高二数学-2015-2016高二上学期月考数学试卷

合集下载

高中高二数学上学期开学试题(含解析)-人教版高二全册数学试题

高中高二数学上学期开学试题(含解析)-人教版高二全册数学试题

2015-2016学年某某省某某市扶沟高中高二(上)开学数学试卷一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1} C.{x|2<x<3} D.{x|1<x<3}2.已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣3.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的中年职工为5人,则样本容量为()A.7 B.15 C.25 D.354.下列函数在(0,+∞)上为减函数的是()A.y=﹣|x﹣1| B.y=e x C.y=ln(x+1)D.y=﹣x(x+2)5.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数6.设定义在R上的奇函数f(x)满足f(x)=x2﹣4(x>0),则f(x﹣2)>0的解集为()A.(﹣4,0)∪(2,+∞)B.(0,2)∪(4,+∞)C.(﹣∞,0)∪(4,+∞)D.(﹣4,4)7.将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A.B.C.0 D.8.给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β,其中为真命题的是()A.①③④B.②③④C.①②④D.①②③9.在区间[﹣,]上随机取一个数x,cosx的值介于0到之间的概率为()A.B.C.D.10.已知向量=(4,6),=(3,5),且⊥,∥,则向量等于()A.B.C.D.11.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是()A.1 B.C.D.12.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,则函数g(x)=f(x)﹣x+3的零点的集合为()A.{1,3} B.{﹣3,﹣1,1,3} C.{2﹣,1,3} D.{﹣2﹣,1,3}二、填空题:(本大题共4小题,每小题5分)13.求值cos600°=.14.阅读图所示的程序框图,运行相应地程序,输出的s值等于.15.在△ABC中,AB=2,AC=4.若P为△ABC的外心,则的值为.16.已知单位向量与的夹角为α,且cosα=,向量=3﹣2与=3﹣的夹角为β,则cosβ=.三、解答题:(解答应写出文字说明,证明过程或演算步骤)17.(10分)(2015春•某某期末)已知:tan(α+)=﹣,(<α<π).(1)求tanα的值;(2)求的值.18.(12分)(2014秋•隆化县校级期中)某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:(1)依据频率分布直方图,估计这次考试的及格率(60分及以上为及格)和平均分;(2)已知在[90,100]段的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,96,97,98,99,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.19.(12分)(2013•淄川区校级模拟)已知直线l过点P(1,1),并与直线l1:x﹣y+3=0和l2:2x+y﹣6=0分别交于点A、B,若线段AB被点P平分.求:(1)直线l的方程;(2)以O为圆心且被l截得的弦长为的圆的方程.20.(12分)(2015秋•某某月考)如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.(Ⅰ)求证:AE⊥BE;(Ⅱ)求三棱锥D﹣AEC的体积.21.(12分)(2013•某某一模)函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣<φ<)(x∈R)的部分图象如图所示.(1)求函数y=f(x)的解析式;(2)当x∈[﹣π,﹣]时,求f(x)的取值X围.22.(12分)(2015春•某某校级期末)已知函数f(x)=2cos2(x﹣)﹣sin2x+1 (Ⅰ)求f(x)的单调递增区间;(Ⅱ)当x∈(,)时,若f(x)≥log2t恒成立,求 t的取值X围.2015-2016学年某某省某某市扶沟高中高二(上)开学数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1} C.{x|2<x<3} D.{x|1<x<3}考点:交集及其运算.专题:集合.分析:直接利用交集运算求得答案.解答:解:∵A={x|x>2},B={x|1<x<3},∴A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}.故选:C.点评:本题考查交集及其运算,是基础的计算题.2.已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.3.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的中年职工为5人,则样本容量为()A.7 B.15 C.25 D.35考点:分层抽样方法.专题:概率与统计.分析:利用分层抽样知识求解.解答:解:设样本容量为n,由题意知:,解得n=15.故选:B.点评:本题考查样本容量的求法,是基础题,解题时要注意分层抽样知识的合理运用.4.下列函数在(0,+∞)上为减函数的是()A.y=﹣|x﹣1| B.y=e x C.y=ln(x+1)D.y=﹣x(x+2)考点:函数单调性的判断与证明.专题:函数的性质及应用.分析:根据函数解析式判断各自函数的单调区间,即可判断答案.解答:解:①y=﹣|x﹣1|=∴(0,+∞)不是减函数,故A不正确.②y=e x,在(﹣∞,+∞)上为增函数,故B不正确.③y=ln(x+1)在(﹣1,+∞)上为增函数,故C不正确.④y=﹣x(x+2)在(﹣1,+∞)上为减函数,所以在(0,+∞)上为减函数故D正确.故选:D.点评:本题考查了简单函数的单调性,单调区间的求解,掌握好常见函数的解析式即可,属于容易题.5.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数考点:函数奇偶性的判断;函数的定义域及其求法.专题:函数的性质及应用.分析:由题意可得,|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,从而得出结论.解答:解:∵f(x)是奇函数,g(x)是偶函数,∴|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得 f(x)|g(x)|为奇函数,故选:C.点评:本题主要考查函数的奇偶性,注意利用函数的奇偶性规律,属于基础题.6.设定义在R上的奇函数f(x)满足f(x)=x2﹣4(x>0),则f(x﹣2)>0的解集为()A.(﹣4,0)∪(2,+∞)B.(0,2)∪(4,+∞)C.(﹣∞,0)∪(4,+∞)D.(﹣4,4)考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据已知中定义在R上的奇函数f(x)满足f(x)=x2﹣4(x>0),先求出f(x)>0的解集,进而求出f(x﹣2)>0的解集.解答:解:∵f(x)=x2﹣4(x>0),∴当x>0时,若f(x)>0,则x>2,又由函数f(x)是定义在R上的奇函数,当x<0时,﹣x>0,若f(x)>0,则f(﹣x)<0,则0<﹣x<2,即﹣2<x<0,故f(x)>0的解集为(﹣2,0)∪(2,+∞),故f(x﹣2)>0时,x﹣2∈(﹣2,0)∪(2,+∞),x∈(0,2)∪(4,+∞),即f(x﹣2)>0的解集为(0,2)∪(4,+∞).故选:B.点评:本题主要考查不等式的解法,利用函数的奇偶性求出当x<0时,f(x)>0的解集,是解决本题的关键.7.将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A.B.C.0 D.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由条件利用y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,求得φ的一个可能取值.解答:解:将函数f(x)=sin(2x+φ)的图象向左平移个单位,可得到的函数y=sin[2(x+)+φ)]=sin(2x++φ)的图象,再根据所得图象关于y轴对称,可得+φ=kπ+,即φ=kπ+,k∈z,则φ的一个可能取值为,故选:B.点评:本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,属于基础题.8.给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β,其中为真命题的是()A.①③④B.②③④C.①②④D.①②③考点:命题的真假判断与应用.专题:空间位置关系与距离;简易逻辑.分析:①利用异面直线的定义即可判断出正误;②利用线面垂直的判定定理即可判断出正误;③由已知可得l与m不一定平行,即可判断出正误;④利用面面平行的判定定理可得:α∥β,即可判断出正误.解答:解:①若m⊂α,l∩α=A,点A∉m,则l与m不共面,正确;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,利用线面垂直的判定定理即可判断出:n⊥α正确;③若l∥α,α∥β,α∥β,则l与m不一定平行,不正确;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,利用面面平行的判定定理可得:α∥β,正确.其中为真命题的是①②④.故选:C.点评:本题考查了线面平行与垂直的判定定理、异面直线的定义,考查了推理能力,属于中档题.9.在区间[﹣,]上随机取一个数x,cosx的值介于0到之间的概率为()A.B.C.D.考点:几何概型.专题:概率与统计.分析:求出所有的基本事件构成的区间长度;通过解三角不等式求出事件“cos x的值介于0到”构成的区间长度,利用几何概型概率公式求出事件的概率.解答:解:所有的基本事件构成的区间长度为∵解得或∴“cos x的值介于0到”包含的基本事件构成的区间长度为由几何概型概率公式得cos x的值介于0到之间的概率为P=故选A.点评:本题考查结合三角函数的图象解三角不等式、考查几何概型的概率公式.易错题.10.已知向量=(4,6),=(3,5),且⊥,∥,则向量等于()A.B.C.D.考点:平面向量的坐标运算.专题:计算题.分析:根据向量平行垂直的坐标公式X1Y2﹣X2Y1=0和X1X2+Y1Y2=0运算即可.解答:解:设C(x,y),∵,,联立解得.故选D.点评:本题考查两个向量的位置关系①平行②垂直,此种题型是高考考查的方向.11.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是()A.1 B.C.D.考点:古典概型及其概率计算公式.专题:计算题.分析:根据已知中五件正品,一件次品,我们易得共有6件产品,由此我们先计算出从中任取出两件产品的事件个数,及满足条件“恰好是一件正品,一件次品”的基本事件个数,然后代入古典概型概率公式,可求出答案.解答:解:由于产品中共有5件正品,一件次品,故共有6件产品从中取出两件产品共有:C62==15种其中恰好是一件正品,一件次品的情况共有:C51=5种故出的两件产品中恰好是一件正品,一件次品的概率P==故选C点评:本题考查的知识点是古典概型及其概率计算公式,计算出满足条件的基本事件总数及其满足条件的基本事件个数是解答此类题型的关键.12.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,则函数g(x)=f(x)﹣x+3的零点的集合为()A.{1,3} B.{﹣3,﹣1,1,3} C.{2﹣,1,3} D.{﹣2﹣,1,3}考点:函数奇偶性的性质.专题:函数的性质及应用.分析:首先根据f(x)是定义在R上的奇函数,求出函数在R上的解析式,再求出g(x)的解析式,根据函数零点就是方程的解,问题得以解决.解答:解:∵f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,令x<0,则﹣x>0,∴f(﹣x)=x2+3x=﹣f(x)∴f(x)=﹣x2﹣3x,∴∵g(x)=f(x)﹣x+3∴g(x)=令g(x)=0,当x≥0时,x2﹣4x+3=0,解得x=1,或x=3,当x<0时,﹣x2﹣4x+3=0,解得x=﹣2﹣,∴函数g(x)=f(x)﹣x+3的零点的集合为{﹣2﹣,1,3}故选:D.点评:本题考查函数的奇偶性及其应用,考查函数的零点,函数方程思想.二、填空题:(本大题共4小题,每小题5分)13.求值cos600°=﹣.考点:诱导公式的作用.专题:计算题.分析:由诱导公式知cos600°=cos240°,进一步简化为﹣cos60°,由此能求出结果.解答:解:cos600°=cos240°=﹣cos60°=﹣.故答案为:﹣.点评:本题考查诱导公式的性质和应用,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.14.阅读图所示的程序框图,运行相应地程序,输出的s值等于﹣3 .考点:循环结构.专题:计算题.分析:直接利用循环框图,计算循环的结果,当k=4时,退出循环,输出结果.解答:解:由题意可知第1次判断后,s=1,k=2,第2次判断循环,s=0,k=3,第3次判断循环,s=﹣3,k=4,不满足判断框的条件,退出循环,输出S.故答案为:﹣3.点评:本题考查循环结构的作用,注意判断框的条件以及循环后的结果,考查计算能力.15.在△ABC中,AB=2,AC=4.若P为△ABC的外心,则的值为 6 .考点:平面向量数量积的运算.专题:平面向量及应用.分析:作出边AB,AC的垂线,利用向量的运算将用和表示,利用向量的数量积的几何意义将向量的数量积表示成一个向量与另个向量的投影的乘积,即可求得的值.解答:解:若P为△ABC的外心,过P作PS⊥AB,PT⊥AC垂足分别为S,T,则S,T分别是AB,AC的中点,AS=1,AT=2.∴=•(﹣)=﹣=AT•AC﹣AS•AB=2×4﹣1×2=6,故答案为:6.点评:本题考查两个向量的运算法则及其几何意义、两个向量数量积的几何意义,属于中档题.16.已知单位向量与的夹角为α,且cosα=,向量=3﹣2与=3﹣的夹角为β,则cosβ=.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:转化向量为平面直角坐标系中的向量,通过向量的数量积求出所求向量的夹角.解答:解:单位向量与的夹角为α,且cosα=,不妨=(1,0),=,=3﹣2=(),=3﹣=(),∴cosβ===.故答案为:.点评:本题考查向量的数量积,两个向量的夹角的求法,考查计算能力.三、解答题:(解答应写出文字说明,证明过程或演算步骤)17.(10分)(2015春•某某期末)已知:tan(α+)=﹣,(<α<π).(1)求tanα的值;(2)求的值.考点:同角三角函数基本关系的运用;两角和与差的正切函数.专题:计算题.分析:(1)利用两角和的正切公式,求出tanα的值.(2)利用二倍角公式展开,利用tanα求出cosα即可得到结果.解答:解:(1)由tan(α+)=﹣,得,解之得tanα=﹣3(5分)(2)==2cosα(9分)因为<α<π且tanα=﹣3,所以cosα=﹣(11分)∴原式=﹣(12分).点评:本题是基础题,考查两角和的正切函数公式的应用,同角三角函数的基本关系的应用,考查计算能力.18.(12分)(2014秋•隆化县校级期中)某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:(1)依据频率分布直方图,估计这次考试的及格率(60分及以上为及格)和平均分;(2)已知在[90,100]段的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,96,97,98,99,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.考点:频率分布直方图;古典概型及其概率计算公式.专题:计算题;概率与统计.分析:(1)求出频率,用频率估计概率;(2)列出所有的基本事件,求概率.解答:解:(1)由图知,60及以上的分数所在的第三、四、五、六组的频率和为(0.02+0.03+0.025+0.005)×10=0.80,所以,估计这次考试的及格率为80%;=45×0.05+55×0.15+65×0.2+75×0.3+8×0.25+95×0.05=72,则估计这次考试的平均分是72分.(2)从95,96,97,98,99,100这6个数中任取2个数共有=15个基本事件,而[90,100]的人数有3人,则共有基本事件C=3.则这2个数恰好是两个学生的成绩的概率P==.点评:本题考查了学生在频率分布直方图中读取数据的能力,同时考查了古典概型的概率求法,属于基础题.19.(12分)(2013•淄川区校级模拟)已知直线l过点P(1,1),并与直线l1:x﹣y+3=0和l2:2x+y﹣6=0分别交于点A、B,若线段AB被点P平分.求:(1)直线l的方程;(2)以O为圆心且被l截得的弦长为的圆的方程.考点:直线与圆相交的性质.专题:直线与圆.分析:(1)依题意可设A(m,n)、B(2﹣m,2﹣n),分别代入直线l1 和l2的方程,求出m=﹣1,n=2,用两点式求直线的方程.(2)先求出圆心(0,0)到直线l的距离d,设圆的半径为R,则由,求得R的值,即可求出圆的方程.解答:解:(1)依题意可设A(m,n)、B(2﹣m,2﹣n),则,即,解得m=﹣1,n=2.即A(﹣1,2),又l过点P(1,1),用两点式求得AB方程为=,即:x+2y﹣3=0.(2)圆心(0,0)到直线l的距离d==,设圆的半径为R,则由,求得R2=5,故所求圆的方程为x2+y2=5.点评:本题主要考查直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,用两点式求直线的方程,属于中档题.20.(12分)(2015秋•某某月考)如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.(Ⅰ)求证:AE⊥BE;(Ⅱ)求三棱锥D﹣AEC的体积.考点:空间中直线与直线之间的位置关系;棱柱、棱锥、棱台的体积;直线与平面垂直的性质.专题:计算题.分析:(Ⅰ)由题意证明BC⊥平面ABE,得AE⊥BC,再结合条件证明AE⊥平面BCE,再证出AE⊥BE;(Ⅱ)利用题意得到平面ACD⊥平面ABE,作出交线的垂线,利用换低求三棱锥体积.解答:(Ⅰ)证明:由题意知,AD⊥平面ABE,且AD∥BC∴BC⊥平面ABE,∵AE⊂平面ABE∴AE⊥BC,∵BF⊥平面ACE,且AE⊂平面ABE∴BF⊥AE,又BC∩BF=B,∴AE⊥平面BCE,又∵BE⊂平面BCE,∴AE⊥BE.(Ⅱ)在△ABE中,过点E作EH⊥AB于点H,∵AD⊥平面ABE,且AD⊂平面ACD,∴平面ACD⊥平面ABE,∴EH⊥平面ACD.由已知及(Ⅰ)得EH=AB=,S△ADC=2.故V D﹣ABC=V E﹣ADC=×2×=.点评:本题主要考查垂直关系,利用线面垂直的定义和判定定理,进行线线垂直与线面垂直的转化;求三棱锥体积常用的方法:换底法.21.(12分)(2013•某某一模)函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣<φ<)(x∈R)的部分图象如图所示.(1)求函数y=f(x)的解析式;(2)当x∈[﹣π,﹣]时,求f(x)的取值X围.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题;三角函数的图像与性质.分析:(1)由图象可求得A=1,由=可求得ω,f(x)过(,1)点可求得φ,从而可求得函数y=f(x)的解析式;(2)当x∈[﹣π,﹣]时,可求得x+的X围,利用正弦函数的单调性即可求得f(x)的取值X围.解答:解:(1)由图象得A=1,=﹣=,∴T=2π,则ω=1;将(,1)代入得1=sin(+φ),而﹣<φ<,所以φ=,因此函数f(x)=sin(x+);(6分)(2)由于x∈[﹣π,﹣],﹣≤x+≤,所以﹣1≤sin(x+)≤,所以f(x)的取值X围是[﹣1,].( 12分)点评:本小题主要考查三角函数解析式的求法与三角函数图象与性质的运用,以及三角函数的值域的有关知识,属于中档题.22.(12分)(2015春•某某校级期末)已知函数f(x)=2cos2(x﹣)﹣sin2x+1 (Ⅰ)求f(x)的单调递增区间;(Ⅱ)当x∈(,)时,若f(x)≥log2t恒成立,求 t的取值X围.考点:三角函数中的恒等变换应用;正弦函数的图象.专题:三角函数的图像与性质.分析:(Ⅰ)由三角函数中的恒等变换应用化简函数解析式可得f(x)=cos(2x+)+2,由2kπ﹣π≤2x+≤2kπ,k∈Z,即可解得f(x)的单调递增区间.(Ⅱ)由,可得,解得1≤cos(2x+)+2,求得f(x),f(x)min=1,由题意log2t≤1,从而解得t的取值X围.解答:解:(Ⅰ)∵f(x)=cos(2x﹣)﹣sin2x+2=cos2x﹣sin2x+2=cos(2x+)+2,…(3分)由2kπ﹣π≤2x+≤2kπ,k∈Z,得k≤x≤k,k∈Z,…(5分)∴f(x)的单调递增区间为[k,k],k∈Z,.…(6分)(或者:f(x)=﹣+2=cos2x﹣+2=﹣+2,…(3分)令+2kπ≤≤+2kπ,k∈Z.则+kπ≤x≤+kπ,k∈Z.…(5分)∴f(x)的单调递增区间为:[+kπ,+kπ],k∈Z.…6分)(Ⅱ)∵,∴,…(7分)∴﹣1≤cos()≤﹣,1≤cos(2x+)+2,…(8分)(或者:∵,∴…(7分)∴≤≤1∴1≤﹣+2≤…8分)∴f(x),f(x)min=1.…(9分)若f(x)≥log2t恒成立,∴则log2t≤1,∴0<t≤2,…(11分)即t的取值X围为(0,2].…(12分)点评:本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质,属于基本知识的考查.。

高二数学月考试题及答案-临沂市临沭县第一中学2015-2016学年高二上学期第一次月考

高二数学月考试题及答案-临沂市临沭县第一中学2015-2016学年高二上学期第一次月考

临沭一中高14级高二上学期月度学业水平测试 数学试题 2015年10月本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.测试时间120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至4页. 注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选择其它答案标号.不能答在试题卷上.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题;每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合题目要求的,把正确选项的代号涂在答题卡上.1.在△ABC 中,已知A =30°,a =8,b =83,则△ABC 的面积等于( ) A .32 3 B .16 C .326或16 D .323或16 32.数列{a n }的通项公式是a n =2n ,S n 是数列{a n }的前n 项和,则S 10等于 ( ) A .10B .211-2C .210-2D .2103.不解三角形,下列判断正确的是( )A .a =4,b =5,A =30°,有一解B .a =5,b =4,A =60°,有两解C .a =3,b =2,A =120°,有两解D .a =3,b =6,A =60°,无解 4.在数列{a n }中,已知a 1=1,a 2=5,a n +2=a n +1-a n ,则a 2 015等于( ) A .-1 B .-5 C .1 D .-45.在△ABC 中,已知sin 2A =sin 2B +sin 2C ,且sin A =2sin B cos C ,则△ABC 的形状是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形 6.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则111213a a a ++=( )A .120B .105C .90D .757.一个只有有限项的等差数列,它前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .188.三个不同的实数a ,b ,c 成等差数列,又a ,c ,b 成等比数列,则ab 等于( )A .-2B .2C .-4D .49.在△ABC 中,a ,b ,c 分别为三内角A ,B ,C 所对的边,若B =2A ,则b ∶2a 的取值范围是( )A .(-2,2)B .(0,2)C .(-1,1)D .(12,1)10.若数列{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( )A .4016B .4015C .4014D .4013第Ⅱ卷(非选择题 共100分)注意事项:1.用蓝黑钢笔或圆珠笔答在答题纸上,直接答在试题卷上无效. 2.答题前将答题纸密封线内的项目填写清楚.二、填空题:(本大题共5个小题.每小题5分;共25分.)11.A 、B 两个小岛相距10 n mile ,从A 岛望C 岛与B 岛成60°角,从C 岛望B 岛与A 岛成45°角,则B 、C 间距离为________.12.数列{a n }中的前n 项和S n =n 2-2n +2,则通项公式a n =________. 13.化简1+11+2+11+2+3+…+11+2+3+…+n的结果是________.14.在锐角三角形ABC 中,∠BAC =45°,AD 为BC 边上的高,且BD =2,DC =3,则三角形ABC 的面积是________.15.等差数列{a n }中,若S 12=8S 4,且d ≠0,则a 1d等于________.三、解答题:本大题共6个小题. 共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题12分)三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列.求这三个数.17.(本小题12分)在△ABC 中,已知sin C =sin A +sin Bcos A +cos B ,试判断三角形的形状.18.(本小题12分)求和:(a -1)+(a 2-2)+…+(a n -n ),a ≠0.19.(本小题12分) 在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值.20.(本小题13分)△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,tan C =sin A +sin Bcos A +cos B ,sin(B -A )=cos C .(1)求A ,C ;(2)若S △ABC =3+3,求a ,c .21.(本小题14分)设数列{a n }的前n 项和为S n ,点(n ,S nn )(n ∈N +)均在函数y =3x -2的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N +都成立的最小正整数m .临沭一中高14级高二上学期月度学业水平测试 数学试题参考答案 2015年10月1.解析:由余弦定理a 2=b 2+c 2-2bc cos A ,得64=192+c 2-2×83c ×cos30°, ∴c 2-24c +128=0,解得c =8或16. 当c =8时,S △ABC =12bc sin A =163;当c =16时,S △ABC =12bc sin A =32 3. 答案:D 2.解析:11222n n n n a a ++== ∴数列{a n }是公比为2的等比数列且a 1=2.1011102(12)2212S -∴==--答案:B3.解析:A 中∵b sin30°<a <b ,∴三角形有两解,A 不正确;B 中∵a >b ,∴A >B ,B 为锐角,∴三角形有一解,B 不正确;C 中 ∵a >b ,∴三角形有一解,C 不正确;D 中∵a <b sin60°,∴三角形无解,D 正确. 答案:D4.解析:由题意可得a 3=4,a 4=-1,a 5=-5,a 6=-4,a 7=1,…,可知数列{a n }是以6为周期的数列,且a 1+a 2+a 3+a 4+a 5+a 6=0,又知2 015除以6余数为5, 所以a 2 015=a 5=-5. 答案:B5.解析:由sin 2A =sin 2B +sin 2C 及正弦定理可知a 2=b 2+c 2⇒A 为直角; 而由sin A =2sin B cos C ,可得sin(B +C )=2sin B cos C , 整理得sin B cos C =cos B sin C ,即sin(B -C )=0,故B =C . 综合上述:B =C =π4,A =π2.答案:D6.解析:{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,即3a 2=15,则a 2=5. 又a 1a 2a 3=80,∴a 1a 3=(5-d )(5+d )=16,∴d =3.122=+1035a a d =,11121312=3=105a a a a ∴++答案:B7.解析:设该数列有n 项,且首项为a 1,末项为a n, 公差为d .则依题意有⎩⎪⎨⎪⎧5a 1+10d =34,①5a n -10d =146,②a 1+an2·n =234,③①+②可得a 1+a n =36.代入③得n =13.从而有a 1+a 13=36. 又所求项a 7恰为该数列的中间项,∴a 7=a 1+a 132=362=18.故选D.答案:D8.解析:∵2b =a +c ,∴c =2b -a .∵c 2=ab ,∴a 2-5ab +4b 2=0, ∴a =b (舍去)或a =4b ,∴ab =4.答案:D9.解析:b 2a =sin B 2sin A =sin2A 2sin A =cos A ,又A +B +C =π,故0<A <π3,∴cos A ∈(12,1).答案:D10.解析:由已知a 1>0,a 2007·a 2008<0,可得数列{a n }为递减数列,即d <0,a 2007>0,a 2008<0.利用等差数列的性质及前n 项和公式可得14014200720084014()4014()4014022a a a a S +⨯+⨯==>1401540152008()4015401502a a S a +⨯==⨯<所以使前n 项和S n >0成立的最大自然数n 是4014,选C. 答案:C11.答案:5 6 n mile12.解析:当n =1时,a 1=S 1=1;当n >1时,a n =S n -S n -1=(n 2-2n +2)-[(n -1)2-2(n -1)+2]=2n -3. 又n =1时,2n -3≠a 1,所以有a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >1.答案:a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >113.解析:∵11+2+3+…+n =2n n +=2(1n -1n +1),∴原式=2(11-12)+2(12-13)+…+2(1n -1n +1)=2nn +1.答案:2nn +114.解析:设AD =h ,则tan ∠BAD =2h , tan ∠CAD =3h ,又∠BAD +∠CAD =π4,故2h +3h 1-6h 2=1⇒h 2-5h -6=0.∴h =6或h =-1(舍去)故16(23)152ABC S ∆=⨯⨯+=. 答案:1515.解析:∵S 12=12a 1+66d ,S 4=4a 1+6d ,又S 12=8S 4,∴12a 1+66d =32a 1+48d . ∴20a 1=18d ,∴a 1d =1820=910.答案:91016.(本小题12分)三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列.求这三个数. 解:设三数为aq ,a ,aq .由题意,得⎩⎪⎨⎪⎧a 3=512,aq -+aq -=2a ,解得⎩⎪⎨⎪⎧a =8,q =2或⎩⎪⎨⎪⎧a =8,q =12.所以这三个数为4,8,16或16,8,4.17.(本小题12分)在△ABC 中,已知sin C =sin A +sin Bcos A +cos B ,试判断三角形的形状.解:∵sin C =sin A +sin Bcos A +cos B,由正弦定理得c (cos A +cos B )=a +b ,再由余弦定理得c ·c 2+b 2-a 22bc +c ·a 2+c 2-b 22ac =a +b ,∴a 3+a 2b -ac 2-bc 2+b 3+ab 2=0 ∴(a +b )(c 2-a 2-b 2)=0,∴c 2=a 2+b 2,∴△ABC 为直角三角形.18.(本小题12分)求和:(a -1)+(a 2-2)+…+(a n -n ),a ≠0. 解:原式=(a +a 2+…+a n )-(1+2+…+n )=(a +a 2+…+a n )-nn +2=⎩⎪⎨⎪⎧a-a n 1-a-nn +2a ,n -n 22a=19.(本小题12分) 在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值.解:(1)在△ABC 中, 根据正弦定理,AB sin C =BCsin A ,于是AB =sin Csin ABC =2BC =2 5.(2)在△ABC 中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC =255,于是sin A =1-cos 2A =55. 从而sin2A =2sin A cos A =45,cos2A =cos 2A -sin 2A =35,所以sin(2A -π4)=sin2A cos π4-cos2A sin π4=210.20.(本小题13分)△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,tan C =sin A +sin Bcos A +cos B ,sin(B -A )=cos C . (1)求A ,C ;(2)若S △ABC =3+3,求a ,c . 解:(1)∵tan C =sin A +sin B cos A +cos B,即sin C cos C =sin A +sin Bcos A +cos B ,∴sin C cos A +sin C cos B =cos C sin A +cos C sin B ,即sin C cos A -cos C sin A =cos C sin B -sin C cos B ,得sin(C -A )=sin(B -C ).∴C -A =B -C 或C -A =π-(B -C )(不成立). 即2C =A +B ,得C =π3.∴B +A =2π3.又∵sin(B -A )=cos C =12,则B -A =π6或B -A =5π6(舍去),得A =π4,B =5π12.(2)S △ABC =12ac sin B =6+28ac =3+3,又a sin A =c sin C ,即a 22=c 32,得a =22,c =2 3. 21.(本小题14分)设数列{a n }的前n 项和为S n ,点(n ,S nn )(n ∈N +)均在函数y =3x -2的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N +都成立的最小正整数m .解:(1)依题意得,S nn=3n -2,即S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5; 当n =1时,a 1=S 1=3×12-2×1=1=6×1-5. 所以a n =6n -5(n ∈N +). (2)由(1)得b n =3a n a n +1=3n -n +-5]=12(16n -5-16n +1), 故T n =12[(1-17)+(17-113)+…+(16n -5-16n +1)]=12(1-16n +1).因此,使得12(1-16n +1)<m 20(n ∈N +)成立的m 必须且仅需满足12≤m20,即m ≥10,故满足要求的最小正整数m 为10.。

