一元一次方程与行程
一元一次方程解路程问题
一元一次方程解路程问题在一元一次方程中,我们可以解决各种与路程相关的题目。
以下是一些常见的路程问题及其对应的方程:1.相遇问题两人从甲地出发,相向而行,途中相遇。
假设两人的行走速度分别为v1和v2,相遇时间为t,那么两人相遇时,行走的总距离可以表示为:x=(v1 v2)*t2.追及问题两人分别从乙地出发,同向而行,途中相遇。
假设两人的行走速度分别为v1和v2(其中v1>v2),相遇时间为t,那么两人相遇时,行走的总距离可以表示为:x=(v1-v2)*t3.列车相遇问题两列车从甲地出发,相向而行,途中相遇。
假设两列车的行走速度分别为v1和v2,相遇时间为t,那么两列车相遇时,行走的总距离可以表示为:x=(v1 v2)*t4.环形跑道问题一人从甲地出发,沿环形跑道跑步。
假设跑步的速度为v1,跑步的时间为t,那么跑步的总距离可以表示为:x=v1*t5.航行问题一人从甲地出发,划船沿河而下。
假设划船的速度为v1,划船的时间为t,那么划船的总距离可以表示为:x=v1*t6.渡河问题一人从甲地出发,游泳过河。
假设游泳的速度为v1,游泳的时间为t,那么游泳的总距离可以表示为:x=v1*t7.顺流逆流问题一人从甲地出发,逆流而上。
假设游泳的速度为v1,水流的速度为v2(其中v2<v1),游泳的时间为t,那么游泳的总距离可以表示为:x=(v1-v2)*t或x=(v1 v2)*t(此公式根据上下文水流方向可能正负相反)8.变速直线运动问题一人从甲地出发,做变速直线运动。
假设变速直线运动的速度为v1,运动的时间为t,那么运动的总距离可以表示为:x=v1*t(注:此处的变速直线运动默认是匀加速或匀减速直线运动)9.简单的行程问题x=VT(其中V是速度,T是时间)在很多情况下可以解决简单的行程问题。
但是较复杂的问题可能需要一元一次方程的其他形式。
例如:逆向问题:这种情况下需要用到减法(如果两个物体向相反的方向移动)。
一元一次方程常见应用题型及解法
一元一次方程常见应用题:
一、行程问题:路程=速度×时间
1:相遇问题:甲路程+乙路程=总路程
2:追及问题:a、不同时同地出发:快者(追者)走的路程=慢者(前者)走的路程
b、同时不同地出发:慢者走的路程+两者距离=快者走的路程
3、水流问题:顺水行的路程=逆水行的路程
提前写出:顺水速度=静水速度+水流速度
逆水速度=静水速度-水流速度
二、工程问题:工作总量=工作效率×工作时间工作效率与单独工作的时间互为倒数
各部分工作量之和=1
三、利润率、销售问题:
商品利润=商品售价-商品进价=商品进价×商品利润率
商品利润率=商品利润/商品进价×100%
售价=进价×(1+利润率)
注:进价
售价=实际销售价格
标价=定价=原价=预计售价=原销售价
四、数字问题:
设一个两位数的十位上的数字和个位上的数字分别为a、b,则这个两位数表示为10a+b 五、按比例分配问题:
甲:乙:丙=a:b:c 全部数量=各种成分的数量之和(设一份为χ)
六、配套问题
“加工的两种物品成比例”
七、分配问题
“总量不变”
八、积分问题
比赛总场数=胜场总数+平场总数+负场总数
比赛总积分=胜场总积分+平场总积分+负场总积分九、规律问题
●3个规律数字:设中间的数为χ
●月历中的问题
月历中每一行上相邻的两数,右边的数比左边的数大1;
月历中的每一列上相邻的两数,下边的数比上边的数大7 十、方案决策问题
选择最优的方案就要把每种方案的结果算出来,进行比较。
一元一次方程之行程问题,方法归纳与题型总结,学霸不可错过!
t=4
此时甲离终点还有4km
16
乙
甲
4
终点
4
距离1km需要走3km,t 3 4
此时时间为1 4 3 23 4(舍去) 44
S0 V甲-V乙= t
学 例3小明每天要在8:00前赶到学校上学.一天,小明以70米/分的速度 出发去上学,11分钟后,小明的爸爸发现儿子忘了带数学作业,于
霸 是爸爸立即以180米/分的速度去追小明,并且与小明同时到达学 数 校.请问小明家距学校有多远的距离?
