数学分析(三)教案(16.1)

合集下载

数学分析(III)教学大纲

数学分析(III)教学大纲

《数学分析》教学大纲一、课程性质、地位和作用《数学分析》是数学与应用数学专业、信息与计算科学专业的最重要的专业基础课和核心必修课。

本课程理论严谨、系统性强。

通过本课程的学习,要使学生掌握数学分析的基本概念、基本理论和基本方法,为学习后继的所有专业课程奠定必要的数学基础。

要通过各个教学环节逐步培养学生严格的逻辑思维能力与推理论证能力,具备熟练的运算能力和技巧,提高建立数学模型,并应用微积分学这一工具解决实际应用问题的能力,为今后从事基础数学和应用数学方面的研究打下扎实的理论基础。

二、课程教学对象、目的和要求本课程适用于数学与应用数学、信息与计算科学等本科专业。

课程教学目的、要求:了解微积分学的基础理论;充分理解微积分学的历史背景及数学思想。

掌握微积分学的基本理论,方法和技巧,并具备一定的分析论证能力和较强的运算能力。

能较熟练地应用微积分学的思想方法解决实际问题。

1、重视微积分学理论的产生离不开物理学,天文学,几何学等学科的发展。

在教学实践中应强化微积分学与相邻学科的联系,强调应用背景。

2、重视相关知识的整合,将一元函数与多元函数的极限,连续及求导(微分)整合,将不定积分与定积分的计算方法整合,将重积分和线面积分整合,将反常级数与反常积分的收敛性整合,将函数列,函数项级数和含参量反常积分的一致收敛性整合。

3、除体现本课程严格的逻辑体系外,要反映现代数学的发展趋势,吸收和采用现代数学的思想观点与先进的处理方法。

4、为了提高学生的数学修养,应重视基本定理的论证。

用ε-δ的思想贯穿于极限的存在性,定积分的存在性,(一致)收敛性及(一致)连续性等理论的论证中。

5、以课堂教学为主,重视习题课对学生理解掌握所学知识的作用。

6、重视实数理论体系对学习微积分学理论和建立现代数学观点的不可或缺的作用。

三、相关课程及关系本课程在大学本科第一、二、三学期开设,是数学与应用数学、信息与计算科学等本科专业的最重要的专业基础课,是所有后继专业课程(如:微分方程、概率论与数理统计、复变函数、实变函数、泛函分析、计算方法、微分方程数值解等等)的基础。

《数学分析3》教案

《数学分析3》教案

授课时间2006.10.17 第10 次课授课时间 2006.10.19 第 11 次课 授课章节 第十七章 第四节 任课教师 及职称 姜子文、教授教学方法 与手段 讲授课时安排3使用教材和 主要参考书华东师范大学主编《数学分析(上、下册)》(第三版),高等教育出版社2001年版 吴良森等编著《数学分析学习指导书》(上、下册),高等教育出版社2004年版 马顺业编著《数学分析研究》,山东大学出版社1996年版 刘玉琏等编著《数学分析讲义》(第三版)(上、下册),高等教育出版社1982年版教学目的与要求:(1) 掌握二元函数的高阶偏导数与泰勒公式的定义 (2) 掌握混合偏导数与求导次序无关的定理的证明教学重点,难点:重点:二元函数的高阶偏导数与泰勒公式 难点:二元函数的泰勒公式教学内容:一、高阶偏导数:类似于一元函数的高阶导数,可以定义高阶偏导数。

就二元函数),(y x f 而论,如果),(y x f 的两个偏导数),(y x f x , ),(y x f y 都存在,它们就是关于y x ,的二元函数。

还可以讨论它们关于y x ,的偏导数,如果它们关于x 的偏导数存在,或者关于y 的偏导数存在,就称这些偏导数是二阶偏导数。

如此以来, 二元函数的二阶偏导数就有四种情形:22x z ∂∂y x z ∂∂∂2x y z ∂∂∂222y z∂∂.类似的可定义更高阶的偏导数. 例1求二阶偏导数和.例2. 求二阶偏导数.注 混合偏导数由于求导次序的不同, 可能会不同.例3 求函数 ⎪⎩⎪⎨⎧+-=0),(2222y x y x xy y x f )0,0(),()0,0(),(=≠y x y x 在原点的二阶偏导数. 但在满足一定条件下, 混合偏导数与求导次序无关.定理17.7 设二元函数的两个混合偏导数xy f ,yx f 在(0x ,0y )连续,则有xy f (0x ,0y )=yx f (0x ,0y ).复合函数的高阶偏导数一定注意中间变量仍然是自变量的函数, 因变量仍然是中间变量的函数. 例4. 求和.利用变量变换和高阶偏导数可以验证或化简偏微分方程: 例5. 证明+. ( Laplace 方程 )例6 试确定和, 利用线性变换将方程化为. 解,.= + + + =+2+.= +++=++.= ++.因此 ,+ (+ .令 ,或或 ……, 此时方程化简为.二、中值定理:定理 设二元函数f 在凸区域D 2R ⊂上连续 , 在D 的所有内点处可微 . 则对D 内任意两点int ) , ( , ),(∈++k b h a Q b a P D , 存在) 10 ( <<θθ, 使k k b h a f h k b h a f b a f k b h a f x ) , () , (),() , (θθθθ+++++=-++.证: 令()( , ) , t f a th b tk Φ=++然后利用一元函数的中值定理.推论 若函数f 在区域D 上存在偏导数 , 且x f ≡y f ≡0, 则f 是D 上的常值函数. 三、 Taylor 公式:定理 (Taylor 公式) 若函数f 在点),(000y x P 的某邻域)(0P 内有直到1+n 阶连续偏导数 , 则对)(0P 内任一点) , (00k y h x ++,存在相应的) 1 , 0(∈θ, 使∑=+++⎪⎪⎭⎫⎝⎛∂∂+∂∂++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=++ni n i k y h x f y k x h n y x f y k x h i k y h x f 00010000)., ()!1(1),(!1 ) , (θθ证 略例1 求函数yx y x f =),(在点) 4 , 1 (的Taylor 公式 ( 到二阶为止 ) . 并用它计算 .) 08.1 (96.3授课时间2006.10.24 第12 次课授课时间2006.10.26 第13 次课(1,)-∞上的隐函数上,函数值不小于2.授课时间2006.10.31 第14 次课授课时间2006.11.2 第15 次课授课时间2006.11.7 第16 次课授课时间 2006.11.9 第 17 次课 授课章节 第十九章 第一节 任课教师 及职称 姜子文、教授教学方法 与手段 讲授课时安排3使用教材和 主要参考书华东师范大学主编《数学分析(上、下册)》(第三版),高等教育出版社2001年版 吴良森等编著《数学分析学习指导书》(上、下册),高等教育出版社2004年版 马顺业编著《数学分析研究》,山东大学出版社1996年版 刘玉琏等编著《数学分析讲义》(第三版)(上、下册),高等教育出版社1982年版教学目的与要求:(1) 了解含参量正常积分的连续性,可微性和可积性定理的证明 (2) 熟练掌握含参量正常积分的导数的计算公式.教学重点,难点:重点:含参量正常积分定义级其性质难点:含参量正常积分的连续性,可微性和可积性教学内容:一、 含参量正常积分的概念定义 设二元函数),(y x f 在矩形区域],[],[d c b a R ⨯=上有定义,且对],[b a 内每一点x ,函数),(y x f 关于y 在闭区间],[d c 上可积,则定义了x 的函数⎰=dc dy y x f x I ),()(,],[b a x ∈ (1)设二元函数),(y x f 在区域}),()(|),{(b x a x d y x c y x G ≤≤≤≤=上有定义,函数)(x c ,)(x d 为],[b a 上的连续函数,且对],[b a 内每一点x ,函数),(y x f 关于y 在闭区间)](),([x d x c 上可积,则定义了x 的函数⎰=)()(),()(x d x c dy y x f x F ,],[b a x ∈ (2)称(1)和(2)为含参量x 的正常积分.类似可定义含参量y 的正常积分.问1 含参量积分是积分还是函数? 它与已学过的积分有什么联系?答 含参量积分在形式上是积分, 但积分值随参量的取值不同而变化, 因此实质上是一个函数。

《数学分析(三)》教学大纲

《数学分析(三)》教学大纲

《数学分析》(三)教学大纲一、课程名称:《数学分析》(三)二、课程性质:数学及应用数学专业、信息与计算科学专业的必修基础课与主干课。

三、课程教学目的:使学生在一元微积分学的基础上,掌握多元微积分学的知识,提高对空间问题,复杂问题的处理能力,并为进一步学习复变函数论、微分方程、微分几何、概率论、实变分析与泛函分析等后继课程打下坚实的基础。

同时还为培养学生的独立工作能力提供必要的训练,学生学好这门课程的基本内容和方法,对今后的学习、研究和应用都具有关键性的作用。

四、课程教学原则与教学方法:课堂教学应具有:讲授、讨论、研究对多种形式,着重于启发学生的主动性,使研究学习中的各种问题成为一种乐趣,使学生掌握其基本概念、基本理论、基本方法和基本技巧,培养学生的逻辑思维能力、抽象思维能力、运算能力、分析问题解决问题的能力和创新能力。

五、课程总学时:112学时六、课程教学内容及学时分配:第十三章多元函数的极限与连续(14学时)要求学生掌握平面点集和多元函数的有关概念;弄清二重极限与累次极限之间的区别和联系,深刻理解二元函数连续性;熟悉有界闭域上连续函数性质。