高中高二数学上学期第二次月考试卷 文(含解析)-人教版高二全册数学试题

高中高二数学上学期第二次月考试卷 文(含解析)-人教版高二全册数学试题

2014-2015学年某某省某某市安吉县上墅私立高中高二(上)第二次月考数学试卷(文科)一、选择题:(本大题共10小题,每小题3分,共30分.)1.在△ABC中,“A=”是“cosA=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,>x,则下列说法中正确的是() A.命题p∨q是假命题 B.命题p∧q是真命题C.命题p∨(¬q)是假命题 D.命题p∧(¬q)是真命题3.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A. B. C. D.4.若直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,则实数m=() A.﹣或1 B. 1 C. 1或2 D.﹣5.直线2x+3y+1=0与直线4x+my+7=0平行,则它们之间的距离为() A. 4 B. C. D.6.设l,m是不同的直线,α,β,γ是不同的平面()A.若l⊥α,l⊥m,则m∥α B.若l⊂α,m⊂β,α∥β,则l∥mC.若l∥α,m⊥α,则l⊥m D.若α∩β=l,l⊥γ,m⊥β,则m∥γ7.过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2时,直线l的斜率为()A. B. C.±1 D.8.若双曲线的离心率为,则其渐近线方程为()A. y=±2x B. C. D.9.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交过圆心 B.相交不过圆心 C.相切 D.相离10.下列结论正确的是()A.命题“若a>b>0,则a2>b2”的逆命题是假命题B.若函数f(x)=sinx,则函数f(x)为周期函数的逆命题是真命题C.向量,的夹角为钝角的充要条件是•<0D.“x2>2”是“x2﹣3x+2≥0”的充分不必要条件二、填空题:(本大题共7小题,每小题3分,共21分.)11.由命题“存在x∈R,使x2+2x+m≤0”是假命题,则实数m的取值X围为.12.已知命题p:m<0,命题q:∀x∈R,x2+mx+1>0成立,若“p∧q”为真命题,则实数m 的取值X围是.13.两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,则a=.14.两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的连心线方程为.15.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x﹣3)2+y2=1内切,则动圆圆心M的轨迹方程是.16.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.17.下列四个命题:①“∃x∈R,x2﹣x+1≤0”的否定;②“若x2+x﹣6≥0,则x>2”的否命题;③在△ABC中,“A>30°”是“sinA>”的充分不必要条件④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ.(k∈Z)”,其中真命题的序号是.三、解答题:(本大题共5小题,共49分.)18.设p:实数x满足x2+2ax﹣3a2<0(a>0),q:实数x满足x2+2x﹣8<0,且q是p的必要不充分条件,求a的取值X围.19.求满足下列条件的椭圆方程:(1)长轴在x轴上,长轴长等于12,离心率等于;(2)椭圆经过点(﹣6,0)和(0,8);(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.20.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线AB与平面EBC所成角的大小.21.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.22.已知圆C:x2+y2=4和直线l:3x+4y+12=0,点P是圆C上的一动点,直线与坐标轴的交点分别为点A、B,(1)求与圆C相切且平行直线l的直线方程;(2)求△PAB面积的最大值.2014-2015学年某某省某某市安吉县上墅私立高中高二(上)第二次月考数学试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分.)1.在△ABC中,“A=”是“cosA=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分必要条件的定义结合三角形的性质,分别证明充分性和必要性,从而得到答案.解答:解:在△ABC中,若A=,则cosA=,是充分条件,在△ABC中,若cosA=,则A=或A=,不是必要条件,故选:A.点评:本题考查了充分必要条件,考查了三角形中的三角函数值问题,是一道基础题.2.已知命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,>x,则下列说法中正确的是() A.命题p∨q是假命题 B.命题p∧q是真命题C.命题p∨(¬q)是假命题 D.命题p∧(¬q)是真命题考点:复合命题的真假.专题:简易逻辑.分析:容易判断命题p是真命题,q是假命题,所以根据p∨q,p∧q,¬q的真假和p,q的关系即可找出正确选项.解答:解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;∴D正确.故选D.点评:考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.3.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A. B. C. D.考点:椭圆的简单性质.专题:计算题.分析:直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),依题意得.解答:直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A.点评:本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.4.若直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,则实数m=() A.﹣或1 B. 1 C. 1或2 D.﹣考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:由直线的平行可得m的方程,解得m代回验证可得.解答:解:∵直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,∴(m+2)(2m﹣1)﹣3×1=0,解得m=﹣或1经验证当m=1时,两直线重合,应舍去,故选:D点评:本题考查直线的一般式方程和平行关系,属基础题.5.直线2x+3y+1=0与直线4x+my+7=0平行,则它们之间的距离为() A. 4 B. C. D.考点:两条平行直线间的距离.专题:直线与圆.分析:通过直线的平行求出m,然后利用平行线之间的距离求解即可.解答:解:直线2x+3y+1=0与直线4x+my+7=0平行,所以m=6,直线4x+my+7=0化为直线4x+6y+7=0即2x+3y+3.5=0,它们之间的距离为:d==.故选:C.点评:本题考查两条平行线之间是距离的求法,基本知识的考查.6.设l,m是不同的直线,α,β,γ是不同的平面()A.若l⊥α,l⊥m,则m∥α B.若l⊂α,m⊂β,α∥β,则l∥mC.若l∥α,m⊥α,则l⊥m D.若α∩β=l,l⊥γ,m⊥β,则m∥γ考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:利用空间中线线、线面、面面间的位置关系求解.解答:解:若l⊥α,l⊥m,则m∥α或m⊂α,故A错误;若l⊂α,m⊂β,α∥β,则l与m平行或异面,故B错误;若l∥α,m⊥α,则由直线与平面平行的性质得l⊥m,故C正确;若α∩β=l,l⊥γ,m⊥β,则m∥γ或m⊂γ,故D错误.故选:C.点评:本题考查命题真假的判断,是基础题,解题时要注意空间思维能力的培养.7.过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2时,直线l的斜率为() A. B. C.±1 D.考点:直线与圆的位置关系.专题:直线与圆.分析:设直线l的方程为:y=kx﹣2k,由已知条件结合圆的性质和点到直线的距离公式推导出=2,由此能求出直线的斜率.解答:解:设直线l的斜率为k,则直线l的方程为:y=kx﹣2k,(x﹣2)2+(y﹣3)2=9的圆心C(2,3),半径r=3,∵过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2,∴圆心C(2,3)到直线AB的距离d==2,∵点C(2,3)到直线y=kx﹣2k的距离d==2,∴•2=3,解得k=±.故选:A.点评:本题考查直线的斜率的求法,是中档题,解题时要认真审题,注意点到直线的距离公式的合理运用.8.若双曲线的离心率为,则其渐近线方程为()A. y=±2x B. C. D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:通过双曲线的离心率,推出a、b关系,然后直接求出双曲线的渐近线方程.解答:解:由双曲线的离心率,可知c=a,又a2+b2=c2,所以b=a,所以双曲线的渐近线方程为:y==±x.故选B.点评:本题考查双曲线的基本性质,渐近线方程的求法,考查计算能力.9.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交过圆心 B.相交不过圆心 C.相切 D.相离考点:直线与圆的位置关系.专题:直线与圆.分析:求出圆心(0,0)到直线l:x+y﹣4=0的距离d正好等于半径,可得直线和圆相切.解答:解:由于圆心(0,0)到直线l:x+y﹣4=0的距离为d==2=r(半径),故直线和圆相切,故选:C.点评:本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.10.下列结论正确的是()A.命题“若a>b>0,则a2>b2”的逆命题是假命题B.若函数f(x)=sinx,则函数f(x)为周期函数的逆命题是真命题C.向量,的夹角为钝角的充要条件是•<0D.“x2>2”是“x2﹣3x+2≥0”的充分不必要条件考点:命题的真假判断与应用.专题:简易逻辑.分析: A.“若a>b>0,则a2>b2”的逆命题为“若a2>b2,则a>b>0”是假命题;B.函数f(x)=sinx,则函数f(x)为周期函数的逆命题为“函数f(x)为周期函数,则f (x)=sinx”,显然不正确;C.向量,的夹角为钝角⇒•<0,反之不成立,由于非零向量反向共线时,满足<0;D.“x2>2”⇒或x,而x2﹣3x+2=﹣≥﹣,反之也不成立.解答:解:A.“若a>b>0,则a2>b2”的逆命题为“若a2>b2,则a>b>0”是假命题,正确;B.函数f(x)=sinx,则函数f(x)为周期函数的逆命题为“函数f(x)为周期函数,则f (x)=sinx”是假命题,不正确;C.向量,的夹角为钝角⇒•<0,反之不成立,由于向量反向共线时,其<0,因此不正确;D.“x2>2”⇒或x,此时x2﹣3x+2=﹣≥﹣,反之也不成立,因此“x2>2”是“x2﹣3x+2≥0”的既不充分也不必要条件,不正确.综上可得:只有A.故选:A.点评:本题考查了函数的性质、简易逻辑的判定、向量的数量积及其夹角公式,考查了推理能力,属于基础题.二、填空题:(本大题共7小题,每小题3分,共21分.)11.由命题“存在x∈R,使x2+2x+m≤0”是假命题,则实数m的取值X围为(1,+∞).考点:特称命题.专题:计算题.分析:原命题为假命题,则其否命题为真命题,得出∀x∈R,都有x2+2x+m>0,再由△<0,求得m.解答:解:∵“存在x∈R,使x2+2x+m≤0”,∴其否命题为真命题,即是说“∀x∈R,都有x2+2x+m>0”,∴△=4﹣4m<0,解得m>1.∴m的取值X围为(1,+∞).故答案为:(1,+∞)点评:本题考查了存在命题的否定,不等式恒成立问题.考查转化、计算能力.12.已知命题p:m<0,命题q:∀x∈R,x2+mx+1>0成立,若“p∧q”为真命题,则实数m 的取值X围是﹣2<m<0 .考点:复合命题的真假.专题:简易逻辑.分析:根据复合命题的真假性判断出命题p、q都是真命题,再逐一求出m的X围,最后求它们的交集.解答:解:因为“p∧q”为真命题,所以命题p、q都是真命题,若命题q是真命题,则∀x∈R,x2+mx+1>0横成立,所以△=m2﹣4<0,解得﹣2<m<2,又命题p:m<0,也是真命题,所以实数m的取值X围是:﹣2<m<0,故答案为:﹣2<m<0.点评:本题考查了复合命题的真假性,以及二次函数的性质,属于基础题.13.两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,则a= 0或﹣1 .考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:由已知得a(a﹣1)+2a=0,由此能求出a.解答:解:∵两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,∴a(a﹣1)+2a=0,解得a=0或a=﹣1.故答案为:0或﹣1.点评:本题考查实数值的求法,是基础题,解题时要认真审题,注意直线与直线垂直的性质的合理运用.14.两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的连心线方程为3x﹣y﹣9=0 .考点:圆与圆的位置关系及其判定.专题:计算题;直线与圆.分析:求出圆心坐标,利用点斜式,可得方程.解答:解:两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的圆心坐标分别为(2,﹣3),(3,0),∴连心线方程为y﹣0=(x﹣3),即3x﹣y﹣9=0.故答案为:3x﹣y﹣9=0.点评:本题考查圆与圆的位置关系及其判定,考查直线方程,比较基础.15.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x﹣3)2+y2=1内切,则动圆圆心M的轨迹方程是﹣=1(x≥2).考点:直线与圆的位置关系.专题:直线与圆.分析:找出两圆圆心坐标与半径,设设动圆圆心M(x,y),半径为r,根据动圆M与圆C1外切且与圆C2内切,即可确定出M轨迹方程.解答:解:由圆C1:(x+3)2+y2=9,圆心C1(﹣3,0),半径r1=3,圆C2:(x﹣3)2+y2=1,圆心C2(3,0),r2=1,设动圆圆心M(x,y),半径为r,根据题意得:,整理得:|MC1|﹣|MC2|=4,则动点M轨迹为双曲线,a=2,b=,c=3,其方程为﹣=1(x≥2).故答案为:﹣=1(x≥2)点评:此题考查了直线与圆的位置关系,以及动点轨迹方程,熟练掌握双曲线定义是解本题的关键.16.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.考点:由三视图求面积、体积.专题:立体几何.分析:几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的体积公式计算.解答:解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,∴几何体的体积V=π×12×4+×π×22×2=4π+π=π.故答案为:.点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.17.下列四个命题:①“∃x∈R,x2﹣x+1≤0”的否定;②“若x2+x﹣6≥0,则x>2”的否命题;③在△ABC中,“A>30°”是“sinA>”的充分不必要条件④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ.(k∈Z)”,其中真命题的序号是①②.考点:命题的真假判断与应用.专题:简易逻辑.分析:①按照特称命题的否定要求改写,然后判断真假;②先写出原命题,然后再按照否条件、否结论进行改写;③双向推理,然后进行判断,此例可以举反例;④结合奇函数的性质进行推导,从左推右,然后反推化简.解答:解:①原命题的否定是:∀x∈R,x2﹣x+1>0;因为,故①为真命题;②原命题的否命题是:若x2+x﹣6<0,则x≤2.由x2+x﹣6<0,得(x+3)(x﹣2)<0,所以﹣3<x<2,故②为真命题;③当A=150°时,.所以故在△ABC中,“A>30°”是“sinA>”的不充分条件.故③是假命题;④若函数f(x)为奇函数,则f(0)=tanφ=0,或y轴为图象的渐近线,所以φ=kπ(k∈Z);或tanφ不存在,则φ=,(k∈Z)所以前者是后者的不充分条件.故④为假命题.故答案为:①,②点评:本题以简易逻辑为载体,考查了命题的否定及否命题的写法以及真假判断,充分必要性的判断方法,属于基础题,难度不大.三、解答题:(本大题共5小题,共49分.)18.设p:实数x满足x2+2ax﹣3a2<0(a>0),q:实数x满足x2+2x﹣8<0,且q是p的必要不充分条件,求a的取值X围.考点:必要条件、充分条件与充要条件的判断.专题:不等式的解法及应用.分析:先分别化简两个不等式,再利用q是p的必要不充分条件,转化为,然后某某数a的取值X围.解答:解:由x2+2ax﹣3a2<0得(x+3a)(x﹣a)<0,又a>0,所以﹣3a<x<a,(2分)x2+2x﹣8<0,∴﹣4<x<2,p为真时,实数x的取值X围是:﹣3a<x<a;q为真时,实数x的取值X围是:﹣4<x<2(6分)因为q是p的必要不充分条件,所以有(10分)所以实数a的取值X围是≤a≤2.(14分)点评:本题考查一元二次不等式的解法,必要条件、充分条件与充要条件的判断,考查计算能力,转化思想,是中档题.19.求满足下列条件的椭圆方程:(1)长轴在x轴上,长轴长等于12,离心率等于;(2)椭圆经过点(﹣6,0)和(0,8);(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)设椭圆方程为+=1(a>b>0),运用离心率公式和a,b,c的关系,解得a,b,即可得到椭圆方程;(2)设椭圆方程为mx2+ny2=1,(m,n>0),由题意代入点(﹣6,0)和(0,8),解方程即可得到椭圆方程;(3)讨论椭圆的焦点的位置,由题意可得a﹣c=4,a+c=10,解方程可得a,c,再由a,b,c 的关系解得b,即可得到椭圆方程.解答:解:(1)设椭圆方程为+=1(a>b>0),由题意可得,2a=12,e=,即有a=6,=,即有c=4,b===2,即有椭圆方程为+=1;(2)设椭圆方程为mx2+ny2=1,(m,n>0),由题意代入点(﹣6,0)和(0,8),可得36m+0=1,且0+64n=1,解得m=,n=,即有椭圆方程为+=1;(3)当焦点在x轴上时,可设椭圆方程为+=1(a>b>0),由题意可得a﹣c=4,a+c=10,解得a=7,c=3,b==2,即有椭圆方程为+=1;同理,当焦点在y轴上时,可得椭圆方程为+=1.即有椭圆方程为+=1或+=1.点评:本题考查椭圆的方程和性质,主要考查椭圆的方程的求法,注意运用椭圆的方程的正确设法,以及椭圆性质的运用,属于基础题.20.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线AB与平面EBC所成角的大小.考点:直线与平面所成的角;平面与平面垂直的判定.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(1)建立空间直角坐标,利用向量法证明线面垂直.(2)利用向量法求线面角的大小.解答:解:∵四边形ACDE是正方形,所以EA⊥AC,AM⊥EC,∵平面ACDE⊥平ABC,∴EA⊥平面ABC,∴可以以点A为原点,以过A点平行于BC的直线为x轴,分别以直线AC和AE为y轴和z轴,建立如图所示的空间直角坐标系A﹣xyz.设EA=AC=BC=2,则A(0,0,0),B(2,2,0),C(0,2,0),E(0,0,2),∵M是正方形ACDE的对角线的交点,∴M(0,1,1) (3)=(0,1,1),=(0,2,0)﹣(0,0,2)=(0,2,﹣2),=(2,2,0)﹣(0,2,0)=(2,0,0),∴,,∴AM⊥EC,AM⊥CB,∴AM⊥平面EBC.…(5分)(2)∵AM⊥平面EBC,∴为平面EBC的一个法向量,∵=(0,1,1),=(2,2,0),∴cos.∴=60°.∴直线AB与平面EBC所成的角为30°.…(12分)点评:本题主要考查向量法证明线面垂直以及利用向量法求线面角的大小,运算量较大.21.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.考点:轨迹方程;椭圆的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)设椭圆方程为,根据题意可得a=2且c=,从而b==1,得到椭圆的标准方程;(2)设点P(x0,y0),线段PA的中点为M(x,y),根据中点坐标公式将x0、y0表示成关于x、y的式子,将P(x0,y0)关于x、y的坐标形式代入已知椭圆的方程,化简整理即可得到线段PA的中点M的轨迹方程.解答:解:(1)由题意知椭圆的焦点在x轴上,设椭圆的标准方程是∵椭圆经过点D(2,0),左焦点为,∴a=2,,可得b==1因此,椭圆的标准方程为.(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,整理得,∵点P(x0,y0)在椭圆上,∴可得,化简整理得,由此可得线段PA中点M的轨迹方程是.点评:本题给出椭圆满足的条件,求椭圆方程并求与之有关的一个轨迹方程,着重考查了椭圆的标准方程、简单几何性质和轨迹方程的求法等知识点,属于中档题.22.已知圆C:x2+y2=4和直线l:3x+4y+12=0,点P是圆C上的一动点,直线与坐标轴的交点分别为点A、B,(1)求与圆C相切且平行直线l的直线方程;(2)求△PAB面积的最大值.考点:直线和圆的方程的应用.专题:直线与圆.分析:(1)根据题意设所求方程为3x+4y+a=0,根据直线与圆相切时,圆心到直线的距离d=r求出a的值,即可确定出所求直线方程;(2)当直线与AB平行,且与圆相切时,△PAB面积的最大值,如图所示,求出|AB|与|MN|的长,即可确定出△PAB面积的最大值.解答:解:(1)设所求直线方程为3x+4y+a=0,由题意得:圆心(0,0)到直线的距离d=r,即=2,解得:a=±10,则所求直线方程为3x+4y±10=0;(2)当直线与AB平行,且与圆相切时,△PAB面积的最大值,此时直线方程为3x+4y﹣10=0,∵点C到直线AB的距离||=,CM=2,∴|MN|=+2=,∵A(﹣4,0),B(0,3),即OA=4,OB=3,∴|AB|=5,则△PAB面积最大值为×5×=11.点评:此题考查了直线与圆的方程的应用,涉及的知识有:点到直线的距离公式,两直线平行时斜率的关系,以及直线与圆相切的性质,熟练掌握公式及性质是解本题的关键.。

厦门市2015—2016学年度第一学期高二年级质量检测数学(

厦门市2015—2016学年度第一学期高二年级质量检测数学(

厦门市2015—2016学年度第一学期高二年级质量检测数学(文科)参考答案一、选择题:(本大题共12小题,每小题5分,共60分)12.设11(,)A x y 、22(,)B x y ,由2(1)y x y k x ⎧=⎨=-⎩得222(21)0k x k x k -++=,即121x x ⋅=.又211222y x y x ⎧=⎪⎨=⎪⎩,∴21212()1y y x x ⋅=⋅=即121y y ⋅=-,∴12120x x y y ⋅+⋅=, 即OA OB ⊥.设33(,)C x y 、44(,)D x y ,直线OA :1y k x =,直线OB :2y k x =,则121k k ⋅=-.由21y x y k x ⎧=⎨=⎩得00x y =⎧⎨=⎩或21111x k y k ⎧=⎪⎪⎨⎪=⎪⎩即21111(,)A k k ,同理22211(,)B k k .由221(2)4x y yk x ⎧-+=⎨=⎩得00x y =⎧⎨=⎩或211214141x k k y k ⎧=⎪+⎪⎨⎪=⎪+⎩即1221144(,)11k D k k ++, 同理2222244(,)11k E k k ++.∴OA =,OB = OD =OE =∴221122221211111(1)(1)2(1)(1)12116161642OABODEk k OA OB S k k k k S OD OE ∆∆++++++====≥. 二、填空题:(本大题共4小题,每小题5分,共20分)13.,x R ∀∈21xx ≠+; 14.815y x =- ; 15.3λ<; 16.20. 三、解答题:(本大题共6小题,共70分.解答应写出文字说明,或演算步骤). 17.本题考查等差、等比数列的通项公式及前n 项和公式等基础知识,考查运算求解能力.考查化归与转化思想、方程思想.满分10分. 【解析】(Ⅰ)设等比数列{}n a 的首项为1a ,公比为q .364,32a a ==,解得12,1q a ==, ··································· 3分 1112n n n a a q --∴==. ······················································· 4分(Ⅱ)设等差数列{}n b 的首项为1b ,公差为d .4145b =+=,21b =,∴4224,d b b =-=即2d =,11=-b , ·········· 6分∴23n b n =-, ··································································· 7分 ∴数列{}+n n a b 的前n 项和为11()(1)12n n n n b b a q T q +-=+-12(123)122n n n --+-=+- ···························································· 9分 2221n n n =+-- . ···································································· 10分18.本题考查正弦、余弦定理和解三角形等基础知识,考查运算能力、思维分析能力,考查化归与转化思想、方程思想、分类讨论思想.本题满分12分.【解析】(Ⅰ) 由正弦定理,结合条件:sin (sin sin c C a A b B ⋅⋅⋅=+(可得,2(a c b a b -⋅=⋅+( ································· 2分22a b =+22b b a =+.222b a c ∴+-, ··········································································· 4分2222a c ab b ==+-,即 cos C =,0C π<<,6C π∴=. ········· 6分(Ⅱ)法一:由余弦定理,结合条件:32=a ,2c =, 又由(Ⅰ)知6C π=,可得 2222cos c a b ab C =+-,∴24122b =+-⋅,即2680b b -+=, ··········· 8分 解得2b =或4b =,经检验,两解均有意义. ··········· 11分综上,ABC ∆周长为4+6+ ··· 12分法二:由正弦定理,结合条件:32=a ,2c =,又由(Ⅰ)知6C π=,可得1sin 2sin 2a C A c === ············································ 7分 a c > A C ∴> 3A π∴=或23π,从而2B π=或6π. ······························· 8分当2B π=时,ABC ∆为直角三角形,4b ∴=,ABC ∴∆周长为6+ 当6B π=时,ABC ∆为等腰三角形,2b c ∴==,ABC ∴∆周长为4+ 11分综上,ABC ∆周长为4+6+ ··· 12分 19.本题考查抛物线定义,直线与抛物线关系,考查运算求解能力.考查化归与转化思想、数形结合思想、分类讨论思想.本题满分12分.【解析】(Ⅰ)由题意得,M 到点(3,0)的距离与到直线3x =-的距离都等于半径,由抛物线的定义可知, C 的轨迹是抛物线,设其方程为22y px =,32p=, ∴M 的轨迹方程为212y x =. ··································· 3分 (Ⅱ)法一:显然斜率不为0,设直线l :6x ty =+,11(,)A x y 、22(,)B x y2AP PB =,∴1122(6,)2(6,)x y x y --=-,∴122y y =-, ···················· 6分 由2126y x x ty ⎧=⎨=+⎩得212720y ty --=∴12121272y y t y y +=⎧⎨⋅=-⎩, ································ 8分又122y y =-,∴ 121260.5y y t =⎧⎪=-⎨⎪=⎩或121260.5y y t =-⎧⎪=⎨⎪=-⎩ , ······································ 10分∴ 直线l 的方程是212y x =-或212y x =-+. ·································· 12分法二:①当直线l 的斜率不存在时,直线l :x =6,显然不成立. ················ 4分 ②当直线l 的斜率存在时,设直线l :(6)y k x =-,11(,)A x y 、22(,)B x y ,2AP PB =, ∴1122(6,)2(6,)x y x y --=-,∴12218x x +=, ··············· 7分由212(6)y x y k x ⎧=⎨=-⎩得222212(1)360k x k x k -++=,∴21221212(1)36k x x k x x ⎧++=⎪⎨⎪⋅=⎩, ·· 9分 ∴121232x x k =⎧⎪=⎨⎪=±⎩······················································································ 11分 ∴直线l 的方程是212y x =-或212y x =-+. ·············· 12分20.本题考查等差等比数列的定义、性质,等差等比数列的综合运用,及求数列的前n 项和,考查运算求解能力.考查化归与转化思想、方程思想.本题满分12分. 【解析】(I )13,,n n a a +成等差数列,1123,32(3),n n n n a a a a ++∴=+∴-=- ··· 2分 即11323n n n n b a b a ++-==-,又131a -=,······································· 4分 ∴{}n b 是首项为1,公比为2的等比数列. ··································· 5分(II ){}n b 是首项为1,公比为2的等比数列,∴132n n n b a -=-=,即123n n a -=+. ··················································· 7分 又22log (26)log 2n n n c a n =-==, ··············································· 8分212111111()(21)(21)22121n n c c n n n n -+∴==--+-+, ······································· 9分 13352121111n n n T c c c c c c -+∴=+++111111(1)23352121n n =-+-++--+ ················································· 10分 111(1)2212n =-<+.······························································ 12分 21.本题考查解二次不等式、利用二次函数和基本不等式求最值,考查数学建模能力,信息处理能力和运算能力,考查化归转化思想、数形结合思想、函数方程思想和分类讨论思想.本题满分12分. 【解析】(Ⅰ)设该企业计划在A 国投入的总成本为()Q x (亿元), 则当010x ≤≤时,25()1644x x Q x =++,依题意:25()51644x x Q x =++≤, ············································· 1分 即24600x x +-≤,解得106x -≤≤, ··················· 3分 结合条件010x ≤≤,06x ∴≤≤.················· 4分 (Ⅱ)依题意,该企业计划在A 国投入的总成本为25,010,1644()42,10.5x x x Q x x x x ⎧++≤≤⎪⎪=⎨⎪+->⎪⎩5分 则平均处理成本为251,010,()1644421,10.5x x Q x x x x x x⎧++≤≤⎪⎪=⎨⎪-+>⎪⎩ ·········· 6分(i) 当010x ≤≤时,()51116444Q x x x x =++≥=5164x x =,即x =min()Q x x ⎛⎫= ⎪⎝⎭. ·············· 8分 (ii) 当10x >时, 22()42119914()520100Q x x x x x =-+=-+, ∴当1120x =即x =20时,min ()99100Q x x ⎛⎫=> ⎪⎝⎭. ············· 10分 ∴当x =min()Q x x ⎛⎫= ⎪⎝⎭. ···················· 11分 答:(Ⅰ)该工艺处理量x 的取值范围是06x ≤≤.(Ⅱ)该企业处理量为亿元. ······························································································· 12分 22.本题考查曲线的轨迹方程、直线和椭圆的位置关系、弦长公式、定点定值问题等知识,考查运算求解能力,探究论证能力.考查化归与转化思想、数形结合思想、函数方程思想、分类讨论思想.本题满分12分. 【解析】(I )设M 的坐标为(,)x y ,则1A M k x =≠,2A M k x =≠,12=-(x ≠, ········································· 1分化简得点M的轨迹方程是221(2x y x +=≠. ····································· 3分 (Ⅱ)①当直线l的斜率不存在时,PQ = ···································· 4分②当直线l 的斜率存在时,设11(,)P x y ,22(,)Q x y ,直线l 的方程为:(1)y k x =-,则2212(1)x y y k x ⎧+=⎪⎨⎪=-⎩得,2222(21)4220k x k x k +-+-=,∴212221224212221k x x k k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩, · 6分222)1)2121k PQ k k +===+>++ ·· 7分综上所述,PQ. ··············· 8分(Ⅲ)假设点N 存在,由椭圆的对称性得,则点N 一定在x 轴上,不妨设点(,0)N n ,当直线l 的斜率存在时,由(Ⅱ)得212221224212221k x x k k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩, ∴22121212122(1)(1)[()1]21k y y k x k x k x x x x k ⋅=--=⋅-++=-+,11(,)NP x n y =-,22(,)NQ x n y =-,∴21212121212()()()NP NQ x n x n y y x x n x x n y y ⋅=-⋅-+⋅=⋅-+++⋅∴22222222222224(241)221212121k k k n n k n NP NQ n n k k k k --++-⋅=-+-=++++ ·· 10分 对于任意的k ,0NP NQ ⋅=,∴22241020n n n ⎧-+=⎪⎨-=⎪⎩, ······························· 11分方程组无解,∴点N 不存在.综上所述,不存在符合条件的点N . ············································· 12分。

