3-4机械振动_机械波_光学(复习资料)

合集下载

机械振动机械波复习

机械振动机械波复习

4
单摆做简谐运动振动的周期
l T = 2π g
说明:单摆周期跟振 说明:单摆周期跟振 摆球的质量无关. 幅、摆球的质量无关. 称为摆的等时性 称为摆的等时性
等效摆长:指摆动圆心到物体重心间的距离。 等效摆长:指摆动圆心到物体重心间的距离。 等效重力加速度: 等效重力加速度:等于摆球静止在平衡位置时悬线的 拉力(或摆球所受支持力)与摆球质量的比值。 拉力(或摆球所受支持力)与摆球质量的比值。
实验:用单摆测定重力加速度 实验: 1、实验原理图 单摆在偏角很小(小于10 10° 单摆在偏角很小(小于10°)时的摆动 其固有周期为 ,
由此可得 据此, .据此,只要测 出摆长l和周期T 出摆长l和周期T即可计算出当地的重 力加速度值. 力加速度值.
2.注意事项 2.注意事项 (1)摆线选择细 轻又不易伸长,长约1m 摆线选择细、 1m的线 (1)摆线选择细、轻又不易伸长,长约1m的线 (2)摆球选用质量大直径小的金属球 摆球选用质量大直径小的金属球; (2)摆球选用质量大直径小的金属球; (3)摆线偏离竖直方向不超过10° 摆线偏离竖直方向不超过10 (3)摆线偏离竖直方向不超过10°; (4)同一个竖直平面内摆动 不要形成圆锥摆; 同一个竖直平面内摆动, (4)同一个竖直平面内摆动,不要形成圆锥摆; (5)摆球通过最低位置时开始计时 摆球通过最低位置时开始计时. (5)摆球通过最低位置时开始计时.
5、练习4(1)图甲是利用沙摆演示简谐运动图 象的装置.当பைடு நூலகம்沙的漏斗下面的薄木板被水平匀速 拉出时, 拉出时,做简谐运动的漏斗漏出的沙在板上形成 的曲线显示出沙摆的振动位移随时间的变化关系. 已知木板被水平拉动的速度为0.20m/s,图乙所示 的一段木板的长度为0.60m,则这次实验沙摆的 摆长为( 摆长为(取g =π2) A.0.56m B.0.65m C.1.00m D.2.25m

(完整版)高中物理选修3-4知识点清单(非常详细)

(完整版)高中物理选修3-4知识点清单(非常详细)

