2020年初中数学竞赛讲义:第24讲-几何的定值与最值

合集下载

人教版 初三数学竞赛专题:平面几何的定值问题(包含答案)

人教版 初三数学竞赛专题:平面几何的定值问题(包含答案)

人教版 初三数学竞赛专题:平面几何的定值问题(含答案)【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧AD⌒上任意一点.求证:PA PC PB为定值.【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变C.等分DB⌒ D.随C 点的移动而移动【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角.【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是AB⌒上异于A ,B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形;(2)当点C 在AB ⌒上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD 2+3CH 2是定值.P AB CDAPB【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8. (1)求点C 的坐标;(2)连接MG ,BC ,求证:MG ∥BC ;(3)如图2,过点D 作⊙M 的切线,交x 轴于点P .动点F 在⊙M 的圆周上运动时,PFOF的比值是否发生变化?若不变,求出比值;若变化,说明变化规律.(图1)(图2)【例6】 如图,已知等边△ABC 内接于半径为1的圆O ,P 是⊙O 上的任意一点.求证:P A 2+PB 2+PC 2为定值.【能力训练】1.如图,点A ,B 是双曲线xy 3上的两点,分别经过A ,B 两点向x 轴,y 轴作垂线段.若S 阴影=1,则BOACE HG D A=+21S S _______.(第1题图) (第3题图) (第4题图)2.从等边三角形内一点向三边作垂线段,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的面积是__________.3.如图,OA ,OB 是⊙O 任意两条半径,过B 作BE ⊥OA 于E ,又作OP ⊥AB 于P ,则定值OP 2+EP 2为_________.4.如图,在菱形ABCD 中,∠ABC =120°,F 是DC 的中点,AF 的延长线交BC 的延长线于点E ,则直线BF 与直线DE 所夹的锐角的度数为( )A.30°B.40°C.50°D.60°5.如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作A A '⊥AB ,AB B B ⊥',且A A '=AP ,B B '=BP .连接B A '',当点P 从点A 移动到点B 时,B A ''的中点的位置( ) A .在平分AB 的某直线上移动 B.在垂直AB 的某直线上移动 C.在弧AMB 上移动 D.保持固定不移动(第5题图) (第6题图) 6.如图,A ,B 是函数xky =图象上的两点,点C ,D ,E ,F 分别在坐标轴上,且分别与点A ,B ,O 构成正方形和长方形.若正方形OCAD 的面积为6,则长方形OEBF 的面积是( ) A.3 B.6 C.9 D.127.(1)经过⊙O 内或⊙O 外一点P 作两条直线交⊙O 于A ,B 和C ,D 四点,得到如图①~⑥所表示的六种不同情况.在六种不同情况下,P A ,PB ,PC ,PD 四条线段之间在数量上满足的关系式可以用同一个式子表示出来.请你首先写出这个式子,然后只就如图②所示的圆内两条弦相交的一般情况给出它的证明.A ABCDEFAB'(2)已知⊙O 的半径为一定值r ,若点P 是不在⊙O 上的一个定点,请你过点P 任作一直线交⊙O 于不重合的两点E ,F . PE ·PF 的值是否为定值?为什么?由此你发现了什么结论?请你把这一结论用文字叙述出来.8.在平面直角坐标系中,边长为2的正方形OABC 的两顶点A ,C 分别在y 轴,x 轴的正半轴上,点O 在原点,现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线x y =上时停止旋转.旋转过程中,AB 边交直线x y =于点M ,BC 边交x 轴于点N .(1)求OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 与AC 平行时,求正方形OABC 旋转度数;(3)设△MBN 的周长为P ,在正方形OABC 旋转的过程中,P 值是否有变化?请证明你的结论.⑥⑤④③②①P(B )A PB9.如图,AB 是半圆的直径,AC ⊥AB ,AC =AB .在半圆上任取一点D ,作DE ⊥CD ,交直线AB 于点E ,BF ⊥AB ,交线段AD 的延长线于点F .(1)设弧AD 是x °的弧,若要点E 在线段BA 的延长线上,则x 的取值范围是_______.(2)不论点D 取在半圆的什么位置,图中除AB =AC 外,还有两条线段一定相等.指出这两条相等的线段,并予证明.(第9题图) (第10题图)(第11题图)10.如图,内接于⊙O 的四边形ABCD 的对角线AC 与BD 垂直相交于点K ,设⊙O 的半径为R .求证: (1)2222DK CK BK AK +++是定值; (2)2222DA CD BC AB +++是定值.11.如图,设P 是正方形ABCD 外接圆劣弧弧AB 上的一点,求证:DPCP BPAP ++的值为定值.1.等腰△ABC 的底边BC 为定长2,H 为△ABC 的垂心.当顶点A 在保持△ABC 为等腰三角形的情况下 改变位置时,面积S △ABC ·S △HBC 的值保持不变,则S △ABC ·S △HBC =________.2.已知A ,B ,C ,D ,E 是反比例函数xy 16=(x >0)图象上五个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是__________(用含π的代数式表示).P D CB A A折叠,使点A ,B 落在六边形ABCDEF 的内部,记∠C +∠D + )A. ∠1+∠2=900°-2α B. ∠1+∠2=1080°-2α C. ∠1+∠2=720°-α D. ∠1+∠2=360°-21α(第3题图) (第4题图)4.如图,正△ABO 的高等于⊙O 的半径,⊙O 在AB 上滚动,切点为T ,⊙O 交AO ,BO 于M ,N ,则弧MTN ( )A.在0°到30°变化B.在30°到60°变化C.保持30°不变D.保持60°不变5.如图,AB 是⊙O 的直径,且AB =10,弦MN 的长为8.若MN 的两端在圆上滑动时,始终与AB 相交,记点A ,B 到MN 的距离分别为h 1,h 2,则∣h 1-h 2∣等于( )A.5B.6C.7D.8(第5题图) 12GF EDCHBAB6.如图,已知△ABC 为直角三角形,∠ACB =90°,AC =BC ,点A ,C 在x 轴上,点B 坐标为(3,m )(m >0),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B ,D . (1)求点A 的坐标(用m 表示) (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连接PQ 并延长交BC 于点E ,连接BQ 并延长交AC 于点F .试证明:FC (AC +EC )为定值.7.如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A ,B 的点M .设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N .证明线段AK 和BN 的乘积与M 点的选择无关.(第7题图) (第8题图)8.如图,设H 是等腰三角形ABC 两条高的交点,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积S △ABC ·S △HBC 的值变小、变大,还是不变?证明你的结论.9.如图,在平面直角坐标系xOy 中,抛物线10941812--=x x y 与x 轴的交点为点A ,与y 轴的交点为点B .过点B 作x 轴的平行线BC ,交抛物线于点C ,连接AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动.点P 停止运动时,点Q 也同时停止运动.线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒). (1)求A ,B ,C 三点的坐标和抛物线的顶点坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当290<<t 时,△PQF 的面积是否总是定值?若是,求出此值;若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形,请写出解答过程.NKMB AC HCBA(第9题图) (第10题图) 10.已知抛物线C 1:12121+-=x x y ,点F (1,1). (1)求抛物线C 1的顶点坐标;(2)若抛物线C 1与y 轴的交点为A ,连接AF ,并延长交抛物线C 1于点B ,求证:211=+BFAF . (3)抛物线C 1上任意一点P (x P ,y P )(0<x P <1),连接PF ,并延长交抛物线C 1于点 Q (x Q ,y Q ),试判断211=+QFPF 是否成立?请说明理由.11.已知A ,B 是平面上的两个顶点,C 是位于AB 一侧的一个动点,分别以AC ,BC 为边在△ABC 外作正方形ACDE 和正方形BCFG .求证:不论C 在直线AB 同一侧的任何位置,EG 的中点P 的位置不变. 参考答案例 1 延长PC 至E ,使CE =AP ,连结BE ,则△BCE ≌△BAP ,及△PBE 为等腰直角三角形,故PA PC CE PC PEPB PB PB++=== 例2 B 提示:连结AC ,BC ,可以证明P 为APB 的中点. 例3 ∵SP ⊥OP ,OM ⊥ST ,∴S ,M ,O ,P 四点共圆,于是∠SPM =∠SOM =12∠SOT 为定角. 例4 (1)连结OC 交DE 于M ,则OM =CM , EM =DM ,而DG = HE ,则HM =GM 故四边形OGCH 是平行四边形. (2)DG 不变.DE =OC =OA =3 .DG =13DE =13×3=1. (3)设CD =x ,延长OG 交CD 于N ,则CN =DN =12 x ,229CE x =- , 2214DN x = .∴22394ON x =-,而ON =32CH ,∴22143CH x =-.故CD 2+3CH 2=x 2+3(4-13x 2)=x 2+12-x 2为定值. 例5 ⑴C (0,4) ⑵先求得AM =CM =5,连接MC 交AE 于N ,由△AO G ∽△ANM ,得OG AO MN AN =,O G =32,38OG OM OC OB ==,又∠BOC =∠G OM ,∴△G OM ∽△COB ,∠G MO =∠CBO ,得M G ∥BC .⑶连结DM ,则DM ⊥PD ,DO ⊥PM ,DO 2=OM •OP ,OP =163.动点F 在⊙M 的圆周上运动时,从特殊位置探求OFPF的值.当F 与点A 重合时,2316523OF AO PF AP ===-;当点F 与点B 重合时,8316583OF OB PF PB ===+;当点F 不与点A ,B 重合时,连接OF 、PF 、MF ,∴DM 2=MO •MP ,∴FM 2=MO •MP ,即FM MPOM FM=,又∠OMP =∠FMP ,∴△MFO ∽△MPF ,35OF MO PF MF ==,故OF PF 的比值不变,比值为35. 例6 ∠BPC =120°,在△BPC 中,由余弦定理得BC 2=PB 2+PC 2-2PB •PC =BC 2,又由上托勒密定理得BC •P A +PC •AB ,而AB =BC =AC ,∴P A =PB +PC ,从而P A 2+ PB 2+ PC 2= (PB +PC )2+ PB 2+ PC 2=2 (PB 2+PC 2+PB •PC )=2BC 2=2×()23=6.故P A 2+PB 2+PC 2为定值.A 级 1.4提示:∵S 1+S 阴= S 2+S 阴=xy =3,∴S 1+S 2=2xy -2S 阴=6-2=4.2.273 提示:1+3+5=9是等边三角形的高. 3.r 2提示:先考查OB 与OA 垂直的情形.4.D 提示:延长BF 交DE 于点M ,连接BD ,则△BCD 为等边三角形,BF 平分∠CBD .∵F 为CD 中点,且AD ∥CE ,∴△ADF 与△ECF 关于点F 中心对称.∴CE =AD =CD ,∴∠CEM=30°,∠DMF=60°,5.D 提示:A′B′的中点均在⊙O 的上半圆的中点处. 6.B 提示:S 正方形OCAD =OD •OC =A A x y k ==6,∴S OEBF =OE •OF =x B •y B k ==6. 7.⑴略⑵当点P在⊙O 内时,过P 作直径CD ,则PE •PF =PD •PC =r 2-OP 2为定值;当点P 在⊙O 外时,PE •PF 为定值22OP r -.结论:过不在圆上的一个定点任作一条直线与圆相交,则这点到直线与圆相交点的两条线段长的积为定值. 8.⑴2π⑵22.5° ⑶P 值无变化.理由如下:如图,延长BA 交y 轴于E 点,可证明△OAE ≌△OCN ,得OE =ON ,AE =CN ,又∠MOE =∠MON =45°,OM =ON ,∴△OME ≌△OMN ,得MN =ME =AM +AE =AM +CN .∴P =MN +BN +BM =AM +CM +CN +BN +BM =AB +AC =4.9.⑴0<x <90 ⑵BE =BF 提示:连接BD ,可证明△BDF ∽△ADB ,△BDE ∽△ADC . 10.⑴作OP ⊥BD 于P ,OQ ⊥AC 于Q ,连接AO ,则AO 2=()()221122BK DK CK AK ⎡⎤⎡⎤-++⎢⎥⎢⎥⎣⎦⎣⎦,又AK •CK =BK •DK ,得AK 2+BK 2+CK 2+DK 2=4R 2为定值. ⑵作直径DE ,连接AE ,BE ,CE ,AB 2+CD 2=4R 2,AD 2+BC 2=4R 2,故AB 2+BC 2+CD 2+DA 2=8K 2为定值. 11.设正方形的边长为a ,根据托勒密定理,对于四边形APBC 和四边形APBD ,有CP •a =AP •a +BP •2a ,DP •a =BP •a +AP •2a ,两式相加并整理得(CP +DP )a =(AP +BP )(a +2a ),从而21AP BPCP DP+=-+为定值.B 级1.1 提示:不妨设∠A 为锐角,AD ,BE ,CF 为△ABC 的三条高,H 为垂心,由AB =AC 知∠HBD =∠HCD =∠HAE ,∠HDC =∠CDA =90°,故R t △CHD ∽R t △ACD .∴AD DC DC HD =,即AD •HD =DC 2=14BC 2=1.∴S △ABC •S △HBC =2111224BC AD BC HD BC ⎛⎫⎛⎫⋅⋅⋅= ⎪ ⎪⎝⎭⎝⎭=1.当∠A ≥90°时,结论成立.2.13π-26 提示:∵A ,B ,C ,DE 是反比例函数y =16x(x >0)图象上五个整数点,由图象可知,这些点的横坐标分别为1,2,4,8,16.∴五个正方形的边长分别为1,3,4,2,1.∴这五人橄榄形的面积总和是2221111112211122222444424242πππ⎡⎤⎛⎫⎛⎫⎛⎫⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=5π-10+8π-16=13π-26. 3.B 提示:如图,设F A 的延长线与CB 的延长线交于点P ,G A ′的延长线与HB ′的延长线交于点P ′.由对称性可知∠1=2∠APP ′,∠2=2∠BPP ′.∴∠1+∠2=2∠APB .∵∠APB =540°-α,∴∠1+∠2=1080°-2α. 4.D 5.B 提示:如图,设AB 与MN 交于点C ,过点O 作OD ⊥MN 于D ,连接FO 并延长交EB 于G .由垂径定理,得OD =2254-=3.由△AFO ≌△B G O ,得AF =B G ,即h 1=B G .由AF ⊥MN ,BE ⊥MN ,得△FOD ∽△F G E .∴12OD FO GE FG ==.∴E G =2OD =6,∴12h h AF BE -=-=E G =6. 6.⑴A (3-m ,0) ⑵y =x 2-2x +1 ⑶过点Q 作QM ⊥AC 于M ,过点Q 作QN ⊥BC 于N ,设Q 点的坐标为(x ,x 2-2x +1),则QM =CN =(x -1)2,MC =QN=3-x .∵QM ∥CE ,∴PQM ∽△PEC .∴QM PMEC PC=,即()2112x x EC--=,得EC =2(x -1).∵QN ∥CF ,∴△BQN ∽△BFC .∴QN BN FC BC =,即()24134x x FC ---=,得FC =41x +.又AC =4,∴FC (AC +EC )=()44211x x +-⎡⎤⎣⎦+=8为定值. 7.提示:易证△ABK ∽△BNA ,故AK •BN =AB 2为定值,即AK 与BN 的乘积与M 点的选择无关. 8.提示:S △ABC •S △HBC =116BC 4,由于BC 是不变的,所以当点A 至BC 的距离变小时,乘积S △ABC •S △HBC 保持不变. 9.⑴A (18,0),B (0,-10),顶点坐标为(4,-989)⑵若四边形PQCA 为平行四边形,由于QC ∥P A ,故只要QC =P A 185. ⑶即可,而P A =18-4t ,CQ =t ,故18-4t =t ,得t =设点P 运动t s ,则OP =4t ,CQ =t ,0<t <4.5.说明P在线段OA 上,且不与点O ,A 重合.由于QC ∥OP 知△QDC ∽△PDO ,故144QD QC t DP OP t ===.同理QC ∥AF ,故14QC CE AF EA ==,即14t AF =,∴AF =4t =OP .∴PF =P A +AF =P A +OP =18.又点Q 到直线PF 的距离d =10,∴S △PQF =12•PF •d =12×18×10=90.于是S △PQF 的面积总为定值90. ⑷由前面知道,P (4t ,0),F (18+4t ,0),Q (8-t ,-10),0≤t ≤4.5.构造直角三角形后易得PQ 2=(4t -8+t )2+102=,FQ 2=(18+4t -8+t )2+102=(5t +10)2+100.①若FP =FQ ,即182=(5t +10)2+100,故25(t +2)2=224,(t +2)2=24425.∵2≤t +2≤6.5,∴t +2=244414255=.∴t = 4145-2. ②若QP =QF ,即(5t -8)2+100=(5t +10)2+100,即(5t -8)2=(5t +10)2,无0≤t ≤4.5的t 满足. ③若PQ =PF ,即(5t -8)2+100=182,∴(5t -8)2=224.由于224≈15,又0≤5t ≤22.5,∴-8≤5t -8≤14.5,14.52=22984124⎛⎫= ⎪⎝⎭<224.故没有t (0≤t ≤4.5)满足此方程.综上所述,当t =4145-2时,△PQ R 为等腰三角形. 10.⑴C 1的顶点坐标为(1,12). ⑵略 ⑶作PM ⊥AB 于M ,作QN ⊥AB 交AB 延长线于N ,∴PM =1-y P ,FM =1-x P .在R t △PMF 中,PF 2=(1-y P )2+(1-x P )2=1-2y P +y P 2+1-2x P +x P 2,又∵点P 在抛物线上,∴y P =12x P 2-x P +1,∴PF 2=1-x P 2+2x P -2+y P 2+1-2x P +x P 2=y P 2,∴PF =y P ,同理,QF =y Q ,易证△PMF ∽△QNF ,则PM QN PF QF =,∴11Q P y y PF QF --=,即11PF QF PF QF --=,∴11PF QF+=2. 11.先从特殊情况出发.当△ABC 是等腰直角三角形时,点P 与点C 重合,此时点P 的位置在AB 的中垂线上,且到AB的距离为12AB ,如图①所示.下面就一般情况来证明上面的结论(结论②所示).过C ,E ,G 分别作直线AB 的垂线CH ,EM ,G N ,垂足分别是H ,M ,N .容易证明△AEM ≌△ACH ,△B G N ≌△BCH .从而有AM =CH =BN ,EM =AH ,G N =BH .这样,线段AB 的中点O 也是线段MN 的中点,连接OP ,则OP 是梯形EMN G 的中位线,从而OP ⊥AB ,OP =12(EM +G N )= 12(AH +BH )=12AB .∴无论点C 在AB 同一侧的位置如何,E G 中点P 的位置不变.。

