武清区第四高级中学2018-2019学年高二上学期第二次月考试卷数学(1)
2019届天津市武清区高三(上)第二次月考数学试题(解析版)
2019届天津市武清区高三(上)第二次月考数学试题一、单选题1.已知全集=U R ,集合{}{}=1,2,3,4,5=3A B x R x ∈≥,,图中阴影部分所表示的集合为( )A .{}1,2B .{}4,5C .{}1,2,3D .{}3,4,5【答案】A【解析】由题意可知,阴影部分所表示的元素属于A ,不属于B ,结合所给的集合求解()R B A ⋂ð即可确定阴影部分所表示的集合. 【详解】由已知中阴影部分在集合A 中,而不在集合B 中,故阴影部分所表示的元素属于A ,不属于B (属于B 的补集),即(){}1,2R B A ⋂=ð. 【点睛】本题主要考查集合的表示方法,Venn 图及其应用等知识,意在考查学生的转化能力和计算求解能力. 2.若()4,,sin 25παππα⎛⎫∈-=⎪⎝⎭,则cos α=( )A .35 B .35- C .45-D .15【答案】B【解析】由题意可得4sin 5α=,然后结合同角三角函数基本关系和角度的范围确定cos α的值即可.【详解】由诱导公式可得:()sin πα- sin α= 45=,∴3cos 5α=±,由,2παπ⎛⎫∈ ⎪⎝⎭,得 3cos 5α=-.本题选择B 选项. 【点睛】本题主要考查同角三角函数基本关系,诱导公式及其应用等知识,意在考查学生的转化能力和计算求解能力. 3.下列函数中,最小正周期为2π的是( ) A .2018sin y x = B .sin 2018y x = C .cos 2y x =- D .sin 44y x π⎛⎫=+⎪⎝⎭【答案】D【解析】由题意结合三角函数的解析式和三角函数的周期公式确定所给函数的最小正周期即可. 【详解】逐一考查所给函数的最小正周期:A . 2018y sinx =,函数的最小正周期2221T πππω===;B . 2018y sin x =,函数的最小正周期2220181009T πππω===;C . 2y cos x =-,函数的最小正周期222T πππω===; D . 44y sin x π⎛⎫=+ ⎪⎝⎭,函数的最小正周期2242T πππω===. 本题选择D 选项. 【点睛】本题主要考查三角函数的最小正周期公式,属于基础题. 4.设R θ∈,则“ππ1212θ-<”是“1sin 2θ<”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】A 【解析】πππ012126θθ-<⇔<< 1sin 2θ⇒< ,但10,sin 2θθ=<,不满足ππ1212θ-<,所以是充分不必要条件,选A. 【考点】 充要条件【名师点睛】本题考查充要条件的判断,若p q ⇒,则p 是q 的充分条件,若q p ⇒,则p 是q 的必要条件,若p q ⇔,则p 是q 的充要条件;从集合的角度看,若A B ⊆,则A 是B 的充分条件,若B A ⊆,则A 是B 的必要条件,若A B =,则A 是B 的充要条件,若A 是B 的真子集,则A 是B 的充分不必要条件,若B 是A 的真子集,则A 是B 的必要不充分条件.5.已知()()()sin cos ,02f x x x πωϕωϕωϕ=+++>,<,()f x 是奇函数,直线y =与函数()f x 的图像的两个相邻交点的横坐标之差的绝对值为2π,则( ) A .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减 B .()f x 在0,4π⎛⎫⎪⎝⎭上单调递减 C .()f x 在0,4π⎛⎫⎪⎝⎭上单调递增D .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递增 【答案】A【解析】首先整理函数的解析式为()()f x x ωϕ=+,由函数为奇函数可得0ϕ=,由最小正周期公式可得4ω=,结合三角函数的性质考查函数在给定区间的单调性即可. 【详解】由函数的解析式可得:()()f x x ωϕ=+,函数为奇函数,则当0x =时:()x k k Z ωϕϕπ+==∈.令0k =可得0ϕ=. 结合最小正周期公式可得:22ππω=,解得:4ω=.故函数的解析式为:()4f x x =.当3,88x ππ⎛⎫∈ ⎪⎝⎭时,34,22x ππ⎛⎫∈ ⎪⎝⎭,函数在所给区间内单调递减;当0,4x π⎛⎫∈ ⎪⎝⎭时,()40,x π∈,函数在所给区间内不具有单调性; 据此可知,只有选项A 的说法正确.故选:A . 【点睛】本题主要考查三角函数的性质,三角函数解析式的求解等知识,意在考查学生的转化能力和计算求解能力.6.已知()f x 为定义在()0,∞+上的函数,若对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x --<,记()()()0.2220.22220.2log 5,,20.2log 5f f f a b c ===,则( )A .a b c <<B .b a c <<C .c <a <bD .c b a <<【答案】C 【解析】由()()2112120x f x x f x x x --<可知函数()f x x是()0,+∞上的减函数,结合自变量的大小比较函数值(即实数a ,b ,c 的大小)即可. 【详解】因为()f x 是定义在()0,+∞上的函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x --<,故()()12122111f x f x x x x x -<-,∴函数()f x x 是()0,+∞上的减函数, ∵0.222122,00.21,log 52<<<<>,∴ 20.220.22log 5<<,∴c a b <<.故选C. 【点睛】本题主要考查函数的单调性,比较大小的方法等知识,意在考查学生的转化能力和计算求解能力.7.已知曲线()2222:100x y C a b a b-=>,>的左、右焦点分别为12,,F F O 为坐标原点,P 是双曲线在第一象限上的点,MO OP =,直线2PF 交双曲线C 于另一点N ,若122PF PF =,且2120MF N ∠=︒则双曲线C 的离心率为( )A.3BC D 【答案】B【解析】由题意结合双曲线的定义可得124,2PF a PF a == ,在三角形12PF F 中,由余弦定理可得2224208c a a =+,据此计算双曲线的离心率即可. 【详解】由题意,122PF PF =,由双曲线的定义可得,122PFPF a -= ,可得124,2PF a PF a == ,由四边形12PF MF 为平行四边形,又2120MF N ∠=︒,可得12120F PF ∠=︒, 在三角形12PF F 中,由余弦定理可得2224164242cos120c a a a a =+-⋅⋅⋅︒ ,即有2224208c a a =+,即227ca =,可得c =,即ce a==【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围). 8.已知函数,若方程有四个不同的解,且,则的取值范围是( )A .B .C .D .【答案】D 【解析】如图:则,,所以,且,因为单调递减,所以取值范围为,故选D 。
武清区第二高级中学2018-2019学年高二上学期第二次月考试卷数学
武清区第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )A .1B .C .D .22. 已知集合2{320,}A x x x x R =-+=∈,{05,}B x x x N =<<∈,则满足条件A C B ⊆⊆的集合C 的个数为A 、B 、2C 、3D 、4 3. 在等比数列中,,前项和为,若数列也是等比数列,则等于( )A .B .C .D .4. 已知复数z 满足(3+4i )z=25,则=( )A .3﹣4iB .3+4iC .﹣3﹣4iD .﹣3+4i5. 若圆226260x y x y +--+=上有且仅有三个点到直线10(ax y a -+=是实数)的距离为, 则a =( )A . 1±B . ±C .D .6. 如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,则P (ξ≥1)等于( )A .0.1B .0.2C .0.3D .0.47. 已知函数f (x )=e x +x ,g (x )=lnx+x ,h (x )=x ﹣的零点依次为a ,b ,c ,则( )A .c <b <aB .a <b <cC .c <a <bD .b <a <c8. 若圆心坐标为()2,1-的圆在直线10x y --=上截得的弦长为 ) A .()()22210x y -++= B .()()22214x y -++= C .()()22218x y -++= D .()()222116x y -++=9. 已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的( ) A .①④B .①⑤C .②⑤D .③⑤10.过抛物线y=x 2上的点的切线的倾斜角( )A .30°B .45°C .60°D .135°11.函数f (x )=x 3﹣3x 2+5的单调减区间是( )A .(0,2)B .(0,3)C .(0,1)D .(0,5)12.已知数列{a n }中,a 1=1,a n+1=a n +n ,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是( )A .n ≤8?B .n ≤9?C .n ≤10?D .n ≤11?二、填空题13.设p :∃x ∈使函数有意义,若¬p 为假命题,则t 的取值范围为 .14.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC 的面积为 .15.若6()mx y +展开式中33x y 的系数为160-,则m =__________.【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想. 16.圆心在原点且与直线2x y +=相切的圆的方程为_____ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题. 17.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x ﹣1)<f (2﹣x )的1819.【南师附中2017届高三模拟二】已知函数()()323131,02f x x a x ax a =+--+>. (1)试讨论()()0f x x ≥的单调性;(2)证明:对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤;(3)设(1)中的p 的最大值为()g a ,求()g a 得最大值.20.在ABC ∆中已知2a b c =+,2sin sin sin A B C =,试判断ABC ∆的形状.21.如图,在四棱锥O ﹣ABCD 中,底面ABCD 四边长为1的菱形,∠ABC=,OA ⊥底面ABCD ,OA=2,M 为OA 的中点,N 为BC 的中点. (Ⅰ)证明:直线MN ∥平面OCD ; (Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离.22.如图:等腰梯形ABCD ,E 为底AB 的中点,AD=DC=CB=AB=2,沿ED 折成四棱锥A ﹣BCDE ,使AC=.(1)证明:平面AED ⊥平面BCDE ; (2)求二面角E ﹣AC ﹣B 的余弦值.23.(本题满分15分)正项数列}{n a 满足121223+++=+n n n n a a a a ,11=a .(1)证明:对任意的*N n ∈,12+≤n n a a ;(2)记数列}{n a 的前n 项和为n S ,证明:对任意的*N n ∈,32121<≤--n n S .【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.24.已知函数f(x)=alnx+x2+bx+1在点(1,f(1))处的切线方程为4x﹣y﹣12=0.(1)求函数f(x)的解析式;(2)求f(x)的单调区间和极值.武清区第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题1. 【答案】C【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F (0,1), 又P 为C 上一点,|PF|=4, 可得y P =3,代入抛物线方程得:|xP |=2,∴S △POF =|0F|•|x P |=.故选:C .2. 【答案】D【解析】{|(1)(2)0,}{1,2}A x x x x =--=∈=R , {}{}|05,1,2,3,4=<<∈=N B x x x . ∵⊆⊆A C B ,∴C 可以为{}1,2,{}1,2,3,{}1,2,4,{}1,2,3,4. 3. 【答案】D【解析】设的公比为,则,,因为也是等比数列,所以,即,所以因为,所以,即,所以,故选D答案:D4. 【答案】B解析:∵(3+4i )z=25,z===3﹣4i .∴=3+4i . 故选:B .5. 【答案】B 【解析】试题分析:由圆226260x y x y +--+=,可得22(3)(1)4x y -+-=,所以圆心坐标为(3,1),半径为2r =,要使得圆上有且仅有三个点到直线10(ax y a -+=是实数)的距离为,则圆心到直线的距离等于12r ,即1 =,解得4a=±,故选B. 1考点:直线与圆的位置关系.【方法点晴】本题主要考查了直线与圆的位置关系,其中解答中涉及到圆的标准方程、圆心坐标和圆的半径、点到直线的距离公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化的思想方法,本题的解答中,把圆上有且仅有三个点到直线的距离为,转化为圆心到直线的距离等于12r 是解答的关键.6.【答案】A【解析】解:如果随机变量ξ~N(﹣1,σ2),且P(﹣3≤ξ≤﹣1)=0.4,∵P(﹣3≤ξ≤﹣1)=∴∴P(ξ≥1)=.【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.7.【答案】B【解析】解:由f(x)=0得e x=﹣x,由g(x)=0得lnx=﹣x.由h(x)=0得x=1,即c=1.在坐标系中,分别作出函数y=e x ,y=﹣x,y=lnx的图象,由图象可知a<0,0<b<1,所以a<b<c.故选:B.【点评】本题主要考查函数零点的应用,利用数形结合是解决本题的关键.8.【答案】B【解析】考点:圆的方程.1111]9.【答案】D【解析】解:当m⊂α,α∥β时,根据线面平行的定义,m与β没有公共点,有m∥β,其他条件无法推出m ∥β,故选D【点评】本题考查直线与平面平行的判定,一般有两种思路:判定定理和定义,要注意根据条件选择使用.10.【答案】B【解析】解:y=x2的导数为y′=2x,在点的切线的斜率为k=2×=1,设所求切线的倾斜角为α(0°≤α<180°),由k=tanα=1,解得α=45°.故选:B.【点评】本题考查导数的运用:求切线的斜率,考查直线的倾斜角的求法,考查运算能力,属于基础题.11.【答案】A【解析】解:∵f(x)=x3﹣3x2+5,∴f′(x)=3x2﹣6x,令f′(x)<0,解得:0<x<2,故选:A.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.12.【答案】B【解析】解:n=1,满足条件,执行循环体,S=1+1=2n=2,满足条件,执行循环体,S=1+1+2=4n=3,满足条件,执行循环体,S=1+1+2+3=7n=10,不满足条件,退出循环体,循环满足的条件为n≤9,故选B.【点评】本题主要考查了当型循环结构,算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.二、填空题13.【答案】.【解析】解:若¬P为假命题,则p为真命题.不等式tx2+2x﹣2>0有属于(1,)的解,即有属于(1,)的解,又时,,所以.故t>﹣.故答案为t>﹣.14.【答案】.【解析】解:∵asinA=bsinB+(c﹣b)sinC,∴由正弦定理得a2=b2+c2﹣bc,即:b2+c2﹣a2=bc,∴由余弦定理可得b2=a2+c2﹣2accosB,∴cosA===,A=60°.可得:sinA=,∵bc=4,∴S△ABC=bcsinA==.故答案为:【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题.15.【答案】2-【解析】由题意,得336160C m =-,即38m =-,所以2m =-.16.【答案】222x y +=【解析】由题意,圆的半径等于原点到直线2x y +=的距离,所以r d ===222x y +=.17.【答案】 (1,2) .【解析】解:∵f (x )=log a x (其中a 为常数且a >0,a ≠1)满足f (2)>f (3), ∴0<a <1,x >0,若f (2x ﹣1)<f (2﹣x ),则,解得:1<x <2, 故答案为:(1,2).【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题.18.【答案】【解析】设l 1与l 2的夹角为2θ,由于l 1与l 2的交点A (1,3)在圆的外部, 且点A 与圆心O 之间的距离为OA==,圆的半径为r=,∴sin θ==,∴cos θ=,tan θ==,∴tan2θ===,故答案为:。
武清区四中2018-2019学年高二上学期第二次月考试卷数学
武清区四中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.设有直线m、n和平面α、β,下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α2.已知F1、F2分别是双曲线﹣=1(a>0,b>0)的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是()A.(1,)B.(,+∞)C.(,2)D.(2,+∞)3.双曲线:的渐近线方程和离心率分别是()A.B.C.D.4.不等式≤0的解集是()A.(﹣∞,﹣1)∪(﹣1,2)B.[﹣1,2] C.(﹣∞,﹣1)∪[2,+∞) D.(﹣1,2]5.常用以下方法求函数y=[f(x)]g(x)的导数:先两边同取以e为底的对数(e≈2.71828…,为自然对数的底数)得lny=g(x)lnf(x),再两边同时求导,得•y′=g′(x)lnf(x)+g(x)•[lnf(x)]′,即y′=[f(x)]g(x){g′(x)lnf(x)+g(x)•[lnf(x)]′}.运用此方法可以求函数h(x)=x x(x>0)的导函数.据此可以判断下列各函数值中最小的是()A.h()B.h()C.h()D.h()6.由直线与曲线所围成的封闭图形的面积为()AB1CD7. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB.akmC .2akmD.akm8. 已知集合{}2|10A x x =-=,则下列式子表示正确的有( )①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆.A .1个B .2个C .3个D .4个 9. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。
天津市武清区2018-2019学年高二上学期期中考试数学试题(解析版)