(完整版)高中物理必修3-4知识点清单(非常详细)第一章 机械振动 第二章 机械波一、简谐运动1.概念:质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象(x -t 图象)是一条正弦曲线的振动.2.平衡位置:物体在振动过程中回复力为零的位置. 3.回复力(1)定义:使物体返回到平衡位置的力. (2)方向:时刻指向平衡位置.(3)来源:振动物体所受的沿振动方向的合力. 4.简谐运动的表达式(1)动力学表达式:F =-kx ,其中“-”表示回复力与位移的方向相反.(2)运动学表达式:x =A sin (ωt +φ),其中A 代表振幅,ω=2πf 表示简谐运动的快慢,(ωt +φ)代表简谐运动的相位,φ叫做初相.5 定义 意义振幅 振动质点离开平衡位置的最大距离描述振动的强弱和能量周期振动物体完成一次全振动所需时间描述振动的快慢,两者互为倒数:T =1f频率振动物体单位时间内完成全振动的次数相位 ωt +φ描述质点在各个时刻所处的不同状态二、单摆1.定义:在细线的一端拴一个小球,另一端固定在悬点上,如果细线的伸缩和质量都不计,球的直径比线的长度短得多,这样的装置叫做单摆.2.视为简谐运动的条件:θ<5°.3.回复力:F =G 2=G sin θ=mg lx . 4.周期公式:T =2πl g. 5.单摆的等时性:单摆的振动周期取决于摆长l 和重力加速度g ,与振幅和振子(小球)质量都没有关系.三、受迫振动及共振 1.受迫振动:系统在驱动力作用下的振动.做受迫振动的物体,它的周期(或频率)等于驱动力周期(或频率),而与物体的固有周期(或频率)无关.2.共振:做受迫振动的物体,它的固有频率与驱动力的频率越接近,其振幅就越大,当二者相等时,振幅达到最大,这就是共振现象.共振曲线如图所示.考点一 简谐运动的五个特征 1.动力学特征 F =-kx ,“-”表示回复力的方向与位移方向相反,k 是比例系数,不一定是弹簧的劲度系数.2.运动学特征简谐运动的加速度与物体偏离平衡位置的位移成正比而方向相反,为变加速运动,远离平衡位置时x 、F 、a 、E p 均增大,v 、E k 均减小,靠近平衡位置时则相反.3.运动的周期性特征相隔T 或nT 的两个时刻振子处于同一位置且振动状态相同. 4.对称性特征(1)相隔T 2或2n +12T (n 为正整数)的两个时刻,振子位置关于平衡位置对称,位移、速度、加速度大小相等,方向相反.(2)如图所示,振子经过关于平衡位置O 对称的两点P 、P ′(OP =OP ′)时,速度的大小、动能、势能相等,相对于平衡位置的位移大小相等.(3)振子由P 到O 所用时间等于由O 到P ′所用时间,即t PO =t OP ′.(4)振子往复过程中通过同一段路程(如OP 段)所用时间相等,即t OP =t PO . 5.能量特征振动的能量包括动能E k 和势能E p ,简谐运动过程中,系统动能与势能相互转化,系统的机械能守恒.6.(1)由于简谐运动具有周期性、往复性、对称性,因此涉及简谐运动时,往往出现多解.分析此类问题时,特别应注意,物体在某一位置时,位移是确定的,而速度不确定,时间也存在周期性关系.(2)相隔(2n +1)T2的两个时刻振子的位置关于平衡位置对称,位移、速度、加速度等大反向.考点二 简谐运动的图象的应用某质点的振动图象如图所示,通过图象可以确定以下各量: 1.确定振动物体在任意时刻的位移. 2.确定振动的振幅.3.确定振动的周期和频率.振动图象上一个完整的正弦(余弦)图形在时间轴上拉开的“长度”表示周期.4.确定质点在各时刻的振动方向.5.比较各时刻质点加速度的大小和方向.6.(1)简谐运动的图象不是振动质点的轨迹,它表示的是振动物体的位移随时间变化的规律;(2)因回复力总是指向平衡位置,故回复力和加速度在图象上总是指向t 轴;(3)速度方向可以通过下一个时刻位移的变化来判定,下一个时刻位移如果增加,振动质点的速度方向就远离t 轴,下一个时刻的位移如果减小,振动质点的速度方向就指向t 轴.考点三 受迫振动和共振自由振动 受迫振动 共振受力情况仅受回 复力 受驱动 力作用 受驱动力作用振动周期 或频率 由系统本身性质决定,即固有周期T 0或固有频率f 0由驱动力的周期或频率决定,即T =T 驱或f =f 驱 T 驱=T 0或f 驱=f 0振动能量 振动物体的机械能不变 由产生驱动力的物体提供振动物体获得的能量最大常见例子弹簧振子或单摆(θ≤5°) 机械工作时底座发生的振动共振筛、声音的共鸣等(1)共振曲线:如图所示,横坐标为驱动力频率f ,纵坐标为振幅A .它直观地反映了驱动力频率对某振动系统受迫振动振幅的影响,由图可知,f 与f 0越接近,振幅A 越大;当f =f 0时,振幅A 最大.(2)受迫振动中系统能量的转化:受迫振动系统机械能不守恒,系统与外界时刻进行能量交换.3.(1)无论发生共振与否,受迫振动的频率都等于驱动力的频率,但只有发生共振现象时振幅才能达到最大.(2)受迫振动系统中的能量转化不再只有系统内部动能和势能的转化,还有驱动力对系统做正功补偿系统因克服阻力而损失的机械能.三、实验:用单摆测定重力加速度1.实验原理由单摆的周期公式T =2πl g ,可得出g =4π2T2l ,测出单摆的摆长l 和振动周期T ,就可求出当地的重力加速度g .2.实验器材单摆、游标卡尺、毫米刻度尺、停表. 3.实验步骤(1)做单摆:取约1 m 长的细丝线穿过带中心孔的小钢球,并打一个比小孔大一些的结,然后把线的另一端用铁夹固定在铁架台上,让摆球自然下垂,如图所示.(2)测摆长:用毫米刻度尺量出摆线长L (精确到毫米),用游标卡尺测出小球直径D ,则单摆的摆长l =L +D2.(3)测周期:将单摆从平衡位置拉开一个角度(小于5°),然后释放小球,记下单摆摆动30~50次的总时间,算出平均每摆动一次的时间,即为单摆的振动周期.(4)改变摆长,重做几次实验. 4.数据处理(1)公式法:g =4π2lT2.(2)图象法:画l -T 2图象.g =4π2k ,k =l T 2=ΔlΔT2.5.注意事项(1)悬线顶端不能晃动,需用夹子夹住,保证悬点固定. (2)单摆必须在同一平面内振动,且摆角小于10°.(3)选择在摆球摆到平衡位置处时开始计时,并数准全振动的次数.(4)小球自然下垂时,用毫米刻度尺量出悬线长L ,用游标卡尺测量小球的直径,然后算出摆球的半径r ,则摆长l =L +r .(5)选用一米左右的细线.四、机械波 1.形成条件(1)有发生机械振动的波源. (2)有传播介质,如空气、水等. 2.传播特点(1)传播振动形式、传递能量、传递信息. (2)质点不随波迁移. 3.分类机械波⎩⎪⎨⎪⎧横波:振动方向与传播方向垂直.纵波:振动方向与传播方向在同一直线上.五、描述机械波的物理量1.波长λ:在波动中振动相位总是相同的两个相邻质点间的距离.用“λ”表示. 2.频率f :在波动中,介质中各质点的振动频率都是相同的,都等于波源的振动频率. 3.波速v 、波长λ和频率f 、周期T 的关系公式:v =λT=λf机械波的速度大小由介质决定,与机械波的频率无关. 六、机械波的图象1.图象:在平面直角坐标系中,用横坐标表示介质中各质点的平衡位置,用纵坐标表示某一时刻各质点偏离平衡位置的位移,连接各位移矢量的末端,得出的曲线即为波的图象,简谐波的图象是正弦(或余弦)曲线.2.物理意义:某一时刻介质中各质点相对平衡位置的位移. 四、波的衍射和干涉1.波的衍射定义:波可以绕过障碍物继续传播的现象.2.发生明显衍射的条件:只有缝、孔的宽度或障碍物的尺寸跟波长相差不多,或者小于波长时,才会发生明显的衍射现象.3.波的叠加原理:几列波相遇时能保持各自的运动状态,继续传播,在它们重叠的区域里,介质的质点同时参与这几列波引起的振动,质点的位移等于这几列波单独传播时引起的位移的矢量和.4.波的干涉(1)定义:频率相同的两列波叠加时,某些区域的振动加强、某些区域的振动减弱,这种现象叫波的干涉.(2)条件:两列波的频率相同.5.干涉和衍射是波特有的现象,波同时还可以发生反射、折射. 五、多普勒效应由于波源与观察者互相靠近或者互相远离时,接收到的波的频率与波源频率不相等的现象.考点一 波动图象与波速公式的应用1.波的图象反映了在某时刻介质中的质点离开平衡位置的位移情况,图象的横轴表示各质点的平衡位置,纵轴表示该时刻各质点的位移,如图.图象的应用:(1)直接读取振幅A 和波长λ,以及该时刻各质点的位移.(2)确定某时刻各质点加速度的方向,并能比较其大小. (3)结合波的传播方向可确定各质点的振动方向或由各质点的振动方向确定波的传播方向.2.波速与波长、周期、频率的关系为:v =λT=λf . 3.波的传播方向与质点的振动方向的互判方法图象律表示同一质点在各时刻的位移表示某时刻各质点的位移考点三 波的干涉、衍射、多普勒效应 1.波的干涉中振动加强点和减弱点的判断某质点的振动是加强还是减弱,取决于该点到两相干波源的距离之差Δr . (1)当两波源振动步调一致时若Δr =n λ(n =0,1,2,…),则振动加强; 若Δr =(2n +1)λ2(n =0,1,2,…),则振动减弱.(2)当两波源振动步调相反时若Δr =(2n +1)λ2(n =0,1,2,…),则振动加强;若Δr =n λ(n =0,1,2,…),则振动减弱. 2.波的衍射现象是指波能绕过障碍物继续传播的现象,产生明显衍射现象的条件是缝、孔的宽度或障碍物的尺寸跟波长相差不大或者小于波长.3.多普勒效应的成因分析 (1)接收频率:观察者接收到的频率等于观察者在单位时间内接收到的完全波的个数.当波以速度v 通过观察者时,时间t 内通过的完全波的个数为N =vtλ,因而单位时间内通过观察者的完全波的个数,即接收频率.(2)当波源与观察者相互靠近时,观察者接收到的频率变大,当波源与观察者相互远离时,观察者接收到的频率变小.第三章 电磁波一、电磁波的产生1.麦克斯韦电磁场理论变化的磁场产生电场,变化的电场产生磁场. 2.电磁场变化的电场和变化的磁场总是相互联系成为一个完整的整体,这就是电磁场. 3.电磁波电磁场(电磁能量)由近及远地向周围传播形成电磁波. (1)电磁波是横波,在空间传播不需要介质.(2)真空中电磁波的速度为3.0×108m/s.(3)电磁波能产生干涉、衍射、反射和折射等现象. 二、电磁波的发射与接收 1.电磁波的发射(1)发射条件:足够高的频率和开放电路. (2)调制分类:调幅和调频. 2.电磁波的接收(1)调谐:使接收电路产生电谐振的过程.(2)解调:使声音或图像信号从高频电流中还原出来的过程.