初中几何最值问题常用解法

初中几何最值问题常用解法

初中几何最值问题常用解法初中几何最值问题一直是学生们的难点,但通过一些常用的解法,我们可以轻松解决这些问题。

以下将介绍9种常用的解法,帮助您更好地理解和学习。

一、轴对称法轴对称法是一种常用的解决最值问题的方法。

通过将图形进行轴对称变换,可以将问题转化为相对简单的问题,从而找到最值。

二、垂线段法垂线段法是指在几何图形中,利用垂线段的性质来求取最值。

例如,在矩形中,要使矩形的周长最小,可以将矩形的一条边固定,然后通过调整其他边的长度,使得矩形的周长最小。

三、两点之间线段最短两点之间线段最短是几何学中的基本原理。

在解决最值问题时,我们可以利用这个原理,找到两个点之间的最短距离。

四、利用三角形三边关系三角形三边关系是指在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。

利用这个关系,可以解决一些与三角形相关的最值问题。

五、利用余弦定理求最值余弦定理是三角学中的基本定理,它可以用来解决一些与角度和边长相关的问题。

通过余弦定理,我们可以找到一个角的最大或最小余弦值,从而求得最值。

六、利用基本不等式求最值基本不等式是指在一个数列中,平均值总是小于等于几何平均值。

利用这个不等式,可以解决一些与数列相关的最值问题。

七、代数运算求最值代数运算是一种基本的数学运算方法,它可以用来解决一些与代数式相关的最值问题。

例如,通过求导数或微分的方法,可以找到一个函数的最大或最小值。

八、代数方程求最值代数方程是一种基本的数学方程形式,它可以用来解决一些与代数方程相关的最值问题。

例如,通过解二次方程或不等式的方法,可以找到一个表达式的最大或最小值。

九、几何变换求最值几何变换是指在几何图形中,通过平移、旋转、对称等方式改变图形的形状和大小。

利用几何变换的方法,可以解决一些与图形变换相关的最值问题。

例如,在矩形中,要使矩形的面积最大。

第二十四讲几何的定值与最值(2014年初中数学培优提高)[1]