2018-2019学年天津市武清区高二(上)期中数学试卷一、选择题(本大题共8小题,共32.0分)1.不等式(2x-1)(x+2)>0的解集是()A. 或B. 或C. D.2.双曲线-的左、右焦点的坐标分别是()A. ,B. ,C. ,D. ,3.一个等比数列的第1项为2,第3项为,则第5项为()A. B. C. D.4.两个正数的等差中项与等比中项相等是这两个正数相等的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件5.椭圆(a>b>0)的一个焦点为(3,0),点(-3,2)在椭圆上,则该椭圆的方程为()A. B. C. D.6.等差数列{a n}的前n项和为S n,若S n=-n2+2n,则公差为()A. B. C. D.7.过抛物线y2=4x的焦点作直线l交抛物线于A、B两点,若弦长|AB|=8,则弦AB中点的横坐标为()A. 1B. 2C. 3D. 48.若k>1,a>0,则k2a2+的最小值是()A. 4B.C. 8D. 16二、填空题(本大题共5小题,共20.0分)9.命题“所有抛物线的离心率都是1”的否定是______.10.已知数列{a n}的前n项和为S n,若a n+1=2S n-1(n∈N*),a1=1,则S3=______.11.已知双曲线=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线的斜率为,则双曲线的方程为______.12.某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x=______吨.13.设椭圆(a>b>0)的左、右焦点分别为F1,F2,A是椭圆上一点,AF2⊥F1F2,若原点O到直线AF1的距离为|OF1|,则该椭圆的离心率为______.三、解答题(本大题共5小题,共48.0分)14.已知抛物线y2=2px(p>0)的焦点到其准线的距离为1,过焦点且斜率为-2的直线与该抛物线交于A,B两点.(1)求抛物线的方程、焦点坐标及准线方程;(2)求线段AB的长15.已知数列{a n}为等差数列,a6=14,a13=7a3;(1)求数列{a n}的通项公式和前n项和公式;(2)若a m,a m+5,a m+25依次成等比数列,求m的值.16.已知椭圆C:(a>b>0)的离心率为,其两个顶点和两个焦点构成的四边形面积为2.(1)求椭圆C的方程;(2)过点M(1,1)的直线l与椭圆C交于A,B两点,且点M恰为线段AB的中点,求直线l的方程.17.等比数列{a n}的前n项和S n=a-(n∈N*,a∈R),对任意的n∈N*,数列{b n}满足b n=(2n-1)a n.(1)求a的值;(2)求证:<3.18.(1)若a∈R,解关于x的不等式:(x+a-2)(x+2a2-4a)≥0;(2)若-1≤a≤2时,不等式(x+a-2)(x+2a2-4a)≥0恒成立,求x的取值范围.答案和解析1.【答案】A【解析】解:不等式(2x-1)(x+2)>0对应方程的解是和-2,∴不等式的解集是{x|x<-2或x>}.故选:A.根据一元二次不等式对应方程的解,即可写出不等式的解集.本题考查了一元二次不等式的解法与应用问题,是基础题.2.【答案】B【解析】解:双曲线-,可得a=2,b=1,则c==,所以双曲线-的左、右焦点的坐标分别是(-,0),(,0).故选:B.直接利用双曲线方程,求出a,b得到c,然后求解左、右焦点的坐标.本题考查双曲线的简单性质的应用,是基本知识的考查.3.【答案】D【解析】解:由题意可知,a1=2,a3=q2==,a5==2×=,故选:D.由题意可求q2=,代入a5=可求.本题主要考查了等比数列的通项公式的简单应用,属于基础试题4.【答案】C【解析】解:设两正数为a,b,则,4ab=(a+b)2,(a-b)2=0,∴a=b.故选:C.根据充分条件和必要条件的定义进行判断即可.本题考查了充分必要条件,等差中项,等比中项,是一道基础题.5.【答案】A【解析】解:由题意椭圆(a>b>0)的一个焦点为(3,0),可得c=3,点(-3,2)在椭圆上,可得:,解得a2=27,b2=18,椭圆的方程:.故选:A.由题意可得c=3点(-3,2)在椭圆上,由a,b,c的关系,可得b,进而得到椭圆方程;本题考查椭圆的简单性质,椭圆方程的求法,考查计算能力,是基本知识的考查.6.【答案】C【解析】解:当n=1时,S1=-×12+2×1==a1,当n=2时,S2=-×22+2×2==a1+a2,∴a2=1,∴公差d=a2-a1=1-=-,故选:C.根据求和公式,分别代值求出a1,a2,即可求出公差.本题考查了等差数列的求和公式,属于基础题7.【答案】C【解析】解:抛物线y2=4x,∴P=2.设经过焦点F(1,0)的直线与抛物线相交于A、B两点,其横坐标分别为x1,x2,利用抛物线定义,AB中点横坐标为x0==(|AB|-p)=3,故选:C.先根据抛物线方程求出p的值,再由抛物线的性质可得到答案.本题考查抛物线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,积累解题方法,属于中档题.8.【答案】C【解析】解:∵k>1,a>0,则k2a2+=4==4≥8,当且仅当k-1=且即a=1,k=2时取等号,则k2a2+的最小值是8.故选:C.由已知k2a2+=4=,分离后再次利用基本不等式可求.本题考查基本不等式的应用,解决的关键是将9x+y=1进行代换,解决的方法是基本不等式法,是容易题9.【答案】存在一个抛物线,其离心率不是1【解析】解:“p:所有抛物线的离心率为1”为全称命题,则其否定:“存在一个抛物线,其离心率不是1”,故答案为:存在一个抛物线,其离心率不是1根据全称命题的否定是特称命题即可得到结论.本题主要考查含有量词的命题的否定,比较基础.10.【答案】5【解析】解:∵数列{a n}的前n项和为S n,若a n+1=2S n-1(n∈N*),a1=1,则S1=1,∴a2=2S1-1=1,则S2=2,∴a3=2S2-1=3,则S3=5,故答案为:5由已知中a n+1=2S n-1(n∈N*),a1=1,先计算a2,a3,进而可得答案.本题考查的知识点是数列的递推公式,难度不大,属于基础题.11.【答案】【解析】解:双曲线=1(a>0,b>0)的焦距为2,可得c=.双曲线的一条渐近线的斜率为,可得,即a=2b,又a2+b2=5,解得a=2,b=1;则双曲线的方程为:.故答案为:.利用双曲线的焦距求出c,渐近线方程,得到a,b关系,求出a,b即可得到双曲线方程.本题考查双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.12.【答案】20【解析】解:某公司一年购买某种货物400吨,每次都购买x吨,则需要购买次,运费为4万元/次,一年的总存储费用为4x万元,一年的总运费与总存储费用之和为万元,≥=160,当且仅当即x=20吨时,等号成立即每次购买20吨时,一年的总运费与总存储费用之和最小.故答案为:20.先设此公司每次都购买x吨,利用函数思想列出一年的总运费与总存储费用之和,再结合基本不等式得到一个不等关系即可求得相应的x值.本小题主要考查函数单调性的应用、函数模型的选择与应用、函数最值的应用等基础知识,考查应用数学的能力.属于基础题.13.【答案】【解析】解:(1)由题设AF2⊥F1F2,及F1(-c,0),F2(c,0),不妨设点A(c,y),其中y>0.由于点A在椭圆上,有则+=1,即+=1,解得y=,从而得A(c,).直线AF1的方程为y=(x+c),整理得b2x-2acy+b2c=0.由题设,原点O到直线AF1的距离为|OF1|,即=,将b2=a2-c2代入到上式并化简,得a2=2c2,进而求得e=.故答案为:由题设AF2⊥F1F2,及F1(-c,0),F2(c,0),设点A(c,y),则+=1,由此利用点到直线的距离公式结合已知条件得离心率.本题考查椭圆离心率的求法,点到直线的距离公式的应用,考查数形结合以及计算能力.14.【答案】解:(1)抛物线y2=2px(p>0)的焦点到其准线的距离为1,可得p=1………………(1分)∴抛物线的方程为:y2=2x………………(2分)焦点坐标为:(,0)………………(3分)准线方程为x=-………………(4分)(2)直线AB的方程为:y=-2(x-)………………(5分)与抛物线方程y2=2x联立,消去y得4x2-5x+1=0………………(6分)解得x=1或x=.当x=1时,y=-,得点A(或B)的坐标为(1,-),当x=时,y=,得点B(或a)的坐标为(,)………………(7分)∴|AB|==………………(8分)【解析】(1)利用已知条件求出p=,得到抛物线的方程,然后求解焦点坐标,准线方程.(2)直线AB的方程为:y=-2(x-)与抛物线方程y2=2x联立,消去y得4x2-5x+1=0,求出x,转化求解AB的距离.本题考查直线与抛物线的位置关系的综合应用,抛物线的简单性质的应用,考查转化思想以及计算能力.15.【答案】解:(1)设数列{a n}的公差为d,∵a6=14,a13=7a3,∴ ,解得a1=-1,d=3………………(2分)∵a n=a1+(n-1)d∴所求通项公式为a n=3n-4………………(4分)∵S n=na1+,∴所求前n项和公式为S n=………………(6分)(2)∵a m,a m+5,a m+25依次成等比数列,∴a m+52=a m•a m+25………………(7分)∴(3m+11)2=(3m-4)(3m+71),………………(8分)解得m=3………………(10分)【解析】(1)利用已知条件求出数列的首项与公差,然后求解数列{a n}的通项公式和前n项和公式;(2)利用等比数列的等比中项以及等差数列的通项公式,求出m即可.本题考查等差数列以及等比数列的通项公式以及数列求和,考查计算能力.16.【答案】解(1)∵椭圆C的离心率为,∴=,a2=3c2∵a2=b2+c2∴b2=2c2,即b= c∵椭圆C的两个顶点和两个焦点构成的四边形面积为2,∴bc=∴=,∴c=1,从而得a=,b=∴椭圆C的方程为+=1(2)显然,直线l的斜率存在,设该斜率k,直线l的方程为y-1=k(x-1),即y=kx+1-k,直线l的方程与椭圆C的方程联立,消去y得:(3k2+2)x2+6k(1-k)x+3(1-k)2-6=0且该方程显然有二不等根,记A,B两点的坐标依次为(x1,y1),(x2,y2),∵=1,即x1+x2=2,∴=2,解得k=-,∴所求直线l的方程为2x+3y-5=0.【解析】(1)根据椭圆的几何性质求得a=,b=;(2)联立直线与椭圆,由根与系数关系得到两根之和,再根据中点公式列式可求得斜率k,从而求得直线l的方程.本题考查了直线与椭圆的综合,属中档题.17.【答案】解:(1)等比数列{a n}的前n项和S n=a-(n∈N*,a∈R),∴n≥2时,a n=S n-S n-1=a--(a-=.n=1时,a1=S1=a-,满足上式,∴=a-,解得a=3.(2)证明:由(1)可得:a n=.b n=(2n-1)a n=×=.∴=+……+,∴=+……++,相减可得:=+2(+……+)-=-=--,∴=3-<3.【解析】(1)等比数列{a n}的前n项和S n=a-(n∈N*,a∈R),n≥2时,a n=S n-S n-1=.n=1时,a1=S1=a-,满足上式,解得a.(2)由(1)可得:a n=.可得b n=(2n-1)a n=.利用错位相减法及其数列的单调性即可证明.本题考查了数列递推关系、等比数列的通项公式与求和公式、错位相减法及其数列的单调性,考查了推理能力与计算能力,属于中档题.18.【答案】解:(1)原不等式即为[x-(2-a)][x-(4a-2a2)]≥0,方程[x-(2-a)][x-(4a-2a2)]=0的两根为2-a,4a-2a2,令2-a<4a-2a2,即<a<2,∴当<a<2时,原不等式解集为{x|x≥4a-2a2,或x≤2-a};当a=2或a=时,原不等式解集为R;令2-a>4a-2a2,即a<或a>2,当a<或a>2时,原不等式解集为{x|x≥2-a或x≤4a-2a2};(2)∵-1≤a≤2,∴0≤2-a≤3,∵4a-2a2=-2(a-1)2+2,∴-6≤4a-2a2≤2,∴当-1≤a≤2时,2-a、4a-2a2二式的最小值为-6,最大值为3;∴欲使-1≤a≤2时,不等式(x+a-2)(x+2a2-4a)≥0恒成立,应有x≤-6或x≥3.【解析】(1)求得[x-(2-a)][x-(4a-2a2)]=0的两根,讨论根的大小,结合二次不等式的解法,即可得到所求解集;(2)求得当-1≤a≤2时,2-a、4a-2a2二式的最小值为-6,最大值为3,结合不等式恒成立思想可得x的范围.本题考查含参二次不等式的解法,以及不等式恒成立问题解法,注意运用分类讨论思想方法和二次函数的最值求法,考查运算能力,属于中档题.。
武清区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
武清区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题1.已知a,b都是实数,那么“a2>b2”是“a>b”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知,,那么夹角的余弦值()A.B.C.﹣2 D.﹣3.函数f(x)=ax2+bx与f(x)=log x(ab≠0,|a|≠|b|)在同一直角坐标系中的图象可能是()A.B.C.D.4.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如由22()()()()()n ad bcKa b c d a c b d-=++++算得22500(4027030160)9.96720030070430K⨯⨯-⨯==⨯⨯⨯附表:参照附表,则下列结论正确的是( )①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④ 5. 设命题p :函数y=sin (2x+)的图象向左平移个单位长度得到的曲线关于y 轴对称;命题q :函数y=|2x ﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是( ) A .p 为假B .¬q 为真C .p ∨q 为真D .p ∧q 为假6. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013B .2014 C .2015 D .20161111] 7. 三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( ) A .[﹣6,2] B .[﹣6,0)∪( 0,2] C .[﹣2,0)∪( 0,6] D .(0,2]8. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( ) A .只有一条,不在平面α内 B .只有一条,在平面α内 C .有两条,不一定都在平面α内 D .有无数条,不一定都在平面α内9. 设集合3|01x A x x -⎧⎫=<⎨⎬+⎩⎭,集合(){}2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 ( )A .1a ≥B .12a ≤≤ C.a 2≥ D .12a ≤< 10.已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( ) A .1或﹣3 B .﹣1或3C .1或3D .﹣1或﹣311.在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a 为无理数,则在过点P (a ,﹣)的所有直线中( )A .有无穷多条直线,每条直线上至少存在两个有理点3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥B .恰有n (n ≥2)条直线,每条直线上至少存在两个有理点C .有且仅有一条直线至少过两个有理点D .每条直线至多过一个有理点12.(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1)C .D .13.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅= ,若12PF F ∆ )C. 1D. 1【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力. 14.“24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.15.在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件二、填空题16.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .17.函数f (x )=a x +4的图象恒过定点P ,则P 点坐标是 .18.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________.19.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分别是AC ,BD 的中点,MN =m 与n 所成角的余弦值是______________.【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.三、解答题20.某同学用“五点法”画函数f (x )=Asin (ωx+φ)+B (A >0,ω>0,|φ|<)在某一个周期内的图象时,1,x 2,x 3的值,并写出函数f (x )的解析式;(Ⅱ)将f (x )的图象向右平移个单位得到函数g (x )的图象,若函数g (x )在区间[0,m](3<m <4)上的图象的最高点和最低点分别为M ,N ,求向量与夹角θ的大小.21.某市出租车的计价标准是4km 以内10元(含4km ),超过4km 且不超过18km 的部分1.5元/km ,超出18km 的部分2元/km .(1)如果不计等待时间的费用,建立车费y 元与行车里程x km 的函数关系式; (2)如果某人乘车行驶了30km ,他要付多少车费?22.已知函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示;(1)求ω,φ;(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)的图象,若y=g(x)图象的一个对称点为(,0),求θ的最小值.(3)对任意的x∈[,]时,方程f(x)=m有两个不等根,求m的取值范围.23.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对问题的概率分别为.(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望;(Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.24.数列{a n }满足a 1=,a n ∈(﹣,),且tana n+1•cosa n =1(n ∈N *).(Ⅰ)证明数列{tan 2a n }是等差数列,并求数列{tan 2a n }的前n 项和;(Ⅱ)求正整数m ,使得11sina 1•sina 2•…•sina m =1.25.(本小题满分12分)已知椭圆C 的离心率为2,A 、B 分别为左、右顶点, 2F 为其右焦点,P 是椭圆C 上异于A 、B 的 动点,且PA PB的最小值为-2. (1)求椭圆C 的标准方程;(2)若过左焦点1F 的直线交椭圆C 于M N 、两点,求22F M F N的取值范围.武清区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:∵“a2>b2”既不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.∴“a2>b2”是“a>b”的既不充分也不必要条件.故选D.2.【答案】A【解析】解:∵,,∴=,||=,=﹣1×1+3×(﹣1)=﹣4,∴cos<>===﹣,故选:A.【点评】本题考查了向量的夹角公式,属于基础题.3.【答案】D【解析】解:A、由图得f(x)=ax2+bx的对称轴x=﹣>0,则,不符合对数的底数范围,A不正确;B、由图得f(x)=ax2+bx的对称轴x=﹣>0,则,不符合对数的底数范围,B不正确;C、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义域上是增函数,C不正确;D、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义域上是减函数,D正确.【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力.4.【答案】D【解析】解析:本题考查独立性检验与统计抽样调查方法.,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年由于9.967 6.635人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D.5.【答案】C【解析】解:函数y=sin (2x+)的图象向左平移个单位长度得到y=sin (2x+)的图象,当x=0时,y=sin =,不是最值,故函数图象不关于y 轴对称,故命题p 为假命题;函数y=|2x﹣1|在[﹣1,0]上是减函数,在[0,+∞)上是增函数.故命题q 为假命题; 则¬q 为真命题; p ∨q 为假命题; p ∧q 为假命题, 故只有C 判断错误, 故选:C6. 【答案】D 【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()311533212f x x x x =-+-的对称中心后再利用对称性和的.第Ⅱ卷(非选择题共90分)7. 【答案】B【解析】解:设此等比数列的公比为q,∵a+b+c=6,∴=6,∴b=.当q>0时,=2,当且仅当q=1时取等号,此时b∈(0,2];当q<0时,b=﹣6,当且仅当q=﹣1时取等号,此时b∈[﹣6,0).∴b的取值范围是[﹣6,0)∪(0,2].故选:B.【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.8.【答案】B【解析】解:假设过点P且平行于l的直线有两条m与n∴m∥l且n∥l由平行公理4得m∥n这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误.故选B.【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.9.【答案】A【解析】考点:集合的包含关系的判断与应用.【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键. 10.【答案】A【解析】解:两条直线ax+y﹣2=0和3x+(a+2)y+1=0互相平行,所以=≠,解得a=﹣3,或a=1.故选:A.11.【答案】C【解析】解:设一条直线上存在两个有理点A(x1,y1),B(x2,y2),由于也在此直线上,所以,当x1=x2时,有x1=x2=a为无理数,与假设矛盾,此时该直线不存在有理点;当x1≠x2时,直线的斜率存在,且有,又x2﹣a为无理数,而为有理数,所以只能是,且y2﹣y1=0,即;所以满足条件的直线只有一条,且直线方程是;所以,正确的选项为C.故选:C .【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目.12.【答案】C【解析】解:不等式(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切x ∈R 恒成立,即(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切x ∈R 恒成立若m+1=0,显然不成立若m+1≠0,则解得a .故选C .【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.13.【答案】D【解析】∵120PF PF ⋅= ,∴12PF PF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,12||2PF PF a -=,则222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-,2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =.c =,整理,得2()4ca=+1e =,故选D. 14.【答案】A【解析】因为tan y x =在,22ππ⎛⎫-⎪⎝⎭上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24x ππ-<≤”是“tan 1x ≤”的充分不必要条件,故选A. 15.【答案】A【解析】解:∵sinB+sin (A ﹣B )=sinC=sin (A+B ), ∴sinB+sinAcosB ﹣cosAsinB=sinAcosB+cosAsinB , ∴sinB=2cosAsinB , ∵sinB ≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的充分非必要条件,故选:A二、填空题16.【答案】 6 .【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S ,不满足判断框中的条件;∴判断框中的条件为i <6?故答案为:6.【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题17.【答案】 (0,5) .【解析】解:∵y=a x 的图象恒过定点(0,1),而f (x )=a x +4的图象是把y=a x 的图象向上平移4个单位得到的, ∴函数f (x )=a x +4的图象恒过定点P (0,5), 故答案为:(0,5).