1 平面点集概念(邻域、内点、界点、开集、闭集、开域、闭域等)。

平面点集的基本定理——区域套定理、聚点定理、有限覆盖定理。

2 二元函数概念。

二重极限。

累次极限。

3 二元函数的连续性。

复合函数的连续性定理。

有界闭域上连续函数的性质n维空间与n元函数(距离、三角不等式、极限、连续等)*第十四章多元函数的微分学(22学时)要求学生理解并掌握偏导数、全微分、方向导数和梯度等概念,能熟练地计算多元函数偏导数和全微分;弄清多元函数的偏导数存在、可微、连续三者之间的关系。

记住混合偏导数与求导顺序无关的条件;会求二元函数极值。

1可微性与全微分,偏导数及其几何意义。

全微分概念。

全微分的几何意义。

全微分存在的充分条件。

全微分在近似计算中的应用。

2复合函数的偏导数与全微分。

一阶微分形式的不变性。

数学分析16.1平面点集与多元函数

数学分析16.1平面点集与多元函数

第十六章多元函数的极限与连续1平面点集与多元函数一、平面点集概念1:在平面上确定一个坐标系(一般指平面直角坐标系),所有有序实数对(x,y)与平面上所有的点之间建立了一一对应,因此“数对”可等同于“平面上的点”,这种确定了坐标系的平面称为坐标平面. 坐标平面上满足某种条件P的点的集合称为平面点集,记作:E={(x,y)|(x,y)满足条件P}.如R2={(x,y)|-∞<x<+∞,-∞<y+∞}指整个坐标平面. 平面上以原点为中心,r为半径的圆内所有点的集合是C={(x,y)|x2+y2<r2}.而集合S={(x,y)|a≤x≤b, c≤y≤d}表示一矩形及其内部所有点的全体,通常记作:[a,b]×[c,d].一般地,对于任意两个数集A, B,记A×B={(x,y)|x∈A,y∈B },称为A 与B的直积. 如:A={(u,v)|u2+v2<1},B=[0,1],则A×B={(u,v,w)|u2+v2<1, 0≤w≤1 }.平面点集{(x,y)|(x-x0)2+(y-y0)2<δ2}与{(x,y)||x-x0|<δ,|y-y0|<δ}分别称为以点A(x0,y0)为中心的δ圆邻域与δ方邻域.点A的任一圆邻域可包含在点A的某一方邻域之内(反之亦然),所以通常用“点A的δ邻域”或“点A的邻域”泛指这两种形状的邻域,并记为U(A;δ)或U(A). 而点A的空心邻域是指:(记为U⁰(A;δ)或U⁰(A)) {(x,y)|0<(x-x0)2+(y-y0)2<δ2}或{(x,y)||x-x0|<δ,|y-y0|<δ, (x,y)≠(x0,y0)}.任一点A∈R2与任意一个点集E⊂R2之间必有以下三种关系之一:1、内点:若存在点A的某邻域U(A),使得U(A)⊂E,则称A是点集E 的内点. E的全体内点构成的集合称为E的内部,记作int E.2、外点:若存在点A的某邻域U(A),使得U(A)∩E=Ø,则称A是点集E的外点.3、界点:若点A的任何邻域内既含有属于E的点,又含有不属于E 的点,则称A是集合E的界点. 即对任何正数δ,恒有U(A;δ)∩E≠Ø且U(A;δ)∩E c≠Ø,其中E c=R2\E是E关于全平面的余集. E的全体界点构成E的边界,记作∂E.内点属于E,外点不属于E,界点不能确定.按点A的近旁是否密集着E中无穷多个点而构成的关系:1、聚点:若在点A的任何空心邻域U⁰(A)内都含有E中的点,则称A 是E的聚点. 聚点不一定属于E. A是点集E的聚点的定义等价于“点A的任何邻域U(A)内包含有E的无穷多个点”.2、孤立点:若点A∈E, 但不是E的聚点,即存在某一正数δ,使得U⁰(A;δ)∩E=Ø,则称点A是E的孤立点. 孤立点一定是界点,内点和非孤立的界点一定是聚点,即不是聚点,又不是孤立点,必为外点.例1:设平面点集D={(x,y)|1≤x2+y2<4},分别指出它的内点、界点和聚点,并指出界点是否属于点集D.解:满足1<x2+y2<4的一切点都是D的内点;满足x2+y2=1的一切点是D的界点且属于D;满足x2+y2=4的一切点是D的界点且不属于D;点集D连同它外圆边界上的所有点都是D的聚点.概念2:重要的平面点集:1、开集:若平面点集所属的每一点都是E的内点(即intE=E),则称E 为开集.2、闭集:若平面点集E的所有集点都属于E,则称E为闭集. 没有聚点的点集也称为闭集.注:例1中的点集D即不是开集也不是闭集;R2和Ø既开又闭.3、开域:若非空开集E具有连通性,即E中任意两点之间都可用一条完全包含于E的有限折线相连接,则称E为开域(非空连通开集).4、闭域:开域连同其边界所成的点集称为闭域.5、区域:开域、闭域,或者开域连同其一部分界点所成的点集,统称为区域. 反例:开集E={(x,y)|xy>0}在I,III象限之间不具有连通性,所以它不是区域.6、有界点集:对于平面点集E,若存在某一正数r ,使得E⊂U(O,r),其中O 为坐标原点(也可为其它固定点),则称E 为有界点集. 反之则为无界点集. E 为有界点集等价于:存在矩形区域D=[a,b]×[c,d]⊃E.点集的有界性可用点集的直径来反映,即d(E)=E P ,P 21sup ∈ρ(P 1,P 2),其中ρ(P 1,P 2)表示P 1与P 2两点之间的距离,当P 1,P 2的坐标分别为(x 1,y 1)和(x 2,y 2)时,则ρ(P 1,P 2)=221221)-y (y )x -(x +,于是当d(E)为有限值时,E 为有界点集.根据距离的概念,对R 2上的任意三点P 1,P 2,P 3,有以下三角不等式: ρ(P 1,P 2)≤ρ(P 1,P 3)+ ρ(P 2,P 3).例2:证明:对任何S ⊂R 2,∂S 恒为闭集.证:如图:设x 0为∂S 的任一聚点,∀ε>0,由聚点的定义,∃γ∈U ⁰(x 0;ε)∩∂S. 又γ是S 的界点, ∴对任意U(γ;δ)⊂U ⁰(x 0;ε), U(γ;δ)上既有S 的点,又有非S 的点. ∴U(x 0;ε)上也既有S 的点,又有非S 的点,即x 0∈∂S ,∴∂S 恒为闭集.二、R 2上的完备性定理定义1:设{P n }⊂R 2为平面点列,P 0∈R 2为一固定点. 若对任给的正数ε,存在正整数N ,使得当n>N 时,有P n ∈(P 0;ε),则 称点列{P n }收敛于点P 0,记作:∞→n lim P n =P 0或P n →P 0, n →∞.注:分别以(x n ,y n )与(x 0,y 0)表示P n 与P 0时,∞→n lim P n =P 0等价于∞→n lim x n =x 0,∞→n lim y n =y 0. 以ρ(P 1,P 2)表示P n 与P 0之间距离时,∞→n lim P n =P 0又等价于,∞→n lim ρ=0.定理16.1:(柯西准则)平面点列{P n }收敛的充要条件是:任给正数ε,存在正整数N ,使得当n>N 时,对一切正整数p ,都有ρ(P n ,P n+p )<ε. 证:[必要性]设∞→n lim P n =P 0, 则由三角不等式有 ρ(P n ,P n+p )≤ρ(P n ,P 0)+ρ(P n+p ,P 0),由点列收敛定义,∀ε>0,∃正整数N , 当n+p>n>N 时,恒有ρ(P n ,P 0)<2ε; ρ(P n+p ,P 0)<2ε;∴ρ(P n ,P n+p )<ε.[充分性]若ρ(P n ,P n+p )<ε,则同时有|x n+p -x n |≤ρ(P n ,P n+p ) <ε,|y n+p -y n |≤ρ(P n ,P n+p ) <ε,∴∞→n lim x n =x 0,∞→n lim y n =y 0,∴∞→n lim P n =P 0,即{P n }收敛于P 0.定理16.2:(闭域套定理)设{D n }是R 2中的闭域列,它满足:(1)D n ⊃D n+1, n=1,2,…;(2)d n =d(D n ), ∞→n lim d n =0,则 存在唯一的点P 0∈D n , n=1,2,….证:任取点列P n ∈D n , n=1,2,….∵D n+p ⊂D n , ∴P n ,P n+p ∈D n , 如图有ρ(P n ,P n+p )≤d n →0, n →∞. 由定理16.1知,存在P 0∈R 2,使∞→n lim P n =P 0. 任取n ,对任何正整数p ,有P n+p ∈D n+p ⊂D n .令p →∞,∵D n 是闭域,从而必为闭集. ∴D n 的聚点P 0∈D n ,即P0=lim P n+p∈D n, n=1,2,…. 若有P0’∈D n, n=1,2,….n→∞由ρ(P0,P0’)≤ρ(P n,P0)+ρ(P n,P0’)≤2d n→0, n→∞. 得ρ(P0,P0’)=0,∴P0=P0’. 即P0是唯一的,得证!推论:对上述闭域套{D n},任给ε>0,存在正整数N,当n>N时,有D n⊂U(P0;ε).定理16.3:(聚点定理)设E⊂R2为有界无限点集,则E在R2中至少有一个聚点.证法一:∵E是平面有界无限点集,∴存在一个闭正方形D1包含它. 连接正方形对边中点,把D1分成四个小的闭正方形,则在这个四个小闭正方形中,至少有一个含有E的无限个点,记为D2,同样的将D2分成四个小的闭正方形,得到D3含有E的无限个点,如此下去得到一个闭正方形序列:D1⊃D2⊃D3⊃…,则闭正方形序列{D n}的边长随着n趋向于无限而趋向于0,于是由闭域套定理,存在一点M0∈D n, n=1,2,….ε,任取M0的ε邻域U(M0;ε),当n充分大时,正方形的边长小于2即D n⊂U(M0;ε). 又由D n的取法知U(M0;ε)含有E的无限多个点,即M0是E的聚点.证法二:若点集E不存在任何聚点,则对任意点P∈E,∵E有界,∴存在某一正数r ,使得E⊂U(P;r),且U(P;r)中只包含E的有限个点. 而E的所有点都包含于U(P;r),即E 只包含有限个点,与E 为无限点集矛盾;∴E 在R 2中至少有一个聚点.定理16.3’:有界无限点列{P n }⊂R 2必存在收敛子列{kn P }.定理16.4:(有限覆盖定理)设D ⊂R 2为一有界闭域(集),{△α}为一开域(集)族,它覆盖了D(即D ⊂αα∆ ),则{△α}中必存在有限个开域(集)△1,△2,…,△n ,它们同样覆盖了D(即D ⊂i n1i ∆= ). 证:设有界闭域D 含在矩形[a,b]×[c,d]之中,并假设D 不能被{△α}中有限个开域所覆盖.用直线x=2b a +,y=2d c +把矩形[a,b]×[c,d]分成四个相等的闭矩形,则 至少有一个闭矩形所含的D 的部分不能被{△α}中有限个开域所覆盖. 类似的,把这个矩形(或几个的其中任一)再分成四个相等的闭矩形. 按此法继续下去,可得一闭矩形套{[a n ,b n ]×[c n ,d n ]}. 其中每一个闭矩形 所含的D 的部分都不能为{△α}中有限个开域所覆盖,于是每个闭矩形[a n ,b n ]×[c n ,d n ]中都至少含有D 的一点,任取其中一点(x n ,y n ), 则 (x n ,y n )∈D, 且a n <x n <b n , c n <y n <d n (n=1,2,…). 由闭矩形套定理可知: 存在一点(x 0,y 0),满足对任意自然数n ,都有a n ≤x 0≤b n , c n ≤y 0≤d n . ∵∞→n lim (b n -a n )=n n 2a -b lim ∞→=0; ∞→n lim (d n -c n )=n n 2c -d lim ∞→=0;∴∞→n lim x n =x 0; ∞→n lim y n =y 0. 又(x n ,y n )是有界闭域D 上的点,∴(x 0,y 0)∈D. 则{△α}中必有一开域包含(x 0,y 0),设为△0,则必存在点P 0(x 0,y 0)的一个邻域U(P 0,δ)⊂△0,由a n →x 0, b n →x 0; c n →y 0,d n →y 0,知当n 充分大时,恒有x 0-2δ<a n ≤x 0≤b n <x 0+2δ; y 0-2δ<c n ≤y 0≤d n <y 0+2δ. 可知,矩形[a n ,b n ]×[c n ,d n ]都包含于U(P 0,δ)中,从而包含于开域△0中, 这与每个[a n ,b n ]×[c n ,d n ]都不能被{△α}中有限个开域所覆盖矛盾, ∴{△α}中必有D 的有限开覆盖.三、二元函数定义2:设平面点集D ⊂R 2,若按照某对应法则f ,D 中每一点P(x,y)都有唯一确定的实数z 与之对应,则称f 为定义在D 上的二元函数(或称f 为D 到R 的一个映射),记作:f:D →R ,P ↦z.且称D 为f 的定义域,P ∈D 所对应的z 为f 在点P 的函数值. 记作: z=f(P)或z=f(x,y).全体函数值的集合为f 的值域,记作f(D) ⊂R. 通常把P 的坐标x 与y 称为f 的自变量,而z 称为因变量.若二元函数的值域是有界数集,则称该函数为有界函数;若值域是无界数集,则称该函数为无界函数.f 在D 上无界的充要条件是:存在{P k }⊂D ,使∞→k lim f(P k )=∞.在映射意义下,z=f(P)称为P 的象,P 称为z 的原象.把(x,y)∈D 和它对应的象z=f(x,y)一起组成三维数组(x,y,z)时,三维欧氏空间R 3中的点集S={(x,y,z)|z=f(x,y), (x,y)∈D }⊂R 3,就是二元函数f 的图象. z=f(x,y)的图象通常是一空间曲面,f 的定义域D 就是该曲面在xOy 平面上的投影.例3:指出下列函数的定义域和值域,以及它们属于有界函数还是无界函数,并说明它们的图象形状.(1) z=2x+5y ;(2)z= )y x (122+-;(3)z=xy ;(4)z=[ y x 22+].解:(1)z=2x+5y 的定义域是R 2,值域是R ,属于无界函数;其图象为R 3中一个平面.(2)z= )y x (122+-的定义域是xOy 平面上的单位圆域{(x,y)|x 2+y 2≤1}, 值域为区间[0,1],属于有界函数;其图象为以原点为中心的单位球面的上半部分.