人教A版数学必修一必修①第三章函数的应用
2018-2019学年人教A版高中数学必修1课件:3.1.1函数的应用
(6)在(k1,k2)内有且仅有一个实根的充要条件是
Δ=0, f(k1)f(k2)<0,或k1<-2ba<k2.
例3 方程x2-2ax+4=0的两根均大于1,求实数a的取值范 围.
【解析】 方法一:设f(x)=x2-2ax+4,由于方程x2-2ax
由于相邻两个零点之间的所有函数值保持同号,函数的图 像如图所示.
(2)不等式xf(x)<0同解于
x>0, f(x)<0
或xf(<0x,)>0,
结合函数图
像得不等式的解集为(0,2)∪(-2,0).
探究 根据函数的零点定义与性质,可以用来帮助画函数
的图像,结合函数图像不仅可以直观的研究函数的性质,而且
∴函数y=-x2-2x+3的零点为-3,1. y=-x2-2x+3=-(x+1)2+4. 画出这个函数的简图(如右图),从图像 上可以看出,当-3<x<1时,y>0.
当x<-3或x>1时,y<0. ∴函数y=-x2-2x+3的零点是-3,1. y>0时,x的取值范围是(-3,1); y<0时,x的取值范围是(-∞,-3)∪(1,+∞). 探究2 由于一元二次不等式在前面没有讲过,因此对本题 的解法要正确作出函数的简图,从而解决问题.
课时学案
题型一 求函数的零点 例1 求函数f(x)=(x2+x-2)(x2-2x-8)的零点,并指出使 y<0成立的x的取值范围.
【解析】 y=(x2+x-2)(x2-2x-8)=(x+2)(x-1)(x+2)(x -4)=(x+2)2(x-1)(x-4),
人教版高中数学必修1课件全册
因此,函数就是表达了两个变量之间变化关系的一个表达式。其准 确定义如下:
设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集 合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么 就称f:A→B为集合A到集合B的一个函数(function),记作y=f(x), x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相 对应的y值叫做函数值(因变量),函数值的集合{f(x)|x ∈A}叫做函数 的值域。而对应的关系f则成为对应法则,则上面两个例子中,对应法则 分别是“乘以10再加20”和“平方后乘以4.9”
{ 例题、不等式组
2x-1>0 3x-6 0
的解集为A,U=R,试求A及CUA,并把它们
分别表示在数轴上。
A={x|1/2<x<2},CuA={x|x≤1/2,x≥2}
思考:
1、CUA在U中的补集是什么?
A
2、U=Z,A={x|x=2k,k∈Z}, B={x|x=2k+1,K∈Z},则CUA=_B__, CUB=__A__。
解: A∪B={x|-1<x<2} ∪ {x|1<x<3} ={x|-1<x<3}
-1 1 2 3
并集的运算性质:
(1) A A A (2) A A (3) A B B A (4) A A B, B A B, A B A B (5) A B则A B B
注意:计算并集和交集的时候尽可能的转化为图像,减少 犯错的几率,常用的图像有Venn图,数轴表示法,坐标表 示法。尤其是涉及到不等式和坐标点的时候。
6、已知A {x | x 2 3x 2 0},B {x | x 2 ax a 1 0}若A B A,求实数a的值.
人教A版高中数学必修1第三章《函数的应用》思维导图
人教A版高中数学必修1第三章《函数
的应用》思维导图
用思维导图复习,一天顶一个月。
高中数学必修和选修课本共计13本,通常两年内学完,平均一年6本,每学期3本。
每本平均三到四章,每学期5个月,大约半月学完一章。
而高考总复习的时间则更为宝贵,如果高考一轮复习的时候,在基础知识模块,大家还需要消耗大量时间去翻看教材显然得不偿失。
当然,我们并不是说教材不重要,相反,教材非常重要。
而是希望大家在平时的学习过程中,养成总结梳理的习惯,尤其是在高一高二的时候。
只要大家学会使用思维导图梳理,这样在高三的时候就可以快人一步,将更多的宝贵时间拿来突破自己的弱项,争取取得更好的成绩。
已经进入高三的同学,也不用担心,后续我们会持续更新,大家关注我们的文章即可,我们会帮大家梳理好,大家可以通过文章末尾留言免费获取。
本文,我们主要梳理了人教版A版高中数学必修1(也就是高一数学)第三章《函数的应用》。
主要内容大纲如下:
其中重点在于零点问题、函数模型及函数的应用。
下面我们逐一展开回忆下。
一、函数与方程
二、函数模型及其应用
到本文为止,有关人教版A版高中数学必修一(也就是高一数学必修1)的内容,我们就在前面三篇文章给大家梳理完了,至于第一章《集合与函数的概念》及第二章《基本初等函数(I)》,请大家查阅我们前面两天的文章即可。
大家如果觉得这种方式好,可以自己下载思维导图软件尝试下。
时间紧迫,需要x mind 思维导图原图进行复习的同学,可以在评论区联系我们获取。
精编人教A版高中数学必修一第三章《函数的应用》综合提高测试题
精编人教A 版高中数学必修一第三章《函数的应用》综合提高测试题一、选择题1. 函数223y x x =--的零点是( )A .1,3- B .3,1- C .1,2 D .不存在2. 方程1lg x x -=必有一个根的区间是( )A .(0.1,0.2)B .(0.2,0.3) C .(0.3,0.4) D .(0.4,0.5) 3.下列函数中增长速度最快的是( ) A.1100x y e = B .y=100ln x C .y=100x D .y=1002x ⋅4.已知函数2212341,2,21,2,x y y x y x y x==--=-=其中能用二分法求出零点的函数个数是( ) A .1 B .2 C .3 D .45. 若函数()f x 唯一的零点一定在三个区间(2,16)2824、(,)、(,)内,那么下列命题中正确的是( ) A .函数()f x 在区间(2,3)内有零点B .函数()f x 在区间(2,3(3,4))或内有零点C .函数()f x 在区间(3,16)内有零点D .函数()f x 在区间(4,16)内无零点6. 如图表示人的体重与年龄的关系,则( )A .体重随年龄的增长而增加B .25岁之后体重不变C .体重增加最快的是15~25岁D .体重增加最快的是15岁之前 7. 世界人口已超过60亿,若按千分之一的年增长率计算,则两年增长的人口约为( )A .120万B .1100万C .1200万D .12000万8. 已知函数()24f x mx =+,若在[]2,1-上存在0x 使0()0f x =,则实数m 的取值范围是( )A .5,42⎡⎤-⎢⎥⎣⎦ B.(][),21,-∞-+∞ C. []1,2- D. []2,1-9. 若商品进价每件40元,当售价为50元/件时,一个月能卖出500件,通过市场调查发现,若每件商品 的单价每提高1元,则商品一个月的销售量会减少10件。
新人教A版高中数学教材目录(必修+选修)【很全面】
人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。
人教A版高中学案数学必修第一册精品课件 第三章 函数的概念与性质 函数的概念-第2课时函数概念的应用
[解析]由ቊ
得 > ,且 ≠ .故选C.
− ≠ ,
2.函数() =
1
(
2 +1
∈ )的值域是() B
A.(−∞, 1]B.(0,1]C.[0,1)D.[0,1]
[解析]因为
(, ].故选B.
+ ≥ ,所以 <
+
≤ ,故函数() =
为函数 = − 2 + 4 + 1的图象开口向下,对称轴方程为 = 2 ∈ [0, +∞),所以当 = 2时,
函数 = − 2 + 4 + 1取到最大值,max = 5,所以原函数的值域为(−∞, 5].
1.知识清单:(1)求函数的定义域.
(2)求简单函数的值域.
2.方法归纳:配方法、换元法、基本不等式法、数形结合、转化与化归.
=
=2+
,
−3
−3
−3
7
7
2 +1
∵
≠ 0,∴ 2 +
≠ 2,∴ =
的值域为(−∞, 2)
−3
−3
−3
∪ (2, +∞).
(4) = 2 − − 1.
1
4
解 令 − 1 = ,则 ≥ 0且 = 2 + 1,∴ = 2( 2 + 1) − = 2 2 − + 2 = 2( − )2 +
1
4
则当 = 时,min =
15
,∴
8
15
, +∞).