【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题.18.【答案】(,0)(4,)-∞+∞【解析】试题分析:把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可,设关于的函数44)2(24)4(x f(x)y 22+-+-=-+-+==x x a x a x a 对任意的2],[-2a ∈,当-2a =时,044)42(x )2(f(a)y 2>++--+=-==x f ,即086x )2(2>+-=-x f ,解得4x 2x ><或;当2a =时,044)42(x )2(y 2>-+-+==x f ,即02x )2(2>-=x f ,解得2x 0x ><或,∴的取值范围是{x|x 0x 4}<>或;故答案为:(,0)(4,)-∞+∞ .考点:换主元法解决不等式恒成立问题.【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简洁,是易错题.把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围. 19.【答案】512【解析】三、解答题20.【答案】【解析】解:(Ⅰ)由条件知,,,∴,,∴,.(Ⅱ)∵函数f (x )的图象向右平移个单位得到函数g (x )的图象,∴,∵函数g (x )在区间[0,m](m ∈(3,4))上的图象的最高点和最低点分别为M ,N ,∴最高点为,最低点为,∴,,∴,又0≤θ≤π,∴.【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换,向量夹角公式的应用,属于基本知识的考查.21.【答案】【解析】解:(1)依题意得:当0<x≤4时,y=10;…(2分)当4<x≤18时,y=10+1.5(x﹣4)=1.5x+4…当x>18时,y=10+1.5×14+2(x﹣18)=2x﹣5…(8分)∴…(9分)(2)x=30,y=2×30﹣5=55…(12分)【点评】本题考查函数模型的建立,考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题.22.【答案】【解析】解:(1)根据函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象,可得•=,求得ω=2.再根据五点法作图可得2•+φ=,求得φ=﹣,∴f(x)=2sin(2x﹣).(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)=2sin=2sin(2x+2θ﹣)的图象,∵y=g(x)图象的一个对称点为(,0),∴2•+2θ﹣=kπ,k∈Z,∴θ=﹣,故θ的最小正值为.(3)对任意的x∈[,]时,2x﹣∈[,],sin(2x﹣)∈,即f(x)∈,∵方程f(x)=m有两个不等根,结合函数f(x),x∈[,]时的图象可得,1≤m<2.23.【答案】【解析】【知识点】随机变量的期望与方差随机变量的分布列【试题解析】(Ⅰ)的可能取值为.,,分布列为:(Ⅱ)设先回答问题,再回答问题得分为随机变量,则的可能取值为.,,,分布列为:.应先回答所得分的期望值较高.24.【答案】【解析】(Ⅰ)证明:∵对任意正整数n,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).故tan2a n+1==1+tan2a n,∴数列{tan2a n}是等差数列,首项tan2a1=,以1为公差.∴=.∴数列{tan2a n}的前n项和=+=.(Ⅱ)解:∵cosa n>0,∴tana n+1>0,.∴tana n=,,∴sina1•sina2•…•sina m=(tana1cosa1)•(tana2•cosa2)•…•(tana m•cosa m)=(tana2•cosa1)•(tana3cosa2)•…•(tana m•cosa m﹣1)•(tana1•cosa m)=(tana1•cosa m)==,由,得m=40.【点评】本题考查了等差数列的通项公式及其前n项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题.25.【答案】(1)22142x y+=;(2)22[2,7)F M F N∈-.【解析】试题解析:(1)根据题意知2c a =,即2212c a =,∴22212a b a -=,则222a b =, 设(,)P x y , ∵(,)(,)PA PB a x y a x y =----- , 2222222221()222a x x a y x a x a =-+=-+-=-,∵a x a -≤≤,∴当0x =时,2min ()22a PA PB =-=- , ∴24a =,则22b =.∴椭圆C 的方程为22142x y +=.1111]设11(,)M x y ,22(,)N x y ,则212212x x k +=-+,21224(1)12k x x k -=+,∵211()F M x y = ,222()F N x y =,∴222121212)2(F M F N x x x x k x x =+++2221212(1))22k x x x x k =+++++22222224(1)(1)1)221212k k k k k k --=+-++++ 29712k =-+.∵2121k +≥,∴210112k<≤+. ∴297[2,7)12k -∈-+. 综上知,22[2,7)F M F N ∈-.考点: 1、待定系数法求椭圆的标准方程;2、平面向量的数量积公式、圆锥曲线中的最值问题.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.。
武清区高中2018-2019学年高二上学期数学期末模拟试卷含解析
武清区高中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知全集U=R,集合M={x|﹣2≤x﹣1≤2}和N={x|x=2k﹣1,k=1,2,…}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有()A.3个B.2个C.1个D.无穷多个2.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是()A.①②B.①C.③④D.①②③④3.已知a∈R,“函数y=log a x在(0,+∞)上为减函数”是“函数y=3x+a﹣1有零点”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.直线在平面外是指()A.直线与平面没有公共点B.直线与平面相交C.直线与平面平行D.直线与平面最多只有一个公共点5.已知集合M={x|x2<1},N={x|x>0},则M∩N=()A.∅B.{x|x>0} C.{x|x<1} D.{x|0<x<1}可.6.已知命题p:∀x∈(0,+∞),log2x<log3x.命题q:∃x∈R,x3=1﹣x2.则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q7.某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为()A.83 B .4 C.163D .2038. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则 1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.9. 方程1x -= )A .一个圆B . 两个半圆C .两个圆D .半圆 10.已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( )A .B .C .D .611.若定义在R 上的函数f (x )满足f (0)=﹣1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .B .C .D .12.设为虚数单位,则( )A .B .C .D .二、填空题13.若直线y ﹣kx ﹣1=0(k ∈R )与椭圆恒有公共点,则m 的取值范围是 .14.若执行如图3所示的框图,输入,则输出的数等于 。
天津市武清区2018-2019学年高二上学期期中考试理科数学试卷Word版含解析
天津市武清区2018-2019学年上学期期中考试高二理科数学试卷一、选择题(本大题共10小题,每小题分4,满分40分.每小题给出的四个选项中,只有一项符合题目要求的)1.(4分)直线x+y﹣3=0的倾斜角为()A.30°B.60°C.120°D.150°2.(4分)在空间直角坐标系Oxyz中,与点(1,2,﹣3)关于y轴对称的点为A,则点A与点(﹣1,﹣2,﹣1)的距离为()A.2 B.2C.4D.63.(4分)在正方体ABCD﹣A1B1C1D1中,直线A1D与直线D1C1所成的角为()A.30°B.45°C.60°D.90°4.(4分)二直线mx+3y+3=0,2x+(m﹣1)y+2=0平行,则实数m的值为()A.3或﹣2 B.﹣3或2 C.3 D.﹣25.(4分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为()A.2m3B.4m3C.m3D.m36.(4分)已知两点A(1,﹣2),B(﹣3,4),则以AB为直径的圆的方程为()A.(x+1)2+(y﹣1)2=13 B.(x﹣1)2+(y+1)2=13 C.(x+1)2+(y﹣1)2=52 D.(x﹣1)2+(y+1)2=527.(4分)球的半径为2,它的内接圆柱的底面半径为1,则圆柱的侧面积为()A.2πB.4πC.12πD.24π8.(4分)已知a,b是两条直线,α,β是两个平面,则下列说法中正确的是()A.若a∥b,b∥α,则a∥αB.若a⊥b,b⊥α,则a⊥αC.若α∥β,a⊂α,则a∥βD.若α⊥β,a⊂α,则a⊥β9.(4分)如图,在三棱锥S﹣ABC中,SA⊥平面ABC,AB=2,BC=3,AB⊥BC,二面角S﹣BC﹣A为,则这个三棱锥的外接球的半径为()A.B.5 C.2 D.410.(4分)已知两点A(﹣2,1),B(1,5),点C是圆x2+y2﹣2x+4y﹣4=0上的动点,则△ABC面积的最大值为()A.35 B.18 C.16 D.8二、填空题(本大题共5小题,每小题4分,满分20分)11.(4分)一圆锥的母线长为13,底面半径为5,则这个圆锥的高为.12.(4分)已知两圆x2+y2=1,x2+y2+2x﹣4y+1=0相交于A,B两点,则直线AB的方程为.13.(4分)如图,正六边形ABCDEF的边长为2,分别以AB,AE所在直线为x,y轴建立直角边坐标系,用斜二测画法得到水平放置的正六边形ABCDEF的直观图A′B′C′D′E′F′,则六边形A′B′C′D′E′F′的面积为.14.(4分)一条直线的斜率范围是[﹣1,],则这条直线的倾斜角范围是.15.(4分)已知⊙O:(x﹣3)2+(y+1)2=25的圆心为O,过点A(1,2)的直线l与⊙O相交于A,B两点,当点O到直线l的距离最大时,弦AB的长为.三、解答题(本大题共5小题,满分60分.解答题应写出文字说明、证明过程或演算步骤)16.(12分)已知直线l1:(a﹣1)x+ay﹣3a+2=0,直线l2:2x+4y+2a﹣1=0,a是实数.(1)若l1⊥l2,求a的值及l1与l2的交点坐标;(2)若l1∥l2,求a的值及l1与l2的距离.17.(12分)如图,在长方体ABCD﹣A1B1C1D1中,BB1=BC.(1)求证:平面DA1C1∥平面B1AC;(2)求证:B1C⊥BD1.18.(12分)已知圆C:x2+y2﹣4x+6y+9=0,点A(﹣1,1).(1)过点A作圆C的切线,求切线的长;(2)以点A为圆心的圆与圆C外切,求圆A的方程及这两个圆公切线的长.19.(12分)如图,四边形ABCD为矩形,ABEF为梯形,AD=,AB=2AF=2EF=2BE=2,AB∥EF,平面ABCD ⊥平面ABEF.(1)求证:平面DAF⊥平面CBF;(2)求二面角D﹣FC﹣B的正弦值.20.(12分)已知圆C:(x﹣1)2+(y﹣1)2=1,圆D:x2+y2﹣2mx=0.(1)若直线x+y﹣a=0与圆C有公共点,求实数a的取值范围;(2)若点A(x,y)是圆C上的任一点,且x2+y2﹣(m+)x﹣(m+)y≤0(m∈R)恒成立,判断圆C 与圆D的位置关系.天津市武清区2018-2019学年高二上学期期中考试理科数学试卷参考答案一、选择题(本大题共10小题,每小题分4,满分40分.每小题给出的四个选项中,只有一项符合题目要求的)1.(4分)直线x+y﹣3=0的倾斜角为()A.30°B.60°C.120°D.150°考点:直线的倾斜角.专题:直线与圆.分析:将直线方程化为斜截式,求出斜率再求倾斜角.解答:解:将已知直线化为y=,所以直线的斜率为,所以直线的倾斜角为150°,故选:D.点评:本题考察直线的倾斜角,属基础题,涉及到直线的斜率和倾斜角问题时注意特殊角对应的斜率值,不要混淆.2.(4分)在空间直角坐标系Oxyz中,与点(1,2,﹣3)关于y轴对称的点为A,则点A与点(﹣1,﹣2,﹣1)的距离为()A.2 B.2C.4D.6考点:空间两点间的距离公式.专题:空间位置关系与距离.分析:空间直角坐标系中任一点A(a,b,c)关于坐标y轴的对称点为B(﹣a,b,﹣c);然后求出空间两点间的距离即可.解答:解:由题意可得:点(1,2,﹣3)关于y轴的对称点的坐标是A(﹣1,2,3).∴点A与点(﹣1,﹣2,﹣1)的距离为:=4.故选:C.点评:本题考查空间向量的坐标的概念,向量的坐标表示,空间点的对称点的坐标的求法,记住某些结论性的东西将有利于解题.3.(4分)在正方体ABCD﹣A1B1C1D1中,直线A1D与直线D1C1所成的角为()A.30°B.45°C.60°D.90°考点:异面直线及其所成的角.专题:空间角.分析:连接A1D,说明D1C1⊥平面ADD1A1,即可得到直线A1D与直线D1C1所成的角.解答:解:正方体ABCD﹣A1B1C1D1中,直线D1C1垂直平面ADD1A1,A1D⊂平面ADD1A1直线A1D与直线D1C1所成的角为90°.故选:D.点评:本题以正方体为例,求异面直线所成的解,考查了空间两条直线的位置关系和正方体的性质等知识,属于基础题.4.(4分)二直线mx+3y+3=0,2x+(m﹣1)y+2=0平行,则实数m的值为()A.3或﹣2 B.﹣3或2 C.3 D.﹣2考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:根据两直线平行,且直mx+3y+3=0的斜率存在,故它们的斜率相等,解方程求得m的值.解答:解:直线mx+3y+3=0的斜率是,直线2x+(m﹣1)y+2=0的斜率是∵二直线mx+3y+3=0,2x+(m﹣1)y+2=0平行∴解得:m=﹣2或3,当m=3时两直线重合,故舍去,所以m=﹣2,故选:D.点评:本题的考点是直线的一般式方程与直线的平行关系,主要考查两直线平行的性质,两直线平行,它们的斜率相等或者都不存在.5.(4分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为()A.2m3B.4m3C.m3D.m3考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由已知中的三视图可得该几何体是一个三棱锥和三棱柱的组合体,分别求出两者的体积,相加可得该几何体的体积.解答:解:由已知中的三视图可得该几何体是一个三棱锥和三棱柱的组合体,棱柱和棱锥的底面面积S=×2×=,由棱柱的高为3,可得棱柱的体积为:3,由棱锥的高为1,可得棱锥的体积为:,故几何体的体积为:m3故选:C点评:本题考查的知识点是由三视图求体积和表面面积,其中由三视图判断出几何体的形状是解答的关键.6.(4分)已知两点A(1,﹣2),B(﹣3,4),则以AB为直径的圆的方程为()A.(x+1)2+(y﹣1)2=13 B.(x﹣1)2+(y+1)2=13 C.(x+1)2+(y﹣1)2=52 D.(x﹣1)2+(y+1)2=52考点:圆的标准方程.专题:直线与圆.分析:首先利用A、B的坐标确定圆心坐标,进一步利用圆心坐标和A的坐标求出半径,最后确定圆的方程.解答:解:根据题意:设圆心坐标C(x,y),已知两点A(1,﹣2),B(﹣3,4),建立方程组:R==所以圆的方程为:(x+1)2+(y﹣1)2=13故选:A点评:本题考查的知识要点:圆的标准方程的求法,重点确定圆心和半径.7.(4分)球的半径为2,它的内接圆柱的底面半径为1,则圆柱的侧面积为()A.2πB.4πC.12πD.24π考点:球内接多面体;棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:求出内接圆柱的高,再求圆柱的侧面积.解答:解:∵球的半径为2,它的内接圆柱的底面半径为1,∴内接圆柱的高为2=2,∴圆柱的侧面积为2π×1×2=π.故选:B.点评:本题考查圆柱的侧面积,考查学生的计算能力,比较基础.8.(4分)已知a,b是两条直线,α,β是两个平面,则下列说法中正确的是()A.若a∥b,b∥α,则a∥αB.若a⊥b,b⊥α,则a⊥αC.若α∥β,a⊂α,则a∥βD.若α⊥β,a⊂α,则a⊥β考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:①对于A 采用举反例法,若a∥b,b∥α,则a∥α或a⊂α.②对于B 采用举反例法,若a⊥b,b⊥α,则a⊥α或a⊂α.③采用举反例法,若α⊥β,a⊂α,则:a⊥β或a与β相交或a⊂β从而得出结果.解答:解:对于A 采用举反例法,若a∥b,b∥α,则a∥α或a⊂α.对于B 采用举反例法,若a⊥b,b⊥α,则a⊥α或a⊂α.对于C 利用的是面面平行的性质定理,若平面平行于平面,若线在其中的任意面内面内,则线面平行.对于D 采用举反例法,若α⊥β,a⊂α,则:a⊥β或a与β相交或a⊂β故选:C点评:本题考查的知识点:举反例法在选择题中的应用,线面平行或垂直的判定和性质.9.(4分)如图,在三棱锥S﹣ABC中,SA⊥平面ABC,AB=2,BC=3,AB⊥BC,二面角S﹣BC﹣A为,则这个三棱锥的外接球的半径为()A.B.5 C.2 D.4考点:球内接多面体.专题:计算题;空间位置关系与距离.分析:确定SC是三棱锥的外接球的直径,求出SC即可.解答:解:∵SA⊥平面ABC,AB⊥BC,二面角S﹣BC﹣A为,∴∠SBA=,∵AB=2,BC=3,∴SA=2,AC=,∴SC==5,∵SC是三棱锥的外接球的直径,∴三棱锥的外接球的半径为,故选:A.点评:本题考查三棱锥的外接球的半径,考查学生的计算能力,比较基础.10.(4分)已知两点A(﹣2,1),B(1,5),点C是圆x2+y2﹣2x+4y﹣4=0上的动点,则△ABC面积的最大值为()A.35 B.18 C.16 D.8考点:点到直线的距离公式.专题:直线与圆.分析:求出圆心到直线AB的距离d,即可得出圆上的点到直线AB的最大距离为d+r,再利用三角形的面积计算公式△ABC面积的最大值=即可得出.解答:解:∵两点A(﹣2,1),B(1,5),∴|AB|==5.直线AB的方程为:y﹣5=(x﹣1),即4x﹣3y+11=0.圆x2+y2﹣2x+4y﹣4=0化为(x﹣1)2+(y+2)2=9,可得圆心P(1,﹣2),半径r=3.∴圆心P到直线AB的距离d==.∴点C到直线AB的最大距离是+3=.∴△ABC面积的最大值===18.故选:B.点评:本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.二、填空题(本大题共5小题,每小题4分,满分20分)11.(4分)一圆锥的母线长为13,底面半径为5,则这个圆锥的高为12.考点:棱锥的结构特征.专题:空间位置关系与距离.分析:圆锥的母线长,底面半径,圆锥的高构成直角三角形,求解即可.解答:解:圆锥的母线长,底面半径,圆锥的高构成直角三角形,所以圆锥的母线长为13,底面半径为5,则这个圆锥的高为=12.故答案为:12.点评:本题考查旋转体,圆锥的高,底面半径与母线的关系,基本知识的考查.12.(4分)已知两圆x2+y2=1,x2+y2+2x﹣4y+1=0相交于A,B两点,则直线AB的方程为x﹣2y+1=0.考点:相交弦所在直线的方程.专题:直线与圆.分析:直接通过两个圆的方程作差即可求出公共弦所在的直线方程.解答:解:两圆x2+y2=1,x2+y2+2x﹣4y+1=0相交于A,B两点,两个圆的方程作差可得:x﹣2y+1=0故答案为:x﹣2y+1=0.点评:本题考查两个圆的公共弦所在直线方程的求法,基本知识的考查.13.(4分)如图,正六边形ABCDEF的边长为2,分别以AB,AE所在直线为x,y轴建立直角边坐标系,用斜二测画法得到水平放置的正六边形ABCDEF的直观图A′B′C′D′E′F′,则六边形A′B′C′D′E′F′的面积为.考点:平面图形的直观图.专题:空间位置关系与距离.分析:由直观图和原图的面积之间的关系=,直接求解即可.解答:解:因为=,∵正六边形ABCDEF的边长为2,∴正六边形ABCDEF的面积为:6××22=6,∴六边形A′B′C′D′E′F′的面积为×6=,故答案为:点评:本题考查斜二测画法中原图和直观图面积之间的关系,属基本概念、基本运算的考查.14.(4分)一条直线的斜率范围是[﹣1,],则这条直线的倾斜角范围是.考点:直线的倾斜角.专题:三角函数的求值.分析:由直线的斜率范围,得到倾斜角的正切值的范围,利用正切函数的单调性并结合倾斜角的范围,最后确定倾斜角的具体范围.解答:解:设直线的倾斜角为α,则α∈[0,π),由﹣1≤k≤,即﹣1≤tanα≤,当0时,α∈[0,];当﹣1≤tanα<0时,α∈[,π),∴α∈.故答案为:点评:本题考查倾斜角和斜率的关系,注意倾斜角的范围,正切函数在[0,)、(,π)上都是单调增函数.15.(4分)已知⊙O:(x﹣3)2+(y+1)2=25的圆心为O,过点A(1,2)的直线l与⊙O相交于A,B两点,当点O到直线l的距离最大时,弦AB的长为.考点:直线与圆相交的性质.专题:计算题;直线与圆.分析:当点O到直线l的距离最大时,OA⊥直线l,利用勾股定理,即可得出结论.解答:解:当点O到直线l的距离最大时,OA⊥直线l,∵OA==,∴弦AB的长为2=,故答案为:点评:本题考查直线与圆相交的性质,考查勾股定理,考查学生的计算能力,比较基础.三、解答题(本大题共5小题,满分60分.解答题应写出文字说明、证明过程或演算步骤)16.(12分)已知直线l1:(a﹣1)x+ay﹣3a+2=0,直线l2:2x+4y+2a﹣1=0,a是实数.(1)若l1⊥l2,求a的值及l1与l2的交点坐标;(2)若l1∥l2,求a的值及l1与l2的距离.考点:直线的一般式方程与直线的垂直关系;直线的一般式方程与直线的平行关系.专题:直线与圆.