概率论与数理统计 第5章 大数定律和中心极限定理
概率论与数理统计第五章 大数定律及中心极限定理
在100次炮击中炮弹命中的总颗数
100
X = ∑ Xk k =1
相互独立地服从同一分布,
E(Xk)=2, D(Xk)=1.52 (k=1,2,…,100)
随机变量
∑ 1
100 × 1.5
100 k =1
(
X
k
−
2)
=
1 15
(
X
−
200)
2. 伯努利定理 事件发生的频率依概率收敛于事件的概率
3. 辛钦定理 (随机变量序列独立同分布且数学期望存在)
n个随机变量的算术平均值以概率收敛于算术 平均值的数学期望。
给出了“频率稳定性”的严格数学解释. 提供了通过试验来确定事件概率的方法. 是数理统计中参数估计的重要理论依据之一.
§5.2 中心极限定理
望 E( Xk ) = µ (k = 1,2,"),则对于任意ε > 0,有
∑ lim
n→∞
P {|
1 n
n k =1
Xk
−
µ
|<
ε
}
=
1
说明
伯努利大数定理是辛钦定理的特殊情
况。n个随机变量的算术平均值以概率收敛于算
术平均值的数学期望。
三 小结
1、切比雪夫(Chebyshev)定理的特殊情况 算术平均值依概率收敛于数学期望
= 1 − P { V − 100 ≤ 0.387 } (10 12 ) 20
∫ 0.387
≈ 1−
1
e − t 2 dt
−∞ 2π
= 1 −Φ (0.387) = 0.348
所以 P{V > 105} ≈ 0.348
概率第五章_大数定律与中心极限定理090505
P ( − Eξ ε ) = ξ ≥
P(ξ ≥ Eξ + ε ) + P (ξ ≤ Eξ − ε )
k
=
≤
k : xk ≥ E +
∑ξ ε p
k
+
k : xk ≤ E −
∑ξ ε p
pk +
k :xk ≥ E +
∑ξ ε
( x − Eξ ) 2
ε
2
k :xk ≤ E −
∑ξ ε
( x − Eξ ) 2
, 方差 Dξ n ( n = 1, 2,L),且 Dξi < l (i = 1, 2,L) 其中 l 与 i 无关的
1 Eξ = (1 + 2 + 3 + L + 6) 6
35 7 故 Eξ = Dξ = 12 2
4 2 = P (ξ = 5) + P(ξ = 6) + P (ξ = 1) + P (ξ = 2) = = 6 3 7 1 P( − 2 ) = P(ξ ≥ 5.5) + P(ξ ≤ 1.5) = P (ξ = 6) + P (ξ = 1) = ξ ≥
即
lim P ( − p < ε ) = 1 n →∞ n
ξ
此定理表明:当试验在不变的条件下重复进行很多次时, 随机事件的频率 频率在它的概率 概率附近摆动。 频率 概率 由贝努里大数定律可知,若事件A的概率很小很小时,则 它的频率也很小很小,即事件A很少发生或几乎不发生, 这种事件叫小概率事件。反之,若随机事件的概率很接近1, 则可认为在个别试验中这事件几乎一定发生。 同分布的两个或多个随机变量: 同分布的两个或多个随机变量 离散型: 它们的概率分布律相同. 离散型 它们的概率分布律相同 连续型: 它们的概率密度函数相同. 连续型 它们的概率密度函数相同 所以它们的期望与方差一定相同. 所以它们的期望与方差一定相同
概率论与数理统计 第五章
Xn ⎯ ⎯→ X 2. 依概率收敛与依分布收敛的关系
依概率收敛 ⇒ 依分布收敛
L
3. 定义:中心极限定理 设随机变量 X ~ N(0,1),{Xi },i = 1, 2, … 相互独 立,且数学期望和方差都存在, 若标准化随机变量序列
∑
n
i =1
Xi −
∑ E(X
i =1
n
i
)
∑
n
i =1
D(X i)
所以结论成立。 由此有,若X ~ B( n, p ),对于足够大的n,有 ⎧ m1 − np X − np m2 − np ⎫ ⎪ ⎪ < ≤ P{m1 < X ≤ m2 }= P ⎨ ⎬ np(1 − p) np(1 − p) ⎪ ⎪ np(1 − p) ⎩ ⎭
⎧ Yn − np ⎫ ⎪ ⎪ ≤ x ⎬ = Φ( x ) lim P ⎨ n →∞ ⎪ np(1 − p ) ⎪ ⎩ ⎭
证明:对于任意正整数n,随机变量Yn 可表示为 证明:对于任意正整数n Yn = X1+ X2+…+ Xn X1, X2,…, Xn 相互独立,Xi ~ B( 1, p ),且有 E( Xi ) = p , D( Xi ) = p(1-p) 所以随机变量序列{ Xi }, i =1,2,…满足独立同分布 中心极限定理条件。即有
切比雪夫不等式的应用 1)估计随机变量落在某个区间内的概率 (P125例5.5.2) 2)估计ε的值, 使 P(│X - E(X)│<ε) ≥ a (0<a<1) 3)证明大数定律。
二. 大数定律 定义: 依概率收敛 设{Xn}是一个随机变量序列,X 是一个随机变量 或常数,若对于任意的ε> 0,有 lim P{| X n − X |≥ ε } = 0