8
= 2 − − 1的值域为[
15
,
人教A版高中数学必修第一册第三章函数单调性的应用课件
/人A数学/ 必修 第一册
返回导航 上页 下页
3.已知函数y=f(x)在R上是减函数,则y=f(|x-3|)的单调
减区间是( B )
A.(-∞,+∞)
B.[3,+∞)
C.[-3,+∞)
D.(-∞,3]
/人A数学/ 必|,则当x≥3时,函数t=|x-3|单调递增, 当x≤3时,函数t=|x-3|单调递减. ∵y=f(t)在R上是减函数,∴根据复合函数单调性之间的关系可知, y=f(|x-3|)的单调减区间是[3,+∞).
返回导航 上页 下页
[解析] ∵f(x)=x2-2(1-a)x+2=[x-(1-a)]2+2-(1-a)2, ∴f(x)的单调减区间是(-∞,1-a]. ∵f(x)在(-∞,4]上是减函数. ∴对称轴x=1-a必须在直线x=4的右侧或与其重合, ∴1-a≥4,解得a≤-3. 故a的取值范围为(-∞,-3].
/人A数学/ 必修 第一册
返回导航 上页 下页
已知单调性求参数时,视参数为已知数,依据函数的图 象或单调性的定义确定函数的单调区间,与已知单调区间比较求参 数.
/人A数学/ 必修 第一册
返回导航 上页 下页
2.已知函数f(x)=|2x-a|的单调递增区间是[3,+∞), 则a的值为__6______. 解析:f(x)=|2x-a|=2-x-2xa+,ax,≥xa2<,a2,
/人A数学/ 必修 第一册
返回导航 上页 下页
3 . 设 函 数 f(x) = (1 - 2a)x + b 是 R 上 的 增 函 数 , 则 a 的 取 值 范 围 为 _(_-__∞__,__12_)_.
解析:由
f(x)=(1-2a)x+b
是
R
上的增函数,得
新教材 人教A版高中数学必修第一册 第三章 函数概念与性质 知识点考点汇总及解题方法规律提炼
第三章函数概念与性质3.1.1.1函数的概念 (1)3.1.1.2函数概念的应用 (6)3.1.2.1函数的表示法 (10)3.1.2.2分段函数 (14)3.2.1.1函数的单调性 (21)3.2.1.2函数的最大(小)值 (25)3.2.2.1函数奇偶性的概念 (30)3.2.2.2函数奇偶性的应用 (35)3.3幂函数 (37)3.4函数的应用(一) (41)3.1.1.1函数的概念要点整理1.函数的概念(1)函数的定义设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B 为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)函数的定义域与值域函数y=f(x)中,x叫做自变量,x的取值范围A叫做函数的定义域,与x 的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)对应关系f:除解析式、图象表格外,还有其他表示对应关系的方法,引进符号f统一表示对应关系.温馨提示:(1)当A,B为非空数集时,符号“f:A→B”表示A到B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f”它表示对应关系,在不同的函数中f的具体含义不一样.2.区间概念(a,b为实数,且a<b)3.其他区间的表示题型一函数关系的判断【典例1】(1)判断下列对应是不是从集合A到集合B的函数.①A=N,B=N*,对应法则f:对集合A中的元素取绝对值与B中元素对应;②A={-1,1,2,-2},B={1,4},对应法则f:x→y=x2,x∈A,y∈B;③A={-1,1,2,-2},B={1,2,4},对应法则f:x→y=x2,x∈A,y∈B;④A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B中元素对应.(2)设M={x|-2≤x≤2},N={y|0≤y≤2},函数y=f(x)的定义域为M,值域为N,对于下列四个图象,不可作为函数y=f(x)的图象的是( )[思路导引] 在“非空数集”A中“任取x”,在对应关系“f”作用下,B中“有唯一”的“数f(x)”与之“对应”,称f:A→B为集合A到集合B的一个函数.[解析](1)①对于A中的元素0,在f的作用下得0,但0不属于B,即A 中的元素0在B中没有元素与之对应,所以不是函数.②对于A中的元素±1,在f的作用下与B中的1对应,A中的元素±2,在f的作用下与B中的4对应,所以满足A中的任一元素与B中唯一元素对应,是“多对一”的对应,故是函数.③对于A中的任一元素,在对应关系f的作用下,B中都有唯一的元素与之对应,如±1对应1,±2对应4,所以是函数.④集合A不是数集,故不是函数.(2)由函数定义可知,任意作一条直线x=a,则与函数的图象至多有一个交点,结合选项可知C中图象不表示y是x的函数.[答案](1)见解析(2)C(1)判断对应关系是否为函数的2个条件①A、B必须是非空数集.②A中任意一元素在B中有且只有一个元素与之对应.(2)根据图形判断对应是否为函数的方法①任取一条垂直于x轴的直线l.②在定义域内平行移动直线l.③若l与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.题型二用区间表示数集【典例2】把下列数集用区间表示,并在数轴上表示出来.(1){x|x≥3};(2){x|x<-5};(3){x|-4≤x<2或3<x≤5}.[思路导引] 用区间表示数集的关键是确定开、闭区间,含“或”的数集用符号“∪”连接区间.[解](1){x|x≥3}用区间表示为[3,+∞),用数轴表示如图.(2){x|x<-5}用区间表示为(-∞,-5),用数轴表示如图.(3){x|-4≤x<2或3<x≤5}用区间表示为[-4,2)∪(3,5],用数轴表示如图.应用区间时的3个注意点(1)区间是数集,区间的左端点小于右端点.(2)在用区间表示集合时,开和闭不能混淆.(3)用数轴表示区间时,用实心点表示包括在区间内的端点,用空心圈表示不包括在区间内的端点.[针对训练]3.已知全集U=R,A={x|-1<x≤5},则∁U A用区间表示为__________________.[解析]∁U A={x|x≤-1或x>5}=(-∞,-1]∪(5,+∞).[答案](-∞,-1]∪(5,+∞)4.用区间表示不等式{x|x2-x-6≥0}的解集为______________________.[解析]不等式x2-x-6=(x-3)(x+2)≥0,解得x≥3或x≤-2,所以不等式的解集为{x|x≤-2或x≥3}=(-∞,-2]∪[3,+∞).[答案](-∞,-2]∪[3,+∞)题型三求函数的定义域【典例3】求下列函数的定义域.(1)y=2+3x-2;(2)y=(x-1)0+2x+1;(3)y =3-x ·x -1; (4)y =(x +1)2x +1--x 2-x +6.[思路导引] 函数定义域即是使自变量x 有意义的取值范围.[解] (1)当且仅当x -2≠0,即x ≠2时,函数y =2+3x -2有意义,所以这个函数的定义域为{x |x ≠2}.(2)函数有意义,当且仅当⎩⎪⎨⎪⎧x -1≠0,2x +1≥0,x +1≠0,解得x >-1,且x ≠1,所以这个函数的定义域为{x |x >-1且x ≠1}.(3)函数有意义,当且仅当⎩⎨⎧3-x ≥0,x -1≥0,解得1≤x ≤3,所以这个函数的定义域为{x |1≤x ≤3}.(4)要使函数有意义,自变量x 的取值必须满足⎩⎨⎧x +1≠0,-x 2-x +6≥0,即⎩⎨⎧x ≠-1,x 2+x -6≤0,即⎩⎨⎧x ≠-1,(x +3)(x -2)≤0,解得-3≤x ≤2且x ≠-1,即函数定义域为{x |-3≤x ≤2且x ≠-1}.[变式] (1)将本例(3)中“y =3-x ·x -1”改为“y =(3-x )(x -1)”,则其定义域是什么?(2)将本例(3)中“y =3-x ·x -1”改为“y =3-xx -1”,则其定义域是什么?[解] (1)要使函数有意义,只需(3-x )(x -1)≥0,解得1≤x ≤3,即定义域为{x |1≤x ≤3}.(2)要使函数有意义,则⎩⎨⎧3-x ≥0,x -1>0,解得1<x ≤3,即定义域为{x |1<x ≤3}.求函数定义域的几种类型(1)若f(x)是整式,则函数的定义域是R.(2)若f(x)是分式,则应考虑使分母不为零.(3)若f(x)是偶次根式,则被开方数大于或等于零.(4)若f(x)是由几个式子构成的,则函数的定义域是几个部分定义域的交集.(5)若f(x)是实际问题的解析式,则应符合实际问题,使实际问题有意义.3.1.1.2函数概念的应用要点整理1.常见函数的定义域和值域2.函数的三要素由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域.3.相同函数值域是由定义域和对应关系决定的,如果两个函数的定义域和对应关系相同,我们就称这两个函数是同一函数.