分析:(1)当两条直线垂直时,斜率之积等于﹣1,解方程求出a的值,代入求出直线交点后,可得直线交点坐标;(2)利用两直线平行时,一次项系数之比相等,但不等于常数项之比,求出a的值,代入平行直线距离公式,可得答案.解答:解:(1)∵l1⊥l2,∴2(a﹣1)+4a=0,∴a=…(2分)∴l1:2x﹣y﹣3=0,l2:6x+12y﹣1=0 …(4分)由,解得∴l1与l2的交点坐标为(,﹣)…(6分)(2)∵l1∥l2,∴,∴a=2 …(8分)∴l1:x+2y﹣4=0,l2:x+2y+=0 …(10分)二直线的距离为=…(12分)点评:本题考查两直线相交、垂直、平行、重合的条件,体现了转化的数学思想.属于基础题.17.(12分)如图,在长方体ABCD﹣A1B1C1D1中,BB1=BC.(1)求证:平面DA1C1∥平面B1AC;(2)求证:B1C⊥BD1.考点:平面与平面平行的判定.专题:空间位置关系与距离.分析:(1)充分利用已知长方体的性质,结合面面平行的判定定理,只要判断DA1∥平面B1AC和A1C1∥平面B1AC即可;(2)只要证明B1C⊥平面BC1D1,利用线面垂直的性质得到所证.解答:证明:(1)∵四边形A1B1CD为平行四边形,∴DA1∥CB1…(1分)∵CB1⊂平面B1AC,DA1⊄平面B1AC,∴DA1∥平面B1AC…(2分)∵四边形A1C1CA为平行四边形,∴A1C1∥CA…(3分)∵CA⊂平面B1AC,A1C1⊄平面B1AC∴A1C1∥平面B1AC…(4分)∵DA1,A1C1是平面DA1C1内的两条相交直线…(5分)∴平面DA1C1∥平面B1AC…(6分)(2)连接BC1,∵BB1=BC,∴在正方形BCC1B1中,B1C⊥BC1…(7分)∵D1C1⊥平面BCC1B1∴B1C⊥D1C1…(9分)∵BC1,D1C1是平面BC1D1内的两条相交直线∴B1C⊥平面BC1D1…(11分)∵BD1⊂平面BC1D1∴B1C⊥BD1…(12分)点评:本题考查了长方体中面面平行的判定和线线垂直的判定,关键是准确利用长方体的性质结合面面平行的判定定理解答,属于基础题.18.(12分)已知圆C:x2+y2﹣4x+6y+9=0,点A(﹣1,1).(1)过点A作圆C的切线,求切线的长;(2)以点A为圆心的圆与圆C外切,求圆A的方程及这两个圆公切线的长.考点:圆的切线方程.专题:计算题;直线与圆.分析:(1)利用线段AC,半径,切线组成以线段AC为斜边的直角三角形,即可求切线的长;(2)利用公切线,两圆的半径,线段AC组成以公切线为腰的直角梯形,可得结论.解答:解:(1)圆C的圆心为C(2,﹣3),半径为r=2…(2分)∴…(3分)∵线段AC,半径,切线组成以线段AC为斜边的直角三角形∴所求切线的长为…(5分)(2)∵圆A与圆C外切,∴圆A的半径为R=5﹣2=3 …(7分)∴圆A的方程为(x+1)2+(y﹣1)2=9…(9分)∵公切线,两圆的半径,线段AC组成以公切线为腰的直角梯形∴公切线长为…(12分)点评:本题考查圆的切线方程,考查学生的计算能力,比较基础.19.(12分)如图,四边形ABCD为矩形,ABEF为梯形,AD=,AB=2AF=2EF=2BE=2,AB∥EF,平面ABCD ⊥平面ABEF.(1)求证:平面DAF⊥平面CBF;(2)求二面角D﹣FC﹣B的正弦值.考点:二面角的平面角及求法;平面与平面垂直的判定.专题:综合题;空间位置关系与距离;空间角.分析:(1)取AB中点G,易知四边形EFGB为菱形,从而△GAF为正三角形,证明AF⊥平面CBF,即可证明平面DAF⊥平面CBF;(2)取CF的中点O,证明∠DOB就是二面角D﹣FC﹣B的平面角,即可求二面角D﹣FC﹣B的正弦值.解答:(1)证明:∵平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,∴CB⊥平面ABEF.∵AF⊂平面ABEF,∴AF⊥CB…(2分)又∵四边形ABEF为等腰梯形,且AB=2AF=2EF=2BE=2取AB中点G,易知四边形EFGB为菱形,从而△GAF为正三角形∴∠BAF=60°∵,∴△ABF为直角三角形,∴AF⊥BF…(4分)∵CB,BF是平面CBF内的两条相交直线,∴AF⊥平面CBF…(5分)∵AF⊂平面DAF,∴平面DAF⊥平面CBF…(6分)(2)解:取CF的中点O,由(1)可知,在直角△ABF中,∵∴在等腰直角△CBF中,BO⊥CF且,…(7分)在直角△DAF中,∴DF=2∵AB=DC=2∴在等腰△DCF中,DO⊥CF,且…(9分)∴∠DOB就是二面角D﹣FC﹣B的平面角…(10分)易知,∴在△DOB中,∴…(12分)点评:本题考查线面垂直,考查二面角D﹣FC﹣B的正弦值,考查学生分析解决问题的能力,属于中档题.20.(12分)已知圆C:(x﹣1)2+(y﹣1)2=1,圆D:x2+y2﹣2mx=0.(1)若直线x+y﹣a=0与圆C有公共点,求实数a的取值范围;(2)若点A(x,y)是圆C上的任一点,且x2+y2﹣(m+)x﹣(m+)y≤0(m∈R)恒成立,判断圆C 与圆D的位置关系.考点:圆方程的综合应用;圆与圆的位置关系及其判定.专题:直线与圆.分析:(1)求出圆的圆心与比较,直线x+y﹣a=0与圆C有公共点,说明圆心到直线的距离等于小于半径,即可求实数a的取值范围;(2)利用点A(x,y)是圆C上的任一点,得到x,y的范围,化简x2+y2﹣(m+)x﹣(m+)y≤0(m∈R)为m的不等式,利用基本不等式求出m的最小值,然后通过两个圆的圆心距与半径的关系,判断圆C 与圆D的位置关系.解答:解:(1)圆C的圆心为(1,1),半径为1 …(2分)∵直线x+y﹣a=0与圆C有公共点∴…(4分)∴(a﹣2)2≤2∴…(6分)(2)∵点A(x,y)是圆C上的点∴x≥0,y≥0∵恒成立∴…(8分)由(1)可知∴的最大值为…(9分)∴∴m≥1…(10分)圆D的圆心为(m,0),半径为m,圆C与圆D的圆心距为…(11分)∵∴圆C与圆D相交…(12分)点评:本题考查直线与圆的位置关系,基本不等式的应用,圆与圆的位置关系,圆的方程的综合应用,考查分析问题解决问题的能力.。
武清区高中2018-2019学年上学期高二数学12月月考试题含解析
武清区高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 某几何体的三视图如图所示,该几何体的体积是()A .B .C .D .2. 复数(为虚数单位),则的共轭复数为( )2(2)i z i-=i z A . B . C . D .43i -+43i +34i +34i-【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力.3. 如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论中错误的是()A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A ﹣BEF 的体积为定值D .异面直线AE ,BF 所成的角为定值4. 已知奇函数是上的增函数,且,则的取值范围是( )()f x [1,1]-1(3)()(0)3f t f t f +->t A 、 B 、 C 、 D 、1163t t ⎧⎫-<≤⎨⎬⎩⎭2433t t ⎧⎫-≤≤⎨⎬⎩⎭16t t ⎧⎫>-⎨⎬⎩⎭2133t t ⎧⎫-≤≤⎨⎬⎩⎭5. 如图,四面体D ﹣ABC 的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长棱的长度为()A .B .2C .D .36. 已知AC ⊥BC ,AC=BC ,D 满足=t+(1﹣t ),若∠ACD=60°,则t 的值为()A .B .﹣C .﹣1D .7. 设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4﹣2,3S 2=a 3﹣2,则公比q=( )A .3B .4C .5D .68. 已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( )A .B .C .D .69. 下列各组函数中,表示同一函数的是()A 、x 与B 、 与()f x =()f x =2x x()1f x x =-()f x =C 、与D 、与()f x x =()f x =()f x x =2()f x =10.双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .411.下列哪组中的两个函数是相等函数( )A .B .()()4f x x =g ()()24=,22x f x g x x x -=-+C .D .()()1,01,1,0x f x g x x >⎧==⎨<⎩()()=f x x x =,g 12.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是()A.1﹣B.﹣C.D.二、填空题13.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为. 14.抛物线y2=8x上一点P到焦点的距离为10,则P点的横坐标为 .15.函数f(x)=log a(x﹣1)+2(a>0且a≠1)过定点A,则点A的坐标为 .16.若关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,则k= .17.已知直线l:ax﹣by﹣1=0(a>0,b>0)过点(1,﹣1),则ab的最大值是 .18.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为 小时.三、解答题19.已知条件4:11px≤--,条件22:q x x a a+<-,且p是的一个必要不充分条件,求实数的取值范围.20.(本小题满分10分)已知曲线的极坐标方程为,将曲线,(为参数),经过伸缩变C 2sin cos 10ρθρθ+=1cos :sin x C y θθ=⎧⎨=⎩α换后得到曲线.32x xy y '=⎧⎨'=⎩2C (1)求曲线的参数方程;2C (2)若点的在曲线上运动,试求出到曲线的距离的最小值.M 2C M C 21.在极坐标系内,已知曲线C 1的方程为ρ2﹣2ρ(cos θ﹣2sin θ)+4=0,以极点为原点,极轴方向为x 正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C 2的参数方程为(t 为参数).(Ⅰ)求曲线C 1的直角坐标方程以及曲线C 2的普通方程;(Ⅱ)设点P 为曲线C 2上的动点,过点P 作曲线C 1的切线,求这条切线长的最小值. 22.设集合{}{}2|8150,|10A x x x B x ax =-+==-=.(1)若15a =,判断集合A 与B 的关系;(2)若,求实数组成的集合C .A B B = 23.已知向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),求向量,的夹角θ.24.如图,在三棱柱ABC ﹣A 1B 1C 1中,底面△ABC 是边长为2的等边三角形,D 为AB 中点.(1)求证:BC 1∥平面A 1CD ;(2)若四边形BCC 1B 1是正方形,且A 1D=,求直线A 1D 与平面CBB 1C 1所成角的正弦值.武清区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】A【解析】解:几何体如图所示,则V=,故选:A .【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键. 2. 【答案】A【解析】根据复数的运算可知,可知的共轭复数为,故选A.43)2()2(22--=--=-=i i i ii z z 43z i =-+3. 【答案】 D【解析】解:∵在正方体中,AC ⊥BD ,∴AC ⊥平面B 1D 1DB ,BE ⊂平面B 1D 1DB ,∴AC ⊥BE ,故A 正确;∵平面ABCD ∥平面A 1B 1C 1D 1,EF ⊂平面A 1B 1C 1D 1,∴EF ∥平面ABCD ,故B 正确;∵EF=,∴△BEF 的面积为定值×EF ×1=,又AC ⊥平面BDD 1B 1,∴AO 为棱锥A ﹣BEF 的高,∴三棱锥A ﹣BEF 的体积为定值,故C 正确;∵利用图形设异面直线所成的角为α,当E 与D 1重合时sin α=,α=30°;当F 与B 1重合时tan α=,∴异面直线AE 、BF 所成的角不是定值,故D 错误;故选D .4.【答案】A【解析】考点:函数的性质。
武清区第四中学2018-2019学年高二上学期第二次月考试卷数学
武清区第四中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()cm3A.πB.2πC.3πD.4π2.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a=6 102,b=2 016时,输出的a为()A.6B.9C.12D.183.高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为()A.B.C.D.4.将函数f(x)=3sin(2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则φ的值不可能是()A.B.πC.D.5.已知(2,1)a=-,(,3)b k=-,(1,2)c=(,2)k=-c,若(2)a b c-⊥,则||b=()A.B.C.D【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.6.S n是等差数列{a n}的前n项和,若3a8-2a7=4,则下列结论正确的是()A.S18=72 B.S19=76C.S20=80 D.S21=847.高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:[70,90),[90,110),[100,130),[130,150),估计该班级数学成绩的平均分等于()A.112 B.114 C.116 D.1208.设0<a<1,实数x,y满足,则y关于x的函数的图象形状大致是()A. B. C.D.9.在ABC∆中,角A,B,C的对边分别是,,,BH为AC边上的高,5BH=,若2015120aBC bCA cAB++=,则H到AB边的距离为()A.2 B.3 C.1 D.4 10.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A .B .C .D .11.已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( ) A .1- B . C .1-或 D .1-或2- 12.已知点P (x ,y )的坐标满足条件,(k 为常数),若z=3x+y 的最大值为8,则k 的值为( )A .B .C .﹣6D .6二、填空题13.已知A (1,0),P ,Q 是单位圆上的两动点且满足,则+的最大值为 .14.命题“(0,)2x π∀∈,sin 1x <”的否定是 ▲ .15.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .16.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________.17.【盐城中学2018届高三上第一次阶段性考试】已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是.18.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 .三、解答题19.如图,在三棱柱ABC ﹣A 1B 1C 1中,底面△ABC 是边长为2的等边三角形,D 为AB 中点. (1)求证:BC 1∥平面A 1CD ;(2)若四边形BCC1B 1是正方形,且A 1D=,求直线A 1D 与平面CBB 1C 1所成角的正弦值.20.若已知,求sinx 的值.21.(本小题满分12分)如图ABC ∆中,已知点D 在BC 边上,且0AD AC ⋅=,22sin 3BAC ∠=,32AB =,3BD =. (Ⅰ)求AD 的长; (Ⅱ)求cos C .22.(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程.(2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程.23.如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小。
武清区二中2018-2019学年高二上学期第二次月考试卷数学
武清区二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知直线34110m x y +-=:与圆22(2)4C x y -+=:交于A B 、两点,P 为直线3440n x y ++=:上任意一点,则PAB ∆的面积为( ) A .23 B.332C. 33D. 432. 实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )A .(1,1)B .(0,3)C .(,2)D .(,0)3. 设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是( ) A .﹣3<a <﹣1 B .﹣3≤a ≤﹣1 C .a ≤﹣3或a ≥﹣1 D .a <﹣3或a >﹣1 4. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A .4 B .8 C .12 D .20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力. 5. 已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( )A .B .C .D .66. 已知双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为( )A .B .C .D .7. 已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为( )A .{1}B .{1,2}C .{1,2,3}D .{0,1,2}8. 在等差数列{a n }中,a 3=5,a 4+a 8=22,则{}的前20项和为( )A .B .C .D .9. 函数y=x+xlnx 的单调递增区间是( ) A .(0,e ﹣2) B .(e ﹣2,+∞) C .(﹣∞,e ﹣2) D .(e ﹣2,+∞)10.函数的定义域为( )A .{x|1<x ≤4}B .{x|1<x ≤4,且x ≠2}C .{x|1≤x ≤4,且x ≠2}D .{x|x ≥4}11.已知双曲线﹣=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的渐近线方程为y=±x ,则该双曲线的方程为( )A .﹣=1B .﹣y 2=1 C .x 2﹣=1 D .﹣=112.已知函数()2111x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( ) A .1 B .1- C .2 D .2- 二、填空题13.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 . 14.如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2+y 2-2x +4y -4=0的两切线、切点分别为A 、B ,当四边形P ACB 的周长最小时,△ABC 的面积为________.15.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:①若点P 总保持PA ⊥BD 1,则动点P 的轨迹所在曲线是直线;②若点P 到点A 的距离为,则动点P 的轨迹所在曲线是圆;③若P 满足∠MAP=∠MAC 1,则动点P 的轨迹所在曲线是椭圆;④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线; ⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在曲线是抛物丝. 其中真命题是 (写出所有真命题的序号)16.若6()mx y +展开式中33x y 的系数为160-,则m =__________.【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想. 17.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹为曲线E ,给出以下命题: ①∃m ,使曲线E 过坐标原点; ②对∀m ,曲线E 与x 轴有三个交点;③曲线E 只关于y 轴对称,但不关于x 轴对称;④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN 的面积不大于m 。
武清区第四中学校2018-2019学年高二上学期第二次月考试卷数学(1)
=6+π,高为 2,
故柱体的侧面积为:(6+π)×2=12+2π, 故柱体的全面积为:12+2π+2(4+ 故选:B 【点评】 本题考查的知识点是简单空间图象的三视图, 其中根据已知中的视图分析出几何体的形状及棱长是解 答的关键. 6. 【答案】B 【解析】解:由题意,m2﹣4<0 且 m≠0,∵m∈Z,∴m=1 ∵双曲线的方程是 y2﹣ x2=1 ∴a2=1,b2=3, ∴c2=a2+b2=4 ∴a=1,c=2, ∴离心率为 e= =2. 故选:B. c2=a2+b2 【点评】 本题的考点是双曲线的简单性质, 考查由双曲线的方程求三参数, 考查双曲线中三参数的关系 : . )=20+3π,
.
15.设 p:∃x∈
使函数
有意义,若¬p 为假命题,则 t 的取值范围为 .
16.已知偶函数 f(x)的图象关于直线 x=3 对称,且 f(5)=1,则 f(﹣1)= . 的取值范围为 .
17.在正方形 ABCD 中, AB AD 2 , M , N 分别是边 BC , CD 上的动点,当 AM AN 4 时,则 MN 【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想
第 2 页,共 16 页
精选高中模拟试卷
和基本运算能力. 18.设函数 f ( x) x (1 a ) x ax 有两个不同的极值点 x1 , x2 ,且对不等式 f ( x1 ) f ( x2 ) 0
3 2
恒成立,则实数的取值范围是
.
三、解答题
19.已知数列{an}的前 n 项和 Sn=2n2﹣19n+1,记 Tn=|a1|+|a2|+…+|an|. (1)求 Sn 的最小值及相应 n 的值; (2)求 Tn.
