山东省济南市2017-2018学年高一数学下学期期末考试试题
山东省济南市2016-2017学年高一数学下学期期末考试试题(含解析)
2016—2017学年度第二学期期末考试高一数学试题第I卷(选择题,每题5分,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有.. 一项是符合题目要求的,请将正确选项填涂在答题卡上)1. -HI.: -:":1的值是()A. B. C. D.2 2【答案】A【解析】由题意可得:.ii、二、.iii —T-二'.in ri = ■. -i ='.本题选择A选项.2. 已知I.::. li ■:.H.I :■::',且丄-「一L;,则".的值分别为()A. - 7,—5B. 7 , - 5C. —7, 5D. 7 , 5【答案】C【解析】试题分析:沁:iQ,,」「■;.■<:, ,解得:—一‘,故选C.考点:向量相等3. 在区间上随机取一个数,「:的值介于0到之间的概率为()A. B. C. D.【答案】A【解析】在区间上随机取一个数x,即x€时,要使:左;的值介于0到之间,」I 7T TTX TI 卜TT TTX TI需使或:'■■■;2 2或:冬詔,区间长度为,TT¥由几何概型知:•「•一的值介于0到之间的概率为.本题选择A选项.4. 已知圆._ + ||r.[:上任意一点M关于直线• I . ■的对称点N也再圆上,则的值为()A. |B. 1C. :'D. 2【答案】D【解析】T圆x2+y2- 2x+my=0上任意一点M关于直线x+y=0的对称点N也在圆上,•••直线x+y=0经过圆心I ,故有[- ■,解得m=2,本题选择D选项•5. 下列函数中,周期为,且在 |上单调递增的奇函数是()A. -;|||;:;- - :B. _ I :;C. . - ;D. . -din --;【答案】C【解析】化简所给函数的解析式:A. --…凡,该函数周期为,函数为偶函数,不合题意;B. ■. |~ ■-,该函数周期为,在|上单调递减,不合题意;C. . - ' :: - ..ii ■■-,该函数周期为,在|上单调递增,函数是奇函数符合题意;D. ■■■ - siix::-:'一:汎汽喪,该函数周期为.':i,不合题意;本题选择C选项•6. 已知7血中,i",t;分别是角-F; <的对边,讥山,则=()A. L 辽B. I:.C. J.35 或£D.【答案】B【解析】由题意结合正弦定理可得,汕" ,a<b,则A<B=60°A=45°.本题选择B选项.点睛:1 •在解三角形的问题中,三角形内角和定理起着重要作用,在解题时要注意根据这个定理确定角的范围及三角函数值的符号,防止出现增解或漏解.2 •正、余弦定理在应用时,应注意灵活性,尤其是其变形应用时可相互转化•如a2= b2+ c2—2bccos A可以转化为sin2 A = sin2 B+ sin2 C —2sin Bsin CCos A 利用这些变形可进行等式的化简与证明.7. 将函数• -,「:.的图象向右平移个单位长度,再向上平移1个单位长度,则所得的图象对应的解析式为()•A. 二I wB. . - ' ■ iii ■C. . - I .:■!. -D. .-11 -【答案】B【解析】将函数• -的图象向右平移个单位长度,所得的图象对应的解析式为:=|'二in'-,再向上平移1个单位长度,所得的图象对应的解析式为.- I本题选择B选项.点睛:由y= sin x的图象,利用图象变换作函数y= Asin( w x +© )( A> 0, 3> 0)( x€ R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿x轴的伸缩量的区别•先平移变换再周期变换(伸缩变换),平移的量是| 0 |个单位;而先周期变换(伸缩变换)再平移变换,平移的量是A个单位.8. 如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)•若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()甲组S62 516 1 ? yX 4?gA. 3 , 5B. 5 , 5C. 3 , 7D. 5 , 7【答案】C【解析】由已知中甲组数据的中位数为"h,故乙数据的中位数为即一二,,可得乙数据的平均数为'-,即甲数据的平均数为■-,故’「r-... ■=■■,故选.【方法点睛】本题主要考查茎叶图的应用、中位数、平均数的求法,属于难题•要解答本题首先要弄清中位数、平均数的定义,然后根据定义和公式求解,(1)中位数,如果样本容量是奇数中间的数既是中位数,如果样本容量为偶数中间两位数的平均数既是中位数;(2)众数是一组数据中出现次数最多的数据; (3)平均数既是样本数据的算数平均数「 .9. 在;中,点在上,且汕二j| ,点Q 是AC 的中点,若:-.二:丄工, 贝g"等于()•A. ( — 6,21)B. (6 , - 21)C. (2, - 7) D. (— 2,7)【答案】A【解析】由题意可得:I I 7「I 、: ,则:N 二,结合题意可得::」.,「: I-.,.:.本题选择A 选项.10. 从某高中随机选取 5名高一男生,其身高和体重的数据如下表所示: 身高x(cm)160165170175180身高y(kq)63 66 70 72 74根据上表可得回归直线方程 ,「:一....据此模型预报身高为172cm 的高一男生的体重为 A. 70.09 B. 70.12 C. 70.55 D. 71.05 【答案】B【解析】由表中数据可得样本中心点一定在回归直线方程上故'.■: 解得 W 1故「二门in当 x=172 时,:I! ::•「丨:工J 门|丄、, 本题选择B 选项.点睛: (1)正确理解计算;「•的公式和准确的计算是求线性回归方程的关键. ⑵ 回归直线方程 li-. - 1必过样本点中心■■- •63^ 55 + 70 + 72 + 7-15-〔-心,(3)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测. 11.函数匸-:1、|门 +- ■. I--: 的最大值为( )A. B. 1 C. D. 【答案】A【解析】整理函数的解析式:t(x) = |sin(x + 鲁)+ cosjx-^ = |sin(x + ^ + sin(x + ^ 6 . i lit 6 二評叫X+詁弓 本题选择A 选项•12. 已知是两个单位向量,且■■ I. ..I i| . ii.若点C 在一,1 •内,且—二二,则------------ »------------ K-------------- 1- mOC 二 mOA + nOBfrn.in 曲),则R 二()A. B. 3 C. D. :;因为I :-是两个单位向量,且■ '■■■ - ■: .'I ■.所以'' :'K ,故可建立直角坐标系如图所示。
山东省济南市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题
2016-2017学年某某省某某高一(下)期中数学试卷一、选择题(12*5=60分)1.下列说法中正确的是()A.第一象限角一定不是负角B.﹣831°是第四象限角C.钝角一定是第二象限角D.终边与始边均相同的角一定相等2.下列说法正确的是()A.若|,B.若,C.若,则D.若,则与不是共线向量3.已知角α终边上一点P(﹣4,3),则sinα=()A.B.C.D.﹣4.已知点A(﹣1,5)和向量=(2,3),若=3,则点B的坐标为()A.(7,4)B.(7,14) C.(5,4)D.(5,14)5.cos(﹣225°)+sin(﹣225°)等于()A.B.﹣C.0 D.6.在△ABC中, =, =,当<0时,△ABC为()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形7.P是△ABC所在平面上一点,若,则P是△ABC的()A.外心 B.内心 C.重心 D.垂心8.要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位9.已知函数f(x)=sin(πx﹣)﹣1,则下列命题正确的是()A.f(x)是周期为1的奇函数B.f(x)是周期为2的偶函数C.f(x)是周期为1的非奇非偶函数D.f(x)是周期为2的非奇非偶函数10.已知ω>0,函数f(x)=sin(ωx+)在(,π)上单调递减,则实数ω的取值X围是()A.[,] B.[,] C.(0,] D.(0,2]11.函数y=lncosx()的图象是()A.B.C.D.12.设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若=λ(λ∈R),=μ(μ∈R),且+=2,则称A3,A4调和分割A1,A2,已知平面上的点C,D调和分割点A,B,则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C、D可能同时在线段AB上D.C、D不可能同时在线段AB的延长线上二、填空题(4*5=20分)13.cos =.14.已知θ∈{α|α=kπ+(﹣1)k+1•,k∈Z},则角θ的终边所在的象限是.15.已知||=||=1,|+|=1,则|﹣|=.16.如图,已知△ABC中,D为边BC上靠近B点的三等分点,连接AD,E为线段AD的中点,若,则m+n=.二、解答题(共70分,其中17题10分,18,19,20,21,22各12分)17.已知tanα=2,求下列各式的值:(1);(2)3sin2α+3sinαcosα﹣2cos2α.18.已知f(α)=,(1)化简f(α)(2)若cosα=,求f(α)的值.19.已知||=2,||=3,||与||的夹角为120°,求(1)(2)﹣(3)(2)()(4)||20.求函数的周期、对称轴、对称中心及单调递增区间.21.设,是不共线的两个向量=3+4, =﹣2+5,若实数λ,μ满足λ+μ=5﹣,求λ,μ的值.22.求函数y=cos2x+asinx+a+1(0≤x≤)的最大值.2016-2017学年某某省某某外国语学校三箭分校高一(下)期中数学试卷参考答案与试题解析一、选择题(12*5=60分)1.下列说法中正确的是()A.第一象限角一定不是负角B.﹣831°是第四象限角C.钝角一定是第二象限角D.终边与始边均相同的角一定相等【考点】G3:象限角、轴线角;2K:命题的真假判断与应用.【分析】通过特例判断A的正误,角所在象限判断B的正误;钝角的X围判断C的正误;角的终边判断D的正误;【解答】解:例如﹣390°是第一象限的角,它是负角,所以A不正确;﹣831°=﹣3×360°+249°所以﹣831°是第三象限角,所以B不正确;钝角一定是第二象限角,正确;终边与始边均相同的角一定相等,不正确,因为终边相同,角的差值是360°的整数倍.故选:C.2.下列说法正确的是()A.若|,B.若,C.若,则D.若,则与不是共线向量【考点】96:平行向量与共线向量;93:向量的模.【分析】利用平面向量的性质,决定向量的有大小和方向,结合共线向量的定义进行选择.【解答】解:对于A,若|,;错误;因为向量没有大小之分;对于B,,错误;因为两个向量方程可能不同;对于C,相等的向量大小和方向都相同;故正确;对于D,,则与可能是共线向量;故错误;故选:C.3.已知角α终边上一点P(﹣4,3),则sinα=()A.B.C.D.