两个函数如果仅对应关系相同,但定义域不同,则它们不是相同的函数.题型一同一函数的判断【典例1】下列各组式子是否表示同一函数?为什么?(1)f(x)=|x|,φ(t)=t2;(2)y=x2,y=(x)2;(3)y=1+x·1-x,u=1-v2;(4)y=(3-x)2,y=x-3.[思路导引] 两个函数表示同一函数的关键条件是定义域相同,对应关系一致.[解](1)f(x)与φ(t)的定义域相同,又φ(t)=t2=|t|,即f(x)与φ(t)的对应关系也相同,∴f(x)与φ(t)是同一函数.(2)y=x2的定义域为R,y=(x)2的定义域为{x|x≥0},两者定义域不同,故y=x2与y=(x)2不是同一函数.(3)y=1+x·1-x的定义域为{x|-1≤x≤1},u=1-v2的定义域为{v|-1≤v≤1},即两者定义域相同.又∵y=1+x·1-x=1-x2,∴两函数的对应关系也相同.故y=1+x·1-x与u=1-v2是同一函数.(4)∵y=(3-x)2=|x-3|与y=x-3的定义域相同,但对应关系不同,∴y=(3-x)2与y=x-3不是同一函数.判断两个函数为同一函数的方法判断两个函数是否为同一函数,要先求定义域,若定义域不同,则不是同一函数;若定义域相同,再化简函数的解析式,看对应关系是否相同.题型二求函数值和值域【典例2】(1)已知f(x)=11+x(x∈R,且x≠-1),g(x)=x2+2(x∈R).①求f(2)、g(2)的值;②求f[g(3)]的值.(2)求下列函数的值域:①y=x+1,x∈{1,2,3,4,5};②y=x2-2x+3,x∈[0,3);③y =2x +1x -3; ④y =2x -x -1.[思路导引] (1)代入法求值;(2)结合解析式的特征选择适当的方法求值域. [解] (1)①∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6. ②g (3)=32+2=11, ∴f [g (3)]=f (11)=11+11=112. (2)①(观察法)∵x ∈{1,2,3,4,5},分别代入求值,可得函数的值域为{2,3,4,5,6}.②(配方法)y =x 2-2x +3=(x -1)2+2, 由x ∈[0,3),可得函数的值域为[2,6). ③(分离常数法)y =2x +1x -3=2(x -3)+7x -3=2+7x -3, 显然7x -3≠0,∴y ≠2. 故函数的值域为(-∞,2)∪(2,+∞). ④(换元法)设x -1=t , 则t ≥0,且x =t 2+1.∴y =2(t 2+1)-t =2t 2-t +2=2⎝ ⎛⎭⎪⎫t -142+158.∵t ≥0,∴y ≥158. 故函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.(1)函数求值的方法①已知f (x )的表达式时,只需用a 替换表达式中的x 即得f (a )的值. ②求f [g (a )]的值应遵循由里往外的原则. (2)求函数值域常用的4种方法①观察法:对于一些比较简单的函数,其值域可通过观察得到;②配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法求其值域;③分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;④换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法.题型三求抽象函数的定义域【典例3】 已知函数f (x )的定义域为[1,3],求函数f (2x +1)的定义域. [思路导引] 定义域是x 的取值范围,f (x )中的x 与f (2x +1)中的2x +1是相对应的.[解] 因为函数f (x )的定义域为[1,3],即x ∈[1,3],函数f (2x +1)中2x +1的范围与函数f (x )中x 的范围相同,所以2x +1∈[1,3],所以x ∈[0,1],即函数f (2x +1)的定义域是[0,1].[变式] (1)若将本例条件改为“函数f (2x +1)的定义域为[1,3]”,求函数f (x )的定义域.(2)若将本例条件改为“函数f (1-x )的定义域为[1,3]”,其他不变,如何求解?[解] (1)因为x ∈[1,3],所以2x +1∈[3,7],即函数f (x )的定义域是[3,7]. (2)因为函数f (1-x )的定义域为[1,3], 所以x ∈[1,3],所以1-x ∈[-2,0], 所以函数f (x )的定义域为[-2,0]. 由2x +1∈[-2,0],得x ∈⎣⎢⎡⎦⎥⎤-32,-12,所以f (2x +1)的定义域为⎣⎢⎡⎦⎥⎤-32,-12.两类抽象函数的定义域的求法(1)已知f(x)的定义域,求f[g(x)]的定义域:若f(x)的定义域为[a,b],则f[g(x)]中a≤g(x)≤b,从中解得x的取值集合即为f[g(x)]的定义域.(2)已知f[g(x)]的定义域,求f(x)的定义域:若f[g(x)]的定义域为[a,b],即a≤x≤b,求得g(x)的取值范围,g(x)的值域即为f(x)的定义域.3.1.2.1函数的表示法要点整理温馨提示:列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.题型一函数的表示法【典例1】某商场新进了10台彩电,每台售价3000元,试求售出台数x 与收款数y之间的函数关系,分别用列表法、图象法、解析法表示出来.[思路导引] 把自变量与函数值的对应关系分别用表格、图象和数学表达式加以刻画.[解]①列表法③解析法:y=3000x,x∈{1,2,3,…,10}.理解函数的表示法的3个关注点(1)列表法、图象法、解析法均是函数的表示法,无论用哪种方式表示函数,都必须满足函数的概念.(2)判断所给图象、表格、解析式是否表示函数的关键在于是否满足函数的定义.(3)函数的三种表示法互相兼容或补充,许多函数是可以用三种方法表示的,但在实际操作中,仍以解析法为主.题型二函数的图象【典例2】作出下列函数的图象并求出其值域.(1)y=2x,x∈[2,+∞);(2)y=x2+2x,x∈[-2,2].[思路导引] 通过“列表→描点→连线”作出函数图象,借助图象求出函数值域.[解](1)列表:画图象,当x∈[2,+∞)时,图象是反比例函数y=2x的一部分(图1),观察图象可知其值域为(0,1].(2)列表:(图2).由图可得函数的值域是[-1,8].描点法作函数图象的3个关注点(1)画函数图象时首先关注函数的定义域,即在定义域内作图. (2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象. (3)要标出某些关键点,例如图象的顶点、端点、与坐标轴的交点等.要分清这些关键点是实心点还是空心点.题型三函数解析式的求法【典例3】 (1)已知f (x )是二次函数,且满足f (0)=1,f (x +1)-f (x )=2x ,求f (x )的解析式;(2)已知函数f (x +1)=x +2x +1,求f (x )的解析式; (3)已知函数f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,求f (x )的解析式.[思路导引] 求函数解析式,就是寻找函数三要素中的对应关系,即在已知自变量和函数值的条件下求对应关系的表达式.[解] (1)设f (x )=ax 2+bx +c (a ≠0), ∵f (0)=1,∴c =1.∴f (x +1)-f (x )=a (x +1)2+b (x +1)+c -(ax 2+bx +c )=2ax +a +b . 又f (x +1)-f (x )=2x ,∴⎩⎨⎧2a =2,a +b =0.∴⎩⎨⎧a =1,b =-1.∴f (x )=x 2-x +1.(2)解法一:∵f (x +1)=x +2x +1=(x +1)2, ∴f (x )=x 2.又x +1≥1,∴f (x )=x 2(x ≥1). 解法二:令t =x +1,则x =(t -1)2. 由于x ≥0,所以t ≥1.代入原式有f (t )=(t -1)2+2(t -1)+1=t 2, 所以f (x )=x 2(x ≥1). (3)∵2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,①∴将x 用1x替换,得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x ,②联立①②得⎩⎪⎨⎪⎧2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x ,解得f (x )=2x -1x(x ≠0),即f (x )的解析式是f (x )=2x -1x(x ≠0).