山东省威海市文登一中高二数学上学期第二次段考试卷

山东省威海市文登一中高二数学上学期第二次段考试卷

2015-2016学年山东省威海市文登一中高二(上)第二次段考数学试卷(理科)一.选择题:(每小题5分,共10题)1 .符合下列条件的三角形有且只有一个的是()A.a=1,b=2,c=3 B.a=1,b=,∠A=30°C.a=1,b=2,∠A=100°D.b=c=1,∠B=45°2.在等比数列{a n}中,如果公比q>1,那么等比数列{a n}是()A.递增数列B.递减数列C.常数列D.递增数列或递减数列都有可能3.在△ABC中,若acosA=bcosB,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形4.函数f(x)=(x<0),取得最大值为()A.﹣2﹣2 B.2﹣2C.2﹣2 D.2+25.若{a n}是等差数列,首项a1>0,a4+a5>0,a4•a5<0,则使前n项和S n>0成立的最大自然数n的值为()A.4 B.5 C.7 D.86.如果方程+(m﹣1)x+m2﹣2=0的两个实根一个小于﹣1,另一个大于1,那么实数m 的取值范是()A.(﹣,)B.(﹣2,1)C.(0,1) D.(﹣2,0)7.如图所示的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则实数a+b的值为()1 20.5 1abA.B.C.D.8.对于任意实数a、b、c、d,下列命题:①若a>b,c≠0,则ac>bc;②若a>b,则ac2>bc2;③若ac2>bc2,则a>b;④若a>b,则<中.真命题个数为()A.1个B.2个C.3个D.4个9.已知三角形△ABC的三边长成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长是()A.18 B.21 C.24 D.1510.张先生从2005年起,每年1月1日到银行新存入a元(一年定期),若年利率为r保持不变,且每年到期存款自动转为新的一年定期,那么到2012年1月1日将所有存款及利息全部取回,他可取回的钱数为(单位为元)()A. B. C.a(1+r)7D.a(1+r)8二.填空题(每小题5分,共5题)11 .不等式≤x的解集是.12.不等式(a﹣2)x2+2(a﹣2)x﹣4<0对一切x∈R恒成立,则实数a的取值范围是.13.数列{a n}的前n项和为S n=n2+n+1,b n=(﹣1)n a n,n∈N*则数列{b n}的前50项的和为.14.等差数列{a n}中,若a4+a6+a8+a10+a12=50,则3a10﹣a14的值为.15.如图,一艘轮船按照北偏西40°的方向以30海里每小时的速度航行,一个灯塔原来在轮船的北偏东20°方向上,经过40分钟后,灯塔在轮船的北偏东65°方向上,则灯塔和轮船原来的距离为.三、解答题(共6小题,满分75分)16.在△ABC中,角A,B,C的对边分别为a,b,c,已知.(Ⅰ)求角B的大小;(Ⅱ)若b=,a+c=4,求△ABC的面积.17.(1)不等式ax2+5x﹣2>0解是,解不等式ax2﹣5x+a2﹣1>0;(2)求不等式|2x﹣1|+|x+2|≥4的解集.18.设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13 (Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.19.若a为实数,解关于x的不等式ax2+(a﹣2)x﹣2<0.20.在△ABC中,角A、B、C所对的边分别是a、b、c,且a2+c2﹣b2=ac.(1)求2sin2+sin2B的值.(2)若b=2,求△ABC面积的最大值.21.数列{a n}是首项a1=4的等比数列,且S3,S2,S4成等差数列,(1)求数列{a n}的通项公式;(2)若b n=log2|a n|,设T n为数列的前n项和,若T n≤λb n+1对一切n∈N*恒成立,求实数λ的最小值.2015-2016学年山东省威海市文登一中高二(上)第二次段考数学试卷(理科)参考答案与试题解析一.选择题:(每小题5分,共10题)1 .符合下列条件的三角形有且只有一个的是()A.a=1,b=2,c=3 B.a=1,b=,∠A=30°C.a=1,b=2,∠A=100°D.b=c=1,∠B=45°【考点】正弦定理的应用.【专题】计算题.【分析】A无解,因为三角形任意两边之和大于第三边,而这里a+b=c.B有2个解,由正弦定理可得 sinB=,故B=45°,或B=135°.C无解,由于a<b,∴A=100°<B,∴A+B>200°,这与三角形的内角和相矛盾.D有唯一解,∵b=c=1,∠B=45°,∴∠C=45°,∴∠A=90°.【解答】解:A无解,因为三角形任意两边之和大于第三边,而这里a+b=c,故这样的三角形不存在.B有2个解,由正弦定理可得,∴sinB=,故B=45°,或 B=135°.C无解,由于a<b,∴A=100°<B,∴A+B>200°,这与三角形的内角和相矛盾.D有唯一解,∵b=c=1,∠B=45°,∴∠C=45°,∴∠A=90°,故有唯一解.故选D.【点评】本题考查正弦定理的应用,三角形的解的个数判断,根据三角函数的值求角.根据三角函数的值求角是解题的难点.2.在等比数列{a n}中,如果公比q>1,那么等比数列{a n}是()A.递增数列B.递减数列C.常数列D.递增数列或递减数列都有可能【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】对a1分类讨论即可得出单调性.【解答】解:在等比数列{a n}中,公比q>1,若a1>0,则数列{a n}是单调递增数列;若a1<0,则数列{a n}是单调递增数列.故选:D.【点评】本题考查了等比数列的单调性、分类讨论方法,考查了推理能力与计算能力,属于中档题.3.在△ABC中,若acosA=bcosB,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形【考点】三角形的形状判断.【专题】计算题.【分析】利用正弦定理化简已知的等式,再根据二倍角的正弦函数公式变形后,得到sin2A=sin2B,由A和B都为三角形的内角,可得A=B或A+B=90°,从而得到三角形ABC为等腰三角形或直角三角形.【解答】解:由正弦定理asinA=bsinB化简已知的等式得:sinAcosA=sinBcosB,∴sin2A=sin2B,∴sin2A=sin2B,又A和B都为三角形的内角,∴2A=2B或2A+2B=π,即A=B或A+B=,则△ABC为等腰或直角三角形.故选D【点评】此题考查了三角形形状的判断,涉及的知识有正弦定理,二倍角的正弦函数公式,以及正弦函数的图象与性质,其中正弦定理很好得解决了三角形的边角关系,利用正弦定理化简已知的等式是本题的突破点.4.函数f(x)=(x<0),取得最大值为()A.﹣2﹣2 B.2﹣2C.2﹣2 D.2+2【考点】函数的最值及其几何意义.【专题】不等式的解法及应用.【分析】由于x<0,可由x+≤﹣2,即可得到最大值.【解答】解:函数f(x)=(x<0)=x+﹣2≤﹣2﹣2=﹣(2+2),当且仅当x=,即x=﹣时,f(x)取得最大值﹣(2+2).故选A.【点评】本题考查函数的最值的求法,注意运用基本不等式,同时注意满足的条件:一正二定三等,属于基础题和易错题.5.若{a n}是等差数列,首项a1>0,a4+a5>0,a4•a5<0,则使前n项和S n>0成立的最大自然数n的值为()A.4 B.5 C.7 D.8【考点】等差数列的前n项和.【专题】等差数列与等比数列.【分析】由已知结合等差数列的单调性可得a4+a5>0,a5<0,由求和公式可得S9<0,S8>0,可得结论.【解答】解:∵{a n}是等差数列,首项a1>0,a4+a5>0,a4•a5<0,∴a4,a5必定一正一负,结合等差数列的单调性可得a4>0,a5<0,∴S9===9a5<0,S8==>0,∴使前n项和S n>0成立的最大自然数n的值为8故选D【点评】本题考查等差数列的前n项的最值,理清数列项的正负变化是解决问题的关键,属基础题.6.如果方程+(m﹣1)x+m2﹣2=0的两个实根一个小于﹣1,另一个大于1,那么实数m 的取值范是()A.(﹣,)B.(﹣2,1)C.(0,1) D.(﹣2,0)【考点】一元二次方程的根的分布与系数的关系.【分析】构建函数f(x)=+(m﹣1)x+m2﹣2,根据两个实根一个小于﹣1,另一个大于1,可得f(﹣1)<0,f(1)<0,从而可求实数m的取值范围.【解答】解:由题意,构建函数f(x)=+(m﹣1)x+m2﹣2∵两个实根一个小于﹣1,另一个大于1∴f(﹣1)<0,f(1)<0∴0<m<1故选C.【点评】本题以方程为载体,考查方程根的讨论,关键是构建函数,用函数思想求解.7.如图所示的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则实数a+b的值为()1 20.5 1abA.B.C.D.【考点】等比数列的性质;等差数列的性质.【专题】计算题.【分析】由题意和等差(等比)数列,分别求出第一列数、第二列数和第四行数,即求出a 和b的值,相加即可.【解答】解:由题意知,第一列数为:1,0.5,0.25,0.125;第二列数为:2,1,0.5,0.25;故第四行数为:0.125,0.25,0.375;故可得即a=0.5,b=0.375,则a+b=0.875=.故选C【点评】本题考查等差(等比)数列的通项公式的应用,利用表格给出条件,题目新颖,属基础题.8.对于任意实数a、b、c、d,下列命题:①若a>b,c≠0,则ac>bc;②若a>b,则ac2>bc2;③若ac2>bc2,则a>b;④若a>b,则<中.真命题个数为()A.1个B.2个C.3个D.4个【考点】不等式的基本性质.【专题】不等式的解法及应用.【分析】根据不等式的基本性质,逐一分析四个结论的真假,最后综合讨论结果可得答案.【解答】解:当c<0时,若a>b,则ac<bc,故①错误;当c=0时,若a>b,则ac2=bc2,故②错误;若ac2>bc2,则c2>0,则a>b,故③正确;若a>0>b,则>,故④错误;故真命题个数为1个,故选:A【点评】本题考查的知识点是不等式的基本性质,熟练掌握不等式的基本性质是解答的关键.9.已知三角形△ABC的三边长成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长是()A.18 B.21 C.24 D.15【考点】数列与三角函数的综合.【专题】综合题.【分析】设三角形的三边分别为a、b、c,且a>b>c>0,设公差为d=2,三个角分别为、A、B、C,则a﹣b=b﹣c=2,a=c+4,b=c+2,因为sinA=,所以A=60°或120°.若A=60°,因为三条边不相等,则必有角大于A,矛盾,故A=120°.由余弦定理能求出三边长,从而得到这个三角形的周长.【解答】解:不妨设三角形的三边分别为a、b、c,且a>b>c>0,设公差为d=2,三个角分别为、A、B、C,则a﹣b=b﹣c=2,a=c+4,b=c+2,∵sinA=,∴A=60°或120°.若A=60°,因为三条边不相等,则必有角大于A,矛盾,故A=120°.cosA====﹣.∴c=3,∴b=c+2=5,a=c+4=7.∴这个三角形的周长=3+5+7=15.故选D.【点评】本题考查三角形的周长的求法,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.解题是要认真审题,注意余弦定理的合理运用.10.张先生从2005年起,每年1月1日到银行新存入a元(一年定期),若年利率为r保持不变,且每年到期存款自动转为新的一年定期,那么到2012年1月1日将所有存款及利息全部取回,他可取回的钱数为(单位为元)()A. B. C.a(1+r)7D.a(1+r)8【考点】等比数列的前n项和.【专题】等差数列与等比数列.【分析】由题意可得:到2012年1月1日将所有存款及利息全部=a(1+r)+a(1+r)2+…+a (1+r)7,利用等比数列的前n项和公式即可得出.【解答】解:由题意可得:2006年1月1日本息合计为:a(1+r);2007年1月1日本息合计为:a(1+r)+a(1+r)2,…,那么到2012年1月1日将所有存款及利息全部=a(1+r)+a(1+r)2+…+a(1+r)7=a(1+r)=元,故选:A.【点评】本题考查了等比数列的通项公式、前n项和公式,考查了推理能力与计算能力,属于中档题.二.填空题(每小题5分,共5题)11 .不等式≤x的解集是{x|﹣1≤x<0或x≥1}.【考点】其他不等式的解法.【专题】不等式的解法及应用.【分析】本题可以先移项再通分,再分类讨论,转化为整式不等式组,再解整式不等式组,得本题答案.【解答】解:∵≤x,∴,∴.∴.∴或,∴x≥1或﹣1≤x<0.∴不等式≤x的解集是{x|﹣1≤x<0或x≥1}.故答案为:{x|﹣1≤x<0或x≥1}.【点评】本题考查的是分式不等式的解法,可以移项通分后进行分类讨论,也可以移项通分后直接化成整式不等式,本题有一定的难度,属于中档题.12.不等式(a﹣2)x2+2(a﹣2)x﹣4<0对一切x∈R恒成立,则实数a的取值范围是(﹣2,2] .【考点】函数恒成立问题;二次函数的性质.【专题】计算题.【分析】当a﹣2=0,a=2时不等式即为﹣4<0,对一切x∈R恒成立,当a≠2时利用二次函数的性质列出a满足的条件并计算,最后两部分的合并即为所求范围.【解答】解:当a﹣2=0,a=2时不等式即为﹣4<0,对一切x∈R恒成立①当a≠2时,则须即∴﹣2<a<2 ②由①②得实数a的取值范围是(﹣2,2]故答案为:(﹣2,2]【点评】本题考查不等式恒成立的参数取值范围,考查二次函数的性质.注意对二次项系数是否为0进行讨论.13.数列{a n}的前n项和为S n=n2+n+1,b n=(﹣1)n a n,n∈N*则数列{b n}的前50项的和为55 .【考点】数列的求和.【专题】等差数列与等比数列.【分析】利用递推关系可得:.b n=(﹣1)n a n,n∈N*则数列{b n}的前50项的和=3+2[(2﹣3)+(4﹣5)+…+(48﹣49)+50],即可得出.【解答】解:数列{a n}的前n项和为S n=n2+n+1,∴当n=1时,a1=S1=3;当n≥2时,a n=S n﹣S n﹣1=(n2+n+1)﹣[(n﹣1)2+(n﹣1)+1]=2n.∴.b n=(﹣1)n a n,n∈N*则数列{b n}的前50项的和=3+2(2﹣3+ (50)=3+2[(2﹣3)+(4﹣5)+…+(48﹣49)+50]=3+2(﹣24+50)=55.故答案为:55.【点评】本题考查了递推关系的应用、分组求和方法,考查了推理能力与计算能力,属于中档题.14.等差数列{a n}中,若a4+a6+a8+a10+a12=50,则3a10﹣a14的值为20 .【考点】等差数列的通项公式.【专题】等差数列与等比数列.【分析】由等差数列的性质可得:50=a4+a6+a8+a10+a12=5a8,解得a8.3a10﹣a14=a10+(a6+a14)﹣a14=a10+a6=2a8,即可得出.【解答】解:由等差数列的性质可得:50=a4+a6+a8+a10+a12=5a8,解得a8=10.∴3a10﹣a14=a10+(a6+a14)﹣a14=a10+a6=2a8=20.故答案为:20.【点评】本题考查了等差数列的性质,考查了推理能力与计算能力,属于中档题.15.如图,一艘轮船按照北偏西40°的方向以30海里每小时的速度航行,一个灯塔原来在轮船的北偏东20°方向上,经过40分钟后,灯塔在轮船的北偏东65°方向上,则灯塔和轮船原来的距离为10(+1)海里.【考点】解三角形的实际应用.【专题】计算题;解三角形.【分析】首先将实际问题抽象成解三角形问题,再借助于正弦定理求出边长.【解答】解:由题意可知△A1A2M中,A1A2=20,∠A2A1N=60°,∠A1A2M=75°,∴∠M=45°,由正弦定理可得,∴A1M=10(+1),故答案为:10(+1)海里.【点评】本题考查解三角形的实际应用,考查学生的计算能力,比较基础.三、解答题(共6小题,满分75分)16.在△ABC中,角A,B,C的对边分别为a,b,c,已知.(Ⅰ)求角B的大小;(Ⅱ)若b=,a+c=4,求△ABC的面积.【考点】余弦定理;三角函数中的恒等变换应用.【专题】计算题;解三角形.【分析】(Ⅰ)由已知根据三角函数中的恒等变换应用可解得,从而得即可求B的值.(Ⅱ)由余弦定理可得ac=1,代入三角形面积公式即可得解.【解答】解:(Ⅰ)由已知得,即有,…∵sinA≠0,∴,∵cosB≠0,∴…∵B∈(0,π),∴.…(Ⅱ)由b2=a2+c2﹣2accosB=(a+c)2﹣2ac(1+cosB),∴,∴ac=1,…∴.…【点评】本题主要考查了余弦定理、三角形面积公式的应用,三角函数中的恒等变换的应用,属于基础题.17.(1)不等式ax2+5x﹣2>0解是,解不等式ax2﹣5x+a2﹣1>0;(2)求不等式|2x﹣1|+|x+2|≥4的解集.【考点】绝对值不等式的解法;一元二次不等式的解法.【专题】不等式的解法及应用.【分析】(1)由条件利用韦达定理求得a的值,从而求得不等式ax2﹣5x+a2﹣1>0的解集.(2)把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.【解答】解:(1)∵不等式ax2+5x﹣2>0解是,∴ +2=﹣×2=,求得a=﹣2,不等式ax2﹣5x+a2﹣1>0,即﹣2x2﹣5x+3>0,即2x2+5x﹣3<0,求得﹣3<x <,故不等式ax2﹣5x+a2﹣1>0的解集为{x|﹣3<x<}.(2)求不等式|2x﹣1|+|x+2|≥4,等价于①,或②,或.解①求得x<﹣2,解②求得﹣2≤x≤﹣1,解③求得x≥1,综上可得,原不等式的解集为{x|x≤﹣1,或x≥1}.【点评】本题主要考查绝对值不等式的解法,一元二次不等式的解法,韦达定理,体现了分类讨论、等价转化的数学思想,属于中档题.18.设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13 (Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.【考点】等差数列的通项公式;等比数列的通项公式;数列的求和.【专题】等差数列与等比数列.【分析】(Ⅰ)设{a n}的公差为d,{b n}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{a n}、{b n}的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和S n.【解答】解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n=,②①﹣②得S n=1+2(++…+)﹣,则===.【点评】本题主要考查等差数列的通项公式和用错位相减法求和.19.若a为实数,解关于x的不等式ax2+(a﹣2)x﹣2<0.【考点】一元二次不等式的解法.【专题】分类讨论;不等式的解法及应用.【分析】讨论a=0和a>0与a<0时,不等式的解集是什么,求出对应的解集即可.【解答】解:当a=0时,不等式化为﹣2x﹣2<0,解得{x|x>﹣1};当a≠0时,不等式化为(x+1)(ax﹣2)<0,若a>0,则不等式化为(x+1)(x﹣)<0,且﹣1<,∴不等式的解集为{x|﹣1<x<};若a<0,则不等式化为(x+1)(x﹣)>0,当=﹣1,即a=﹣2时,不等式化为(x+1)2>0,解得{x|x≠﹣1};当a<﹣2,即>﹣1时,不等式的解集为{x|x>,或x<﹣1};当﹣2<a<0,即<﹣1时,不等式的解集为{x|x<,或x>﹣1}.综上,a=0时,不等式的解集为{x|x>﹣1},a>0时,不等式的解集为{x|﹣1<x<},﹣2<a<0时,不等式的解集为{x|x<,或x>﹣1},a=﹣2时,不等式的解集为{x|x≠﹣1},a<﹣2时,不等式的解集为{x|x>,或x<﹣1}.【点评】本题考查了含有字母系数的不等式的解法与应用问题,也考查了分类讨论思想的应用问题,是中档题目.20.在△ABC中,角A、B、C所对的边分别是a、b、c,且a2+c2﹣b2=ac.(1)求2sin2+sin2B的值.(2)若b=2,求△ABC面积的最大值.【考点】余弦定理;正弦定理.【专题】解三角形.【分析】(1)由余弦定理化简已知可得cosB=,结合范围0<B<π,解得sinB,利用三角函数恒等变换的应用即可得解.(2)由题意可得a2+c2=ac+4,由基本不等式得a2+c2=ac+4≥2ac,解得:ac≤5,即可求得△ABC面积的最大值为2.【解答】解:(1)∵a2+c2﹣b2=ac,又由余弦定理可得:a2+c2﹣b2=2accosB,∴ac=2accosB,解得:cosB=,∵0<B<π,解得:sinB==.∴2sin2+sin2B=1﹣cos(A+C)+sin2B=1+cosB+2sinBcosB=1=.(2)∵b=2,a2+c2﹣b2=ac.∴a2+c2=ac+4.∴a2+c2=ac+4≥2ac,解得:ac≤5,∴S△ABC=acsinB≤=2.故△ABC面积的最大值为2.【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,基本不等式的应用,三角形面积公式的应用,属于基础题.21.数列{a n}是首项a1=4的等比数列,且S3,S2,S4成等差数列,(1)求数列{a n}的通项公式;(2)若b n=log2|a n|,设T n为数列的前n项和,若T n≤λb n+1对一切n∈N*恒成立,求实数λ的最小值.【考点】函数恒成立问题;等比数列的通项公式;等差数列的性质;数列与不等式的综合.【专题】计算题.【分析】(1)根据S3,S2,S4成等差数列建立等式关系,然后可求出公比q,根据等比数列的性质求出通项公式即可;(2)先求出数列b n的通项公式,然后利用裂项求和法求出数列的前n项和T n,将λ分离出来得λ≥,利用基本不等式求出不等式右侧的最大值即可求出所求.【解答】解:(1)∵S3,S2,S4成等差数列∴2S2=S3+S4即2(a1+a2)=2(a1+a2+a3)+a4所以a4=﹣2a3∴q=﹣2a n=a1q n﹣1=(﹣2)n+1(2)b n=log2|a n|=log22n+1=n+1=T n=(﹣)+(﹣)+…+()=﹣λ≥==×。

全国名校第一次月考试卷数学高二

全国名校第一次月考试卷数学高二

全国名校第一次月考试卷数学高二示例文章篇一:《我的高二数学第一次月考之旅》哎呀呀,说起这次高二的第一次月考数学试卷,那可真是一场“惊心动魄”的旅程!考试前的那几天,我感觉自己就像个上紧了发条的小机器人,不停地转动着大脑,拼命复习那些数学公式和定理。

我心里一直在想:“这次月考可千万不能考砸了,不然怎么对得起我每天埋头苦读的那些时光呢?”终于到了考试那天,我紧张得手心都出汗了。

走进考场的时候,我看到同学们有的一脸轻松,好像胜券在握;有的则眉头紧锁,跟我一样紧张得不行。

我忍不住在心里问自己:“他们是不是都复习得特别好啊?我会不会比不过他们?”试卷发下来的那一刻,我的心都提到了嗓子眼儿。

我快速地浏览了一遍题目,心里稍微松了一口气,还好,大部分题目看起来不算太难。

我开始认真地答题,就像在战场上冲锋陷阵的战士,每一道题都是我的敌人。

遇到简单的题目,我心里乐开了花,“这题也太容易了吧,简直就是送分题嘛!”可是碰到难题的时候,我就像被一块大石头挡住了去路,怎么也绕不过去。

我抓耳挠腮,绞尽脑汁地想啊想,“这道题到底该怎么做呢?老师好像讲过类似的,可我怎么就想不起来了呢?”就在我苦思冥想的时候,我听到旁边的同学轻轻地叹了口气,我心想:“难道他也被这道题难住了?”我偷偷地瞟了一眼他的试卷,发现他还空着一大片没写呢,我心里突然又有了点信心,“哼,我可不能比他差!”时间一分一秒地过去,我的笔在试卷上不停地写着。

写到后面的大题时,我感觉自己的脑袋都要炸了,那些复杂的图形和密密麻麻的数字,就像一群调皮的小猴子在我眼前上蹿下跳,让我眼花缭乱。

“哎呀,这道题怎么这么难啊!我怎么就这么笨呢!”我忍不住在心里抱怨着。

就在我快要绝望的时候,我突然想起了老师讲过的一个解题方法,“哈哈,有办法啦!”我兴奋得差点叫出声来。

终于,考试结束的铃声响了,我长长地舒了一口气,把试卷交了上去。

走出考场的时候,我感觉自己整个人都虚脱了。

和同学们对答案的时候,我发现自己有好几道题都做错了,心情一下子又变得低落起来,“完了完了,这次肯定考砸了!”现在,我就等着成绩出来了,真希望能有个好结果啊!我觉得这次考试就像一次冒险,有惊喜,也有惊吓。

高二数学上学期月考试卷(含解析)

高二数学上学期月考试卷(含解析)