第二十四讲几何的定值与最值(2014年初中数学培优提高)[1]

第二十四讲 几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.【例题就解】【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD,则CD 长度的最小值为 .思路点拨 如图,作CC ′⊥AB 于C,DD ′⊥AB 于D ′,DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=21AB 一常数,当CQ 越小,CD 越小,本例也可设AP=x ,则PB=x -10,从代数角度探求CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1)中点处、垂直位置关系等;(2)端点处、临界位置等.【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T,圆交AC 、BC 于M 、N,则对于所有可能的圆的位置而言, MTN 为的度数( )A.从30°到60°变动B.从60°到90°变动C.保持30°不变D.保持60°不变思路点拨 先考虑当圆心在正三角形的顶点C 时,其弧的度数,再证明一般情形,从而作出判断.注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变化的元素运动到特定的位置,使图形变化为特殊图形时,研究的量取得定值与最值.【例3】 如图,已知平行四边形ABCD,AB=a ,BC=b (a >b ),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q,求AP+BQ 的最小值.思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+(当且仅当b a =时取等号)来求最小值.【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M,设直线AC 与BM 相交于K,直线CB 与AM 相交于点N,证明:线段AK 和BN 的乘积与M 点的选择无关. 思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC 的边长是一个定值,说明AK ·BN与AB 有关,从图知AB 为△ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,从而我们的证明目标更加明确.⌒ ⌒注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例5】 已知△XYZ 是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt △ABC(∠C=90°)的三边上,求△ABC 直角边长的最大可能值.思路点拨 顶点Z 在斜边上或直角边CA(或CB)上,当顶点Z 在斜边AB 上时,取xy 的中点,通过几何不等关系求出直角边的最大值,当顶点Z 在(AC 或CB)上时,设CX=x ,CZ=y ,建立x ,y 的关系式,运用代数的方法求直角边的最大值.注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值;(2)构造二次函数求几何最值.学力训练1.如图,正方形ABCD 的边长为1,点P 为边BC 上任意一点(可与B 点或C 点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ′、C ′、D ′,则BB ′+CC ′+DD ′的最大值为 ,最小值为 .2.如图,∠AOB=45°,角内有一点P ,PO=10,在角的两边上有两点Q,R(均不同于点O),则△PQR 的周长的最小值为 .3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等于 .4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP+BP的最小值为( )A.1B.22 C.2 D.13- 5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( ) A.212π+ B.2412π+ C.214π+ D.242π+6.如图、已知矩形ABCD,R,P 户分别是DC 、BC 上的点,E,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )A.线段EF 的长逐渐增大B.线段EF 的长逐渐减小C.线段EF 的长不改变D.线段EF 的长不能确定7.如图,点C 是线段AB 上的任意一点(C 点不与A 、B 点重合),分别以AC 、BC 为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE,AE 与CD 相交于点M,BD 与CE 相交于点N.(1)求证:MN ∥AB;(2)若AB 的长为l0cm,当点C 在线段AB 上移动时,是否存在这样的一点C,使线段MN 的长度最长?若存在,请确定C 点的位置并求出MN 的长;若不存在,请说明理由.(2002年云南省中考题)8.如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足,求证:不管ST 滑到什么位置,∠SPM 是一定角.(加拿大数学奥林匹克试题)9.已知△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过点P 作BC 的平行线交直线BT 于点E,交直线AC 于点F.(1)当点P 在线段AB 上时(如图),求证:PA ·PB=PE ·PF;(2)当点P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明,如果不成立,请说明理由.10.如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB 上的一点P ,使矩形PNDM 有最大面积,则矩形PNDM 的面积最大值是( )A.8B.12C.225D.1411.如图,AB 是半圆的直径,线段CA 上AB 于点A,线段DB 上AB 于点B,AB=2;AC=1,BD=3,P 是半圆上的一个动点,则封闭图形ACPDB 的最大面积是( )A.22+B.21+C.23+D.23+12.如图,在△ABC 中,BC=5,AC=12,AB=13,在边AB 、AC 上分别取点D 、E,使线段DE 将△ABC 分成面积相等的两部分,试求这样线段的最小长度.(全国初中数学联赛试题)13.如图,ABCD 是一个边长为1的正方形,U 、V 分别是AB 、CD 上的点,AV 与DU 相交于点P ,BV 与CU 相交于点Q.求四边形PUQV 面积的最大值.“弘晟杯”上海市竞赛题14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?(河南省竞赛题)15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示).其中,正方形MNPQ 与四个相同矩形(图中阴影部分)的面积的和为800平方米.(1)设矩形的边AB=x (米),AM=y (米),用含x 的代数式表示y 为 .(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元.①设该工程的总造价为S(元),求S 关于工的函数关系式.②若该工程的银行贷款为235000元,仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由.③若该工程在银行贷款的基础上,又增加资金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.(镇江市中考题)16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积(精确到1m2).(北京市数学知识应用竞赛试题)。

初中数学定值定点最值问题

初中数学定值定点最值问题

初中数学定值定点最值问题初中数学定值定点和最值问题是中考数学压轴题常考考点,对于定值定点问题可以采用特殊点,特殊值和特殊位置确定其值是多少,然后采用一般法去证明,最值问题一般是线段的和与差,最常用的方法是“化折为直”比如常见的“将军饮马问题”、“胡不归问题”、“阿氏圆问题”、“隐圆问题”。

例1.对于任意非零实数a,抛物线y=ax2+ax﹣6a总不经过点P(m+1,4﹣2m),则符合条件的点P的坐标为.变式1.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则写出符合条件的点P的坐标:.变式2.若对于任意非零实数a,抛物线y=ax2+ax﹣6a总不经过点P(m﹣2,m2﹣9),写出符合条件的点P的坐标:.变式3.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0,2x0﹣6),写出符合条件的点P的坐标:.变式4.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(m﹣3,m2﹣16),写出符合条件的点P的坐标:.变式5.若对于任意非零实数a,抛物线y=a(x+2)(x﹣1)总不经过点P(x0﹣3,x0﹣5)写出符合条件的点P的坐标:.变式6.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),写出符合条件的点P的坐标:.例2.已知抛物线y=ax2﹣2anx+an2+n+3的顶点P在一条定直线l上.求直线l的解析式;例3.我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y轴对称,则把该函数称之为“T函数”,其图象上关于y轴对称的不同两点叫做一对“T点”.若关于x的“T函数”y=ax2+bx+c(a>0,且a,b,c是常数)经过坐标原点O,且与直线l:y=mx+n(m≠0,n>0,且m,n是常数)交于M(x1,y1),N(x2,y2)两点,当x1,x2满足(1﹣x1)﹣1+x2=1时,直线l是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.例4.如图,已知P为正方形ABCD的外接圆的劣弧上任意一点,求证:为定值.例5.如图,在△ABC中,AB=5,AC=4,sin A=,BD⊥AC交AC于点D.点P为线段BD上的动点,则PC+PB的最小值为.例6.如图,在Rt△ABC中,∠A=90°,M为BC的中点,H为AB上一点,过点C作CG ∥AB,交HM的延长线于点G,若AC=8,AB=6,求四边形ACGH周长的最小值例7如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0).若点P为⊙O上的动点,且⊙O的半径为2,一动点E从点A出发,以每秒2个单位长度的速度沿线段AP匀速运动到点P,再以每秒1个单位长度的速度沿线段PB匀速运动到点B后停止运动,求点E的运动时间t的最小值.例8.已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.例9.如图,A,B两点的坐标分别为A(4,3),B(0,﹣3),在x轴上找一点P,使线段P A+PB的值最小,则点P的坐标是.例10.如图,已知抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,点B是抛物线对称轴上的一点,且点B在第一象限.当△OAB的面积为15时,P是抛物线上的动点,当P A﹣PB的值最大时,求P的坐标以及P A﹣PB的最大值.例11.如图1,在矩形ABCD中,AB=4,BC=6.点E是线段AD上的动点(点E不与点A,D重合),连接CE,过点E作EF⊥CE,交AB于点F.连接CF,过点B作BG⊥CF,垂足为G,连接AG.点M是线段BC的中点,连接GM.①求AG+GM的最小值;②当AG+GM取最小值时,求线段DE的长.例12.如图一所示,在平面直角坐标系中,抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE ⊥BC于点E,作PF∥AB交BC于点F.当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.。

2024年中考数学专题复习定值与最值问题

2024年中考数学专题复习定值与最值问题

定值与最值问题1、平面几何最值问题:在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。

线段最值问题的解决通常方法:应用几何性质.①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长.基本类型有:将军饮马、选址造桥、线段之差的最大值,隐圆最值,瓜豆原理,胡不归最值,阿氏圆等。