[变式] (1)若将本例(2)中条件“f (x +1)=x +2x +1”变为“f ⎝ ⎛⎭⎪⎫1x +1=1x2-1”,则f (x )的解析式是什么?(2)若将本例(3)中条件“2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ”变为“f (x )-2f (-x )=9x +2”,则f (x )的解析式是什么?[解] (1)f ⎝ ⎛⎭⎪⎫1x +1=⎝ ⎛⎭⎪⎫1x +12-2⎝ ⎛⎭⎪⎫1x +1,所以f (x )=x 2-2x .因为1x ≠0,所以1x+1≠1,所以f (x )=x 2-2x (x ≠1).(2)由条件知,f (-x )-2f (x )=-9x +2, 则⎩⎨⎧f (x )-2f (-x )=9x +2,f (-x )-2f (x )=-9x +2,解得f (x )=3x -2.求函数解析式的3种常用方法(1)待定系数法:若已知函数的类型,可用待定系数法求解,即由函数类型设出函数解析式,再根据条件列方程(组),通过解方程(组)求出待定系数,进而求出函数解析式.如典例3(1).(2)换元法(有时可用“配凑法”):已知函数f [g (x )]的解析式求f (x )的解析式,可用换元法(或“配凑法”),即令g (x )=t ,反解出x ,然后代入f [g (x )]中求出f (t ),从而求出f (x ).如典例3(2).(3)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).如典例3(3).3.1.2.2分段函数要点整理1.分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系的函数.2.分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.温馨提示:(1)分段函数虽然由几部分构成,但它仍是一个函数而不是几个函数.(2)分段函数的“段”可以是等长的,也可以是不等长的.如y =⎩⎨⎧1,-2≤x ≤0,x ,0<x ≤3,其“段”是不等长的.(3)分段函数的图象要分段来画. 题型一分段函数求值【典例1】已知函数f (x )=⎩⎪⎨⎪⎧1+1x,x >1,x 2+1,-1≤x ≤1,2x +3,x <-1.(1)求f (f (f (-2)))的值; (2)若f (a )=32,求a .[思路导引] 根据自变量取值范围代入对应解析式求值. [解] (1)∵-2<-1,∴f (-2)=2×(-2)+3=-1, ∴f [f (-2)]=f (-1)=2, ∴f (f (f (-2)))=f (2)=1+12=32.(2)当a >1时,f (a )=1+1a =32,∴a =2>1;当-1≤a ≤1时,f (a )=a 2+1=32,∴a =±22∈[-1,1]; 当a <-1时,f (a )=2a +3=32,∴a =-34>-1(舍去).综上,a =2或a =±22.(1)分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求解.对于含有多层“f ”的问题,要按照“由内到外”的顺序,逐层处理.(2)已知函数值,求自变量的值时,要先将“f ”脱掉,转化为关于自变量的方程求解.题型二分段函数的图象【典例2】 (1)作出下列分段函数的图象:①y =⎩⎨⎧1x ,0<x <1,x ,x ≥1;②y =|x +1|.(2)如图所示,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由B (起点)向点A (终点)运动.设点P 运动路程为x ,△ABP 的面积为y ,求:①y 与x 之间的函数关系式; ②画出y =f (x )的图象.[思路导引] (1)利用描点法分段作图;(2)先依据x 的变化范围求出关系式. [解] (1)①函数图象如图1所示.②y =|x +1|=⎩⎨⎧-x -1,x <-1,x +1,x ≥-1,其图象如图2所示.(2)①y =⎩⎨⎧2x ,0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12.②分段函数图象的画法(1)作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可.(2)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.题型三分段函数的综合问题【典例3】 已知函数f (x )=|x -3|-|x +1|. (1)求f (x )的值域; (2)解不等式:f (x )>0;(3)若直线y =a 与f (x )的图象无交点,求实数a 的取值范围. [思路导引] 去掉绝对值符号,化简f (x ),再分段求解. [解] 若x ≤-1,则x -3<0,x +1≤0,f (x )=-(x -3)+(x +1)=4; 若-1<x ≤3,则x -3≤0,x +1>0,f (x )=-(x -3)-(x +1)=-2x +2; 若x >3,则x -3>0,x +1>0,f (x )=(x -3)-(x +1)=-4.∴f (x )=⎩⎨⎧4,x ≤-1,-2x +2,-1<x ≤3,-4,x >3.(1)-1<x ≤3时,-4≤-2x +2<4.∴f (x )的值域为[-4,4)∪{4}∪{-4}=[-4,4]. (2)f (x )>0,即⎩⎨⎧x ≤-1,4>0,①或⎩⎨⎧-1<x ≤3,-2x +2>0,②或⎩⎨⎧x >3,-4>0,③解①得x ≤-1,解②得-1<x <1,解③得x ∈∅.所以f (x )>0的解集为(-∞,-1]∪(-1,1)∪∅=(-∞,1). (3)f (x )的图象如图:由图可知,当a ∈(-∞,-4)∪(4,+∞)时,直线y =a 与f (x )的图象无交点.[变式] 若a ∈R ,试探究方程f (x )=a 解的个数.[解] 由例3(3)知y =f (x )的图象,作出直线y =a ,可以看出:当a =±4时,y =a 与y =f (x )有无数个交点;当-4<a <4时,y =a 与y =f (x )有且仅有一个交点;当a <-4或a >4时,y =a 与y =f (x )没有交点.综上可知:当a =±4时,方程f (x )=a 有无数个解. 当-4<a <4时,方程f (x )=a 有一个解. 当a <-4或a >4时,方程f (x )=a 无解.研究分段函数要牢牢抓住的2个要点(1)分段研究.在每一段上研究函数.(2)合并表达.因为分段函数无论分成多少段,仍是一个函数,对外是一个整体.题型四分段函数在实际问题中的应用【典例4】 某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15~20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y (℃)随时间x (h)变化的函数图象,其中AB 段是恒温阶段,BC 段是双曲线y =k x的一部分,请根据图中信息解答下列问题:(1)求y 与x 的函数关系式;(2)大棚内的温度为18℃时是否适宜该品种蔬菜的生长?(3)恒温系统在一天内保持大棚里的适宜新品种蔬菜的生长温度有多少小时?[思路导引] 利用待定系数法求出x 在每一段上的解析式,再分段研究. [解] (1)设线段AD 的解析式为y =mx +n (m ≠0), 将点A (2,20),D (0,10)代入, 得⎩⎨⎧2m +n =20n =10,解得⎩⎨⎧m =5n =10,∴线段AD 的解析式为y =5x +10(0≤x ≤2). ∵双曲线y =k x经过B (12,20), ∴20=k 12,解得k =240,∴BC 段的解析式为y =240x(12≤x ≤24).综上所述,y 与x 的函数解析式为: y =⎩⎪⎨⎪⎧5x +10(0≤x ≤2)20(2<x <12)240x (12≤x ≤24).(2)当x =18时,y =24018=403,由于403<15,∴大棚内的温度为18℃时不适宜该品种蔬菜的生长. (3)令y =15,当0≤x ≤2时,解5x +10=15,得x =1, 当12≤x ≤24时,解240x=15,得x =16.由于16-1=15(小时),∴恒温系统在一天内保持大棚里的适宜新品种蔬菜的生长温度有15小时.对于应用题,要在分析题意基础上,弄清变量之间的关系,然后选择适当形式加以表示;若根据图象求解析式,则要分段用待定系数法求出,最后用分段函数表示,分段函数要特别地把握准定义域的各个“分点”.3.2.1.1函数的单调性要点整理1.函数的单调性温馨提示:定义中的x1,x2有以下3个特征(1)任意性,即“任意取x1,x2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x1<x2;(3)属于同一个单调区间.2.