第四章 光的折射 全反射一、光的折射与折射率 1.折射定律(1)内容:如图所示,折射光线与入射光线、法线处在同一平面内,折射光线与入射光线分别位于法线的两侧;入射角的正弦与折射角的正弦成正比.(2)表达式:sin θ1sin θ2=n .(3)在光的折射现象中,光路是可逆的. 2.折射率(1)折射率是一个反映介质的光学特性的物理量.(2)定义式:n =sin θ1sin θ2.(3)计算公式:n =c v,因为v <c ,所以任何介质的折射率都大于1.(4)当光从真空(或空气)射入某种介质时,入射角大于折射角;当光由介质射入真空(或空气)时,入射角小于折射角.二、全反射1.条件:(1)光从光密介质射入光疏介质. (2)入射角≥临界角.2.临界角:折射角等于90°时的入射角,用C 表示,sin C =1n.三、光的色散、棱镜 1.光的色散 (1)色散现象白光通过三棱镜会形成由红到紫七种色光组成的彩色光谱,如图.(2)成因由于n 红<n 紫,所以以相同的入射角射到棱镜界面时,红光和紫光的折射角不同,就是说紫光偏折得更明显些,当它们射到另一个界面时,紫光的偏折角最大,红光偏折角最小.三、 全反射现象1.在光的反射和全反射现象中,均遵循光的反射定律;光路均是可逆的.2.当光射到两种介质的界面上时,往往同时发生光的折射和反射现象,但在全反射现象中,只发生反射,不发生折射.当折射角等于90°时,实际上就已经没有折射光了.3.全反射现象可以从能量的角度去理解:当光由光密介质射向光疏介质时,在入射角逐渐增大的过程中,反射光的能量逐渐增强,折射光的能量逐渐减弱,当入射角等于临界角时,折射光的能量已经减弱为零,这时就发生了全反射.4.分析全反射问题的基本思路(1)画出恰好发生全反射的临界光线,作好光路图. (2)应用几何知识分析边、角关系,找出临界角. (3)判断发生全反射的范围. 考点三 光路的计算与判断1.光线射到介质的界面上时,要注意对产生的现象进行分析:(1)若光线从光疏介质射入光密介质,不会发生全反射,而同时发生反射和折射现象,不同色光偏折不同.(2)若光线从光密介质射向光疏介质,是否发生全反射,要根据计算判断,要注意不同色光临界角不同.2.作图时要找出具有代表性的光线,如符合边界条件或全反射临界条件的光线. 3.解答时注意利用光路可逆性、对称性和几何知识. 4.各种色光的比较颜色 红橙黄绿青蓝紫 频率ν 低―→高 同一介质中的折射率 小―→大 同一介质中速度 大―→小波长 大―→小 临界角 大―→小 通过棱镜的偏折角 小―→大四、实验:测定玻璃的折射率 1.实验原理用插针法找出与入射光线AO 对应的出射光线O ′B ,确定出O ′点,画出折射光线OO ′,然后测量出角θ1和θ2,代入公式n =sin θ1sin θ2计算玻璃的折射率.2.实验过程(1)铺白纸、画线. ①如图所示,将白纸用图钉按在平木板上,先在白纸上画出一条直线aa ′作为界面,过aa ′上的一点O 画出界面的法线MN ,并画一条线段AO 作为入射光线.②把玻璃砖平放在白纸上,使它的长边跟aa ′对齐,画出玻璃砖的另一条长边bb ′.(2)插针与测量.①在线段AO 上竖直地插上两枚大头针P 1、P 2,透过玻璃砖观察大头针P 1、P 2的像,调整视线的方向,直到P 1的像被P 2挡住,再在观察的这一侧依次插两枚大头针P 3、P 4,使P 3挡住P 1、P 2的像,P 4挡住P 1、P 2的像及P 3,记下P 3、P 4的位置.②移去玻璃砖,连接P 3、P 4并延长交bb ′于O ′,连接OO ′即为折射光线,入射角θ1=∠AOM ,折射角θ2=∠O ′ON .③用量角器测出入射角和折射角,查出它们的正弦值,将数据填入表格中. ④改变入射角θ1,重复实验步骤,列表记录相关测量数据. 3.数据处理(1)计算法:用量角器测量入射角θ1和折射角θ2,并查出其正弦值sin θ1和sin θ2.算出不同入射角时的sin θ1sin θ2,并取平均值.(2)作sin θ1-sin θ2图象:改变不同的入射角θ1,测出不同的折射角θ2,作sin θ1-sin θ2图象,由n =sin θ1sin θ2可知图象应为直线,如图所示,其斜率为折射率.(3)“单位圆”法确定sin θ1、sin θ2,计算折射率n :以入射点O 为圆心,以一定的长度R 为半径画圆,交入射光线OA 于E 点,交折射光线OO ′于E ′点,过E 作NN ′的垂线EH ,过E ′作NN ′的垂线E ′H ′.如图所示,sin θ1=EH OE ,sin θ2=E ′H ′OE ′,OE =OE ′=R ,则n =sin θ1sin θ2=EHE ′H ′.只要用刻度尺量出EH 、E ′H ′的长度就可以求出n .4.注意事项(1)玻璃砖应选用厚度、宽度较大的. (2)大头针要插得竖直,且间隔要大些.(3)入射角不宜过大或过小,一般在15°~75°之间.(4)玻璃砖的折射面要画准,不能用玻璃砖界面代替直尺画界线. (5)实验过程中,玻璃砖和白纸的相对位置不能改变.第五章 光的干涉 衍射 偏振一、光的干涉1.定义:在两列光波的叠加区域,某些区域的光被加强,出现亮纹,某些区域的光被减弱,出现暗纹,且加强和减弱互相间隔的现象叫做光的干涉现象.2.条件:两列光的频率相等,且具有恒定的相位差,才能产生稳定的干涉现象. 3.双缝干涉:由同一光源发出的光经双缝后形成两束振动情况总是频率相等的相干光波,屏上某点到双缝的路程差是波长的整数倍处出现亮条纹;路程差是半波长的奇数倍处出现暗条纹.相邻的明条纹(或暗条纹)之间距离Δx 与波长λ、双缝间距d 及屏到双缝距离l 的关系为Δx =l dλ.4.薄膜干涉:利用薄膜(如肥皂液薄膜)前后表面反射的光相遇而形成的.图样中同一条亮(或暗)条纹上所对应薄膜厚度相同.二、光的衍射 1.光的衍射现象光在遇到障碍物时,偏离直线传播方向而照射到阴影区域的现象叫做光的衍射. 2.光发生明显衍射现象的条件当孔或障碍物的尺寸比光波波长小,或者跟光波波长相差不多时,光才能发生明显的衍射现象.3.衍射图样(1)单缝衍射:中央为亮条纹,向两侧有明暗相间的条纹,但间距和亮度不同.白光衍射时,中央仍为白光,最靠近中央的是紫光,最远离中央的是红光.(2)圆孔衍射:明暗相间的不等距圆环.(3)泊松亮斑:光照射到一个半径很小的圆板后,在圆板的阴影中心出现的亮斑,这是光能发生衍射的有力证据之一.三、光的偏振1.偏振光:在跟光传播方向垂直的平面内,光在某一方向振动较强而在另一些方向振动较弱的光即为偏振光.光的偏振现象证明光是横波(填“横波”或“纵波”).2.自然光:太阳、电灯等普通光源发出的光,包括在垂直于传播方向上沿各个方向振动的光,而且沿各个方向振动的光波的强度都相同,这种光叫做自然光.3.偏振光的产生 自然光通过起偏器:通过两个共轴的偏振片观察自然光,第一个偏振片的作用是把自然光变成偏振光,叫做起偏器.第二个偏振片的作用是检验光是否是偏振光,叫做检偏器.考点一 光的干涉 1.双缝干涉(1)光能够发生干涉的条件:两光的频率相同,振动步调相同. (2)双缝干涉形成的条纹是等间距的,两相邻亮条纹或相邻暗条纹间距离与波长成正比,即Δx =l dλ.(3)用白光照射双缝时,形成的干涉条纹的特点:中央为白条纹,两侧为彩色条纹. 2.薄膜干涉(1)如图所示,竖直的肥皂薄膜,由于重力的作用,形成上薄下厚的楔形.(2)光照射到薄膜上时,在膜的前表面AA ′和后表面BB ′分别反射出来,形成两列频率相同的光波,并且叠加,两列光波同相叠加,出现明纹;反相叠加,出现暗纹.(3)条纹特点:①单色光:明暗相间的水平条纹; ②白光:彩色水平条纹. 3.明暗条纹的判断方法屏上某点到双缝距离之差为Δr ,若Δr =k λ(k =0,1,2,…),则为明条纹;若Δr =(2k +1)λ2(k =0,1,2,…),则为暗条纹. 考点二 光的衍射现象的理解 1两种现象比较项目单缝衍射 双缝干涉不同 点 条纹宽度 条纹宽度不等,中央最宽 条纹宽度相等条纹间距 各相邻条纹间距不等 各相邻条纹等间距 亮度情况中央条纹最亮,两边变暗 条纹清晰,亮度基本相等相同点干涉、衍射都是波特有的现象,属于波的叠加;干涉、衍射都有明暗相间的条纹2.光的干涉和衍射都属于光的叠加,从本质上看,干涉条纹和衍射条纹的形成有相似的原理,都可认为是从单缝通过两列或多列频率相同的光波,在屏上叠加形成的.考点三 光的偏振现象的理解 1.偏振光的产生方式(1)自然光通过起偏器:通过两个共轴的偏振片观察自然光,第一个偏振片的作用是把自然光变成偏振光,叫起偏器.第二个偏振片的作用是检验光是否为偏振光,叫检偏器.(2)自然光射到两种介质的交界面上,如果光入射的方向合适,使反射光和折射光之间的夹角恰好是90°时,反射光和折射光都是偏振光,且偏振方向相互垂直.2.偏振光的理论意义及应用(1)理论意义:光的偏振现象说明了光波是横波. (2)应用:照相机镜头、立体电影、消除车灯眩光等. 考点四 实验:用双缝干涉测量光的波长 1.实验原理单色光通过单缝后,经双缝产生稳定的干涉图样,图样中相邻两条亮(暗)纹间距Δx 与双缝间距d 、双缝到屏的距离l 、单色光的波长λ之间满足λ=d Δx /l .2.实验步骤 (1)观察干涉条纹①将光源、遮光筒、毛玻璃屏依次安放在光具座上.如图所示.②接好光源,打开开关,使灯丝正常发光.③调节各器件的高度,使光源发出的光能沿轴线到达光屏.④安装双缝和单缝,中心大致位于遮光筒的轴线上,使双缝与单缝的缝平行,二者间距约5 cm ~10 cm ,这时,可观察白光的干涉条纹.⑤在单缝和光源间放上滤光片,观察单色光的干涉条纹. (2)测定单色光的波长①安装测量头,调节至可清晰观察到干涉条纹.②使分划板中心刻线对齐某条亮条纹的中央,记下手轮上的读数a 1,将该条纹记为第1条亮纹;转动手轮,使分划板中心刻线移动至另一亮条纹的中央,记下此时手轮上的读数a 2,将该条纹记为第n 条亮纹.③用刻度尺测量双缝到光屏的距离l (d 是已知的). ④改变双缝间的距离d ,双缝到屏的距离l ,重复测量. 3.数据处理(1)条纹间距Δx =|a 2-a 1n -1|.(2)波长λ=d lΔx .(3)计算多组数据,求λ的平均值. 4.注意事项(1)安装时,注意调节光源、滤光片、单缝、双缝的中心均在遮光筒的中心轴线上,并使单缝、双缝平行且间距适当.(2)光源灯丝最好为线状灯丝,并与单缝平行且靠近.(3)调节的基本依据是:照在光屏上的光很弱,主要原因是灯丝与单缝、双缝,测量头与遮光筒不共轴所致,干涉条纹不清晰一般原因是单缝与双缝不平行所致,故应正确调节.。