2、立体几何最值问题:展开平面图形,根据平面几何最值问题方法去做!3、代数最值问题:无非就是根据完全平方公式或者二次函数的知识去求解!例1.如图,A、B两个机离线l的距离分别是3米,5米,CD=6米,若由l上一点分别向A,B连线,最短为()A.11米B.10米C.9米D.8米1.如图Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED、EB,则△BDE周长的最小值为()A.2 5 B.2 3 C.25+2 D.23+22.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB 的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为__ .3.直线l1、l2交于点O,A、B是两直线间的两点,从点A出发,先到l1上一点P,再从点P到l2上一点Q,再回到点B,求作P、Q两点,使四边形APQB周长最小.4.A、B是位于河流两旁的两个村庄,要在这条宽度为d的河上建一条垂直的桥,使得从A村到B村的距离之和最短.试着画出桥应该建在何处?例2.如图,AC⊥BC于C,连接AB,点D是AB上的动点,AC=6,BC=8,AB=10,则点C到点D的最短距离是()A.6 B.8 C.403D.2451.如图,点A 的坐标为(1,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标为( )A .(0,0)B .(21-,21-)C .(22,22-)D .(22-,22-) 2.如图,在平面直角坐标系xOy 中,直线AB 经过点A (﹣4,0)、B (0,4),⊙O 的半径为1,点P 在直线AB 上,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为_________.例3.如图,在菱形ABCD 中,AB =4,∠A =135°,点P 、M 、N 分别为对角线BD 及边BC ,CD 上的动点,则PM +PN 的最小值为__ .1.如图,∠ABC =45°,BC =42,BD 平分∠ABC 交AC 于点D ,M 、N 分别是BD 和BC 上的动点(M 与B ,D 两点不重合,N 与B ,C 两点不重合),则CM +MN 的最小值为__ .2.如图,∠AOB =45°,P 是∠AOB 内一定点,PO =10,Q 、R 分别是OA ,OB 上的动点,则△PQR 周长的最小值为__ .例4.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC =8,B 到MN 的距离BD =5,CD =4,P 在直线MN 上运动,则PB PA -的最大值等于 .1.如图所示,已知11(,)2A y ,2(2,)B y 为反比例函数1y x =图象上的两点,动点(,0)P x 在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .1(,0)2B .(1,0)C .3(,0)2D .5(,0)22.点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA +QB 的值最小的点,则OP *OQ = .例5.在坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC =2.设tan ∠BOC =m ,则m 的取值范围是_________.1.如图, △ABC 中,∠ABC =90°,AB =6,BC =8,O 为AC 的中点,过O 作OE ⊥OF ,OE 、OF 分别交射线AB 、BC 于E 、F ,则EF 的最小值为 .2.如图,已知Rt △ABC 中,∠ACB =90°,AC =3,BC =4,点D 是AB 的中点,E 、F 分别是直线AC 、BC 上的动点,∠EDF =90°,则EF 的最小值是_____________.例6.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )A .212π+B .2412π+C .214π+D .242π+1.如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为( )A .13cmB .12cmC .10cmD .8cm2.如图,圆柱底面半径为2cm ,高为9cm π,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为 cm .第1题 第2题例7.求二次三项式2x 2x +3的最小值.1.求代数式﹣2x 2+3x +5的最大值.例9.如果P 是边长为2的正方形ABCD 的边CD 上任意一点且PE ⊥DB ,PF ⊥CA ,垂足分别为E ,F ,则PE +PF =__ __.1.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定2.如图,在平面直角坐标系x O y 中,矩形AOCD 的顶点A 的坐标是(0,4),现有两动点P 、Q ,点P 从点O 出发沿线段OC (不包括端点O ,C )以每秒2个单位长度的速度,匀速向点C 运动,点Q 从点C 出发沿线段CD (不包括端点C ,D )以每秒1个单位长度的速度匀速向点D 运动.点P ,Q 同时出发,同时停止,设运动时间为t 秒,当t =2秒时PQ =52.(1)求点D 的坐标,并直接写出t 的取值范围;(2)连接AQ 并延长交x 轴于点E ,把AE 沿AD 翻折交CD 延长线于点F ,连接EF ,则△A EF 的面积S 是否随t 的变化而变化?若变化,求出S 与t 的函数关系式;若不变化,求出S 的值.1.如图,在正方形ABCD 中,G 是正方形内一点,AD =4,P 是BC 的中点,且BG =BP ,则DG +12GC 的最小值是__________.(提示:考虑用相似转化,系数需要化成相同)。