武清区高级中学2018-2019学年高二上学期第二次月考试卷数学
武清区高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 数列中,若,,则这个数列的第10项( ) A .19B .21C .D .2. 已知实数[1,1]x ∈-,[0,2]y ∈,则点(,)P x y 落在区域20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩……… 内的概率为( )A.34B.38C.14D.18【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力. 3. 已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .124. 不等式x (x ﹣1)<2的解集是( )A .{x|﹣2<x <1}B .{x|﹣1<x <2}C .{x|x >1或x <﹣2}D .{x|x >2或x <﹣1} 5. 一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A .8πcm 2B .12πcm 2C .16πcm 2D .20πcm 26. 设a ,b ,c ,∈R +,则“abc=1”是“”的( )A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件7. 圆锥的高扩大到原来的 倍,底面半径缩短到原来的12,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的168.平面向量与的夹角为60°,=(2,0),||=1,则|+2|=( )A. B. C .4 D .129. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要( )小时. A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.10.已知平面向量=(1,2),=(﹣2,m ),且∥,则=( )A .(﹣5,﹣10)B .(﹣4,﹣8)C .(﹣3,﹣6)D .(﹣2,﹣4) 11.在中,角、、所对应的边分别为、、,若角、、依次成等差数列,且,,则等于( )A .B .C .D .2 12.某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )A .20,2B .24,4C .25,2D .25,4二、填空题13.方程(x+y ﹣1)=0所表示的曲线是 .14.下图是某算法的程序框图,则程序运行后输出的结果是____.15.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x a x =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________.16.幂函数1222)33)(+-+-=m m xm m x f (在区间()+∞,0上是增函数,则=m .17.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 .18.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为_________.三、解答题19.已知函数f (x )=log a (x 2+2),若f (5)=3; (1)求a 的值;(2)求的值;(3)解不等式f(x)<f(x+2).20.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.21.过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程.22.(本小题满分10分)已知函数f(x)=|x-a|+|x+b|,(a≥0,b≥0).(1)求f(x)的最小值,并求取最小值时x的范围;(2)若f (x )的最小值为2,求证:f (x )≥a +b .23.(本小题满分10分)选修4-1:几何证明选讲如图,直线PA 与圆O 相切于点A ,PBC 是过点O 的割线,CPE APE ∠=∠,点H 是线段ED 的中 点.(1)证明:D F E A 、、、四点共圆; (2)证明:PC PB PF ⋅=2.24.选修4﹣5:不等式选讲已知f (x )=|ax+1|(a ∈R ),不等式f (x )≤3的解集为{x|﹣2≤x ≤1}. (Ⅰ)求a 的值;(Ⅱ)若恒成立,求k 的取值范围.武清区高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】 因为,所以,所以数列构成以为首项,2为公差的等差数列,通项公式为,所以,所以,故选C答案:C2. 【答案】B 【解析】3. 【答案】D 【解析】试题分析:∵在等比数列}{a n 中,41,2a 52==a ,21,81q 253=∴==∴q a a . 考点:等比数列的性质. 4. 【答案】B【解析】解:∵x (x ﹣1)<2, ∴x 2﹣x ﹣2<0,即(x ﹣2)(x+1)<0, ∴﹣1<x <2,即不等式的解集为{x|﹣1<x <2}.故选:B5. 【答案】B【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R ,R=,S=4πR 2=12π故选B6. 【答案】A【解析】解:因为abc=1,所以,则==≤a+b+c .当a=3,b=2,c=1时,显然成立,但是abc=6≠1,所以设a ,b ,c ,∈R +,则“abc=1”是“”的充分条件但不是必要条件.故选A .7. 【答案】A 【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为2113V r h π=,将圆锥的高扩大到原来的倍,底面半径缩短到原来的12,则体积为222111(2)326V r h r h ππ=⨯=,所以122V V =,故选A.考点:圆锥的体积公式.1 8. 【答案】B【解析】解:由已知|a|=2,|a+2b|2=a 2+4ab+4b 2=4+4×2×1×cos60°+4=12,∴|a+2b|=.故选:B .【点评】本题是对向量数量积的考查,根据两个向量的夹角和模之间的关系,根据和的模两边平方,注意要求的结果非负,舍去不合题意的即可.两个向量的数量积是一个数量,它的值是两个向量的模与两向量夹角余弦的乘积,结果可正、可负、可以为零,其符号由夹角的余弦值确定.9. 【答案】15 【解析】10.【答案】B【解析】解:排除法:横坐标为2+(﹣6)=﹣4,故选B.11.【答案】C【解析】因为角、、依次成等差数列,所以由余弦定理知,即,解得所以,故选C答案:C12.【答案】C【解析】考点:茎叶图,频率分布直方图.二、填空题13.【答案】两条射线和一个圆.【解析】解:由题意可得x2+y2﹣4≥0,表示的区域是以原点为圆心的圆的外部以及圆上的部分.由方程(x+y﹣1)=0,可得x+y﹣1=0,或x2+y2=4,故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,故答案为:两条射线和一个圆.【点评】本题主要考查直线和圆的方程的特征,属于基础题.14.【答案】27【解析】由程序框图可知:43>符合,跳出循环.15.【答案】5627【解析】16.【答案】 【解析】【方法点睛】本题主要考查幂函数的定义与性质,属于中档题.幂函数定义与性质应用的三个关注点:(1)若幂函数()y xR αα=∈是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断;(2)若幂函数()y x R αα=∈在()0,+∞上单调递增,则α0>,若在()0,+∞上单调递减,则0α<;(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 117.【答案】 .【解析】解:由方程组解得,x=﹣1,y=2故A (﹣1,2).如图,故所求图形的面积为S=∫﹣11(2x 2)dx ﹣∫﹣11(﹣4x ﹣2)dx=﹣(﹣4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题.18.【答案】20x y --=【解析】解析: 设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=.三、解答题19.【答案】【解析】解:(1)∵f(5)=3,∴,即log a27=3解锝:a=3…(2)由(1)得函数,则=…(3)不等式f(x)<f(x+2),即为化简不等式得…∵函数y=log3x在(0,+∞)上为增函数,且的定义域为R.∴x2+2<x2+4x+6…即4x>﹣4,解得x>﹣1,所以不等式的解集为:(﹣1,+∞)…20.【答案】【解析】解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.【点评】本题考查了极坐标化为普通方程、曲线交点与方程联立得到的方程组的解的关系、两点间的距离公式等基础知识与基本方法,属于中档题.21.【答案】【解析】解:由题意可知过焦点的直线方程为y=x﹣,联立,得,设A(x1,y1),B(x2,y2)根据抛物线的定义,得|AB|=x1+x2+p=4p=8,解得p=2.∴抛物线的方程为y2=4x.【点评】本题给出直线与抛物线相交,在已知被截得弦长的情况下求焦参数p的值.着重考查了抛物线的标准方程和直线与圆锥曲线位置关系等知识,属于中档题.22.【答案】【解析】解:(1)由|x-a|+|x+b|≥|(x-a)-(x+b)|=|a+b|得,当且仅当(x-a)(x+b)≤0,即-b≤x≤a时,f(x)取得最小值,∴当x∈[-b,a]时,f(x)min=|a+b|=a+b.(2)证明:由(1)知a+b=2,(a+b)2=a+b+2ab≤2(a+b)=4,∴a +b ≤2,∴f (x )≥a +b =2≥a +b , 即f (x )≥a +b .23.【答案】(1)证明见解析;(2)证明见解析. 【解析】1111]试题解析:解:(1)∵PA 是切线,AB 是弦,∴C BAP ∠=∠,CPE APD ∠=∠, ∴CPE C APD BAP ∠+∠=∠+∠,∵CPE C AED APD BAP ADE ∠+∠=∠∠+∠=∠, ∴AED ADE ∠=∠,即ADE ∆是等腰三角形又点H 是线段ED 的中点,∴ AH 是线段ED 垂直平分线,即ED AH ⊥又由CPE APE ∠=∠可知PH 是线段AF 的垂直平分线,∴AF 与ED 互相垂直且平分, ∴四边形AEFD 是正方形,则D F E A 、、、四点共圆. (5分) (2由割线定理得PC PB PA ⋅=2,由(1)知PH 是线段AF 的垂直平分线,∴PF PA =,从而PC PB PF ⋅=2(10分)考点:与圆有关的比例线段. 24.【答案】【解析】解:(Ⅰ)由|ax+1|≤3得﹣4≤ax ≤2 ∵不等式f (x )≤3的解集为{x|﹣2≤x ≤1}. ∴当a ≤0时,不合题意;当a >0时,,∴a=2;(Ⅱ)记,∴h(x)=∴|h(x)|≤1∵恒成立,∴k≥1.【点评】本题考查绝对值不等式的解法,考查恒成立问题,将绝对值符号化去是关键,属于中档题.。
武清区第四中学校2018-2019学年高二上学期第二次月考试卷数学
武清区第四中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 为了得到函数y=cos (2x+1)的图象,只需将函数y=cos2x 的图象上所有的点( )A .向左平移个单位长度B .向右平移个单位长度C .向左平移1个单位长度D .向右平移1个单位长度2. 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )A .i ≥7?B .i >15?C .i ≥15?D .i >31?3. 设0<a <b 且a+b=1,则下列四数中最大的是( )A .a 2+b 2B .2abC .aD .4. 若复数z=2﹣i ( i 为虚数单位),则=( )A .4+2iB .20+10iC .4﹣2iD .5. 设函数y=的定义域为M ,集合N={y|y=x 2,x ∈R},则M ∩N=( ) A .∅B .NC .[1,+∞)D .M6. 如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置C 对隧道底AB 的张角θ最大时采集效果最好,则采集效果最好时位置C 到AB 的距离是( )A .2mB .2mC .4 mD .6 m7. 已知偶函数f (x )=log a |x ﹣b|在(﹣∞,0)上单调递增,则f (a+1)与f (b+2)的大小关系是( ) A .f (a+1)≥f (b+2) B .f (a+1)>f (b+2)C .f (a+1)≤f (b+2)D .f (a+1)<f (b+2)8. 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若﹣+1=0,则角B 的度数是( )A .60°B .120°C .150°D .60°或120°9. 函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )A.32-B.1-C.D.【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.10.某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]A .10B .51C .20D .3011.在△ABC 中,已知,则∠C=( )A .30°B .150°C .45°D .135°12.双曲线的焦点与椭圆的焦点重合,则m 的值等于( )A .12B .20C .D .二、填空题13.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .14.设p :实数x 满足不等式x 2﹣4ax+3a 2<0(a <0),q :实数x 满足不等式x 2﹣x ﹣6≤0,已知¬p 是¬q 的必要非充分条件,则实数a 的取值范围是 .15.长方体ABCD ﹣A 1B 1C 1D 1的棱AB=AD=4cm ,AA 1=2cm ,则点A 1到平面AB 1D 1的距离等于 cm .16.给出下列四个命题:①函数y=|x|与函数表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数y=3x 2+1的图象可由y=3x 2的图象向上平移1个单位得到;④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];⑤设函数f(x)是在区间[a,b]上图象连续的函数,且f(a)•f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根;其中正确命题的序号是.(填上所有正确命题的序号)17.设x∈(0,π),则f(x)=cos2x+sinx的最大值是.18.在△ABC中,a,b,c分别是角A,B,C的对边,若6a=4b=3c,则cosB=.三、解答题19.(1)计算:(﹣)0+lne﹣+8+log62+log63;(2)已知向量=(sinθ,cosθ),=(﹣2,1),满足∥,其中θ∈(,π),求cosθ的值.20.为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t0小时.为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:(Ⅰ)求任选2人中,恰有1人一周课外阅读时间在[2,4)(单位:小时)的概率(Ⅱ)专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t0,试确定t0的取值范围21.设定义在(0,+∞)上的函数f(x)=ax++b(a>0)(Ⅰ)求f(x)的最小值;(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=,求a,b的值.22.2014年“五一”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/t)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90)后得到如图所示的频率分布直方图.(Ⅰ)求这40辆小型车辆车速的众数及平均车速(可用中值代替各组数据平均值);(Ⅱ)若从车速在[60,70)的车辆中任抽取2辆,求车速在[65,70)的车辆至少有一辆的概率.23.设函数()xf x e =,()lng x x =.(Ⅰ)证明:()2e g x x≥-; (Ⅱ)若对所有的0x ≥,都有()()f x f x ax --≥,求实数a 的取值范围.24.(本小题满分10分)选修41-:几何证明选讲如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.武清区第四中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:∵,故将函数y=cos2x的图象上所有的点向左平移个单位长度,可得函数y=cos(2x+1)的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.2.【答案】C【解析】解:模拟执行程序框图,可得S=2,i=0不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15由题意,此时退出循环,输出S的值即为14,结合选项可知判断框内应填的条件是:i≥15?故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查.3.【答案】A【解析】解:∵0<a<b且a+b=1∴∴2b>1∴2ab﹣a=a(2b﹣1)>0,即2ab>a又a2+b2﹣2ab=(a﹣b)2>0∴a2+b2>2ab∴最大的一个数为a2+b2故选A4.【答案】A【解析】解:∵z=2﹣i,∴====,∴=10•=4+2i,故选:A.【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.5.【答案】B【解析】解:根据题意得:x+1≥0,解得x≥﹣1,∴函数的定义域M={x|x≥﹣1};∵集合N中的函数y=x2≥0,∴集合N={y|y≥0},则M∩N={y|y≥0}=N.故选B6.【答案】A【解析】解:建立如图所示的坐标系,设抛物线方程为x2=﹣2py(p>0),将点(4,﹣4)代入,可得p=2,所以抛物线方程为x2=﹣4y,设C(x,y)(y>﹣6),则由A(﹣4,﹣6),B(4,﹣6),可得k CA=,k CB=,∴tan∠BCA===,令t=y+6(t>0),则tan∠BCA==≥∴t=2时,位置C对隧道底AB的张角最大,故选:A.【点评】本题考查抛物线的方程与应用,考查基本不等式,确定抛物线的方程及tan∠BCA,正确运用基本不等式是关键.7.【答案】B【解析】解:∵y=log a|x﹣b|是偶函数∴log a|x﹣b|=log a|﹣x﹣b|∴|x﹣b|=|﹣x﹣b|∴x2﹣2bx+b2=x2+2bx+b2整理得4bx=0,由于x不恒为0,故b=0由此函数变为y=log a|x|当x∈(﹣∞,0)时,由于内层函数是一个减函数,又偶函数y=log a|x﹣b|在区间(﹣∞,0)上递增故外层函数是减函数,故可得0<a<1综上得0<a<1,b=0∴a+1<b+2,而函数f(x)=log a|x﹣b|在(0,+∞)上单调递减∴f(a+1)>f(b+2)故选B.8.【答案】A【解析】解:根据正弦定理有:=,代入已知等式得:﹣+1=0,即﹣1=,整理得:2sinAcosB﹣cosBsinC=sinBcosC,即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),又∵A+B+C=180°,∴sin(B+C)=sinA,可得2sinAcosB=sinA , ∵sinA ≠0,∴2cosB=1,即cosB=, 则B=60°. 故选:A .【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.9. 【答案】D【解析】易知周期112()1212T π5π=-=π,∴22T ωπ==.由52212k ϕπ⨯+=π(k ∈Z ),得526k ϕπ=-+π(k Z ∈),可得56ϕπ=-,所以5()2cos(2)6f x x π=-,则5(0)2cos()6f π=-=,故选D. 10.【答案】D【解析】试题分析:分段间隔为50301500=,故选D. 考点:系统抽样 11.【答案】C【解析】解:∵a 2+b 2=c 2+ba ,即a 2+b 2﹣c 2=ab ,∴由余弦定理得:cosC==,∴∠C=45°. 故选:C .【点评】此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.12.【答案】A【解析】解:椭圆的焦点为(±4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12.故选:A .二、填空题13.【答案】 a ≤0或a ≥3 .【解析】解:∵A={x|x≤1或x≥3},B={x|a≤x≤a+1},且A∩B=B,∴B⊆A,则有a+1≤1或a≥3,解得:a≤0或a≥3,故答案为:a≤0或a≥3.14.【答案】.【解析】解:∵x2﹣4ax+3a2<0(a<0),∴(x﹣a)(x﹣3a)<0,则3a<x<a,(a<0),由x2﹣x﹣6≤0得﹣2≤x≤3,∵¬p是¬q的必要非充分条件,∴q是p的必要非充分条件,即,即≤a<0,故答案为:15.【答案】【解析】解:由题意可得三棱锥B1﹣AA1D1的体积是=,三角形ABD1的面积为4,设点A1到平面AB1D1的距离等于h,则,1则h=故点A1到平面AB1D1的距离为.故答案为:.16.【答案】③⑤【解析】解:①函数y=|x|,(x ∈R )与函数,(x ≥0)的定义域不同,它们不表示同一个函数;错;②奇函数y=,它的图象不通过直角坐标系的原点;故②错;③函数y=3(x ﹣1)2的图象可由y=3x 2的图象向右平移1个单位得到;正确; ④若函数f (x )的定义域为[0,2],则函数f (2x )的定义域由0≤2x ≤2,⇒0≤x ≤1, 它的定义域为:[0,1];故错;⑤设函数f (x )是在区间[a .b]上图象连续的函数,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b]上至少有一实根.故正确; 故答案为:③⑤17.【答案】 .【解析】解:∵f (x )=cos 2x+sinx=1﹣sin 2x+sinx=﹣+,故当sinx=时,函数f (x )取得最大值为,故答案为:.【点评】本题主要考查三角函数的最值,二次函数的性质,属于基础题.18.【答案】.【解析】解:在△ABC 中,∵6a=4b=3c∴b=,c=2a ,由余弦定理可得cosB===.故答案为:.【点评】本题考查余弦定理在解三角形中的应用,用a 表示b ,c 是解决问题的关键,属于基础题.三、解答题19.【答案】【解析】(本小题满分12分)解析:(1)原式=1+1﹣5+2+1=0;…(6分)(2)∵向量=(sinθ,cosθ),=(﹣2,1),满足∥,∴sinθ=﹣2cosθ,①…(9分)又sin2θ+cos2θ+=1,②由①②解得cos2θ=,…(11分)∵θ∈(,π),∴cosθ=﹣.…(12分)【点评】本题考查对数运算法则以及三角函数的化简求值,向量共线的应用,考查计算能力.20.【答案】【解析】解:(Ⅰ)一周课外阅读时间在[0,2)的学生人数为0.010×2×100=2人,一周课外阅读时间在[2,4)的学生人数为0.015×2×100=3人,记一周课外阅读时间在[0,2)的学生为A,B,一周课外阅读时间在[2,4)的学生为C,D,E,从5人中选取2人,得到基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共有10个基本事件,记“任选2人中,恰有1人一周课外阅读时间在[2,4)”为事件M,其中事件M包含AC,AD,AE,BD,BC,BE,共有6个基本事件,所以P(M)==,即恰有1人一周课外阅读时间在[2,4)的概率为.