函数的单调区间如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.温馨提示:(1)函数的单调性是对定义域内某个区间而言的,它是函数的一个局部性质.(2)函数f(x)在定义域的某个区间D上单调,不一定在定义域上单调.如f(x)=x2等.(3)并非所有的函数都具有单调性,如f (x )= ⎩⎨⎧1,x 是偶数0,x 是奇数,它的定义域是N ,但不具有单调性.题型一函数单调性的判断与证明【典例1】 证明函数f (x )=x +4x在(-∞,-2)上是增函数.[思路导引] 设出∀x 1<x 2<-2,判定f (x 1)与f (x 2)的大小关系. [证明] ∀x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1+4x 1-x 2-4x 2=(x 1-x 2)+4(x 2-x 1)x 1x 2=(x 1-x 2)(x 1x 2-4)x 1x 2.∵x 1<x 2<-2,∴x 1-x 2<0,x 1x 2>4,x 1x 2-4>0.∴f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2).∴函数f (x )=x +4x在(-∞,-2)上是增函数.证明或判断函数单调性的方法步骤题型二求函数的单调区间【典例2】 求下列函数的单调区间: (1)f (x )=1x -1; (2)f (x )=|x 2-3x +2|.[思路导引] (1)先求出函数的定义域,再利用定义求解;(2)作出函数y =x 2-3x +2的图象,再将x 轴下方的图象翻折到x 轴上方,结合图象写出f (x )的单调区间.[解] (1)函数f (x )=1x -1的定义域为(-∞,1)∪(1,+∞), ∀x 1,x 2∈(-∞,1),且x 1<x 2,则f (x 1)-f (x 2)=1x 1-1-1x 2-1=x 2-x 1(x 1-1)(x 2-1). 因为x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).所以函数f (x )在(-∞,1)上单调递减,同理函数f (x )在(1,+∞)上单调递减.综上,函数f (x )的单调递减区间是(-∞,1),(1,+∞). (2)f (x )=|x 2-3x +2|=⎩⎨⎧x 2-3x +2,x ≤1或x ≥2,-(x 2-3x +2),1<x <2.作出函数的图象,如图所示. 根据图象,可知,单调递增区间是⎣⎢⎡⎦⎥⎤1,32和[2,+∞);单调递减区间是(-∞,1]和⎣⎢⎡⎦⎥⎤32,2.(1)求函数单调区间的2种方法①定义法:即先求出定义域,再利用定义法进行判断求解. ②图象法:即先画出图象,根据图象求单调区间. (2)求函数单调区间的注意点一个函数出现两个或两个以上的单调区间时,不能用“∪”连接两个单调区间,而要用“和”或“,”连接.题型三函数单调性的应用【典例3】 (1)已知函数f (x )=x 2-2(1-a )x +2在[4,+∞)上是增函数,求实数a 的取值范围.(2)已知y =f (x )在定义域(-∞,+∞)上是减函数,且f (1-a )<f (2a -1),求a 的取值范围.[思路导引] 二次函数的单调性由开口方向及对称轴确定,与函数值有关的不等式问题依据单调性转化为自变量的不等关系.[解] (1)∵f (x )=x 2-2(1-a )x +2=[x -(1-a )]2+2-(1-a )2, ∴f (x )的增区间是[1-a ,+∞). 又∵已知f (x )在[4,+∞)上是增函数, ∴1-a ≤4,即a ≥-3.∴所求实数a 的取值范围是[-3,+∞).(2)∵f (x )在R 上是减函数,且f (1-a )<f (2a -1), ∴1-a >2a -1,得a <23,∴a 的取值范围是⎝⎛⎭⎪⎫-∞,23.[变式] (1)若本例(1)条件改为“函数f (x )=x 2-2(1-a )x +2的单调递增区间为[4,+∞)”,其他条件不变,如何求解?(2)若本例(2)中“定义域(-∞,+∞)”改为“定义域(-1,1)”,其他条件不变,如何求解?[解] (1)∵f (x )=x 2-2(1-a )x +2=[x -(1-a )]2+2-(1-a )2, ∴f (x )的递增区间为[1-a ,+∞). ∴1-a =4,得a =-3. (2)由题意可知⎩⎨⎧-1<1-a <1,-1<2a -1<1.解得0<a <1.①又f (x )在(-1,1)上是减函数,且f (1-a )<f (2a -1), ∴1-a >2a -1,即a <23.②由①②可知,0<a <23,即所求a 的取值范围是⎝ ⎛⎭⎪⎫0,23.函数单调性的3个应用要点(1)二次函数的单调性由于只与对称轴及开口方向有关,因此处理起来较容易,只需结合图象即可获解.(2)已知函数的单调性求参数的取值范围的方法是:视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,通过与已知单调区间比较,求参数的取值范围.(3)需注意若一函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.3.2.1.2函数的最大(小)值要点整理 1.最大值(1)定义:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: ①∀x ∈I ,都有f (x )≤M ; ②∃x 0∈I ,使得f (x 0)=M .那么,称M 是函数y =f (x )的最大值.(2)几何意义:函数y =f (x )的最大值是图象最高点的纵坐标. 2.最小值(1)定义:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: ①∀x ∈I ,都有f (x )≥M ; ②∃x 0∈I ,使得f (x 0)=M .那么,称M 是函数y =f (x )的最小值.(2)几何意义:函数y =f (x )的最小值是图象最低点的纵坐标.温馨提示:(1)最大(小)值必须是一个函数值,是值域中的一个元素. (2)并不是每一个函数都有最值,如函数y =1x,既没有最大值,也没有最小值.(3)最值是函数的整体性质,即在函数的整个定义域内研究其最值. 题型一图象法求函数的最大(小)值【典例1】(1)已知函数f (x )=⎩⎨⎧x 2,-1≤x ≤1,1x ,x >1.求f (x )的最大值、最小值;(2)画出函数f (x )=⎩⎨⎧-2x,x ∈(-∞,0),x 2+2x -1,x ∈[0,+∞)的图象,并写出函数的单调区间,函数的最小值.[思路导引] 作出函数f (x )的图象,结合图象求解. [解] (1)作出函数f (x )的图象(如图1).由图象可知,当x =±1时,f (x )取最大值为f (±1)=1;当x =0时,f (x )取最小值f (0)=0,故f (x )的最大值为1,最小值为0.(2)f(x)的图象如图2所示,f(x)的单调递增区间是(-∞,0)和[0,+∞),函数的最小值为f(0)=-1.图象法求最大(小)值的步骤题型二利用单调性求函数的最大(小)值【典例2】已知函数f(x)=x+1 x .(1)证明:f(x)在(1,+∞)内是增函数;(2)求f(x)在[2,4]上的最值.[解](1)证明:设∀x1,x2∈(1,+∞),且x1<x2.则f(x1)-f(x2)=x1+1x1-x 2-1x2=(x1-x2)·⎝⎛⎭⎪⎫1-1x1x2=(x1-x2)(x1x2-1)x1x2.∵x2>x1>1,∴x1-x2<0,又∵x1x2>1,∴x1x2-1>0,故(x1-x2)·(x1x2-1)x1x2<0,即f(x1)<f(x2),所以f(x)在(1,+∞)内是增函数.∴当x∈[2,4]时,f(2)≤f(x)≤f(4).又f(2)=2+12=52,f(4)=4+14=174,∴f(x)在[2,4]上的最大值为174,最小值为52.函数的最值与单调性的关系(1)如果函数y=f(x)在区间(a,b]上是增函数,在区间[b,c)上是减函数,则函数y=f(x),x∈(a,c)在x=b处有最大值f(b).(2)如果函数y=f(x)在区间(a,b]上是减函数,在区间[b,c)上是增函数,则函数y=f(x),x∈(a,c)在x=b处有最小值f(b).(3)如果函数y=f(x)在区间[a,b]上是增(减)函数,则在区间[a,b]的左、右端点处分别取得最小(大)值、最大(小)值.题型三求二次函数的最大(小)值【典例3】(1)已知函数f(x)=3x2-12x+5,x∈[0,3],求函数的最大值和最小值.(2)求二次函数f(x)=x2-2ax+2在[2,4]上的最小值.[思路导引] 找出f(x)的对称轴,分析对称轴与给定区间的关系,结合单调性求最值.