机械振动和机械波知识点复习

机械振动和机械波知识点复习

机械振动和机械波知识点复习一 机械振动知识要点1. 机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动条件:a 、物体离开平衡位置后要受到回复力作用。

b 、阻力足够小。

➢ 回复力:效果力——在振动方向上的合力➢ 平衡位置:物体静止时,受(合)力为零的位置:运动过程中,回复力为零的位置(非平衡状态)➢ 描述振动的物理量位移x (m )——均以平衡位置为起点指向末位置振幅A (m )——振动物体离开平衡位置的最大距离(描述振动强弱)周期T (s )——完成一次全振动所用时间叫做周期(描述振动快慢)全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程频率f (Hz )——1s 钟内完成全振动的次数叫做频率(描述振动快慢)2. 简谐运动➢ 概念:回复力与位移大小成正比且方向相反的振动➢ 受力特征:kx F -= 运动性质为变加速运动➢ 从力和能量的角度分析x 、F 、a 、v 、E K 、E P特点:运动过程中存在对称性平衡位置处:速度最大、动能最大、动量最大;位移最小、回复力最小、加速度最小 最大位移处:速度最小、动能最小、动量最小;位移最大、回复力最大、加速度最大✧ v 、E K 同步变化;x 、F 、a 、E P 同步变化,同一位置只有v 可能不同3. 简谐运动的图象(振动图象)➢ 物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律可直接读出振幅A ,周期T (频率f ) 可知任意时刻振动质点的位移(或反之) 可知任意时刻质点的振动方向(速度方向) 可知某段时间F 、a 等的变化4. 简谐运动的表达式:)2sin(φπ+=t TA x 5. 单摆(理想模型)——在摆角很小时为简谐振动➢ 回复力:重力沿切线方向的分力➢ 周期公式:gl T π2= (T 与A 、m 、θ无关——等时性) ➢ 测定重力加速度g,g=224T L π 等效摆长L=L 线+r 6. 阻尼振动、受迫振动、共振阻尼振动(减幅振动)——振动中受阻力,能量减少,振幅逐渐减小的振动受迫振动:物体在外界周期性驱动力作用下的振动叫受迫振动。

高中物理选修3-4全部知识点归纳

高中物理选修3-4全部知识点归纳

高中物理选修3-4全部知识点归纳一、简谐运动、简谐运动的表达式和图象1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。

机械振动产生的条件是:①回复力不为零;②阻力很小。

使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。

2、简谐振动:在机械振动中最简单的一种理想化的振动。

对简谐振动可以从两个方面进行定义或理解:①物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。

②物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,3、描述振动的物理量研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。

⑴位移X:由平衡位置指向振动质点所在位置的有向线段叫做位移。

位移是矢量,其最大值等于振幅。

第-1-页共9页单摆⑵振幅A :做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。

振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。

⑶周期T :振动物体完成一次余振动所经历的时间叫做周期。

所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。

⑷频率f 振动物体单位时间内完成全振动的次数。

⑸角频率。

角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。

引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。

因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。

⑹相位9:表示振动步调的物理量。

4、研究简谐振动规律的几个思路:⑴用动力学方法研究,受力特征:回复力F=-kx ;加速度,简谐振动是一种变加速运动。

在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。

高中物理34专题复习(机械振动机械波)

高中物理34专题复习(机械振动机械波)