(3)z=xy 的定义域是R 2,值域是R ,属于无界函数;其图象为过原点的双曲抛物面.(4)z=[ y x 22+]是定义在R 2上的函数,值域是全体非负整数,属于无界函数;其图象如图.四、n 元函数概念3:所有有序实数组(x 1,x 2,…,x n )的全体称为n 维向量空间,简称n 维空间,记作R n . 其中每个有序实数组(x 1,x 2,…,x n )称为R n 中的一个点,n 个实数x 1,x 2,…,x n 是这个点的坐标.设E为R n中的点集,若有某个对应法则f,使E中每一点P(x1,x2,…,x n)都有唯一的一个实数y与之对应,则称f为定义在E上的n元函数(或称f为E⊂R n到R的一个映射),记作f:E→R, (x1,x2,…,x n)↦y.或简写成y=f(x1,x2,…,x n), (x1,x2,…,x n)∈E或y=f(P), P∈E.习题1、判断下列平面点集中哪些是开集、闭集、有界集、区域,并分别指出它们的聚点与界点:(1)[a,b)×[c,d);(2){(x,y)|xy≠0};(3){(x,y)|xy=0};(4){(x,y)|y>x2};(5){(x,y)|x<2,y<2,x+y>2};(6){(x,y)|x2+y2=1或y=0,0≤x≤1};(7){(x,y)|x2+y2≤1或y=0,1≤x≤2};(8){(x,y)|x,y均为整数};1, x>0}.(9){(x,y)|y=sinx解:(1)点集[a,b)×[c,d)为非开非闭有界集,也是区域.聚点为[a,b]×[c,d]中任一点;界点为[a,b]×[c,d]的四条边上任一点. (2)点集{(x,y)|xy≠0}是无界开集,非区域.聚点为平面内任一点;界点为两坐标轴上的点.(3)点集{(x,y)|xy=0}是无界开集,非区域.聚点和界点都是两坐标轴上的点.(4)点集{(x,y)|y>x2}是无界开集,也是区域;聚点为抛物线y=x2及上方的所有点;界点为抛物线y=x2上的所有点.(5)点集{(x,y)|x<2,y<2,x+y>2}为有界开集,也是区域;聚点为直线x=2, y=2及x+y=2所围成的三角形三边及内部所有的点;界点为直线x=2, y=2及x+y=2所围成的三边形三边上的点.(6)点集{(x,y)|x2+y2=1或y=0,0≤x≤1}是有界闭集,非区域;聚点和界点都是圆x2+y2=1和x轴上线段[0,1]上所有的点.(7)点集{(x,y)|x2+y2≤1或y=0,1≤x≤2}是有界闭集,非区域;聚点是圆x2+y2=1及其内部和x轴上线段[1,2]上所有的点;界点是圆x2+y2=1和x轴上线段[0,1]上所有的点.(8)点集{(x,y)|x,y均为整数}是无界闭集,非区域;没有聚点;界点为集内全体点.1, x>0}为非开非闭无界集,非区域;(9)点集{(x,y)|y=sinx1在I,IV象限的所有点. 界点与聚点都是y轴上线段[-1,1]及曲线y=sinx2、试问集合{(x,y)|0<|x-a|<δ, 0<|y-b|<δ}与集合{(x,y)||x-a|<δ,|y-b|<δ, (x,y)≠(a,b)}是否相同?解:不相同.因为点集{(x,y)|0<|x-a|<δ, 0<|y-b|<δ}不包含x=a及y=b上的两线段;而点集{(x,y)||x-a|<δ,|y-b|<δ, (x,y)≠(a,b)}仅不包含一个点(a,b).3、证明:当且仅当存在各点互不相同的点列{P n}⊂E, P n≠P0,lim P n=P0n→∞时,P0是E的聚点.证:[充分性]若P n≠P0,lim P n=P0,则∀ε>0,∃N,使得当n>N时,n→∞有P n ∈U ⁰(P 0;ε),当n 充分大时,U ⁰(P 0;ε)含有{P n }的无穷多个点. 又{P n }⊂E, ∴U ⁰(P 0;ε)含有E 中无穷多个点,即P 0是E 的聚点.[必要性]若P 0是E 的聚点,则∀ε>0,U ⁰(P 0;ε)中必含有E 中的点. 取ε1=1,则U ⁰(P 0;ε1)中必含有E 中的点,任取出一个记为P 1. 取ε2=min{21,|P 1-P 0|},则U ⁰(P 0;ε2)中必含有E 的点,任取一个记为P 2. 依次类推,取εn =min{n1,|P 1-P 0|,…,|P n-1-P 0|},则U ⁰(P 0;εn )中含有E 的点,取出一个记为P n . 无限继续,可得各项互异的点列{P n },即有P n ≠P 0,{P n }⊂E ,且∞→n lim P n =P 0.4、证明:闭域必为闭集. 举例说明反之不真.证:设D 为闭域,则有开域G ,使D=G ∪∂G ,其中∂S 为G 的边界. 设P 0∉D ,则P 0∉G 且P 0∉∂G. 由P 0∉G 可知,∀δ>0,U(P 0;δ)∩G c ≠Ø,其中G c 为G 的余集即关于R 2的补集. 又由P 0∉∂G 可知,存在δ0>0,使U(P 0;δ0)∩G=Ø.若存在P 1∈U(P 0;δ0)∩∂G ,则当ε>0充分小时,U(P 1;ε)⊂(P 0;δ0). 由于 P 1∈∂G ,从而U(P 1;ε)含有G 的点Q ,于是Q ∈U(P 0;δ)∩G ,矛盾. ∴U(P 0;δ0)∩∂G=Ø,∴(P 0;δ0)∩D=Ø,即P 0不是D 的聚点,∴若P 0是D 的聚点,则P 0∈D ,即D 为闭集.反之,平面内的任意两点可以构成一个闭集,但却不是一个闭域.注:任一点集E ,E ∪∂E 恒为闭集.5、证明:点列{P n (x n ,y n )}收敛于P 0(x 0,y 0)的充要条件是:∞→n lim x n =x 0和∞→n lim y n =y 0.证:[必要性]设点列{P n (x n ,y n )}收敛于P 0(x 0,y 0),则∀ε>0,∃N , 当n>N 时,ρ(P n ,P 0)< ε, 即20n 20n )y -(y )x -(x +<ε,∴|x n -x 0|≤20n 20n )y -(y )x -(x +< ε,(n>N),∴∞→n lim x n =x 0,同理∞→n lim y n =y 0. [充分性]设∞→n lim x n =x 0,∞→n lim y n =y 0,则∀ε>0,∃N 1,N 2,使得 当n>N 1时,有|x n -x 0|<2ε; 当n>N 2时,有|y n -y 0|<2ε; 取N=Max{N 1,N 2},则当n>N 时,同时有|x n -x 0|<2ε和|y n -y 0|<2ε;∴ρ(P n ,P 0)=20n 20n )y -(y )x -(x +<2ε2ε22+=ε, ∴点列{P n (x n ,y n )}收敛于P 0(x 0,y 0).6、求下列各函数的函数值: (1)f(x,y)=2y)-arctan(x y)arctan(x ⎥⎦⎤⎢⎣⎡+, 求f ⎪⎪⎭⎫ ⎝⎛-+231231,; (2)f(x,y)=22y x 2xy +, 求f ⎪⎭⎫ ⎝⎛a b 1,;(3)f(x,y)=x 2+y 2-xytan y x , 求f(tx,ty). 解:(1)x+y=231231-++=1; x-y=231231--+=3; ∴f ⎪⎪⎭⎫ ⎝⎛-+231231,=23arctan 1arctan ⎪⎪⎭⎫ ⎝⎛=23π÷4π⎪⎭⎫ ⎝⎛=169. (2)f ⎪⎭⎫ ⎝⎛a b 1,=⎪⎪⎭⎫ ⎝⎛+÷22a b 1a 2b =22b a 2ab +. (3)f(tx,ty)=t 2x 2+t 2y 2-t 2xytan ty tx =t 2(x 2+y 2-xytan yx ).7、设F(x,y)=lnxlny ,证明:若u>0, v>0,则F(xy,uv)=F(x,u)+F(x,v)+F(y,u)+F(y,v).证:当u>0, v>0时,F(xy,uv)=lnxylnuv=(lnx+lny)(lnu+lnv)=lnxlnu+lnxlnv+lnylnu+lnylnv=F(x,u)+F(x,v)+F(y,u)+F(y,v).8、求下列各函数的定义域,画出定义域的图形,并说明是何种点集: (1)f(x,y)=2222y-x y x +;(2)f(x,y)=223y 2x 1+;(3)f(x,y)=xy ; (4)f(x,y)=2x -1+1-y 2;(5)f(x,y)=lnx+lny ;(6)f(x,y)=)y sin(x 22+;(7)f(x,y)=ln(y-x);(8)f(x,y)=)y x (22e +-;(9)f(x,y,z)=1y x z 22++; (10)f(x,y,z)=2222z y x R ---+2222r z y x 1-++, (R>r).解:如图:(1)函数定义域D={(x,y)|x ≠±y},是无界开点集.(2)函数定义域D={(x,y)|xy ≠0}=R 2-(0,0),是无界开点集.(3)函数定义域D={(x,y)|xy ≥0},是无界闭集.(4)函数定义域D={(x,y)||x|≤1, |y|≥1},是无界闭集.(5)函数定义域D={(x,y)|x>0, y>0},是无界开点集.(6)函数定义域D={(x,y)|2n π≤x 2+y 2≤(2n+1)π, n=0,1,2,…},是无界闭集.(7)函数定义域D={(x,y)|y>x},是无界开集.(8)函数定义域D=R 2,是无界既开又闭的点集.(9)函数定义域D=R 3,是无界既开又闭的点集,图略.(10)函数定义域D={(x,y)|r 2<x 2+y 2+z 2≤R 2},是有界非开非闭的点集.(1) (2) (3)(4) (5) (6)(7) (8) (10)(空心球体)9、证明:开集与闭集具有对偶性,即若E为开集,则E c为闭集;若E为闭集,则E c为开集.证:设E为开集,E c不是闭集. 则E c中至少有一个聚点A不属于E c,则必有A∈E. ∵E为开集,∴存在点A的某邻域U(A)⊂E,则U(A)中不含有E c中的点,与A为E c的聚点矛盾.∴E 为开集,则E c 为闭集.设E 为闭集,E c 不是开集. 则E c 中至少有一点B 不是E c 的内点. ∵点B 的任何邻域U(B)⊄E c ,即U(B)中含有E 中的点,又B ∉E , ∴B 为E 的聚点,这与E 是闭集矛盾. ∴E 为闭集,则E c 为开集.10、证明:(1)若F 1, F 2为闭集,F 1∪F 2与F 1∩F 2都为闭集;(2)若E 1, E 2为开集,E 1∪E 2与E 1∩E 2都为开集;(3)若F 为闭集,E 为开集,则F\E 为闭集,E\F 为开集.证:(1)设P 为F 1∪F 2的任意聚点,则存在一个各点互不相同的收敛于P 的点列{P n }⊂F 1∪F 2,∴F 1和F 2至少有一个集合含有{P n }的无限多项,不妨设{k n P }⊂F 1,则 也有kn P →P(k →∞),从而P 为F 1的聚点. 又F 1为闭集,∴P ∈F 1,即 P ∈F 1∪F 2,∴F 1∪F 2为闭集.设Q 为F 1∩F 2的任意聚点,则存在一个各点互不相同的收敛于Q 的点列{Q n }⊂F 1∩F 2,即Q 即是F 1的聚点,又是F 2的聚点,又F 1, F 2都是闭集, ∴Q ∈F 1且Q ∈F 2,即Q ∈F 1∩F 2,∴F 1∩F 2为闭集.(2)若E 1, E 2为开集,∀A ∈E 1∪E 2,则A ∈E 1或A ∈E 2. 不妨设A ∈E 1,则 存在A 的某邻域U(A)⊂E 1,从而有U(A)⊂E 1∪E 2,∴E 1∪E 2为开集. ∀B ∈E 1∩E 2,则B ∈E 1且B ∈E 2. ∵E 1, E 2为开集,∴存在B 的某邻域U(B;δ1)⊂E 1,也存在B 的某邻域使U(B;δ2)⊂E 2, 取δ=min{δ1,δ2},则U(B;δ)⊂E 1∩E 2,∴E 1∩E 2为开集.(3)若F闭集,则F c为开集;若E为开集,则E c为闭集.又F\E=F∩E c,E\F=E∩F c;根据(1)知F\E为闭集;根据(2)知E\F为开集.11、试把闭域套定理推广为闭集套定理,并证明之.解:闭域套定理:设{D n}是R2中的闭域列,它满足:(1)D n⊃D n+1, n=1,2,…;(2)d n=d(D n),lim d n=0,则∞n→存在唯一的点P0∈D n, n=1,2,….推广为:设{F n}是R2中的闭集列,它满足:(1)F n⊃F n+1, n=1,2,…;(2)d n=d(F n),lim d n=0,则∞n→存在唯一的点P0∈F n, n=1,2,….证明如下:任取点列P n∈F n, n=1,2,…. ∵F n+p⊂F n, ∴P n,P n+p∈F n, 从而有ρ(P n,P n+p)≤d n→0, n→∞. 由定理16.1知,存在P0∈R2,使lim P n=P0.n∞→任取n,对任何正整数p,有P n+p∈F n+p⊂F n. ∵F n是闭集,且lim P n+p=P0.n→∞∴必有P0∈F n, n=1,2,…. 若有P0’∈F n, n=1,2,….由ρ(P0,P0’)≤ρ(P n,P0)+ρ(P n,P0’)≤2d n→0, n→∞. 得ρ(P0,P0’)=0,∴P0=P0’. 即P0是唯一的,得证!12、证明定理16.4(有限覆盖定理).证:证明过程见定理16.4.13、证明:设D⊂R2,则f在D上无界的充要条件是存在{P k}⊂D,使lim f(P k)=∞.k→∞证:[必要性]若D⊂R2,且f在D上无界,则对任何M1>0,总有点P1∈D,使f(P1)>M1; 取M2=M1+2, 则存在点P2∈D,使f(P2)>M2; 依次取M3=M1+3,…, M k=M1+k,总有P3,…,P k∈D,使f(P3)>M3,…,f(P k)>M k. ∴点列{P k}⊂D,当k→∞时,f(P k)>M k=M1+k→∞,即lim f(P k)=∞.k∞→[充分性]若存在{P k}⊂D⊂R2,且lim f(P k)=∞, 即对任何M>0,k∞→当k充分大时,总有|f(P k)|>M,即函数的值域无界,∴f在D上无界.。