﹣【考点】G9:任意角的三角函数的定义.【分析】由题意可得,x=﹣4、y=3、r=|OP|=5,再由三角函数的定义求得结果.【解答】解:由题意可得,x=﹣4、y=3、r=|OP|=5,故sinα==,故选:A.4.已知点A(﹣1,5)和向量=(2,3),若=3,则点B的坐标为()A.(7,4)B.(7,14) C.(5,4)D.(5,14)【考点】9J:平面向量的坐标运算.【分析】设B(x,y),由得(x+1,y﹣5)=(6,9),求得x、y的值,即可求得点B的坐标.【解答】解:设B(x,y),由得(x+1,y﹣5)=(6,9),故有,解得,故选 D.5.cos(﹣225°)+sin(﹣225°)等于()A.B.﹣C.0 D.【考点】GO:运用诱导公式化简求值.【分析】直接利用诱导公式化简所给式子的值,可得答案.【解答】解:cos(﹣225°)+sin(﹣225°)=cos225°﹣sin225°=cos﹣sin=﹣cos45°+sin45°=0.故选:C.6.在△ABC中, =, =,当<0时,△ABC为()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形【考点】9P:平面向量数量积的坐标表示、模、夹角.【分析】由<0知∠BAC>90°,由此可知△ABC的形状.【解答】解:∵<0,∴,∴,∴△ABC为钝角三角形,故选C.7.P是△ABC所在平面上一点,若,则P 是△ABC的()A.外心 B.内心 C.重心 D.垂心【考点】9R:平面向量数量积的运算;9T:数量积判断两个平面向量的垂直关系.【分析】本题考查的知识点是平面向量的数量积运算,由,我们任取其中两个相等的量,如,根据平面向量乘法分配律,及减法法则,我们可得,同理我们也可以得到PA⊥BC,PC⊥AB,由三角形垂心的性质,我们不难得到结论.【解答】解:∵,则由得:,∴PB⊥AC同理PA⊥BC,PC⊥AB,即P是垂心故选D8.要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】直接利用三角函数的平移原则推出结果即可.【解答】解:因为函数y=sin(4x﹣)=sin,要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向右平移单位.故选:B.9.已知函数f(x)=sin(πx﹣)﹣1,则下列命题正确的是()A.f(x)是周期为1的奇函数B.f(x)是周期为2的偶函数C.f(x)是周期为1的非奇非偶函数D.f(x)是周期为2的非奇非偶函数【考点】H3:正弦函数的奇偶性;H1:三角函数的周期性及其求法.【分析】直接求出函数的周期,化简函数的表达式,为一个角的一个三角函数的形式,判定奇偶性,即可得到选项.【解答】解:因为:T==2,且f(x)=sin(πx﹣)﹣1=﹣cosπx﹣1,因为f(﹣x)=f(x)∴f(x)为偶函数.故选B.10.已知ω>0,函数f(x)=sin(ωx+)在(,π)上单调递减,则实数ω的取值X围是()A.[,] B.[,] C.(0,] D.(0,2]【考点】H5:正弦函数的单调性.【分析】由条件利用正弦函数的减区间可得,由此求得实数ω的取值X围.【解答】解:∵ω>0,函数f(x)=sin(ωx+)在(,π)上单调递减,则,求得≤ω≤,故选:A.11.函数y=lncosx()的图象是()A.B.C.D.【考点】35:函数的图象与图象变化.【分析】利用函数的奇偶性可排除一些选项,利用函数的有界性可排除一些个选项.从而得以解决.【解答】解:∵cos(﹣x)=cosx,∴是偶函数,可排除B、D,由cosx≤1⇒lncosx≤0排除C,故选A.12.设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若=λ(λ∈R),=μ(μ∈R),且+=2,则称A3,A4调和分割A1,A2,已知平面上的点C,D调和分割点A,B,则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C、D可能同时在线段AB上D.C、D不可能同时在线段AB的延长线上【考点】9B:向量加减混合运算及其几何意义.【分析】由题意可设A(0,0)、B(1,0)、C(c,0)、D(d,0),结合条件+=2,根据题意考查方程+=2的解的情况,用排除法选出正确的答案即可.【解答】解:由已知不妨设A(0,0)、B(1,0)、C(c,0)、D(d,0),则(c,0)=λ(1,0),(d,0)=μ(1,0),∴λ=c,μ=d;代入+=2,得+=2;(*)若C是线段AB的中点,则c=,代入(*)得,d不存在,∴C不可能是线段AB的中点,A错误;同理B错误;若C,D同时在线段AB上,则0≤c≤1,0≤d≤1,代入(*)得,c=d=1,此时C和D点重合,与已知矛盾,∴C错误.若C,D同时在线段AB的延长线上时,则λ>1.μ>1,∴1λ+1μ<2,这与1λ+1μ=2矛盾;∴C、D不可能同时在线段AB的延长线上,D正确.故选:D.二、填空题(4*5=20分)13.cos =.【考点】GO:运用诱导公式化简求值.【分析】直接由三角函数的诱导公式化简计算得答案.【解答】解:cos =cos=cos(25π+)=cos()=﹣cos=.故答案为:.14.已知θ∈{α|α=kπ+(﹣1)k+1•,k∈Z},则角θ的终边所在的象限是三,四.【考点】G3:象限角、轴线角.【分析】对k分奇数与偶数讨论利用终边相同的角的集合的定义即可得出.【解答】解:当k=2n+1(n∈Z)时,α=(2n+1)π+,角θ的终边在第三象限.当k=2n(n∈Z)时,α=2nπ﹣,角θ的终边在第四象限.故答案为:三,四.15.已知||=||=1,|+|=1,则|﹣|=.【考点】9R:平面向量数量积的运算.【分析】法一、由已知求出,然后求出,开方后得答案;法二、由题意画出图形,然后求解直角三角形得答案.【解答】解:法一、由||=||=1,|+|=1,得,即,∴,则|﹣|=;法二、由题意画出图形如图,设,则图中A、B两点的距离即为|﹣|.连接AB后解直角三角形可得|AB|=.故答案为:.16.如图,已知△ABC中,D为边BC上靠近B点的三等分点,连接AD,E为线段AD的中点,若,则m+n=.【考点】9V:向量在几何中的应用.【分析】根据向量加法的平行四边形法则,向量加减法的几何意义,以及向量的数乘运算即可得出,这样便可得出m+n的值.【解答】解:根据条件,====;又;∴.故答案为:.二、解答题(共70分,其中17题10分,18,19,20,21,22各12分)17.已知tanα=2,求下列各式的值:(1);(2)3sin2α+3sinαcosα﹣2cos2α.【考点】GH:同角三角函数基本关系的运用.【分析】(1)原式分子分母除以cosα,利用同角三角函数间基本关系化简,将tanα的值代入计算即可求出值;(2)原式分母看做“1”,利用同角三角函数间基本关系化简,将tanα的值代入计算即可求出值.【解答】解:(1)∵tanα=2,∴原式===;(2)∵tanα=2,∴原式===.18.已知f(α)=,(1)化简f(α)(2)若cosα=,求f(α)的值.【考点】GO:运用诱导公式化简求值.【分析】(1)根据诱导公式化简可得答案.(2)由cosα=,利用同角三角函数间的关系式可求解.【解答】解:(1)由f(α)=,==2sinα.(2)∵cosα=,∴当α在第一象限时,sinα==.∴f(α)=2sinα=1;∴当α在第四象限时,sinα=﹣=﹣.∴f(α)=2sinα=﹣1.19.已知||=2,||=3,||与||的夹角为120°,求(1)(2)﹣(3)(2)()(4)||【考点】9R:平面向量数量积的运算.【分析】(1)直接由已知结合数量积公式得答案;(2)由运算得答案;(3)展开多项式乘以多项式,代入数量积得答案;(4)求出,开方后得答案.【解答】解:∵||=2,||=3,||与||的夹角为120°,∴(1)=;(2)﹣=22﹣32=﹣5;(3)(2)()==2×22+5×(﹣3)﹣3×32=﹣34;(4)||==.20.求函数的周期、对称轴、对称中心及单调递增区间.【考点】H5:正弦函数的单调性;H3:正弦函数的奇偶性;H4:正弦函数的定义域和值域;H6:正弦函数的对称性.【分析】根据正弦函数的图象及性质求解即可.【解答】解:函数=﹣sin(2x+)+1.∴周期T=.令2x+=,得:x=kπ+,k∈Z即对称轴方程为:x=kπ+,k∈Z;令2x+=kπ,得:x=∴对称中心为(,1),k∈Z;由2x++2kπ得:≤x≤.∴单调递增区间为[,],k∈Z;综上得:周期T=π,对称轴方程为:x=kπ+,k∈Z;对称中心为(,1),k∈Z;单调递增区间为[,],k∈Z;21.设,是不共线的两个向量=3+4, =﹣2+5,若实数λ,μ满足λ+μ=5﹣,求λ,μ的值.【考点】9F:向量的线性运算性质及几何意义.【分析】根据平面向量的线性运算,利用向量相等,列出方程组求出λ与μ的值.【解答】解:∵,是不共线的两个向量,且=3+4, =﹣2+5,∴λ+μ=λ(3+4)+μ(﹣2+5)=(3λ﹣2μ)+(4λ+5μ)=5﹣,∴,解得λ=1,μ=﹣1.22.求函数y=cos2x+asinx+a+1(0≤x≤)的最大值.【考点】HW:三角函数的最值.【分析】根据二倍角公式整理所给的函数式,得到关于正弦的二次函数,根据所给角x的X围,得到二次函数的定义域,根据对称轴与所给定义域之间的关系,分类求得函数的最大值.【解答】解:函数y=f(x)=cos2x+asinx+a+1=1﹣sin2x+asinx+a+1=﹣++a+2;∵函数f(x)的定义域为,∴sinx∈,∴当0≤≤1,即0≤a≤2时,f(x)的最大值是f(x)max=f()=+a+2;当<0,即a<0时,f(x)在sinx=0时取得最大值是f(x)max=f(0)=a+2;当>1,即a>2时,f(x)在sinx=1取得最大值是f(x)max=f()=a+1;综上可知:a<0时,f(x)max=a+1;0≤a≤2时,f(x)max=+a+2;a>2时,f(x)max=a+1.。
2017-2018学年第一学期初二数学期末试题和答案
2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
人教版数学高一第二章点,直线,平面之间的位置关系单元测试精选(含答案)2
【答案】A
15.如图,在三棱柱 ABC-A′B′C′中,点 E、F、H、K 分别为 AC′、CB′、A′B、B′C′
的中点,G 为△ABC 的重心,从 K、H、G、B′中取一点作为 P,使得该三棱柱恰有 2
条棱与平面 PEF 平行,则点 P 为 ( )
A.K
B.H
C.G
D.B′
【来源】人教 A 版高中数学必修二第 2 章 章末综合测评 3
A.30°
B.60°
C.90°
D.120°
【来源】人教 A 版高中数学必修二第二章 章末检测卷
【答案】C
19.如图,α⊥β,α∩β=l,A∈α,B∈β,A、B 到 l 的距离分别是 a 和 b,AB 与α、β
试卷第 5页,总 17页
所成的角分别是θ和φ,AB 在α、β内的射影长分别是 m 和 n,若 a>b,则 ( )
【来源】2013-2014 学年福建省清流一中高一下学期第二次阶段考数学试卷(带解析) 【答案】①②
30.如图所示,在正方体 ABCD A1B1C1D1 中, M,N 分别是棱 AA1 和 AB 上的点, 若 B1MN 是直角,则 C1MN ________.