九年级数学竞赛培优专题及答案 24 平面几何的定值问题

九年级数学竞赛培优专题及答案 24 平面几何的定值问题

专题24 平面几何的定值问题【阅读与思考】所谓定值问题,是指按照一定条件构成的几何图形,当某些几何元素按一定的规律在确定的范围内变化时,与它有关的元素的量保持不变(或几何元素间的某些几何性质或位置关系不变).几何定值问题的基本特点是:题设条件中都包含着变动元素和固定元素,变动元素是指可变化运动的元素,固定元素也就是“不变量”,有的是明显的,有的是隐含的,在运动变化中始终没有发生变化的元素,也就是我们要探求的定值. 解答定值问题的一般步骤是: 1.探求定值; 2.给出证明.【例题与求解】【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧AD⌒上任意一点.求证:PA PC PB为定值. 解题思路:线段的和差倍分考虑截长补短,利用圆的基本性质,证明三角形全等.P AB CD【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A .到CD 的距离保持不变 B .位置不变C .等分DB⌒ D .随C 点的移动而移动 (济南市中考试题)解题思路:添出圆中相关辅助线,运用圆的基本性质,用排除法得出结论.A【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角.(加拿大数学奥林匹克试题)解题思路:不管ST 滑到什么位置,∠SOT 的度数是定值.从探寻∠SPM 与∠SOT 的关系入手.B【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是AB⌒上异于A ,B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形;(2)当点C 在AB ⌒上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD 2+3CH 2是定值. (广州市中考试题)解题思路:延长OG 交CD 于N ,利用题中的三等分点、平行四边形和三角形中位线的性质,实现把线段ON 转化成线段CH 的倍分关系,再以Rt △OND 为基础,通过勾股定理,使问题得以解决.BOACE HGD 【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8. (1)求点C 的坐标;(2)连接MG ,BC ,求证:MG ∥BC ;(3)如图2,过点D 作⊙M 的切线,交x 轴于点P .动点F 在⊙M 的圆周上运动时,PFOF的比值是否发 生变化?若不变,求出比值;若变化,说明变化规律. (深圳市中考试题)解题思路:对于(3)从动点F 达到的特殊位置时入手探求定值.(图1) (图2)【例6】 如图,已知等边△ABC 内接于半径为1的圆O ,P 是⊙O 上的任意一点.求证:P A 2+PB 2+PC 2为定值.解题思路:当点P 与C 点重合时,P A 2+PB 2+PC 2=2BC 2为定值,就一般情形证明.A【能力训练】A 级1.如图,点A ,B 是双曲线xy 3=上的两点,分别经过A ,B 两点向x 轴,y 轴作垂线段.若S 阴影=1,则=+21S S _______.(牡丹江市中考试题)AABCDEF(第3题图) (第4题图)2.从等边三角形内一点向三边作垂线段,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的面积是__________.(全国初中数学联赛试题)3.如图,OA ,OB 是⊙O 任意两条半径,过B 作BE ⊥OA 于E ,又作OP ⊥AB 于P ,则定值OP 2+EP 2为_________.4.如图,在菱形ABCD 中,∠ABC =120°,F 是DC 的中点,AF 的延长线交BC 的延长线于点E ,则直线BF 与直线DE 所夹的锐角的度数为( )A .30°B .40°C .50°D .60°(武汉市竞赛试题)5.如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作A A '⊥AB ,AB B B ⊥',且A A '=AP ,B B '=BP .连接B A '',当点P 从点A 移动到点B 时,B A ''的中点的位置( )A .在平分AB 的某直线上移动 B .在垂直AB 的某直线上移动C .在弧AMB 上移动D .保持固定不移动(荆门市中考试题)AB'B(第5题图) (第6题图)6.如图,A ,B 是函数xky图象上的两点,点C ,D ,E ,F 分别在坐标轴上,且分别与点A ,B ,O 构成正方形和长方形.若正方形OCAD 的面积为6,则长方形OEBF 的面积是( ) A .3 B .6 C .9 D .12(海南省竞赛试题))7.(1)经过⊙O 内或⊙O 外一点P 作两条直线交⊙O 于A ,B 和C ,D 四点,得到如图①~⑥所表示的六种不同情况.在六种不同情况下,P A ,PB ,PC ,PD 四条线段之间在数量上满足的关系式可以用同一个式子表示出来.请你首先写出这个式子,然后只就如图②所示的圆内两条弦相交的一般情况给出它的证明.⑥⑤④③②①)P (B )PB(2)已知⊙O 的半径为一定值r ,若点P 是不在⊙O 上的一个定点,请你过点P 任作一直线交⊙O 于不重合的两点E ,F . PE ·PF 的值是否为定值?为什么?由此你发现了什么结论?请你把这一结论用文字叙述出来.(济南市中考试题)8.在平面直角坐标系中,边长为2的正方形OABC 的两顶点A ,C 分别在y 轴,x 轴的正半轴上,点O 在原点,现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线x y =上时停止旋转.旋转过程中,AB 边交直线x y =于点M ,BC 边交x 轴于点N .(1)求OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 与AC 平行时,求正方形OABC 旋转度数;(3)设△MBN 的周长为P ,在正方形OABC 旋转的过程中,P 值是否有变化?请证明你的结论.(济宁市中考试题)9.如图,AB 是半圆的直径,AC ⊥AB ,AC =AB .在半圆上任取一点D ,作DE ⊥CD ,交直线AB 于点E ,BF ⊥AB ,交线段AD 的延长线于点F .(1)设弧AD 是x °的弧,若要点E 在线段BA 的延长线上,则x 的取值范围是_______.(2)不论点D 取在半圆的什么位置,图中除AB =AC 外,还有两条线段一定相等.指出这两条相等的线段,并予证明.(江苏省竞赛试题)(第9题图) (第10题图) (第11题图)10.如图,内接于⊙O 的四边形ABCD 的对角线AC 与BD 垂直相交于点K ,设⊙O的半径为R .求证:(1)2222DK CK BK AK +++是定值;(2)2222DA CD BC AB +++是定值.PD CB A A11.如图,设P 是正方形ABCD 外接圆劣弧弧AB 上的一点,求证:DPCP BPAP ++的值为定值.(克罗地亚数学奥林匹克试题)B 级1.等腰△ABC 的底边BC 为定长2,H 为△ABC 的垂心.当顶点A 在保持△ABC 为等腰三角形的情况下 改变位置时,面积S △ABC ·S △HBC 的值保持不变,则S △ABC ·S △HBC =________.2.已知A ,B ,C ,D ,E 是反比例函数xy 16=(x >0)图象上五个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是__________(用含π的代数式表示).(福州市中考试题) 折叠,使点A ,B 落在六边形ABCDEF 的内部,记∠C +∠D +∠E +∠F =α,则下列结论一定正确的是( )A . ∠1+∠2=900°-2αB . ∠1+∠2=1080°-2αC . ∠1+∠2=720°-αD . ∠1+∠2=360°-21α (武汉市竞赛试题)(第3题图) (第4题图)4.如图,正△ABO 的高等于⊙O 的半径,⊙O 在AB 上滚动,切点为T ,⊙O 交AO ,BO 于M ,N ,则12GF ED CHBAA .在0°到30°变化B .在30°到60°变化C .保持30°不变D .保持60°不变5.如图,AB 是⊙O 的直径,且AB =10,弦MN 的长为8.若MN 的两端在圆上滑动时,始终与AB 相交,记点A ,B 到MN 的距离分别为h 1,h 2,则∣h 1-h 2∣等于( )A .5B .6C .7D .8(黄石市中考试题)(第5题图)6.如图,已知△ABC 为直角三角形,∠ACB =90°,AC =BC ,点A ,C 在x 轴上,点B 坐标为(3,m )(m >0),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B ,D . (1)求点A 的坐标(用m 表示) (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连接PQ 并延长交BC 于点E ,连接BQ 并延长交AC 于点F .试证明:FC (AC +EC )为定值.(株洲市中考试题)7.如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A ,B 的点M .设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N .证明线段AK 和BN 的乘积与M 点的选择无关.(湖北省选拔赛试题)(第7题图) (第8题图)B NKMB AC HCBA离变小,这时乘积S △ABC ·S △HBC 的值变小、变大,还是不变?证明你的结论.(全国初中数学联赛试题)9.如图,在平面直角坐标系xOy 中,抛物线10941812--=x x y 与x 轴的交点为点A ,与y 轴的交点为点B .过点B 作x 轴的平行线BC ,交抛物线于点C ,连接AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动.点P 停止运动时,点Q 也同时停止运动.线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒). (1)求A ,B ,C 三点的坐标和抛物线的顶点坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当290<<t 时,△PQF 的面积是否总是定值?若是,求出此值;若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形,请写出解答过程. (黄冈市中考试题)(第9题图) (第10题图)10.已知抛物线C 1:12121+-=x x y ,点F (1,1). (1)求抛物线C 1的顶点坐标;(2)若抛物线C 1与y 轴的交点为A ,连接AF ,并延长交抛物线C 1于点B ,求证:211=+BFAF . (3)抛物线C 1上任意一点P (x P ,y P )(0<x P <1),连接PF ,并延长交抛物线C 1于点 Q (x Q ,y Q ),试判断211=+QFPF 是否成立?请说明理由.11.已知A ,B 是平面上的两个顶点,C 是位于AB 一侧的一个动点,分别以AC ,BC 为边在△ABC 外作正方形ACDE 和正方形BCFG .求证:不论C 在直线AB 同一侧的任何位置,EG 的中点P 的位置不变.(四川省竞赛试题)专题24平面几何的定值问题例 1 延长PC 至E ,使CE =AP ,连结BE ,则△BCE ≌△BAP ,及△PBE 为等腰直角三角形,故2PA PC CE PC PEPB PB PB++=== 例2 B 提示:连结AC ,BC ,可以证明P 为APB 的中点. 例3 ∵SP ⊥OP ,OM ⊥ST ,∴S ,M ,O ,P 四点共圆,于是∠SPM =∠SOM =12∠SOT 为定角. 例4 (1)连结OC 交DE 于M ,则OM =CM , EM =DM ,而DG = HE ,则HM =GM 故四边形OGCH 是平行四边形. (2)DG 不变.DE =OC =OA =3 .DG =13DE =13×3=1. (3)设CD =x ,延长OG 交CD 于N ,则CN=DN =12 x ,229CE x =- , 2214DN x = .∴22394ON x =-,而ON =32CH ,∴22143CH x =-.故CD 2+3CH 2=x 2+3(4-13x 2)=x 2+12-x 2为定值. 例5 ⑴C (0,4) ⑵先求得AM=CM =5,连接MC 交AE 于N ,由△AO G ∽△ANM ,得OG AO MN AN =,O G =32,38OG OM OC OB ==,又∠BOC =∠G OM ,∴△G OM ∽△COB ,∠G MO =∠CBO ,得M G ∥BC .⑶连结DM ,则DM ⊥PD ,DO ⊥PM ,DO 2=OM •OP ,OP=163.动点F 在⊙M 的圆周上运动时,从特殊位置探求OF PF的值.当F 与点A 重合时,2316523OF AO PF AP ===-;当点F 与点B 重合时,8316583OF OB PF PB ===+;当点F 不与点A ,B 重合时,连接OF 、PF 、MF ,∴DM 2=MO •MP ,∴FM 2=MO •MP ,即FM MPOM FM=,又∠OMP =∠FMP ,∴△MFO ∽△MPF ,35OF MO PF MF ==,故OF PF 的比值不变,比值为35. 例6 ∠BPC =120°,在△BPC 中,由余弦定理得BC 2=PB 2+PC 2-2PB •PC =BC 2,又由上托勒密定理得BC •PA +PC •AB ,而AB =BC =AC ,∴PA =PB +PC ,从而PA 2+ PB 2+ PC 2= (PB +PC )2+ PB 2+ PC 2=2 (PB 2+PC 2+PB •PC )=2BC 2=2×23=6.故PA 2+PB 2+PC 2为定值.A 级 1.4 提示:∵S 1+S 阴= S 2+S 阴=xy =3,∴S 1+S 2=2xy -2S 阴=6-2=4.2.273提示:1+3+5=9是等边三角形的高. 3.r 2 提示:先考查OB 与OA 垂直的情形.4.D 提示:延长BF 交DE 于点M ,连接BD ,则△BCD 为等边三角形,BF 平分∠CBD .∵F 为CD 中点,且AD ∥CE ,∴△ADF 与△ECF 关于点F 中心对称.∴CE =AD =CD ,∴∠CEM=30°,∠DMF=60°,5.D 提示:A ′B′的中点均在⊙O 的上半圆的中点处. 6.B 提示:S 正方形OCAD =OD •OC =x y k ==6,∴S OEBF =OE •OF =x B •y B k ==6. 7.⑴略⑵当点P 在⊙O 内时,过P 作直径CD ,则PE •PF =PD •PC =r 2-OP 2为定值;当点P 在⊙O 外时,PE •PF 为定值22OP r -.结论:过不在圆上的一个定点任作一条直线与圆相交,则这点到直线与圆相交点的两条线段长的积为定值. 8.⑴2π⑵22.5° ⑶P 值无变化.理由如下:如图,延长BA 交y 轴于E 点,可证明△OAE ≌△OCN ,得OE =ON ,AE =CN ,又∠MOE =∠MON =45°,OM =ON ,∴△OME ≌△OMN ,得MN =ME =AM +AE =AM +CN .∴P =MN +BN +BM =AM +CM +CN +BN +BM =AB +AC =4.9.⑴0<x <90 ⑵BE =BF 提示:连接BD ,可证明△BDF ∽△ADB ,△BDE ∽△ADC . 10.⑴作OP ⊥BD 于P ,OQ ⊥AC 于Q ,连接AO ,则AO 2=()()221122BK DK CK AK ⎡⎤⎡⎤-++⎢⎥⎢⎥⎣⎦⎣⎦,又AK •CK =BK •DK ,得AK 2+BK 2+CK 2+DK 2=4R 2为定值. ⑵作直径DE ,连接AE ,BE ,CE ,AB 2+CD 2=4R 2,AD 2+BC 2=4R 2,故AB 2+BC 2+CD 2+DA 2=8K 2为定值. 11.设正方形的边长为a ,根据托勒密定理,对于四边形APBC 和四边形APBD ,有CP •a =AP •a +BP 2a ,DP •a =BP •a +AP 2a ,两式相加并整理得(CP +DP )a =(AP +BP )(a 2a ),从而21AP BPCP DP++为定值.B 级1.1 提示:不妨设∠A 为锐角,AD ,BE ,CF 为△ABC 的三条高,H 为垂心,由AB =AC 知∠HBD =∠HCD =∠HAE ,∠HDC =∠CDA =90°,故R t △CHD ∽R t △ACD .∴AD DC DC HD =,即AD •HD =DC 2=14BC 2=1.∴S △ABC •S △HBC =2111224BC AD BC HD BC ⎛⎫⎛⎫⋅⋅⋅= ⎪ ⎪⎝⎭⎝⎭=1.当∠A ≥90°时,结论成立.2.13π-26 提示:∵A ,B ,C ,DE 是反比例函数y =16x(x >0)图象上五个整数点,由图象可知,这些点的横坐标分别为1,2,4,8,16.∴五个正方形的边长分别为1,3,4,2,1.∴这五人橄榄形的面积总和是2221111112211122222444424242πππ⎡⎤⎛⎫⎛⎫⎛⎫⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=5π-10+8π-16=13π-26. 3.B 提示:如图,设FA 的延长线与CB 的延长线交于点P ,G A ′的延长线与HB ′的延长线交于点P ′.由对称性可知∠1=2∠APP ′,∠2=2∠BPP ′.∴∠1+∠2=2∠APB .∵∠APB =540°-α,∴∠1+∠2=1080°-2α. 4.D 5.B 提示:如图,设AB 与MN 交于点C ,过点O 作OD ⊥MN 于D ,连接FO 并延长交EB 于G .由垂径定理,得OD 2254-=3.由△AFO ≌△B G O ,得AF =B G ,即h 1=B G .由AF ⊥MN ,BE ⊥MN ,得△FOD ∽△F G E .∴12OD FO GE FG ==.∴E G =2OD =6,∴12h h AF BE -=-=E G =6. 6.⑴A (3-m ,0) ⑵y =x 2-2x +1 ⑶过点Q 作QM ⊥AC 于M ,过点Q 作QN ⊥BC 于N ,设Q 点的坐标为(x ,x 2-2x +1),则QM =CN =(x -1)2,MC =QN =3-x .∵QM ∥CE ,∴PQM ∽△PEC .∴QM PM EC PC=,即()2112x x EC --=,得EC =2(x -1).∵QN ∥CF ,∴△BQN ∽△BFC .∴QN BN FC BC =,即()24134x x FC ---=,得FC =41x +.又AC =4,∴FC (AC +EC )=()44211x x +-⎡⎤⎣⎦+=8为定值. 7.提示:易证△ABK ∽△BNA ,故AK •BN =AB 2为定值,即AK 与BN 的乘积与M 点的选择无关. 8.提示:S △ABC •S △HBC =116BC 4,由于BC 是不变的,所以当点A 至BC 的距离变小时,乘积S △ABC •S △HBC 保持不变. 9.⑴A (18,0),B (0,-10),顶点坐标为(4,-989) ⑵若四边形PQCA 为平行四边形,由于QC ∥PA ,故只要QC =PA 即可,而PA =18-4t ,CQ =t ,故18-4t =t ,得t =185. ⑶设点P 运动t s ,则OP =4t ,CQ =t ,0<t <4.5.说明P 在线段OA 上,且不与点O ,A 重合.由于QC ∥OP 知△QDC ∽△PDO ,故144QD QC t DP OP t ===.同理QC ∥AF ,故14QC CE AF EA ==,即14t AF =,∴AF =4t =OP .∴PF =PA +AF =PA +OP =18.又点Q 到直线PF 的距离d =10,∴S △PQF =12•PF •d =12×18×10=90.于是S △PQF 的面积总为定值90. ⑷由前面知道,P (4t ,0),F (18+4t ,0),Q (8-t ,-10),0≤t ≤4.5.构造直角三角形后易得PQ 2=(4t -8+t )2+102=,FQ 2=(18+4t -8+t )2+102=(5t +10)2+100.①若FP =FQ ,即182=(5t +10)2+100,故25(t +2)2=224,(t +2)2=24425.∵2≤t +2≤6.5,∴t +224441425=.∴t = 4142. ②若QP =QF ,即(5t -8)2+100=(5t +10)2+100,即(5t -8)2=(5t +10)2,无0≤t ≤4.5的t 满足. ③若PQ =PF ,即(5t -8)2+100=182,∴(5t -8)2=224.224≈15,又0≤5t ≤22.5,∴-8≤5t -8≤14.5,14.52=22984124⎛⎫= ⎪⎝⎭<224.故没有t (0≤t ≤4.5)满足此方程.综上所述,当t =4142时,△PQ R 为等腰三角形. 10.⑴C 1的顶点坐标为(1,12). ⑵略 ⑶作PM ⊥AB 于M ,作QN ⊥AB 交AB 延长线于N ,∴PM =1-y P ,FM =1-x P .在R t △PMF 中,PF 2=(1-y P )2+(1-x P )2=1-2y P +y P 2+1-2x P +x P 2,又∵点P 在抛物线上,∴y P =12x P 2-x P +1,∴PF 2=1-x P 2+2x P -2+y P 2+1-2x P +x P 2=y P 2,∴PF =y P ,同理,QF =y Q ,易证△PMF ∽△QNF ,则PM QN PF QF =,∴11Q P y y PF QF --=,即11PF QF PF QF --=,∴11PF QF+=2. 11.先从特殊情况出发.当△ABC 是等腰直角三角形时,点P 与点C 重合,此时点P 的位置在AB 的中垂线上,且到AB 的距离为12AB ,如图①所示.下面就一般情况来证明上面的结论(结论②所示).过C ,E ,G 分别作直线AB 的垂线CH ,EM ,G N ,垂足分别是H ,M ,N .容易证明△AEM ≌△ACH ,△B G N ≌△BCH .从而有AM =CH =BN ,EM =AH ,G N =BH .这样,线段AB 的中点O 也是线段MN 的中点,连接OP ,则OP 是梯形EMN G 的中位线,从而OP⊥AB,OP=12(EM+G N)=12(AH+BH)=12AB.∴无论点C在AB同一侧的位置如何,E G中点P的位置不变.。