(Ⅱ)以该校80%的学生都达到的一周课外阅读时间为t0,即一周课外阅读时间未达到t0的学生占20%,由(Ⅰ)知课外阅读时间落在[0,2)的频率为P1=0.02,课外阅读时间落在[2,4)的频率为P2=0.03,课外阅读时间落在[4,6)的频率为P3=0.05,课外阅读时间落在[6,8)的频率为P1=0.2,因为P1+P2+P3<0.2,且P1+P2+P3+P4>0.2,故t0∈[6,8),所以P1+P2+P3+0.1×(t0﹣6)=0.2,解得t0=7,所以教育局拟向全市中学生的一周课外阅读时间为7小时.【点评】本题主要考查了用列举法计算随机事件的基本事件,古典概型概以及频率分布直方图等基本知识,考查了数据处理能力和运用概率知识解决实际问题的能力,属于中档题.21.【答案】【解析】解:(Ⅰ)f (x )=ax++b ≥2+b=b+2当且仅当ax=1(x=)时,f (x )的最小值为b+2(Ⅱ)由题意,曲线y=f (x )在点(1,f (1))处的切线方程为y=,可得:f (1)=,∴a++b=①f'(x )=a ﹣,∴f ′(1)=a ﹣=②由①②得:a=2,b=﹣122.【答案】【解析】解:(1)众数的估计值为最高的矩形的中点,即众数的估计值等于77.5… 这40辆小型车辆的平均车速为:(km/t )… (2)从图中可知,车速在[60,65)的车辆数为:m 1=0.01×5×40=2(辆) 车速在[65,70)的车辆数为:m 2=0.02×5×40=4(辆)设车速在[60,65)的车辆设为a ,b ,车速在[65,70)的车辆设为c ,d ,e ,f ,则所有基本事件有:(a ,b ),(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f )(c ,d ),(c ,e ),(c ,f ),(d ,e ),(d ,f )(e ,f )共15种其中车速在[65,70)的车辆至少有一辆的事件有:(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),(c ,d ),(c ,e ),(c ,f ),(d ,e ),(d ,f ),(e ,f ),共14种所以,车速在[65,70)的车辆至少有一辆的概率为.…【点评】本题考查频率分布直方图的应用,古典概型概率公式的应用,基本知识的考查.23.【答案】【解析】(Ⅰ)令e e ()()2ln 2F x g x x x x =-+=-+,221e e ()x F x x x x-'∴=-=由()0e F x x '>⇒> ∴()F x 在(0,e]递减,在[e,)+∞递增,∴ min e ()(e)ln e 20e F x F ==-+= ∴()0F x ≥ 即e()2g x x≥-成立. …… 5分(Ⅱ) 记()()()x xh x f x f x ax e e ax -=---=--, ∴ ()0h x ≥在[0,)+∞恒成立,()e x xh x e a -'=+-, ∵ ()()e 00x x h x e x -''=-≥≥,∴ ()h x '在[0,)+∞递增, 又(0)2h a '=-, …… 7分 ∴ ① 当 2a ≤时,()0h x '≥成立, 即()h x 在[0,)+∞递增, 则()(0)0h x h ≥=,即 ()()f x f x ax --≥成立; …… 9分 ② 当2a >时,∵()h x '在[0,)+∞递增,且min ()20h x a '=-<, ∴ 必存在(0,)t ∈+∞使得()0h t '=.则(0,)x t ∈时,()0h t '<,即 (0,)x t ∈时,()(0)0h t h <=与()0h x ≥在[0,)+∞恒成立矛盾,故2a >舍去. 综上,实数a 的取值范围是2a ≤. …… 12分 24.【答案】【解析】【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.。
武清区实验中学2018-2019学年高二上学期第二次月考试卷数学
武清区实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知向量=(1,1,0),=(﹣1,0,2)且k +与2﹣互相垂直,则k 的值是( )A .1B .C .D .2. 若动点),(),(2211y x B y x A 、分别在直线: 011=-+y x 和2l :01=-+y x 上移动,则AB 中点M 所在直线方程为( )A .06=--y xB .06=++y xC .06=+-y xD .06=-+y x3. 已知2->a ,若圆1O :01582222=---++a ay x y x ,圆2O :04422222=--+-++a a ay ax y x 恒有公共点,则a 的取值范围为( ).A .),3[]1,2(+∞--B .),3()1,35(+∞-- C .),3[]1,35[+∞-- D .),3()1,2(+∞--4. 已知向量=(1,),=(,x )共线,则实数x 的值为( )A .1B .C .tan35°D .tan35°5. 如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限6. 阅读如右图所示的程序框图,若输入0.45a =,则输出的k 值是( ) (A ) 3 ( B ) 4 (C ) 5 (D ) 67. 数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=( )A .﹣16B .14C .28D .308. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )A .1B .C .D .29. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2013 B .2014 C .2015 D .20161111] 10.“m=1”是“直线(m ﹣2)x ﹣3my ﹣1=0与直线(m+2)x+(m ﹣2)y+3=0相互垂直”的( )A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件11.已知是虚数单位,若复数22aiZi+=+在复平面内对应的点在第四象限,则实数的值可以是()A.-2 B.1 C.2 D.3 12.如图Rt△O′A′B′是一平面图形的直观图,斜边O′B′=2,则这个平面图形的面积是()A.B.1 C.D.二、填空题13.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n}为“斐波那契数列”.若把该数列{a n}的每一项除以4所得的余数按相对应的顺序组成新数列{b n},在数列{b n}中第2016项的值是.14.已知椭圆+=1(a>b>0)上一点A关于原点的对称点为B,F为其左焦点,若AF⊥BF,设∠ABF=θ,且θ∈[,],则该椭圆离心率e的取值范围为.15.设x,y满足约束条件,则目标函数z=2x﹣3y的最小值是.16.在正方体ABCD﹣A1B1C1D1中,异面直线A1B与AC所成的角是°.17.平面内两定点M(0,一2)和N(0,2),动点P(x,y)满足,动点P的轨迹为曲线E,给出以下命题:①∃m,使曲线E过坐标原点;②对∀m,曲线E与x轴有三个交点;③曲线E只关于y轴对称,但不关于x轴对称;④若P、M、N三点不共线,则△PMN周长的最小值为+4;⑤曲线E上与M,N不共线的任意一点G关于原点对称的另外一点为H,则四边形GMHN的面积不大于m 。
武清区民族中学2018-2019学年高二上学期第二次月考试卷数学
武清区民族中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN << 2. 方程x 2+2ax+y 2=0(a ≠0)表示的圆( )A .关于x 轴对称B .关于y 轴对称C .关于直线y=x 轴对称D .关于直线y=﹣x 轴对称3. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akmC .2akmD .akm4. 下列函数在其定义域内既是奇函数又是增函数的是( )A .B .C .D .5. 高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:[70,90),[90,110),[100,130),[130,150),估计该班级数学成绩的平均分等于( )A .112B .114C .116D .1206. 某班有50名学生,一次数学考试的成绩ξ服从正态分布N (105,102),已知P (95≤ξ≤105)=0.32,估计该班学生数学成绩在115分以上的人数为( ) A .10 B .9C .8D .77. 已知数列{n a }满足nn n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( ) A .211 B .227 C . 32259 D .32435 8. 平面α与平面β平行的条件可以是( )A .α内有无穷多条直线与β平行B .直线a ∥α,a ∥βC .直线a ⊂α,直线b ⊂β,且a ∥β,b ∥αD .α内的任何直线都与β平行9. 设F 1,F 2分别是椭圆+=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于P ,Q 两点,若∠F 1PQ=60°,|PF 1|=|PQ|,则椭圆的离心率为( )A .B .C .D .10.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( ) A .B .y=x 2C .y=﹣x|x|D .y=x ﹣211.已知直线ax+by+c=0与圆O :x 2+y 2=1相交于A ,B 两点,且,则的值是( )A .B .C .D .012.下列给出的几个关系中:①{}{},a b ∅⊆;②(){}{},,a b a b =;③{}{},,a b b a ⊆;④{}0∅⊆,正确的有( )个A.个B.个C.个D.个二、填空题13.已知函数f (x )=x 3﹣ax 2+3x 在x ∈[1,+∞)上是增函数,求实数a 的取值范围 . 14.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= .15.设双曲线﹣=1,F 1,F 2是其两个焦点,点M 在双曲线上.若∠F 1MF 2=90°,则△F 1MF 2的面积是 .16.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为_________.17.抛物线y 2=4x 的焦点为F ,过F 且倾斜角等于的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长为 .18.在△ABC 中,点D 在边AB 上,CD ⊥BC ,AC=5,CD=5,BD=2AD ,则AD 的长为 .三、解答题19.(本小题满分12分)已知函数()23cos cos 2f x x x x =++.(1)当63x ππ⎡⎤∈-⎢⎥⎣⎦,时,求函数()y f x =的值域;(2)已知0ω>,函数()212x g x f ωπ⎛⎫=+⎪⎝⎭,若函数()g x 在区间236ππ⎡⎤-⎢⎥⎣⎦,上是增函数,求ω的最大值.20.已知曲线C 1的极坐标方程为ρ=6cos θ,曲线C 2的极坐标方程为θ=(p ∈R ),曲线C 1,C 2相交于A ,B两点.(Ⅰ)把曲线C 1,C 2的极坐标方程转化为直角坐标方程; (Ⅱ)求弦AB 的长度.21.证明:f (x )是周期为4的周期函数;(2)若f (x )=(0<x ≤1),求x ∈[﹣5,﹣4]时,函数f (x )的解析式.18.已知函数f (x )=是奇函数.22.已知二次函数f (x )的图象过点(0,4),对任意x 满足f (3﹣x )=f (x ),且有最小值是. (1)求f (x )的解析式;(2)求函数h (x )=f (x )﹣(2t ﹣3)x 在区间[0,1]上的最小值,其中t ∈R ;(3)在区间[﹣1,3]上,y=f (x )的图象恒在函数y=2x+m 的图象上方,试确定实数m 的范围.23.(本题满分13分)已知圆1C 的圆心在坐标原点O ,且与直线1l :062=+-y x 相切,设点A 为圆上 一动点,⊥AM x 轴于点M ,且动点N 满足OM OA ON )2133(21-+=,设动点N 的轨迹为曲线C . (1)求曲线C 的方程;(2)若动直线2l :m kx y +=与曲线C 有且仅有一个公共点,过)0,1(1-F ,)0,1(2F 两点分别作21l P F ⊥,21l Q F ⊥,垂足分别为P ,Q ,且记1d 为点1F 到直线2l 的距离,2d 为点2F 到直线2l 的距离,3d 为点P到点Q 的距离,试探索321)(d d d ⋅+是否存在最值?若存在,请求出最值.24.永泰青云山特产经营店销售某种品牌蜜饯,蜜饯每盒进价为8元,预计这种蜜饯以每盒20元的价格销售时该店一天可销售20盒,经过市场调研发现每盒蜜饯的销售价格在每盒20元的基础上每减少一元则增加销售4盒,每增加一元则减少销售1盒,现设每盒蜜饯的销售价格为x 元.(1)写出该特产店一天内销售这种蜜饯所获得的利润y (元)与每盒蜜饯的销售价格x 的函数关系式; (2)当每盒蜜饯销售价格x 为多少时,该特产店一天内利润y (元)最大,并求出这个最大值.武清区民族中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A 【解析】试题分析:取BC 的中点E ,连接,ME NE ,2,3ME NE ==,根据三角形中两边之和大于第三边,两边之差小于第三边,所以15MN <<,故选A .考点:点、线、面之间的距离的计算.1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题. 2. 【答案】A【解析】解:方程x 2+2ax+y 2=0(a ≠0)可化为(x+a )2+y 2=a 2,圆心为(﹣a ,0),∴方程x 2+2ax+y 2=0(a ≠0)表示的圆关于x 轴对称,故选:A .【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键.3. 【答案】D 【解析】解:根据题意,△ABC 中,∠ACB=180°﹣20°﹣40°=120°,∵AC=BC=akm ,∴由余弦定理,得cos120°=,解之得AB=akm ,即灯塔A 与灯塔B 的距离为akm ,故选:D .【点评】本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.4.【答案】B【解析】【知识点】函数的单调性与最值函数的奇偶性【试题解析】若函数是奇函数,则故排除A、D;对C:在(-和(上单调递增,但在定义域上不单调,故C错;故答案为:B5.【答案】B【解析】解:根据频率分布直方图,得;该班级数学成绩的平均分是=80×0.005×20+100×0.015×20+120×0.02×20+140×0.01×20=114.故选:B.【点评】本题考查了根据频率分布直方图,求数据的平均数的应用问题,是基础题目.6.【答案】B【解析】解:∵考试的成绩ξ服从正态分布N(105,102).∴考试的成绩ξ关于ξ=105对称,∵P(95≤ξ≤105)=0.32,∴P(ξ≥115)=(1﹣0.64)=0.18,∴该班数学成绩在115分以上的人数为0.18×50=9故选:B.【点评】本题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩ξ关于ξ=105对称,利用对称写出要用的一段分数的频数,题目得解.7. 【答案】D 【解析】试题分析: 数列n n n a 2728-+=,112528++-+=∴n n n a ,11252722n n n n n n a a ++--∴-=- ()11252272922n n n n n ++----+==,当41≤≤n 时,n n a a >+1,即12345a a a a a >>>>;当5≥n 时,n n a a <+1,即...765>>>a a a .因此数列{}n a 先增后减,32259,55==∴a n 为最大项,8,→∞→n a n ,2111=a ,∴最小项为211,M m +∴的值为3243532259211=+.故选D.考点:数列的函数特性. 8. 【答案】D【解析】解:当α内有无穷多条直线与β平行时,a 与β可能平行,也可能相交,故不选A .当直线a ∥α,a ∥β时,a 与β可能平行,也可能相交,故不选 B .当直线a ⊂α,直线b ⊂β,且a ∥β 时,直线a 和直线 b 可能平行,也可能是异面直线,故不选 C .当α内的任何直线都与β 平行时,由两个平面平行的定义可得,这两个平面平行, 故选 D .【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况.9. 【答案】 D【解析】解:设|PF 1|=t , ∵|PF 1|=|PQ|,∠F 1PQ=60°, ∴|PQ|=t ,|F 1Q|=t ,由△F 1PQ 为等边三角形,得|F 1P|=|F 1Q|, 由对称性可知,PQ 垂直于x 轴,F 2为PQ 的中点,|PF 2|=,∴|F 1F 2|=,即2c=,由椭圆定义:|PF 1|+|PF 2|=2a ,即2a=t=t ,∴椭圆的离心率为:e===.故选D.10.【答案】D【解析】解:函数为非奇非偶函数,不满足条件;函数y=x2为偶函数,但在区间(0,+∞)上单调递增,不满足条件;函数y=﹣x|x|为奇函数,不满足条件;函数y=x﹣2为偶函数,在区间(0,+∞)上单调递减,满足条件;故选:D【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题.11.【答案】A【解析】解:取AB的中点C,连接OC,,则AC=,OA=1∴sin =sin∠AOC==所以:∠AOB=120°则•=1×1×cos120°=.故选A.12.【答案】C 【解析】试题分析:由题意得,根据集合之间的关系可知:{}{},,a b b a ⊆和{}0∅⊆是正确的,故选C. 考点:集合间的关系.二、填空题13.【答案】 (﹣∞,3] .【解析】解:f ′(x )=3x 2﹣2ax+3, ∵f (x )在[1,+∞)上是增函数,∴f ′(x )在[1,+∞)上恒有f ′(x )≥0,即3x 2﹣2ax+3≥0在[1,+∞)上恒成立.则必有≤1且f ′(1)=﹣2a+6≥0, ∴a ≤3;实数a 的取值范围是(﹣∞,3].14.【答案】 2016 .【解析】解:由a n+1=e+a n ,得a n+1﹣a n =e , ∴数列{a n }是以e 为公差的等差数列, 则a 1=a 3﹣2e=4e ﹣2e=2e ,∴a 2015=a 1+2014e=2e+2014e=2016e . 故答案为:2016e .【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题.15.【答案】 9 .【解析】解:双曲线﹣=1的a=2,b=3,可得c 2=a 2+b 2=13,又||MF1|﹣|MF 2||=2a=4,|F 1F 2|=2c=2,∠F 1MF 2=90°,在△F 1AF 2中,由勾股定理得: |F 1F 2|2=|MF 1|2+|MF 2|2=(|MF 1|﹣|MF 2|)2+2|MF 1||MF 2|,即4c 2=4a 2+2|MF 1||MF 2|, 可得|MF 1||MF 2|=2b 2=18,即有△F 1MF 2的面积S=|MF 1||MF 2|sin ∠F 1MF 2=×18×1=9.故答案为:9.【点评】本题考查双曲线的简单性质,着重考查双曲线的定义与a 、b 、c 之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算能力,属于中档题.16.【答案】20x y --=【解析】解析: 设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=.17.【答案】 4 .【解析】解:由已知可得直线AF 的方程为y=(x ﹣1),联立直线与抛物线方程消元得:3x 2﹣10x+3=0,解之得:x 1=3,x 2=(据题意应舍去),由抛物线定义可得:AF=x 1+=3+1=4.故答案为:4.【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题.18.【答案】 5 .【解析】解:如图所示:延长BC ,过A 做AE ⊥BC ,垂足为E ,∵CD ⊥BC ,∴CD ∥AE , ∵CD=5,BD=2AD ,∴,解得AE=,在RT △ACE ,CE===,由得BC=2CE=5,在RT △BCD 中,BD===10,则AD=5, 故答案为:5.【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题.三、解答题19.【答案】(1)332⎡⎤⎢⎥⎣⎦,;(2).【解析】试题分析:(1)化简()sin 226f x x π⎛⎫=++ ⎪⎝⎭,结合取值范围可得1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭⇒值域为332⎡⎤⎢⎥⎣⎦,;(2)易得()sin 22123x g x f x ωππω⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭和233363x πωππωππω⎡⎤+∈-++⎢⎥⎣⎦,,由()g x 在236ππ⎡⎤-⎢⎥⎣⎦,上是增函数⇒222Z 336322k k k ωππωππππππ⎡⎤⎡⎤-++⊆-++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,⇒ 223322632k k ωππππωππππ⎧-+≥-+⎪⎪⎨⎪+≤+⎪⎩⇒534112k k ωω⎧≤-⎪⎨⎪≤+⎩⇒151212k -<<,Z k ∈⇒0k =⇒1ω≤⇒ω的最大值为.考点:三角函数的图象与性质.20.【答案】【解析】解:(Ⅰ)曲线C2:(p∈R)表示直线y=x,曲线C1:ρ=6cosθ,即ρ2=6ρcosθ所以x2+y2=6x即(x﹣3)2+y2=9(Ⅱ)∵圆心(3,0)到直线的距离,r=3所以弦长AB==.∴弦AB的长度.【点评】本小题主要考查圆和直线的极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算圆心到直线的距等基本方法,属于基础题.21.【答案】【解析】(1)证明:由函数f(x)的图象关于直线x=1对称,有f(x+1)=f(1﹣x),即有f(﹣x)=f(x+2).又函数f(x)是定义在R上的奇函数,有f(﹣x)=﹣f(x).故f(x+2)=﹣f(x).从而f(x+4)=﹣f(x+2)=f(x).即f(x)是周期为4的周期函数.(2)解:由函数f(x)是定义在R上的奇函数,有f(0)=0.x∈[﹣1,0)时,﹣x∈(0,1],.故x∈[﹣1,0]时,.x∈[﹣5,﹣4]时,x+4∈[﹣1,0],.从而,x∈[﹣5,﹣4]时,函数f(x)的解析式为.【点评】本题考查函数奇偶性的性质,函数解析式的求解常用的方法,本题解题的关键是根据函数是一个奇函数对函数式进行整理,本题是一个中档题目.22.【答案】【解析】解:(1)二次函数f(x)图象经过点(0,4),任意x满足f(3﹣x)=f(x)则对称轴x=,f(x)存在最小值,则二次项系数a>0设f(x)=a(x﹣)2+.将点(0,4)代入得:f(0)=,解得:a=1∴f(x)=(x﹣)2+=x2﹣3x+4.(2)h(x)=f(x)﹣(2t﹣3)x=x2﹣2tx+4=(x﹣t)2+4﹣t2,x∈[0,1].当对称轴x=t≤0时,h(x)在x=0处取得最小值h(0)=4;当对称轴0<x=t<1时,h(x)在x=t处取得最小值h(t)=4﹣t2;当对称轴x=t≥1时,h(x)在x=1处取得最小值h(1)=1﹣2t+4=﹣2t+5.综上所述:当t≤0时,最小值4;当0<t<1时,最小值4﹣t2;当t≥1时,最小值﹣2t+5.∴.(3)由已知:f (x )>2x+m 对于x ∈[﹣1,3]恒成立,∴m <x 2﹣5x+4对x ∈[﹣1,3]恒成立,∵g (x )=x 2﹣5x+4在x ∈[﹣1,3]上的最小值为,∴m <.23.【答案】【解析】【命题意图】本题综合考查了圆的标准方程、向量的坐标运算,轨迹的求法,直线与椭圆位置关系;本题突出对运算能力、化归转化能力的考查,还要注意对特殊情况的考虑,本题难度大.(2)由(1)中知曲线C 是椭圆,将直线2l :m kx y +=代入 椭圆C 的方程124322=+y x 中,得01248)34(222=-+++m kmx x k由直线2l 与椭圆C 有且仅有一个公共点知, 0)124)(34(4642222=-+-=∆m k m k ,整理得3422+=k m …………7分且211||k k m d +-=,221||kk m d ++=1当0≠k 时,设直线2l 的倾斜角为θ,则|||tan |213d d d -=⋅θ,即||213kd d d -= ∴2222121213211||4||||)()(k m k d d k d d d d d d d +=-=-+=+ ||1||16143||42m m m m +=+-= …………10分∵3422+=k m ∴当0≠k 时,3||>m∴334313||1||=+>+m m ,∴34)(321<+d d d ……11分 2当0=k 时,四边形PQ F F 21为矩形,此时321==d d ,23=d∴34232)(321=⨯=+d d d …………12分综上1、2可知,321)(d d d ⋅+存在最大值,最大值为34 ……13分24.【答案】【解析】解:(1)当0<x ≤20时,y=[20+4(20﹣x )](x ﹣8)=﹣4x 2+132x ﹣800,当20<x <40时,y=[20﹣(x ﹣20)](x ﹣8)=﹣x 2+48x ﹣320,∴(2)①当,∴当x=16.5时,y 取得最大值为289, ②当20<x <40时,y=﹣(x ﹣24)2+256, ∴当x=24时,y 取得最大值256,综上所述,当蜜饯价格是16.5元时,该特产店一天的利润最大,最大值为289元.。