概率论与数理统计第五章大数定律及中心极限定理
概率论与数理统计第五章大数定律及中心极限定理课前导读概率论是研究大量试验后呈现出的统计规律性的一门理论。
数学中研究大量的工具是极限。
因此这一章学习概率论中的极限定理。
第一节大数定律随着试验次数的增大,事件的频率逐步稳定到事件的概率。
意味着随着试验次数的增多,在其中一种收敛意义下,频率的极限是概率。
大数定律解释了这一结论。
首先介绍切比雪夫不等式。
一、切比雪夫(Chebyshev)不等式随机变量X的取值总是围绕着其期望变动,若X的分布已知时,可以计算事件\{,X-E(X),\geq \epsilon \}的概率。
切比雪夫不等式:对切比雪夫不等式的直观理解:方差越小,X在其期望附近取值的密集程度越高,原理期望的区域的概率上加越小。
进一步说明了方差的概率意义,方差时随机变量取值与其中心位置的偏离程度的一种度量指标。
当随机变量X的分布未知时,可由X的观测数据估计得到X的期望和方差,然后使用切比雪夫不等式估计X关于E(X)的偏离程度。
二、依概率收敛随机变量序列即由随机变量构成的一个序列。
不能用类似定义数列极限的方式定义随机变量序列的极限,因为序列中的每一个元素X_n是随机变量,取值不确定,不可能和一个常数c的距离任意小。
只能说一些事件A发生的频率f_n(A)收敛到A的概率P(A)。
依概率收敛的定义:定理2:三、大数定律三个大数定律:切比雪夫大数定律、辛钦大数定律和伯努利大数定律。
注意这三个大数定律的条件有何异同。
定理3 切比雪夫大数定律:若随机变量序列相互不相关,方差存在且一致有上界,当n充分大时,随机序列的前n项的算术平均值和自身的期望充分接近几乎总是发生的。
定理4 相互独立同分布的大数定律(辛钦大数定律):辛钦大数定律为算术平均值法则提供了理论依据。
伯努利大数定律:伯努利大数定律是相互独立同分布大数定律的特例,限定分布为两点分布。
伯努利大数定律体现了:随着试验次数的增大,事件的频率逐步稳定到时间的概率,这里的稳定即为依概率收敛。
概率论与数理统计(浙大版)第五章第六章课件大数定律和中心极限定理
Yn x
lim P i1 n
n
x
x
证明略。
在实用上,n≥30
1
t2
e 2 dt
2
此定理表明,当n充分大时,Yn近似服从N 0,1.
n
即: X(i 近似)~N (n, n 2 ), i=1
从而,P(a
n i 1
Xi
b)
(b n ) ( a n ).
n
n
答案:N (, 2 )
关键词: 总体 个体 样本 统计量
2 分布 t 分布 F 分布
23
引言:数理统计学是一门关于数据收集、整理、分析 和推断的科学。在概率论中已经知道,由于大 量的 随机试验中各种结果的出现必然呈现它的 规律 性,因而从理论上讲只要对随机现象进行 足够多次观察,各种结果的规律性一定能清楚 地呈现,但是实际上所允许的观察永远是有限 的,甚至是 少量的。 例如:若规定灯泡寿命低于1000小时者 为次 品,如何确定次品率?由于灯泡寿命试验是 破坏性试验,不可能把整批灯泡逐一检测,只 能抽取一部分灯泡作为样本进行检验,以样本 的信 息来推断总体的信息,这是数理统计学研 究的问题之一。
24
§1 总体和样本
总体:研究对象的全体。如一批灯泡。 个体:组成总体的每个元素。如某个灯泡。 抽样:从总体X中抽取有限个个体对总体进行观察的取值过程。 随机样本:随机抽取的n个个体的集合(X1,X2,…,Xn), n为样本容量 简单随机样本:满足以下两个条件的随机样本(X1,X2,…,Xn)称
2. 用泊松分布近似计算
np 400 0.02 8 查表得
P X 2 1 P X 0 P X 1 1 0.000335 0.002684 0.9969
概率论与数理统计 第五章 大数定律与中心极限定理
的概率很小” ,用数学语言表达,就是要证明: 0 ,有
nA nA lim P p 0 lim P p 1 n ,或 n n . n
另一种提法是:研究随机变量 n A 的分布的极限行为,即讨 论分布函数
nA lim P p 0 lim P n n 或 n
nA p 1 . n
证 引入
1 , 第i次试验中事件A发生 Xi ,i 1 , 2 , , n , 0 , 第i次试验中事件A不发生
下面我们进一步来讨论贝努利试验.若记 n A 为 n 次贝努利试
nA 验中事件 A 发生的次数, 则事件 A 发生的频率为 n . 所谓 “频 率的稳定性” ,无非是指当试验次数 n 无限增大(即 n )时,
nA 频率 n 无限接近于某个固定常数.这个固定的常数就是“事 件 A 在一次试验中发生的的概率 p” . nA 由此可见,讨论频率 n 的极限行为,是理解概率论中最基本
2019年1月14日星期一
11 / 102
§5.1
大数定律
作为预备知识,我们先明确随机变量序列收敛的
相关概念,同时给出一个重要的不等式,它是以下理 论证明所用的主要工具之一.