学
S爸
解:设爸爸追及的时间为x, 则有
联络员 10
甲4
乙6
联络员
追及时间t1 解:过程1:设联络员追上甲的时间为t1 , 则有
相遇时间t2
10t1
4t1
4, t1
2 3
此时,乙队的路程为4km,此时联络员与乙队的距离为8 3
km
过程2为相遇过程:相遇时间为 8 (10 6) 1 小时,2个过程总时间2 1 5 ,总路程为5 10 25 km
数
列火车的长是多少米?
学
甲 相遇问题
解:36km / h 10m / s,3.6km/ h 1m / s 设火车的速度为xm / s,则有
乙 追及问题
10(x 10) 21(x 1) x 11,故火车的长度为210m
学 3.环形跑道问题
霸
S甲
数
学
周长为L
O
S乙
S甲-S乙=L∙n
一般设第n次相遇的时间为t
180x 70x 7011
S小明
x7
家
t=11分钟
小明
S0
学校 故小明家距学校的距离为180 7 1260m
一元一次方程模型的应用(四)行程问题
总结
行程问题是数学中的一类常见实际问题,通过数学模型的建立与求解,可以应对日常生活中的各种问题, 如计算旅途中剩余路程和到达目的地的时间,分析汽车行驶状态等,展现了数学在实际社会中的广泛应 用价值。谢谢大家的聆听!
行程问题的例子
假设一个人步行4公里需要1个小时,那么他每小时步行多少千米?
行程问题的解法
将条件转换为一元一次方程: 距离 = 速度 × 时间,即 4 = v × 1。解出速度后,即可得知这个人每小时步 行的千米数为4。
利用表格解决行程问题
使用表格也可以解决一些行程问题。将已知的值放在表格中的对应位置,可以方便地得出某个未知量。
草原上跑车问题
问题:
一辆Jeep在草原上通过了一个长方形的区域,周 长1800米,其中两边长,两个相邻的短边都是 100米长,宽是什么?
解法:
设长为x,宽为y,则2x + 2y = 1800, x + y = 900。 又(x-100)²+y²=x²+(y-100)² 求解出 y,即为草原的宽度。
行程问题中的相关变量
其中,行程指物体所行走的路程;速度指物体每单位时间所行走的路程长度; 时间指物体运动所用的时间。这三个变量是求解行程问题所必需的。
确定方程式的步骤
1. 确定未知量及其代号 2. 列出已知条件,将其转换成运算式 3. 利用未知量和运算式拼凑出未知量的表达式 4. 解方程,得到未知量的值 5. 检验解答,看是否符合实际情况
汽车加速问题
问题:
一辆汽车从停车状态开始以4m/s²的加速度行驶, 15秒后它的速度为36km/h,求汽车所行驶的距 离。
解法:
15秒 = 15/3600小时 36km/h = 10m/s 由 v = at + v0 求得初速度: 10 = 4 × (15/3600) + v0 即 v0 = 0.333m/s 由 S = vt + 1/2at²求得所行驶的距离: S = 10 × (15/3600) + 1/2 × 4 × (15/3600)²+ 0.333 × 15/3600 即 S = 99.9米。
一元一次方程行程问题的解题技巧
一元一次方程行程问题的解题技巧一元一次方程行程问题是一种常见的数学问题,它涉及到速度、时间、距离等概念。
掌握好这种问题的解题技巧,对于提高数学应用能力和解决实际生活问题有很大的帮助。
1. 确定等量关系在行程问题中,我们通常会找到一个等量关系,即速度、时间和距离之间的关系。
这个关系可以用以下公式表示:速度= 距离/ 时间。
因此,在解决一元一次方程行程问题时,首先要明确等量关系。
2. 建立数学方程根据等量关系,我们可以建立数学方程。
假设速度为v,时间为t,距离为d,则有:v = d / t。
如果知道其他两个量,就可以求出第三个量。
例如,如果知道距离d和时间t,就可以求出速度v:v = d / t。
如果知道速度v和时间t,就可以求出距离d:d = v ×t。
3. 解方程求解当只有一个未知数时,我们可以直接解方程求解。
例如,如果知道速度v和时间t,要求出距离d,则可以直接计算:d = v ×t。
如果不知道速度和时间,但知道距离和时间,则可以建立方程求解。
例如,已知距离d和时间t,求速度v:v = d / t。
解这个方程可以得到速度v的值。
4. 整合答案当得到解后,需要整合答案。
对于一个行程问题,通常需要求出时间、距离或速度中的一个或多个。
根据题目的要求和已知条件,我们可以选择合适的量来表示答案。
例如,如果已知速度和距离,我们可以计算时间:t = d / v。
如果已知时间和距离,我们可以计算速度:v = d / t。
如果已知时间和速度,我们可以计算距离:d = v ×t。
总之,一元一次方程行程问题的解题技巧主要包括确定等量关系、建立数学方程、解方程求解和整合答案四个步骤。
在解决实际问题时,我们需要根据具体情况选择合适的方法和公式来解决问题。
同时,也需要加强数学基础知识和应用能力的培养,提高解题效率和准确性。
一元一次方程经典行程问题