高二上学期月考数学试卷一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)点A(﹣1,5),B(3,﹣3)的中点坐标为()A.(1,﹣1)B.(1,1)C.(2,﹣4)D.(﹣2,1)2.(4分)点(1,﹣1)到直线x﹣y+1=0的距离是()A.B.C.D.3.(4分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.104.(4分)两直线3x+y﹣3=0与6x+my+1=0平行,则它们之间的距离为()A.4 B.C.D.5.(4分)在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()A.B. C. D.6.(4分)以点(2,﹣1)为圆心且与直线3x﹣4y+5=0相切的圆的方程为()A.(x﹣2)2+(y+1)2=3 B.(x+2)2+(y﹣1)2=3 C.(x﹣2)2+(y+1)2=9 D.(x+2)2+(y﹣1)2=37.(4分)圆x2+y2﹣2x=3与直线y=ax+1的交点的个数是()A.0个B.1个C.2个D.随a值变化而变化8.(4分)直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若|MN|≥2,则k 的取值范围是()A.[﹣,0] B.C.[﹣] D.[﹣,0]二、填空题(共6小题,每小题4分,满分24分)9.(4分)直线x+y+1=0的倾斜角的大小为.10.(4分)圆x2+y2﹣4x=0在点P(1,)处的切线方程为.11.(4分)经过两条直线3x+4y﹣5=0和3x﹣4y﹣13=0的交点,且斜率为2的直线方程是.12.(4分)从原点向圆x2+y2﹣12y+27=0作两条切线,则这两条切线的夹角的大小为.13.(4分)已知点A(1,﹣1),点B(3,5),点P是直线y=x上动点,当|PA|+|PB|的值最小时,点P的坐标是.14.(4分)集合A={(x,y)|x2+y2=4},B={(x,y)|(x﹣3)2+(y﹣4)2=r2},其中r>0,若A∩B中有且仅有一个元素,则r的值是.三、解答题,本大题共4小题,共44分,解答应写出文字说明,证明过程或演算步骤.15.(12分)已知两条直线l1:2x﹣y+1=0,l2:ax+y+2=0,点P(3,1).(Ⅰ)直线l过点P,且与直线l1垂直,求直线l的方程;(Ⅱ)若直线l1与直线l2平行,求a的值;(Ⅲ)点P到直线l2距离为3,求a的值.16.(10分)已知圆M的圆心为(5,0),且经过点(3,),过坐标原点作圆M的切线l.(1)求圆M的方程;(2)求直线l的方程.17.(10分)已知圆x2+y2+x﹣6y+m=0和直线x+2y﹣3=0交于P、Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径.18.(12分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.求:(Ⅰ)求圆的方程;(Ⅱ)设直线ax﹣y+5=0与圆相交于A,B两点,求实数a的取值范围;(Ⅲ)在(2)的条件下,是否存在实数a,使得过点P(﹣2,4)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)点A (﹣1,5),B (3,﹣3)的中点坐标为()A . (1,﹣1)B . (1,1)C . (2,﹣4)D . (﹣2,1)考点: 中点坐标公式.专题: 直线与圆.分析: 利用中点坐标公式即可得出.解答: 解:∵点A (﹣1,5),B (3,﹣3),∴线段AB 的中点坐标为,即为(1,1).故选:B .点评: 本题考查了中点坐标公式,属于基础题.2.(4分)点(1,﹣1)到直线x ﹣y+1=0的距离是()A .B .C .D .考点: 点到直线的距离公式.专题: 计算题.分析: 应用到直线的距离公式直接求解即可.解答: 解:点(1,﹣1)到直线x ﹣y+1=0的距离是:= 故选D .点评: 本题考查点到直线的距离公式,是基础题.3.(4分)已知过点A (﹣2,m )和B (m ,4)的直线与直线2x+y ﹣1=0平行,则m 的值为()A . 0B . ﹣8C . 2D . 10考点: 斜率的计算公式.专题: 计算题.分析: 因为过点A (﹣2,m )和B (m ,4)的直线与直线2x+y ﹣1=0平行,所以,两直线的斜率相等.解答: 解:∵直线2x+y ﹣1=0的斜率等于﹣2,∴过点A (﹣2,m )和B (m ,4)的直线的斜率K 也是﹣2,∴=﹣2,解得 ,故选 B .点评: 本题考查两斜率存在的直线平行的条件是斜率相等,以及斜率公式的应用.4.(4分)两直线3x+y ﹣3=0与6x+my+1=0平行,则它们之间的距离为()A.4 B.C.D.考点:两条平行直线间的距离.专题:计算题;直线与圆.分析:根据两条直线平行的条件,建立关于m的等式解出m=2.再将两条直线化成x、y 的系数相同,利用两条平行直线间的距离公式加以计算,可得答案.解答:解:∵直线3x+y﹣3=0与6x+my+1=0平行,∴,解得m=2.因此,两条直线分别为3x+y﹣3=0与6x+2y+1=0,即6x+2y﹣6=0与6x+2y+1=0.∴两条直线之间的距离为d===.故选:D点评:本题已知两条直线互相平行,求参数m的值并求两条直线的距离.着重考查了直线的位置关系、平行线之间的距离公式等知识,属于基础题.5.(4分)在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()A.B. C. D.考点:确定直线位置的几何要素.专题:数形结合.分析:本题是一个选择题,按照选择题的解法来做题,由y=x+a得斜率为1排除B、D,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上,得到结果.解答:解:由y=x+a得斜率为1排除B、D,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上;故选C.点评:本题考查确定直线为主的几何要素,考查斜率和截距对于一条直线的影响,是一个基础题,这种题目也可以出现在直线与圆锥曲线之间的图形的确定.6.(4分)以点(2,﹣1)为圆心且与直线3x﹣4y+5=0相切的圆的方程为()A.(x﹣2)2+(y+1)2=3 B.(x+2)2+(y﹣1)2=3 C.(x﹣2)2+(y+1)2=9 D.(x+2)2+(y﹣1)2=3考点:直线与圆的位置关系.分析:求出半径即可求得圆的方程.解答:解:r==3,所求圆的方程为(x﹣2)2+(y+1)2=9故选C.点评:本题考查直线与圆的位置关系,求圆的方程,是基础题.7.(4分)圆x2+y2﹣2x=3与直线y=ax+1的交点的个数是()A.0个B.1个C.2个D.随a值变化而变化考点:直线与圆相交的性质.专题:计算题;转化思想.分析:把圆的方程整理成标准方程,求得圆心和半径,进而利用点到直线的距离求得圆心到直线的距离的表达式,利用不等式的性质可比较出<2,进而推断出直线与圆相交,故可知交点为2个.解答:解:整理圆的方程为(x﹣1)2+y2=4,圆心为(1,0),半径为2,圆心到直线的距离为()2﹣4=,对于y=3a2﹣2a+3,△=4﹣36<0∴3a2﹣2a+3>0,∴()2﹣4<0∴()2<4即<2∴直线与圆相交,即交点有2个.故选C点评:本题主要考查了直线与圆相交的性质.判断直线与圆的位置关系时,一般是看圆心到直线的距离与半径的大小的比较.8.(4分)直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若|MN|≥2,则k 的取值范围是()A.[﹣,0] B.C.[﹣] D.[﹣,0]考点:直线与圆的位置关系;点到直线的距离公式;直线和圆的方程的应用.专题:压轴题.分析:先求圆心坐标和半径,求出最大弦心距,利用圆心到直线的距离不大于最大弦心距,求出k的范围.解答:解:解法1:圆心的坐标为(3,2),且圆与x轴相切.当,弦心距最大,由点到直线距离公式得解得k∈;故选A.解法2:数形结合,如图由垂径定理得夹在两直线之间即可,不取+∞,排除B,考虑区间不对称,排除C,利用斜率估值,故选A.点评:考查直线与圆的位置关系、点到直线距离公式,重点考查数形结合的运用.解法2是一种间接解法,选择题中常用.二、填空题(共6小题,每小题4分,满分24分)9.(4分)直线x+y+1=0的倾斜角的大小为.考点:直线的倾斜角.专题:直线与圆.分析:化直线的一般式方程为斜截式,求出直线的斜率,由倾斜角的正切值等于斜率求倾斜角.解答:解:由x+y+1=0,得,∴直线x+y+1=0的斜率为,设其倾斜角为θ(0≤θ<π),则,∴θ=.故答案为:.点评:本题考查直线的倾斜角,考查直线倾斜角与斜率的关系,是基础题.10.(4分)圆x2+y2﹣4x=0在点P(1,)处的切线方程为x﹣y+2=0.考点:圆的切线方程.专题:计算题.分析:求出圆的圆心坐标,求出切点与圆心连线的斜率,然后求出切线的斜率,解出切线方程.解答:解:圆x2+y2﹣4x=0的圆心坐标是(2,0),所以切点与圆心连线的斜率:=﹣,所以切线的斜率为:,切线方程为:y﹣=(x﹣1),即x﹣y+2=0.故答案为:x﹣y+2=0.点评:本题是基础题,考查圆的切线方程的求法,求出切线的斜率解题的关键,考查计算能力.11.(4分)经过两条直线3x+4y﹣5=0和3x﹣4y﹣13=0的交点,且斜率为2的直线方程是2x﹣y﹣7=0.考点:直线的两点式方程;直线的点斜式方程.专题:计算题;直线与圆.分析:联立两直线方程,求解交点坐标,然后代入直线方程的点斜式得答案.解答:解:联立,解得.∴两条直线3x+4y﹣5=0和3x﹣4y﹣13=0的交点为(3,﹣1),∴经过两条直线3x+4y﹣5=0和3x﹣4y﹣13=0的交点,且斜率为2的直线方程是y+1=2(x ﹣3),即2x﹣y﹣7=0.故答案为:2x﹣y﹣7=0.点评:本题考查了直线方程的点斜式,考查了二元一次方程组的解法,是基础题.12.(4分)从原点向圆x2+y2﹣12y+27=0作两条切线,则这两条切线的夹角的大小为.考点:圆的切线方程.专题:直线与圆.分析:根据圆的标准方程求出圆心C的坐标和半径r,设这两条切线的夹角的大小为2θ,利用直线和圆相切的性质求得sinθ=的值,从而求得θ的值,由此可得结论.解答:解:圆x2+y2﹣12y+27=0,即 x2+(y﹣6)2=9,表示以C(0,6)为圆心,半径r=3的圆.设这两条切线的夹角的大小为2θ,其中θ为锐角,则由圆的切线性质可得sinθ==,所以θ=,故这两条切线的夹角的大小为2×=,故答案为:.点评:本题主要考查圆的标准方程,直线和圆相切的性质,直角三角形中的边角关系,根据三角函数的值求角,属于基础题.13.(4分)已知点A(1,﹣1),点B(3,5),点P是直线y=x上动点,当|PA|+|PB|的值最小时,点P的坐标是(2,2).考点:两条直线的交点坐标.专题:计算题.分析:根据图形可知,当P运动到直线y=x与直线AB的交点Q时,|PA|+|PB|的值最小时,所以利用A和B的坐标求出直线AB的方程,与y=x联立即可求出交点的坐标即为P的坐标.解答:解:连接AB与直线y=x交于点Q,则当P点移动到Q点位置时,|PA|+|PB|的值最小.直线AB的方程为y﹣5=(x﹣3),即3x﹣y﹣4=0.解方程组,得.于是当|PA|+|PB|的值最小时,点P的坐标为(2,2).故答案为:(2,2)点评:此题考查学生会根据两点坐标写出直线的方程,会求两直线的交点坐标,是一道中档题.14.(4分)集合A={(x,y)|x2+y2=4},B={(x,y)|(x﹣3)2+(y﹣4)2=r2},其中r>0,若A∩B中有且仅有一个元素,则r的值是3或7.考点:集合的包含关系判断及应用.专题:计算题.分析:集合A中的元素其实是圆心为坐标原点,半径为2的圆上的任一点坐标,而集合B 的元素是以(3,4)为圆心,r为半径的圆上点的坐标,因为r>0,若A∩B中有且仅有一个元素等价与这两圆只有一个公共点即两圆相切,则圆心距等于两个半径相加得到r的值即可.解答:解:据题知集合A中的元素是圆心为坐标原点,半径为2的圆上的任一点坐标,集合B的元素是以(3,4)为圆心,r为半径的圆上任一点的坐标,因为r>0,若A∩B中有且仅有一个元素,则集合A和集合B只有一个公共元素即两圆有且只有一个交点,则两圆相切,圆心距d=R+r或d=R﹣r;根据勾股定理求出两个圆心的距离为5,一圆半径为2,则r=3或7故答案为3或7点评:考查学生运用两圆位置关系的能力,理解集合交集的能力,集合的包含关系的判断即应用能力.三、解答题,本大题共4小题,共44分,解答应写出文字说明,证明过程或演算步骤.15.(12分)已知两条直线l1:2x﹣y+1=0,l2:ax+y+2=0,点P(3,1).(Ⅰ)直线l过点P,且与直线l1垂直,求直线l的方程;(Ⅱ)若直线l1与直线l2平行,求a的值;(Ⅲ)点P到直线l2距离为3,求a的值.考点:直线的一般式方程与直线的垂直关系;直线的一般式方程与直线的平行关系;点到直线的距离公式.专题:直线与圆.分析:(Ⅰ)利用直线与直线垂直的性质求解.(Ⅱ)利用直线与直线平行的性质求解.(Ⅲ)利用点到直线的距离公式求解.解答:解:(Ⅰ)∵直线l过点P,且与直线l1垂直,∴设直线l的方程为x+2y+c=0,把P(3,1)代入,得:3+2+c=0,解得c=﹣5,∴直线l的方程为:x+2y﹣5=0.(Ⅱ)∵直线l1与直线l2平行,∴,解得a=﹣2.(Ⅲ)∵点P到直线l2距离为3,∴=3,解得a=1.点评:本题考查直线方程和实数值的求法,是基础题,解题时要认真审题,注意直线的位置关系和点到直线的距离公式的合理运用.16.(10分)已知圆M的圆心为(5,0),且经过点(3,),过坐标原点作圆M的切线l.(1)求圆M的方程;(2)求直线l的方程.考点:圆的切线方程.专题:计算题;直线与圆.分析:(1)求出半径,然后求出圆M的标准方程;(2)设出直线方程,利用直线与圆相切求出k即可求出直线方程.解答:解:(1)点(3,)到圆心(5,0)的距离为圆的半径R,所以R==3..(2分)所以圆的标准方程为(x﹣5)2+y2=9..(4分)(2)设切线方程为y=kx,与圆M方程联立方程组有唯一解,即:(1+k2)x2﹣10x+16=0有唯一解..(6分)所以:△=100﹣64(1+k2)=0,即:k=±所以所求切线方程为y=±x.点评:本题是基础题,考查直线的切线方程,圆的标准方程,考查计算能力,常考题型.17.(10分)已知圆x2+y2+x﹣6y+m=0和直线x+2y﹣3=0交于P、Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径.考点:直线和圆的方程的应用.分析:联立方程,设出交点,利用韦达定理,表示出P、Q的坐标关系,由于OP⊥OQ,所以k OP•k OQ=﹣1,问题可解.解答:解:将x=3﹣2y代入方程x2+y2+x﹣6y+m=0,得5y2﹣20y+12+m=0.设P(x1,y1)、Q(x2,y2),则y1、y2满足条件y1+y2=4,y1y2=.∵OP⊥OQ,∴x1x2+y1y2=0.而x1=3﹣2y1,x2=3﹣2y2,∴x1x2=9﹣6(y1+y2)+4y1y2.∴m=3,此时△>0,圆心坐标为(﹣,3),半径r=.点评:本题考查直线和圆的方程的应用,解题方法是设而不求,简化运算,是常考点.18.(12分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.求:(Ⅰ)求圆的方程;(Ⅱ)设直线ax﹣y+5=0与圆相交于A,B两点,求实数a的取值范围;(Ⅲ)在(2)的条件下,是否存在实数a,使得过点P(﹣2,4)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.考点:直线和圆的方程的应用.专题:直线与圆.分析:(Ⅰ)利用点到直线的距离求出半径,从而求圆的方程;(Ⅱ)利用圆心到直线的距离小于半径可求出实数a的取值范围;(Ⅲ)假设存在利用直线与圆的位置关系性质解决.解答:解:(Ⅰ)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y﹣29=0相切,且半径为5,所以,,即|4m﹣29|=25.因为m为整数,故m=1.故所求的圆的方程是(x﹣1)2+y2=25.(Ⅱ)直线ax﹣y+5=0即y=ax+5.代入圆的方程,消去y整理,得(a2+1)x2+2(5a﹣1)x+1=0.由于直线ax﹣y+5=0交圆于A,B两点,故△=4(5a﹣1)2﹣4(a2+1)>0,即12a2﹣5a>0,解得 a<0,或.所以实数a 的取值范围是.(Ⅲ)设符合条件的实数a存在,由(2)得a≠0,则直线l 的斜率为,l 的方程为,即x+ay+2﹣4a=0.由于l垂直平分弦AB,故圆心M(1,0)必在l上.所以1+0+2﹣4a=0,解得.由于,故存在实数a=,使得过点P(﹣2,4)的直线l垂直平分弦AB.点评:本题主要考查了圆的标准方程,点到直线的距离公式,直线与圆的位置关系等知识的综合应用,以及存在性问题的解决技巧,属于难题.11。

高二数学上学期第一次月考试卷 理(含解析)

高二数学上学期第一次月考试卷 理(含解析)

2015-2016学年河南省驻马店市上蔡一高高二(上)第一次月考数学试卷(理科)一、填空题(每个小题5分,共60分)1.把二进制数11000转换为十进制数,该十进制数为()A.48 B.24 C.12 D.62.数列{a n}中,,则a2015=()A.2 B.﹣1 C.1 D.3.设{a n}是任意的等比数列,它的前n项和,前2n项和与前3n项和分别为P,Q,R,则下列等式中恒成立的为()A.P+R=2Q B.Q(Q﹣P)=P(R﹣P)C.Q(Q﹣P)=R D.Q2=PR4.在△ABC中,a+b+10c=2(sinA+sinB+10sinC),A=60°,则a=()A.4 B.C.D.不确定5.数列{a n}前n项和为S n,已知,且对任意正整数m,n,都有a m+n=a m•a n,若S n<a恒成立,则实数a的最小值为()A.B.C.D.46.某人年初用98万元购买了一条渔船,第一年各种费用支出为12万元,以后每年都增加4万元,而每年捕鱼收益为50万元.第几年他开始获利?()A.1 B.2 C.3 D.47.已知数列{a n}中,a1=1,a n+1=,则a5=()A.108 B.C.161 D.8.已知函数f(x)=,(a>0,a≠1).若数列{a n}满足a n=f(n)且a n+1>a n,n∈N*,则实数a的取值范围是()A.(7,8)B.[7,8)C.(4,8)D.(1,8)9.平面上O,A,B三点不共线,设,则△OAB的面积等于()A.B.C.D.10.直线被圆x2+y2﹣5x=0所截得的n条弦的长度成等差数列,最小弦长为数列的首项a1,最大弦长为a n,若公差,则n的最大取值为()A.6 B.7 C.8 D.911.设a n=sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个数是()A.25 B.50 C.75 D.10012.已知函数为奇函数,g(x)=f(x)+1,若,则数列的前2015项之和为()A.2016 B.2015 C.2014 D.2013二、填空题(共4小题,每小题5分,满分20分)13.已知等差数列{a n}的前n项和为S n,若,且A,B,C三点不共线(该直线不过O点),则S11= .14.已知数列{a n}中a1=1且(n∈N),a n= .15.已知向量,,n∈N*,其中s n为数列{a n}的前n项和,若,则数列的最大项的值为.16.设m∈N+,log2m的整数部分用F(m)表示,则F(1)+F(2)+…+F17.下面的数组均由三个数组成,它们是:(1,2,3),(2,4,6),(3,8,11),(4,16,20),(5,32,37),…,(a n,b n,c n).(1)请写出数列{a n},{b n},{c n}的通项公式,(无需证明)(2)若数列{c n}的前n项和为M n,求M10.18.在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,a=5.(1)若A=60°,求b的值;(2)若函数f(x)=x2﹣7x+m的两零点分别为b,c,求m的值.19.数列{a n}满足a1=1,a2=2,a n+1=2a n﹣a n﹣1+2(n≥2).(1)设b n=a n+1﹣a n,证明{b n}是等差数列.(2)求(2)令c n=,求数列{c n}的前n项和S n.20.已知数列{a n}满足(1)求数列{a n}的通项公式(2)设b n=1+tana n+1•tana n+2,求数列{b n}的前n项和.21.已知各项均为正数的数列{a n}的前n项为S n,满足a2n+1=2s n+n+4,且a2﹣1,a3,a7恰为等比数列{b n}的前3项.(1)求数列{a n},{b n}的通项公式;(2)令,数列{c n}的前n项和为T n,且恒成立,求实数m的取值范围.22.已知数列{a n}是等比数列,S n为其前n项和.(1)若S4,S10,S7成等差数列,证明a1,a7,a4也成等差数列;(2)设,,b n=λa n﹣n2,若数列{b n}是单调递减数列,求实数λ的取值范围.2015-2016学年河南省驻马店市上蔡一高高二(上)第一次月考数学试卷(理科)参考答案与试题解析一、填空题(每个小题5分,共60分)1.把二进制数11000转换为十进制数,该十进制数为()A.48 B.24 C.12 D.6【考点】进位制.【专题】计算题;转化思想;分析法;算法和程序框图.【分析】把二进制数转化为十进制数,只要依次累加各位数字上的数×该数位的权重,即可得到结果.【解答】解:11000(2)=0×20+0×21+0×22+1×23+1×24=24,即11000(2)=24.故选:B.【点评】此题主要考查了二进制数与十进制数互化的方法,属于基础题.2.数列{a n}中,,则a2015=()A.2 B.﹣1 C.1 D.【考点】数列递推式.【专题】计算题;函数思想;综合法;等差数列与等比数列.【分析】通过计算出前几项的值确定周期,进而计算可得结论.【解答】解:∵,∴a2===2,a3===﹣1,a4===,∴数列{a n}是以3为周期的周期数列,又∵2015=3×671+2,∴a2015=a2=2,故选:A.【点评】本题考查数列的通项,找出周期是解决本题的关键,注意解题方法的积累,属于中档题.3.设{a n}是任意的等比数列,它的前n项和,前2n项和与前3n项和分别为P,Q,R,则下列等式中恒成立的为()A.P+R=2Q B.Q(Q﹣P)=P(R﹣P)C.Q(Q﹣P)=R D.Q2=PR【考点】等比数列的前n项和.【专题】计算题;方程思想;综合法;等差数列与等比数列.【分析】由等比数列的性质得:P,Q﹣P,R﹣Q也成等比数列,由此能求出结果.【解答】解:∵{a n}是任意的等比数列,它的前n项和,前2n项和与前3n项和分别为P,Q,R,∴由等比数列的性质得:P,Q﹣P,R﹣Q也成等比数列,∴(Q﹣P)2=P(R﹣Q),整理,得Q2﹣PQ+P2﹣PR=0,∴Q(Q﹣P)=P(R﹣P).故选:B.【点评】本考查恒成立的等式的判断,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.4.在△ABC中,a+b+10c=2(sinA+sinB+10sinC),A=60°,则a=()A.4 B.C.D.不确定【考点】正弦定理.【专题】方程思想;转化思想;解三角形.【分析】利用正弦定理与比例的性质即可得出.【解答】解:由正弦定理可得:=,∴=,∴2=,解得a=.故选:B.【点评】本题考查了正弦定理与比例的性质,考查了推理能力与计算能力,属于中档题.5.数列{a n}前n项和为S n,已知,且对任意正整数m,n,都有a m+n=a m•a n,若S n<a恒成立,则实数a的最小值为()A.B.C.D.4【考点】数列的求和.【专题】计算题.【分析】由a m+n=a m•a n,分别令m和n等于1和1或2和1,由a1求出数列的各项,发现此数列是等比数列,利用等比数列的前n项和的公式表示出S n,而S n<a恒成立即n趋于正无穷时,求出S n的极限小于等于a,求出极限列出关于a的不等式,即可得到a的最小值.【解答】解:令m=1,n=1,得到a2=a12=,同理令m=2,n=1,得到a3=a2•a1=所以此数列是首项为公比,以为公比的等比数列,则S n==∵S n<a恒成立即而=∴则a的最小值为故选A【点评】此题考查了等比数列关系的确定,掌握不等式恒成立时所满足的条件,灵活运用等比数列的前n项和的公式及会进行极限的运算,是一道综合题.6.某人年初用98万元购买了一条渔船,第一年各种费用支出为12万元,以后每年都增加4万元,而每年捕鱼收益为50万元.第几年他开始获利?()A.1 B.2 C.3 D.4【考点】函数模型的选择与应用.【专题】计算题;函数思想;转化思想;解题方法;函数的性质及应用.【分析】通过纯收入与年数n的关系f(n)=﹣2n2+40n﹣98,进而问题转化为求不等式﹣2n2+40n﹣98>0的最小正整数解,计算即得结论;【解答】解:由题意,每年的费用支出是以12为首项、4为公差的等差数列,∴纯收入与年数n的关系f(n)=50n﹣[12+16+…+(8+4n)]﹣98=﹣2n2+40n﹣98,由题设知,f(n)>0,即﹣2n2+40n﹣98>0,解得10﹣<n<10+,又∵n∈N*,∴2<n<18,即n=3,4,5, (17)故第3年开始获利;故选:C.【点评】本题考查函数模型的选择与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.7.已知数列{a n}中,a1=1,a n+1=,则a5=()A.108 B.C.161 D.【考点】数列递推式.【专题】计算题.【分析】因为a1=1,且a n+1=,则令n=1并把a1代入求得a2,再令n=2并把a2代入求得a3,依此类推当n=4时,求出a5即可.【解答】解:因为a1=1,且a n+1=,则令n=1并把a1代入求得a2==;把n=2及a2代入求得a3==,把n=3及a3代入求得a4==,把n=4及a4代入求得a5==.故选D.【点评】考查学生会利用数列的递推式求数列各项,解题时学生要注意计算要准确.8.已知函数f(x)=,(a>0,a≠1).若数列{a n}满足a n=f(n)且a n+1>a n,n∈N*,则实数a的取值范围是()A.(7,8)B.[7,8)C.(4,8)D.(1,8)【考点】数列与向量的综合;分段函数的应用.【专题】计算题;函数的性质及应用;等差数列与等比数列.【分析】利用一次函数和指数函数的单调性,注意a6<a7,列出不等式组,即可得出.【解答】解:∵数列{a n}满足a n=f(n)且a n+1>a n,n∈N*,∴,即有,解得4<a<8.故选:C.【点评】本题考查了分段函数的应用、一次函数和指数函数的单调性,属于中档题.9.平面上O,A,B三点不共线,设,则△OAB的面积等于()A.B.C .D .【考点】向量在几何中的应用. 【专题】计算题. 【分析】利用三角形的面积公式表示出面积;再利用三角函数的平方关系将正弦表示成余弦;再利用向量的数量积公式求出向量夹角的余弦化简即得.【解答】解:==•=;故选C .【点评】本题考查三角形的面积公式;同角三角函数的平方关系,利用向量的数量积求向量的夹角. 10.直线被圆x 2+y 2﹣5x=0所截得的n 条弦的长度成等差数列,最小弦长为数列的首项a 1,最大弦长为a n ,若公差,则n 的最大取值为( )A .6B .7C .8D .9 【考点】直线与圆的位置关系.【专题】综合题;方程思想;综合法;直线与圆.【分析】先求出圆的圆心和半径,根据圆的几何性质计算出过点P (,)的最短弦长和最长弦长,即等差数列的第一项和第n 项,再根据等差数列的公差,求出n 的取值集合,即可得出结论..【解答】解:圆x 2+y 2﹣5x=0的圆心为C (,0),半径为r=.过点P (,)最短弦的弦长为a 1=2=4过点P (,)最长弦长为圆的直径长a n =5, ∴4+(n ﹣1)d=5, ∴d=,∵, ∴≤≤,∴6≤n≤8,∴n的最大取值为8.故选:C.【点评】此题重点考查了圆中求解弦的最大与最小,还考查了等差数列的任意两项间的通项公式及利用公差的范围和n的取值范围逼出n的数值.11.设a n=sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个数是()A.25 B.50 C.75 D.100【考点】数列的求和;三角函数的周期性及其求法.【专题】计算题;压轴题.【分析】由于f(n)=sin的周期T=50,由正弦函数性质可知,a1,a2,…,a24>0,a26,a27,…,a49<0,f(n)=单调递减,a25=0,a26…a50都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24,从而可判断【解答】解:由于f(n)=sin的周期T=50由正弦函数性质可知,a1,a2,…,a24>0,a25=0,a26,a27,…,a49<0,a50=0且sin,sin…但是f(n)=单调递减a26…a49都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24∴S1,S2,…,S25中都为正,而S26,S27,…,S50都为正同理S1,S2,…,s75都为正,S1,S2,…,s75,…,s100都为正,故选D【点评】本题主要考查了三角函数的周期的应用,数列求和的应用,解题的关键是正弦函数性质的灵活应用.12.已知函数为奇函数,g(x)=f(x)+1,若,则数列的前2015项之和为()A.2016 B.2015 C.2014 D.2013【考点】函数奇偶性的性质.【专题】计算题;转化思想;函数的性质及应用.【分析】由已知可得函数g(x)=f(x)+1的图象关于点(,1)对称,即g(x)+g(1﹣x)=2,进而得到答案.【解答】解:∵函数为奇函数图象关于原点对称,∴函数f(x)的图象关于点(,0)对称,∴函数g(x)=f(x)+1的图象关于点(,1)对称,∴g(x)+g(1﹣x)=2,∵,∴数列的前2015项之和为+++…++=2015,故选:B【点评】本题考查的知识点是函数的奇偶性,函数的对称性,函数求值,根据已知得到g(x)+g(1﹣x)=2,是解答的关键.二、填空题(共4小题,每小题5分,满分20分)13.已知等差数列{a n}的前n项和为S n,若,且A,B,C三点不共线(该直线不过O点),则S11= 11 .【考点】等差数列的前n项和.【专题】计算题;方程思想;综合法;等差数列与等比数列.【分析】由已知得到a4+a8=2,由此能求出S11的值.【解答】解:∵等差数列{a n}的前n项和为S n,,且A,B,C三点不共线(该直线不过O点),∴a4+a8=2,∴S11=(a1+a11)===11.故答案为:11.【点评】本题考查数列的前11项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.14.已知数列{a n}中a1=1且(n∈N),a n= .【考点】数列递推式.【专题】计算题.【分析】本题考查数列的概念,由递推数列求数列的通项公式,适当的变形是完整解答本题的关键.【解答】解:根据题意,a n+1a n=a n﹣a n+1,两边同除以a n a n+1,得,于是有:,,…,,上述n﹣1个等式累加,可得,又a1=1,得,所以;故答案为.【点评】解答本题用到的累加法是求数列通项公式以及数列前n项和的重要方法15.已知向量,,n∈N*,其中s n为数列{a n}的前n项和,若,则数列的最大项的值为.【考点】数列的函数特性;平面向量数量积的运算.【专题】转化思想;点列、递归数列与数学归纳法;不等式的解法及应用.【分析】由,可得=0,可得s n=,利用递推关系可得a n.再利用基本不等式的性质即可得出.【解答】解:∵,∴=2s n﹣n(n+1)=0,∴s n=,∴当n=1时,a1=1;当n≥2时,a n=s n﹣s n﹣1=﹣=n.当n=1时也成立,∴a n=n.∴==≤=,当且仅当n=2时取等号.故答案为:.【点评】本题考查了向量垂直与数量积的关系、递推关系、基本不等式的性质,考查了推理能力与计算能力,属于中档题.16.设m∈N+,log2m的整数部分用F(m)表示,则F(1)+F(2)+…+F+F(2)+F(3)+F (4)+F(5)+F(6)+F(7)+F(8)+…+F+F(2)+F(2)+F(4)+F(4)+F(4)+F(4)+F(8)+…+F+10设S=1×2+2×22+3×23+4×24+…+9×29则2S=1×22+2×23+3×24+…+8×29+9×210∴两式相减得:﹣S=2+22+23+…+29﹣9×210==﹣8×210﹣2∴S=8×210+2∴F(1)+F(2)+…+F17.下面的数组均由三个数组成,它们是:(1,2,3),(2,4,6),(3,8,11),(4,16,20),(5,32,37),…,(a n,b n,c n).(1)请写出数列{a n},{b n},{c n}的通项公式,(无需证明)(2)若数列{c n}的前n项和为M n,求M10.【考点】数列的求和;数列的概念及简单表示法.【专题】计算题;转化思想;综合法;点列、递归数列与数学归纳法.【分析】(1)由已知条件分别写出a n,b n,c n的前5项,总结规律,能求出数列{a n},{b n},{c n}的通项公式.(2)由,利用分组求和法能求出数列{c n}的前10项和为M10.【解答】解:(1)∵(1,2,3),(2,4,6),(3,8,11),(4,16,20),(5,32,37),…,(a n,b n,c n),∴a1=1,a2=2,a3=3,a4=4,a5=5,…=2,,,,,…c1=3=1+2,,,,,…由此猜想:…..(2)∵,数列{c n}的前n项和为M n,∴M10=(1+2+3+...+10)+(2+22+23+ (210)==2101.…..【点评】本题考查数列的通项公式的求法,考查数列的前10项和的求法,是中档题,解题时要认真审题,注意分组求和法的合理运用.18.在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,a=5.(1)若A=60°,求b的值;(2)若函数f(x)=x2﹣7x+m的两零点分别为b,c,求m的值.【考点】正弦定理;解三角形.【专题】函数的性质及应用;解三角形.【分析】(1)先求sinB的值,由正弦定理可得b的值.(2)由韦达定理可得:8+c=7①,8c=m②,即可解得m的值.【解答】解:(1)∵cosB=,B∈(0,π),∴sinB==,∵a=5,A=60°,∴由正弦定理可得:b===8.(2)∵函数f(x)=x2﹣7x+m的两零点分别为b,c,∴8+c=7①,8c=m②,∴由①②可解得:c=7,m=56﹣64.【点评】本题主要考查了同角三角函数关系式的应用,考查了正弦定理,韦达定理的应用,属于基本知识的考查.19.数列{a n}满足a1=1,a2=2,a n+1=2a n﹣a n﹣1+2(n≥2).(1)设b n=a n+1﹣a n,证明{b n}是等差数列.(2)求(2)令c n=,求数列{c n}的前n项和S n.【考点】数列的求和;数列递推式.【专题】等差数列与等比数列.【分析】(1)由数列{a n}满足a1=1,a2=2,a n+1=2a n﹣a n﹣1+2(n≥2).变形为(a n+1﹣a n)﹣(a n ﹣a n﹣1)=2,即b n﹣b n﹣1=2,即可证明.(2)由(1)可得:b n=2n﹣1.可得a n+1﹣a n=2n﹣1,利用“累加求和”可得:a n=n2﹣2n+2.因此c n==.利用“裂项求和”即可得出.【解答】(1)证明:∵数列{a n}满足a1=1,a2=2,a n+1=2a n﹣a n﹣1+2(n≥2).∴(a n+1﹣a n)﹣(a n﹣a n﹣1)=2,即b n﹣b n﹣1=2,b1=a2﹣a1=1,∴{b n}是等差数列,首项为1,公差为2.(2)解:由(1)可得:b n=1+2(n﹣1)=2n﹣1.∴a n+1﹣a n=2n﹣1,∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=[2(n﹣1)﹣1]+[2(n﹣2)﹣1]+…+(2×1﹣1)+1=﹣(n﹣1)+1=n2﹣2n+2.∴c n===.∴数列{c n}的前n项和S n=++…++==﹣.【点评】本题考查了等差数列的通项公式及其前n项和公式、“累加求和”、“裂项求和”,考查了推理能力与计算能力,属于中档题.20.已知数列{a n}满足(1)求数列{a n}的通项公式(2)设b n=1+tana n+1•tana n+2,求数列{b n}的前n项和.【考点】数列的求和;数列递推式.【专题】方程思想;转化思想;等差数列与等比数列.【分析】(1)由于数列{a n}满足,可得=2n(n+1),可得S n=,利用递推关系即可得出a n.(2),利用“裂项求和”即可得出.【解答】解:(1)∵数列{a n}满足,∴=2n(n+1),解得S n=,∴当n=1时,a1=1;当n≥2时,a n=S n﹣S n﹣1=﹣=n.∴a n=n.(2),∴,∴.【点评】本题考查了递推关系、指数幂的运算性质、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.21.已知各项均为正数的数列{a n}的前n项为S n,满足a2n+1=2s n+n+4,且a2﹣1,a3,a7恰为等比数列{b n}的前3项.(1)求数列{a n},{b n}的通项公式;(2)令,数列{c n}的前n项和为T n,且恒成立,求实数m的取值范围.【考点】数列的求和;数列递推式.【专题】计算题;作差法;定义法;点列、递归数列与数学归纳法.【分析】(1)根据条件得出a2n+1=2S n+n+4,①和a2n=2S n﹣1+n+3,②,通过两式相减得到a n+1=a n+1,即为等差数列,再求b n的通项;(2)先运用错位相减法求得c n的前n项和T n,再用作差法判断单调性,最后求m的范围.【解答】(1))∵a2n+1=2S n+n+4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣①∴n≥2时,a2n=2S n﹣1+n﹣1+4,﹣﹣﹣﹣﹣﹣﹣﹣﹣②①﹣②,得:a n+12﹣a n2=2a n+1,∴a n+12=a n2+2a n+1=(a n+1)2,∵a n>0,∴a n+1=a n+1,因此,数列{a n}是公差为1的等差数列,又a2=a1+1,a22=2a1+1+4,解得a1=2或a1=﹣2(舍),∴a n=2+(n﹣1)×1=n+1.∵a2﹣1,a3,a7恰为等比数列{bn}的前3项,∴b1=2+1﹣1=2,b2=a3=3+1=4,b3=a7=7+1=8,∴q=2,∴b n=2×2n﹣1=2n,所以,a n=n+1,b n=2n;(2)根据题意,c n==,运用错位相减法得T n=2﹣,下面证明T n单调递增,T n+1﹣T n=(2﹣)﹣(2﹣)=[(2n+4)﹣(n+3)]=>0恒成立,所以,所以{T n}单调递增,所以,要使T n>恒成立,只需满足T1>即可,解得,m<2.因此,实数m的取值范围为(﹣∞,2).【点评】本题主要考查了数列通项公式和前n项和的求法,涉及等差数列和等比数列的定义和性质,以及错位相减法的应用和单调性的证明,属于中档题.22.已知数列{a n}是等比数列,S n为其前n项和.(1)若S4,S10,S7成等差数列,证明a1,a7,a4也成等差数列;(2)设,,b n=λa n﹣n2,若数列{b n}是单调递减数列,求实数λ的取值范围.【考点】等比数列的性质;数列的函数特性;数列的应用;等差关系的确定.【专题】计算题.【分析】(1)设数列{a n}的公比为q,根据等差中项的性质可知2S10=S4+S7,代入等比数列求和公式整理得1+q3=2q6.进而根据等比数列的通项公式可推断a1+a4=2a7.进而证明原式.(2)把等比数列的求和公式代入S3和S6,两式相除即可求得q,把q代入S3求得a1,进而可得数列{a n}的通项公式,根据数列{b n}是单调递减数列可知b n+1<b n,把b n=λa n﹣n2代入不等式,进而根据当n是奇数时,当n=1时取最大值;n是偶数时,当n=2时取最大值,进而得到λ的范围.【解答】解:(1)证明:设数列{a n}的公比为q,因为S4,S10,S7成等差数列,所以q≠1,且2S10=S4+S7.所以,因为1﹣q≠0,所以1+q3=2q6.所以a1+a1q3=2a1q6,即a1+a4=2a7.所以a1,a7,a4也成等差数列.(2)因为,,所以,①,②由②÷①,得,所以,代入①,得a1=2.所以,又因为b n=λa n﹣n2,所以,由题意可知对任意n∈N*,数列{b n}单调递减,所以b n+1<b n,即,即对任意n∈N*恒成立,当n是奇数时,,当n=1时,取得最大值﹣1,所以λ>﹣1;当n是偶数时,,当n=2时,取得最小值,所以λ.综上可知,,即实数λ的取值范围是.【点评】本题主要考查等比数列的性质,考查了学生根据已知条件,分析和解决问题的能力.。