数学分析教案

数学分析教案

《数学分析Ⅲ》教案编写目录(1—16周,96学时)课时教学计划(教案21-1)课题:§21-1二重积分的概念一、教学目的:1.理解二重积分的概念,其中包括二重积分的定义、几何意义和存在性。

2.理解二重积分的7条性质。

二、教学重点:二重积分的概念;二重积分的存在性和性质。

三、教学难点:二重积分的定义;二重积分的存在性。

四、教学方法:多媒体、问题讨论与黑板讲解穿插教学。

五、教学用具:黑板、CAI课件及硬件支持六、教学过程:[引例]:(约5min,语言表述)由平面图形的面积和曲顶柱体的体积引出二重积分的概念。

●平面图形的面积(约40m i n,投影、图示与黑板讲解)1.平面图形面积的定义;2.平面图形可求面积的充分必要条件;●二重积分的定义及其存在性1.二重积分的定义;2.二重积分存在的充分条件和必要条件。

●二重积分的性质(约25min,图示与黑板讲解)结合二重积分的定义讲解二重积分的7条性质。

●补充例子:(约10min,黑板讲解)1.根据二重积分的定义计算二重积分;2.根据二重积分的性质证明不等式。

七、课程小结:(约5min,黑板讲解)二重积分的定义;二重积分性质。

八、作业:P217 习题1,2,3,4,5,6,8。

课时教学计划(教案21-2)课题:§21-2直角坐标系下二重积分的计算一、教学目的:掌握在直角坐标系下二重积分的计算方法。

二、教学重点:直角坐标系下二重积分的计算方法。

三、教学难点:定理21.8,21.9。

四、教学方法:多媒体、问题讨论与黑板讲解穿插教学。

五、教学用具:黑板、CAI课件及硬件支持六、教学过程:[引例]:(约5min,语言表述)由曲顶柱体的体积引出二重积分计算的直观概念。

●定理21.8,21.9的证明(约15min,投影、图示与黑板讲解)●X型、y型区域的讲解及其定理21.10的证明(约25min,图示与黑板讲解)●直角坐标系下二重积分的计算举例(约30min,图示与黑板讲解)教材中例1—例4。

《数学分析Ⅲ》教学大纲

《数学分析Ⅲ》教学大纲

成绩考核形式为考试成绩考核形式:末考成绩(闭卷考试)(70%)+平时成绩(作业、 课堂提问、课堂讨论等)(30%)。成绩评定采用百分制,60 分为及格。
三、课程教学内容
第十五章 傅里叶(Fourier)级数级数
1.教学基本要求
掌握三角级数和函数的 Fourier 级数展开。
2.要求学生掌握的基本概念、理论、方法
掌握三角级数,三角函数系的正交性,傅里叶级数的概念。理解函数可展成傅里叶级数 的含义。了解傅里叶级数的收敛定理。
3.教学重点和难点
教学重点是函数的 Fourier 级数展开,Fourier 级数的分析性质。教学难点是函数的 Fourier 级数展开。
4.教学内容 第一节 傅里叶级数
1. 三角级数和正交函数系
课程任务:开设本课程的目的是培养学生具有抽象思维能力、逻辑推理能力、空间想象 能力、运算能力和综合运用所学的知识分析和解决问题的能力。通过系统的学习与严格的训 练,使学生全面掌握数学分析中的多元函数微分学与多元函数积分理论;提高建立数学模型 并应用多元函数微分学与多元函数积分理论这些工具解决实际应用问题的能力。
2. 以 2 为周期的函数的傅里叶级数
3. 收敛定理
第二节 以 2l 为周期的函数的展开式 1. 以 2l 为周期的函数的 Fourier 级数
2. 偶函数和奇函数的 Fourier 级数
第十六章 多元函数的极限与连续
1.教学基本要求
掌握平面点集的相关概念,掌握重极限和累次极限知识,掌握二元函数连续性概念。
2.要求学生掌握的基本概念、理论、方法
深刻理解偏导数,全微分的概念及几何意义。深刻理解方向导数,梯度的概念及它们之间 的关系。理解连续,偏导数存在与可微之间的关系。掌握混合偏导与对变元求导顺序无关定 理的条件及证明。掌握二元函数中值定理,泰勒公式及应用。熟练掌握计算多元函数偏导数, 全微分,方向导数,梯度的算法,并熟悉有关算符。掌握二元函数极值的计算。

《数学分析III》课程教学大纲

《数学分析III》课程教学大纲

《数学分析III》课程教学大纲一、课程基本信息二、课程教学目标为了适应我校应用型本科院校的建立,教学过程中要注重各章节间的联系,同时加强实践技能的训练,以适应应用型本科的要求,并达到对本课程系统掌握的目的,具体为:1、通过《数学分析III》课程的学习,学生应获得多元函数微分学、多元函数积分学等方面的基本概念、基本理论、基本方法和运算技能,为今后学习各类后继课程和进一步扩大数学知识面奠定必要的分析基础。

2、通过《数学分析III》课程的学习,学生应获得如下能力:进行抽象思维和逻辑推理的理性思维能力;综合运用数学分析的知识和方法进行分析和解决问题的能力;较强的自主学习能力,提高学生学习数学的积极性,激发学习兴趣,增强学习的信心;主动探索和独立思考的能力,提高学生的创新意识。

3、通过《数学分析III》课程的学习,应注意培养学生以下素质:主动探寻并善于抓住数学问题的背景和本质的素养;善于对现实世界中现象和过程进行合理的简化和量化,建立数学模型的素养;能用准确、简明、规范的数学语言表达数学思想的素养;深入理解数学基本概念、基本理论和基本方法,掌握用数学知识解决实际问题的方法与手段,对各种问题能以多角度探寻解决问题的道路的素养;具有良好的科学态度和创新精神,合理地提出新思想、新概念、新方法的素养。

三、教学学时分配《数学分析III》课程理论教学学时分配表理论学时包括讨论、习题课等学时。

四、教学内容和教学要求第十七章多元函数的微分学(12学时)(一)教学要求通过本章内容的学习,要求学生理解方向导函数、梯度、高阶偏导数定义;掌握偏导数、全微分定义,多元复合函数求导法则,多元函数可微性条件,多元函数的极植,条件极植与Lagrange乘数法。

(二)教学重点与难点教学重点:多元函数偏导数和全微分教学难点:复合函数的偏导数的计算(三)教学内容第一节可微性1.可微性与全微分2.偏导数3. 可微性条件4. 可微性的几何意义及应用第二节复合函数的微分法则1.复合函数的求导法则2.复合函数的全微分第三节方向导数与梯度第四节泰勒公式与极值问题1. 高阶偏导数2. 中值定理和泰勒公式3. 极值问题本章习题要点:会求偏导数、方向导数、全微分、梯度、高阶偏导数;会利用多元复合函数的求导法则;会求多元函数的极值。