定 义 1.1 设 a 是常数,对于随机变量序列 ,如果 0 ,有
X1 , X 2 ,
, Xn ,
lim P
n
个常数,即在这个常数的附近摆动,这就是所谓的“频
率稳定性”.但对这一点,至今为止我们尚未给予理论 上的说明.另外,在第二章我们给出了二项分布的泊松 逼近,那么更一般的近似计算方案又是怎样呢?
2014年自考 概率论与数理统计串讲讲义 第五章 大数定律与中心极限定理
n
2
),
为了便于查表近似计算,将
n
Xi 标准化(从而标准化后其近似分布 N (0,1) ) ∑ i
=1
X i − E ∑ X i ∑ X i − nµ ∑ i i i
=1 =1
n
n
D ∑ X i
i =1
n
=
=1
nσ
n ∑ X i − nµ 故上述随机变量的分布函数 Fn ( x) ≈ Φ ( x) ,即 P i =1 ≤ x ≈ Φ ( x) nσ
例1
计算机进行加法计算时,设所取整误差是相互独立的随机变量 X1 , X2 ," ,且都服从 ∪ (−0.5, 0.5) ,求 300
个数相加的误差总和的绝对值小于 10 的概率。 解 : 易 知 第 i
300
个 加 数 的 误 差
Xi 满 足 : Xi ~ ∪ (−0.5, 0.5) , EXi = 0, DXi =
2
n ∑ X i − nµ i =1 lim P ≤ x = Φ ( x) ,其中 Φ ( x) 为标准正态分布函数 n →∞ nσ
[注] : 中心极限定理的含义是: 大量随机变量的和近似正态分布, 即当 n 很大时
n
Xi 近似某正态分布 N ( µ , σ ∑ i
1 , 故 12
nµ = 0 D ∑ Xi = ∑ DXi = 300 ×
i =1
i =1
300
1 = 25 12
300 Xi − 0 ∑ 300 i =1 < 2 ≈ 2Φ(2) − 1 = 0.9544 故所 P ∑ Xi < 10 = P 1 i =1 300 × 12
概率论与数理统计----第五章大数定律及中心极限定理
= 1 − Φ(3.54)
=0.0002
一箱味精净重大于20500的概率为 的概率为0.0002. 一箱味精净重大于 的概率为
推论:
特别,若X~B(n,p),则当n充分大时, 特别, ~B(n 则当n充分大时,
X~N(np,npq) X~N(np,npq) np
若随机变量X~B( X~B(n, ),则对任意实数x有 ),则对任意实数 即 若随机变量X~B( ,p),则对任意实数 有
不等式证明 P{-1<X<2n+1}≥(2n+1)/(n+1)(n+1)
3. 设P{|X-E(X)|<ε}不小于 不小于0.9,D(X)=0.009.则用 不小于 则用
切比绍夫不等式估计ε的 最小值是( 切比绍夫不等式估计 的 最小值是
0.3 ).