试卷第 8页,总 17页
【来源】人教 A 版 2017-2018 学年必修二第 2 章 章末综合测评 1 数学试题 【答案】90°
29.如图,将边长为1的正方形 ABCD 沿对角线 AC 折起,使得平面 ADC 平面 ABC , 在折起后形成的三棱锥 D ABC 中,给出下列三个命题: ① DBC 是等边三角形; ② AC BD ; ③三棱锥 D ABC 的体积是 2 .
6
其中正确命题的序号是* * * .(写出所有正确命题的序号)
试卷第 1页,总 17页
高一(下学期)期末考试数学试卷
高一(下学期)期末考试数学试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、多选题1.下列抽样方法是简单随机抽样的是( )A .某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B .用抽签的方法产生随机数C .福利彩票用摇奖机摇奖D .规定凡买到明信片最后四位号码是“6637”的人获三等奖 2.若直线a 平行于平面α,则下列结论正确的是( ) A .a 平行于α内的有限条直线 B .α内有无数条直线与a 平行 C .直线a 上的点到平面α的距离相等 D .α内存在无数条直线与a 成90°角3.设a ,b ,l 为不同的直线,α,β,γ为不同的平面,下列四个命题中错误的是( ) A .若//a α,a b ⊥,则b α⊥ B .若αγ⊥,βγ⊥,l αβ=,则l γ⊥C .若a α⊂,//a β,b β⊂,//b α,则//αβD .若αβ⊥,l αβ=,A α∈,AB l ⊥,则AB β⊥4.小王于2017年底贷款购置了一套房子,根据家庭收入情况,小王选择了10年期每月还款数额相同的还贷方式,且截止2021年底,他没有再购买第二套房子.如图是2018年和2021年小王的家庭收入用于各项支出的比例分配图:根据以上信息,判断下列结论中正确的是( ) A .小王一家2021年用于饮食的支出费用跟2018年相同 B .小王一家2021年用于其他方面的支出费用是2018年的3倍 C .小王一家2021年的家庭收人比2018年增加了1倍 D .小王一家2021年用于房贷的支出费用与2018年相同5.已知正方体1111ABCD A B C D -的棱长为2,点F 是棱1BB 的中点,点P 在四边形11BCC B 内(包括边界)运动,则下列说法正确的是( )A .若P 在线段1BC 上,则三棱锥1P AD F -的体积为定值B .若P 在线段1BC 上,则DP 与1AD 所成角的取值范围为,42ππ⎡⎤⎢⎥⎣⎦C .若//PD 平面1AD F ,则点PD .若AP PC ⊥,则1A P 与平面11BCC B二、单选题6.已知a ,b ,c 是三条不同的直线,α,β是两个不同的平面,⋂=c αβ,a α⊂,b β⊂,则“a ,b 相交“是“a ,c 相交”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件7.某校有男生3000人,女生2000人,学校将通过分层随机抽样的方法抽取100人的身高数据,若按男女比例进行分层随机抽样,抽取到的学生平均身高为165cm ,其中被抽取的男生平均身高为172cm ,则被抽取的女生平均身高为( ) A .154.5cmB .158cmC .160.5cmD .159cm8.从二面角内一点分别向二面角的两个面引垂线,则这两条垂线所夹的角与二面角的平面角的关系是( ) A .互为余角B .相等C .其和为周角D .互为补角9.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是( )A .73.3,75,72B .72,75,73.3C .75,72,73.3D .75,73.3,7210.对于数据:2、6、8、3、3、4、6、8,四位同学得出了下列结论:甲:平均数为5;乙:没有众数;丙:中位数是3;丁:第75百分位数是7,正确的个数为( ) A .1B .2C .3D .411.为了贯彻落实《中共中央国务院全面加强新时代大中小学劳动教育的意见》的文件精神,某学校结合自身实际,推出了《植物栽培》《手工编织》《实用木工》《实用电工》《烹饪技术》五门校本劳动选修课程,要求每个学生从中任选三门进行学习,学生经考核合格后方能获得该学校荣誉毕业证,则甲、乙两人的选课中仅有一门课程相同的概率为( ) A .325B .15C .310 D .3512.已知正四棱柱ABCD - A 1B 1C 1D 1中 ,AB=2,CC 1=E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A.2BCD .1三、填空题13.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 、F 、G 分别为棱11B C 、1CC 、11D C 的中点,P 是底面ABCD 上的一点,若1A P ∥平面GEF ,则下面的4个判断∶点P∶线段1A P ;∶11A P AC ⊥;∶1A P 与1B C 一定异面.其中正确判断的序号为__________.14.甲、乙两同学参加“建党一百周年”知识竞赛,甲、乙获得一等奖的概率分别为14、15,获得二等奖的概率分别为12、35,甲、乙两同学是否获奖相互独立,则甲、乙两人至少有1人获奖的概率为___________.15.数据1x ,2x ,…,8x 平均数为6,标准差为2,则数据126x -,226x -,…,826x -的方差为________. 16.将正方形ABCD 沿对角线AC 折起,并使得平面ABC 垂直于平面ACD ,直线AB 与CD 所成的角为__________.四、解答题17.如图,在直三棱柱111ABC A B C -中,1,AB BC AA AB ⊥=,G 是棱11A C 的中点.(1)证明:1BC AB ⊥;(2)证明:平面1AB G ⊥平面1A BC .18.甲、乙两台机床同时生产一种零件,在10天中,两台机床每天生产的次品数分别为: 甲:0,0,1,2,0,0,3,0,4,0;乙:2,0,2,0,2,0,2,0,2,0. (1)分别求两组数据的众数、中位数;(2)根据两组数据平均数和标准差的计算结果比较两台机床性能.19.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)2030,,[)3040,,,[]8090,,并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[)4050,内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.20.某学校招聘在职教师,甲、乙两人同时应聘.应聘者需进行笔试和面试,笔试分为三个环节,每个环节都必须参与,甲笔试部分每个环节通过的概率依次为113224,,,乙笔试部分每个环节通过的概率依次为311422,,,笔试三个环节至少通过两个才能够参加面试,否则直接淘汰;面试分为两个环节,每个环节都必须参与,甲面试部分每个环节通过的概率依次为2132,,乙面试部分每个环节通过的概率依次为4354,,若面试部分的两个环节都通过,则可以成为该学校的在职教师.甲、乙两人通过各个环节相互独立. (1)求甲未能参与面试的概率;(2)记乙本次应聘通过的环节数为X ,求(3)P X =的值;(3)记甲、乙两人应聘成功的人数为Y ,求Y 的的分布列和数学期望21.如图,在三棱锥P -ABC 中,PA ⊥平面,ABC AB AC =,,M N 分别为,BC AB 的中点,(1)求证:MN //平面P AC (2)求证:平面PBC ⊥平面P AM22.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,其对角线AC 与BD 相交于点O ,1160A AB A AD BAD ∠=∠=∠=,13AA =,2AB =.(1)证明:1A O ⊥平面ABCD ; (2)求三棱锥11C A BD -的体积.参考答案:1.BC【分析】由题意,根据简单随机抽样的定义,可得答案.【详解】对于A ,此为分层抽样;对于B ,此为随机数表法;对于C ,此为简单随机抽样;对于D ,此为系统抽样. 故选:BC. 2.BCD【分析】根据直线与平面平行的性质即可判断.【详解】因为直线a 平行于平面α,所以a 与平面α内的直线平行或异面,选项A 错误;选项B ,C ,D 正确.故选:BCD. 3.ACD【分析】选项ACD ,可借助正方体构造反例;选项B ,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥,可证明l m ⊥,l n ⊥,即得证.【详解】A 选项:取11//A C 平面ABCD ,1111AC B D ⊥,但是11B D 不垂直于平面ABCD ,命题A 错误. B 选项:设a αγ⋂=,b βγ=,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥.因为αγ⊥,βγ⊥,所以m α⊥,n β⊥,又l α⊆,l β⊆,所以l m ⊥,l n ⊥,所以l γ⊥.命题B 正确. C 选项:11//A B 平面ABCD ,//CD 平面11ABB A ,但平面ABCD 与平面11ABB A 不平行,命题C 错误. D 选项:平面ABCD ⊥平面11ABB A ,交线为AB ,1B ∈平面11ABB A ,1B C AB ⊥,但1B C 与平面ABCD 不垂直,命题D 错误. 故选:ACD4.BD【分析】由题意,根据扇形统计图的性质,可得答案.【详解】对于A ,小王一家2021年用于饮食的支出比例与跟2018年相同,但是由于2021年比2018年家庭收入多,∶小王一家2021年用于饮食的支出费用比2018年多,故A 错误;对于B ,设2018年收入为a ,∶相同的还款数额在2018年占各项支出的60%,在2021年占各项支出的40%,∶2021年收入为:0.6 1.50.4aa =,∶小王一家2021年用于其他方面的支出费用为1.512%0.18a a ⨯=,小王一家2018年用于其他方面的支出费用为0.06a ,∶小王一家2021年用于其他方面的支出费用是2018年的3倍,故B 正确;对于C ,设2018年收入为a ,则2021年收入为:0.6 1.50.4aa =,故C 错误; 对于D ,小王一家2021年用于房贷的支出费用与2018年相同,故D 正确. 故选:BD . 5.ACD【分析】A. 如图,当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,分析得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN =D. 点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB 1,所以1A P 与平面11BCC B=所以该选项正确. 【详解】A. 如图,因为11//,BC AD AD ⊂平面1,AFD 1BC ⊄平面1,AFD 所以1//BC 平面1,AFD 所以当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,因为11//,BC AD 所以DP 与1AD 所成角就是DP 与1BC 所成的角(锐角或直角),当点P 在1,B C 时,由于∶1BDC 是等边三角形,所以这个角为3π,当1DP BC 时,这个角为2π,由图得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN ,由于//DM AF ,AF ⊂平面1AFD ,DM ⊄平面1AFD ,所以//DM 平面1AFD ,同理可得//MN 平面1AFD ,又,DM MN ⊂平面DMN ,DMMN M =,所以平面//DMN 平面1AFD ,所以//DP 平面1AFD ,MN ==P 选项正确;D.如图,由题得1A P 与平面11BCC B 所成角为11A PB ∠,1112tan A PB PB ∠=,即求1PB 的最小值,因为,PC AP PC AB ⊥⊥,,,AP AB A AP AB ⋂=⊂平面ABP ,所以PC ⊥平面ABP ,所以PC BP ⊥,所以点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB1,所以1A P 与平面11BCC B 所=所以该选项正确.故选:ACD 6.C【分析】根据直线与平面的位置关系进行判断即可.【详解】解:∶若a ,b 相交,a α⊂,b β⊂,则其交点在交线c 上,故a ,c 相交, ∶若a ,c 相交,可能a ,b 为相交直线或异面直线.综上所述:a ,b 相交是a ,c 相交的充分不必要条件. 故选:C . 7.A【分析】由分层抽样求出100人中的男女生数,再利用平均数公式计算作答. 【详解】根据分层随机抽样原理,被抽取到的男生为60人,女生为40人, 设被抽取到的女生平均身高为cm x ,则6017240165100x⨯+=,解得154.5cm x =,所以被抽取的女生平均身高为154.5cm . 故选:A 8.D【分析】做出图像数形结合即可判断.