[解] (1)函数f(x)=3x2-12x+5=3(x-2)2-7,函数f(x)=3(x-2)2-7的图象如图所示,由图可知,函数f(x)在[0,2)上递减,在[2,3]上递增,并且f(0)=5,f(2)=-7,f(3)=-4,所以在[0,3]上,f(x)max=f(0)=5,f(x)min =f(2)=-7.(2)∵函数图象的对称轴是x=a,∴f (x )min =f (2)=6-4a .当a >4时,f (x )在[2,4]上是减函数, ∴f (x )min =f (4)=18-8a .当2≤a ≤4时,f (x )min =f (a )=2-a 2.∴f (x )min=⎩⎨⎧6-4a ,a <2,2-a 2,2≤a ≤4,18-8a ,a >4.[变式] 本例(2)条件变为,若f (x )=x 2-2ax +2,当x ∈[2,4]时,f (x )≤a 恒成立,求实数a 的取值范围.[解] 在[2,4]内,f (x )≤a 恒成立, 即a ≥x 2-2ax +2在[2,4]内恒成立, 即a ≥f (x )max ,x ∈[2,4]. 又f (x )max =⎩⎨⎧18-8a ,a ≤3,6-4a ,a >3.①当a ≤3时,a ≥18-8a ,解得a ≥2,此时有2≤a ≤3. ②当a >3时,a ≥6-4a ,解得a ≥65,此时有a >3.综上有实数a 的取值范围是[2,+∞).求解二次函数最值问题的顺序(1)确定对称轴与抛物线的开口方向、作图. (2)在图象上标出定义域的位置. (3)观察单调性写出最值.题型四实际应用中的最值【典例4】 某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎨⎧400x -12x 2,0≤x ≤400,80000,x >400.其中x 是仪器的月产量.(1)将利润表示为关于月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)[思路导引] 先将利润表示成关于x 的函数,再利用函数的单调性求最值. [解] (1)月产量为x 台,则总成本为(20000+100x )元,从而f (x )=⎩⎨⎧-12x 2+300x -20000,0≤x ≤400,60000-100x ,x >400.(2)当0≤x ≤400时,f (x )=-12(x -300)2+25000,当x =300时,f (x )max =25000;当x >400时,f (x )=60000-100x 是减函数,f (x )<60000-100×400=20000<25000.∴当x =300时,f (x )max =25000.即每月生产300台仪器时公司所获利润最大,最大利润为25000元.求解函数最大(小)值的实际问题应注意的2点(1)解实际应用题要弄清题意,从实际出发,引入数学符号,建立数学模型,列出函数关系式,分析函数的性质,从而解决问题,要注意自变量的取值范围.(2)实际应用问题中,最大利润、用料最省等问题常转化为求函数最值来解决.3.2.2.1函数奇偶性的概念要点整理 函数的奇偶性温馨提示:(1)奇偶性是函数的整体性质,所以判断函数的奇偶性应先明确它的定义域(对照函数的单调性是函数的局部性质,以加深理解).(2)奇偶函数的定义域关于原点对称,反之,若定义域不关于原点对称,则这个函数一定不具有奇偶性.题型一函数奇偶性的判断【典例1】 判断下列函数的奇偶性: (1)f (x )=2-|x |;(2)f (x )=x 2-1+1-x 2; (3)f (x )=x x -1;(4)f (x )=⎩⎨⎧2x +1,x >0,-2x +1,x <0.[思路导引] 借助奇函数、偶函数的定义判断. [解] (1)∵函数f (x )的定义域为R ,关于原点对称, 又f (-x )=2-|-x |=2-|x |=f (x ), ∴f (x )为偶函数.(2)∵函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,又∵f (-x )=-f (x ),f (-x )=f (x ),∴f (x )既是奇函数又是偶函数.(3)∵函数f (x )的定义域为{x |x ≠1},不关于原点对称,∴f(x)是非奇非偶函数.(4)f(x)的定义域是(-∞,0)∪(0,+∞),关于原点对称.当x>0时,-x<0,f(-x)=1-(-2x)=1+2x=f(x);当x<0时,-x>0,f(-x)=1+(-2x)=1-2x=f(x).综上可知,对于x∈(-∞,0)∪(0,+∞),都有f(-x)=f(x),f(x)为偶函数.判断函数奇偶性的2种方法(1)定义法(2)图象法题型二奇函数、偶函数的图象【典例2】已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象.(2)写出使f(x)<0的x的取值集合.[思路导引] 根据奇函数图象特征作出函数图象,再求解.[解] (1)因为函数f(x)是奇函数,所以y=f(x)在[-5,5]上的图象关于原点对称.由y=f(x)在[0,5]上的图象,可知它在[-5,0]上的图象,如图所示.(2)由图象知,使f(x)<0的x的取值集合为(-2,0)∪(2,5).[变式] 若将本例中的“奇函数”改为“偶函数”,试画出在区间[-5,0]上的图象.[解] 因为函数f(x)是偶函数,所以y=f(x)在[-5,5]上的图象关于y轴对称.由y=f(x)在[0,5]上的图象,可知它在[-5,0]上的图象,如图所示.巧用奇、偶函数的图象求解问题(1)依据:奇函数⇔图象关于原点对称,偶函数⇔图象关于y轴对称.(2)求解:根据奇、偶函数图象的对称性可以解决诸如求函数值或画出奇偶函数图象的问题.题型三利用函数的奇偶性求值【典例3】(1)若函数f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a=________,b=________;。
人教A版高中数学必修第一册第三章函数的定义域和值域课件
/人A数学/ 必修 第一册
返回导航 上页 下页
求函数的函数值、值域 1.求函数的函数值问题,首先要确定函数的对应关系f的具体含义,再 _代__入___求值. 2.求函数值域时应先确定相应的_定__义__域__,再根据函数的具体形式及 其运算确定其值域.
/人A数学/ 必修 第一册
返回导航 上页 下页
f(2x+1)中 x 的取值范围(定义域)可由 2x+1∈(-1,2)求得.
/人A数学/ 必修 第一册
[解] (1)要使函数有意义,即 x2-2x-3>0,
解不等式得 x<-1 或 x>3, 函数的定义域为(-∞,-1)∪(3,+∞).
(2)由题意得x2+x-1≠3≠00,,
x≠-1, 即x≠32.
/人A数学/ 必修 第一册
返回导航 上页 下页
1.集合{x|2≤x<5}用区间表示为__[_2_,__5_) _;集合{x|x≤-1, 或3<x<4}用区间表示为_(_-__∞_,__-__1_]_∪__(3_,__4_)_.
/人A数学/ 必修 第一册
返回导航 上页 下页
函数的定义域 函数的定义域是使 函数有意义 的所有 自变量 的集合;若函数的解析
/人A数学/ 必修 第一册
(3)求函数 y=x+ 2x+1的值域; 解:(3)(换元法)令 2x+1=t,t≥0,
t2-1 ∴x= 2 ,
返回导航 上页 下页
/人A数学/ 必修 第一册
∴y=t2-2 1+t=12t2+t-12=12(t+1)2-1. ∵t≥0,∴y≥-12, ∴函数的值域为[-12,+∞).
式是由两个或两个以上式子的和、差、积、商构成的,则其定义域是 使每个式子有意义的自变量取值的 公共部分 的集合.
最新人教A版高中数学教材目录(全)
人教A版高中数学目录必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式 2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
人教A版高中数学必修第一册第三章3-4函数的应用(一)课件
分析:根据3.1.2例8中公式②,可得应纳税所得额t关于综合所得收 入额x的解析式t=g(x),再结合y=f (t)的解析式③,即可得出y关于x 的函数解析式. 解:(1)由个人应纳税所得额计算公式,可得 t=x-60 000-x(8%+2%+1%+9%)-9 600-560=0.8x-70 160. 令t=0,得x=87 700. 根据个人应纳税所得额的规定可知,当0≤x≤87 700时,t=0.所以, 个人应纳税所得额t关于综合所得收入额x的函数解析式为
√D.y=-0.1x+1 200(0≤x≤4 000)
) 题号
1 2 3 4
D [因为自行车为x辆,所以电动车为(4 000-x)辆,
存车总收入y=0.2x+0.3(4 000-x)=-0.1x+1 200(0≤x≤4 000).]
3.在固定电压差(电压为常数)的前提下,当电流通过圆柱形的电
线时,其电流强度I(单位:安)与电线半径r(单位:毫米)的三次方 题号
1
故选C.]