4.(894) 设随机变量 的数学期望为 设随机变量X的数学期望为 的数学期望为µ, 标准差为σ,则由切比绍夫不等式 标准差为 则由切比绍夫不等式 P{|X-µ|≥3σ}≤( ). 1/9 5. 设随机变量X的分布律为 设随机变量 的分布律为 P{X=0.3}=0.2, P{X=0.6}=0.8, 用切比绍夫不等式估计 |X-E(X)|<0.2的概率 的概率. 的概率
1 n lim P ∑ Xi − µ < ε = 1 n→∞ n i =1
定理(贝努里利大数定律) 设每次实验中事件A发生的概率 定理(贝努里利大数定律) 设每次实验中事件A 为p,n次重复独立实验中事件A发生的次数为nA,则对任 次重复独立实验中事件A发生的次数为n 意的ε>0 意的ε>0 ,事件的频率 nA ,有 ε>
∫
+∞
−∞
概率论与数理统计 五大数定理
[注]: X n P → a 注: 推论(辛钦大数定律) 推论(辛钦大数定律)
X n − a P → 0
设独立随机变量 X 1 , X 2 ,⋅ ⋅ ⋅, X n 服从同一分布 并且有数学 服从同一分布, 期望 µ 及方差 σ 2, X 1 , X 2 ,⋅ ⋅ ⋅, X n 的算术平均值当 n → ∞ 则 时,按概率收敛于µ, 即对于任何正数 ε,恒有 按概率收敛于 ,
第五章 大数定理与中心极限定理
“大数定律”: 用来阐明大量随机现象平均结果稳定性的定理 大数定律” 用来阐明大量随机现象平均结果稳定性的定理. 大数定律
一、切比雪夫不等式
切比雪夫不等式: 切比雪夫不等式: 设随机变量 X 有数学期望 EX 及方差 DX, , 下列不等式成立: 则对于任何正数 则对于任何正数 ε,下列不等式成立:
2 i
n
则:E(Yn ) =
2 µi , D(Yn ) = ∑σi2 = sn . ∑
n i =1
n
i =1
i =1
∴ Z n = Yn
1 = sn
∗
n Y n − EY n 1 n = = ∑ X i − ∑ µ i sn i =1 DY n i =1
∑ (X
i =1
n
i
− µ i ), 则有:E ( Z n ) = 0 , D ( Z n ) = 1 . 则有:
概率论中有关论证随机变量的和的极限分布是正态分布的定 概率论中有关论证随机变量的和的极限分布是正态分布的定 随机变量的和的极限分布是正态分布 是独立随机变量, 设 X 1 , X 2 ,⋅ ⋅ ⋅ , X n ,⋅ ⋅ ⋅ 是独立随机变量,并各有
EX i = µ i , DXi = σ , i = 1,2,⋅ ⋅ ⋅, n,⋅ ⋅ ⋅. 设 n = ∑Xi , Y
东华大学《概率论与数理统计》课件 第五章 大数定律与中心极限定理
7 8.75E-06 6.2863E-05 7.19381E-05 7.28862E-05 7.2992E-05
8 3.65E-07 7.3817E-06 8.93826E-06 9.1053E-06 9.124E-06
4 0.01116 0.01494171 0.015289955 0.015324478 0.01532831
5 0.001488 0.00289779 0.003048808 0.003063976 0.00306566
6 0.000138 0.00046345 0.0005061 0.000510458 0.00051094
ln n) + 1 ( 2
ln n) = 0
Dn
=
E
2 n
=
1 2
(ln n) +
1 2
(ln n)
=
ln n
→
但 1
n2
n
D( i ) =
i =1
1 n2
n i =1
Di
=
1 n2
n
ln i
i =1
1 n2
n
ln n =
i =1
ln n n
→0
满足马尔可夫条件,{
}服从大数定律
n
注意: 辛钦大数定律只要求一阶矩存在,但是 随机变量序列是独立同分布的. 若所讨论的 随机变量序列是不服从同分布的要求或不独 立可应用切比雪夫大数定律 或者马尔可夫大 数定律 .
(2)设 n 为 n 次独立重复试验中 A 出现的次数, p 是事件 A 在每次试验中出现的概率, 0 ,
则
lim
n→
P{
n
n
−
p
概率论与数理统计 第三版 第五章 大数定律和中心极限定理
依概率收敛的序列还有以下性质: 设 X n p a, Yn pb, 且函数 g(x,y) 在点 (a,b)连续,
具有数学期望 E(X ) 和方差 D(X ) , 0 ,有
P{
X
E
(
X
)
≥
}≤
D(
X
2
)
,
或
P{ X E(X ) }≥1 D(X ) .
2
上页 下页 返回
证 以连续型随机变量X为例.
P{ X E( X ) ≥} f (x)dx x E ( X ) ≥
≤ x E ( X ) ≥
x E(X ) 2
E(
X
k
)
,D(
X
k
)
2
(k
1,2,
上页
,
n).
下页
返回
则对任意的ε>0, 有
1
lim P{ n n
n
Xk
k 1
}1
证 由于
lim P X 1.
n
E
1 n
n k 1
X
k
1 n
n k 1
E(X
k
)
1 n
n
,
D
1 n
n k 1
Xk
1 n2
n
D
k 1
XK
1 n2
n
2
2
n
,
上页 下页 返回
由切比雪夫不等式知
P
1 n
n
Xk
k 1
≥1
2
n
2
.
令n , 并注意到概率不能大于1, 即得
1
lim
n
P
概率论与数理统计 第四版 第五章
≈1 - Φ
60 - 300 × 0畅 2 300 × 0畅 2 × 0畅 8
= 1 - Φ(0) = 0畅 5 .
8 . 一复杂的系统由 100 个相互独立起作用的部件所组成 ,在整个运行期间
121
(1) 求收入至少 400 元的概率 ; (2) 求售出价格为1畅 2 元的蛋糕多于 60 只的概率 . 解 设第 i 只蛋糕的价格为 X i ,i = 1 ,2 ,… ,300 ,则 Xi 有分布律为
Xi 1 1畅 2 1畅 5 pk 0畅 3 0畅 2 0畅 5
由此得
E( Xi ) = 1 × 0畅 3 + 1畅 2 × 0畅 2 + 1畅 5 × 0畅 5 = 1畅 29 ,
率是多少 ?