平面几何的定值与最值问题

平面几何的定值与最值问题

平面几何的定值平面几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题.•所谓几何定值问题就是要求出这个定值.在解决这类问题的过程中,可以直接通过计算来求出定值;也可以先考虑某一个特殊情形下的该相关值,然后证明当相应几何元素变化时,此值保持不变.例1 已知△ABC 内接于⊙O,D 是BC•或其延长线上一点,AE 是△ABC 外接圆的一条弦,若∠BAE=∠CAD.求证:AD.AE 为定值.证明 如图 (1),当点D 是BC 上任意一点且∠BAE=∠CAD 时,连结BE, 则∠E=∠C,∠BAE=∠CAD, ∴△ABE ∽△ADC. ∴AB AEAD AC=,即AD ·AE=AB ·AC 为定值. 如图 (2),当点D 在BC 的延长线上时,∠BAE=∠CAD.此时,∠ACD=∠AEB. ∴△AEB ∽△ACD,∴AB AEAD AC= 即AD ·AE=AB ·AC 为定值.综上所述,当点D 在BC 边上或其延长线上时,只要∠CAD=∠BAE,总有AD ·AE 为定值.先探求定值,当AD ⊥BC,AE 为圆的直径时,满足∠BAE=∠CAD 这一条件,•不难发现△ACD ∽△AEB,所以AD ·AE=AB ·AC,因为已知AB,AC 均为定值.•再就一般情况分点D•在BC 上,点D 在BC 的延长线上两种情况分别证明.练习1.已知MN 是⊙O 的切线,AB 是⊙O 的直径.求证:点A 、B 与MN 的距离的和为定值. (答案)定长为圆的直径;2.已知:⊙O与⊙O1外切于C,P是⊙O上任一点,PT与⊙O1相切于点T.求证:PC:PT是定值.2.利用特殊位置探求定值(当PC构成直径时)(R,r是两圆的半径).3.⊙O1与⊙O2相交于P、Q两点,过P作任一直线交⊙O1于点E,交⊙O2于点F.求证:∠EQF为定值.因∠E,∠F为定角(大小固定)易得∠EQF为定值.26.如图16,在平面直角坐标系中,直线y=x轴交于点A,与y轴交于点C,抛物线2(0)y ax x c a=+≠经过A,B,C三点.(1)求过A,B,C三点抛物线的解析式并求出顶点F的坐标;(2)在抛物线上是否存在点P,使⊿ABC为直角三角形,若存在,直接写出P点坐标;若不存在,请说明理由;(3)试探究在直线AC上是否存在一点,使得⊿BMF的周长最小,若存在,求出M点的坐标;若不存在,请说明理由.26.解:(1)直线y=x轴交于点(10)A∴-,,(0C·························1分 点A C,都在抛物线上,0a cc⎧=++⎪∴⎨⎪=⎩ac⎧=⎪∴⎨⎪=⎩x∴抛物线的解析式为233y x x =-················ 3分 ∴顶点13F ⎛⎫- ⎪ ⎪⎝⎭, ··························· 4分 (2)存在 ································ 5分1(0P ······························· 7分2(2P ······························· 9分 (3)存在 ································ 10分理由: 解法一:延长BC 到点B ',使B C BC '=,连接B F '交直线AC 于点M ,则点M 就是所求的点. ························· 11分 过点B '作B H AB '⊥于点H .B点在抛物线2y x =-上,(30)B ∴,在Rt BOC △中,tan 3OBC ∠=,30OBC ∴∠=,BC =在Rt BB H '△中,12B H BB ''==6BH H '==,3OH ∴=,(3B '∴--, ·············· 12分设直线B F '的解析式为y kx b =+3k b k b ⎧-=-+⎪∴⎨=+⎪⎩解得k b ⎧=⎪⎪⎨⎪=⎪⎩y x ∴=···························· 13分xy x ⎪∴⎨=⎪⎩解得7y ⎪⎪⎨⎪=⎪⎩37M ⎛∴ ⎝⎭, ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时37M ⎛ ⎝⎭,. ·· 14分 解法二:过点F 作AC 的垂线交y 轴于点H ,则点H 为点F 关于直线AC 的对称点.连接BH 交AC 于点M ,则点M 即为所求. ········· 11分过点F 作FG y ⊥轴于点G ,则OB FG ∥,BC FH ∥.90BOC FGH ∴∠=∠= ,BCO FHG ∠=∠ HFG CBO ∴∠=∠同方法一可求得(30)B ,. 在Rt BOC △中,tan OBC ∠=,30OBC ∴∠=,可求得GH GC ==, GF ∴为线段CH 的垂直平分线,可证得CFH △为等边三角形,AC ∴垂直平分FH .即点H 为点F 关于AC的对称点.0H ⎛∴- ⎝⎭,·············· 12分 设直线BH 的解析式为y kx b =+,由题意得03k b b =+⎧⎪⎨=⎪⎩解得k b ⎧=⎪⎪⎨⎪=⎪⎩y ∴=···························· 13分xy y =-⎪∴⎨⎪=⎩解得7y ⎪⎪⎨⎪=⎪⎩37M ⎛∴ ⎝⎭, ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时37M ⎛ ⎝⎭,. ·· 14分。

初中数学竞赛 知识点和真题 第24讲 几何极值

初中数学竞赛 知识点和真题 第24讲 几何极值

第24讲 几何极值代数不过是书写的几何,而几何不过是图形的代数。

——索菲娅·格梅茵 知识方法扫描求几何量(如线段的长度,角的度数,平面图形的面积,立体图形的体积)的最大最小值的问题,或确定某些几何元素(如点)的位置,几何量有最大最小的问题称为几何极值问题。

处理几何极值问题一般有两种方法:几何方法和代数方法。

1.几何方法:利用几何量之间的不等关系如两点之间线段最短;过直线外一点向直线引的线段中、垂线段最短;三角形任何两边之和大于第三边, 两边之差小于第三边;三角形中大角对大边;同一圆中, 弦心距越小, 它所对的弦越大等结论来求几何极值的方法。

另外,在用几何方法求几何极值时,几何变换是重要的方法。

2.代数方法:先将几何图形中量的计算转化为代数的问题, 然后通过代数式的恒等变形, 利用一次函数、二次函数的有关性质或构造二次方程, 利用根的判别式, 或利用不等式的性质来处理等方法。

数形结合是一种重要的数学解题策略。

经典例题解析例1(1998年北京市竞赛试题)如图, 矩形ABCD 中, AB =20cm, BC =10cm, 若在AC 、AB 上各取一点M 、N, 使BM +MN 的值最小, 求这个最小值.解 取B 点关于AC 的对称点B′, 连结AB′, AB′交CD 于P, 则N 点关于AC 的对称点N′必在AB′上, 连结MN′, 则MN′=MN, 问题转化为求BM +MN′的最小值.自B 作BH ⊥AB′于H, 则BH 为BM +MN′的最小值, 也即BM +MN 的最小值.连结PB, 则S △PAB =21S 矩形ABCD =100.∵∠1=∠2, ∠2=∠3, ∴∠1=∠3, AP =PC.设AP =x, 则DP =20-x.由勾股定理, 得 x 2=102+(20-x)2.A ∴x =225, 即AP =225. ∴S △PAB =21AP·BH =21×225·BH =100. ∴BH =16. 即BM +MN 的最小值是16cm.例2(1984年西安市初中数学竞赛试题)在圆弧DE 上求一点P (如图),使P 点对小圆C 有最大视角(在P 点看小圆看得最清楚),并证明你的结论。