江西省上饶中学高二数学上学期第一次月考试卷(理科重点、励志、文科实验班,含解析)

江西省上饶中学高二数学上学期第一次月考试卷(理科重点、励志、文科实验班,含解析)

2015-2016学年江西省上饶中学高二(上)第一次月考数学试卷(理科重点、励志、文科实验班)一、选择题(每小题5分,共计12题)1.分层抽样适合的总体是( )A.总体容量较多 B.样本容量较多C.总体中个体有差异 D.任何总体2.如图是某工厂对一批新产品长度(单位:mm)检测结果的频率分布直方图.估计这批产品的中位数为( )A.20 B.25 C.22.5 D.22.753.下面是一程序,该程序的运行结果是( )A.1,2 B.1,1 C.2,1 D.2,24.如图所示的程序的输出结果为S=132,则判断框中应填( )A.i≥10?B.i≥11?C.i≤11?D.i≥12?5.一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是( )A.至多有一次中靶B.两次都中靶C.只有一次中靶 D.两次都不中靶6.在不等式x+2y﹣1>0表示的平面区域内的点是( )A.(1,﹣1)B.(0,1)C.(1,0)D.(﹣2,0)7.若不等式ax2+bx+2>0的解集是{x|﹣<x<},则a+b的值为( )A.﹣10 B.﹣14 C.10 D.148.△ABC中,若=,则该三角形一定是( )A.等腰三角形但不是直角三角形B.直角三角形但不是等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形9.在等比数列{a n}中,若a3a6=9,a2a4a5=27,则a2的值为( )A.2 B.3 C.4 D.910.一只蚂蚁在三边长分别为3、4、5的三角形面上自由爬行,某时刻该蚂蚁距离三角形的三个顶点的距离不超过1的概率为( )A.B.C.D.11.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以S n表示{a n}的前n项和,则使得S n 达到最大值的n是( )A.21 B.20 C.19 D.1812.设实数x,y满足,则的取值范围为( )A.B.C.D.二、填空题(每小题5分,共计4题)13.已知一组数据x1,x2,x3,…,x n的方差是a,那么另一组数据x1﹣2,x2﹣2,x3﹣2,…,x n﹣2的方差是__________.14.甲、乙两人下棋,两人下成和棋的概率为,乙获胜的概率为,甲获胜的概率是__________,甲不输的概率__________.15.输入x=2,运行如图的程序输出的结果为__________.16.下列函数中:(1)(2)(3)(4)(5),其中最小值为2的函数是__________ (填正确命题的序号)三、解答题(17题10分,18-22题每题12分)17.已知两个相关变量的统计数据如表:x 2 3 4 5 6y 11 15 19 26 29求两变量的线性回归方程.参考公式:b==,=﹣b.18.某车间20名工人年龄数据如下表:年龄(岁)工人数(人)19 128 329 330 531 432 340 1合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.19.有编号为1,2,3的三个白球,编号为4,5,6的三个黑球,这六个球除编号和颜色外完全相同,现从中任意取出两个球.(1)求取得的两个球颜色相同的概率;(2)求取得的两个球颜色不相同的概率.20.(1)已知x<0,求函数的最大值(2)设x>﹣1,求函数的最小值.21.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.(Ⅰ)求证:a,b,c成等比数列;(Ⅱ)若a=1,c=2,求△ABC的面积S.22.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.公司如何合理安排生产计划,可使每天生产的甲、乙两种产品,共获得最大利润?2015-2016学年江西省上饶中学高二(上)第一次月考数学试卷(理科重点、励志、文科实验班)一、选择题(每小题5分,共计12题)1.分层抽样适合的总体是( )A.总体容量较多 B.样本容量较多C.总体中个体有差异 D.任何总体【考点】分层抽样方法.【专题】方案型;试验法;概率与统计.【分析】根据分层抽样的适用范围,可得答案.【解答】解:分层抽样适合的总体是总体中个体存在差异的情况,故选:C【点评】本题考查的知识点是抽样方法的适用范围,熟练掌握三种抽样方法的适用范围,是解答的关键.2.如图是某工厂对一批新产品长度(单位:mm)检测结果的频率分布直方图.估计这批产品的中位数为( )A.20 B.25 C.22.5 D.22.75【考点】频率分布直方图.【专题】概率与统计.【分析】根据频率分布直方图中,中位数的左右两边频率相等,列出等式,求出中位数即可.【解答】解:根据频率分布直方图,得;∵0.02×5+0.04×5=0.3<0.5,0.3+0.08×5=0.7>0.5;∴中位数应在20~25内,设中位数为x,则0.3+(x﹣20)×0.08=0.5,解得x=22.5;∴这批产品的中位数是22.5.故选:C.【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目.3.下面是一程序,该程序的运行结果是( )A.1,2 B.1,1 C.2,1 D.2,2【考点】程序框图.【专题】计算题;操作型;运动思想;试验法;算法和程序框图.【分析】根据已知中的程序语句,逐步分析执行各条语句后各个变量的值,进而可得答案.【解答】解:执行A=1,B=2后,A=1,B=2,执行x=A后,A=1,B=2,x=1,执行A=B后,A=2,B=2,x=1,执行B=x后,A=2,B=1,x=1,执行PRINT A,B后,输出结论为2,1,故选:C【点评】本题考查的知识点是顺序结构,程序语句,难度不大,属于基础题.4.如图所示的程序的输出结果为S=132,则判断框中应填( )A.i≥10?B.i≥11?C.i≤11?D.i≥12?【考点】程序框图.【专题】操作型.【分析】由框图可以得出,循环体中的运算是每执行一次s就变成了s乘以i,i的值变为i﹣2,故S的值是从12开始的逐渐减小的若干个整数的乘积,由此规律解题计算出循环体执行几次,再求出退出循环的条件,对比四个选项得出正确答案.【解答】解:由题意,S表示从12开始的逐渐减小的若干个整数的乘积,由于12×11=132,故此循环体需要执行两次所以每次执行后i的值依次为11,10由于i的值为10时,就应该退出循环,再考察四个选项,B符合题意故选B【点评】本题考查循环结构,解答本题,关键是根据框图得出算法,计算出循环次数,再由i的变化规律得出退出循环的条件.本题是框图考查常见的形式,较多见,题后作好总结.5.一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是( )A.至多有一次中靶B.两次都中靶C.只有一次中靶 D.两次都不中靶【考点】互斥事件与对立事件.【专题】概率与统计.【分析】直接根据对立事件的定义,可得事件“至少有一次中靶”的对立事件,从而得出结论.【解答】解:根据对立事件的定义可得,事件“至少有一次中靶”的对立事件是:两次都不中靶,故选D.【点评】本题主要考查对立事件的定义,属于基础题.6.在不等式x+2y﹣1>0表示的平面区域内的点是( )A.(1,﹣1)B.(0,1)C.(1,0)D.(﹣2,0)【考点】二元一次不等式的几何意义.【专题】不等式的解法及应用.【分析】根据二元一次不等式表示平面区域,即可进行得到结论.【解答】解:∵不等式x+2y﹣1>0,∴1﹣2﹣1=﹣3<0,0+2﹣1=1>0,1+2×0﹣1=0,﹣2+0﹣1=﹣3<0,故选:B.【点评】本题主要考查二元一次不等式表示平面区域以及点与平面区域的关系的判断,比较基础.7.若不等式ax2+bx+2>0的解集是{x|﹣<x<},则a+b的值为( )A.﹣10 B.﹣14 C.10 D.14【考点】一元二次不等式的应用.【专题】计算题.【分析】将不等式解集转化为对应方程的根,然后根据韦达定理求出方程中的参数a,b,从而求出所求.【解答】解:∵不等式ax2+bx+2>0的解集为(﹣,)∴﹣,为方程ax2+bx+2=0的两个根∴根据韦达定理:﹣+=﹣①﹣×=②由①②解得:∴a+b=﹣14故选:B.【点评】本题主要考查了一元二次不等式的应用,以及韦达定理的运用和一元二次不等式解集与所对应一元二次方程根的关系,属于中档题.8.△ABC中,若=,则该三角形一定是( )A.等腰三角形但不是直角三角形B.直角三角形但不是等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】正弦定理.【专题】解三角形.【分析】已知等式变形后,利用正弦定理化简,再利用二倍角的正弦函数公式化简,即可确定出三角形形状.【解答】解:由已知等式变形得:acosA=bcosB,利用正弦定理化简得:sinAcosA=sinBcosB,即sin2A=sin2B.∴2A=2B或2A+2B=180°,∴A=B或A+B=90°,则△ABC为等腰三角形或直角三角形.故选:D.【点评】此题考查了正弦定理,以及二倍角的正弦函数公式,熟练掌握正弦定理是解本题的关键.9.在等比数列{a n}中,若a3a6=9,a2a4a5=27,则a2的值为( )A.2 B.3 C.4 D.9【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】设公比为q,可得=9,=27,两式相除可得答案.【解答】解:设等比数列{a n}的公比为q,由题意可得a3a6===9,①a2a4a5===27,②可得a2=3故选B【点评】本题考查等比数列的通项公式,属基础题.10.一只蚂蚁在三边长分别为3、4、5的三角形面上自由爬行,某时刻该蚂蚁距离三角形的三个顶点的距离不超过1的概率为( )A.B.C.D.【考点】几何概型.【专题】概率与统计.【分析】本题考查的知识点是几何概型的意义,关键是要找出蚂蚁距离三角形的三个顶点的距离不超过1区域面积,利用面积比求概率.【解答】解:由已知得到三角形为直角三角形,三角形ABC的面积为×3×4=6,离三个顶点距离都不大于1的地方如图三角形的阴影部分,它的面积为半径为1的半圆面积S=π×12=,所以其恰在离三个顶点距离不超过1的概率为:;故选B【点评】本题考查几何概型概率公式、三角形的面积公式、扇形的面积公式;关键是找出事件的测度是符合条件的面积.11.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以S n表示{a n}的前n项和,则使得S n 达到最大值的n是( )A.21 B.20 C.19 D.18【考点】等差数列的前n项和.【专题】计算题.【分析】写出前n项和的函数解析式,再求此式的最值是最直观的思路,但注意n取正整数这一条件.【解答】解:设{a n}的公差为d,由题意得a1+a3+a5=a1+a1+2d+a1+4d=105,即a1+2d=35,①a2+a4+a6=a1+d+a1+3d+a1+5d=99,即a1+3d=33,②由①②联立得a1=39,d=﹣2,∴S n=39n+×(﹣2)=﹣n2+40n=﹣(n﹣20)2+400,故当n=20时,S n达到最大值400.故选:B.【点评】求等差数列前n项和的最值问题可以转化为利用二次函数的性质求最值问题,但注意n取正整数这一条件.12.设实数x,y满足,则的取值范围为( )A.B.C.D.【考点】简单线性规划.【专题】计算题;数形结合.【分析】画出可行域,将目标函数变形,赋予几何意义,是可行域中的点与点(0,0)连线的斜率,由图求出取值范围,从而求出所求即可.【解答】解:画出可行域:设k=表示可行域中的点与点(0,0)连线的斜率,由图知k∈[,2]∴∈[,2]∴=k﹣取值范围为故选:D【点评】本题考查画出可行域、关键将目标函数通过分离参数变形,赋予其几何意义、考查数形结合的数学思想方法,属于基础题.二、填空题(每小题5分,共计4题)13.已知一组数据x1,x2,x3,…,x n的方差是a,那么另一组数据x1﹣2,x2﹣2,x3﹣2,…,x n﹣2的方差是a.【考点】极差、方差与标准差.【专题】对应思想;综合法;概率与统计.【分析】方差是用来衡量一组数据波动大小的量,每个数都减去2所以波动不会变,方差不变.【解答】解:由题意知,原数据的平均数为,新数据的每一个数都减去了2,则平均数变为﹣2,则原来的方差S12=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=a,现在的方差S22=[(x1﹣2﹣+2)2+(x2﹣2﹣+2)2+…+(x n﹣2﹣+2)2]=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=a,所以方差不变,故答案为:a.【点评】本题说明了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.14.甲、乙两人下棋,两人下成和棋的概率为,乙获胜的概率为,甲获胜的概率是,甲不输的概率.【考点】互斥事件的概率加法公式.【专题】概率与统计.【分析】甲获胜和乙不输是对立互斥事件,甲不输与乙获胜对立互斥事件,根据概率公式计算即可.【解答】解:甲获胜和乙不输是对立互斥事件,∴甲获胜的概率是1﹣()=,甲不输与乙获胜对立互斥事件.∴甲不输的概率是1﹣=,故答案为:,.【点评】本题考查了对立互斥事件的概率公式,属于基础题.15.输入x=2,运行如图的程序输出的结果为1.【考点】程序框图.【专题】计算题;分类讨论;分析法;算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是计算并输出y=的值,分类讨论求出对应的x的范围,综合讨论结果可得答案.【解答】解:由已知中的程序框图可知:该程序的功能是计算并输出y=的值,∴当x=2时,2>0,解得:y=﹣2+3=1.故答案为:1.【点评】本题考查解决程序框图的选择结构,关键是判断出输入的值是否满足判断框中的条件,属于基础题.16.下列函数中:(1)(2)(3)(4)(5),其中最小值为2的函数是(1)(3)(填正确命题的序号)【考点】基本不等式;函数的最值及其几何意义.【专题】转化思想;换元法;不等式.【分析】由基本不等式求最值的“一正、二定、三相等”,逐个选项验证可得.【解答】解:(1)≥2=2,当且仅当|x|=即x=±1时取等号,故正确;(2)==+≥2,但当=时,x不存在,故错误;(3)≥2﹣2=2,当且仅当=即x=4时取等号,故正确;(4)的x正负不确定,当x为负数时,得不出最小值为2,故错误;(5),取等号的条件为sinx=即sinx=1,而当0<x<时sinx取不到1,故错误.故答案为:(1)(3).【点评】本题考查基本不等式求最值,“一正、二定、三相等”是解决问题的关键,属基础题.三、解答题(17题10分,18-22题每题12分)17.已知两个相关变量的统计数据如表:x 2 3 4 5 6y 11 15 19 26 29求两变量的线性回归方程.参考公式:b==,=﹣b.【考点】线性回归方程.【专题】综合题;方程思想;综合法;概率与统计.【分析】先求出横标和纵标的平均数,得到这组数据的样本中心点,利用最小二乘法求出线性回归方程的系数,代入样本中心点求出a的值,写出线性回归方程.【解答】解:由表中数据得:=4,=20其他数据如表:i x i y i x i y i1 2 11 4 222 3 15 9 453 4 19 16 764 5 26 25 1305 6 29 36 174合计20 100 90 447进而可求得:b=4.7,a=1.2所以线性回归方程是y=4.7x+1.2【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,考查学生的运算能力.18.某车间20名工人年龄数据如下表:年龄(岁)工人数(人)19 128 329 330 531 432 340 1合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.【考点】极差、方差与标准差;茎叶图;众数、中位数、平均数.【专题】概率与统计.【分析】(1)根据众数和极差的定义,即可得出;(2)根据画茎叶图的步骤,画图即可;(3)利用方差的计算公式,代入数据,计算即可.【解答】解:(1)这这20名工人年龄的众数为30,极差为40﹣19=21;(2)茎叶图如下:(3)年龄的平均数为:=30.这20名工人年龄的方差为S2=[(19﹣30)2+3×(28﹣30)2+3×(29﹣30)2+5×(30﹣30)2+4×(31﹣30)2+3×(32﹣30)2+(40﹣30)2]=12.6.【点评】本题考查了众数,极差,茎叶图,方差的基本定义,属于基础题.19.有编号为1,2,3的三个白球,编号为4,5,6的三个黑球,这六个球除编号和颜色外完全相同,现从中任意取出两个球.(1)求取得的两个球颜色相同的概率;(2)求取得的两个球颜色不相同的概率.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】(1)所有的选法共有种,取得的两个球颜色相同的取法有2种,由此可得取得的两个球颜色相同的概率.(2))所有的选法共有种,取得的两个球颜色不相同的取法有3×3 种,由此可得取得的两个球颜色相同的概率.【解答】解:(1)所有的选法共有=15种,取得的两个球颜色相同的取法有2=6种,由此可得取得的两个球颜色相同的概率为=.(2))所有的选法共有=15种,取得的两个球颜色不相同的取法有3×3=9种,由此可得取得的两个球颜色相同的概率为=.【点评】本题考查古典概型及其概率计算公式的应用,属于基础题.20.(1)已知x<0,求函数的最大值(2)设x>﹣1,求函数的最小值.【考点】基本不等式.【专题】计算题;整体思想;换元法;不等式.【分析】由题意整体变形,凑出可用基本不等式的形式,由基本不等式可得.【解答】解:(1)∵x<0,∴,当且仅当﹣x=即x=﹣1时取得等号,∴函数的最大值为﹣1;(2)∵x>﹣1,∴x+1>0,∴,当且仅当x+1=即x=1时,上式取“=”,∴y最小值为9.【点评】本题考查基本不等式求最值,整体凑出可用基本不等式的形式是解决问题的关键,属基础题.21.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.(Ⅰ)求证:a,b,c成等比数列;(Ⅱ)若a=1,c=2,求△ABC的面积S.【考点】等比数列的性质;三角函数中的恒等变换应用;解三角形.【专题】三角函数的求值;解三角形.【分析】(I)由已知,利用三角函数的切化弦的原则可得,sinB(sinAcosC+sinCcosA)=sinAsinC,利用两角和的正弦公式及三角形的内角和公式代入可得sin2B=sinAsinC,由正弦定理可证(II)由已知结合余弦定理可求cosB,利用同角平方关系可求sinB,代入三角形的面积公式S=可求.【解答】(I)证明:∵sinB(tanA+tanC)=tanAtanC∴sinB()=∴sinB•=∴sinB(sinAcosC+sinCcosA)=sinAsinc∴s inBsin(A+C)=sinAsinC,∵A+B+C=π∴sin(A+C)=sinB即sin2B=sinAsinC,由正弦定理可得:b2=ac,所以a,b,c成等比数列.(II)若a=1,c=2,则b2=ac=2,∴,∵0<B<π∴sinB=∴△ABC的面积.【点评】本题主要考查了三角形的切化弦及两角和的正弦公式、三角形的内角和定理的应用及余弦定理和三角形的面积公式的综合应用.22.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.公司如何合理安排生产计划,可使每天生产的甲、乙两种产品,共获得最大利润?【考点】简单线性规划的应用.【专题】数形结合;不等式的解法及应用.【分析】根据题设中的条件可设每天生产甲种产品x桶,乙种产品y桶,根据题设条件得出线性约束条件以及目标函数求出利润的最大值即可.【解答】解:设生产x桶甲产品,y桶乙产品,总利润为Z,则约束条件为,目标函数为Z=300x+400y,可行域如图当目标函数直线经过点M时z有最大值,联立方程组得M(4,4),代入目标函数得z=2800.故公司每天生产的甲、乙两种产品各4桶,可获得最大利润2800元.【点评】本题考查用线性规划知识求利润的最大值,这是简单线性规划的一个重要运用,解题的关键是准确求出目标函数及约束条件.。

高二数学试卷带答案解析

高二数学试卷带答案解析

高二数学试卷带答案解析考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.一个车间为了规定工时定额,需要确定加工零件所花费的时间,由此进行了5次实验,收集数据如下:零件数:个加工时间:分钟由以上数据的线性回归方程估计加工100个零件所花费的时间为()附:回归直线的斜率和截距的最小二乘估计公式分别为,.A. 124分钟B. 150分钟C. 162分钟D. 178分钟2.是正数,则三个数的大小顺序是( )A.B.C.D.3.已知,若函数有3个或4个零点,则函数的零点个数为()A.或 B. C.或 D.或或4.命题:,则是()A.B.C.D.5.P(x,y)是上任意一点,是其两个焦点,则的取值范围是()A. B. C. D.6.函数处的切线方程是A. B. C. D.7.函数在上最大,最小值分别为A.5,-15 B.5,4 C.-4,-15 D.5,-168.轴围成的图形的面积是()A.1 B. C.2 D.9.在中,角的对边分别为,向量,,若,且,则角,的大小为( ).A .,B ., C ., D .,10.已知定义在R 上的函数满足,当时,下面选项中最大的一项是( )A .B .C .D .11.复数(i 是虚数单位)的在复平面上对应的点位于第 象限A .一B .二C .三D .四12.(2015秋•陕西校级月考)若平面α的法向量为,直线l 的方向向量为,直线l 与平面α的夹角为θ,则下列关系式成立的是( ) A .cos θ= B .cos θ= C .sin θ= D .sin θ=13.已知点在直线上运动,则的最小值为( )A .B .C .D .14.不等式的解集为( ) A . B .C .D .15.抛物线的焦点坐标为 ( ) A .B .C .D .16.用数学归纳法证明“当为正奇数时,能被整除”,第二步归纳假设应写成( )A .假设正确,再推正确;B .假设正确,再推正确;C .假设正确,再推正确;D .假设正确,再推正确。