2
3
4
2.据调查,某存车处在某星期日的存车量为4 000辆次,其中电动车
存车费是每辆一次0.3元,自行车存车费是每辆一次0.2元.若自行车
存车量为x辆次,存车总收入为y元,则y关于x的函数关系式是( A.y=0.1x+800(0≤x≤4 000) B.y=0.1x+1 200(0≤x≤4 000) C.y=-0.1x+800(0≤x≤4 000)
探究建构
探究1 一(二)次函数模型的应用 [典例讲评] 1.为了迎接五一小长假的购物高峰,某商场决定将一批 进价为40元/件的商品降价出售,在市场试销中发现,此商品的销售单 价x(单位:元)与日销售量y(单位:件)之间有如下表所示的关系.
人教A版高中数学教材目录(全)
人教A版高中数学目录必修1第一章集合与函数概念1 .1 集合2 .3 变量间的相关关系阅读与思考相关关系的强与弱2.5等比数列的前n项和1 .2 函数及其表示1 .3 函数的基本性质第三章概率3 .1 随机事件的概率第三章不等式第二章基本初等函数(Ⅰ)2.1 指数函数2 .2 对数函数2 .3 幂函数阅读与思考天气变化的认识过程3 .2 古典概型3 .3 几何概型3.1不等关系与不等式3.2一元二次不等式及其解法第三章函数的应用3.1 函数与方程3 .2 函数模型及其应用必修 4第一章三角函数1 .1 任意角和弧度制1 2 .任意角的三角函数3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域1 .3 三角函数的诱导公式必修21 .4 三角函数的图象与性质1 .5 函数 y=Asin (ωx+ψ) 3.3.2 简单的线性规划问题第一章空间几何体1 .6 三角函数模型的简单应1 .1 空间几何体的结构用1 .2 空间几何体的三视图和 3.4 基本不等式直观图1 .3 空间几何体的表面积与第二章平面向量体积 2 .1 平面向量的实际背景及第二章点、直线、平面之间的位置关系2 .1 空间点、直线、平面之间的位置关系2 .2 直线、平面平行的判定基本概念2 .2 平面向量的线性运算2 .3 平面向量的基本定理及坐标表示2 4 .平面向量的数量积2 5 .平面向量应用举例选修1-1第一章常用逻辑用语1.1命题及其关系及其性质2 .3 直线、平面垂直的判定及其性质第三章三角恒等变换3 .1 两角和与差的正弦、余弦和正切公式1.2充分条件与必要条件3 .2 简单的三角恒等变换第三章直线与方程1.3简单的逻辑联结词3.1 直线的倾斜角与斜率3 .2 直线的方程必修 51.4全称量词与存在量词 3 .3 直线的交点坐标与距离公式第一章解三角形必修31.1正弦定理和余弦定理第二章圆锥曲线与第一章算法初步1 .1 算法与程序框图 1.2应用举例方程1 .2 基本算法语句1 .3 算法案例阅读与思考割圆术1.3实习作业2.1椭圆2.2双曲线第二章统计2 .1 随机抽样阅读与思考一个著名的案第二章数列2.3抛物线例阅读与思考广告中数据的可靠性2.1数列的概念与简单表示法用第三章导数及其应阅读与思考如何得到敏感性问题的诚实反应2.2等差数列2 .2 用样本估计总体阅读与思考生产过程中的2.3等差数列的前n 项和质量控制图2.4等比数列3.1变化率与导数3.2导数的计算1人教A版高中数学目录选修 2-12.6导数在研究函数中 1.3 导数在研究函数的应用中的应用第一章常用逻辑用2.7生活中的优化问题 1.4 生活中的优化问语举例题举例3.4命题及其关系3.3.2定积分的概念1.5充分条件与必要选修1-21.4微积分基本定理条件第一章统计案例 1.7 定积分的简单应1.3 简单的逻辑联结用词1.1 回归分析的基本思想及其初步应用2.4全称量词与存在量词第二章推理与证明 1.2 独立性检验的基本思想及其初步应用2.5合情推理与演绎推理第二章圆锥曲线与方程第二章推理与证明 2.2 直接证明与间接证明 2.1 曲线与方程2.1 合情推理与演绎证明 2.3 数学归纳法2.2 椭圆2.2 直接证明与间接2.3 双曲线证明3.3抛物线第三章数系的扩充与复数的引入第三章数系的扩充 3.1 数系的扩充和复与复数的引入数的概念第三章空间向量与立体几何3.1 数系的扩充和复数 3.2 复数代数形式的的概念四则运算3.1空间向量及其运算3.2 复数代数形式的四则运算3.2立体几何中的向选修2-3 量方法第一章计数原理第四章框图选修 2-21.1分类加法计数原4.1 流程图理与分步乘法计数原理第一章导数及其应4.2 结构图1.2 排列与组合用1.3二项式定理 1.1 变化率与导数1.2导数的计算2人教A版高中数学目录第二章随机变量及第二讲直线与圆的其分布位置关系选修 3-22.8离散型随机变量第三讲圆锥曲线性及其分布列质的探讨选修 3-3 2.2 二项分布及其应用选修4-2 第一讲从欧氏几何3.5离散型随机变量看球面的均值与方差第一讲线性变换与二阶矩阵第二讲球面上的距3.6正态分布离和角第二讲变换的复合第三章统计案例与二阶矩阵的乘法第三讲球面上的基本图形3.3.3回归分析的基本第三讲逆变换与逆思想及其初步应用矩阵第四讲球面三角形3.3.4独立性检验的基第五讲球面三角形第四讲变换的不变本思想及其初步应用量与矩阵的特征向量的全等第六讲球面多边形与欧拉公式选修3-1 选修4-3第七讲球面三角形的第一讲早期的算术边角关系选修4-4 与几何第八讲欧氏几何与第一讲坐标系第二讲古希腊数学非欧几何第二讲参数方程第三讲中国古代数学瑰宝选修 3-4第四讲平面解析几选修4-5 何的产生第一讲平面图形的对称群第一讲不等式和绝第五讲微积分的诞对值不等式生第二讲代数学中的对称与抽象群的概念第二讲证明不等式第六讲近代数学两的基本方法巨星第三讲对称与群的故事第三讲柯西不等式第七讲千古谜题与排序不等式第八讲对无穷的深第四讲数学归纳法入思考选修 4-1证明不等式第九讲中国现代数第一讲相似三角形学的开拓与发展的判定及有关性质3人教 A 版高中数学目录2 .4 向量的应用 选修 4-6第二章 函数 2 .1 函数第一讲 整数的整除2 .2 一次函数和二次函数 2 .3 函数的应用(Ⅰ) 第三章 三角恒等变换3.1 和角公式2 .4 函数与方程3 .2 倍角公式和半角公式 第二讲 同余与同余 3 .3 三角函数的积化和差与方程和差化积 第三章 基本初等函数 (Ⅰ) 3 .1 指数与指数函数 程第三讲 一次不定方3 .2 对数与对数函数 3 .3 幂函数 3 .4 函数的应用(Ⅱ) 必修五 第一章 解直角三角形 1.1 正弦定理和余弦定理第四讲 数伦在密码中的应用必修二第一章 立体几何初步1 .2 应用举例 第二章 数列1.1 空间几何体 2 .1 数列 1 .2 点、线、面之间的位置 2 .2 等差数列 关系 2 .3 等比数列 选修 4-7第三章 不等式 第二章 平面解析几何初步第一讲 优选法 2 .1 平面真角坐标系中的基 本公式3 .1 不等关系与不等式 3 .2 均值不等式第二讲试验设计初2 .2 直线方程 2 .3 圆的方程3 .3 一元二次不等式及其解 法 步3 .4 不等式的实际应用 2 .4 空间直角坐标系3 .5 二元一次不等式(组) 与简单线性规划问题必修三选修 4-8选修 4-9第一章 算法初步1.1 算法与程序框图1 .2 基本算法语句1 .3 中国古代数学中的算法 案例选修 1-1 第一章 常用逻辑用语 1.1 命题与量词 1 .2 基本逻辑联结词1 .3 充分条件、必要条件与命题的四种形式第一讲 风险与决策的基本概念第二章 统计 2.1 随机抽样2 .2 用样本估计总体2 .3 变量的相关性第二章 圆锥曲线与方程2.1 椭圆2 .2 双曲线2 .3 抛物线第二讲 决策树方法第三章 概率 3 1 . 随机现象第三讲 风险型决策3 2第三章 导数及其应用3 .1 导数3 .2 导数的运算 3 .3 导数的应用WORD格式.古典概型的敏感性分析33.随机数的含义与应用34.概率的应用第四讲马尔可夫型决策简介必修四选修 1-2第一章统计案例第二章推理与证明第一章基本初等函( Ⅱ)高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1 .2 集合之间的关系与运算1 .1 任意角的概念与弧度制1 .2 任意角的三角函数1 .3 三角函数的图象与性质第二章平面向量2 .1 向量的线性运算2 .2 向量的分解与向量的坐标运算2 .3 平面向量的数量积第三章数系的扩充与复数的引入第四章框图选修 4-5第一章不等式的基本性质和证明的基本方法1 .1 不等式的基本性质和一元二次不等式的解法1 2 .基本不等式4WORD格式人教A版高中数学目录1 .3 绝对值不等式的解法1 .4 绝对值的三角不等式1 .5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2 .2 排序不等式2 .3 平均值不等式( 选学)2 .4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3 .2 用数学归纳法证明不等式,贝努利不等式5。
人教A版高中数学教材目录(全)