解 以 Xi ( i = 1 ,2 ,… ,5 000) 记第 i 个零件的重量 ,以 W 记 5 000 个零件
5 000
钞 的总重量 :W = Xi .按题设 E( Xi ) = 0 .5 ,D( Xi ) = 0畅 12 ,由中心极限定理 ,可 i= 1
知 W - 5 000 × 0畅 5 近似地服从 N(0 ,1) 分布 ,故所求概率为 5 000 × 0畅 1
钞10 000
—
X
=
1 10 000 i = 1
Xi
~
N
280
,18
002 002
,
故
p1
=
—
P( X > 270)
≈ 1-
Φ
270 - 280 8
=
1-
Φ
-
5 4
=
Φ
5 4
= Φ(1畅 25) = 0畅 894 4 .
118
概率论与数理统计习题全解指南
概率论与数理统计 第五章
贝努里定理. 它的叙述如下:设是n次重复独立 对于任意给定的ε>0,有
lim P{| nA p | } 1
n
n
lim P{| nA p | } 1
n
n
其中nA/n是频率,p是概率,即次数多
时事件发生的频率收敛于概率.表示频率的稳定性.
定理3
lim P{|
n
1 n
n i 1
Xi
| } 1
数理统计的方法属于归纳法,由大量的资料作依据,而不
是从根据某种事实进行假设,按一定的逻辑推理得到的.例
如统计学家通过大量观察资料得出吸烟和肺癌有关,吸烟
者得肺癌的人比不吸烟的多好几倍.因此得到这个结论.
数理统计的应用范围很广泛.在政府部门要求有关的资
料给政府制定政策提供参考.由局部推断整体,学生的假期
第五章 大 数 定 律 与 中 心 极 限 定 律
§ 5.1大 数 定 律
定理1(切比雪夫定理) 设X1,X2,...,Xn,...是相互独立的随机变
量序列若存在常数C,使得D(Xi)≤C. (i=1,2,...n),则对任意给
定的ε>0,有
lim P{|
n
1 n
n i 1
[Xi
E( X i )] |
7200 6800 2
200 1
D 2
1
2100 2002
0.95
可见虽有10000盏灯,只要电力供应7200盏灯即有相当大的保 证率切贝谢夫不等式对这类问题的计算有较大价值,但它的精度 不高.为此我们研究下面的内容.
2021/9/5
10
§ 5.2 中 心 极 限 定 理
在随机变量的一切可能性的分布律中,正态分布占有特殊的
《概率论与数理统计》课件第五章大数定律及中心极限定理
4.大样本统计推断的理论基础
是什么?
大数定律中心极限定理
随机现象中平均结果的稳定性
大数定律的客观背景
大量抛掷硬币正面出现频率
字母使用频率
生产过程中的废品率
§5.1 大数定律
背景:1. 频率稳定性2. 大量测量结果算术平均值的稳定性
回顾
随机现象的主要研究方法
概率分布
01
证:_x001A__x001B__x001B_,_x001A__x001B__x001B_,⋯, _x001A__x001B__x001B_, ⋯相互独立同分布,则_x001A__x001B__x001B__x001B_,_x001A__x001B__x001B__x001B_, ⋯,_x001A__x001B__x001B__x001B_, ⋯也相互独立同分布,由辛钦大数定律得证.
第五章 大数定律及中心极限定理
§5.1 大数定律§5.2 中心极限定理
要点:用切比雪夫不等式估算概率独立同分布,用中心极限定理计算对于二项分布,当n很大时,计算
本章要解决的问题
1.为何能以某事件发生的频率
作为该事件的概率的估计?
2.为何能以样本均值作为总体
期望的估计?
3.为何正态分布在概率论中占
解:(1)设X表示一年内死亡的人数,则~(, ),其中=,=.%. 设Y表示保险公司一年的利润,=×−.需要求的是_x001A_<_x001B_.
由中心极限定理
_x001A_<_x001B_=_x001A_×−<_x001B_ =_x001A_>_x001B_=−_x001A_≤_x001B_
且,
由中心极限定理
解:设为第i个螺丝钉的重量, 相互独立同分布. 于是,一盒螺丝钉的重量为
概率论与数理统计 第五章 大数定律与中心极限定理 第一节 大数定律
即n 取18750时,可以使得在n次独立重复 试验中, 事件A出现的频率在0.74~0.76之间的 概率至少为0.90 .