人教版数学高二-山西省太原五中高二5月月考数学(理)试题

人教版数学高二-山西省太原五中高二5月月考数学(理)试题

太原五中2015-2016学年度第二学期阶段性检测高 二 数 学(理)出题人、校对人:雷英俊 廉海栋(2016.5)一、选择题(每小题4分,共40分,每小题只有一个正确答案)1.已知随机变量X 服从二项分布,且E(X)=2.4,D(X)=1.44,则二项分布的参数n ,p 的值为( )A .n =4,p =0.6B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.12.已知离散型随机变量X 等可能取值1,2,3,…,n ,若P(1≤X ≤3)=15,则n 的值为( )A .3B .5C .10D .153.已知随机变量ξ服从正态分布N(2,σ2).且P(ξ<4)=0.8,则P(0<ξ<2)等于( )A .0.6B .0.4C .0.3D .0.24. 53()y x 展开式的第三项为10,则y 关于x 的函数图象大致为( )5.10件产品,其中3件是次品,任取2件,若ξ表示取到次品的个数,则E(ξ)等于( )A.35B.815C.1415D .1 6.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为A .144B .120C .72D .247.在所有的两位数中,个位数字大于十位数字的两位数共有( )个A .50B .45C .36D .358.如图,花坛内有5个花池,有5种不同颜色的花卉可供栽种,每个花池内只能种一种颜色的花卉,相邻两池的花色不同,则栽种方案的种数为( )A .180B .240C .360D .4209.将三颗骰子各掷一次,记事件A =“三个点数都不同”, B =“至少出现一个6点”,则条件概率()P A B ,()P B A 分别是( )A.6091,12 B.12,6091C.518,6091D.91216,12 10.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A .24对B .30对C .48对D .60对二、填空题(每小题分,共12分)11. 如果将甲、乙、丙3名志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在乙、丙的前面,则不同的安排方法共有 种 12. 三元一次方程x+y+z=13的非负整数解的个数有_____ 13. n ∈N *,0n C +31n C +…+(2n+1)nn C =_______14.设一次试验成功的概率为p ,进行100次独立重复试验,当p=______时成功的次数 的标准差最大为_______. 三、解答题(共48分) 15.(8分)已知()14142210721x a x a x a a x x ++++=+- .求(1)14210a a a a ++++ .(2)13531a a a a ++++16. (10分)(1)3人坐在有八个座位的一排上,若每人的左右两边都要有空位,则不同坐法的种数有多少种?(2)有5个人并排站成一排,如果甲必须在乙的右边,则不同的排法有多少种?(3)现有10个保送上大学的名额,分配给7所学校,每校至少有一个名额,问:名额分配的方法共有多少种?17.(10分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p ,且乙投球2次均未命中的概率为116. (Ⅰ)求乙投球的命中率p ;(Ⅱ)求甲投球2次,至少命中1次的概率;(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.18.(10分)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0, 3∶1, 3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为 3∶2,则胜利方得2分,对方得1分.求乙队得分X 的分布列及数学期望. 19.(10分)袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p .(Ⅰ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i)求恰好摸5次停止的概率;(ii)记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布列及数学期望E ξ. (Ⅱ) 若A 、B 两个袋子中的球数之比为1:2,将A 、B 中的球装在一起后,从中摸 出一个红球的概率是25,求p 的值.17.【答案】(Ⅰ)乙投球的命中率为4. (Ⅱ)甲投球2次至少命中1次的概率为34.(Ⅲ)甲、乙两人各投两次,共命中2次的概率为1132. 18.解析: (1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意知,各局比赛结果相互独立, 故P (A 1)=⎝⎛⎭⎫233=827,P (A 2)=C 23⎝⎛⎭⎫232⎝⎛⎭⎫1-23×23=827,P (A 3)=C 24⎝⎛⎭⎫232⎝⎛⎭⎫1-232×12=427. 所以甲队以3∶0胜利、以3∶1胜利的概率都为827,以3∶2胜利的概率为427.(2)设“乙队以3∶2胜利”为事件A 4, 由题意知,各局比赛结果相互独立,所以P (A 4)=C 24⎝⎛⎭⎫1-232⎝⎛⎭⎫232×⎝⎛⎭⎫1-12=427. 由题意知,随机变量X 的所有可能的取值为0,1,2,3, 根据事件的互斥性得P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627.又P (X =1)=P (A 3)=427,P (X =2)=P (A 4)=427,P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=327,故X 的分布列为X 0 1 2 3 P1627427427327所以E (X )=0×1627+1×427+2×427+3×327=79.19.袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B中摸出一个红球的概率为(1)随机变量的分布列为 0123P其数学期望为(2)解析试题分析:解:(1)①恰好摸5次停止的概率为(2)②随机变量的可能取值为0,1,2,3.;;;所以,随机变量的分布列为0 1 2 3P故随机变量的数学期望为(10)(2)设袋子A中有m个球,则袋子B中有2m个球,由题意得,解得(14)。

高中高二数学上学期第一次月考试卷(含解析)-人教版高二全册数学试题

高中高二数学上学期第一次月考试卷(含解析)-人教版高二全册数学试题

2014-2015学年某某省某某市安吉县上墅私立高中高二(上)第一次月考数学试卷一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,有一项是符合题目要求的.并把答案写在表格中.)1.已知点A(﹣1,2),B(﹣4,6),则|AB|等于()A. 5 B. 3 C. 25 D.2.三直线ax+2y+8=0,4x+3y=10,2x﹣y=10相交于一点,则a的值是() A.﹣2 B.﹣1 C. 0 D. 13.若一个几何体的三视图都是等腰三角形,则这个几何体可能是() A.圆锥 B.正四棱锥 C.正三棱锥 D.正三棱台4.等腰△ABC的三个顶点的坐标是A(﹣3,4),B(﹣5,0),C(﹣1,0),则BC边的中线AD所在直线的方程是()A. x=﹣3 B. y=﹣3 C. x+y=1 D. x=2y5.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是() A.相切 B.相交 C.相离 D.不确定6.直线xcosθ+y+m=0的倾斜角X围是()A. B.∪ D.7.直线x+2y﹣5+=0被圆x2+y2﹣2x﹣4y=0截得的弦长为()A. 1 B. 2 C. 4 D. 48.若直线ax+by+c=0经过一、二、四象限,则有()A. ac>0,bc>0 B. ac>0,bc<0 C. ac<0,bc>0 D. ac<0,bc<09.一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底边均为1的等腰梯形,则这个平面图形的面积是()A. B. C. D.10.已知圆x2+y2+2x﹣4y+1=0关于直线2ax﹣by+2=0(a,b∈R)对称,则a2+b2的取值X围是()A.(﹣∞,] B.(3)在(2)的条件下,求以MN为直径的圆的方程.2014-2015学年某某省某某市安吉县上墅私立高中高二(上)第一次月考数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,有一项是符合题目要求的.并把答案写在表格中.)1.已知点A(﹣1,2),B(﹣4,6),则|AB|等于()A. 5 B. 3 C. 25 D.考点:两点间的距离公式.专题:直线与圆.分析:利用两点间距离公式求解.解答:解:∵点A(﹣1,2),B(﹣4,6),∴|AB|==5.故选:A.点评:本题考查两点间距离的求法,是基础题,解题时要认真审题,注意两点间距离公式的合理运用.2.三直线ax+2y+8=0,4x+3y=10,2x﹣y=10相交于一点,则a的值是() A.﹣2 B.﹣1 C. 0 D. 1考点:过两条直线交点的直线系方程;两条直线的交点坐标.专题:计算题.分析:先求4x+3y=10,2x﹣y=10的交点,代入直线ax+2y+8=0,即可得到a的值.解答:解:解方程组4x+3y=10,2x﹣y=10,得交点坐标为(4,﹣2),代入ax+2y+8=0,得a=﹣1.故选B点评:本题是基础题,考查直线交点的求法,三条直线相交于一点的解题策略,考查计算能力.3.若一个几何体的三视图都是等腰三角形,则这个几何体可能是() A.圆锥 B.正四棱锥 C.正三棱锥 D.正三棱台考点:简单空间图形的三视图.专题:计算题.分析:圆锥的主视图和左视图都是等腰三角形,俯视图是中间有一个点的圆形;正四棱锥的主视图和左视图都是等腰三角形,俯视图是对角线交叉的正方形;正三棱锥的三视图都是等腰三角形;正三棱台的主视图和左视图都是等腰梯形,俯视图不是三角形.解答:解:圆锥的主视图和左视图都是等腰三角形,但俯视图是中间有一个点的圆形,所以A不对;正四棱锥的主视图和左视图都是等腰三角形,但俯视图是对角线交叉的正方形,所以B不对;正三棱锥的三视图都是等腰三角形,所以C正确;正三棱台的主视图和左视图都是等腰梯形,但俯视图不是三角形,所以D不对.故选C.点评:本题考查简单空间图形的三视图,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.4.等腰△ABC的三个顶点的坐标是A(﹣3,4),B(﹣5,0),C(﹣1,0),则BC边的中线AD所在直线的方程是()A. x=﹣3 B. y=﹣3 C. x+y=1 D. x=2y考点:直线的一般式方程.专题:直线与圆.分析:由已知条件得BC边中点D(﹣3,0),A(﹣3,4),由此求出BC边的中线AD所在直线的方程:x=﹣3.解答:解:∵等腰△ABC的三个顶点的坐标是A(﹣3,4),B(﹣5,0),C(﹣1,0),∴BC边中点D(﹣3,0),∴BC边的中线AD所在直线的方程:x=﹣3.故选:A.点评:本题考查直线方程的求法,是基础题,解题时要认真审题,注意中点坐标公式的合理运用.5.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是() A.相切 B.相交 C.相离 D.不确定考点:直线与圆的位置关系.专题:直线与圆.分析:由M在圆外,得到|OM|大于半径,列出不等式,再利用点到直线的距离公式表示出圆心O到直线ax+by=1的距离d,根据列出的不等式判断d与r的大小即可确定出直线与圆的位置关系.解答:解:∵M(a,b)在圆x2+y2=1外,∴a2+b2>1,∴圆O(0,0)到直线ax+by=1的距离d=<1=r,则直线与圆的位置关系是相交.故选B点评:此题考查了直线与圆的位置关系,以及点与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,以及两点间的距离公式,熟练掌握公式是解本题的关键.6.直线xcosθ+y+m=0的倾斜角X围是()A. B.∪ D.考点:直线的一般式方程.分析:由直线xcosθ+y+m=0的斜率k=﹣cosθ∈,得﹣1≤tanα<0或0≤tanα≤1,由此能求出直线xcosθ+y+m=0的倾斜角X围.解答:解:直线xcosθ+y+m=0的斜率k=﹣cosθ∈,∴﹣1≤tanα<0或0≤tanα≤1,∴或0.∴直线xcosθ+y+m=0的倾斜角X围是∪ B.考点:斜二测法画直观图.专题:空间位置关系与距离.分析:(1)用统一的画图标准:斜二测画法,即在已知图形所在的空间中取水平平面,作X′轴,Y′轴使∠X′O′Y′=45°,然后依据平行投影的有关性质逐一作图.(2)直接利用正四棱锥的图形,判断正视图,侧视图,俯视图的形状画图即可.解答:解:(1),①在已知ABCD中取AB、AD所在边为X轴与Y轴,相交于O点(O与A重合),画对应X′轴,Y′轴使∠X′O′Y′=45°②在X′轴上取A′,B′使A′B′=AB,在Y′轴上取D′,使A′D′=AD,过D′作D′C′平行X′的直线,且等于A′D′长.③连C′B′所得四边形A′B′C′D′就是矩形ABCD的直观图.(2),正四棱锥的正视图与侧视图是相同的等腰三角形,俯视图轮廓是正方形,含有对角线,如图:点评:本题考查平面图形的直观图的画法:斜二测画法,考查三视图的画法,考查作图能力,属基础知识的考查.19.(1)已知直线经过点A(6,﹣4),斜率为﹣,求直线的点斜式和一般式方程.(2)求过点P(1,3)且在x轴上的截距和在y轴上的截距相等的直线方程为.考点:直线的一般式方程.专题:直线与圆.分析:(1)直接利用直线的点斜式方程求解即可得到直线的点斜式,整理可得一般式方程.(2)分类讨论:当直线过原点时,可设直线的方程为y=kx,当直线不过原点时,可设直线的方程为,代点分别可得k,a的值,可得方程.解答:解:(1)∵直线经过点A(6,﹣4),斜率为﹣,∴直线的点斜式方程为:y+4=﹣(x﹣6),∴直线的一般式方程为:4x+3y﹣12=0;(2)当直线过原点时,可设直线的方程为y=kx,代点P(1,3)可得k=3,故方程为y=3x,化为一般式可得3x﹣y=0;当直线不过原点时,可设直线的方程为,代点P(1,3)可得a=4,故方程为,化为一般式可得x+y﹣4=0,综上可得所求直线的方程为:x+y﹣4=0或3x﹣y=0点评:本题考查直线方程的求法,点斜式方程的形式,直线的截距式方程,涉及分类讨论的思想,解题时易漏解,属易错题.20.(1)求过点A(2,3)且垂直于直线2x+y﹣5=0的直线方程.(2)从点A(﹣4,1)出发的一束光线l,经过直线l1:x﹣y+3=0反射,反射光线恰好通过点B(1,6),求入射光线l所在的直线方程.考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:(1)由垂直关系可得所求直线的斜率为,可得点斜式方程,化为一般式即可;(2)设B(1,6)关于直线l1:x﹣y+3=0的对称点为B′(a,b),可得,解方程组可得B′(2,3),可得直线AB′的方程即为所求.解答:解:(1)∵直线2x+y﹣5=0的斜率为﹣2,∴由垂直关系可得所求直线的斜率为,∴所求直线的方程为y﹣3=(x﹣2),化为一般式可得x﹣2y+4=0(2)设B(1,6)关于直线l1:x﹣y+3=0的对称点为B′(a,b),则,解得,即B′(2,3),∴直线AB′的斜率k==,∴入射光线l所在的直线方程为y﹣1=(x+4),整理为一般式可得x﹣3y+7=0点评:本题考查直线的一般式方程和垂直关系,涉及直线的对称性,属基础题.21.(1)已知圆C1:x2+y2+2x+8y﹣8=0,圆C2:x2+y2﹣4x﹣4y﹣2=0,试判断圆C1与圆C2的位置关系.(2)已知圆心为C的圆经过点A(1,2)和B(2,﹣2),且圆心在l:x﹣y+1=0上,求圆C 的标准方程.考点:圆与圆的位置关系及其判定.专题:直线与圆.分析:(1)把圆的方程化为标准形式,求出圆心和半径,根据两圆的圆心距等于3,大于半径之差而小于半径之和,可得两个圆相交.(2)根据题意设出圆的标准方程,代入点的坐标,和圆心位置,解方程组即可.解答:解:(1)由于圆C1:x2+y2+2x+8y﹣8=0,即(x+1)2+(y+4)2=25,表示以C1(﹣1,﹣4)为圆心,半径等于5的圆.圆C2:x2+y2﹣4x﹣4y﹣2=0,即(x﹣2)2+(y﹣2)2=10,表示以C2(2,2)为圆心,半径等于的圆.由于两圆的圆心距等于=3,大于半径之差而小于半径之和,故两个圆相交.(2)设圆的方程为(x﹣a)2+(x﹣b)2=r2则解得:,∴圆的方程为(x+3)2+(x+2)2=25点评:本题主要考查圆的标准方程,圆和圆的位置关系,圆的标准方程的求法,点到直线的距离公式、弦长公式的应用,属于中档题.22.已知方程x2+y2﹣2x﹣4y+m=0.(1)若此方程表示圆,求m的取值X围;(2)若(1)中的圆与直线x+2y﹣4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;(3)在(2)的条件下,求以MN为直径的圆的方程.考点:直线和圆的方程的应用;二元二次方程表示圆的条件.专题:直线与圆.分析:(1)圆的方程化为标准方程,利用半径大于0,可得m的取值X围;(2)直线方程与圆方程联立,利用韦达定理及OM⊥ON,建立方程,可求m的值;(3)写出以MN为直径的圆的方程,代入条件可得结论.解答:解:(1)(x﹣1)2+(y﹣2)2=5﹣m,∴方程表示圆时,m<5;(2)设M(x1,y1),N(x2,y2),则x1=4﹣2y1,x2=4﹣2y2,得x1x2=16﹣8(y1+y2)+4y1y2,∵OM⊥ON,∴x1x2+y1y2=0,∴16﹣8(y1+y2)+5y1y2=0①,由,得5y2﹣16y+m+8=0,∴,.代入①得.(3)以MN为直径的圆的方程为(x﹣x1)(x﹣x2)+(y﹣y1)(y﹣y2)=0,即x2+y2﹣(x1+x2)x﹣(y1+y2)y=0,∴所求圆的方程为.点评:本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.。

人教版高二上学期九月数学月考测试卷数学试卷附参考答案

人教版高二上学期九月数学月考测试卷数学试卷附参考答案

高二数学测试题参考:用最小二乘法求线性回归方程系数公式x b y a xn xy x n yx b ni ini i i -=-⋅-=∑∑==,1221一、选择题(共12题,每题5分)1.用辗转相除法求394和82的最大公约数时,需要做除法的次数是( )A.1B.2C.3D.42.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一弹击中飞机},D={至少有一弹击中飞机},下列说法不正确的是( )A. A D ⊆B. B =⋂D ∅C.A ⋃C=DD.A ⋃C=B ⋃D 3.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是( ) A .至少有1名男生与全是女生 B .至少有1名男生与全是男生 C .至少有1名男生与至少有1名女生 D .恰有1名男生与恰有2名女生4.用秦九韶算法求n 次多项式0111)(a x a x a x a x f n n n n ++++=-- 的值,当0x x =时,求)(0x f 需要算乘方、乘法、加法的次数分别为( ) A.n n n n ,,2)1(+ B.n,2n,n C.0,n,n D. 0,2n,n 5.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。

由图中数据可知身高在[120,130]内的学生人数为( ) A .20 B .25 C .30 D .356.右图是2007年中央电视台举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最底分后,所剩数据的平均数和方差分别为( )A .84, 4.84 B. 84, 1.6 C .85, 1.6 D. 85, 4(第5题图) (第6题图)7.某种心脏病手术,成功率为0.6,现准备进行3例此种手术,利用计算机取整数值随机数模拟,用0,1,2,3代表手术不成功,用4,5,6,7,8,9代表手术成功,产生20组随机数:966,907,191,924,270,832,912,468,578,582,134,370,113,573,998,397,027,488,703,725,则恰好成功1例的概率为 ( ) A. 0.6 B. 0.4 C. 36.0 D. 34.08. 在棱长为2的正方体1111ABCD A B C D -中,点O 为底面ABCD 的中心,在正方体1111ABCD A B C D -内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A .12π B .112π- C .6π D .16π- 9. 某程序框图如图所示,若输出的S=57,则判断框内位置应该是( )A. k >4?B.k >5?C. k >6?D.k >7?10. 在样本的频率分布直方图中,共有11个小长方形,若中间一个小长立形的面积等于其他10个小长方形的面积的和的14,且样本容量为160,则中间一组的频数为 ( ) A. 32 B. 0.2 C. 40 D. 0.2511.过点(1,3)P 的动直线交圆22:4C x y +=于A B 、两点,分别过A B 、作圆C 的切线,如果两切线相交于点Q ,那么点Q 的轨迹为( )A.直线的一部分B.直线C.圆的一部分D.射线 12.点P 、Q 在曲线221(0)x y y +=≥上,O 是xOy 坐标系原点,P 、Q在x 轴上的射影是M 、N ,并且OQ 平分PON ∠,则()()OM ON OP OQ +⋅+的最小值是( ) A. -1 B.0 C. 1 D. 2 二、填空题(每题5分,共4小题)13.将二进制数101 101(2) 化为5进制结果为 ;14.已知22102660x x y x y x y ⎧≥⎪-≤⎨⎪+--+≤⎩,则2x y +的最大值为__________________;15.如果直线1x my =-与圆22:0C x y mx ny p ++++=相交,且两个交点关于直线y x =对称,那么实数p 的取值范围是__________________; 16.已知函数21()2axbx f x -+=,若a 是从区间[0,2]上任取的一个数,b 是从区间[0,2]上任取的一个数,则此函数在[1,)+∞递增的概率为 .17 5个人站成一排⑵其中甲必须站在中间,有多少种不同的排法?⑷其中甲、乙两人不相邻,有多少种不同的排法?⑸其中甲、乙两人不站排头和排尾,有多少种不同的排法? ⑹其中甲不站排头,乙不站排尾,有多少种不同的排法?18.某班数学兴趣小组有男生和女生各3名,现从中任选2名学生去参加校数学竞赛,求: (1)恰有一名参赛学生是男生的概率; (2)至少有一名参赛学生是男生的概率;(3)至多有一名参赛学生是男生的概率.19.下表提供了某工厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y(1x 的线性回归方程y bx a =+;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤。