§16.1平面点集与多元函数数学分析课件(华师大四版)高教社华东师大教材配套课件

§16.1平面点集与多元函数数学分析课件(华师大四版)高教社华东师大教材配套课件

*1.平面点集的一些基本概念 坐标平面上满足某种条件 P 的点的集合, 称为平{}=(,)(,).E x y x y P 满足条件对与平面上所有点之间建立起了一一对应. (,)x y 在平面上确立了直角坐标系之后, 所有有序实数义域是坐标平面上的点集, 之前,有必要先了解平面点集的一些基本概念.面点集, 平面点集记作后退 前进 目录 退出由于二元函数的定因此在讨论二元函数例如:(i) 全平面:{}=-∞<<+∞-∞<<+∞2R (,)|,.(1)x y x y {}222(ii)(,).C x y x y r 圆:=+<(2){}=≤≤≤≤(iii)(,),,S x y a x b c y d 矩形:(3) 00(iv)(,):A x y δ点的邻域{}00(,)||,||()x y x x y y δδ与方形.-<-<=⨯[,][,].S a b c d 也常记作:{}-+-<22200(,)()()()x y x x y y δ圆形Cx y O r (a) 圆 CSx yO a b c d∙A δx y O (a) 圆邻域∙A δxy O (b) 方邻域由于点 A 的任意圆邻域可以包含在点 A 的某一因此通常用“点 A 的 邻 δ并用记号或 来表示. (;)U A δ()U A 点 A 的空心邻域是指:{}22200(,)0()()()x y x x y y δ圆<-+-<{}0000(,)||,||,(,)(,)(),x y x x y y x y x y δδ-<-<≠方或 并用记号()(;)()U A U A δ或 来表示. 域” 或 “点 A 的邻域” 泛指这两种形状的邻域,方邻域之内(反之亦然),{}00(,)0||,0||.x y x x y y δδ<-<<-<注意: 不要把上面的空心方邻域错写成 : ( 请指出 2.点和点集之间的关系 以下三种关系之一 :2R A ∈2R E ⊂任意一点 与任意一个点集之间必有 是 E 的内点; 由 E 的全体内点所构成的集合称为 (i) 内点——若 0,(;),U A E δδ∃>⊂使则称点 A E 的内部, 记作 int E .错在何处? )(ii) 外点——若0,(;),U A E δδ∃>⋂=∅使则称 点 A 是 E 的外点; c (;)(;)U A E U A E δδ≠∅≠∅且0,δ∀>(iii) 界点—— 若恒有 c 2R \E E =( 其中), 则称点 A 是 E 的界点; .E ∂的全体界点所构成的集合称为 E 的边界; 记作 注 E 的内点必定属于 E ; E 的外点必定不属于 E ; E 的界点可能属于 E , 也可能不属于 E . 并请注意: 称为 E 的外部.由 E 的全体外点所构成的集合 由 E E E ∂⊂c E 只有当 时, E 的外部与 才是两个相同的集合.图 16 – 3x yO 12{}22(,)14.(4)D x y x y =≤+<例1 设平面点集(见图 16 – 3)满足 的一切点也224x y +=221x y +=满足的一切点是 D 的界点, 它们都属2214x y <+<满足的一切点都 是 D 的界点, 但它们都不属于 D . 是 D 的内点; 于D ;点 A 与点集 E 的上述关系是按 “内-外” 来区分的. 此外,还可按 “疏-密” 来区分, 是否密集着 E 中无穷多个点而构成另一类关系: (i) 聚点—— 若在点 A 的任何空心邻域 ()U A 内都 含有 E 中的点, 注1 聚点本身可能属于E ,也可能不属于E .注2 聚点的上述定义等同于: “在点 A 的任何邻域 ()U A 内都含有 E 中的无穷多个点”.即在点 A 的近旁 则称点 A 是点集 E 的聚点.d ();E E '或作 d E E 又称 为 E 的闭包, 记作 .E 例如, 对于例1 中的点集 D , {}d 22(,)14.D x y x y D =≤+≤=其中满足 224x y += 的那些聚点不属于D , 而其余 所有聚点都属于 D .(ii) 孤立点—— 若点 A E ∈, 但不是 E 的聚点(即 有某δ > 0, 使得 (;)),U A E δ=∅则称点 A 是E 的孤立点. 注3 E 的全体聚点所构成的集合称为 E 的导集, 记它的导集与闭包同为为聚点; 例2 设点集 {}(,),.E p q p q 为任意整数= 显然, E 中所有点 ( p , q ) 全为 E 的孤立点; 并有d ,int ,.E E E E =∅=∅∂=3. 一些重要的平面点集根据点集所属的点所具有的特殊性质, 可来定义一 些重要的点集.注 孤立点必为界点; 内点和不是孤立点的界点必 既非聚点, 又非孤立点, 则必为外点.E 为闭集. 在前面列举的点集中, 闭集——若 E 的所有聚点都属于 E(),E E =即则 称 E 为闭集. 这时也称{}222(,)C x y x y r =+<是开集,{}(,),,S x y a x b c y d =≤≤≤≤是闭集{}2R (,)|,x y x y =-∞<<+∞-∞<<+∞{}=≤+<22(,)14D x y x y 既不是开集又不是闭集.开集—— 若 E 所属的每一点都是 E 的内点( 即E = int E ), 则称 E 为开集.d(),E =∅即若 E 没有聚点 既是开集又是闭集,则称 E 为开域. 闭域—— 开域连同其边界所成的集合称为闭域. 区域—— 开域、闭域、开域连同其一部分界点所 成的集合, 统称为区域.不难证明: 闭域必为闭集; 而闭集不一定为闭域. 开域——若非空开集 E 具有连通性, 点之间都可用一条完全含于 E 的有限折线相连接, 在平面点集中, 只有 R 2与 是既开又闭的. 即 E 中任意两 简单地说, 开域就是非空连通开集.它是 I 、 III 两象限之并集. 不具有连通性, 0,r ∃>有界点集——对于平面点集 E , 若 使得(;),E U O r ⊂其中 O 是坐标原点(也可以是其他固定点), 为有界点集. 前面 (2), (3), (4) 都是有界集, (1) 与 (5) 是无界集. 是闭域, {}(,)|0,(5)G x y xy =>上页诸例中, C 是开域, S 是闭域, R2 既是开域又又如 虽然它是开集, 但因 否则就为无界点集 (请具体写出定义). D 是区域 (既不是开域又不是闭域). 所以它既不是开域, 也不是区域. 则称 E此外,点集的有界性还可以用点集的直径来反映. 所谓点集 E 的直径, 就是1212,()sup (,),P P Ed E P P ρ∈=其中ρ(P 1, P 2) 是 P 1 (x 1, y 1) 与 P 2 (x 2, y 2)之间的距 离, 即22121212(,)()()P P x x y y ρ=-+-于是, 当且仅当 d (E ) 为有限值时, E 为有界点集. E 为有界点集的另一等价说法是: [,][,].a b c d E ⨯⊃存在矩形区域例3 证明: 对任何 2R ,S ⊂S ∂恒为闭集. 证 如图16 – 4 所示, S ∂为的任一聚点, (即亦为 S 0x S ∈∂的界点). 0x 为此 0,ε∀>由聚点定义,0(;).y U x S ε∈∂S S ∂0x 0(;)U x ε(;)U y δy 图 16 –4 ⋅根据距离的定义, 不难证明如下三角形不等式: 121323(,)(,)(,).P P P P P P ρρρ≤+0x 设 欲证 存在的点. 内既有 S S (;)U y δ的点, 又有非 S 0x 0,x S ∈∂为 的界点, 即 也就证得 S ∂为闭集. 注 类似地可以证明: 对任何点集 2dR ,S S⊂导集 亦恒为闭集. ( 留作习题 ) S 0(;)U x ε内既有 的点, 又有非 S 的点. y 0(;)(;),U y U x δε∀⊂再由 为界点的定义, 在 由此推知在 的任意性,所以, 由 εS S ∂0x 0(;)U x ε(;)U y δy 图 16 –4⋅证 下面按循环流程来分别作出证明.d E E E =① 已知 为闭集( 即 ), 欲证E .E E E =∂,,p E p E E 为此或是的聚点或是的孤立点.∀∈∂d d,p E E E p E ∈⊂∈若,则由得;E E ∂⊂从而,E 于;d c c int()E E E E E E E E ==⇒∂⇒=① ② ③ ⇑ 反之显然有 .E EE ⊂∂综合起来, 便证得 int .E E E =∂而孤立点必属*2R .E ⊂例4 设 试证 E 为闭集的充要条件是:c int ().c E E E E E =∂=或.EE E ∂⊂故E EE =∂,c int ().c E E =② 已知 欲证 为此 c ,,p E p E ∀∈∉则外点, ,0,(;).U p E δδ∃>=∅按定义使c (;),U p E δ⊂c c c c int ().int ().E E E E ⊂=有这就证得反之显然③ c c d int (),.E E E EE ==已知欲证c (,,p E p E ∈∈据条件可证若不然从而由d,E ∈c >0,(;),U p E δδ∃⊂故使),p E 与为的聚点相矛盾d d ..E E E E E ⊂=故这就证得从而 c int (),p E ∈条件推知,E E p E ∂⊂而由故必为的cc c ,int().p E E E ⊂故是的内点即p ∀为此注 此例指出了如下两个重要结论: (i) 闭集也可用“ EE E =∂”来定义 ( 只是使用 起来一般不如“ d E E E =”方便, 有许多便于应用的性质 ).(ii) 闭集与开集具有对偶性质 集; 过讨论来认识 E . c E 利用此性质, 有时可以通开集的余集为闭集. ——闭集的余集为开 因为有关聚点例5 以下两种说法在一般情形下为什么是错的?(i) 既然说开域是“非空连通开集”,那么闭域就是 “非空连通闭集”;D (ii) 要判别一个点集 是否是闭域, 只要看其去除 边界后所得的是否为一开域, 即\D D D “若为开域,则必为闭域”.∂答 (i) 例如取 {}(,)|0,S x y xy =≥ 这是一个非空连),S GG =∂坐标轴) 的并集 (即 从而 G 不是开域,但因它是 {}(,)|0G x y xy =>与其边界 (二 故 S 不是闭域 (不符合闭域的定义).通闭集.E 为一开域, 据定义F 则为闭域; ,D E E F ≠∂=D 故不是闭域,(a)中的点集为 D ; D(a).F EE =∂中的点集为 F(c)(ii) 如图所示, E(b)(b)中的点集为E D =易见然而(\).D D D ∂∂∂从而与不一定相同定义11. 平面点列的收敛性定义及柯西准则 系完备性的几个等价定理, 现在把这些定理推广到 R 2, 它们同样是 二元函数极限理论的基础.2{}R n P ⊂20R P ∈设为一列点, 为一固定点. 