二、大数定律
在大量的随机现象中,随机事件的频率具有稳定性
例 如 , 在 n 重 贝 努 力 试 验 中 , P ( A ) p, 若 n 次 试 验 事 件 A 共 发 生 μ n次 , 则 μn n 即 为 事 件 A发 生 的 频 率 。
1
n
n
xi
依概率收敛于 即n充分大时, x
1
i 1
n
n
xi
i 1
在切比雪夫不等式中取 0.01 n,则
P (0.74
1
X
0.76)
1
= P{ |X-E(X)| <0.01n}
0.1875n
2
n D( X )
(0.01n)
2
1
1875 n
0.0001n
一、切贝谢夫不等式
依题意,取 1 解得
n 1875 n 1875 1 0.9 18750 0.9
大数定律与中心极限定理
第一节 大数定律
一、切贝谢夫不等式
一、切贝谢夫不等式
一、切贝谢夫不等式
一、切贝谢夫不等式
一、切贝谢夫不等式
练习 在每次试验中,事件A发生的概率为 0.75, 利用切比雪夫不等式求:n需要多么大时,才能使得 在n次独立重复试验中, 事件A出现的频率在0.74~0.76 之间的概率至少为0.90? 解:设X为n 次试验中,事件A出现的次数, 则 X~B(n, 0.75) E(X)=0.75n, 所求为满足 的最小的n .
D(X)=0.75*0.25n=0.1875n
自考概率论与数理统计大数定律及中心极限定理
则
是这16只元件的寿命的总和.
E(Y)=100×16=1 600,D(Y)= 160 000,
则所求概率为:
定理5.6(李雅普诺夫定理)
设随机变量 X1, X2 ,, Xn ,相互独立, 它 们具有数学期望和方差:
E(Xk ) k ,
D( Xk
)
2 k
0
(k
1,2,),
n
记
Bn2
0.310000k
k 6801
如果用契比雪夫不等式估计:
E( X ) np 10000 0.7 7000 D( X ) npq 10000 0.7 0.3 2100
P(6800<X<7200)=P(|X
7000|<200)
1
2100 2002
0.95
可见,虽然有10000盏灯,但是只要有供应7200盏 灯的电力就能够以相当大的概率保证够用.事实上, 契比雪夫不等式的估计只说明概率大于0.95,后面 将具体求出这个概率约为0.99999.
k1
的分布函数 Fn( x) 对于任意x 满足
lim
n
Fn
(
x
)
lim
n
P
n k 1
X
k Bn
n k 1
k
x
x
1
t2
e 2 dt
( x).
2π
定理5.6表明:
无论各个随机变量 X1, X2 ,, Xn ,服从什么
自从高斯指出测量误差服从正态 分布之后,人们发现,正态分布在 自然界中极为常见.
概率论与数理统计第5章-大数定律和中心极限定理
DX } 1
(2
DX DX
)2
3 4
.
例 1.2 设随机变量 X ~ P(9) ,试根据切比雪夫不等式 估计概率 P{X 19}. 解 由于 X ~ P(9) ,所以 EX DX 9 ,且
P{X 9 10} P{X 1} 0 , 故有 P{X 19} P{X 9 10}
P{ X 9 10} 9 0.09 . 102
例 1.3 设随机变量 X ,Y 独立同分布,且 D(X ) 2 ,
试根据切比雪夫不等式估计概率 P{ X Y 2} .
解 由于 X ,Y 独立同分布,所以 E( X Y ) 0 ,且
D(X Y ) DX DY 4
lim
n
FYn
(
x)
(
x)
1
2
x
e
t2 2
dt
,
x
(,
)
.
【注 1】定理 2.1 称为列维—林德伯格中心极限定理,也 称为独立同分布随机变量序列的中心极限定理.
【注 2】由定理 2.1 表明,当 n 充分大时, FYn (x) (x) ,
近似
n
近似
即得Yn ~ N (0,1) ,从而有 Xi ~ N (n, n 2 ) .
P{ X Y 2} 1 D(X Y ) 1 ,
22
2
二、大数定律(了解) 1.相关概念
定义 1.1 设有随机变量序列 X1, X 2 ,L , X n ,L ,如果
存在常数 a ,使得对任意的 0 ,有
lim P{
n
Xn
a
}1,
概率论与数理统计 五大数定理
,
i
1,2, , n, .
设Yn
Xi,
i 1
n
n
则: E Yn
i , D Yn
2 i
sn2 .
i 1
i 1
Zn
Yn
Yn
EYn DYn
1 sn
n i1
Xi
n i 1
i
1 n
sn i1
Xi i ,
则有:E(Zn ) 0, D( Zn ) 1.
11
林德伯格定理:
显然, 当n 时,P(Bn ) 1.
[注] 小概率事件尽管在个别试验中不可能发生,但在大量试验
中几乎必然发生。 10
第二节 中心极限定理
概率论中有关论证随机变量的和的极限分布是正态分布的定
理叫做中心极限定理。
设
X1
,
X
, , X , 是独立随机变量,并各有
2
n
n
EX i
i ,
DX i
2 i
的频率作为事件 A 的概率近似值时, 误差小于0.01的概率.