行程问题一、相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程二、追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离三、环形跑道问题:1、甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
2、甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。
四、航行问题1、飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速顺风速度-逆风速度=2×风速2、航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速顺水速度-逆水速度=2×水速练习:一、追及问题1.甲乙两人相距40千米,甲在后乙在前,两人同向而行,甲先出发1.5小时后乙再出发,甲的速度为每小时8千米,乙的速度为每小时6千米,甲出发几小时后追上乙?2、一个自行车队进行训练,训练时所有队员都以35千米/时的速度前进,突然,1号队员以45千米/时的速度独自行进,行进10千米后掉转车头,仍以45千米/时的速度往回骑,知道与其他队员会和。
1号队员从离队开始到与队员重新会和,经过了多长时间?3. 在3点钟和4点钟之间,钟表上的时针和分针什么时间重合?4.甲步行上午7时从A地出发,于下午5时到达B地,乙骑自行车上午10时从A地出发,于下午3时到达B地,问乙在什么时间追上甲的?分析:设A,B两地间的距离为1,根据题意得:甲步行走全程需要10小时,则甲的速度为_______.乙骑车走全程需要5小时,则乙的速度为_______.二、相遇问题1.甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。
乙车每小时行多少千米?2、A,B两村相距2800米,小明从A村出发向B村步行5分钟后,小军骑自行车从B村向A 村出发,又经过10分钟二人相遇,小军骑自行车比小明步行每分钟多走130米,小明每分钟步行多少米?三、环形跑道1. 甲、乙两人在400米的环形跑道上散步,甲每分钟走110米,乙每分钟走90米,两人同时从一个地点出发,几分钟后两人第一次相遇?四、航行问题1、一只轮船航行于甲、乙两地之间,顺水用3小时,逆水比顺水多30分钟,已知轮船在静水中速度是每小时26千米,求水流的速度.2. 一条船在两个码头之间航行,顺水时需要4.5小时,逆水返回需要5小时,水流速度是1千米/时。
一元一次方程应用题——行程问题
行程问题【基本关系式】(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型①相遇问题:快行距+慢行距=原距②追及问题:快行距-慢行距=原距③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速 = 2水速;顺速 + 逆速 = 2船速顺水的路程 = 逆水的路程注意:抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系。
常见的还有:相背而行;环形跑道问题。
【经典例题】例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?例2.某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
A、C两地之间的路程为10千米,求A、B两地之间的路程。
【专项训练】一、行程(相遇)问题A.基础训练1.小李和小刚家距离900米,两人同时从家出发相向行,小李每分走60米,小刚每分走90米,几分钟后两人相遇?2.小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,小明每分走多少米?3.王强和赵文从相距2280米的两地出发相向而行,王强每分行60米,赵文每分行80米,王强出发3分钟后赵文出发,几分钟后两人相遇?4.两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行60千米,1小时后乙车出发,每小时行40千米,乙车出发几小时两车相遇?5.两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间?6.甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。
实际问题与一元一次方程公式总结
b、工程款=工程单价*工作时间S 总= S甲+S乙=甲单价*T甲+乙单价*T乙
c、合作类题型
S 总= S甲+S乙= V甲t甲合作时间+V乙t甲合作时间
三、和倍分差问题
加(和)—+ 减(差)-- 乘(倍)—* 分(除)—/
四、数字问题
123= 1*100+2*10+3*1
实际问题与一元一次方程公式模型总结
一、行程问题(路程=速度*时间)
a、相遇问题
S 总= S甲+S乙 S 总= (V甲+V乙)T