武清区四中2018-2019学年高二上学期第二次月考试卷数学
武清区四中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。
问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD =3丈,长AB =4丈,上棱EF =2丈,EF ∥平面ABCD .EF 与平面ABCD 的距离为1丈,问它的体积是( ) A .4立方丈 B .5立方丈 C .6立方丈 D .8立方丈2. 函数y=a 1﹣x (a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx+ny ﹣1=0(mn >0)上,则的最小值为( )A .3B .4C .5D .63. 已知三棱锥S ABC -外接球的表面积为32π,090ABC ∠=,三棱锥S ABC -的三视图如图 所示,则其侧视图的面积的最大值为( )A .4B .C .8D .4. 某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( ) A .100 B .150 C .200 D .2505. 已知△ABC 是锐角三角形,则点P (cosC ﹣sinA ,sinA ﹣cosB )在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6.定义某种运算S=a⊗b,运算原理如图所示,则式子+的值为()A.4 B.8 C.10 D.137.在空间中,下列命题正确的是()A.如果直线m∥平面α,直线n⊂α内,那么m∥nB.如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC.如果平面α外的一条直线m垂直于平面α内的两条相交直线,那么m⊥αD.如果平面α⊥平面β,任取直线m⊂α,那么必有m⊥β8.已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为()A.1 B.C.2 D.49.若三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=2,AB=1,AC=2,∠BAC=60°,则球O的表面积为()A.64πB.16πC.12πD.4π10.已知函数f(x)=x3+(1﹣b)x2﹣a(b﹣3)x+b﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组所确定的平面区域在x2+y2=4内的面积为()A.B.C.πD.2π11.从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是()A.B.C.D.12.若a,b,c成等比数列,m是a,b的等差中项,n是b,c的等差中项,则=()A.4 B.3 C.2 D.1二、填空题13.设向量=(1,﹣3),=(﹣2,4),=(﹣1,﹣2),若表示向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量的坐标是 .14.如图是函数y=f (x )的导函数y=f ′(x )的图象,对此图象,有如下结论: ①在区间(﹣2,1)内f (x )是增函数; ②在区间(1,3)内f (x )是减函数; ③在x=2时,f (x )取得极大值; ④在x=3时,f (x )取得极小值. 其中正确的是 .15.在三棱柱ABC ﹣A 1B 1C 1中,底面为棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是 .16.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________. 17.在△ABC 中,点D 在边AB 上,CD ⊥BC ,AC=5,CD=5,BD=2AD ,则AD 的长为 .18.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1sin 3BAM ∠=,则AC 的长为_________. 三、解答题19.已知y=f (x )是R 上的偶函数,x ≥0时,f (x )=x 2﹣2x (1)当x <0时,求f (x )的解析式.(2)作出函数f (x )的图象,并指出其单调区间.20.十八届四中全会明确提出“以法治手段推进生态文明建设”,为响应号召,某市红星路小区的环保人士向该市政府部门提议“在全市范围内禁放烟花、炮竹”.为此,红星路小区的环保人士对该小区年龄在[15,75)(2)若从年龄在[55,65)、[65,75)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“禁放烟花、炮竹”的人数为ξ,求随机变量ξ的分布列和数学期望.21.已知椭圆+=1(a>b>0)的离心率为,且a2=2b.(1)求椭圆的方程;(2)直线l:x﹣y+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,说明理由.22.(本小题满分12分)在△ABC中,∠A,∠B,∠C所对的边分别是a、b、c,不等式x2cos C+4x sin C+6≥0对一切实数x恒成立.(1)求cos C的取值范围;(2)当∠C取最大值,且△ABC的周长为6时,求△ABC面积的最大值,并指出面积取最大值时△ABC的形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.23.已知三棱柱ABC﹣A1B1C1,底面三角形ABC为正三角形,侧棱AA1⊥底面ABC,AB=2,AA1=4,E为AA1的中点,F为BC的中点(1)求证:直线AF∥平面BEC1(2)求A到平面BEC1的距离.24.设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2(1)求a,b的值;(2)设函数g(x)=f(x)﹣2x+2,求g(x)在其定义域上的最值.武清区四中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】 【解析】解析:选B.如图,设E 、F 在平面ABCD 上的射影分别为P ,Q ,过P ,Q 分别作GH ∥MN ∥AD 交AB 于G ,M ,交DC 于H ,N ,连接EH 、GH 、FN 、MN ,则平面EGH 与平面FMN 将原多面体分成四棱锥E -AGHD 与四棱锥F -MBCN 与直三棱柱EGH -FMN .由题意得GH =MN =AD =3,GM =EF =2,EP =FQ =1,AG +MB =AB -GM =2,所求的体积为V =13(S 矩形AGHD +S 矩形MBCN )·EP +S △EGH ·EF =13×(2×3)×1+12×3×1×2=5立方丈,故选B.2. 【答案】B【解析】解:函数y=a 1﹣x(a >0,a ≠1)的图象恒过定点A (1,1),∵点A 在直线mx+ny ﹣1=0(mn >0)上,∴m+n=1.则=(m+n )=2+=4,当且仅当m=n=时取等号.故选:B .【点评】本题考查了“乘1法”与基本不等式的性质、指数函数的性质,属于基础题.3. 【答案】A 【解析】考点:三视图.【方法点睛】本题主要考查几何体的三视图,空间想象能力.空间几何体的三视图是分别从空间几何体的正面,左面,上面用平行投影的方法得到的三个平面投影图.因此在分析空间几何体的三视图时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱,面的位置,再确定几何体的形状,即可得到结果. 要能够牢记常见几何体的三视图.4.【答案】A【解析】解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100.故选:A.5.【答案】B【解析】解:∵△ABC是锐角三角形,∴A+B>,∴A>﹣B,∴sinA>sin(﹣B)=cosB,∴sinA﹣cosB>0,同理可得sinA﹣cosC>0,∴点P在第二象限.故选:B6.【答案】C【解析】解:模拟执行程序,可得,当a≥b时,则输出a(b+1),反之,则输出b(a+1),∵2tan=2,lg=﹣1,∴(2tan)⊗lg=(2tan)×(lg+1)=2×(﹣1+1)=0,∵lne=1,()﹣1=5,∴lne⊗()﹣1=()﹣1×(lne+1)=5×(1+1)=10,∴+=0+10=10.故选:C.7.【答案】C【解析】解:对于A,直线m∥平面α,直线n⊂α内,则m与n可能平行,可能异面,故不正确;对于B,如果平面α内的两条相交直线都平行于平面β,那么平面α∥平面β,故不正确;对于C,根据线面垂直的判定定理可得正确;对于D,如果平面α⊥平面β,任取直线m⊂α,那么可能m⊥β,也可能m和β斜交,;故选:C.【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题.8.【答案】B【解析】解:设圆柱的高为h,则V圆柱=π×12×h=h,V球==,∴h=.故选:B.9.【答案】A【解析】解:如图,三棱锥S﹣ABC的所有顶点都在球O的球面上,∵AB=1,AC=2,∠BAC=60°,∴BC=,∴∠ABC=90°.∴△ABC截球O所得的圆O′的半径r=1,∵SA⊥平面ABC,SA=2∴球O的半径R=4,∴球O的表面积S=4πR2=64π.故选:A.【点评】本题考查球的表面积的求法,合理地作出图形,数形结合求出球半径,是解题的关键.10.【答案】 B【解析】解:因为函数f (x )的图象过原点,所以f (0)=0,即b=2.则f (x )=x 3﹣x 2+ax ,函数的导数f ′(x )=x 2﹣2x+a ,因为原点处的切线斜率是﹣3, 即f ′(0)=﹣3, 所以f ′(0)=a=﹣3, 故a=﹣3,b=2,所以不等式组为则不等式组确定的平面区域在圆x 2+y 2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求.∵k OB =﹣,k OA =,∴tan ∠BOA==1,∴∠BOA=,∴扇形的圆心角为,扇形的面积是圆的面积的八分之一,∴圆x 2+y 2=4在区域D 内的面积为×4×π=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a ,b 的是值,然后借助不等式区域求解面积是解决本题的关键.11.【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到, 这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B .12.【答案】C【解析】解:由题意可知,,∴===.故选C .【点评】本题考查数列的性质应用,难度不大,解题时要多一份细心.二、填空题13.【答案】 (﹣2,﹣6) .【解析】解:向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量=﹣[4+4﹣2+2(﹣)]=﹣(6+4﹣4)=﹣[6(1,﹣3)+4(﹣2,4)﹣4(﹣1,﹣2)]=﹣(2,6)=(﹣2,﹣6), 故答案为:(﹣2,﹣6).【点评】本题考查了向量的多边形法则、向量坐标运算、线性运算,考查了计算能力,属于基础题.14.【答案】 ③ .【解析】解:由 y=f'(x )的图象可知, x ∈(﹣3,﹣),f'(x )<0,函数为减函数;所以,①在区间(﹣2,1)内f (x )是增函数;不正确; ②在区间(1,3)内f (x )是减函数;不正确; x=2时,y=f'(x )=0,且在x=2的两侧导数值先正后负, ③在x=2时,f (x )取得极大值;而,x=3附近,导函数值为正,所以,④在x=3时,f(x)取得极小值.不正确.故答案为③.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.15.【答案】.【解析】解:如图所示,分别取AC,A1C1的中点O,O1,连接OO1,取OE=1,连接DE,B1O1,AE.∴BO⊥AC,∵侧棱AA1⊥底面ABC,∴三棱柱ABC﹣A1B1C1是直棱柱.由直棱柱的性质可得:BO⊥侧面ACC1A1.∴四边形BODE是矩形.∴DE⊥侧面ACC1A1.∴∠DAE是AD与平面AA1C1C所成的角,为α,∴DE==OB.AD==.在Rt△ADE中,sinα==.故答案为:.【点评】本题考查了直棱柱的性质、空间角、空间位置关系、等边三角形的性质,考查了推理能力与计算能力,属于中档题.16.【答案】 【解析】试题分析:由()()224+3a 1024f x x x f x b x x =++=++,,得22()4()31024ax b ax b x x ++++=++,即222224431024a x abx b ax b x x +++++=++,比较系数得22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩,解得1,7a b =-=-或1,3a b ==,则5a b -=.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简()f ax b +的解析式是解答的关键. 17.【答案】 5 .【解析】解:如图所示:延长BC ,过A 做AE ⊥BC ,垂足为E , ∵CD ⊥BC ,∴CD ∥AE , ∵CD=5,BD=2AD ,∴,解得AE=,在RT △ACE ,CE===,由得BC=2CE=5,在RT △BCD 中,BD===10,则AD=5, 故答案为:5.【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题.18.【解析】考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可,对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).三、解答题19.【答案】【解析】解:(1)设x<0,则﹣x>0,∵x>0时,f(x)=x2﹣2x.∴f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x∵y=f(x)是R上的偶函数∴f(x)=f(﹣x)=x2+2x(2)单增区间(﹣1,0)和(1,+∞);单减区间(﹣∞,﹣1)和(0,1).【点评】本题主要考查利用函数的奇偶性来求对称区间上的解析式,然后作出分段函数的图象,进而研究相关性质,本题看似简单,但考查全面,具体,检测性很强.20.【答案】【解析】(1)解:赞成率为,被调查者的平均年龄为20×0.12+30×0.2+40×0.24+50×0.24+60×0.1+70×0.1=43(2)解:由题意知ξ的可能取值为0,1,2,3,,,,,∴ξ的分布列为:ξ0 1 2 3P∴.【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题.21.【答案】【解析】解:(1)由题意得e==,a2=2b,a2﹣b2=c2,解得a=,b=c=1故椭圆的方程为x2+=1;(2)设A(x1,y1),B(x2,y2),线段AB的中点为M(x0,y0).联立直线y=x+m与椭圆的方程得,即3x2+2mx+m2﹣2=0,△=(2m)2﹣4×3×(m2﹣2)>0,即m2<3,x1+x2=﹣,所以x0==﹣,y0=x0+m=,即M(﹣,).又因为M点在圆x2+y2=5上,可得(﹣)2+()2=5,解得m=±3与m2<3矛盾.故实数m不存在.【点评】本题考查椭圆的方程的求法,注意运用离心率公式,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,考查存在性问题的解法,属于中档题.22.【答案】【解析】23.【答案】【解析】解:(1)取BC1的中点H,连接HE、HF,则△BCC1中,HF∥CC1且HF=CC1又∵平行四边形AA1C1C中,AE∥CC1且AE=CC1∴AE∥HF且AE=HF,可得四边形AFHE为平行四边形,∴AF∥HE,∵AF⊄平面REC1,HE⊂平面REC1∴AF∥平面REC1.…(2)等边△ABC中,高AF==,所以EH=AF=由三棱柱ABC﹣AB1C1是正三棱柱,得C1到平面AA1B1B的距离等于1∵Rt△A1C1E≌Rt△ABE,∴EC1=EB,得EH⊥BC1可得S△=BC 1•EH=××=,而S △ABE =AB ×BE=2由等体积法得V A ﹣BEC1=V C1﹣BEC ,∴S △×d=S △ABE ×,(d 为点A 到平面BEC 1的距离)即××d=×2×,解之得d=∴点A 到平面BEC 1的距离等于.…【点评】本题在正三棱柱中求证线面平行,并求点到平面的距离.着重考查了正三棱柱的性质、线面平行判定定理和等体积法求点到平面的距离等知识,属于中档题.24.【答案】【解析】解:(1)f (x )=x+ax 2+blnx 的导数f ′(x )=1+2a+(x >0),由题意可得f (1)=1+a=0,f ′(1)=1+2a+b=2,得;(2)证明:f (x )=x ﹣x 2+3lnx ,g (x )=f (x )﹣2x+2=3lnx ﹣x 2﹣x+2(x >0),g ′(x )=﹣2x ﹣1=﹣,可得g (x )max =g (1)=﹣1﹣1+2=0,无最小值.。
武清区三中2018-2019学年高二上学期第二次月考试卷数学
武清区三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数12z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力. 2.某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为( ) A .80+20π B .40+20π C .60+10π D .80+10π3. 已知平面向量(12)=,a ,(32)=-,b ,若k +a b 与a 垂直,则实数k 值为( ) A .15- B .119 C .11 D .19【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力. 4. 设x ∈R ,则x >2的一个必要不充分条件是( ) A .x >1 B .x <1 C .x >3 D .x <35. 过抛物线y=x 2上的点的切线的倾斜角( )A .30°B .45°C .60°D .135°6. 若直线2y x =上存在点(,)x y 满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为A 、1-B 、C 、32D 、2 7. 在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A .B .C .D .8. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B . {}|3003x x x -<<<<或 C .{}|33x x x <->或 D . {}|303x x x <-<<或9. 已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C .D .10.“互联网+”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶 段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调 查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( ) A .10 B .20 C .30 D .40 11.从单词“equation ”选取5个不同的字母排成一排,含有“qu ”(其中“qu ”相连且顺序不变)的不同排列共有( ) A .120个B .480个C .720个D .840个12.执行如图所示的程序框图,输出的结果是( )A .15B .21C .24D .35二、填空题13.长方体ABCD ﹣A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 为AB 的中点,CE=3,异面直线A 1C 1与CE所成角的余弦值为,且四边形ABB 1A 1为正方形,则球O 的直径为 .14.在三棱柱ABC ﹣A 1B 1C 1中,底面为棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是 .15.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 .【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力. 16.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32x = 处的导数302f ⎛⎫'<⎪⎝⎭,则13f ⎛⎫= ⎪⎝⎭___________. 17.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想. 18.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市; 丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .三、解答题19.已知α、β、是三个平面,且c αβ=,a βγ=,b αγ=,且a b O =.求证:、、三线共点.1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 623820.已知函数3()1xf xx=+,[]2,5x∈.(1)判断()f x的单调性并且证明;(2)求()f x在区间[]2,5上的最大值和最小值.21.已知函数.(1)求f(x)的周期和及其图象的对称中心;(2)在△ABC中,角A、B、C的对边分别是a、b、c,满足(2a﹣c)cosB=bcosC,求函数f(A)的取值范围.22.已知{a n}为等比数列,a1=1,a6=243.S n为等差数列{b n}的前n项和,b1=3,S5=35.(1)求{a n}和{B n}的通项公式;(2)设T n=a1b1+a2b2+…+a n b n,求T n.23.如图,A 地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。
武清区第二中学2018-2019学年高二上学期第二次月考试卷数学