高二数学-2015-2016学年高二上学期期中数学试卷

高二数学-2015-2016学年高二上学期期中数学试卷

2015-2016学年高二(上)期中数学试卷一、填空题(本大题共14小题,每小题5分,共70分)1.在直角坐标系中,直线y+1=0的倾斜角α的大小是__________弧度.2.若直线x+ay﹣2a﹣2=0与直线ax+y﹣a﹣1=0平行,则实数a=__________.3.双曲线2x2﹣y2=1的渐近线方程是__________.4.点(﹣2,t)在直线2x﹣3y+6=0的上方,则t的取值范围是__________.5.点A(4,5)关于直线l的对称点为B(﹣2,7),则l的方程为__________.6.若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则p的值为__________.7.设x,y满足约束条件,则z=2x﹣y的最大值为__________.8.两圆x2+y2=9与x2+y2+8x﹣6y+25﹣r2=0(r>0)相交,则r的取值范围是__________.9.已知圆C1:(x+2)2+y2=1,圆C2:x2+y2﹣4x﹣77=0,动圆P与圆C1外切,与圆C2内切,则动圆圆心的轨迹方程是__________.10.直线Ax+By+C=0与⊙O:x2+y2=4相交于M,N两点,若C2=A2+B2,则(O为坐标原点)等于__________.11.设实数x、y满足,则z=|x+y+4|的取值范围为__________.12.已知动点A、B分别在图中抛物线y2=4x及椭圆的实线上运动,若AB∥x,点N的坐标为(1,0),则三角形ABN的周长l的取值范围是__________.13.若圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为2,则直线l的斜率的取值范围为__________.14.如图,已知过椭圆(a>b>0)的左顶点A(﹣a,0)作直线1交y轴于点P,交椭圆于点Q,若△AOP是等腰三角形,且,则椭圆的离心率为__________.二、解答题(本大题共有6个小题,共90分)15.(14分)已知y=2x是△ABC中∠C的内角平分线所在直线的方程,若A(﹣4,2),B(3,1).(1)求点A关于y=2x的对称点P的坐标;(2)求直线BC的方程;(3)判断△ABC的形状.16.(14分)如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x ﹣3y﹣6=0,点T(﹣1,1)在AD边所在直线上.(1)AD边所在直线的方程;(2)矩形ABCD外接圆的方程.17.(14分)如图,已知椭圆C:+=1(a>b>0)的右焦点为F(c,0),下顶点为A (0,﹣b),直线AF与椭圆的右准线交于点B,若F恰好为线段AB的中点.(1)求椭圆C的离心率;(2)若直线AB与圆x2+y2=2相切,求椭圆C的方程.18.(16分)已知圆M:x2+(y﹣2)2=1,设点B,C是直线l:x﹣2y=0上的两点,它们的横坐标分别是t,t+4(t∈R),点P在线段BC上,过P点作圆M的切线PA,切点为A.(1)若t=0,,求直线PA的方程;(2)经过A,P,M三点的圆的圆心是D,求线段DO长的最小值L(t).19.(16分)已知以点A(﹣1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(﹣2,0)的动直线l与圆A相交于M、N两点,Q是MN的中点,直线l与l1相交于点P.(I)求圆A的方程;(Ⅱ)当时,求直线l的方程;(Ⅲ)是否为定值,如果是,求出定值;如果不是,请说明理由.20.(16分)如图,A,B是椭圆的左右顶点,M是椭圆上异于A,B的任意一点,若椭圆C的离心率为,且右准线l的方程为x=4.(1)求椭圆C的方程;(2)设直线AM交l于点P,以MP为直径的圆交直线MB于点Q,试证明:直线PQ与x轴的交点R为定点,并求出R点的坐标.2015-2016学年江苏省南通市天星湖中学高二(上)期中数学试卷一、填空题(本大题共14小题,每小题5分,共70分)1.在直角坐标系中,直线y+1=0的倾斜角α的大小是0弧度.【考点】直线的图象特征与倾斜角、斜率的关系.【专题】作图题.【分析】因为对于平行于x轴的直线,规定其倾斜角为0弧度,所以直接可得结果.【解答】解:直线y+1=0可化为y=﹣1,图象是平行于x轴的直线,∴倾斜角α为0弧度.故答案为0【点评】本题主要考查倾斜角的概念,属于基础题.2.若直线x+ay﹣2a﹣2=0与直线ax+y﹣a﹣1=0平行,则实数a=1.【考点】直线的一般式方程与直线的平行关系.【专题】直线与圆.【分析】根据直线平行的条件,建立方程即可.【解答】解:若a=0,则两个直线方程为x=2和y=1.此时两直线不平行.若a≠0,若两直线平行,则,解得a=1或a=﹣1,当a=1时,两直线方程为x+y﹣4=0和x+y﹣2=0,满足两直线平行.当a=﹣1时,两直线方程为x﹣y=0和﹣x+y=0,不满足两直线平行.∴a=1.故答案为:a=1.【点评】本题主要考查直线的方程以及直线平行的等价条件,注意对a要进行讨论.3.双曲线2x2﹣y2=1的渐近线方程是.【考点】双曲线的简单性质.【专题】计算题.【分析】将双曲线化成标准方程,得到a、b的值,再由双曲线的渐近线方程是y=±x,即可得到所求渐近线方程.【解答】解:∵双曲线2x2﹣y2=1的标准方程为:∴,b2=1,可得a=,b=1又∵双曲线的渐近线方程是y=±x∴双曲线2x2﹣y2=1的渐近线方程是y=±x故答案为:y=±x【点评】本题给出双曲线方程,求双曲线的渐近线方程,着重考查了双曲线的简单几何性质,属于基础题.4.点(﹣2,t)在直线2x﹣3y+6=0的上方,则t的取值范围是t>.【考点】两条直线的交点坐标.【专题】计算题.【分析】点在直线上方,点的坐标代入方程,有﹣4﹣3t+6<0,求出t的取值范围.【解答】解:点(﹣2,t)在直线2x﹣3y+6=0的上方,则﹣4﹣3t+6<0 则t的取值范围是:t>故答案为:t>【点评】本题考查点与直线的位置关系,是基础题.5.点A(4,5)关于直线l的对称点为B(﹣2,7),则l的方程为3x﹣y+3=0.【考点】与直线关于点、直线对称的直线方程.【专题】计算题.【分析】先求出A、B的中点,再求AB的斜率,求出中垂线的斜率,然后用点斜式求出直线方程.【解答】解:对称轴是以两对称点为端点的线段的中垂线.A、B的中点坐标(1,6),AB的斜率为:中垂线的斜率为:3则l的方程为:y﹣6=3(x﹣1)即:3x﹣y+3=0故答案为:3x﹣y+3=0【点评】本题考查与直线关于点、直线对称的直线方程,考查计算能力,是基础题.6.若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则p的值为4.【考点】椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】由椭圆+=1,可得a2=6,b2=2,可得c=,可得右焦点F(c,0).由抛物线y2=2px可得焦点.利用=c即可得出.【解答】解:由椭圆+=1,可得a2=6,b2=2,∴c==2,∴右焦点F(2,0).由抛物线y2=2px可得焦点.∴=2,解得p=4.故答案为:4.【点评】本题考查了椭圆与抛物线的标准方程及其性质,考查了推理能力与计算能力,属于中档题.7.设x,y满足约束条件,则z=2x﹣y的最大值为8.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点A时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即A(5,2)将A的坐标代入目标函数z=2x﹣y,得z=2×5﹣2=8.即z=2x﹣y的最大值为8.故答案为:8【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.8.两圆x2+y2=9与x2+y2+8x﹣6y+25﹣r2=0(r>0)相交,则r的取值范围是2<r<8.【考点】圆与圆的位置关系及其判定.【专题】计算题.【分析】求出两个圆的圆心与半径,利用圆心距与半径和与差的关系,【解答】解:圆x2+y2=9的圆心(0,0),半径为3,圆x2+y2+8x﹣6y+25﹣r2=0(r>0)的圆心(﹣4,3),半径为:r,因为圆x2+y2=9与x2+y2+8x﹣6y+25﹣r2=0(r>0)相交,所以,解得2<r<8.故答案为:2<r<8.【点评】本题考查两个圆的位置关系,通过圆心距在半径差与半径和之间求解,也可以联立方程组,利用判别式解答.9.已知圆C1:(x+2)2+y2=1,圆C2:x2+y2﹣4x﹣77=0,动圆P与圆C1外切,与圆C2内切,则动圆圆心的轨迹方程是.【考点】轨迹方程.【专题】综合题;圆锥曲线的定义、性质与方程.【分析】由两圆的方程分别找出圆心C1与C2的坐标,及两圆的半径r1与r2,设圆P的半径为r,根据圆P与C1外切,得到圆心距PC1等于两半径相加,即PC1=r+1,又圆P与C2内切,得到圆心距PC2等于两半径相减,即PC2=9﹣r,由PC1+PC2等于常数2a,C1C2等于常数2c,利用椭圆的基本性质求出b的值,可得出圆心P在焦点在x轴上,且长半轴为a,短半轴为b的椭圆上,根据a与b的值写出此椭圆方程即可.【解答】解:由圆C1:(x+2)2+y2=1,圆C2:(x﹣2)2+y2=81,得到C1(﹣2,0),半径r1=1,C2(2,0),半径r2=9,设圆P的半径为r,∵圆P与C1外切而又与C2内切,∴PC1=r+1,PC2=9﹣r,∴PC1+PC2=(r+1)+(9﹣r)=2a=10,又C1C2=2c=4,∴a=5,c=2,∴b=,∴圆心P在焦点在x轴上,且长半轴为10,短半轴为2的椭圆上,则圆心P的轨迹方程为:.故答案为:.【点评】此题考查了圆与圆的位置关系,椭圆的基本性质,以及动点的轨迹方程,两圆的位置关系由圆心角d与两圆半径R,r的关系来判断,当d<R﹣r时,两圆内含;当d=R﹣r 时,两圆内切;当R﹣r<d<R+r时,两圆相交;当d=R+r时,两圆外切;当d>R+r时,两圆外离.10.直线Ax+By+C=0与⊙O:x2+y2=4相交于M,N两点,若C2=A2+B2,则(O为坐标原点)等于﹣2.【考点】平面向量数量积的运算;直线与圆的位置关系.【分析】设M(x1,y1),N(x2,y2).当B≠0时,直线方程与圆的方程联立并利用A2+B2=C2.可得根与系数的关系,利用=x1x2+y1y2即可得出.当B=0时,A≠0,C=±A,直线化为y=±x,联立,解得即可.【解答】解:设M(x1,y1),N(x2,y2).当B≠0时,联立,A2+B2=C2.化为C2x2+2ACx+C2﹣4B2=0,∴,.∵y1y2==.∴=x1x2+y1y2===﹣2.当B=0时,A≠0,C=±A,直线化为y=±x,联立,解得x=y=或﹣.此时=﹣2.综上可知:.故答案为﹣2.【点评】本题考查了直线与圆相交问题转化为方程联立得到根与系数的关系、数量积运算、分类讨论等基础知识与基本技能方法,属于中档题.11.设实数x、y满足,则z=|x+y+4|的取值范围为.【考点】简单线性规划.【专题】转化思想;数形结合法;不等式的解法及应用.【分析】根据题意,画出可行域,求出最优解,计算z=|x+y+4|的最小值与最大值即可.【解答】解:根据题意,实数x、y满足,画出可行域,如图所示;求出最优解,则当x=1,y=1时,z=|x+y+4|取得最小值z min=1+1+4=6,当x=5,y=2时,z=|x+y+4|取得最大值z max=5+2+4=11;∴z的取值范围是.故答案为:.【点评】本题考查了线性规划的应用问题,解题时应根据线性约束条件画出可行域,求出最优解,从而求出目标函数的取值范围,是基础题目.12.已知动点A、B分别在图中抛物线y2=4x及椭圆的实线上运动,若AB∥x,点N的坐标为(1,0),则三角形ABN的周长l的取值范围是().【考点】抛物线的简单性质;椭圆的简单性质.【专题】计算题.【分析】可考虑用抛物线的焦半径公式和椭圆的焦半径公式来做,先通过联立抛物线与椭圆方程,求出A,B点的横坐标范围,再利用焦半径公式转换为以B点的横坐标为参数的式子,再根据前面求出的B点横坐标方位计算即可.【解答】解:由得,抛物线y2=4x与椭圆在第一象限的交点横坐标为,设A(x1,y1),B(x2,y2),则0<x1<,<x2<2,由可得,三角形ABN的周长l=|AN|+|AB|+|BN|=x1++x2﹣x1+a﹣ex2=+a+x2=3+x2,∵,<x2<2,∴<3+x2<4故答案为()【点评】本题考查了抛物线与椭圆焦半径公式的应用,做题时要善于把未知转化为已知.13.若圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为2,则直线l的斜率的取值范围为.【考点】直线与圆的位置关系.【专题】直线与圆.【分析】求出圆心与半径,则圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为2等价为圆心到直线l:ax+by=0的距离d≤,从而求直线l的斜率的取值范围.【解答】解:圆x2+y2﹣4x﹣4y﹣10=0可化为(x﹣2)2+(y﹣2)2=18,则圆心为(2,2),半径为3;则由圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为2,则圆心到直线l:ax+by=0的距离d≤3﹣2=;即,则a2+b2+4ab≤0,若b=0,则a=0,故不成立,故b≠0,则上式可化为1+()2+4×≤0,由直线l的斜率k=﹣,则上式可化为k2﹣4k+1≤0,解得2﹣≤k≤2+,故答案为:【点评】本题考查了直线与圆上点的距离的应用以及直线斜率的求解,将圆x2+y2﹣4x﹣4y ﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为2转化为圆心到直线l:ax+by=0的距离d≤是本题解答的关键,属于中档题.14.如图,已知过椭圆(a>b>0)的左顶点A(﹣a,0)作直线1交y轴于点P,交椭圆于点Q,若△AOP是等腰三角形,且,则椭圆的离心率为.【考点】椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】利用等腰三角形的性质和向量相等运算即可得出点Q的坐标,再代入椭圆方程即可.【解答】解:∵△AOP是等腰三角形,A(﹣a,0)∴P(0,a).设Q(x0,y0),∵,∴(x0,y0﹣a)=2(﹣a﹣x0,﹣y0).∴,解得.代入椭圆方程得,化为.∴=.故答案为.【点评】熟练掌握等腰三角形的性质和向量相等运算、“代点法”等是解题的关键.二、解答题(本大题共有6个小题,共90分)15.(14分)已知y=2x是△ABC中∠C的内角平分线所在直线的方程,若A(﹣4,2),B(3,1).(1)求点A关于y=2x的对称点P的坐标;(2)求直线BC的方程;(3)判断△ABC的形状.【考点】与直线关于点、直线对称的直线方程;三角形的形状判断;直线的一般式方程.【专题】计算题;解三角形;直线与圆.【分析】(1)设P(m,n)根据轴对称的性质建立关于m、n的方程组,解之得m=4且n=﹣2,即可得到所求点P的坐标;(2)根据角的两边关于角平分线所在直线对称,得到P(4,﹣2)在BC上,用点斜式写出直线PB的方程,即得直线BC的方程;(3)则BC方程与AC方程联解得出C(2,4),从而得到AB、BC、AC的长度,算出|AB|2=|BC|2+|AC|2,从而得到△ABC为以∠C为直角的直角三角形.【解答】解:(1)设A关于y=2x的对称点为P(m,n).∴解之得,即点P的坐标为(4,﹣2).(2)∵P(4,﹣2)在BC上,∴BC的方程为y﹣1=﹣3(x﹣3),即3x+y﹣10=0.(3)由,解得∴C的坐标为(2,4).由,,,得|AB|2=|BC|2+|AC|2,∴△ABC为以∠C为直角的直角三角形.【点评】本题给出△ABC的顶点A、B的坐标,在给出角A平分线的基础之上求BC的方程,并判断三角形的形状,着重考查了两点的距离公式、直线与直线的位置关系和三角形形状的判断等知识,属于中档题.16.(14分)如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x ﹣3y﹣6=0,点T(﹣1,1)在AD边所在直线上.(1)AD边所在直线的方程;(2)矩形ABCD外接圆的方程.【考点】直线的点斜式方程;两条直线的交点坐标;圆的标准方程.【专题】计算题.【分析】(1)由已知中AB边所在直线的方程为x﹣3y﹣6=0,且AD与AB垂直,我们可以求出直线AD的斜率,结合点T(﹣1,1)在直线AD上,可得到AD边所在直线的点斜式方程,进而再化为一般式方程.(2)根据矩形的性质可得矩形ABCD外接圆圆心即为两条对角线交点M(2,0),根据(I)中直线AB,AD的直线方程求出A点坐标,进而根据AM长即为圆的半径,得到矩形ABCD外接圆的方程.【解答】解:(1)∵AB边所在直线的方程为x﹣3y﹣6=0,且AD与AB垂直,∴直线AD的斜率为﹣3.又因为点T(﹣1,1)在直线AD上,∴AD边所在直线的方程为y﹣1=﹣3(x+1),3x+y+2=0.(2)由,解得点A的坐标为(0,﹣2),∵矩形ABCD两条对角线的交点为M(2,0).∴M为矩形ABCD外接圆的圆心,又|AM|2=(2﹣0)2+(0+2)2=8,∴.从而矩形ABCD外接圆的方程为(x﹣2)2+y2=8.【点评】本题考查的知识点是直线的点斜式方程,两条直线的交点坐标,圆的标准方程,其中(1)的关键是根据已知中AB边所在直线的方程及AD与AB垂直,求出直线AD的斜率,(2)的关键是求出A点坐标,进而求出圆的半径AM长.17.(14分)如图,已知椭圆C:+=1(a>b>0)的右焦点为F(c,0),下顶点为A (0,﹣b),直线AF与椭圆的右准线交于点B,若F恰好为线段AB的中点.(1)求椭圆C的离心率;(2)若直线AB与圆x2+y2=2相切,求椭圆C的方程.【考点】椭圆的简单性质;椭圆的标准方程.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】(1)由B在右准线x=上,且F(c,0)恰好为线段AB的中点可求得2c=,从而可求得其斜率;(2)由(1)可知a=c,b=c,从而可设AB的方程为y=x﹣c,利用圆心O(0,0)点到直线y=x﹣c间的距离等于半径2即可求得c,从而使问题得到解决.【解答】解(1)因为B在右准线x=上,且F(c,0)恰好为线段AB的中点,所以2c=,…即=,所以椭圆的离心率e=.…(2)由(1)知a=c,b=c,所以直线AB的方程为y=x﹣c,即x﹣y﹣c=0,…因为直线AB与圆x2+y2=2相切,所以=,…解得c=2.所以a=2,b=2.所以椭圆C的方程为+=1.…【点评】本题考查椭圆的简单性质与椭圆的标准方程,考查化归思想与方程思想,求得椭圆的离心率是关键,属于中档题.18.(16分)已知圆M:x2+(y﹣2)2=1,设点B,C是直线l:x﹣2y=0上的两点,它们的横坐标分别是t,t+4(t∈R),点P在线段BC上,过P点作圆M的切线PA,切点为A.(1)若t=0,,求直线PA的方程;(2)经过A,P,M三点的圆的圆心是D,求线段DO长的最小值L(t).【考点】直线与圆的位置关系.【专题】计算题;压轴题.【分析】(1)由圆的方程找出圆心坐标与圆的半径,因为P在直线l上,所以设P的坐标为(a,2a),然后由M和P的坐标,利用两点间的距离公式表示出MP的长,根据列出关于a的方程,求出方程的解即可得到a的值,得到P的坐标,设过P点切线方程的斜率为k,根据P的坐标和斜率k写出切线的方程,根据直线与圆相切时圆心到直线的距离公式等于半径,利用点到直线的距离公式表示出圆心M到切线方程的距离d,让d等于圆的半径r,即可得到关于k的方程,求出方程的解即可得到k的值,写出直线PA的方程即可;(2)根据圆的切线垂直于过切点的半径得到AP垂直AM,所以三角形APM为直角三角形,所以外接圆圆心D为斜边PM的中点,根据M和设出的P的坐标利用中点坐标公式表示出D 的坐标,然后利用两点间的距离公式表示出OD的长,得到关于a的函数为开口向上的抛物线,分三种情况:大于抛物线顶点的横坐标,小于抛物线顶点的横坐标小于+2,和+2小于顶点的横坐标,利用二次函数的图象即可求出函数的最小值.线段DO长的最小值L(t)为一个分段函数,写出此分段函数的解析式即可.【解答】解:(1)由圆M:x2+(y﹣2)2=1,得到圆心M(0,2),半径r=1,设P(2a,a)(0≤a≤2).∵,∴.解得a=1或(舍去).∴P(2,1).由题意知切线PA的斜率存在,设斜率为k.所以直线PA的方程为y﹣1=k(x﹣2),即kx﹣y﹣2k+1=0.∵直线PA与圆M相切,∴,解得k=0或.∴直线PA的方程是y=1或4x+3y﹣11=0;(2)设∵PA与圆M相切于点A,∴PA⊥MA.∴经过A,P,M三点的圆的圆心D是线段MP的中点.∵M(0,2),∴D的坐标是.设DO2=f(a).∴.当,即时,;当,即时,;当,即时,则.【点评】此题考查学生掌握直线与圆相切是所满足的条件,灵活运用两点间的距离公式及点到直线的距离公式化简求值,灵活运用二次函数求最值的方法解决实际问题,是一道比较难的题.19.(16分)已知以点A(﹣1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(﹣2,0)的动直线l与圆A相交于M、N两点,Q是MN的中点,直线l与l1相交于点P.(I)求圆A的方程;(Ⅱ)当时,求直线l的方程;(Ⅲ)是否为定值,如果是,求出定值;如果不是,请说明理由.【考点】直线和圆的方程的应用;直线的一般式方程;圆的标准方程.【专题】计算题;证明题.【分析】(Ⅰ)设出圆A的半径,根据以点A(﹣1,2)为圆心的圆与直线l1:x+2y+7=0相切.点到直线的距离等于半径,我们可以求出圆的半径,进而得到圆的方程;(Ⅱ)根据半弦长,弦心距,圆半径构成直角三角形,满足勾股定理,我们可以结合直线l 过点B(﹣2,0),求出直线的斜率,进而得到直线l的方程;(Ⅲ)由直线l过点B(﹣2,0),我们可分直线的斜率存在和不存在两种情况,分别讨论是否为定值,综合讨论结果,即可得到结论.【解答】解:(Ⅰ)设圆A的半径为R,由于圆A与直线l1:x+2y+7=0相切,∴….∴圆A的方程为(x+1)2+(y﹣2)2=20….(Ⅱ)①当直线l与x轴垂直时,易知x=﹣2符合题意…②当直线l与x轴不垂直时,设直线l的方程为y=k(x+2),即kx﹣y+2k=0,连接AQ,则AQ⊥MN∵,∴,…则由,得,∴直线l:3x﹣4y+6=0.故直线l的方程为x=﹣2或3x﹣4y+6=0…(Ⅲ)∵AQ⊥BP,∴…①当l与x轴垂直时,易得,则,又,∴…②当l的斜率存在时,设直线l的方程为y=k(x+2),则由,得P(,),则∴综上所述,是定值,且.…(14分)【点评】本题考查的知识点是直线和圆的方程的应用,直线的一般式方程,圆的标准方程,其中(I)的关键是求出圆的半径,(II)的关键是根据半弦长,弦心距,圆半径构成直角三角形,满足勾股定理,求出弦心距(即圆心到直线的距离),(III)中要注意讨论斜率不存在的情况,这也是解答直线过定点类问题的易忽略点.20.(16分)如图,A,B是椭圆的左右顶点,M是椭圆上异于A,B的任意一点,若椭圆C的离心率为,且右准线l的方程为x=4.(1)求椭圆C的方程;(2)设直线AM交l于点P,以MP为直径的圆交直线MB于点Q,试证明:直线PQ与x轴的交点R为定点,并求出R点的坐标.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【专题】综合题;圆锥曲线的定义、性质与方程.【分析】(1)由椭圆C的离心率为,且右准线l的方程为x=4,联立方程组成方程组,即可求得椭圆C的方程;(2)设直线AM的方程,可得点P的坐标,根据MQ⊥PQ,可得k MQ•k PQ=﹣1,利用M在椭圆上,即可得直线PQ与x轴的交点R为定点.(1)解:由题意:,解得.∴椭圆C的方程为.…【解答】(2)证明:由(1)知,A(﹣2,0),B(2,0),设M(x0,y0),R(t,0),则直线AM的方程为,令x=4,得,即点P的坐标为,…由题意,MQ⊥PQ,∴k MQ•k PQ=﹣1,∴,即,…又,∴,∴,∴.∴直线PQ与x轴的交点R为定点.…(16分)【点评】本题考查椭圆的标准方程,考查直线过定点,考查学生分析解决问题的能力,属于中档题.。

新疆乌鲁木齐市第一中学高二数学上学期第一次月考试题

新疆乌鲁木齐市第一中学高二数学上学期第一次月考试题

k=1 s=1 WHILE k<4 s=2*s-k k=k+1WEND 鲁木齐市第一中学2015--2016学年第一学期2017届高二年级第一次月考数学试卷(请将答案写在答题纸上)时间:100分钟 满分:100分 一、选择题(每小题3分,共计36分)1. (1)某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了了解社会购买力的某种指标,要从中抽取一个容量为100户的样本;(2)从10名同学中抽取3人参加座谈会。

a 简单随机抽样b 系统抽样c 分层抽样 问题与方法配对正确的是A. (1)a,(2) cB. (1)a,(2) bC. (1)c,(2) aD. (1)c,(2) b 2.下面的程序段结果是A .3-B .10-C .0D .2- 3.如图是一样本的频率分布直方图,由图形中的数据可以估计众数与中位数分别是0到9之间取整数值的随机数,指定1、2、3、4表示下雨, 5、6、7、8、9、0表示不下雨,以3个随机数为一组,经随机模拟产生了20组随机数: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 根据以上数据估计三天中至少有两天下雨的概率为A .0.25B .0.35C .0.6D .0.755. 在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”。

根据过去10天甲、乙、丙、丁四地新增疑似病例数据一定符合该标志的是 A .甲地:总体均值为3,中位数为4100 90 80 110 120 底部周长/cmB .乙地:总体均值为1,总体方差大于0 C. 丙地:中位数为2,众数为3 D. 丁地:总体均值为2,总体方差为36.已知集合M ={x |-2≤x ≤8},N ={x |x 2-3x +2≤0},在集合M 中任取一个元素x ,则“x ∈M ∩N ”的概率是A.110B.16C.310 D.127.甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,x 1,x 2分别表示甲、乙两名运动员这项测试成绩的平均数,s 21,s 22分别表示甲、乙两名运动员这项测试成绩的方差,则有A .x 1>x 2,s 21<s 22B .x 1=x 2,s 21>s 22 C .x 1=x 2,s 21=s 22 D .x 1=x 2,s 21<22s8.圆0142:221=++++y x y x C 与圆0144:222=---+y x y x C 的公切线有 A .1条 B. 2条 C. 3条 D. 4条 9.某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元) 4 2 3 5 销售额y (万元)49263954根据上表可得回归方程y =bx +a 中的b 为9.4,据此模型预报广告费用为6 万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元10.已知对于圆0222=-+y y x 上任意一点P ,不等式0≥++m y x 恒成立,则实数m 的取值范围为 A 1-≥m B 12-≥m C 12--≤m D 1212--≤-≥m m 或11.连续抛掷两枚正方体骰子(六个面分别标有数字6,5,4,3,2,1),记所得朝上的面的点数分别为y x ,,过坐标原点和点()y x P ,的直线的倾斜角为θ,则θ>60°的概率为 A.41B .43 C .21 D .61 12.在平面直角坐标系中,A,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线043=-+y x 相切,则圆C 面积的最小值为A.45π B. 52π C. π)526(- D.25π二、填空题(每小题4分,共计16分)13.已知A 是圆上一定点,在圆上其他位置上任取一点B ,则AB 的长度小于半径的概率为__________.14.求直线0552=+-+y x 被圆04222=--+y x y x 截得的弦长为________15.右图给出的是计算201614121++++Λ的值的一个流程图,其中判断框内应填入的条件是_____16.设P 为直线0343=++y x 上的动点,过点P 做圆C :012222=+--+y x y x 的两条切线,切点分别为B A ,,当四边形PACB 的面积最小时,_______=∠APB三、解答题(共计48分)17.(本题8分)袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次,求:(1) 3个颜色不全相同的概率; (2) 3个颜色全不相同的概率。

2015-2016高二数学北师大版选修1-1习题1.3《全称量词与存在量词》

2015-2016高二数学北师大版选修1-1习题1.3《全称量词与存在量词》

第一章§3一、选择题1.下列命题中,全称命题的个数为()①平行四边形的对角线互相平分;②梯形有两边平行;③存在一个菱形,它的四条边不相等.A.0 B.1C.2 D.3[答案] C[解析]①②是全称命题,③是特称命题.2.命题“任意x>1,log2x<0”的否定是()A.任意x>1,log2x≥0 B.任意x≤1,log2x>0C.存在x>1,log2x≥0 D.存在x≤1,log2x>0[答案] C[解析]全称命题的否定是特称命题,故选C.3.给出下列四个命题,其中为真命题的是()A.任意x∈R,x2+3<0 B.任意x∈N,x2≥1C.存在x∈Z,使x5<1 D.存在x∈Q,x2=3[答案] C[解析]由于任意x∈R,都有x2≥0,因而有x2+3≥3,所以命题“任意x∈R,x2+3<0”为假命题;由于0∈N,当x=0时,x2≥1不成立,所以命题“任意x∈N,x2≥1”是假命题;由于-1∈Z,当x=-1时,x5<1,所以命题“存在x∈Z,使x5<1”为真命题;由于使x2=3成立的数只有±3,而它们都不是有理数,因此没有任何一个有理数的平方能等于3,所以命题“存在x∈Q,x2=3”是假命题.故选C.4.下列特称命题中真命题的个数是()①存在x∈R,x≤0;②至少有一个整数,它既不是合数,也不是素数;③存在x∈{x|x 是整数},x2是整数.A.0 B.1C.2 D.3[答案] D[解析]①②③都是真命题.5.下列命题为特称命题的是()A.偶函数的图像关于y轴对称B.正四棱柱都是平行六面体C.不相交的两条直线是异面直线D.存在实数大于等于3[答案] D[解析]分清各命题中含有的量词是全称量词还是存在量词,其中选项A,B,C都是全称命题.6.下列命题中是全称命题的是()A.所有的正方形都是菱形B.有两个实数x,使得x2+3x+2=0C.存在两条相交直线平行于同一个平面D.存在一无理数x,使得x2也是无理数[答案] A[解析]B,C,D是特称命题.二、填空题7.下列命题中真命题为________,假命题为________.①末位是0的整数,可以被2整除;②角平分线上的点到这个角的两边的距离相等;③有的实数是无限不循环小数;④有些三角形不是等腰三角形;⑤所有的菱形都是正方形[答案]①②③④⑤8.下列语句:①能被7整除的数都是奇数;②|x-1|<2;③存在实数a使方程x2-ax+1=0成立;④等腰梯形对角线相等且不互相平分.其中是全称命题且为真命题的序号是________.[答案]④[解析]①是全称命题,但为假命题,②不是命题,③是特称命题,只有④是全称命题且为真命题.三、解答题9.指出下列命题中,那些是全称命题,哪些是特称命题,并判断其真假.(1)存在一个实数,它的绝对值不是正数;(2)对任意实数x1,x2,若x1<x2,则tan x1<tan x2;(3)存在一个函数,既是偶函数又是奇函数.[解析](2)是全称命题,(1)(3)是特称命题.(1)存在一个实数零,它的绝对值不是正数,所以该命题是真命题.(2)存在x1=0,x2=π,x1<x2,但tan0=tanπ,所以该命题是假命题.(3)存在一个函数f(x)=0,它既是偶函数又是奇函数,所以该命题是真命题.10.判断下列命题是全称命题还是特称命题,并判断其真假.(1)存在两个相交平面垂直于同一条直线;(2)有些整数只有两个正因数;(3)对任意实数α,有sin2α+cos2α=1;(4)存在一条直线,其斜率不存在;(5)对所有的实数a、b,方程ax+b=0都有唯一解.[答案](1)(2)(4)为特称命题(3)(5)为全称命题(2)(3)(4)真(1)(5)假[解析](1)是特称命题.因为垂直于同一条直线的两个平面是互相平行的,因此不存在两个相交的平面垂直于同一条直线.所以特称命题“存在两个相交平面垂直于同一条直线”是假命题.(2)是特称命题.因为存在整数2只有两个正因数1和2,所以特称命题“有些整数只有两个正因数”是真命题.(3)是全称命题,由三角函数知识知“对任意α∈R,sin2α+cos2α=1都成立”,故此命题是真命题.(4)是特称命题,因为垂直于x轴的直线斜率不存在,所以“存在直线l,l的斜率不存在”,是真命题.(5)是全称命题,因为0x+3=0无解,所以“对任意a、b∈R,方程ax+b=0都有唯一解”,是假命题.一、选择题1.(2014·甘肃临夏中学期中)命题“存在x∈Z,使x2+2x+m≤0成立”的否定是() A.存在x∈Z,使x2+2x+m>0B.不存在x∈Z,使x2+2x+m>0C.对于任意x∈Z,都有x2+2x+m≤0D.对于任意x∈Z,都有x2+2x+m>0[答案] D[解析]特称命题的否定是全称命题.2.下列命题中的假命题是()A.存在实数α和β,使cos(α+β)=cosαcosβ+sinαsinβB.不存在无穷多个α和β,使cos(α+β)=cosαcosβ+sinαsinβC.对任意α和β,使cos(α+β)=cosαcosβ-sinαsinβD .不存在这样的α和β,使cos(α+β)≠cos αcos β-sin αsin β[答案] B[解析] cos(α+β)=cos α·cos β-sin α·sin β,显然C 、D 为真;sin α·sin β=0时,A 为真;B 为假.故选B.3.下列命题中,真命题是( )A .存在m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数B .存在m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数C .对任意m ∈R ,函数f (x )=x 2+mx (x ∈R )都是偶函数D .对任意m ∈R ,函数f (x )=x 2+mx (x ∈R )都是奇函数[答案] A[解析] 显然当m =0时,f (x )=x 2为偶函数,故选A.4.设函数f (x )的定义域为R ,有下列三个命题:①若存在常数M ,使得对任意x ∈R ,有f (x )≤M ,则M 是函数f (x )的最大值; ②若存在x 0∈R ,使得对任意x ∈R ,且x ≠x 0,有f (x )≤f (x 0),则f (x 0)是函数f (x )的最大值; ③若存在x 0∈R ,使得对任意x ∈R ,有f (x )≤f (x 0),则f (x 0)是函数f (x )的最大值. 这些命题中,真命题的个数是( )A .0个B .1个C .2个D .3个[答案] C[解析] 对于①,M 不一定在函数f (x )的值域内,故①不正确;对于②③,所取值x 0在其定义域内,f (x 0)在函数f (x )的值域内,f (x 0)为函数f (x )的最大值,故②③正确,故应选C.二、填空题5.已知命题“存在x ∈R ,使2x 2+(a -1)x +12≤0”是假命题,则实数a 的取值范围是________.[答案] -1<a <3[解析] 由条件得命题“任意x ∈R ,使2x 2+(a -1)x +12>0”是真命题.所以Δ=(a -1)2-4<0,解得-1<a <3.6.若存在x 0∈R ,使ax 20+2x 0+a =0,则实数a 的取值范围是________.[答案] -1<a <1[解析] 当a =0时,x 0=0满足题意.当a ≠0时,由题意知方程ax 2+2x +a =0有实数根,∴⎩⎪⎨⎪⎧a ≠0Δ=4-4a 2≥0,∴-1<a <0或0<a <1. 综上可知-1<a <1.三、解答题7.指出下列命题是全称命题还是特称命题,并判断其真假:(1)在平面直角坐标系中,任意有序实数对(x ,y ),都对应一点P ;(2)每一条线段的长度都能用正有理数表示;(3)存在一个实数,使等式x 2+x +8=0成立.[答案] (1)全称命题,真命题;(2)全称命题,假命题;(3)特称命题,假命题.8.为使下列p (x )为真命题,求x 的取值范围.(1)p (x ):log 2x 2-1>0.(2)p (x ):4x -2x +1-3<0. (3)p (x ):1-sin2x =sin x -cos x .[解析] (1)由log 2x 2-1>0,得log 2x 2>1,∴⎩⎪⎨⎪⎧x ≠0,x 2>2, ∴x >2或x <-2,因此,使p (x )为真命题的x 的取值范围为(-∞,-2)∪(2,+∞).(2)令2x =a ,则a 2-2a -3<0,∴-1<a <3,∴2x <3,x <log 23.因此使p (x )为真命题的x 的取值范围为(-∞,log 23).(3)由1-sin2x =sin x -cos x ,得|sin x -cos x |=sin x -cos x ,∴sin x ≥cos x ,∴2k π+π4≤x ≤2k π+5π4,k ∈Z . 因此,使p (x )为真命题的x 的取值范围为[2k π+π4,2k π+5π4],k ∈Z .。

安徽省安庆市怀宁县高河中学高二数学上学期第一次月考试卷文(含解析)

安徽省安庆市怀宁县高河中学高二数学上学期第一次月考试卷文(含解析)