高二物理复习专项训练机械振动、机械波一、选择题1、简谐运动是下列哪一种运动 ( )A .匀变速运动B .匀速直线运动C .变加速运动D .匀加速直线运动2、下列说法正确的是 ( )A .在回复力作用下的运动一定是简谐振动B .简谐振动物体,速度增大时,加速度一定减小C .回复力一定是振动物体所受的合外力D .振动物体两次通过平衡位置的时间间隔为一个周期3、一质点做简谐运动的图象如图所示,该质点在t =3.5s 时刻( ) A 、速度为正、加速度为正 B 、速度为负、加速度为负 C 、速度为负、加速度为正 D 、速度为正、加速度为负4、一弹簧振子作简谐运动,下列说法正确的是( )A.若位移为负值,则速度一定为正值,加速度也一定为正值B.振子通过平衡位置时,速度为零,加速度最大C.振子每次通过平衡位置时,加速度相同,速度也一定相同D.振子每次通过同一位置时,其速度不一定相同,但加速度一定相同5、图是一水平弹簧振子做简谐振动的振动的振动图像(x -t 图),由图可推断,振动系统( )A.在t 1和t 3时刻具有相等的动能和相同的速度B.在t 3和t 4时刻具有相等的势能和相同的速度C. 在t 4和t 6时刻具有相同的位移和速度D.在t 1和t 6时刻具有相同的速度和加速度6、一弹簧振子做简谐运动,周期为T ,下述正确的是( )A.若t 时刻和(t+△t)时刻振子运动位移的大小相等,方向相反,则△t 一定等于T 的整数倍.B.若t 时刻和(t+△t)时刻振子运动速度大小相等,方向相反,则△t 一定等于2T的整数倍. C.若△t=T,则在t 时刻和(t+△t)时刻振子运动的加速度一定相等. D.若△t =2T,则在t 时刻和(t+△t)时刻弹簧长度一定相等. 7、(多)某质点做简谐运动,其位移随时间变化的关系式为x =Asin4t,则质点( ) A.第1 s 末与第3 s 末的位移相同 B.第1 s 末与第3 s 末的速度相同 C.3 s 末至5 s 末的位移方向都相同 D.3 s 末至5 s 末的速度方向都相同8、对单摆在竖直面内的振动,下面说法中正确的是( ) A.摆球所受向心力处处相同 B.摆球的回复力是它所受的合力C.摆球经过平衡位置时所受回复力为零D.摆球经过平衡位置时所受合外力为零 9、、(多)某振动系统的固有频率为f o ,在周期性驱动力的作用下做受迫振动,驱动力的频率为f 。

高中物理选修3-4知识点机械振动与机械波解析复习过程

高中物理选修3-4知识点机械振动与机械波解析复习过程

机械振动与机械波简谐振动一、学习目标1.了解什么是机械振动、简谐运动2.正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。

二、知识点说明1.弹簧振子(简谐振子):(1)平衡位置:小球偏离原来静止的位置;(2)弹簧振子:小球在平衡位置附近的往复运动,是一种机械运动,这样的系统叫做弹簧振子。

(3)特点:一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子的大小和形状的理想化的物理模型。

2.弹簧振子的位移—时间图像弹簧振子的s—t图像是一条正弦曲线,如图所示。

3.简谐运动及其图像。

(1)简谐运动:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。

(2)应用:心电图仪、地震仪中绘制地震曲线装置等。

三、典型例题例1:简谐运动属于下列哪种运动()A.匀速运动 B.匀变速运动C.非匀变速运动 D.机械振动解析:以弹簧振子为例,振子是在平衡位置附近做往复运动,并且平衡位置处合力为零,加速度为零,速度最大.从平衡位置向最大位移处运动的过程中,由F=-kx可知,振子的受力是变化的,因此加速度也是变化的。

故A、B错,C正确。

简谐运动是最简单的、最基本的机械振动,D正确。

答案:CD简谐运动的描述一、学习目标1.知道简谐运动的振幅、周期和频率的含义。

2.知道振动物体的固有周期和固有频率,并正确理解与振幅无关。

二、知识点说明1.描述简谐振动的物理量,如图所示:(1)振幅:振动物体离开平衡位置的最大距离,。

(2)全振动:振子向右通过O点时开始计时,运动到A,然后向左回到O,又继续向左达到,之后又回到O,这样一个完整的振动过程称为一次全振动。

(3)周期:做简谐运动的物体完成一次全振动所需要的时间,符号T表示,单位是秒(s)。

(4)频率:单位时间内完成全振动的次数,符号用f表示,且有,单位是赫兹(Hz),。

(5)周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大,振动越快。

高中物理选修3-4 2章末

高中物理选修3-4 2章末

工具
选考部分 选修3-4 第一章 机械振动 机械波
栏目导引
sin θ1 解析: 折射率的测定原理是依据折射定律n= 解析: 折射率的测定原理是依据折射定律 = sin θ ,利用插针法将光在
2
介质中的传播路线确定,从而测出相应的入射角θ 和折射角θ 求解出n 介质中的传播路线确定,从而测出相应的入射角 1和折射角 2,求解出 挡住P 而插针便是利用它挡住物体(大头针 的像, 大头针)的像 值.而插针便是利用它挡住物体 大头针 的像,用P3挡住 1、P2的像是为 了确定入射光线, 挡住P 并挡住P 的像为了确定出射光线. 了确定入射光线,用P4挡住 3并挡住 1、P2的像为了确定出射光线. 由题条件可画出如图所示的完整光路图, 由题条件可画出如图所示的完整光路图, 45°, 30°, 且θ1=45°,θ2=30°,所以
选考部分 选修3-4 第一章 机械振动 机械波
栏目导引
工具
选考部分 选修3-4 第一章 机械振动 机械波
栏目导引
42.折射定律应用出错 . 一束复色光由空气射出一块平行平面玻璃砖, 一束复色光由空气射出一块平行平面玻璃砖,经折射分成两束 单色光a、 已知 光的频率小于b光的频率 已知a光的频率小于 光的频率. 单色光 、b.已知 光的频率小于 光的频率.下面的几个图中哪个光路图 可能是正确的( 可能是正确的 )
工具
选考部分 选修3-4 第一章 机械振动 机械波
栏目导引
工具
选考部分 选修3-4 第一章 机械振动 机械波
栏目导引
工具
选考部分 选修3-4 第一章 机械振动 机械波
栏目导引
工具
选考部分 选修3-4 第一章 机械振动 机械波
栏目导引

人教版高二物理选修3-4第12章 机械波基础知识梳理

人教版高二物理选修3-4第12章 机械波基础知识梳理

第十二章机械波12.1 波的形成和传播一、机械波的形成1.机械波的定义机械振动在介质中传播,形成机械波。

即波源和介质是波的形成条件2.介质(1)定义:波借以传播的物质。

(2)特点:组成介质的质点之间有相互作用,一个质点的振动会引起相邻质点的振动。

说明:介质是能够传播机械振动的物质,其状态可以是固、液、气三态中的任意一种。

3.机械波的形成(1)动力学观点:介质质点间存在相互作用力,介质中前面的质点带动后面的质点振动,将波源的振动形式向外传播。

(2)能量观点:介质中前后质点间存在相互作用力,因而相互做功,从而将波源能量向外传播。

特别提醒(1)机械波的形成是介质中各质点集体运动的结果,个别质点振动不能形成波。

(2)单个质点是在平衡位置附近往复运动,并不随波迁移。

(3)所有质点前面带后面,后面学前面。

4.波的特点(1)振幅:像绳波这种一维(只在某个方向上传播)机械波,若不计能量损失,各质点的振幅相同。

(2)周期:各质点振动的周期均与波源的振动周期相同。

(3)步调:离波源越远,质点振动越滞后。

(4)运动:各质点只在各自的平衡位置附近做往复振动,并不随波迁移。

(5)实质:机械波向前传播的是振动这种运动形式,同时也传递能量和信息。

二、机械波的传播1.机械波传播的是波源的振动形式介质中各质点并不随波迁移,而是在自己的平衡位置附近振动,各质点都做受迫振动,其振幅和频率(或周期)都与波源的相同,各质点的起振方向也与波源的相同,但振动并不同步,离波源越远的质点振动越滞后。