00,N ,,(;),n N n N P U P εε若使当时∀>∃∈>∈+则称点列 { P n } 收敛于点 P 0 , 记作R 2上的完备性定理论的基础. 00lim ().n n n P P P P n →∞=→→∞或反映实数 构成了一元函数极限理000(,)(,),n n n P P x y x y 当与分别为与时显然有000lim lim lim ;n n n n n n P P x x y y →∞→∞→∞=⇔==且0(,),n n P P ρρ若记=同样地有0lim lim 0.n n n n P P ρ→∞→∞=⇔=由于点列极限的这两种等价形式都是数列极限, 因 此立即得到下述关于平面点列的收敛原理.2{}R n P ⊂收敛的充要条件是:0,N ,,N n N ε使当时都有+∀>∃∈>(,),N .(6)n n p P P p ρε++<∀∈证(必要性) 0lim ,n n P P →∞=设N ,()N n N n p N +∃∈>+>当也有时,00(,),(,).22n n p P P P P εερρ+<<应用三角形不等式, 立刻得到00(,)(,)(,).n n p n n p P P P P P P ρρρε++≤+<1,0,ε∀>则由定义恒有2{}R n P ⊂收敛的充要条件是:0,N ,,N n N ε使当时都有+∀>∃∈>(,),N .(6)n n p P P p ρε++<∀∈当 (6) 式成立时, 同时有||(,),n p n n n p x x P P ρε++-≤<||(,).n p n n n p y y P P ρε++-≤<这说明{ x n }和{ y n }都满足关于数列的柯西准则, 所以它们都收敛. 从而由点列收敛概念, 推知{P n }收敛于点 P 0(x 0, y 0).证(充分性) 00lim ,lim ,n n n n x x y y →∞→∞==设0}6{,n P E P E ⇔⊂为的聚点存在各项互异的例0lim .n n P P 使得→∞=( 这是一个重要命题, 证明留作习题.)定理16.2(闭域套定理)2. 区域套定理.设 { D n } 是 R 2中的一列闭域, 它满足: 1(i),1,2,;n n D D n +⊃=(ii)(),lim 0.n n n n d d D d →∞==则存在唯一的点0,1,2,.n P D n ∈=图 16 – 7nD ∙∙n pD +∙nP n pP +0P 证 如图16 – 7所示,,1,2,.n n P D n ∈=,n p n D D 由于因此+⊂,,n n p n P P D +∈从而有(,)0,.n n p n P P d n ρ+≤→→∞由柯西准则知道存在 20R ,P 使得∈任意取定 n , 对任何正整数 p , 有 .n p n p n P D D ++∈⊂0lim .n n P P →∞=任取点列 再令 ,p →∞由于 D n 是闭域, 故必定是闭集,推论因此 D n 的聚点必定属于 D n , 0lim ,1,2,.n p n p P P D n +→∞=∈=0P 最后证明的惟一性. 0,1,2,,n P D n '∈=若还有 则由0000(,)(,)(,)20,,n n n P P P P P P d n ρρρ''≤+≤→→∞0000(,)0,.P P P P ρ得到即''==对上述闭域套 { Dn },0,N ,N n N ε+∀>∃∈>当时,0(;).n D U P ε⊂则得注 把 { D n } 改为闭集套时, 上面的命题同样成立.E定理16.3(聚点定理)证 现用闭域套定理来证明.有界, 故存在一个闭正方形 . 1D E ⊃如图 16 – 8 所示, 把 D 1分成四个 相同的小正方形, 有一小闭正方形含有 E 中无限多1D 2D 图16 –8若 2R E ⊂为有界无限点集,由于 E 则在其中至少 个点,在 中至少有一 E 2R 则 个聚点.把它记为 D 2.E 1D 2D 3D 图16 –8 D 2 如上法分成四个更小的正方形,其中又至少有一个小闭正方形D 3含如此下去, 得到一个闭正方形序列:123.D D D ⊃⊃⊃很显然, { D n } 的边长随着n →∞而趋于零. 有 E 的无限多个点.定理16.3(聚点定理)若 2R E ⊂为有界无限点集, 在 中至少有一 E 2R 则 个聚点.推论最后, 由区域套定理的推论, 0,,n ε∀>当充分大时0(;).n D U M ε⊂又由 D n 的取法, 知道 0(;)U M ε中含有 E 的无限多个点, 任一有界无限点列 2{}R n P ⊂必存在收敛子列 {}.k n P ( 证明可仿照 R 中的相应命题去进行. ) 于是由闭域套定理, 存在一点0,1,2,.n M D n ∈=这就证得了M 0 是 E 的聚点.定理16.4(有限覆盖定理)注 将本定理中的 D 改设为有界闭集, 而将 {}α∆改设为一族开集, 此时定理结论依然成立 . 1.ni i D =⊂∆().D αα⊂∆即盖了 D 12,,,,n ∆∆∆个开域 它们同样覆盖了D , 即设 2R D ⊂为一有界闭域 ,为一族开域 , {}α∆{}α∆则在中必存在有限 它覆q E ⇒qE 证 (必要性) E 有界 有界, 由聚点定理 , q E 又因 的聚点亦为 E 的聚点, 而 E 是 闭集, 所以该聚点必属于 E ..E 于E 的任一无穷子集 E q 必有聚点, 且聚点恒属 必有聚点.证 (充分性) 先证 E 为有界集. 倘若 E 为无界集, 则 存在各项互异的点列 {},k P E ⊂||(,),1,2,.k k P O P k k ρ=>=.E 于E 的任一无穷子集 E q 必有聚点, 且聚点恒属 0lim .k k P P →∞=现把 看作 , {}k P q E 由条件 的聚点 (即 ) 必q E 0P 属于 E , 所以 E 为闭集.易见{}k P 这个子集无聚点, 这与已知条件相矛盾. 为此设 P 0 为 E 的任一聚点, 由聚点的等价定义, 存在各项互异的点列使 {},k P E ⊂再证 E 为闭集. 使得定义2 设平面点集 ,若按照某对应法则 f , 2R D ⊂一点 P ( x , y ) 都有惟一确定的实数 z 与之对应 , 则称 f 为定义在 D 上的二元函数 R 的一个映射 ), 记作:R.(7)f D →1. 函数(或映射)是两个集合之间的一种确定的对 R 到 R 的映射是一元函数, R 2到 R 的映 射则是二元函数.二元函数应关系. D 中每 ( 或称 f 为D 到与一元函数相类似, 称 D 为 f 的定义域; 而称()(,)z f P z f x y ==或 为 f 在点 P 的函数值;值域, 记作()R.f D ⊂为 f 的自变量, 而把 z 称为因变量.也可记作(,),(,);z f x y x y D =∈或点函数形式(),.z f P P D =∈全体函数值的集合为 f 的 通常把 P 的坐标 x 与 y 称在 xOy 平面上的投影.例8 函数 25z x y =+的图像是 R 3 中的一个平面, 其定义域是 R 2, 值域是 R.当把和它所对应的 一起组成 (,)x y D ∈(,)z f x y =三维数组 ( x , y , z ) 时, {}3(,,)|(,),(,)R S x y z z f x y x y D ==∈⊂就是二元函数 f 的图像.通常该图像是一空间曲面, f 的定义域 D 是该曲面 三维点集例9 的定义域是xOy 平面上的22=-+1()z x yxy zOz1=z2=是全体非负整数, 它的图像示于图 16 – 11.图16 – 112. 若二元函数的值域是有界数集, 则称函数 ()f D f 在 D 上为一有界函数 ( 如例9 中的函数 ) . ()f D f 若是无界数集, 则称函数 在 D 上为一无界 函数 ( 如例8、10、11 中的函数 ). 与一元函数类似地, 设 2R ,D ⊂则有{},lim ().k k k f D P D f P →∞⇔∃⊂=∞在上无界使否则,(z c c =(,),z f x y =解 用为一系列常数 ) 去截曲面 得等高线方程22222222()().x y x y c x y x y c x y x y-=-=++或*例12 设函数 ( 此函数在以后还有特殊用处 )试用等高线法讨论曲面(,)z f x y = 的形状. 2222,(,)(0,0),(,)0,(,)(0,0).x yx y x y f x y x yx y ⎧-≠⎪=+⎨⎪=⎩当 0c =xO y 时, 得 平面上的四条直线0,0,,.x y y x y x ====-当0c ≠时, 由等高线的直角坐标方程难以看出它 的形状. cos ,sin ,x r y r θθ==得到22sin44,4sin4.r c r c θθ==或如图16 – 12 所示,族等高线.若把它化为极坐标方程, 即令0,1,3,5c =±±±所对应的一 为+1+1+1+1 +3 +5+3 +5 +3+5+3 +5- 1- 1 - 3- 5 - 3 - 5 - 1- 3- 5- 1 - 3 - 50 00 0 0 0 0 0xy-55-55-10-50510图 16 – 13由此便可想象曲面的大致形状如图 16 – 13 所示, “山脊” 在鞍点处相汇.所有 n 个有序实数组12(,,,)n x x x 的全体称为 n维向量空间, 简称 n 维空间, 记作 R n. 序实数组 12(,,,)n x x x 称为 R n 中的一个点; 实数 12,,,n x x x 是这个点的坐标.设 E 为 R n中的点集, 若有某个对应法则 f , 中每一点 12(,,,)n P x x x 都有唯一的一个实数 y 与之对应, :R,f E n 元函数其中每个有则称 f 为定义在 E 上的 n 元函数, 记作使 E n 个1212(,,,),(,,,),n n y f x x x x x x E =∈也常写成(),.y f P P E =∈或 对于后一种被称为 “点函数” 的写法, 它可使多元 函数与一元函数在形式上尽量保持一致, 一元函数的办法来处理多元函数中的许多问题; 同时, 还可把二元函数的很多论断推广到 (3)n ≥元函数中来.以便仿照1. 试问在 R 中的开集、闭集、开域、闭域、区域等集合是数直线上怎样一些点集?2. 设E, F分别是 R2 中的开集和闭集.试问在R3中E 是否仍为开集?F 是否仍为闭集?3. R 中的单调有界性定理和确界原理, 为什么在R2 中没有直接对应的命题?4. 为什么说“在一切平面点集中,只有 R2 与是既开又闭的点集”?5. 前面正文中有如下命题:设 2R ,D ⊂则有{},lim ().k k k f D P D f P →∞⇔∃⊂=∞在上无界使试为之写出证明.2R ,D A D ⊂“若是AB 点,则直线段与D D∂AB图 16 – 14,B D 的内点是的外(16-14.)参见图6. :试讨论有哪些方法可用来论证如下命题D ∂至少有一交点.”。