【详解】如图,A 为二面角--l αβ内任意一点,AB α⊥,AC β⊥,过B 作BD l ⊥于D , 连接CD ,因为AB α⊥,l α⊂,所以AB l ⊥因为AC β⊥,l β⊂,所以AC l ⊥,且AB AC A ⋂=, 所以l ⊥平面ABCD ,且CD ⊂面ABCD ,所以⊥l CD 则BDC ∠为二面角l αβ--的平面角,90ABD ACD ∠∠︒==,BAC ∠为两条垂线AB 与AC 所成角,所以180A BDC ∠∠︒+=, 所以两条垂线所夹的角与二面角的平面角互为补角. 故选:D. 9.B【解析】根据频率分布直方图,结合平均数、众数、中位数的求法,即可得解. 【详解】由频率分布直方图可知,平均数为450.00510450.00510550.01510650.02010⨯⨯+⨯⨯+⨯⨯+⨯⨯750.03010850.02510950.0051072+⨯⨯+⨯⨯+⨯⨯=众数为最高矩形底边的中点,即75中为数为:0.005100.015100.02010100.5x ⨯+⨯+⨯+⨯= 可得0.010x = 所以中为数为0.010701073.30.030+⨯≈ 综上可知,B 为正确选项 故选:B【点睛】本题考查了频率分布直方图的应用,平均数、众数、中位数的计算,属于基础题. 10.B【分析】分别求出平均数,中位数,众数,第75百分位数即可得解. 【详解】解:平均数为2683346858+++++++=,故甲正确;众数为:3,6,8,故乙错误;将这组数据按照从小到大的顺序排列:2,3,3,4,6,6,8,8, 则中位数为4652+=,故丙错误; 875%6⨯=,则第75百分位数为6872+=,故丁正确, 所以正确的个数为2个. 故选:B. 11.C【分析】先分析总的选课情况数,然后再分析甲、乙两人的选课中仅有一门课程相同的情况数,然后两者相除即可求解出对应概率.【详解】甲、乙总的选课方法有:3355C C ⋅种,甲、乙两人的选课中仅有一门课程相同的选法有:5412C C ⋅种,(先选一门相同的课程有15C 种选法,若要保证仅有一门课程相同只需要其中一人从剩余4门课程中选取2门,另一人选取剩余的2门课程即可,故有24C 种选法)所以概率为12543355310C C P C C ==,故选:C.【点睛】关键点点睛:解答本题的关键在于分析两人的选课仅有1门相同的选法数,可通过先确定相同的选课,然后再分析四门课程中如何做到两人的选课不同,根据古典概型的概率计算方法完成求解. 12.D【详解】试题分析:因为线面平行,所求求线面距可以转化为求点到面的距离,选用等体积法.1//AC 平面BDE ,1AC ∴到平面BDE 的距离等于A 到平面BDE 的距离,由题计算得11111223232E ABD ABD V S CC -=⨯=⨯⨯⨯在BDE 中,BE DE BD ===BD边上的高2==,所以122BDE S =⨯=所以1133A BDE BDE V S h -==⨯,利用等体积法A BDE E ABD V V --=,得: 13⨯=解得: 1h = 考点:利用等体积法求距离 13.∶∶【分析】先证明平面1A BD ∥平面GEF ,可判断P 的轨迹是线段BD ,结合选项和几何性质一一判断即可. 【详解】分别连接11,,BD A B A D ,所以11BD B D ∥,又因为11B D ∥EG ,则BD EG ∥, 同理1A D EF ∥,1,BDA D D EGEF E ==,故平面1A BD ∥平面GEF ,又因为1A P ∥平面GEF ,且P 是底面ABCD 上的一点,所以点P 在BD 上.所以点P 的轨迹是一段长度为BD =,故∶正确;当P 为BD 中点时1A P BD ⊥,线段1A P ,故∶错; 因为在正方体1111ABCD A B C D -中,1AC ⊥平面1A BD ,又1A P ⊂平面1A BD , 则11A P AC ⊥,故∶正确;当P 与D 重合时,1A P 与1B C 平行,则∶错. 故答案为:∶∶14.1920【分析】利用独立事件的概率乘法公式和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,甲不中奖的概率为1111424--=,乙不中奖的概率为1311555--=,因此,甲、乙两人至少有1人获奖的概率为111914520-⨯=.故答案为:1920. 15.16【详解】试题分析:由题意知12868x x x x +++==,(862s x +-=,则12848x x x +++=,24s =,而()()()12826262624886688x x x y -+-++-⨯-⨯===,所以所求方差为()()()2222212812122122124168s x x x s ⎡⎤=-+-++-=⨯=⎣⎦'.故正确答案为16.考点:两组线性数据间的特征数的运算.【方法点晴】此题主要考查两组俱有线性关系的数据的特征数关系,当数据{}12,,,n x x x 与{}12,,,n y y y 中若有i i y ax b =+时,那么它们之间的平均数与方差(标准差)之间的关系是:y x =,222y x s a s =或是y x s as =,掌握此关系会给我们计算带来很大方便. 16.60°【分析】将所求异面直线平移到同一个三角形中,即可求得异面直线所成的角. 【详解】如图,取AC ,BD ,AD 的中点,分别为O ,M ,N ,则11,22ON CD MN AB ∥∥,所以ONM ∠或其补角即为所求的角.因为平面ABC ⊥平面ACD ,BO AC ⊥,平面ABC平面ACD AC =,BO ⊂平面ABC ,所以BO ⊥平面ACD ,又因为OD ⊂平面ACD ,所以BO OD ⊥. 设正方形边长为2,OB OD ==2BD =,则112OM BD ==. 所以=1ON MN OM ==.所以OMN 是等边三角形,60ONM ∠=︒. 所以直线AB 与CD 所成的角为60︒. 故答案为: 60° 17.(1)证明见解析 (2)证明见解析【分析】(1)由线面垂直得到1AA BC ⊥,从而求出BC ⊥平面11ABB A ,得到1BC AB ⊥;(2)根据正方形得到11BA AB ⊥,结合第一问求出的1BC AB ⊥,得到1AB ⊥平面1A BC ,从而证明面面垂直. (1)∶1AA ⊥平面ABC ,且BC ⊂平面ABC , ∶1AA BC ⊥. 又因为1,BC AB AA AB A ⊥=,1,AA AB ⊂平面11ABB A ,所以BC ⊥平面11ABB A . ∶1AB ⊂平面11ABB A , ∶1BC AB ⊥. (2)∶1AA AB =,易知矩形11ABB A 为正方形, ∶11BA AB ⊥.由(1)知1BC AB ⊥,又由于11,,A B BC B A B BC =⊂平面1A BC ,∶1AB ⊥平面1A BC . 又∶1AB ⊂平面1AB G , ∶平面1AB G ⊥平面1A BC .18.(1)甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1;(2)甲乙的平均水平相当,但是乙更稳定.【分析】(1)根据众数和中位数的公式直接计算,众数是指数据中出现次数最多的数据,中位数是按从小到大排列,若是奇数个,则正中间的数是中位数,若是偶数个数,则正中间两个数的平均数是中位数;(2)平均数指数据的平均水平,标准差指数据的稳定程度,离散水平.【详解】解:(1)由题知:甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1 (2)甲的平均数等于0012003040110+++++++++=乙的平均数等于2020202020110+++++++++=甲的方差等于2222222222(01)(01)(11)(21)(01)(01)(31)(01)(41)(01)210-+-+-+-+-+-+-+-+-+-=乙的方差等于2222222222(21)(01)(21)(01)(21)(01)(21)(01)(21)(01)110-+-+-+-+-+-+-+-+-+-=1 因此,甲乙的平均水平相当,但是乙更稳定!【点睛】本题考查样本的众数,中位数,标准差,重点考查定义和计算能力,属于基础题型. 19.(1)0.4;(2)20;(3)3:2.【分析】(1)根据频率=组距⨯高,可得分数小于70的概率为:1(0.040.02)10-+⨯;(2)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等,分别求出男生、女生的人数,进而得到答案.【详解】解:(1)由频率分布直方图知:分数小于70的频率为:1(0.040.02)100.4-+⨯= 故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4; (2)已知样本中分数小于40的学生有5人, 故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1(0.040.020.020.01)100.050.05-+++⨯-=, 估计总体中分数在区间[40,50)内的人数为4000.0520⨯=人, (3)样本中分数不小于70的频率为:0.6, 由于样本中分数不小于70的男女生人数相等. 故分数不小于70的男生的频率为:0.3, 由样本中有一半男生的分数不小于70,故男生的频率为:0.6,则男生人数为0.610060⨯=, 即女生的频率为:0.4,则女生人数为0.410040⨯=, 所以总体中男生和女生人数的比例约为:3:2. 20.(1)38;(2)13(3)80P X ==;(3)分布列见解析;期望为712. 【分析】(1)甲未能参与面试,则甲笔试最多通过一个环节,结合已知条件计算即可;(2)分析3X =时,分析乙笔试和面试分别通过的环节即可求解;(3)首先分别求出甲乙应聘的概率,然后利用独立事件的性质求解即可.【详解】(1)设事件A =“甲未能参与面试”,即甲笔试最多通过一个环节, 故1131131133()(1)(1)(1)(1)(1)2(1)(1)2242242248P A =---+⨯--⨯+--⨯=;(2)当3X =时,可知乙笔试通过两个环节且面试通过1个环节,或者乙笔试通过三个环节且面试都未通过, 3113114343(3)[(1)(1)2][(1)(1)]4224225454P X ==-⨯⨯+⨯⨯-⨯⨯-+-⨯3114313(1)(1)4225480+⨯⨯⨯--=;(3)甲应聘成功的概率为1113113113215[(1)2(1)]2242242243224P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=, 乙应聘成功的概率为2113113113433[(1)2(1)]224224224548P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=,由题意可知,Y 的取值可能为0,1,2, 5395(0)(1)(1)248192P Y ==--=, 535341(1)(1)(1)24824896P Y ==⨯-+-⨯=535(2)24864P Y ==⨯=, 所以Y 的分布列如下表:所以数学期望7()12E Y =. 21.(1)证明见解析; (2)证明见解析.【分析】(1)由题意证得//MN AC ,结合线面平行的判定定理,即可证得//MN 平面PAC ;(2)由PA ⊥平面ABC ,证得PA BC ⊥,再由AB AC =,证得AM BC ⊥,根据线面垂直的判定定理证得BC ⊥平面PAM ,进而得到平面PBC ⊥平面PAM . (1)证明:在ABC 中,因为,M N 分别为,BC AB 中点,可得//MN AC , 又因为MN ⊄平面PAC ,AC ⊂平面PAC ,所以//MN 平面PAC . (2)证明:因为PA ⊥平面ABC ,且BC ⊂平面ABC ,可得PA BC ⊥, 又因为AB AC =,且M 为BC 中点,可得AM BC ⊥,又由PA AM A =且,PA AM ⊂平面PAM ,所以BC ⊥平面PAM , 因为BC ⊂平面PBC ,所以平面PBC ⊥平面PAM . 22.(1)证明见解析 (2)【分析】(1)连接1A B ,1A D ,可证明1AO BD ⊥,再证明1A O OA ⊥,从而可证明结论. (2)由线面垂直的判断定理得AC ⊥平面1A BD ,由11//AC A C 得11A C ⊥平面1A BD ,再由棱锥的体积可得答案. (1)连接11,A D A B ,111,,AD AB A AB A AD A A =∠=∠为公共边,1111,∴≅∴=A AB A AD A D A B ,又O 为BD 的中点,1A O BD ∴⊥,在1A AB 中,由余弦定理可知1A B在1Rt AOB 中1AO =13,A A AO = 满足22211A O AO A A +=1A O OA ∴⊥,又AO BD O ⋂=,1A O ∴⊥平面ABCD .(2)由(1)知1A O ⊥平面ABCD ,AC ⊂平面ABCD , 1A O AC ∴⊥且1BD AC BD AO O ⊥⋂=,, AC ∴⊥平面1A BD ,且11//AC A C , 11A C ∴⊥平面1A BD ,1111232C A BD V -=⨯⨯。
2017年济南高一数学下期末试题(含答案)