九年级数学奥数知识点专题精讲---平面几何中的定值问题

九年级数学奥数知识点专题精讲---平面几何中的定值问题

知识点,重点,难点所谓定值问题,是指按照一定条件构成的几何图形,当某些几何元素按一定的规律在确定的范围内变化时,与它有关的某种几何量却始终保持不变(或几何元素间的某种几何性质或位置关系不变)。

平面几何定值一般可分为两类:一类是定量问题(如定长度、定角、定比、平方和或倒数和为定值等);一类是定形问题(如定点、定线、定圆或弧、定方向等),它们有共同的基本特点,即给定条件中一般由固定条件和变动条件两部分组成。

一般来说,求解定值问题的方法有:图形分析法。

画出符合条件的图形后,分析图中几何元素的数量关系及位置关系,直接寻求出定值并证明。

特殊位置法。

不论图形如何变动,定值这一共性始终不变,因此可选择图形的特殊位置(如极限位置、临界位置)加以探求。

参数计算法。

图形运动中,选取其中的变量(如线段长、角度、面积等)作为参数,将要求的定值用参数表出,然后消去参数即得定值。

例题精讲例1:如图,已知⊙O 及弦AB ,P 为⊙O 上任一点,PA 、PB 分别交AB 中垂线于E 、F ,求证:OE ·OF 为定值。

分析 若在⊙O 上的点P 运动到特殊位置点Q ,则点E ,点F 都和Q 点重合,于是得到OE ·OF =OQ ,由此可推想,该定值可能为⊙O 2半径的平方。

证明 因为OE 是弦AB 的中垂线,所以,所以∠AOE=∠BOE , AQ BQ=所以又因为∠EPB =∠PAB 1.2mAOE AB ∠= 1,2m PAB BP ∠=1,2m PBA AP ∠=+∠ABP ,所以∠AOE = ∠EPB ,所以A 、O 、F 、P 四点共圆,所以∠OFB =∠OAE .又因为∠FOB =∠AOE ,所以△FOB ∽△OAE ,所以即OE ·OF =OA ·OB .因为OA =OB ,所以OE ·OF =OA (定,OF OBOA OE=2值)。

例2:如图,设AB 、CD 是圆O 的两条定直径,P 是圆周上的任一点,过P 作AB 垂线,过P 作CD 的垂线,其垂足分别为Q 、R ,DT ⊥AB ,垂足为T ,求证:QR 是定长。

数学竞赛练习试题:几何定值与最值

数学竞赛练习试题:几何定值与最值

初三奥林匹克数学竞赛
方法思路讲解及经典题型分析
…………最后一节…………
几何定值与最值的分析方法
1大小两个同心圆,O是圆心,作小圆的三条切线,分别交于A、B、C、三点,记△ABC 的面积为S,以C,A,B为顶点的三个阴影部分的面积分别为S1、S2、S3。

求证:S1+S2+S3-S 为定值。

2已知⊙O的半为R,两弦AB⊥CD于M,求证:AB2+(DM-CM)2为定值。

3定长的弦ST在一个以AB为直径的半圆周上滑动,M是ST的中点,P是S对AB所作垂线的垂足。

求证:不管ST滑到什么位置,∠SPM是一定角。

4∠POQ是直角,A为∠POQ内的一定点,过A任作一直角∠MAN,与OP、OQ分别相交于M,N,AB⊥MN,垂足为B。

求证:B恒在一定直线上。

5点P,Q,R分别在△ABC的边AB,BC,CA上,且BP=PQ=QR=RC=1,那么,△ABC 面积的最大值是多少?
6 有定角A 和定半径为r 的内切圆的一切三角形中,试确定哪一个三角形有最小的周长。

7 在一块锐角三角形的余料上,裁减出正方形的零件,使正方形的四个顶点都在三角形的
边上。

若三角形的三边长分别为a ,b ,c ,且a >b >c ,问正方形的两个顶点放在哪条边
上可使加工出来的正方形零件面积最大?
8 在四边形ABCD 中,AD=DC=1,∠DAB=∠DCB=90O ,BC ,AD 的延长线交于P ,求
PAB S AB ∆⋅的最小值。

初中数学联赛讲义几何最值

初中数学联赛讲义几何最值

BO BR B 几何最值求几何最值问题的基本方法: (1)特殊位置与极端位置法 (2)几何定理(公理)法 (3)数形结合法例1、如图,在ABC ∆中,2==BC AB ,︒=∠90ACB ,D 是BC 边的中点,E 是AB 边的一动点,则ED EC +的最小值是例2、如图,︒=∠45AOB ,点P 在角内,10=OP ,Q 、R 分别在OA 和OB 上,PQR ∆周长的最小值是例3、如图,圆锥的主视图是边长为6的正三角形ABC ,P 为母线AC 的中点,从B 沿圆锥面到P 的最短距离是APAQ例4、如图,两圆内切于A ,大圆直径为48厘米,小圆直径为30厘米,两只甲虫同时从A 点出发,沿逆时针方向以相同的速度分别沿两个圆爬行,当小圆上的甲虫爬了 圈时,两只甲虫相距最远。

例5、如图,10=AB ,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边APC ∆和等边BPD ∆,求CD 长度的最小值。

例6、设正三角形ABC 边长为2,M 是AB 边上的中点,P 是BC 边上任意一点,求PM PA +的最大值和最小值。

例7、如图,已知平行四边形ABCD 中,a AB =,b BC =(b a >),P 为AB 边上一动点,直线DP 交CB 的延长线于Q ,求BQ AP +的最小值M例8、如图,已知边长为4的正方形钢板。

有一个角锈蚀,其中2=AF ,1=BF ,在五边形EABCD 内截取一个矩形MDNP ,使点P 在AB 上,且要求面积最大,求钢板的最大利用率。

例9、在有定角A 和定半径r 的内切圆的一切三角形中,确定一个有最小周长的三角形。

例10、已知点A 、B 是圆O 外的两定点,点P 是圆O 上的动点,求22PB PA +的最大值和最小值。

例11、在锐角ABC ∆的AB 边取一点M ,作BC MP ⊥于点P ,AC MQ ⊥于点Q ,求点M 的位置,使线段PQ 最短例12、如图,边长为2的正三角形ABC 内有一点P ,它到三边的距离分别为PD 、PE 、PF ,求:(1)222PF PE PD ++的最小值(2)DEF ∆面积的最大值例13、在ABC ∆中,5=BC ,12=AC ,13=AB 。

中考数学专题复习几何中的最值与定值问题公开课PPT课件

中考数学专题复习几何中的最值与定值问题公开课PPT课件

A
A
P
图(2-1) P
图(2-2)
P1
BC BC源自解:把△APB绕点A顺时针旋转600,使AB与AC重合,得△ACP1,连结 PP1,则△APP1是正三角形,PP1=AP=AP1=2,P1C=PB=3,当P、P1、 C不在一直线上时, PC<PP1+P1C=2+3=5,只有当P、P1、C在一直线 上时,PC之间的距离在到最大值,这个最大值是PP1+P1C=5。
例5. 如图,在ΔABC中,D、E分别是BC、
AB上的点,且∠1=∠2=∠3 ,如果ΔABC、
求Δ证E:BD的、最Δ小A值DC是的5周。长依次为m,m1,m2,
4
A
E
3
2
1
j
B
D
C
图(1-1)
课后练习
1.如图,在Rt△ABC中,∠ACB=90°,AC =BC=2,以BC为直径的半圆交AB于 点D,P是CD上的一个动点,连结AP, 则AP的最小值是_______.
例 3. 如图,在△ABC中,BC=5,AC=12, AB=13,在边AB、AC上分别取点D、E,使 线段DE将△ABC分成面积相等的两部分,试求 这样线段的最小长度.
例4.已知△XYZ是直角边长为1的等腰直角三角形 (∠Z=90°),它的三个顶点分别在等腰 Rt△ABC(∠C=90°)的三边上,求△ABC直角边长的 最大可能值.
D B
E
当C、A、E三点共线 时,CD的值最大。 CD的最大值是a+b.
A
图(6-1)
D
C
F E
k O
A
图 ( 6-2)
j
B
C
例2 如图,正方形ABCD的边长为1,•点P为边BC上任意 一点(可与点B或点C重合),分别过点B、C、D作射线AP 的垂线,•垂足分别为点B′、C′、D′.求BB′+CC′+DD′的 最大值和最小值.

2020年九年级数学中考经典几何题讲义系列:几何最值问题

2020年九年级数学中考经典几何题讲义系列:几何最值问题
2.如图,已知 A(1,3),B(5,1),长度为 2 的线段 PQ 在 x 轴上平行移动,当 AP+PQ+QB 的值最小时,点 P 的坐标为( )
3 / 18
(4) 两点两线的最值问题: (两个动点+两个定点)
问题特征:两动点分别在两条直线上独立运动,一动点分别到一定点和另一动点的距离和最小。 核心思路:利用轴对称变换,使一动点在另一动点的对称点与定点的线段上(两点之间线段最 短),且这条线段垂直于另一动点的对称点所在直线(连接直线外一点与直线上各点的所有线 段中,垂线段最短)时,两线段和最小,最小值等于这条垂线段的长。 变异类型:演变为多边形周长、折线段等最值问题。 1. 如图,点 A 是∠MON 内的一点,在射线 ON 上作点 P,使 PA 与点 P 到射线 OM 的距离之 和最小。
A.
B.
C.
D.1
考点: 轴对称-最短路线问题;正方形的性质. 菁优网版权所有
分析: 根据题意得出作 EF∥AC 且 EF= ,连结 DF 交 AC 于 M,在 AC 上截取 MN=
,此时四边形 BMNE
解答: 的周长最小,进而利用相似三角形的判定与性质得出答案. 解:作 EF∥AC 且 EF= ,连结 DF 交 AC 于 M,在 AC 上截取 MN= ,延长 DF 交 BC 于 P,作
2.连结对称点与另一个定点,则直线段长度就是我们所求。 变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、 正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。 1.如图,直线 l 和 l 的同侧两点 A、B,在直线 l 上求作一点 P,使 PA+PB 最小。
∵LN=AS=
=40.