中科大史济怀数学分析课件 16.1-16.9

中科大史济怀数学分析课件 16.1-16.9

supp f {x I : f ( x ) 0}
是零测集,则 f 在 I 上可积,并且 f d 0 .
I
证: I supp f 是闭集,并且是零测集.由于 f 在开集 I \ I supp f
I o \ supp f 上恒等于零,故 f 在 I \ I supp f 上连续,从而 f 的
练习题 16.1( P204 ) 1,3,5.
288
§16.2
定理 16.8
二元可积函数类
若 f 是二维有界闭区间 I 2 上的连续函数,则它必在 I
上(Riemann)可积.
证: 由 f 在 I 上的一致连续性和二重积分可积性定理的条件(1).□ 定义 16.2
设 E 2 是一个点集.若 0 ,总存在可数个二维开区
第 16 章
二重积分的几何背景
多重积分
设 f 0 是有界闭区域 D 2 上的连续函数,
如何计算如下图所示的曲顶柱体的体积V ?(假定体积V 存在, D 有面 积)
(1) 将 D 分割成 k 个小闭区域 {Di :1 i k} ,以 ( Di ) 表示 Di 的面 积,记 max diam( Di ) ;
1i k
(2) 对每个小闭区域 Di ,任取 i Di ,建立和式
f ( ) ( D ) ,
i 1 i i
k

min f (D ) ( D ) V , f ( ) ( D ) max f (D ) ( D ) ;
i 1 i i i 1 i i i 1 i i
i i i 1 i 1 i i i
k
k
这说明, lim f (i ) ( Di ) V .□