2017年济南高一数学下期末试题(含答案)2016-2017学年度第二学期期末模块考试高一期末数学试题(201707)考试时间120分钟满分10 分第Ⅰ卷(选择题,共0分)一、选择题(10*=0分)1.已知sin α<0且tan α>0,则角α是()A.第一象限角B.第二象限角.第三象限角D.第四象限角2、已知向量, 则()(A)300 (B) 40 () 600 (D)12003、函数f(x)=(sin x+s x)(s x –sin x)的最小正周期是()(A)(B)π ()(D)2π4、已知圆:截直线所得线段的长度是,则圆与圆N:的位置关系是()(A)内切(B)相交()外切(D)相离、样本()的平均数为,样本()的平均数为,若样本(,)的平均数,其中,则n,的大小关系为()A.B..D.不能确定6、在中,已知,如果利用正弦定理三角形有两解,则的取值范围是( )A.B .D7、某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒若一名行人到该路口遇到红灯,则至少需要等待1秒才出现绿灯的概率为()(A)(B)()(D)8、从装有个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事是().A.至少有一个红球与都是红球B.至少有一个红球与都是白球.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球9、函数的部分图像如图所示,则()(A)(B)()(D)10、已知函数,若在区间内没有零点,则的取值范围是()(A)(B)()(D)第Ⅱ卷(非选择题,共80分)二、填空题(4*=20分)11、设向量a=(x,x+1),b=(1,2),且a b,则x=12、某学校高一、高二、高三年级的学生人数之比为,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为0的样本,则应从高二年级抽取名学生.13、如图,已知点(0,0),A(10),B(0,−1),P是曲线上一个动点,则的取值范围是14、在锐角三角形AB中,若sinA=2sinBsin,则tanAtanBtan的最小值是二、解答题(共60分,各12分)1、已知|a|=4,|b|=3,(2a-3b)•(2a+b)=61,(1)求a与b的夹角θ;(2)求|a+b|;(3)若AB→=a,B→=b,求△AB的面积16、已知:圆:x2+2-8+12=0,直线l:ax++2a=0。
2017-2018学年高一下学期期中数学试卷Word版含解析
2017-2018学年高一下学期期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+13.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.向量+++化简后等于()A.B.C.D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=412.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为.15.已知=, =, =, =, =,则+++﹣= .16.已知tan()=,tan()=﹣,则tan()= .三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.2017-2018学年高一下学期期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向【考点】向量的物理背景与概念.【分析】根据共线向量、平行向量、相等向量以及零向量的概念便可判断每个说法的正误,从而找出正确选项.【解答】解:A.共线向量的方向相同或相反;方向相同时,夹角为0°,相反时的夹角为180°,∴该说法正确;B.长度相等,方向相同的向量叫做相等向量,∴该说法错误;C.平行向量也叫共线向量,∴共线向量不是向量所在直线在同一直线上;∴该说法错误;D.零向量的方向任意,并不是没有方向,∴该说法错误.故选:A.2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+1【考点】函数奇偶性的判断.【分析】要探讨函数的奇偶性,先求函数的定义域,判断其是否关于原点对称,然后探讨f(﹣x)与f(x)的关系,即可得函数的奇偶性.【解答】解:选项A,定义域为R,sin|﹣x|=sin|x|,故y=sin|x|为偶函数.选项B,定义域为R,sin(﹣2x)=﹣sin2x,故y=sin2x为奇函数.选项C,定义域为R,﹣sin(﹣x)+2=sinx+2,故y=sinx+2为非奇非偶函数偶函数.选项D,定义域为R,sin(﹣x)+1=﹣sinx+1,故y=sinx+1为非奇非偶函数,故选:B.3.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣【考点】任意角的三角函数的定义.【分析】根据三角函数的定义进行求解即可.【解答】解:∵角α的终边经过点P(4,﹣3),∴tanα==,故选:B.4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.【考点】三角函数的周期性及其求法.【分析】根据余弦函数的最小正周期的求法,将ω=4代入T=即可得到答案.【解答】解:∵y=cos(4x﹣π),∴最小正周期T==.故选:D.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.【考点】直线的倾斜角.【分析】由已知方程得到直线的斜率,根据斜率对于得到倾斜角.【解答】解:由已知直线的方程得到直线的斜率为﹣,设倾斜角为α,则tanα=﹣,α∈[0,π),所以α=;故选:D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【考点】正弦函数的单调性.【分析】利用y=sinx的单调性,求出函数的单调递减区间,进而可求函数的单调递减区间.【解答】解:利用y=sinx的单调递减区间,可得∴∴函数的单调递减区间(k∈Z)故选D.7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.【考点】正弦函数的图象.【分析】利用正弦函数的图象的对称性,求得y=3sin(2x+)+2图象的一条对称轴方程.【解答】解:∵对于函数y=3sin(2x+)+2图象,令2x+=kπ+,求得x=+,可得函数图象的一条对称轴方程为x=π,故选:C.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大【考点】命题的真假判断与应用.【分析】分别举例说明四个选项的正误得答案.【解答】解:对于A,终边不同的角同一三角函数值可以相等,正确,如;对于B,三角形的内角是第一象限角或第二象限角,错误,如是终边在坐标轴上的角;对于C,第一象限是锐角,错误,如是第一象限角,不是锐角;对于D,第二象限的角比第一象限的角大,错误,如是第二象限角,是第一象限角,但.故选:A.9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】三角函数的化简求值.【分析】根据象限得出sinθ,cosθ的符号,得出θ的象限.【解答】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.10.向量+++化简后等于()A.B.C.D.【考点】向量加减混合运算及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解:向量+++=,故选:D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=4【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先根据函数的最大值和最小值求得A和B,然后利用图象中﹣求得函数的周期,求得ω,最后根据x=时取最大值,求得φ.【解答】解:如图根据函数的最大值和最小值得求得A=2,B=2函数的周期为(﹣)×4=π,即π=,ω=2当x=时取最大值,即sin(2×+φ)=1,2×+φ=2kπ+φ=2kπ﹣∵∴φ=故选C.12.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4【考点】任意角的概念.【分析】由任意角的三角函数的定义,三角函数值与象限角的关系,即可得出结论.【解答】解:①由任意角的三角函数的定义知,终边相同的角的三角函数值相等,正确.②在三角形中,若sinA=sinB,则有A=B,故正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,正确,④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,故不正确.⑤若cosα<0,则α是第二或第三象限角或α的终边落在x轴的非正半轴上,故不正确.其中正确的个数为3个,故选:C.二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是2x﹣y﹣3=0 .【考点】待定系数法求直线方程.【分析】先求出线段AB的中垂线的斜率,再求出线段AB的中点的坐标,点斜式写出AB的中垂线得方程,并化为一般式.【解答】解:设A(0,2)、B(4,0).=﹣,所以线段AB的中垂线得斜率k=2,又线段AB的中点为(2,1),直线AB的斜率 kAB所以线段AB的中垂线得方程为y﹣1=2(x﹣2)即2x﹣y﹣3=0,故答案为:2x﹣y﹣3=0.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为 3 .【考点】直线与圆的位置关系.【分析】圆心(0,0)到直线3x+4y﹣25=0的距离d==5,圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r,从而可求.【解答】解:∵圆心(0,0)到直线3x+4y﹣25=0的距离d==5,∴圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r=5﹣2=3故答案为:3.15.已知=, =, =, =, =,则+++﹣= .【考点】向量的加法及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解: +++﹣=+++﹣=﹣=,故答案为:.16.已知tan()=,tan()=﹣,则tan()= 1 .【考点】两角和与差的正切函数.【分析】观察三个函数中的角,发现=﹣(),故tan()的值可以用正切的差角公式求值【解答】解:∵=﹣(),∴tan()===1故答案为1三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.【考点】任意角的三角函数的定义.【分析】利用三角函数的定义可求得sinα与cosα,从而可得2sinα+cosα.【解答】解:由已知r==13a…∴sinα=﹣,cosα=,…∴2sinα+cosα=﹣…18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.【考点】待定系数法求直线方程.【分析】(1)利用中点坐标公式、斜截式即可得出.(2)利用斜率计算公式、相互垂直的直线斜率之间的关系、斜截式即可得出.【解答】解:(1)∵线段AB的中点为(﹣1,5),∴AB边的中线所在直线方程是=,即x+3y﹣14=0.(2)AC的中点为(4.3)==﹣,∵KAC∴y﹣3=4(x﹣4)即y=4x﹣13,∴AC的中垂线方程为y=4x﹣13.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.【考点】圆的一般方程.【分析】设出圆的一般式方程,把三个点的坐标代入,求解关于D、E、F的方程组得答案.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,解得.∴圆的方程为:.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.【考点】二倍角的正切;两角和与差的余弦函数.【分析】(1)利用已知及同角三角函数基本关系式可求sinα,进而可求tanα,利用二倍角的正切函数公式可求tan2α的值.(2)由0<β<α<,得0<α﹣β<,利用同角三角函数基本关系式可求sin(α﹣β),由β=α﹣(α﹣β)利用两角差的余弦函数公式即可计算求值.【解答】解:(1)∵由cosα=,0<α<,得sinα===,∴得tan=∴于是tan2α==﹣.…(2)由0<β<α<,得0<α﹣β<,又∵cos(α﹣β)=,∴sin(α﹣β)==,由β=α﹣(α﹣β)得:cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)==.…21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(Ⅰ)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(Ⅱ)利用正弦函数的图象的对称性,求得函数的对称轴方程和对称中心坐标.【解答】解:(Ⅰ)由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,可得A=2, ==+,∴ω=2.再根据五点法作图可得2•(﹣)+φ=,∴φ=,函数f(x)=2sin(2x+).(Ⅱ)由2x+=kπ+,求得x=﹣,可得函数的图象的对称轴方程为x=﹣,k∈Z.令2x+=kπ,求得x=﹣,可得函数的图象的对称轴中心为(﹣,0),k∈Z.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用降幂公式降幂,再由辅助角公式化简,由x的范围求得相位的范围,则函数的取值范围可求;(2)利用复合函数的单调性求得原函数的单调区间.【解答】解:(1)f(x)=sin2ωx+sinωx•cosωx﹣1==.∵ω>0,∴T=,则ω=1.∴函数f(x)=sin(2x﹣)﹣.由0,得,∴,∴.∴f(x)的取值范围[﹣1,];(2)令,得:,(k∈Z),∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z).。