武清区第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. P是双曲线=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2的内切圆圆心的横坐标为( )A .aB .bC .cD .a+b ﹣c2. 等比数列{a n }中,a 4=2,a 5=5,则数列{lga n }的前8项和等于( ) A .6 B .5 C .3 D .43. 若复数z 满足iz=2+4i ,则在复平面内,z 对应的点的坐标是( )A .(2,4)B .(2,﹣4)C .(4,﹣2)D .(4,2)4. 学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( )A .20种B .24种C .26种D .30种5. 若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =-++-+-在02π⎡⎤-⎢⎥⎣⎦,上单调递增,则实数的取值范围为( )A .117⎡⎤⎢⎥⎣⎦,B .117⎡⎤-⎢⎥⎣⎦,C.1(][1)7-∞-+∞,,D .[1)+∞, 6. 设m ,n 是正整数,多项式(1﹣2x )m +(1﹣5x )n 中含x 一次项的系数为﹣16,则含x 2项的系数是( ) A .﹣13 B .6 C .79 D .377. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )A .π1B .π21 C .π121- D .π2141- DABCO【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.8. 已知集合A={x|a ﹣1≤x ≤a+2},B={x|3<x <5},则A ∩B=B 成立的实数a 的取值范围是( ) A .{a|3≤a ≤4} B .{a|3<a ≤4} C .{a|3<a <4} D .∅9. 若圆心坐标为()2,1-的圆在直线10x y --=上截得的弦长为 ) A .()()22210x y -++= B .()()22214x y -++= C .()()22218x y -++= D .()()222116x y -++= 10.某程序框图如图所示,该程序运行后输出的S 的值是( )A .﹣3B .﹣C .D .211.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B . {}|3003x x x -<<<<或 C .{}|33x x x <->或 D . {}|303x x x <-<<或12.已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是( )A .5B .3C .2D .二、填空题13.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .14.已知椭圆中心在原点,一个焦点为F (﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .15.求函数在区间[]上的最大值 .16.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数的取值范围是 .17.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF的重心到准线距离为 . 18.如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2+y 2-2x +4y -4=0的两切线、切点分别为A 、B ,当四边形P ACB 的周长最小时,△ABC 的面积为________.三、解答题19.设函数f (x )=ax 2+bx+c (a ≠0)为奇函数,其图象在点(1,f (1))处的切线与直线x ﹣6y ﹣7=0垂直,导函数f ′(x )的最小值为﹣12. (1)求a ,b ,c 的值;(2)求函数f (x )的单调递增区间,并求函数f (x )在[﹣1,3]上的最大值和最小值.20.在数列{a n }中,a 1=1,a n+1=1﹣,b n =,其中n ∈N *.(1)求证:数列{b n }为等差数列;(2)设c n =b n+1•(),数列{c n }的前n 项和为T n ,求T n ;(3)证明:1+++…+≤2﹣1(n ∈N *)21.(本小题满分10分)选修4-1:几何证明选讲1111]CP=. 如图,点C为圆O上一点,CP为圆的切线,CE为圆的直径,3(1)若PE交圆O于点F,16EF=,求CE的长;5⊥于D,求CD的长. (2)若连接OP并延长交圆O于,A B两点,CD OP22.已知函数f(x)=(sinx+cosx)2+cos2x(1)求f(x)最小正周期;(2)求f(x)在区间[]上的最大值和最小值.23.(本小题满分12分)椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,P 是椭圆上一点,PF ⊥x 轴,A ,B是C 的长轴上的两个顶点,已知|PF |=1,k P A ·k PB =-12.(1)求椭圆C 的方程;(2)过椭圆C 的中心O 的直线l 交椭圆于M ,N 两点,求三角形PMN 面积的最大值,并求此时l 的方程.24.已知函数()x f x e x a =-+,21()x g x x a e=++,a R ∈. (1)求函数()f x 的单调区间;(2)若存在[]0,2x ∈,使得()()f x g x <成立,求的取值范围; (3)设1x ,2x 是函数()f x 的两个不同零点,求证:121x x e +<.武清区第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:如图设切点分别为M,N,Q,则△PF1F2的内切圆的圆心的横坐标与Q横坐标相同.由双曲线的定义,PF1﹣PF2=2a.由圆的切线性质PF1﹣PF2=F I M﹣F2N=F1Q﹣F2Q=2a,∵F1Q+F2Q=F1F2=2c,∴F2Q=c﹣a,OQ=a,Q横坐标为a.故选A.【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.2.【答案】D【解析】解:∵等比数列{a n}中a4=2,a5=5,∴a4•a5=2×5=10,∴数列{lga n}的前8项和S=lga1+lga2+…+lga8=lg(a1•a2…a8)=lg(a4•a5)4=4lg(a4•a5)=4lg10=4故选:D.【点评】本题考查等比数列的性质,涉及对数的运算,基本知识的考查.3.【答案】C【解析】解:复数z满足iz=2+4i,则有z===4﹣2i,故在复平面内,z对应的点的坐标是(4,﹣2),故选C.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,复数与复平面内对应点之间的关系,属于基础题.4.【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案.故共有10+6+3+1=20种不同的分配方案,故选:A.【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想.5.【答案】D【解析】考点:1、导数;2、单调性;3、函数与不等式.6.【答案】D【解析】二项式系数的性质.【专题】二项式定理. 【分析】由含x 一次项的系数为﹣16利用二项展开式的通项公式求得2m+5n=16 ①.,再根据m 、n 为正整数,可得m=3、n=2,从而求得含x 2项的系数.【解答】解:由于多项式(1﹣2x )m +(1﹣5x )n中含x一次项的系数为(﹣2)+(﹣5)=﹣16,可得2m+5n=16 ①.再根据m 、n 为正整数,可得m=3、n=2, 故含x 2项的系数是(﹣2)2+(﹣5)2=37,故选:D .【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题. 7. 【答案】C【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为12-π,扇形OAC 的面积为π,所求概率为πππ12112-=-=P . 8. 【答案】A【解析】解:∵A={x|a ﹣1≤x ≤a+2}B={x|3<x <5} ∵A ∩B=B ∴A ⊇B∴解得:3≤a ≤4 故选A【点评】本题考查集合的包含关系判断及应用,通过对集合间的关系转化为元素的关系,属于基础题.9. 【答案】B 【解析】考点:圆的方程.1111] 10.【答案】 B【解析】解:由程序框图得:第一次运行S==﹣3,i=2;第二次运行S==﹣,i=3;第三次运行S==,i=4;第四次运行S==2,i=5;第五次运行S==﹣3,i=6,…S 的值是成周期变化的,且周期为4,当i=2015时,程序运行了2014次,2014=4×503+2,∴输出S=﹣. 故选:B .【点评】本题考查了循环结构的程序框图,根据程序的运行功能判断输出S 值的周期性变化规律是关键.11.【答案】B 【解析】试题分析:因为()f x 为奇函数且()30f -=,所以()30f =,又因为()f x 在区间()0,+∞上为增函数且()30f =,所以当()0,3x ∈时,()0f x <,当()3,x ∈+∞时,()0f x >,再根据奇函数图象关于原点对称可知:当()3,0x ∈-时,()0f x >,当(),3x ∈-∞-时,()0f x <,所以满足()0x f x ⋅<的x 的取值范围是:()3,0x ∈-或()0,3x ∈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武清区第四高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是()A .M ∪NB .M ∩NC .∁I M ∪∁I ND .∁I M ∩∁I N2. 已知角的终边经过点,则的值为( )α(sin15,cos15)-2cos αA .B .C.D .012+12343. 设公差不为零的等差数列的前项和为,若,则( ){}n a n n S 4232()a a a =+74Sa = A . B . C .7 D .1474145【命题意图】本题考查等差数列的通项公式及其前项和,意在考查运算求解能力.n 4. 函数f (x )=1﹣xlnx 的零点所在区间是()A .(0,)B .(,1)C .(1,2)D .(2,3)5. 已知△ABC 是锐角三角形,则点P (cosC ﹣sinA ,sinA ﹣cosB )在( )A .第一象限B .第二象限C .第三象限D .第四象限6. 已知集合,且使中元素和中的元素{}{}421,2,3,,4,7,,3A k B a a a ==+*,,a N x A y B ∈∈∈B 31y x =+A 对应,则的值分别为( )x ,a k A . B . C . D .2,33,43,52,57. 对于函数f (x ),若∀a ,b ,c ∈R ,f (a ),f (b ),f (c )为某一三角形的三边长,则称f (x )为“可构造三角形函数”,已知函数f (x )=是“可构造三角形函数”,则实数t 的取值范围是()A .C .D . 8. 设复数(是虚数单位),则复数( )1i z =-i 22z z +=A.B.C.D. 1i -1i +2i +2i-【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力.9. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( )A .T 1=T 19B .T 3=T 17C .T 5=T 12D .T 8=T 1110.已知奇函数是上的增函数,且,则的取值范围是( )()f x [1,1]-1(3)()(0)3f t f t f +->t A 、 B 、 C 、 D 、1163t t ⎧⎫-<≤⎨⎬⎩⎭2433t t ⎧⎫-≤≤⎨⎬⎩⎭16t t ⎧⎫>-⎨⎬⎩⎭2133t t ⎧⎫-≤≤⎨⎬⎩⎭11.若直线l 的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交但不垂直12.若某程序框图如图所示,则输出的n 的值是()A .3B .4C .5D .6二、填空题13.已知一个动圆与圆C :(x+4)2+y 2=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 .14.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB的距离是 .15.图中的三个直角三角形是一个体积为20的几何体的三视图,则__________.h =16.满足tan (x+)≥﹣的x 的集合是 .17.已知一组数据,,,,的方差是2,另一组数据,,,,()1x 2x 3x 4x 5x 1ax 2ax 3ax 4ax 5ax 0a >的标准差是,则.a =18.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件:①f (x )=a x g (x )(a >0,a ≠1);②g (x )≠0;③f (x )g'(x )>f'(x )g (x );若,则a= .三、解答题19.已知函数y=x+有如下性质:如果常数t >0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.(1)已知函数f (x )=x+,x ∈[1,3],利用上述性质,求函数f (x )的单调区间和值域;(2)已知函数g (x )=和函数h (x )=﹣x ﹣2a ,若对任意x 1∈[0,1],总存在x 2∈[0,1],使得h(x 2)=g (x 1)成立,求实数a 的值. 20.如图,摩天轮的半径OA 为50m ,它的最低点A 距地面的高度忽略不计.地面上有一长度为240m 的景观带MN ,它与摩天轮在同一竖直平面内,且AM=60m .点P 从最低点A 处按逆时针方向转动到最高点B 处,记∠AOP=θ,θ∈(0,π).(1)当θ= 时,求点P 距地面的高度PQ ;(2)试确定θ 的值,使得∠MPN 取得最大值.21.(本题满分12分)设向量,,,记函数))cos (sin 23,(sin x x x -=)cos sin ,(cos x x x +=R x ∈.b a x f ⋅=)((1)求函数的单调递增区间;)(x f (2)在锐角中,角的对边分别为.若,,求面积的最大值.ABC ∆C B A ,,c b a ,,21)(=A f 2=a ABC ∆22.已知函数f (x )=(sinx+cosx )2+cos2x (1)求f (x )最小正周期;(2)求f (x )在区间[]上的最大值和最小值.23.在中已知,,试判断的形状.ABC ∆2a b c =+2sin sin sin A B C =ABC ∆24.设f(x)=ax2﹣(a+1)x+1(1)解关于x的不等式f(x)>0;(2)若对任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范围.武清区第四高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:∵全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},∴M ∪N={1,2,3,6,7,8},M ∩N={3};∁I M ∪∁I N={1,2,4,5,6,7,8};∁I M ∩∁I N={2,7,8},故选:D . 2. 【答案】B 【解析】考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.3. 【答案】C.【解析】根据等差数列的性质,,化简得,∴4231112()32(2)a a a a d a d a d =+⇒+=+++1a d =-,故选C.1741767142732a dS d a a d d⋅+===+4. 【答案】C【解析】解:∵f (1)=1>0,f (2)=1﹣2ln2=ln <0,∴函数f (x )=1﹣xlnx 的零点所在区间是(1,2).故选:C .【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.5. 【答案】B【解析】解:∵△ABC 是锐角三角形,∴A+B >,∴A >﹣B ,∴sinA >sin (﹣B )=cosB ,∴sinA ﹣cosB >0,同理可得sinA ﹣cosC >0,∴点P 在第二象限.故选:B 6. 【答案】D 【解析】试题分析:分析题意可知:对应法则为,则应有(1)或(2),31y x =+42331331a a a k ⎧=⨯+⎪⎨+=⋅+⎪⎩42313331a k a a ⎧=⋅+⎪⎨+=⨯+⎪⎩由于,所以(1)式无解,解(2)式得:。
故选D 。
*a N ∈25a k =⎧⎨=⎩考点:映射。
7. 【答案】D【解析】解:由题意可得f (a )+f (b )>f (c )对于∀a ,b ,c ∈R 都恒成立,由于f (x )==1+,①当t ﹣1=0,f (x )=1,此时,f (a ),f (b ),f (c )都为1,构成一个等边三角形的三边长,满足条件.②当t ﹣1>0,f (x )在R 上是减函数,1<f (a )<1+t ﹣1=t ,同理1<f (b )<t ,1<f (c )<t ,由f (a )+f (b )>f (c ),可得 2≥t ,解得1<t ≤2.③当t ﹣1<0,f (x )在R 上是增函数,t <f (a )<1,同理t <f (b )<1,t <f (c )<1,由f (a )+f (b )>f (c ),可得 2t ≥1,解得1>t ≥.综上可得,≤t ≤2,故实数t 的取值范围是[,2],故选D .【点评】本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题.【解析】9.【答案】C【解析】解:∵a n=29﹣n,∴T n=a1•a2•…•a n=28+7+…+9﹣n=∴T1=28,T19=2﹣19,故A不正确T3=221,T17=20,故B不正确T5=230,T12=230,故C正确T8=236,T11=233,故D不正确故选C10.【答案】A【解析】考点:函数的性质。
11.【答案】B【解析】解:∵=(1,0,2),=(﹣2,0,4),∴=﹣2,∴∥,因此l⊥α.故选:B.【解析】解:由程序框图知:算法的功能是求满足P=1+3+…+(2n﹣1)>20的最小n值,∵P=1+3+…+(2n﹣1)=×n=n2>20,∴n≥5,故输出的n=5.故选:C.【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是关键.二、填空题13.【答案】+=1 .【解析】解:设动圆圆心为B,半径为r,圆B与圆C的切点为D,∵圆C:(x+4)2+y2=100的圆心为C(﹣4,0),半径R=10,∴由动圆B与圆C相内切,可得|CB|=R﹣r=10﹣|BD|,∵圆B经过点A(4,0),∴|BD|=|BA|,得|CB|=10﹣|BA|,可得|BA|+|BC|=10,∵|AC|=8<10,∴点B的轨迹是以A、C为焦点的椭圆,设方程为(a>b>0),可得2a=10,c=4,∴a=5,b2=a2﹣c2=9,得该椭圆的方程为+=1.故答案为:+=1.14.【答案】 .【解析】解:根据点A ,B 的极坐标分别是(2,),(3,),可得A 、B 的直角坐标分别是(3,)、(﹣,),故AB 的斜率为﹣,故直线AB 的方程为 y ﹣=﹣(x ﹣3),即x+3y ﹣12=0,所以O 点到直线AB 的距离是=,故答案为:.【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.15.【答案】【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱底面,且为直角三角形,且VA ⊥ABC ABC ∆,所以三棱锥的体积为,解得.5,,6AB VA h AC ===115652032V h h =⨯⨯⨯==4h =考点:几何体的三视图与体积.16.【答案】 [k π,+k π),k ∈Z .【解析】解:由tan (x+)≥﹣得+k π≤x+<+k π,解得k π≤x <+k π,故不等式的解集为[k π,+k π),k ∈Z ,故答案为:[k π,+k π),k ∈Z ,【点评】本题主要考查三角不等式的求解,利用正切函数的图象和性质是解决本题的关键. 17.【答案】2【解析】试题分析:第一组数据平均数为,2)((()()(,2524232221=-+-+-+-+-∴x x x x x x x x x x x .22222212345((((()8,4,2ax ax ax ax ax ax ax ax ax a a -+-+-+-+-=∴=∴=考点:方差;标准差.18.【答案】 .【解析】解:由得,所以.又由f (x )g'(x )>f'(x )g (x ),即f (x )g'(x )﹣f'(x )g (x )>0,也就是,说明函数是减函数,即,故.故答案为【点评】本题考查了应用导数判断函数的单调性,做题时应认真观察. 三、解答题19.【答案】【解析】解:(1)由已知可以知道,函数f (x )在x ∈[1,2]上单调递减,在x ∈[2,3]上单调递增,f (x )min =f (2)=2+2=4,又f (1)=1+4=5,f (3)=3+=;f (1)>f (3)所以f (x )max =f (1)=5所以f (x )在x ∈[1,3]的值域为[4,5].(2)y=g (x )==2x+1+﹣8设μ=2x+1,x ∈[0,1],1≤μ≤3,则y=﹣8,由已知性质得,当1≤u ≤2,即0≤x ≤时,g (x )单调递减,所以递减区间为[0,];当2≤u ≤3,即≤x ≤1时,g (x )单调递增,所以递增区间为[,1];由g (0)=﹣3,g ()=﹣4,g (1)=﹣,得g (x )的值域为[﹣4,﹣3].因为h(x)=﹣x﹣2a为减函数,故h(x)∈[﹣1﹣2a,﹣2a],x∈[0,1].根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a=.20.【答案】【解析】解:(1)由题意得PQ=50﹣50cosθ,从而当时,PQ=50﹣50cos=75.即点P距地面的高度为75米.(2)由题意得,AQ=50sinθ,从而MQ=60﹣50sinθ,NQ=300﹣50sinθ.又PQ=50﹣50cosθ,所以tan,tan.从而tan∠MPN=tan(∠NPQ﹣∠MPQ)==.令g(θ)=.θ∈(0,π)则,θ∈(0,π).由g′(θ)=0,得sinθ+cosθ﹣1=0,解得.当时,g′(θ)>0,g(θ)为增函数;当x时,g′(θ)<0,g(θ)为减函数.所以当θ=时,g(θ)有极大值,也是最大值.因为.所以.从而当g(θ)=tan∠MNP取得最大值时,∠MPN取得最大值.即当时,∠MPN取得最大值.【点评】本题考查了与三角函数有关的最值问题,主要还是利用导数研究函数的单调性,进一步求其极值、最值.21.【答案】【解析】【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,难度为中等.22.【答案】【解析】解:(1)∵函数f(x)=(sinx+cosx)2+cos2x=1+sin2x+cos2x=1+sin(2x+),∴它的最小正周期为=π.(2)在区间上,2x+∈[,],故当2x+=时,f(x)取得最小值为1+×(﹣)=0,当2x+=时,f(x)取得最大值为1+×1=1+.23.【答案】为等边三角形.ABC ∆【解析】试题分析:由,根据正弦定理得出,在结合,可推理得到,2sin sin sin A B C =2a bc =2abc =+a b c ==即可可判定三角形的形状.考点:正弦定理;三角形形状的判定.24.【答案】【解析】解:(1)f (x )>0,即为ax 2﹣(a+1)x+1>0,即有(ax ﹣1)(x ﹣1)>0,当a=0时,即有1﹣x >0,解得x <1;当a <0时,即有(x ﹣1)(x ﹣)<0,由1>可得<x <1;当a=1时,(x ﹣1)2>0,即有x ∈R ,x ≠1;当a >1时,1>,可得x >1或x <;当0<a <1时,1<,可得x <1或x >.综上可得,a=0时,解集为{x|x <1};a <0时,解集为{x|<x <1};a=1时,解集为{x|x ∈R ,x ≠1};a >1时,解集为{x|x >1或x <};0<a <1时,解集为{x|x <1或x >}.(2)对任意的a ∈[﹣1,1],不等式f (x )>0恒成立,即为ax 2﹣(a+1)x+1>0,即a (x 2﹣1)﹣x+1>0,对任意的a ∈[﹣1,1]恒成立.设g(a)=a(x2﹣1)﹣x+1,a∈[﹣1,1].则g(﹣1)>0,且g(1)>0,即﹣(x2﹣1)﹣x+1>0,且(x2﹣1)﹣x+1>0,即(x﹣1)(x+2)<0,且x(x﹣1)>0,解得﹣2<x<1,且x>1或x<0.可得﹣2<x<0.故x的取值范围是(﹣2,0).。