2.机械波传播的是波源的提供的能量介质中各质点靠弹力相互作用,前一质点带动后一质点振动,后一质点跟着前一质点振动,故可根据前一质点的位置来确定后一质点的运动方向。

若不计能量损失,在均匀介质中各质点振动的振幅应相同。

3.机械波传播的是波源的信息我们用语言进行交流就是利用声波传递信息的。

4.机械波的传播特点(1)波的传播可以脱离波源的振动而独立存在,也就是说机械波一旦形成,运动形式和能量就会向外传播,即使波源的振动停止波也不会停止传播。

【1】高三物理一轮复习,知识点提要(选修3-1,3-2,3-3,3-4,3-5)

【1】高三物理一轮复习,知识点提要(选修3-1,3-2,3-3,3-4,3-5)

第五章:交变电流
5.4变压器(理想) 5.5电能的输送
U1 n1 I2
U2
n2
I1
P入 P出
I1n1 I2n2 I3n3 ...
P损
I
2 线
R线
( P2 U2
)2 R线
U2 R线
P1 P4
P1=P2
P3=P4
P2=P损+P3
U1 n1 U 2 n2
I1 n2
I2
n1
U3 n3 U 4 n4 I3 n4 I4 n3
tan
vy
at
qU偏 md
L v0
vy 2tan 2 y
v0
L
y侧
1 at2 2
1 qE t2 2m
1 qU偏 2 md
t2
qU偏L2 2mdv02
U偏L2 4U加d
第二章:恒定电流
2.1电源和电流 2.2电动势 2.3欧姆定律 2.4串联电路和并联电路(重) 2.5焦耳定律 2.6导体的电阻
v
qB
E km
1 2
mv
2 m
q 2B2R 2 2m
⑥回旋加速器
F安 左手定则
F洛
B
I
①速度选择器
②磁流体发电机
③电磁流量计
④霍尔效应(见第六章)
同向电流相吸, 反向电流相斥
组合场 复合场 临界、极值、几何知识
第四章:电磁感应
4.1划时代的发现 4.2探究感应电流的条件 4.3楞次定律 4.4法拉第电磁感应定律
q
q It Ι
E W非
t
q
I nqSv
I U R
电势差=电压
RU I

2021版高三物理一轮复习课件选修3-4机械振动机械波光电磁波与相对论第1讲机械振动

2021版高三物理一轮复习课件选修3-4机械振动机械波光电磁波与相对论第1讲机械振动

解析 根据单摆周期公式 T=2π gl 可以知道,在同一地点,重力加速度 g 为 定值,故周期的平方与其摆长成正比,故选项 A 正确;弹簧振子做简谐振动时, 只有动能和势能相互转化,根据机械能守恒条件可以知道,振动系统的势能与
动能之和保持不变,故选项 B 正确;根据单摆周期公式 T=2π gl 可以知道, 单摆的周期与质量无关,故选项 C 错误;当系统做稳定的受迫振动时,系统振 动的频率等于周期性驱动力的频率,故选项 D 正确;若弹簧振子初始时刻的位 置在平衡位置,知道周期后,可以确定任意时刻运动速度的方向,若弹簧振子 初始时刻的位置不在平衡位置,则无法确定,故选项 E 错误。 答案 ABD
图2
C.第3 s末振子的速度为正向的最大值
D.从第1 s末到第2 s末振子在做加速运动
E.第1 s末和第3 s末两个时刻振子的振动方向相反
解析 由图象知,周期T=4 s,振幅A=8 cm,A正确;第2 s末振子到达负向最大位移 位置,速度为零,加速度为正向的最大值,B错误;第3 s末振子经过平衡位置,速度达 到最大值,且向正方向运动,C正确;从第1 s末到第2 s末振子由平衡位置运动到达负 向最大位移位置,速度逐渐减小,做减速运动,D错误;第1 s末振子向负方向运动,第3 s末振子向正方向运动,E正确。 答案 ACE
2.(多选)一弹簧振子的位移y随时间t变化的关系式为y=0.1sin 2.5πt,位移y的单位为 m,时间t的单位为s,则( ) A.弹簧振子的振幅为0.1 m B.弹簧振子的周期为0.8 s C.在t=0.2 s时,振子的运动速度最大 D.在任意0.2 s时间内,振子的位移均为0.1 m E.在任意0.8 s时间内,振子的路程均为0.4 m
图1 做受迫振动的物体,它的驱动力的频率与固有频率越接近,其振幅就 越大,当二者_______相时等,振幅达到最大,这就是共振现象。共振曲线 如图1所示。