【全国市级联考】山东省2017-2018学年高一下学期期末考试数学试题+答案
2017-2018学年度第二学期期末考试高一数学试题第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 函数的最小正周期是()A. 4B.C. 8D.2. 某工厂采用系统抽样方法,从一车间全体300名职工中抽取20名职工进行一项安全生产调查,现将300名职工从1到300进行编号,已知从31到45这15个编号中抽到的编号是36,则在1到15中随机抽到的编号应是()A. 4B. 5C. 6D. 73. 已知角的终边上一点,则()A. B. C. D.4. 圆和圆的位置关系是()A. 相离B. 相交C. 内切D. 外切5. 某中学举行英语演讲比赛,右图是七位评委为某位学生打出分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的中位数和方差分别为()A. 84,4.84B. 84,1.6C. 85,4D. 86,1.66. 已知,则的概率为()A. B. C. D.7. 已知向量,则在上的投影为()A. B. C. 1 D. -18. 已知,且,则()A. B. C. D.9. 袋中有形状、大小都相同的4个球,其中2个红球、2个白球.从中随机一次摸出2个球,则这2个球中至少有1个白球的概率为()A. B. C. D.10. 函数的单调递增区间是()A. B.C. D.11. 过点作圆的两条切线为切点,则()A. 6B. -6C. 10D.12. 函数的图象向右平移个单位后得到的函数是奇函数,则函数的图象()A. 关于点对称B. 关于直线对称C. 关于点对称D. 关于直线对称第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分,将答案填在答题纸上13. 已知扇形的圆心角为120°,弧长为,则这个扇形的面积等于__________.14. 下列程序框图输出的的值为__________.15. 圆上的点到直线的距离的最小值为__________.16. 已知为所在平面内一点,且,现将一粒黄豆随机撒在内,则黄豆落在的概率为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知向量,且.(2)求的值.18. 下表提供了某厂生产某产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)根据(1)中求出的线性回归方程,预测生产20吨该产品的生产能耗是多少吨标准煤?附:回归直线的斜率和截距的最小二乘估计分别为: .19. 已知 .(1)求与的夹角;(2)在中,若,求边的长度.20. 随着互联网的发展,移动支付(又称手机支付)越来越普通,某学校兴趣小组为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有个人.把这个人按照年龄分成5组:第1组,第2组,第3组,第4组,第5组,然后绘制成如图所示的频率分布直方图.其中,第一组的频数为20.(1)求和的值,并根据频率分布直方图估计这组数据的众数;(2)从第1,3,4组中用分层抽样的方法抽取6人,求第1,3,4组抽取的人数;(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.21. 已知函数(其中)的图象的两条相邻对称轴之间的距离为,且图象上一个最低点为.(2)当时,求函数的值域;(3)若方程在上有两个不相等的实数根,求的值.22. 已知圆心为的圆过原点,且直线与圆相切于点. (1)求圆的方程;(2)已知过点的直线的斜率为,且直线与圆相交于两点.①若,求弦的长;②若圆上存在点,使得成立,求直线的斜率.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 函数的最小正周期是()A. 4B.C. 8D.【答案】A【解析】函数的最小正周期是:.故选:A.2. 某工厂采用系统抽样方法,从一车间全体300名职工中抽取20名职工进行一项安全生产调查,现将300名职工从1到300进行编号,已知从31到45这15个编号中抽到的编号是36,则在1到15中随机抽到的编号应是()A. 4B. 5C. 6D. 7【答案】C【解析】某工厂采用系统抽样方法,从一车间全体300名职工中抽取20名职工进行一项安全生产调查,∴抽样间隔为:,现将300名职工从1到300进行编号,从31到45这15个编号中抽到的编号是36,则在1到15中随机抽到的编号应是:36−15×2=6.故选:C.3. 已知角的终边上一点,则()A. B. C. D.【答案】C【解析】∵角α的终边上一点P(−4,3),∴x=−4,y=3,r=|OP|=5,则,故选:C.4. 圆和圆的位置关系是()A. 相离B. 相交C. 内切D. 外切【答案】B【解析】因,且,所以两圆的位置关系是相交,应选答案B。
山东省济南第一中学2017-2018学年高一下学期期末考试数学试题 Word版含答案
2017-2018学年度第二学期期末模块考试高一数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分.考试限定用时120分钟.考试结束后,将本试卷和答题纸一并交回.答卷前,考生务必将自己的姓名、座号、考号分别填写在试卷和答题纸规定的位置.第Ⅰ卷(选择题 共40分)注意事项:1. 第Ⅰ卷共10小题,每小题4分,共40分.2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选择其他答案标号.只能涂在答题纸上, 答在试卷上无效.一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列给出的赋值语句中正确的是( )A .4=MB .B =A =3C .x +y =0D .M =-M 2. 0sin210=( )A .12B .12-CD .- 3.下列向量组中,可以把向量()3,2a =表示出来的是( ) A .()()120,0,1,2e e ==B .()()122,3,2,3e e =-=-C .()()123,5,6,10e e ==D .()()121,2,5,2e e =-=-4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为125,则第1组中按此抽签方法确定的号码是 ( )A .7B .5C .4D .3 5.设P 是ABC ∆所在平面内的一点,BC →+BA →=2BP →,则 ( )A .PA →+PB →=0→ B .PC →+PA →=0→ C .PB →+PC →=0→D .PA →+PB →+PC →=0→ 6.样本数据 的标准差为A BC .D .7.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A .56B .60C .140D .1208.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A .25 B .925 C .825D .15 9. 若将函数2sin 2y x =的图象向左平移12π个单位长度,则平移后图象的对称轴为( )A.()26k x k Z ππ=-∈ B. ()212k x k Z ππ=-∈ C. ()26k x k Z ππ=+∈ D. ()212k x k Z ππ=+∈10.在平面直角坐标系xOy 中,已知点 , 分别为x 轴,y 轴上一点,且 ,若点 ,则 的取值范围是 A.B. C. D.第Ⅱ卷(非选择题,共80分)二、填空题:本大题共5小题,每小题4分,共20分.11.某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.12.如图,矩形 中,点 为边 的中点,若在矩形 内随机取一个点 ,则点 取自 ABE∆内部的概率等于 .13.设向量 ()=0,2a ,,则a , 的夹角等于 . 14.执行如图所示的程序框图,若输入a 的值为2,则输出k 的值为 .15.函数()()sin f x A x ωϕ=+ (,,A ωϕ是常数,0,0A ω>>)的部分图象如图所示,下列结论:①最小正周期为π; ②将()f x 的图象向左平移6π个单位,所得到的函数是偶函数; ③()01f =; ④12141113f f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭. 其中正确的序号是 .三、解答题:本大题共6小题, 共60分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分8分) (Ⅰ)已知)0,235cos παα-∈=(,,求)sin(απ-; (Ⅱ)已知53)4sin(=+πθ,求)4cos(θπ-.17.(本小题满分10分)经销商小王对其所经营的某一型号二手汽车的使用年数x (0<x ≤10)与销售价格y (单位:万元/辆)进行整理,得到如下的对应数据:(附:回归方程y b x a ∧∧∧=+中, b ^=∑ni =1x i y i -n x y ∑n i =1x 2i -n x 2,a^=y -b ^x )(Ⅱ)已知每辆该型号汽车的收购价格为20.05 1.7517.2w x x =-+万元,根据(Ⅰ)中所求的回归方程,预测x 为何值时,小王销售一辆该型号汽车所获得的利润z 最大. 18.(本小题满分10分)在某次考试中,从甲乙两个班各抽取10名学生的数学成绩进行统计分析,两个班成绩的茎叶图如图所示.(Ⅰ)求甲班的平均分;(Ⅱ)从甲班和乙班成绩90100的学生中抽取两人,求至少含有甲班一名同学的概率.19.(本小题满分10分)(Ⅰ)已知在1,2,,,3ABC AB BC B AB a π∆==∠==中,,BC b =求23)4)a b a b -⋅+((;(Ⅱ)已知向量(2,1),(1,3),a b ==-且向量ta b +与向量a b -平行,求t 的值. 20. (本小题满分10分)已知函数()4tan sin cos 23f x x x x ππ⎛⎫⎛⎫=---⎪ ⎪⎝⎭⎝⎭.(Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上的单调递增区间. 21.(本小题满分12分)已知向量3311(cos,sin ),(cos ,sin )2222a x x b x x ==-,且0,2x π⎡⎤∈⎢⎥⎣⎦. (Ⅰ)求a b ⋅及a b +;(Ⅱ)若函数()2f x a b a b λ=⋅-+, ①当12λ=时求()f x 的最小值和最大值; ②试求()f x 的最小值()g λ.2015-2016学年高一下学期期末考试答案高一数学一、选择题:二、填空题: 11. 16 12. 12 13. 3π14. 2 15.①④ 三、解答题:16. 解:(Ⅰ)因为)0,235cos παα-∈=(,,所以2sin 3α=- 则2sin()sin 3παα-==-;4分(II )因为cos()cos sin 4244ππππθθθ⎡⎤⎛⎫⎛⎫-=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 所以3cos()45πθ-=.8分17. 解:(Ⅰ)由已知得x -=6,y -=102分由5i =1∑x i y i =242,5i =1∑x 2i =220,解得^b =ni =1∑x i y i -nx-y -n i =1∑x 2i -nx-2=-1.454分a ˆ=y --^bx -=18.7;所以回归直线的方程为^y =-1.45x +18.76分(Ⅱ)z =-1.45x +18.7-(0.05x 2-1.75x +17.2)=-0.05x 2+0.3x +1.5 =-0.05(x -3)2+1.95, 8分所以预测当x =3时,销售利润z 取得最大值.10分18.解:(Ⅰ)甲班的平均分为77757288878498951081068910+++++++++=; 4分(Ⅱ)甲班90-100的学生有2个,设为 ;乙班 90-100的学生有4个,设为a,b,c,d 从甲班和乙班90-100的学生中抽取两人,共包含,,,,,,,,,,,,,15个基本事件. 