数学分析教案

数学分析教案

数学分析教案第一篇:数学分析教案第九章空间解析几何教学目标:1.理解空间直角坐标系的概念,掌握两点间的距离公式.2.理解向量的概念、向量的模、单位向量、零向量与向量的方向角、方向余弦概念.3.理解向量的加法、数乘、点积与叉积的概念.4.理解基本单位向量,熟练掌握向量的坐标表示,熟练掌握用向量的坐标表示进行向量的加法、数乘、点积与叉积的运算.5.理解平面的点法式方程和空间直线的点向式方程(标准方程)、参数方程,了解平面和空间直线的一般式方程.6.理解曲面及其方程的关系,知道球面、柱面和旋转曲面的概念,掌握球面、以坐标轴为旋转轴、准线在坐标面上的旋转曲面及以坐标轴为轴的圆柱面和圆锥面的方程及其图形.7.了解空间曲线及其方程,会求空间曲线在坐标面内的投影.8.了解椭球面、椭圆抛物面等二次曲面的标准方程及其图形.教学重点:向量的概念,向量的加法、数乘、点积与叉积的概念,用向量的坐标表示进行向量的加法、数乘、点积与叉积的运算,平面的点法式方程,空间直线的标准式方程和参数方程,球面、以坐标轴为轴的圆柱面和圆锥面方程及其图形,空间曲线在坐标面内的投影.教学难点:向量的概念,向量的点积与叉积的概念与计算,利用向量的点积与叉积去建立平面方程与空间直线方程的方法,利用曲面的方程画出空间图形.教学方法:讲授为主的综合法教学学时:14学时教学手段:板书学法建议:解析几何的实质是建立点与实数有序数组之间的关系,把代数方程与曲线、曲面对应起来,从而能用代数方法研究几何图形建议在本章的学习中,应注意对空间图形想象能力的培养,有些空间图形是比较难以想像和描绘的,这是学习本章的一个难点.为了今后学习多元函数重积分的需要,同学们应自觉培养这方面的能力.参考资料:使用教材:《高等数学》(第三版),高职高专十一五规划教材,高等教育出版社,2011年5月,侯**主编.参考教材: 1.《高等数学》,21世纪高职高专精品教材,北京理工大学出版社,2005年5月,宋立温等主编.2.《高等数学》,教育部高职高专规划教材,高等教育出版社,2006年4月,盛祥耀主编.3.《高等数学》,第五版.同济大学数学教研室编,高等教育出版社.4.《高等数学应用205例》,李心灿编,1986年,高等教育出版社.5.《高等数学》,宋立温等主编,21世纪高职高专精品教材,北京理工大学出版社,2005年5月.第一节空间直角坐标系与向量的概念教学目标:1.理解空间直角坐标系的概念,掌握两点间的距离公式.2.理解向量的概念、向量的模、单位向量、零向量与向量的方向角、方向余弦概念.3.理解向量的加法、数乘、点积与叉积的概念.4.理解基本单位向量,熟练掌握向量的坐标表示,熟练掌握用向量的坐标表示进行向量的加法、数乘的运算.教学重点:向量的概念,向量的加法、数乘的概念,用向量的坐标表示进行向量的加法、数乘的运算.教学难点:向量的概念.教学方法:讲授为主的综合法教学学时:2学时教学手段:板书一、引入新课(3分钟)(提问)举几个既有大小又有方向的量.(温故知新,进行一些必要知识铺垫。

《数学分析3》课程教学大纲

《数学分析3》课程教学大纲

《数学分析3》课程教学大纲课程名称数学分析3课程编码131500008 课程类型学科基础课程库适用范围院级课程学分数 4 先修课程初等数学学时数64 其中实验学时其中实践学时考核方式考试制定单位数学与信息科学学院执笔者审核者一、教学大纲说明(一)课程的性质、地位、作用和任务《数学分析》是综合性大学数学类各专业一门重要的专业基础课程,是从初等数学到高等数学过渡的桥梁。

本课程所占学分多,跨度大(计划共四个学期),是一门内容丰富而整体性强、思想深刻而方法基本的课程。

本课程以经典微积分为主体内容,其中,极限的思想贯穿全课程,它不仅为许多后继课程提供必要的基础知识和基本技能的训练,而且对全面培养学生的现代数学素质以及运用数学思想和方法解决问题的能力起着十分重要的作用。

本课程的任务是使学生系统地掌握极限理论、一元函数微积分学、无穷级数与多元函数微积分学等方面的知识,使学生获得数学思想,使学生获得数学的逻辑性、严密性方面的严格训练,使学生掌握近代数学的方法、技巧,使学生获得初步应用的能力,为后续课程的学习乃至毕业后能胜任相应的实际工作奠定坚实的基础。

(二)教学目的和要求本课程教学目的是通过系统的学习和严格的训练,使学生全面掌握数学分析的基本理论知识,初步掌握现代数学的观点与方法,使学生具备灵活、快捷的运算能力与技巧,培养学生严格的逻辑思维能力与推理论证能力,简洁、清晰运用数学符号和语言的表达能力,提高建立数学模型,并应用微积分这一工具解决实际应用问题的能力。

在教学基本要求上分为三个档次,即了解、理解和掌握。

1、掌握——能联系几何与物理的直观背景,从正反两方面理解基本概念;熟练运用基本理论进行推理论证和分析问题;熟练运用基本方法、灵活运用基本技巧进行运算和解决应用问题。

包括实数与函数、各类极限、连续、(偏)导数、(全)微分、各类正常积分、数项级数和幂级数有关概念、性质、计算及应用。

2、理解——能从正面理解基本概念;能应用和了解如何证明基本理论;能掌握基本方法解决问题,但不要求很熟练和技巧性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
, , 都是开区域. 如, , , 都是闭区域.
5.有界集与无界集 定义7.设,, 则
=. 叫做 与的距离.
距离具有三条性质: (1).0,且=0=, (2).=, (3).+. 定义8.设,则叫做的直径. 定义9.设,则 (1).是有界点集存在正数使. (2).是有界点集存在矩形区域使. (3).是有界点集. (4).是无界点集
1.平面点集 定义1.集合叫做平面点集. 如,
,
, , , . 等都是平面点集.
2.圆形邻域与方形邻域 定义2.(1).叫的圆 形邻域; (2).叫的方形邻域.
定义3.(1).叫的圆形去心邻域;
(2).叫的方形去心邻域.
3.平面上的几种点
定义3.设
(1).是的内点.
(2).是的外点使得.
(3).是的界点既不是的内点,也不是是的外点.
楚雄师范学院数学系课程教案
(数学分析(三),周学时6节)

第1周 (2008.8.25-2008.8.31)


第十六章 多元函数的极限与连续

§16.1 平面点集与多元函数

2学时

教学 内容 (主 要)
一.平面点集

1.深刻理解并掌握平面点集、圆形邻域与方形邻域、平面
学 上的几种重要点、开集与闭集、有界集与无界集等概念.

(3).的导集的全体聚点构成的集.

(4).的闭包的全体聚点构成的集与的并集.

(教 学设 计)
例1.设,指出,,,. 解:(1).. (2).. (3).. (4)..
4.开集与闭集 定义5.设 (1).是开集(的每个点都是它的内点). (2).是闭集(的每个聚点都是它的点). 定义6.设 (1).是开区域是非空线相连接),即连通的开集叫区 域. (2).是闭区域是由开区域连同它边界所成的点集. 如,
如, ,
都是有界点集. 如, ,
都是有界点集.
课后 教学 总结
课 外 作 业
实 践 与 思 考
单元 测试 与分 析
习题1(1)-(8).
(4).是的聚点的任何邻域内均有的无穷多个点.
(5).是的孤立点但不是的聚点.
【注】:
(1).的内点是聚点,且属于,但反之则不然.
(2).的聚点可能属于,也可能不属于.
(3).的界点可能属于,也可能不属于.
(4).的外点必不属于.
定义4.设
(1).的开核或内域或内集的全体内点构成的集。

(2).的边界的全体界点构成的集.


教学
1.平面点集、圆形邻域与方形邻域、平面上的几种重要
重点 点、开集与闭集、有界集与无界集.
教学
1.平面点集、圆形邻域与方形邻域、平面上的几种重要
难点 点、开集与闭集、有界集与无界集.
教学
分析教学方法、对比教学方法、综合教学方法(借助多媒
方法 体辅助教学)
与手

§16.1 平面点集与多元函数
一.平面点集
相关文档
最新文档