必修 1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2. 1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3. 1 函数与方程3.2 函数模型及其应用必修 2第一章空间几何体1 .1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2 .1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3. 1 直线的倾斜角与斜率3.2 直线的方程3 . 3 直线的交点坐标与距离公式必修 3第一章算法初步1 .1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2 .1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2 .2 用样本估计总体阅读与思考生产过程中的质量控制图人教 A 版高中数学目录2. 3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3 .1 随机事件的概率阅读与思考天气变化的认识过程3. 2 古典概型3. 3 几何概型必修 4第一章三角函数1 .1 任意角和弧度制1. 2 任意角的三角函数1. 3 三角函数的诱导公式1. 4 三角函数的图象与性质1. 5 函数 y=Asin (ωx+ψ)1. 6 三角函数模型的简单应用第二章平面向量2 .1 平面向量的实际背景及基本概念2. 2 平面向量的线性运算2. 3 平面向量的基本定理及坐标表示2. 4 平面向量的数量积2. 5 平面向量应用举例第三章三角恒等变换3 .1 两角和与差的正弦、余弦和正切公式3. 2 简单的三角恒等变换必修 5第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n 项和2.4 等比数列2.5 等比数列的前n 项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题3.3.1 二元一次不等式(组)与平面区域3.3.2 简单的线性规划问题3.4 基本不等式选修 1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 变化率与导数3.2 导数的计算3.3 导数在研究函数中的应用3.4 生活中的优化问题举例选修 1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4. 1 流程图4. 2 结构图人教 A 版高中数学目录选修 2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2 立体几何中的向量方法选修 2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修 2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2二项分布及其应用2.3 离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修 3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝人教 A 版高中数学目录选修 3-2选修 3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修 4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修 4-3选修 4-4第一讲坐标系第二讲参数方程第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修 3-4第一讲平面图形的选修 4-5对称群第一讲不等式和绝对值不等式第二讲代数学中的对称与抽象群的概念第二讲证明不等式的基本方法第三讲对称与群的故事第三讲柯西不等式与排序不等式选修 4-1第四讲数学归纳法证明不等式第一讲相似三角形的判定及有关性质选修 4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修 4-7第一讲优选法第二讲试验设计初步选修 4-8选修 4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版( B)教材目录介绍必修一第一章集合1. 1 集合与集合的表示方法1.2 集合之间的关系与运算人教 A 版高中数学目录第二章函数2.1 函数2. 2 一次函数和二次函数2. 3 函数的应用(Ⅰ)2. 4 函数与方程第三章基本初等函数(Ⅰ)3 .1 指数与指数函数3. 2 对数与对数函数3.3 幂函数3. 4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1. 2 点、线、面之间的位置关系第二章平面解析几何初步2 .1 平面真角坐标系中的基本公式2. 2 直线方程2. 3 圆的方程2. 4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1. 2 基本算法语句1. 3 中国古代数学中的算法案例第二章统计2.1 随机抽样2. 2 用样本估计总体2. 3 变量的相关性第三章概率3.1 随机现象3. 2 古典概型3. 3 随机数的含义与应用3. 4 概率的应用必修四第一章基本初等函(Ⅱ )1 .1 任意角的概念与弧度制1. 2 任意角的三角函数1. 3 三角函数的图象与性质第二章平面向量2 .1 向量的线性运算2 .2 向量的分解与向量的坐标运算2. 3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3 .1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修 1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修 1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修 4-5第一章不等式的基本性质和证明的基本方法1 .1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式人教 A 版高中数学目录1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2. 1 柯西不等式2.2 排序不等式2.3 平均值不等式 ( 选学 )2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3. 1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第20讲 §3.1.1 方程的根与函数的零点
¤学习目标:结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;掌握零点存在的判定条件.
¤知识要点:
1. 对于函数()y f x =,能使()0f x =的实数x 叫作函数()y f x =的零点,函数的零点就是方程()0f x =的实数根,也就是函数()y f x =的图象与x 轴的交点的横坐标.
2. 函数零点存在结论:若函数()y f x =的图象在区间[,]a b 上的图象是连续不断的一条曲线,且()()0f a f b < ,则函数()y f x =在区间(,)a b 内有零点.
¤例题精讲:
【例1】函数()ln 26f x x x =+-的零点一定位于区间( ).
A. (1, 2)
B. (2 , 3)
C. (3, 4)
D. (4, 5)
解:易知函数()f x 在定义域(0,)+∞内是增函数.
∵ (1)ln12640f =+-=-<,(2)ln 246ln 220f =+-=-<,(3)ln366ln30f =+-=>.
∴ (2)(3)0f f < ,即函数()f x 的零点在区间(2,3). 所以选B.
【例2】利用函数的图象,指出下列函数零点所在的大致区间:
(1)3()21f x x x =--+; (2)1()32x f x e x +=++.
解:(1)易知函数3()21f x x x =--+在定义域R 上是减函数.
用计算器或计算机作出,()x f x 的对应值表或图象. x -3 -2 -1 0 1 2 3
()f x 34 13 4 1 -2 -11 -32
由列表或图象可知,(0)0f >,(1)0f <,即(0)(1)0f f < ,说明函数()f x 在区间(0,1)内有
零点,且仅有一个. 所以函数()f x 的零点所在大致区间为(0,1).
(2)易知函数1()32x f x e x +=++在定义域R 上是增函数.
用图形计算器或计算机作出图象.
由图象可知,(2)0f -<,(1)0f ->,即(2)(1)0f f --< ,说明函数()f x 在区间(2,1)--内
有零点,且仅有一个. 所以函数()f x 的零点所在大致区间为(2,1)--. 【例3】求证方程231
x x x -=
+在(0,1)内必有一个实数根. 证明:设函数2()31
x x f x x -=-+. 由函数的单调性定义,可以证出函数()f x 在(1,)-+∞是减函数. 而0(0)3210f =-=-<,115(1)3022
f =-=>,即(0)(1)0f f < ,说明函数()f x 在区间(0,1)内有零点,且只有一个. 所以方程231x x x -=+在(0,1)内必有一个实数根. 点评:等价转化是高中数学解题中处理问题的一种重要思想,它是将不熟悉的问题转化为熟悉的问题,每个问题的求解过程正是这样一种逐步的转化. 此题可变式为研究方程231
x x x -=+的实根个数. 【例4】(1)若方程2210ax -=在(0,1)内恰有一解,则实数a 的取值范围是 .
(2)已知函数()34f x mx =-,若在[2,0]-上存在0x ,使0()0f x =,则实数m 的取值范围是 . 解:(1)设函数2()21f x ax =-,由题意可知,函数()f x 在(0,1)内恰有一个零点.
∴ (0)(1)1(21)0f f a =-⨯-< , 解得12
a >
. (2)∵在[2,0]-上存在0x ,使0()0f x =, 则(2)(0)0f f -≤ ,
∴ (64)(4)0m --⨯-≤,解得23
m ≤-. 所以, 实数m 的取值范围是2(,]3-∞-. 点评:根的分布问题,实质就是函数零点所在区间的讨论,需要逆用零点存在性定理,转化得到有关参数的不。