6分 设事件M=“至少含有甲班一名同学”,则事件M 包含,,,,,,,9个事件,8分 所以事件M 概率为93155=. 10分19. 解: (Ⅰ)因为 , 的夹角为23π,所以=212cos =-13π⨯⨯.2分 则223)4)=8310812106a b a b a b a b -⋅+--⋅=-+=((.5分(Ⅱ)因为(21,3),(3,2)ta b t t a b +=-++=-,所以21332t t -+=-,8分则.1t =-10分20.解:(Ⅰ)定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭sin 222sin 23x x x π⎛⎫==- ⎪⎝⎭.3分所以最小正周期2T ππω==.5分(Ⅱ)令2,3z x π=-函数2sin y z =的单调递增区间是2,2,.22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦由222232k x k πππππ-+≤-≤+,得5,.1212k x k k Z ππππ-+≤≤+∈8分设5,,,441212A B x k x k k Z ππππππ⎧⎫⎡⎤=-=-+≤≤+∈⎨⎬⎢⎥⎣⎦⎩⎭,易知,124A B ππ⎡⎤=-⎢⎥⎣⎦.所以, 当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增.10分21. 解: a b ⋅ 2分a b cos ⎛+=2cosx==,∵x 0,2π⎡⎤∈⎢⎥⎣⎦,∴cosx 0≥,∴a b 2cosx += … 4分 (2) ①()f x a b 2a b cos2x 22cosx =⋅-λ+=-λ⋅∵12λ=,∴()2f x cos2x 2cos x 2cos x 2cos x 1=-=--∴()2213f x cos2x 2cos x 2cos x 2cos x 12cos x 22⎛⎫=-=--=--⎪⎝⎭5分∵x 0,2π⎡⎤∈⎢⎥⎣⎦,∴[]cos x 0,1∈,∴()()max min3f x 1,f x 2=-=-;7分②()2f x a b 2a b cos2x 22cosx 2cos x 4cosx 1=⋅-λ+=-λ⋅=-λ-()222cosx 12=-λ--λ8分∵x 0,2π⎡⎤∈⎢⎥⎣⎦,∴[]cos x 0,1∈1)当0λ<时,()min f x 1=-; 2)当01≤λ≤时,()2min f x 12=--λ;3)当1λ>时,()()22min f x 211214=-λ--λ=-λ综上所述:()21,0g 12,0114,1-λ<⎧⎪λ=--λ≤λ≤⎨⎪-λλ>⎩. 12分。
高一数学上学期期末考试试题(含解析)-人教版高一全册数学试题
某某省实验中学2017-2018学年高一数学上学期期末考试试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】则故选2. 直线的倾斜角是()A. B. C. D.【答案】C【解析】直线的斜率为直线的倾斜角为:,可得:故选3. 计算,其结果是()A. B. C. D.【答案】B【解析】原式故选4. 已知四面体中,,分别是,的中点,若,,,则与所成角的度数为()A. B. C. D.【答案】D【解析】如图,取的中点,连接,,则,(或补角)是与所成的角,,,,,而故选5. 直线在轴上的截距是()A. B. C. D.【答案】B【解析】直线在轴上的截距就是在直线方程中,令自变量,直线在轴上的截距为故选6. 已知,是两个不同的平面,给出下列四个条件:①存在一条直线,使得,;②存在两条平行直线,,使得,,,;③存在两条异面直线,,使得,,,;④存在一个平面,使得,.其中可以推出的条件个数是()A. 1B. 2C. 3D. 4【答案】B【解析】当,不平行时,不存在直线与,都垂直,,,故正确;存在两条平行直线,,,,,,则,相交或平行,所以不正确;存在一个平面,使得,,则,相交或平行,所以不正确;故选7. 已知梯形是直角梯形,按照斜二测画法画出它的直观图(如图所示),其中,,,则直角梯形边的长度是()A. B. C. D.【答案】B【解析】根据斜二测画法,原来的高变成了方向的线段,且长度是原高的一半,原高为而横向长度不变,且梯形是直角梯形,故选8. 经过点的直线到,两点的距离相等,则直线的方程为()A. B.C. 或D. 都不对【答案】C【解析】当直线的斜率不存在时,直线显然满足题意;当直线的斜率存在时,设直线的斜率为则直线为,即由到直线的距离等于到直线的距离得:,化简得:或(无解),解得直线的方程为综上,直线的方程为或故选9. 已知函数的图象与函数(,)的图象交于点,如果,那么的取值X围是()A. B. C. D.【答案】D【解析】由已知中两函数的图象交于点,由指数函数的性质可知,若,则,即,由于,所以且,解得,故选D.点睛:本题考查了指数函数与对数函数的应用,其中解答中涉及到指数函数的图象与性质、对数函数的图象与性质,以及不等式关系式得求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,本题的解答中熟记指数函数与对数函数的图象与性质,构造关于的不等式是解答的关键,试题比较基础,属于基础题.10. 矩形中,,,沿将矩形折成一个直二面角,则四面体的外接球的体积是()A. B. C. D.【答案】B【解析】由题意知,球心到四个顶点的距离相等,球心在对角线上,且其半径为长度的一半为故选11. 若关于的方程在区间上有解,则实数的取值X围是()A. B. C. D.【答案】A【解析】由题意可得:函数在区间上的值域为实数的取值X围是故选点睛:本小题考查的是学生对函数最值的应用的知识点的掌握。
2017-2018学年第二学期七年级数学期末试题(含答案)
2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。
人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案
E D CBA2017-2018学年第一学期期末测试卷初三数学一、选择题(本题共30分,每小题3分)1.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥ R ,则P 点 A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 把10cm 长的线段进行黄金分割,则较长线段的长(236.25≈, 精确到0.01)是A .3.09cmB .3.82cmC .6.18cmD .7.00cm 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD =4,DB =2,则AE ︰EC 的值为 A . 0.5 B . 2 C . 32 D . 23 4. 反比例函数xky =的图象如图所示,则K 的值可能是 A .21B . 1C . 2D . -1 5. 在Rt △ABC 中,∠C =90°,BC =1,那么AB 的长为A .sin AB .cos AC .1cos AD . 1sin A6.如图,正三角形ABC 内接于⊙O ,动点P 在圆周的劣弧AB 上, 且不与A,B 重合,则∠BPC 等于A .30︒B .60︒ C. 90︒ D. 45︒ 7.抛物线y=21x 2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为 A . y =21x 2+ 2x + 1 B .y =21x 2+ 2x - 2C . y =21x 2 - 2x - 1 D. y =21x 2- 2x + 18. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ; ④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有 A. 2个 B. 3个C. 4个D. 5个9. 如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,下列结论:①∠BAE =30°;②CE 2=AB·CF ;③CF =31FD ;④△ABE ∽△AEF .其中正确的有A. 1个B. 2个C. 3个D. 4个10.如图,已知△ABC 中,BC =8,BC 边上的高h =4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为A. B. C. D.二、填空题(本题共18分, 每小题3分) 11.若5127==b a ,则32ba -= . 12. 两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别 是 , . 13.已知扇形的面积为15πcm 2,半径长为5cm ,则扇形周长为 cm .14. 在Rt △ABC 中,∠C =90°,AC =4, BC =3,则以2.5为半径的⊙C 与直线AB 的位置关系 是 .15. 请选择一组你喜欢的a,b,c 的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满16. 点是 17.18.如图:在Rt△ABC中,∠C=90°,BC=8,∠B=60°, 解直角三角形.19.已知反比例函数x 1k y -=图象的两个分支分别位于第一、第三象限.(1)求k的取值范围;(2)取一个你认为符合条件的K值,写出反比例函数的表达式,并求出当x=﹣6时反比例函数y的值;20.已知圆内接正三角形边心距为2cm,求它的边长.24.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径, D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线 于点E ,且AC 平分∠EAB . 求证:DE 是⊙O 的切线.26. 已知:抛物线y=x 2+bx+c 经过点(2,-3)和(4,5)(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x 轴翻折,得到图象G ,求图象G 的表达式;(3)在(2)的条件下,当-2<x <2时, 直线y =m 与该图象有一个公共点,求m 的值或取值范围.27. 如图,已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点 出发沿AB 方向以1c m /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方 向以2c m /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A,M,N 为顶点的三角形与ACD △相似?若存在,求t 的 值;若不存在,请说明理由.()28.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置 关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与 EF 是否平行?请说明理由.29. 设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的“闭函数”.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的“闭函数”.(1)反比例函数y =x 2016是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由; (2)若二次函数y =22x x k --是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的表达式(用含 m ,n 的代数式表示).图 3一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin 304560︒︒︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分当x=﹣6时,3162x 2y -=-==;---------------------5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分 ∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分B21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △PAD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S ABC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。
2017-2018年山东省济南市高一(下)期末数学试卷(解析版)
5. (5 分)△ABC 中,角 A,B,C 所对的边分别为 a,b,c.已知 a= ,则角 A 的大小为( A. 6. (5 分)若 cos( A.﹣ B. )= B.﹣ ) 或 ,则 sin(α+ C. )的值为( C. ) D. D.