高中物理选修3-4知识点机械振动与机械波解析

高中物理选修3-4知识点机械振动与机械波解析

高中物理选修3-4知识点机械振动与机械波解析一、机械振动1. 振动的定义振动是指物体在固定点附近周期性地往返运动。

2. 振动的基本概念•振幅:振动过程中物体偏离平衡位置的最大位移。

•周期:振动重复一次往返运动所需的时间。

•频率:振动每秒重复往返运动的次数。

•谐振:振动系统受到周期性外力作用下产生的强振动现象。

3. 单摆的振动单摆是一种简单的机械振动系统,由质点和一条轻质不可伸缩的细线组成。

单摆的振动方式是周期性的简谐振动,其周期与摆长有关。

4. 弹簧振子的振动弹簧振子是一种弹性体与质点共同构成的机械振动系统。

弹簧振子的振动方式是周期性的简谐振动,其周期与系统的弹性系数和质量有关。

5. 串联振动与并联振动串联振动是由两个或多个机械振子相互连接而成的振动系统,其中一个振子的振动会影响到其他振子的振动。

并联振动是由两个或多个机械振子分别接受共同外力作用而产生振动现象。

二、机械波1. 波的定义波是指由物质在空间中传递的能量。

2. 波的分类•横波:波动方向与波传播方向垂直的波;例:光波。

•纵波:波动方向与波传播方向平行的波;例:声波。

•表面波:沿两种介质之间的分界面传播的波;例:水波。

3. 波的基本特征•振幅:在波动中物质偏移其平衡位置的最大距离。

•波长:波动中连续两个相位相同的点之间的距离。

•周期:波动发生一个完整的循环所需的时间。

•频率:波动单位时间内所发生的循环次数。

4. 声波的特点与传播声波是一种纵波,具有频率、波长、速度、衰减等特征。

声波在空气、水、固体等不同介质中传播,传播速度与密度、弹性模量、温度等有关。

5. 光波的特点与传播光波是一种横波,具有频率、波长、速度、衍射、干涉等特征。

光波在空气、水、玻璃等不同介质中传播,传播速度与介质的折射率、密度等有关。

三、机械波与电磁波1. 机械波与电磁波的区别机械波是由物斜质点在介质中传递的能量,需要介质来支持它们的传播。

电磁波则是由交变的电场和磁场构成的能量传播,可以在无介质或介质中自由传播。

教科版选修3-4机械振动和机械波复习习题课

教科版选修3-4机械振动和机械波复习习题课

正向
0.8
4.振动与波的多解问题
【例4】(2012· 全国理综卷)一列简谐横波沿x轴正方向传播, 图9- 4(a)是t=0时刻的波形图,图(b)和图(c)分别是x轴上 1某两处质点的振动图象.由此可知,这两质点平衡位置之 间的距离可能是( )
1 A. 3m C. 1m 2 B. 3m 4 D. 3m
【答案】 BD
【切入点】本题考查波的图象和振动图象的联系.
【解析】根据振动图象(b)可知:t=0 时刻该质点位移为正最
1 5 大, 可能对应于波动图象中坐标 x1=2m 和 x2=2m 的两个质
点.根据振动图象(c)可知:t=0 时刻质点位移为-0.05m 且 11 向负方向运动,应是波动图象坐标为 x3= 6 m 处的质点. 因此这两质点平衡位置之间距离可能为 4 Δx=x3-x1=3m 2 Δx=x2-x3=3m
播方向在前进.
1、(福建卷)一列简谐横波在t=0时刻的波形 如图中的实线所示,t=0.02s时刻的波形如图中 虚线所示。若该波的周期T大于0.02s,则该波 的传播速度可能是 ( B )
A.2m/s
B.3m/s
C.4m/s
D.5m/s
2、(天津卷).一列简谐横波沿x轴正向传播 ,传到M点时波形如图所示,再经0.6s,N点 开始振动,则该波的振幅A和频率f为( D )
答案:A
【点评】
分析振动过程中各物理量变化时,一定要以
位移为桥梁,理清各物理量与位移的关系:位移增 大时,回复力、加速度、势能均增大,速度、动能 减小;位移减小时,回复力、加速度、势能均减小, 速度、动能增大.
2.受迫振动、共振 【例2】一砝码和一轻弹簧构成弹簧振子,如图所示的 装置可用于研究该弹簧振子的受迫振动.匀速转动把

教科版 高中物理选修3-4 机械振动+机械波

教科版 高中物理选修3-4 机械振动+机械波

(1)振幅:振动物体离开平衡位置的最大距离叫做振动的振幅。

①振幅是标量。

②振幅是反映振动强弱的物理量。

(2)周期和频率:①振动物体完成一次全振动所用的时间叫做振动的周期。

②单位时间内完成全振动的次数叫做全振动的频率。

它们的关系是T=1/f 。

在一个周期内振动物体通过的路程为振幅的4倍;在半个周期内振动物体通过的路程为振幅2倍;在1/4个周期内物体通过的路程不一定等于振幅 3)简谐运动的表达式:)sin(ϕω+=t A x 4)简谐运动的图像:振动图像表示了振动物体的位移随时间变化的规律。

反映了振动质点在所有时刻的位移。

从图像中可得到的信息: ①某时刻的位置、振幅、周期②速度:方向→顺时而去;大小比较→看位移大小 ③加速度:方向→与位移方向相反;大小→与位移成正比 3、简谐运动的能量转化过程:1)简谐运动的能量:简谐运动的能量就是振动系统的总机械能。

①振动系统的机械能与振幅有关,振幅越大,则系统机械能越大。

②阻尼振动的振幅越来越小。

2)简谐运动过程中能量的转化:系统的动能和势能相互转化,转化过程中机械能的总量保持不变。

在平衡位置处,动能最大势能最小,在最大位移处,势能最大,动能为零。

(二)简谐运动的一个典型例子→单摆: 1、单摆振动的回复力:摆球重力的切向分力。

①简谐振动物体的周期和频率是由振动系统本身的条件决定的。

②单摆周期公式中的L是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。

4、利用单摆测重力加速度:(三)受迫振动:1、受迫振动的含义:物体在外界驱动力的作用下的运动叫做受迫振动。

2、受迫振动的规律:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。

1)受迫振动的频率:物体做稳定的受迫振动时振动频率等于驱动力的频率,与物体的固有频率无关。

2)受迫振动的振幅:与振动物体的固有频率和驱动力频率差有关3、共振:当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理选修3-4复习提纲机械振动 一、基本概念1.机械振动:物体(或物体一部分)在某一中心位置附近所做的往复运动2.回复力F :使物体返回平衡位置的力,回复力是根据效果(产生振动加速度,改变速度的大小,使物体回到平衡位置)命名的,回复力总指向平衡位置,回复力是某几个力沿振动方向的合力或是某一个力沿振动方向的分力。

(如①水平弹簧振子的回复力即为弹簧的弹力;②竖直悬挂的弹簧振子的回复力是弹簧弹力和重力的合力;③单摆的回复力是摆球所受重力在圆周切线方向的分力,不能说成是重力和拉力的合力)3.平衡位置:回复力为零的位置(物体原来静止的位置)。

物体振动经过平衡位置时不一定处于平衡状态即合外力不一定为零(例如单摆中平衡位置需要向心力)。

4.位移x :相对平衡位置的位移。

它总是以平衡位置为始点,方向由平衡位置指向物体所在的位置,物体经平衡位置时位移方向改变。

5.简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。

(1)动力学表达式为:F = -kxF=-kx 是判断一个振动是不是简谐运动的充分必要条件。

凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。

(2)运动学表达式:x =A sin(ωt +φ)(3)简谐运动是变加速运动.物体经平衡位置时速度最大,物体在最大位移处时速度为零,且物体的速度在最大位移处改变方向。

(4)简谐运动的加速度:根据牛顿第二定律,做简谐运动的物体指向平衡位置的(或沿振动方向的)加速度mkxa -=.由此可知,加速度的大小跟位移大小成正比,其方向与位移方向总是相反。

故平衡位置F 、x 、a 均为零,最大位移处F 、x 、a 均为最大。

(5)简谐运动的振动物体经过同一位置时,其位移大小、方向是一定的,而速度方向却有指向或背离平衡位置两种可能。

(6)简谐运动的对称性①瞬时量的对称性:做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系.速度的大小、动能也具有对称性,速度的方向可能相同或相反。

②过程量的对称性:振动质点来回通过相同的两点间的时间相等,如t BC =t CB ;质点经过关于平衡位置对称的等长的两线段的时间也相等。

6.振幅A :振动物体离开平衡位置的最大距离,是标量,表示振动的强弱和能量的物理量,无正负之分。

7.周期T 和频率f :表示振动快慢的物理量。

完成一次全振动所用的时间叫周期,单位时间内完成全振动次数叫频率,大小由系统本身的性质决定(与振幅无关),所以叫固有周期和频率。

任何简谐运动都有共同的周期公式:km T π2=(其中m 是振动物体的质量,k 是回复力系数,即简谐运动的判定式F = -kx 中的比例系数,对于弹簧振子k 就是弹簧的劲度,对其它简谐运动它就不再是弹簧的劲度系数)。

8.相位(ωt+φ):是用来描述周期性运动在各个时刻所处的不同状态的物理量,其单位为弧度.二、典型的简谐运动 1.弹簧振子(1)简谐运动条件:①弹簧质量忽略不计②无摩擦等阻力③在弹性限度内(2)说明回复力、加速度、速度、动能和势能的变化规律(周期性和对称性)①回复力指向平衡位置②位移从平衡位置开始③弹性势能与动能的相互转化,机械能守恒。

(3)周期km T π2=,与振幅无关,只由振子质量和弹簧的劲度决定。

(4)可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是km T π2=。

这个结论可以直接使用。

(5)在水平方向上振动的弹簧振子的回复力是弹簧的弹力;在竖直方向上振动的弹簧振子的回复力是弹簧弹力和重力的合力。

证明:如图所示,设振子的平衡位置为O ,向下方向为正方向,此时弹簧的形变为0x ,根据胡克定律及平衡条件有00mg kx -=① 当振子向下偏离平衡位置为x 时,回复力(即合外力)为0()F mg k x x =-+回②将①代人②得:F kx =-回,可见,重物振动时受力符合简谐运动的条件.2.单摆:在一不可伸长、忽略质量的细线下端拴一质点,上端固定,构成的装置叫单摆。