解
设事件A 在每次试验中发生的概率为 p,
在这10000次试验
中发生了X 次, 因此,所求事件的概率为
则 EX np 10000 p, DX 10000 p1 p,
P
X 10000
p
0.01 P
X 10000 p
100
P X EX 100 1 DX 1002
DX n
1 n2
nK
K n
由此,
当 n 充分大时,
随机变量
也就是说,
X 的值较紧密地聚集在它的数学期望 n
分散程度是很小的,
Xn
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1 大 数 定 律 作为上述定理得特殊情况,可以得到如下重要定 理: 定理 5.3 (伯努利大数定律)设 nA 是 n 重伯努利试 验中事件 A 发生的次数, p 是事件 A 在每次试验中 发生的概率,则对于任意正数,有
nA P nA 即 (5.4) p ( n ) limP p 1 n n n
第五章 大数定律和中心极限定理 【吸烟率调查问题】 某卫生组织为确定某城市成年男子的吸烟率p,将 被调查的成年男子中吸烟的频率作为p的估计,现在 要保证有 90% 以上的把握,使得调查对象吸烟者的
频率与该城市成年男子的吸烟率p之间的差异不大于
5%,问至少要调查多少对象?
5.1
大 数定 律
对某个随机变量 X进行大量的重复观测,所得到 的大批观测数据的算术平均值也具有稳定性,由于 这类稳定性都是在对随机变量进行大量重复试验的 条件下呈现出来的,历史上把这种试验次数很大时 出现的规律统称为大数定律.
即对于任意正数,有
1 n limP X i 1 n n i 1
1 n P X (n ) 也即 (5.3) i n i 1 n n 1 1 1 证:因为 E ( X i ) E ( X i ) n n n i 1 n i 1 1 n 1 D( X i ) 2 n i 1 n
nA p 实际上几乎是必定要发生的,即对于给 n
用事件发生的频率来近似地代替事件发生的概率.
5.1 大 数 定 律 上 述 契 比 谢 夫 大 数 定 律 中 要 求 随 机 变 量 X1 , X2 , … , Xn , … 的方差存在,实际上,在高等概率
论中已经证明了在不要求D(Xi)(i = 1,2,…)存在
证:引入随机变量Xi(i = 1,2,…,n): A发生 1, 第i次试验中 Xi A不发生 0, 第i次试验中
5.1 大 数 定 律 则
nA X1 X 2 X n ~ B( n, p)
其中 X1 , X 2 , , X n 相互独立且均服从参数为p的0-1分 布,即
P{ X i 1} p, P{ X i 0} 1 p, i 1,2,...,n
且有
E(Xi) = p,D(Xi) = p(1 – p),i = 1,2,…,n
由定理5.2得到
1 n limP X i p 1 n n i 1
5.1 大 数 定 律 由定理5.2得到
5.1 大 数 定 律 利用契比谢夫不等式,我们可以在随机变量X的分 布未知的情况下估算概率值的界限,当然这个估计
是比较保守的.如果已经知道随机变量的分布,所
需求的概率可以确切地计算出来,就没必要利用契
比谢夫不等式来做估计了.
5.1 大 数 定 律 【例5-1】若某班某次考试的平均分为 80分,标准差 为10,试估计及格率至少为多少?
的条件下,(5.3)式仍然成立.即有如下定理:
定理5.4(辛钦大数定律)设X1,X2,…,Xn,… 是相互独立,服从同一的分布的随机变量序列, 1 n 且具有数学期望E(Xi) = (i = 1,2,…),则 X i
依概率收敛于,即
p 1 n X i ( n ) n i 1
n 1 k k > 1),则 P 令 Ak X i( Ak k , (n ) n i 1
证:因为X1,X2,…,Xn独立同分布,
k 所以 X1k , X2k ,..., Xn 独立同分布。
又 E( Xik ) =k存在,由辛钦大数定律:
1 n k P Ak X i k n i 1
够大时,可以 这样做的好处是不必去管X的分布究竟是怎样的,我 们的目的只是寻求随机变量的数学期望.这一思想 方法将被应用于第七章中讲述的参数的点估计理论
1 n Xi n i 1
把的观察值作为E(X)的近似值,
中,辛钦大数定律是数理统计部分中点估计理论的
重要依据.
5.1 大 数 定 律 【例5-3】设随机变量X1,X2,…,Xn独立同分布, k 且 = E( X )(i = 1,2,…,n)存在, ik
0.76之间的概率不低于0.90?
解: 设需做n次试验,其中成功的次数为X,
则X~B(n,p),E(X) = np,D(X) = np(1 – p)。
因为
X X P{0.74 0.76} P{| 0.75 | 0.01} n n
根据契比谢夫不等式应有
X 1 D( ) np(1 p) 2 X n 1 n P{0.74 0.76} 1 n 0.012 0.012
第5章 大数定律和中心极限定理
5.2
中心极限定理
大数定律讨论的是多个随机变量的算术平均的渐 近性质.现在我们来讨论独立随机变量和的极限分 布.先给出一个例子.