安徽省安庆市怀宁县高河中学2015-2016学年高二(上)第一次月考数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的)1.若直线过点M(1,2),N(4,2+),则此直线的倾斜角为()A.30° B.45° C.60° D.90°2.过原点且倾斜角为60°的直线被圆x2+y2﹣4y=0所截得的弦长为()A.B.2 C.D.23.圆C1:(x+2)2+(y﹣2)2=1与圆C2:(x﹣2)2+(y﹣5)2=16的位置关系是()A.外离 B.相交 C.内切 D.外切4.对于a∈R,直线(x+y﹣1)﹣a(x+1)=0恒过定点P,则以P为圆心,为半径的圆的方程是()A.x2+y2+2x+4y=0 B.x2+y2+2x﹣4y=0C.x2+y2﹣2x+4y=0 D.x2+y2﹣2x﹣4y=05.设P,Q分别为直线x﹣y=0和圆x2+(y﹣6)2=2上的点,则|PQ|的最小值为()A.B.C.D.46.设圆的方程为(x﹣1)2+(y+3)2=4,过点(﹣1,﹣1)作圆的切线,则切线方程为()A.x=﹣1 B.x=﹣1或y=﹣1 C.y+1=0 D.x+y=1或x﹣y=07.阅读如图的程序框图,若输出s的值为﹣7,则判断框内可填写()A.i<3 B.i<4 C.i<5 D.i<68.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下.则下面结论中错误的一个是()A.甲的极差是29 B.乙的众数是21C.甲罚球命中率比乙高D.甲的中位数是249.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样10.某学院的A,B,C三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取的学生是()A.42名B.38名C.40名D.120名11.动点A在圆x2+y2=1上移动时,它与定点B(3,0)连线的中点的轨迹方程是()A.(x+3)2+y2=4 B.(x﹣3)2+y2=1 C.(2x﹣3)2+4y2=1 D.(x+3)2+y2=12.直线y=x+b与曲线有且仅有一个公共点,则b的取值范围是()A.B.﹣1<b≤1或C.D.二、填空题(本大题共4小题,每小题5分,共20分)13.实数x,y满足x2+y2﹣4x+3=0,则的最大值是.14.二进制数1101(2)化为五进制数为.15.点P(1,2,3)关于y轴的对称点为P1,P关于坐标平面xOz的对称点为P2,则|P1P2|= .16.某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气由表中数据得线性方程=+x中=﹣2,据此预测当气温为5℃时,用电量的度数约为.三、解答题(17题10分,其余各题每题12分)17.用秦九韶算法计算多项式f(x)=2x6﹣2x5﹣x3+x2﹣2x+4,当x=2时,求f(x)的值.18.已知两直线l1:ax﹣by+4=0,l2:(a﹣1)x+y+b=0.求分别满足下列条件的a,b的值.(1)直线l1过点(﹣3,﹣1),并且直线l1与l2垂直;(2)直线l1与直线l2平行,并且坐标原点到l1,l2的距离相等.19.已知圆C:(x﹣1)2+(y﹣2)2=2,点P坐标为(2,﹣1),过点P作圆C的切线,切点为A,B.(1)求直线PA,PB的方程;(2)求过P点的圆的切线长;(3)求直线AB的方程.20.某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数(1)画出表中数据的散点图;(2)求出y对x的线性回归方程;(3)若广告费为9万元,则销售收入约为多少万元?21.为了了解学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,所得数据整理后,画出频率分布直方图,图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)学生跳绳次数的中位数落在哪个小组内?(2)第二小组的频率是多少?样本容量是多少?(3)若次数在110以上(含110次)为良好,试估计该学校全体高一学生的良好率是多少?22.已知圆C:x2+y2+Dx+Ey+3=0关于直线x+y﹣1=0对称,圆心C在第四象限,半径为.(Ⅰ)求圆C的方程;(Ⅱ)是否存在直线l与圆C相切,且在x轴上的截距是y轴上的截距的2倍?若存在,求直线l的方程;若不存在,说明理由.2015-2016学年安徽省安庆市怀宁县高河中学高二(上)第一次月考数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的)1.若直线过点M(1,2),N(4,2+),则此直线的倾斜角为()A.30° B.45° C.60° D.90°【考点】直线的倾斜角.【专题】直线与圆.【分析】利用两点的坐标,求出直线的斜率,从而求出该直线的倾斜角.【解答】解:∵直线过点M(1,2),N(4,2+),∴该直线的斜率为k==,即tanα=,α∈[0°,180°);∴该直线的倾斜角为α=30°.故选:A.【点评】本题考查了利用两点的坐标求直线的斜率与倾斜角的应用问题,是基础题目.2.过原点且倾斜角为60°的直线被圆x2+y2﹣4y=0所截得的弦长为()A.B.2 C.D.2【考点】直线的倾斜角;直线和圆的方程的应用.【专题】计算题.【分析】本题考查的知识点是直线与圆方程的应用,由已知圆x2+y2﹣4y=0,我们可以将其转化为标准方程的形式,求出圆心坐标和半径,又直线由过原点且倾斜角为60°,得到直线的方程,再结合半径、半弦长、弦心距满足勾股定理,即可求解.【解答】解:将圆x2+y2﹣4y=0的方程可以转化为:x2+(y﹣2)2=4,即圆的圆心为A(0,2),半径为R=2,∴A到直线ON的距离,即弦心距为1,∴ON=,∴弦长2,故选D.【点评】要求圆到割线的距离,即弦心距,我们最常用的性质是:半径、半弦长(BE)、弦心距(OE)构成直角三角形,满足勾股定理,求出半径和半弦长,代入即可求解.3.圆C1:(x+2)2+(y﹣2)2=1与圆C2:(x﹣2)2+(y﹣5)2=16的位置关系是()A.外离 B.相交 C.内切 D.外切【考点】直线与圆的位置关系.【专题】计算题.【分析】先根据圆的标准方程得到分别得到两圆的圆心坐标及两圆的半径,然后利用圆心之间的距离d与两个半径相加、相减比较大小即可得出圆与圆的位置关系.【解答】解:由圆C1:(x+2)2+(y﹣2)2=1与圆C2:(x﹣2)2+(y﹣5)2=16得:圆C1:圆心坐标为(﹣2,2),半径r=1;圆C2:圆心坐标为(2,5),半径R=4.两个圆心之间的距离d==5,而d=R+r,所以两圆的位置关系是外切.故选D【点评】考查学生会根据d与R+r及R﹣r的关系判断两个圆的位置关系,会利用两点间的距离公式进行求值.4.对于a∈R,直线(x+y﹣1)﹣a(x+1)=0恒过定点P,则以P为圆心,为半径的圆的方程是()A.x2+y2+2x+4y=0 B.x2+y2+2x﹣4y=0C.x2+y2﹣2x+4y=0 D.x2+y2﹣2x﹣4y=0【考点】圆的一般方程;恒过定点的直线.【专题】计算题;直线与圆.【分析】联解直线x+y﹣1=0与x+1=0的方程,可得直线(x+y﹣1)﹣a(x+1)=0恒过定点P (﹣1,2).由圆的标准式方程,写出圆的方程再化成一般式方程,可得本题答案.【解答】解:联解,可得x=﹣1,y=2∴直线(x+y﹣1)﹣a(x+1)=0恒过定点P(﹣1,2)因此以P为圆心,为半径的圆的方程是(x+1)2+(y﹣2)2=5化成一般式可得x2+y2+2x﹣4y=0故选:B【点评】本题给出直线经过定点P,求以P为圆心且为半径的圆.着重考查了直线的方程、圆的方程和直线与圆的位置关系等知识,属于基础题.5.设P,Q分别为直线x﹣y=0和圆x2+(y﹣6)2=2上的点,则|PQ|的最小值为()A.B.C.D.4【考点】直线与圆的位置关系.【专题】直线与圆.【分析】先由条件求得圆心(0,6)到直线x﹣y=0的距离为d的值,则d减去半径,即为所求.【解答】解:由题意可得圆心(0,6)到直线x﹣y=0的距离为d==3,圆的半径r=,故|PQ|的最小值为d﹣r=2,故选:A.【点评】本题主要考查圆的标准方程,直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.6.设圆的方程为(x﹣1)2+(y+3)2=4,过点(﹣1,﹣1)作圆的切线,则切线方程为()A.x=﹣1 B.x=﹣1或y=﹣1 C.y+1=0 D.x+y=1或x﹣y=0【考点】直线与圆的位置关系.【专题】计算题.【分析】根据圆的方程,求出圆心和半径,结合图形写出切线方程.【解答】解:∵圆的方程为(x﹣1)2+(y+3)2=4,故圆心为(1,﹣3),半径等于2,如图:故过点(﹣1,﹣1)作圆的切线,则切线方程为x=﹣1或y=﹣1,故选 B.【点评】本题考查直线和圆的位置关系,求圆的切线方程,体现了数形结合的数学思想,求出圆心和半径是解题的关键.7.阅读如图的程序框图,若输出s的值为﹣7,则判断框内可填写()A.i<3 B.i<4 C.i<5 D.i<6【考点】设计程序框图解决实际问题.【专题】算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加变量i的值到S并输出S,根据流程图所示,将程序运行过程中各变量的值列表如下:【解答】解:程序在运行过程中各变量的值如下表示:是否继续循环 S i循环前/2 1第一圈是 1 3第二圈是﹣2 5第三圈是﹣7 7第四圈否所以判断框内可填写“i<6”,故选D.【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.8.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下.则下面结论中错误的一个是()A.甲的极差是29 B.乙的众数是21C.甲罚球命中率比乙高D.甲的中位数是24【考点】茎叶图.【专题】计算题;图表型.【分析】通过茎叶图找出甲的最大值及最小值求出极差判断出A对;找出甲中间的两个数,求出这两个数的平均数即数据的中位数,判断出D错;根据图的集中于离散程度,判断出甲的平均值比乙的平均值大,判断出C对.【解答】解:由茎叶图知甲的最大值为37,最小值为8,所以甲的极差为29,故A对甲中间的两个数为22,24,所以甲的中位数为故D不对甲的命中个数集中在20而乙的命中个数集中在10和20,所以甲的平均数大,故C对乙的数据中出现次数最多的是21,所以B对故选D【点评】茎叶图与频率分布直方图比较,其优点保留了原始数据,便于统计、记录.9.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样【考点】收集数据的方法.【专题】综合题.【分析】观察所给的四组数据,根据四组数据的特点,把所用的抽样选出来①简单随机抽样,②系统抽样,③分层抽样.【解答】解;观察所给的四组数据,①个体没有差异且总数不多可用随机抽样法,简单随机抽样,②将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号,系统抽样,③个体有了明显了差异,所以选用分层抽样法,分层抽样,故选A.【点评】简单随机抽样是一种最简单、最基本的抽样方法.常用的简单随机抽样方法有抽签法和随机数法.简单随机抽样和系统抽样过程中,每个个体被抽取的可能性是相等的.10.某学院的A,B,C三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取的学生是()A.42名B.38名C.40名D.120名【考点】分层抽样方法.【专题】概率与统计.【分析】根据全校的人数和A,B两个专业的人数,得到C专业的人数,根据总体个数和要抽取的样本容量,得到每个个体被抽到的概率,用C专业的人数乘以每个个体被抽到的概率,得到结果.【解答】解:∵C专业的学生有1200﹣380﹣420=400,由分层抽样原理,应抽取120×=40名.故选C.【点评】本题考查分层抽样,分层抽样过程中,每个个体被抽到的概率相等,在总体个数,样本容量和每个个体被抽到的概率这三个量中,可以知二求一.11.动点A在圆x2+y2=1上移动时,它与定点B(3,0)连线的中点的轨迹方程是()A.(x+3)2+y2=4 B.(x﹣3)2+y2=1 C.(2x﹣3)2+4y2=1 D.(x+3)2+y2=【考点】轨迹方程;中点坐标公式.【专题】计算题.【分析】根据已知,设出AB中点M的坐标(x,y),根据中点坐标公式求出点A的坐标,根据点A在圆x2+y2=1上,代入圆的方程即可求得中点M的轨迹方程.【解答】解:设中点M(x,y),则动点A(2x﹣3,2y),∵A在圆x2+y2=1上,∴(2x﹣3)2+(2y)2=1,即(2x﹣3)2+4y2=1.故选C.【点评】此题是个基础题.考查代入法求轨迹方程和中点坐标公式,体现了数形结合的思想以及分析解决问题的能力.12.直线y=x+b与曲线有且仅有一个公共点,则b的取值范围是()A.B.﹣1<b≤1或C.D.【考点】直线与圆相交的性质.【专题】计算题;数形结合.【分析】把曲线方程整理后可知其图象为半圆,进而画出图象来,要使直线与曲线有且仅有一个交点,那么很容易从图上看出其三个极端情况分别是:直线在第四象限与曲线相切,交曲线于(0,﹣1)和另一个点,及与曲线交于点(0,1),分别求出b,则b的范围可得.【解答】解:化简得x2+y2=1注意到x≥0所以这个曲线应该是半径为1,圆心是(0,0)的半圆,且其图象只在一四象限.这样很容易画出图来,这样因为直线与其只有一个交点,那么很容易从图上看出其三个极端情况分别是:直线在第四象限与曲线相切,交曲线于(0,﹣1)和另一个点,及与曲线交于点(0,1).分别算出三个情况的B值是:﹣,﹣1,1.因为B就是直线在Y轴上的截距了,所以看图很容易得到B的范围是:﹣1<b≤1或b=﹣故选B【点评】本题主要考查了直线与圆相交的性质.对于此类问题除了用联立方程转化为方程的根的问题之外,也可用数形结合的方法较为直观.二、填空题(本大题共4小题,每小题5分,共20分)13.实数x,y满足x2+y2﹣4x+3=0,则的最大值是.【考点】直线与圆的位置关系.【专题】直线与圆.【分析】圆即(x﹣2)2+y2=1,而表示圆上的点(x,y)与原点O连线的斜率,显然,当过原点的直线和圆相切时,斜率取得最值.由于OA=2AN=2AM,故有∠NOA=∠MOA=30°,故ON的斜率等于tan30°=,为所求的最大值.【解答】解:x2+y2﹣4x+3=0 即(x﹣2)2+y2=1,表示以A(2,0)为圆心,半径等于1的圆.而表示圆上的点(x,y)与原点O连线的斜率,如图所示:ON OM为圆的两条切线,显然,当过原点的直线和圆相切时,斜率取得最值.由于OA=2AN=2AM,故有∠NOA=∠MOA=30°,故ON的斜率等于tan30°=,为最大值,故答案为:.【点评】本题主要考查圆的标准方程,直线的斜率公式,直线和圆的位置关系,属于中档题.14.二进制数1101(2)化为五进制数为23(5).【考点】进位制.【专题】计算题.【分析】先将二进制化为十进制,然后利用十进制化为其它进制的“除k取余法”方法即可求出所求.【解答】解:根据二进制和十进制之间的关系得:1101(2)=1×20+0×21+1×22+1×23=1+4+8=13,再利用“除5取余法”可得:13÷5=2…3,2÷5=0 (2)∴化成5进制是23(5)故答案为:23(5).【点评】本题以进位制的转换为背景考查算法的多样性,解题的关键是熟练掌握进位制的转化规则,属于基础题.15.点P(1,2,3)关于y轴的对称点为P1,P关于坐标平面xOz的对称点为P2,则|P1P2|= 2.【考点】空间两点间的距离公式.【专题】计算题.【分析】由题意求出P关于坐标平面xOz的对称点为P2的坐标,即可求出|P1P2|.【解答】解:∵点P(1,2,3)关于y轴的对称点为P1,所以P1(﹣1,2,﹣3),P关于坐标平面xOz的对称点为P2,所以P2(1,﹣2,3),∴|P1P2|==2.故答案为:2【点评】本题是基础题,考查空间点关于点、平面的对称点的求法,两点的距离的求法,考查计算能力.16.某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温.由表中数据得线性方程=+x中=﹣2,据此预测当气温为5℃时,用电量的度数约为40 .【考点】回归分析的初步应用.【专题】计算题;概率与统计.【分析】根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出a的值,现在方程是一个确定的方程,根据所给的x的值,代入线性回归方程,预报要销售的件数.【解答】解:由表格得=(14+12+8+6)÷4=10, =(22+26+34+38)÷4=30即样本中心点的坐标为:(10,40),又∵样本中心点(10,40)在回归方程上且b=﹣2∴30=10×(﹣2)+a,解得:a=50,∴当x=5时,y=﹣2×(5)+50=40.故答案为:40.【点评】本题考查线性回归方程,两个变量之间的关系,除了函数关系,还存在相关关系,通过建立回归直线方程,就可以根据其部分观测值,获得对这两个变量之间整体关系的了解.三、解答题(17题10分,其余各题每题12分)17.用秦九韶算法计算多项式f(x)=2x6﹣2x5﹣x3+x2﹣2x+4,当x=2时,求f(x)的值.【考点】秦九韶算法.【专题】计算题;对应思想;定义法;算法和程序框图.【分析】把所给的多项式写成关于x的一次函数的形式,依次写出,得到最后结果,从里到外进行运算,得到要求的值.【解答】解:由秦九韶算法计算多项式f(x)=2x6﹣2x5﹣x3+x2﹣2x+4=(((((2x﹣2)x+0)x﹣1)x+1)x﹣2)x+4.∴当x=2时的值时,V0=2,V1=2,V2=4,V3=7,V4=15,V5=28,V6=60,∴当x=2时,f(x)=60.【点评】本题考查秦九韶算法,本题解题的关键是对多项式进行整理,得到符合条件的形式,不管是求计算结果还是求加法和减法的次数都可以18.已知两直线l1:ax﹣by+4=0,l2:(a﹣1)x+y+b=0.求分别满足下列条件的a,b的值.(1)直线l1过点(﹣3,﹣1),并且直线l1与l2垂直;(2)直线l1与直线l2平行,并且坐标原点到l1,l2的距离相等.【考点】两条直线垂直与倾斜角、斜率的关系;两条直线平行与倾斜角、斜率的关系.【专题】计算题.【分析】(1)利用直线l1过点(﹣3,﹣1),直线l1与l2垂直,斜率之积为﹣1,得到两个关系式,求出a,b的值.(2)类似(1)直线l1与直线l2平行,斜率相等,坐标原点到l1,l2的距离相等,利用点到直线的距离相等.得到关系,求出a,b的值.【解答】解:(1)∵l1⊥l2,∴a(a﹣1)+(﹣b)•1=0,即a2﹣a﹣b=0①又点(﹣3,﹣1)在l1上,∴﹣3a+b+4=0②由①②得a=2,b=2.(2)∵l1∥l2,∴=1﹣a,∴b=,故l1和l2的方程可分别表示为:(a﹣1)x+y+=0,(a﹣1)x+y+=0,又原点到l1与l2的距离相等.∴4||=||,∴a=2或a=,∴a=2,b=﹣2或a=,b=2.【点评】本题考查两条直线垂直与倾斜角、斜率的关系,两条直线平行与倾斜角、斜率的关系,考查计算能力,是基础题.19.已知圆C:(x﹣1)2+(y﹣2)2=2,点P坐标为(2,﹣1),过点P作圆C的切线,切点为A,B.(1)求直线PA,PB的方程;(2)求过P点的圆的切线长;(3)求直线AB的方程.【考点】圆的切线方程;直线的一般式方程.【专题】计算题;直线与圆.【分析】(1)设切线方程斜率为k,由切线过点P,表示出切线方程,根据圆标准方程找出圆心C坐标与半径r,根据直线与圆相切时,圆心到切线的距离等于圆的半径,利用点到直线的距离公式列出关于k的方程,求出方程的解得到k的值,即可确定出切线方程.(2)通过p到圆心C的距离、圆的半径以及切线长满足勾股定理,求出切线长即可.(3)利用(2)写出圆心为P的圆的方程,通过圆系方程写出公共弦方程即可.【解答】解:(1)设切线的斜率为k,∵切线过点P(2,﹣1),∴切线方程为:y+1=k(x﹣2)即:kx﹣y﹣2k﹣1=0,又圆C:(x﹣1)2+(y﹣2)2=2的圆心坐标为(1,2),半径为,由点到直线的距离公式,得: =,解得:k=7或k=﹣1,则所求的切线方程为:x+y﹣1=0和7x﹣y﹣15=0.(2)圆心C到P的距离为: =.∴切线长为: =2.(3)以P为圆心,切线长为半径的圆的方程为:(x﹣2)2+(y+1)2=8…①由圆C:(x﹣1)2+(y﹣2)2=2,…②②﹣①可得AB的方程:(x﹣1)2+(y﹣2)2﹣(x﹣2)2﹣(y+1)2=﹣6,可得x﹣3y+3=0.【点评】此题考查了直线与圆的位置关系,涉及的知识有:两点间的距离公式,点到直线的距离公式,以及圆的标准方程,当直线与圆相切时,圆心到直线的距离等于圆的半径,熟练掌握此性质是解本题的关键.20.某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数(2)求出y对x的线性回归方程;(3)若广告费为9万元,则销售收入约为多少万元?【考点】线性回归方程.【专题】应用题.【分析】(1)根据所给的数据构造有序数对,在平面直角坐标系中画出散点图.(2)观察散点图可知各点大致分布在一条直线附近,得到这组数据符合线性相关,求出利用最小二乘法所需要的数据,做出线性回归方程的系数,得到方程.(3)把x=9代入线性回归方程,估计出当广告费为9万元时,销售收入约为129.4万元.【解答】解:(1)散点图如图:(2)观察散点图可知各点大致分布在一条直线附近,列出上列表格,以备计算于是,,代入公式得,==,===﹣2,故y与x的线性回归方程为=x﹣2,其中回归系数为,它的意义是:广告支出每增加1万元,销售收入y平均增加万元.(3)当x=9万元时,y=×9﹣2=129.4(万元).【点评】本题考查线性回归方程的写法和应用,本题解题的关键是正确求出线性回归方程的系数,本题是一个基础题.21.为了了解学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,所得数据整理后,画出频率分布直方图,图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)学生跳绳次数的中位数落在哪个小组内?(2)第二小组的频率是多少?样本容量是多少?(3)若次数在110以上(含110次)为良好,试估计该学校全体高一学生的良好率是多少?【考点】频率分布直方图;众数、中位数、平均数.【专题】计算题;图表型.【分析】(1)根据中位数落在的位置,刚好把频率分步直方图分成左右面积相等两部分,计算前三组与前四组的频率和即可得答案;(2)根据各个小矩形的面积之比,求出第二组的频率,再根据所给的频数,求出样本容量.(3)根据频率分步直方图求出次数在110以上的频数,用频数除以样本容量得到达标率,进而估计全体学生的达标率.【解答】解(1)由题意得:前三组频率和为=<,前四组频率之和为=>,∴中位数落在第四小组内;(2)由题意第二小组的频率为: =0.08,又∵频率=,∴样本容量===150,(3)次数在110以上(含110次)为良好,∴良好的学生数为150﹣(+)×150=132,由图可估计所求良好率约为: =88%.【点评】本题考查频率分布直方图,考查用样本的频率分布估计总体的频率分布,解答的关键是读懂频率分布直方图的数据并进行正确运算.22.已知圆C:x2+y2+Dx+Ey+3=0关于直线x+y﹣1=0对称,圆心C在第四象限,半径为.(Ⅰ)求圆C的方程;(Ⅱ)是否存在直线l与圆C相切,且在x轴上的截距是y轴上的截距的2倍?若存在,求直线l的方程;若不存在,说明理由.【考点】直线和圆的方程的应用.【专题】直线与圆.【分析】(Ⅰ)将圆的方程化为标准方程,利用圆关于直线x+y﹣1=0对称,圆心C在第四象限,半径为,建立方程组,即可求圆C的方程;(Ⅱ)分类讨论,设出直线方程,利用直线l与圆C相切,建立方程,即可求出直线l的方程.【解答】解:(Ⅰ)由x2+y2+Dx+Ey+3=0得:∴圆心C,半径,由题意,,解之得,D=﹣4,E=2∴圆C的方程为x2+y2﹣4x+2y+3=0…(7分)(Ⅱ)由(Ⅰ)知圆心C(2,﹣1),设直线l在x轴、y轴上的截距分别为2a,a.当a=0时,设直线l的方程为kx﹣y=0,则解得,此时直线l的方程为…(10分)当a≠0时,设直线l的方程为即x+2y﹣2a=0,则,∴,此时直线l的方程为…(13分)综上,存在四条直线满足题意,其方程为或…(14分)【点评】本题考查圆的方程,考查直线与圆的位置关系,考查分类讨论的数学思想,考查学生的计算能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016第一学期 高二数学月考试卷
1.直线022=+-y ax 与直线01)3(=+-+y a x 平行,则实数a 的值为.
2、已知点P (0,-1),点Q 在直线x-y+1=0上,若直线PQ 垂直于直线x+2y-5=0,则点Q 的坐标是
3.已知点)(b a P ,在圆2
2
2
:r y x C =+外,则直线2
:r by ax l =+与圆C .
4、如果直线0412
2
=-++++=my kx y x kx y 与圆交于M 、N 两点,且M 、N 关于直线
01=-+y x 对称,则k -m 的值为
5.已知O 是坐标原点,点A )1,1(-,若点M ),(y x 为平面区域⎪⎩

⎨⎧≤≤≥+212
y x y x 上的一个动点,
则OM z ⋅=的取值范围是.
6.已知动圆0264222=-+--+m my mx y x 恒过一个定点,这个定点的坐标是____. 7.一直线过点M (-3,
2
3),且被圆x 2+y 2=25所截得的弦长为8,则此直线方程为. 8、若直线y=x+b 与曲线21y x -=恰有一个公共点,则实数b 的取值范围为
9、若圆2
2
2
)5()3(r y x =++-上有且只有两个点到直线4x -3y=2的距离等于1,则半径r 范围是;
10.光线沿0522=+++y x ()0≥y 被x 轴反射后,与以()2,2A 为圆心的圆相切,则该圆的方程为.
11.直线l :03=-+y x 上恰有两个点A 、B 到点(2,3)的距离为2,则线段AB的长
为.
12.如果圆22()()4x a y a -+-=上总存在两个点到原点的距离为1,则实数a 的取值范围是.
13.若直线)0,0(022>>=+-b a by ax 被圆01422
2
=+-++y x y x 截得的弦长为4,则
b
a 1
1+的最小值为. 14.已知圆062
2
=+-++m y x y x 与直线032=-+y x 相交于P ,Q 两点,
O 为坐标原点,若OQ OP ⊥,则m 的值为.
15、已知ABC ∆的一条内角平分线CD 的方程为012=-+y x ,两个顶点为
)1,1(),2,1(--B A ,求第三个顶点C 的坐标。

16.已知圆C :2
2
(1)5x y +-=,直线L :10mx y m -+-=。

①求证:对m R ∈,直线L 与圆C 总有两个不同的交点;
②求直线L 中,截圆所得的弦最长及最短时的直线方程.
15.已知圆22
1:(3)(1)1O x y -+-=,设点(,)p x y 是圆1O 上的动点。

①求P 点到直线:10l x y +-=距离的最值,并求对应P 点坐标;
②分别求
22,,(3)(4)y
y x x y x
-+++的最值. 17. 如图,矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=, 点(11)T -,在AD 边所在直线上.
(I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程; (III )若动圆P 过点(20)N -,,且与矩形ABCD
圆外切,求动圆P 的圆心的方程.
19.如图,已知⊙O :221x y +=和定点(2,2)A 外一点(,)P a b 向⊙O 引切线PQ ,Q PQ PA =.
(Ⅰ) 求实数,a b 之间满足的关系式;(线段PQ 的最小值.
20.已知圆M 的方程1)2(2
2
=-+y x ,直线l P 点作圆M 的切线PA ,PB ,切点为A,B.(1P 点的坐标为)1,2(,过P 作直线与圆M 交于C 方程;(3)求证:经过M P A ,,参考答案:
1.1=a ;2.)3,2(;3.相交;4.4;5.]2,0[7.01543,3=+--=y x x ;8.{}
2]1,1(-⋃-11.22;12.22;13.4;14.3. 15、解:由题意可知:)2,1(A 关于直线012=-+y x 的对称点在直线BC 上,设对称点为),(b a P 则:
⎪⎩
⎪⎨⎧
=-+++⋅=--0
1222122112b
a a
b 解得:)54,57(-P ,所以0143:=--y x l BC 再由⎩⎨⎧=-+=--0
120143y x y x 得C 点的坐标为()111,115.
16.①直线L :10mx y m -+-=恒过圆内的点)1,1(.②最长:1y =,最短:1x =)
17.①P 点到直线:10l x y +-=距离的最大值为
1223+,最小值为12
2
3-,对应的P 点
坐标分别为).2
21,223(),221,223(--++
②max min max min 2222max min 3(),()0;()2)24[(3)(4)]623)(4)]62y y
y x y x x
x x y x y ==-=--=--+++=++++=-
18.【解析】(I )因为AB 边所在直线的方程为360x y --=,且AD 与AB 垂直,
所以直线AD 的斜率为3-.又因为点(11)T -,在直线AD 上,
所以AD 边所在直线的方程为13(1)y x -=-+.320x y ++=.-----------------3分
(II )由36032=0
x y x y --=⎧⎨
++⎩,
解得点A 的坐标为(02)-,, ------------4分
因为矩形ABCD 两条对角线的交点为(20)M ,.
所以M 为矩形ABCD 外接圆的圆心. -----------------6分
又AM ==
从而矩形ABCD 外接圆的方程为2
2
(2)8x y -+=.----------------------9分
(3))2(12
22
2-≤=-x y x 19.(本小题满分16分)
解:(Ⅰ)连接OP ,∵2
2
2
1PQ PO PA =-=, …………………2分 ∴2
2
2
2
1(2)(2)a b a b +-=-+-,即4490a b +-=. ………………………6分
(Ⅱ)设:4490l x y +-=
221PQ PO =-
,∴PQ =
∴当PO ⊥l 时,PO 的长度最小,即min ()OP
=
8

∴min ()PQ ==
………………………………………11分 20.解:(1)设(2,)P m m ,由题可知,所以,解之得:故所求点的坐标为或.……………4分
(2)设直线的方程为:,易知存在,由题知圆心到直线的距离为,所以, 解得,或,……………8分
故所求直线的方程为:或.……………10分 (3)设,的中点,因为是圆的切线
所以经过三点的圆是以为圆心,以为半径的圆, 故其方程为:……………12分
化简得:,此式是关于的恒等式,
故解得或……………15分
所以经过三点的圆必过定点或.……………16分。

相关文档
最新文档