2021年初中数学竞赛辅导讲义及习题解答 第24讲 几何的定值与最值

2021年初中数学竞赛辅导讲义及习题解答 第24讲 几何的定值与最值

感谢您使用本资源,本资源是由订阅号”初中英语资源库“制作并分享给广大用户,本资源制作于2020年底,是集实用性、可编辑性为一体。

本资源为成套文件,包含本年级本课的相关资源。

有教案、教学设计、学案、录音、微课等教师最需要的资源。

我们投入大量的人力、物力,聘请精英团队,从衡水中学、毛毯厂中学、昌乐中学等名校集合了一大批优秀的师资,精研中、高考,创新教学过程,将同学们喜闻乐见的内容整体教给学生。

本资源适用于教师下载后作为教学的辅助工具使用、适合于学生家长下载后打印出来作为同步练习使用、也适用于同学们自己将所学知识进行整合,整体把握进度和难度,是一个非常好的资源。

如果需要更多成套资料,请微信搜索订阅号“初中英语资源库”,在页面下方找到“资源库”,就能得到您需要的每一份资源(包括小初高12000份主题班会课课件免费赠送!)第二十四讲 几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有: 1.特殊位置与极端位置法; 2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、 逻辑推理与合情想象相结合等思想方法. 【例题就解】【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 .思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′,DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=21AB 一常数,当CQ 越小,CD 越小,本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1)中点处、垂直位置关系等; (2)端点处、临界位置等.【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度数( ) A .从30°到60°变动 B .从60°到90°变动C .保持30°不变D .保持60°不变⌒思路点拨 先考虑当圆心在正三角形的顶点C 时,其弧的度数,再证明一般情形,从而作出判断.注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变化的元素运动到特定的位置,使图形变化为特殊图形时,研究的量取得定值与最值.【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上的一动点, 直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值.思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC与BM 相交于K ,直线CB 与AM 相交于点N ,证明:线段AK 和BN 的乘积与M 点的选择无关.思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC 的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为△ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,从而我们的证明目标更加明确.注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例5】 已知△XYZ 是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt △ABC(∠C=90°)的三边上,求△ABC 直角边长的最大可能值.思路点拨 顶点Z 在斜边上或直角边CA(或CB)上,当顶点Z 在斜边AB 上时,取xy 的中点,⌒通过几何不等关系求出直角边的最大值,当顶点Z 在(AC 或CB)上时,设CX=x ,CZ=y ,建立x ,y 的关系式,运用代数的方法求直角边的最大值.注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值; (2)构造二次函数求几何最值.学力训练1.如图,正方形ABCD 的边长为1,点P 为边BC 上任意一点(可与B 点或C 点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ′、C ′、D ′,则BB ′+CC ′+DD ′的最大值为 ,最小值为 .2.如图,∠AOB=45°,角内有一点P ,PO=10,在角的两边上有两点Q ,R(均不同于点O),则△PQR 的周长的最小值为 .3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等于 .4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP+BP 的最小值为( )A .1B .22C .2D .13-5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )A .212π+B .2412π+C .214π+D .242π+6.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定7.如图,点C 是线段AB 上的任意一点(C 点不与A 、B 点重合),分别以AC 、BC 为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N .(1)求证:MN ∥AB ;(2)若AB 的长为l0cm ,当点C 在线段AB 上移动时,是否存在这样的一点C ,使线段MN 的长度最长?若存在,请确定C 点的位置并求出MN 的长;若不存在,请说明理由. (2002年云南省中考题)8.如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足,求证:不管ST 滑到什么位置,∠SPM 是一定角.9.已知△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过点P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F . (1)当点P 在线段AB 上时(如图),求证:PA ·PB=PE ·PF ;(2)当点P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明,如果不成立,请说明理由.10.如图,已知;边长为4的正方形截去一角成为五边形ABCDE ,其中AF=2,BF=l ,在AB 上的一点P ,使矩形PNDM 有最大面积,则矩形PNDM 的面积最大值是( )A .8B .12C .225D .1411.如图,AB是半圆的直径,线段CA上AB于点A,线段DB上AB于点B,AB=2;AC=1,BD=3,P是半圆上的一个动点,则封闭图形ACPDB的最大面积是( )A.23+2+B.23+D.21+C.212.如图,在△ABC中,BC=5,AC=12,AB=13,在边AB、AC上分别取点D、E,使线段DE将△ABC分成面积相等的两部分,试求这样线段的最小长度.13.如图,ABCD是一个边长为1的正方形,U、V分别是AB、CD上的点,AV与DU相交于点P,BV与CU相交于点Q.求四边形PUQV面积的最大值.14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示).其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米.(1)设矩形的边AB=x(米),AM=y(米),用含x的代数式表示y为.(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元.①设该工程的总造价为S(元),求S关于工的函数关系式.②若该工程的银行贷款为235000元,仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由.③若该工程在银行贷款的基础上,又增加资金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积(精确到1m2).参考答案精品“正版”资料系列,由本公司独创。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十四讲几何的定值与最值
几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:
1.特殊位置与极端位置法;
2.几何定理(公理)法;
3.数形结合法等.
注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、
逻辑推理与合情想象相结合等思想方法.
【例题就解】
【例1】如图,已知AB=10,P是线段AB上任意一点,在AB的同侧分别以AP和PB为边作等边△APC和等边△BPD,则CD长度的最小值为.
思路点拨如图,作CC′⊥AB于C,DD′⊥AB于D′,DQ⊥CC′,
1AB一常数,当CQ越小,CD越小,本例也CD2=DQ2+CQ2,DQ=
2
可设AP=x,则PB=x
10,从代数角度探求CD的最小值.
注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:
(1)中点处、垂直位置关系等;
(2)端点处、临界位置等.
【例2】如图,圆的半径等于正三角形ABC的高,此圆在沿底边

AB滚动,切点为T,圆交AC、BC于M、N,则对于所有可能的圆的位置而言,MTN为的度数()
A.从30°到60°变动B.从60°到90°变动
C.保持30°不变D.保持60°不变
思路点拨先考虑当圆心在正三角形的顶点C时,其弧的度数,再证明一般情形,从而作出判断.
注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变化的元素运动到特定的位置,使图形变化为特殊图形时,研究的量取得定值与最值.
【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上的一动点,
直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值.
思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.
【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N ,
证明:线段AK 和BN 的乘积与M 点的选择无关.
思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC 的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为△ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,从而我们的证明目标更加明确.
注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.
【例5】已知△XYZ是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt△ABC(∠C=90°)的三边上,求△ABC 直角边长的最大可能值.
思路点拨顶点Z在斜边上或直角边CA(或CB)上,当顶点Z在斜边AB上时,取xy的中点,通过几何不等关系求出直角边的最大值,当顶点Z在(AC或CB)上时,设CX=x,CZ=y,建立x,y的关系式,运用代数的方法求直角边的最大值.
注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:
(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值;
(2)构造二次函数求几何最值.
学力训练
1.如图,正方形ABCD的边长为1,点P为边BC上任意一点(可与B点或C点重合),分别过B、C、D作射线AP的垂线,垂足分别是B′、C′、D′,则BB′+CC′+DD′的最大值为,最小值为.
2.如图,∠AOB=45°,角内有一点P ,PO=10,在角的两边上有两点Q ,R(均不同于点O),则△PQR 的周长的最小值为 .
3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等于 .
4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP+BP 的最小值为( )
A .1
B .22
C .2
D .13-
5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )
A .212π+
B .2412π+
C .214π+
D .242π+
6.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )
A.线段EF的长逐渐增大B.线段EF的长逐渐减小
C.线段EF的长不改变D.线段EF的长不能确定
7.如图,点C是线段AB上的任意一点(C点不与A、B点重合),分别以AC、BC为边在直线AB的同侧作等边三角形ACD和等边三角形BCE,AE与CD相交于点M,BD与CE相交于点N.
(1)求证:MN∥AB;
(2)若AB的长为l0cm,当点C在线段AB上移动时,是否存在这样的一点C,使线段MN的长度最长?若存在,请确定C点的位置并求出MN的长;若不存在,请说明理由.
8.如图,定长的弦ST在一个以AB为直径的半圆上滑动,M是ST 的中点,P是S对AB作垂线的垂足,求证:不管ST滑到什么位置,∠SPM是一定角.
9.已知△ABC是⊙O的内接三角形,BT为⊙O的切线,B为切点,P为直线AB上一点,过点P作BC的平行线交直线BT于点E,交直线AC于点F.
(1)当点P在线段AB上时(如图),求证:PA·PB=PE·PF;
(2)当点P为线段BA延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明,如果不成立,请说明理由.
10.如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是( )
25D.14
A.8 B.12 C.
2
11.如图,AB是半圆的直径,线段CA上AB于点A,线段DB上AB于点B,AB=2;AC=1,BD=3,P是半圆上的一个动点,则封闭图形ACPDB的最大面积是( )
A.2
3+
3+D.2
1+C.2
2+B.2
12.如图,在△ABC中,BC=5,AC=12,AB=13,在边AB、AC上分别取点D、E,使线段DE将△ABC分成面积相等的两部分,试求这样线段的最小长度.
13.如图,ABCD是一个边长为1的正方形,U、V分别是AB、CD 上的点,A V与DU相交于点P,BV与CU相交于点Q.求四边形PUQV 面积的最大值.
14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?
15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示).其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米.
(1)设矩形的边AB=x(米),AM=y(米),用含x的代数式表示y 为.
(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元.
①设该工程的总造价为S(元),求S关于工的函数关系式.
②若该工程的银行贷款为235000元,仅靠银行贷款能否完成该
工程的建设任务?若能,请列出设计方案;若不能,请说明理
由.
③若该工程在银行贷款的基础上,又增加资金73000元,问能否
完成该工程的建设任务?若能,请列出所有可能的设计方案;
若不能,请说明理由.
16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积(精确到1m2).
参考答案
第 11 页 共 11 页。

相关文档
最新文档