(1)单摆的特点:①单摆是实际摆的理想化,是一个理想模型; ②单摆振动可看作简谐运动的条件:a 摆线为不可伸长的轻细线b 无空气等阻力c 最大摆角θ<10°;③单摆的等时性(伽利略),在振幅很小的情况下,单摆的振动周期与振幅、摆球的质量等无关;④单摆的回复力由重力沿圆弧切线方向的分力提供;⑤重力势能与动能的相互转化,机械能守恒。

(2)周期公式:glT π2= (惠更斯) 半径方向:rv m mg T 2cos =-θ向心力改变速度方向切线方向:F 回=mgsin θ改变速度大小若θ角很小,则有sin θ=tan θ=x/L,而且回复力指向平衡位置,与位移方向相反,所以对于回复力F ,有kx x Lmg L x mg F ===回(k 是常数) (3)单摆周期公式的应用测量当地的重力加速度g ,g=224T Lπ (L 为等效摆长,是悬点到球心的距离。

)(4)摆钟问题。

单摆的一个重要应用就是利用单摆振动的等时性制成摆钟。

在计算摆钟类的问题时,利用以下方法比较简单:在一定时间内,摆钟走过的格子数n 与频率f 成正比(n 可以是分钟数,也可以是秒数、小时数…),再由频率公式可以得到:ll g f n 121∝=∝π 三、简谐运动的图象 1.图象的描绘(1)描点法(2)实验模拟法(3)从平衡位置开始计时,函数表达式为x =A sin ωt f Tππω22==从最大位移处开始计时,函数表达式x =A cos ωt 注:简谐运动的图象并非振动质点的运动轨迹 2.振动图象的信息:①直接读出振幅(注意单位) ②直接读出周期③确定某一时刻物体的位移④判定任一时刻运动物体的速度方向(最大位移处无方向)和加速度方向 ⑤判定某一段时间内运动物体的速度、加速度、动能及势能大小的变化情况⑥计算一段时间内的路程:A TtS 4⋅=,一个周期通过的路程为4A ,位移为0。

3.振动图象的应用任何复杂的振动都可以看成是若干个简谐振动的合成 四、受迫振动与共振1.振动能量 = 动能 + 势能 = 最大位移的势能 = 平衡位置的动能(由振幅决定,与周期和频率无关)2.阻尼振动和无阻尼振动(1)阻尼振动:存在阻力做负功,能量减小,振幅减小(减幅振动) (2)无阻尼振动(等幅振动)在振动中,为保持振幅不变(能量不变), 3.受迫振动(1)受迫振动:物体在周期性外力作用下的振动叫受迫振动。

(2)驱动力:周期性的外力作用于振动系统,对系统做功,克服阻尼作用,补偿系统的能量损耗,使系统持续地振动下去,这种周期性的外力叫驱动力。

(3)物体做受迫振动的频率由驱动力决定,等于驱动力频率,而与固有频率无关(如:秋千) 4.共振:(1)在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大 ①产生共振的条件:驱动力频率等于物体固有频率②共振曲线:以驱动力频率为横坐标,以受迫振动的振幅为纵坐标.它直观地反映了驱动力频率对受迫振动振幅的影响, f 驱与f 固越接近,振幅A 越大;当f 驱=f 固时,振幅A 最大。

(2)共振的防止和应用①利用共振:让驱动力频率靠近固有频率,如共振筛、转速计、微波炉、打夯机、跳板跳水、打秋千等。

②防止共振:让驱动力频率远离固有频率,如机床底座、航海、军队过桥、高层建筑、火车车厢等。

机械波一、机械波的产生和传播波的概念1.机械波:机械振动在弹性介质中的传播2.形成条件(1)波源:振源波源、波的发源地,最先振动的质点,不是自由振动,而应是受迫振动,有机械振动,不一定有机械波,有机械波必有机械振动。

(2)介质:介质应具有弹性的媒质,这里的弹性与前述弹性不同,能形成波的媒质叫弹性媒质。

3.波的特点和传播(1)把介质看成是由大量的质点构成的,规定离振源近的称为前一质点,离振源远的称为后一个质点。

相邻的质点间存在着相互作用力,振动时,前一质点带动后一质点振动(2)机械波传播的只是振动的形式和能量,各个质点只在各自的平衡位置附近往复振动,不随波的传播而迁移(水中的树叶)(3)质点做受迫振动,质点的振幅、振动周期和频率都与波源的相同(4)各质点开始振动(即起振)的方向均相同(5)振动速度和波速的区别。

在均匀媒质中波是匀速、直线前进的,波由一种媒质进入另一种媒质,f不变,而v变,而质点的振动是变加速运动,二者没有必然联系,不能混淆。

4.波的意义(1)传播振动的能量——启动受迫(机械波传播机械能,电磁波传播电磁能。

)(2)传播振动的形式——振幅周期频率(振源如何振动,质点就如何振动)(3)传播信息(声波、光波、电磁波)5.波的分类(1)横波:质点的振动方向与波的传播方向垂直,有波峰(凸部)和波谷(凹部)(如水波)(2)纵波:质点的振动方向与波的传播方向共线,有密部和疏部(如声波)二、机械波的图象1.波的图象(简谐波图像为正弦或余弦曲线)用x表示波的传播方向的各个质点的平衡位置,用y表示某一时刻各个质点偏离平衡位置的位移,并规定在横波中位移的方向向上为正。

取得方法:(1)描点法――找到某一时刻介质的各个质点偏离平衡位置的位移(2)拍照纵轴:某一时刻介质的各个质点偏离平衡位置的位移横轴:介质各个质点的平衡位置2.波动图象的信息:(1)波长、振幅(2)任意一质点此刻的位移(3)任意一质点在该时刻加速度方向(4)由传波方向确定振动方向;由振动方向确定传播方向。

(5)画出一定时间的机械波的图象①描点法②平移法3.振动图象和波的图象的联系与区别联系:波动是振动在介质中的传播,两者都是按正弦或余弦规律变化的曲线;振动图象和波的图象中的纵坐标均表示质点的振动位移,它们中的最大值均表示质点的振幅。

区别:①振动图象描述的是某一质点在不同时刻的振动情况,图象上任意两点表示同一质点在不同时刻偏离平衡位置的位移;波的图象描述的是波在传播方向上无数质点在某一时刻的振动情况,图象上任意两点表示不同的两个质点在同一时刻偏离平衡位置的位移。

②振动图象中的横坐标表示时间,箭头方向表示时间向后推移;波的图象中的横坐标表示离开振源的质点的位置,箭头的方向可以表示振动在介质中的传播方向,即波的传播方向,也可以表示波的传播方向的反方向。

③振动图象随时间的延续将向着横坐标箭头方向延伸,原图象形状不变;波的图象随着时间的延续,原图象的形状将沿横坐标方向整个儿地平移,而不是原图象的延伸。

④在不同时刻波的图象是不同的;对于不同的质点振动图象是不同的。

三、描绘机械波的物理量 1.周期和频率:在波动中,各个质点的振动周期是相同的,它们都等于波源的振动周期,这个周期也叫做波的周期。

同样,各个质点的振动频率也是波的频率。

相关文档
最新文档