:(1)如图,△A1B1C1.(2)如图,△A2B2C2.(3)如图,点P即为所求.24.(9分)为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(如图中的图(1));(2)过一条边的四等分点作这边的垂线段(图(2))(图(2)中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图(3)、图(4)两个正方形中画出另外两种不同的分割方法.(正确画图,不写画法)【解答】解:如图所示:.25.(13分)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【解答】解:(1)由题意,得,解得即x的值为1800,y的值为3;(2)设某营业员当月卖服装m件,由题意得,1800+3m≥3100,解得,,∵m只能为正整数,∴m最小为434,即某营业员当月至少要卖434件;(3)设一件甲为a元,一件乙为b元,一件丙为c元,则,将两等式相加得,4a+4b+4c=720,则a+b+c=180,即购买一件甲、一件乙、一件丙共需180元.26.(13分)在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=125度(直接写出结果);②∠BDC的度数为90°+α(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC 的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).【解答】解:(1)①125°;②结论:,理由:∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=90°+α.故答案分别为125°,90°+α.(2)∵BF和CF分别平分∠ABC和∠ACE∴,,∴∠BFC=∠FCE﹣∠FBC)==即.(3)由轴对称性质知:,由(1)②可得,∴.感谢再次感谢。