,B=
7. (5 分)角 B 为△ABC 的内角,向量 =(sinB, B 的大小为( A. ) B. C.
第 3 页(共 19 页)
20. (12 分)一个同学用五点法画函数 f(x)=Asin(ωx+φ)+B(A>0,ω>0,0<φ<π) 的图象时,列出下列表格: x ωx+φ sin(ωx+φ) f(x) 0 0 1 3 π 0 ﹣1 ﹣1 2π 0
(1)根据表格中的部分数据求出 f(x)的解析式,并在下面给出的坐标纸中作出 f(x)在 闭区间[﹣ , ]上的图象;
)的图象过点 B(0,﹣1) ,
)上单调,同时 f(x)的图象向左平移 π 个单位之后与原来的图象重合, ,﹣ B.﹣1 ) ,且 x1≠x2 时,f(x1)=f(x2) ,则 f(x1+x2)=( C.1 D. )
当 x1,x2∈(﹣ A.﹣
二、填空题:本题共 4 小题,每小题 5 分,共 20 分 13. (5 分) 已知| |=7, | |=5, 与 的夹角为 60°, 则 (2 +4 ) ( • ﹣ ) 的值为 14. (5 分)正方形 ABCD 的边长为 2,E 为 CD 的中点,则 • 的值为 . .
) , =(cosB,3) .若 ∥ ,则角
D.
8. (5 分)2002 年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的“弦图” 为基础设计的.如图所示, “弦图”是由四个全等直角三角形与一个小正方形拼成的一个 大正方形.如果一个直角三角形的面积为 4.小正方形的周长为 8,直角三角形中较小的 锐角为 θ,则 tan2θ 的值等于( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年度第二学期期末考试高一数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间为120分钟.注意事项:选择题必须用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.第Ⅰ卷(选择题,每题5分,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有..一项..是符合题目要求的,请将正确选项填涂在答题卡上). 1. 31sin()6π-的值是( )A.21 B. 12- C. 23 D. 2. 已知(1,2),(5,4),(.3),(3,)A B C x D y -,且AB CD =,则,x y 的值分别为 ( ) A .-7,-5 B .7,-5 C .-7,5 D .7,53.在区间[-1,1]上随机取一个数x ,cos2xπ的值介于0到21之间的概率为( ) A.31 B.π2C.21D.324.已知圆0222=+-+my x y x 上任意一点M 关于直线0=+y x 的对称点N 也再圆上,则m 的值为( )A. 1-B.1C. 2-D.2 5.下列函数中,周期为π,且在]2, 4[ππ上单调递增的奇函数是( )A.)22sin(π+=x y B.)22cos(π-=x y C.)22cos(π+=x yD.)2sin(π-=x y6. 已知ABC ∆中,c b a 、、分别是角C B A 、、的对边, 60,3,2===B b a ,则A =()A.135 B.45 C.135或45 D.90 7. 将函数cos y x =的图象向右平移2π个单位长度,再向上平移1个单位长度,则所得的图象对应的解析式为 ( ).A .1sin y x =-B .1sin y x =+C .1cos y x =-D .1cos y x =+8. 如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( ) A. 3,5 B. 5,5 C. 3,7 D. 5,79. 在ABC 中,点P 在BC 上,且2BP PC =,点Q 是AC 的中点,若(4,3)PA =,(1,5)PQ =,则BC 等于 ( ).A .(-6,21)B .(6,-21)C .(2,-7)D .(-2,7) 10.从某高中随机选取5名高一男生,其身高和体重的数据如下表所示:根据上表可得回归直线方程a x y+=56.0据此模型预报身高为172cm 的高一男生的体重为A. 70.09B.70.12C.70.55D.71.05 11. 函数1ππ()sin()cos()536f x x x =++-的最大值为( ) A .65B .1C .35D .1512. 已知OA OB ⋅是两个单位向量,且0·=.若点C 在AOB ∠内,且 30=∠AOC ,则(,)OC mOA nOB m n R =+∈,则=nm( ) A.31 B.3 C. 33 D. 3第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分,请将答案填写在试卷的横线上.13.某程序框图如图所示,该程序运行后输出的k 的值是 .14.向量),4(),1,2(x b x a ==且a 与b 的夹角为180,则实数x 的值为 .15. 若采用系统抽样方法从420人中抽取21人做问卷调查,为此将他们随机编号为1,2,,420,则抽取的21人中,编号在区间[241,360]内的人数为 .16. 若点(c o s ,s P αα在直线2y x =-上,则sin 22cos2αα+= .17. ABC ∆中,120,2,ABC A b S ∆===a 等于 . 18. 给出下列命题:①存在实数x ,使3sin cos 2x x +=; ②函数2sin()32y x π=+是偶函数; ③若,αβ是第一象限角,且αβ>,则cos cos αβ<; ④函数sin 2y x =的图象向左平移4π个单位,得到函数sin(2)4y x π=+的图象.其中结论正确的序号是 .(把正确的序号都填上)三、解答题:本大题共6小题,共74分,解答应写出必要的文字说明、证明过程或演算步骤.19. (本小题满分12分)平面向量),,2(),,2(),4,,3(y c x b a ==-=已知∥,⊥, (1)求向量.b 和向量.c (2)求c b 与夹角。
20. (本小题满分12分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率; (2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等。
试估计总体中男生和女生人数的比例.21. (本小题满分12分)如图,在平面直角坐标系中,锐角βα、的终边分别与单位圆交于A 、B 两点.(1)如果53sin =α,点B 的横坐标为135,求)cos(βα+的值(2)已知点)2,32(-C ,函数()f OA OC α=⋅,若()f α=求α22.(本小题满分12分)在ABC 中,角,,A B C 的对边分别为,,a b c ,若AB AC BA BC k ⋅=⋅= (k R ∈). (1)判断ABC 的形状;(2)若c =k 的值.23.(本小题满分12分)已知函数2()cos 2cos 1()f x x x x x R =+-∈(Ⅰ)求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值; (Ⅱ)若006(),,542f x x ππ⎡⎤=∈⎢⎥⎣⎦,求0cos 2x 的值.2016—2017学年度第二学期期末考试高一数学试题答案一、选择题 ACADC BBCAB AD二、填空题 13. 5 14.2- 15. 6 16. 2- 17. ②三、解答题19. (1)),23,2(),38,2(=-=(2)2π20.(1)小于70的频率为(0.020.04)100.6+⨯=,所以样本中分数小于70的频率为10.60.4-=.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(2)根据题意,样本中分数不小于50的频率为(0.010.020.040.02)100.9+++⨯=,分数在区间[40,50)内的人数为1001000.955-⨯-=,所以总体中分数在区间[40,50)内的人数估计为540020100⨯= (3)由题意可知分数不小于70的学生人数为(0.02+0.04)×10×100=60 所以样本中分数不小于70的男生人数为60×1/2=30 所以样本中男生人数为30×2=60,女生人数为100-60=40 所以男生和女生人数的比例为60:40=3:221.(本小题满分12分)解:(1)a 是锐角,53sin =a 54sin 1cos 2=-=∴a根据三角函数的定义,得135cos =β又β 是锐角 1312cos 1sin 2=-=∴ββ4531216cos()cos cos sin sin 51151365αβαβαβ∴+=-=⨯-⨯=-(2)由题意可知(cos ,sin ),(23,2)OA OC αα==-,232sin OA OC αα=-=4cos()6a π+又()4cos()6f a a π=+=22)6cos(=+πa 20π<<a 3266πππ<+<∴a 46ππ=+∴a 12π=∴a22. 解 (1)∵AB →·AC →=cb cos A ,BA →·BC →=ca cos B ,又AB →·AC →=BA →·BC →,∴bc cos A =ac cos B , ∴sin B cos A =sin A cos B ,即sin A cos B -sin B cos A =0,∴sin(A -B )=0, ∵-π<A -B <π,∴A =B ,即△ABC 为等腰三角形.(2)由(1)知,AB →·AC →=bc cos A =bc ·b 2+c 2-a 22bc =c 22=k ,∵c =2,∴k =1.23.(本小题满分12分)(1)解:由2()cos 2cos 1f x x x x =+-,得2()cos )(2cos 1)2cos 22sin(2)6f x x x x x x x π=+-=+=+所以函数()f x 的最小正周期为π因为()2sin 26f x x π⎛⎫=+⎪⎝⎭在区间0,6π⎡⎤⎢⎥⎣⎦上为增函数,在区间,62ππ⎡⎤⎢⎥⎣⎦上为减函数, 又(0)1,2,162f f f ππ⎛⎫⎛⎫===-⎪ ⎪⎝⎭⎝⎭, 所以函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为2,最小值为1- …………… 6分 (Ⅱ)解:由(1)可知00()2sin 26f x x π⎛⎫=+⎪⎝⎭又因为06()5f x =,所以03sin 265x π⎛⎫+= ⎪⎝⎭由0,42x ππ⎡⎤∈⎢⎥⎣⎦,得0272,636x πππ⎡⎤+∈⎢⎥⎣⎦从而04cos 265x π⎛⎫+==- ⎪⎝⎭ 所以0000cos 2cos 2cos 2cos sin 2sin 666666x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ (12)。