5.2 中心极限定理
【例 5-4】误差分析是人们经常遇到且感兴趣的随 机变量,大量的研究表明,误差是由大量微小的相 互独立的随机因素叠加而成的.现在考虑一位操作 工在机床上加工机械轴,要求其直径应符合规定要 求,但加工后的机械轴与规定要求总会有一定误差, 这是因为在加工时受到一些随机因素的影响,它们 是: (1) 在机床方面有机床振动与转速的影响; (2) 在刀具方面有装配与磨损的影响;
1 n limP X i p 1 n n i 1
即
nA limP p 1 n n
nA P p ( n ) n
也即
5.1 大 数 定 律 伯努利大数定律表明,事件 A 发生的频率 nA/n 当 n 很大时依概率收敛于事件 A发生的概率 p.也就是说
对于任意正数 ,只要重复独立试验的次数 n 充分大,
事件
定的任意小的正数 ,在 n 充分大时,事件“ nA/n 与
概率p的偏差小于”实际上几乎是必定要发生 的.这也正是在大量重复独立试验中,频率 nA/n 接 近于概率p的真正含义,也就是我们所说的频率稳定 性的真正含义.所以当试验次数很大时,就可以利
5.1 大 数 定 律 首先来引进证明大数定律所需要的预备知识 —— 契比谢夫(Chebyshev)不等式. 定理5.1 设随机变量X的数学期望E(X)及方差D(X) 都存在,则对于任意正数,有不等式
P{| X E ( X ) | } D( X )
即
2
(5.1)
P{| X E ( X ) | } 1
5.1 大 数 定 律 定理 5.2 表明,当 n 充分大时,随机变量序列的算 术平均值接近于数学期望 E(Xi) = ,这种接近是概
率意义下的接近.通俗地说,在定理的条件下,n个
相互独立同分布随机变量的算术平均值,当n无限增
大时,几乎变成了一个常数.这一定理从理论上说
明了大量观测值的算术平均具有稳定性,为实际应 用提供了理论依据.例如,在进行精密测量时,人 们为了提高测量的精度,往往要进行若干次重复测 量,然后取测量结果的算术平均值.
第5章 大数定律和中心极限定理
5.1 大数定律 5.2 中心极限定理
第5章 大数定律和中心极限定理
人们在长期的实践中发现,事件发生的频率具 有稳定性,也就是说随着试验次数的增多,事件发
生的频率将稳定在一个确定的常数,即概率值附
近.频率的稳定性是概率定义的客观基础,在第一 章中我们从直观上描述了这一事实。本章将用大数 定律对频率的稳定性作出理论上的说明.
由于这些因素很多,每个因素对加工精度的影响 都是很微小的,而且每个因素的出现又都是人们无
法控制的、随机的、时有时无、时正时负的.这些
因素的综合影响最终使每个机械轴的直径产生误差,
若将这个误差记为 Yn ,那么 Yn 是随机变量,且可以
将 Yn 看作很多微小的随机波动 X1 , X2 , … , Xn 之和, 即Yn = X1 + X2 +…+ Xn,这里n是很大的,那么我们 关心的是,当时,Yn的分布是什么?
第五章 大数定律和中心极限定理 另外,在前面,我们还看到相互独立的正态随机变 量的和仍是正态随机变量,本章将要介绍的中心极
限定理将给出概率论中的另一个重要结果,即在相
当一般的条件下,充分多个相互独立的非正态随机
变量(不管它们的分布如何)的和近似服从正态分
布.这一事实更说明了正态分布的重要性. 大数定律和中心极限定理无论在应用上还是理论 上都具有极其重要的作用.
D( X )
2
(5.2)
成立. 称上述不等式为契比谢夫(Chebyshev)不等式.
5.1 大 数 定 律
证:(仅对连续型随机变量进行证明) 设f (x)为X的概率密度,记E(X) = ,D(X) = 2, 2 ( x ) 则 P{| X E ( X ) | } f ( x )dx f ( x )dx 2 x x
解:用随机变量X表示学生成绩,则数学期望E(X)
= 80,方差D(X) = 100,所以
P{60 X 100} P{60 < X < 100}
= P{|X – 80| < 20}
100 1 0.75 75% 2 ( 20)
所以及格率至少为75%.
§5.1 大 数 定 律 【例5-2】已知n重伯努利试验中参数p = 0.75,问至 少应做多少次试验,才能使试验成功的频率在0.74和
5.1 大 数 定 律 令
1 np(1 p) 2 1 n 0.90 2 0.01
p(1 p) 0.75 0.25 n 18750 2 2 0.1 0.01 0.1 0.01
解得
所以至少应做18750次试验.
5.1 大 数 定 律