b、追击问题
S 差= S甲-S乙 S 总= S甲+S乙 S 总= (V甲-V乙)T
c、顺逆流问题
V顺=V船+V水
V逆=V船-V水
二、工程问题(a、工程总量=工作时间*工作效率)
xyz=100x+10y+z
五、利润问题
利润=售价-进价(标价-成本)
售价=标价*折数
利润金*期数*利率*(1-利息税)
本息和=本金+利息
年利率=月利率* 12
一元一次方程行程问题知识点
一元一次方程行程问题知识点一、知识概述《一元一次方程行程问题知识点》①基本定义:一元一次方程行程问题呢,简单说就是根据路程、速度、时间这三个家伙之间的关系列出一元一次方程来解决出行方面的数学题。
路程就是走了多远,速度就是走得有多快(像每小时走多少千米这样),时间就是走了多久。
②重要程度:在数学这门学科里,行程问题可重要了。
它是一元一次方程应用里的典型题目,既能考验我们对一元一次方程的掌握,又和生活里的出行特别贴近。
懂了这个,在很多现实场景里就能算出时间、速度或者路程啥的。
③前置知识:要学一元一次方程行程问题,得先把一元一次方程的解法搞得明明白白,像方程的移项、合并同类项这些基本操作得会。
而且对速度、路程、时间的基本概念要清楚,得知道在速度不变的情况下,路程和时间成正比这种关系。
④应用价值:生活里到处都是它的影子啊。
比如说开车出去玩,知道两地的距离和车速,就能算出路上需要多久。
或者跑步锻炼的时候,知道跑的距离和花的时间,就能算出自己跑步的速度。
这对计划出行、安排时间超有用的。
二、知识体系①知识图谱:在一元一次方程这个大板块里,行程问题是应用题的一部分。
它是联系方程理论和实际生活的重要桥梁。
②关联知识:和方程的解法、有理数的运算、数与式等知识点都有联系。
解行程问题的时候,方程相加或者相减,就用到有理数的运算;列出方程里的路程、速度或者时间表达式的时候,会用到数与式相关知识。
③重难点分析:- 掌握难度:说实话有点费脑子。
主要是要根据实际情况准确地把路程、速度、时间用代数式表示出来,这中间变化多。
像相向而行和同向而行的路程算法就不一样。
- 关键点:抓住路程、速度、时间之间的关系。
而且要分清楚是相遇问题、追及问题还是环形跑道之类的特别情况。
④考点分析:- 在考试里很重要。
一般分值占比挺大的。
- 考查方式有直接给条件列方程求解路程或者时间的,还有像给了一点提示后让先确定是相遇还是追及然后再列方程求解的那种弯弯绕绕的题目。
一元一次方程行程问题公式
一元一次方程行程问题公式
一元一次方程是指只含有一个未知数的一次幂的方程。
行程问题通常可以使用一元一次方程来建模和解决。
行程问题可以表示为以下方程形式:
距离= 速度× 时间
其中,距离为行程的距离,速度为行程的速度,时间为行程所花费的时间。
如果你知道速度和时间,想要计算距离,可以使用以下方程:
距离= 速度× 时间
如果你知道距离和时间,想要计算速度,可以使用以下方程:
速度= 距离/ 时间
如果你知道距离和速度,想要计算时间,可以使用以下方程:
时间= 距离/ 速度
根据实际情况,将已知的数值代入公式中,即可计算出未知的数值。
一元一次方程应用题专题——行程问题——学生版
一元一次方程应用题专题——行程问题——学生版解:设快车开出x小时后与慢车相距600公里,由题意得,140x-90x+480=600解这个方程,50x=120∴x=2.4答:快车开出2.4小时后与慢车相距600公里。
4)分析:等量关系为:快车所走路程=慢车所走路程+480公里。
解:设快车开出x小时后追上慢车,由题意得,140x=90x+480解这个方程,50x=480∴x=9.6答:快车开出9.6小时后追上慢车。
5)分析:等量关系为:快车追上慢车所用的时间=快车比慢车快的速度所需时间。
解:设快车开出x小时后追上慢车,由题意得,140(x-1)=90x解这个方程,x=6答:快车开出6小时后追上慢车。
7千米,几小时后两人相遇?B.提高训练1.两辆车从相距720千米的两地出发相向而行,甲车先出发,每小时行80千米,2小时后乙车出发,每小时行100千米,几小时后两车相遇?2.两船从A、B两地同时出发,相向而行,两船相遇后,A船行驶了120千米,B船行驶了180千米,已知两船的速度之比为2:3,求A、B两地之间的距离。
3.两人从A、B两地同时出发,相向而行,两人相遇后,A行驶了4千米,B行驶了6千米。
已知A的速度是B的2倍,求A、B两地之间的距离。
4.两人从A、B两地同时出发,相向而行,两人相遇后,A行驶了3千米,B行驶了5千米。
已知A的速度是B的3倍,求A、B两地之间的距离。
5.两人从A、B两地同时出发,相向而行,两人相遇后,A行驶了12千米,B行驶了15千米。
已知A的速度是B的4倍,求A、B两地之间的距离。
4.甲和乙分别从两地出发,相向而行,甲先出发1小时。
当他们相距9千米时,乙行了多长时间?(改写并删除明显有问题的段落)甲和乙从两地相向而行,甲先出发1小时。
当他们相距9千米时,乙已经行驶了多长时间呢?假设他们的相遇点距离甲出发点x千米,则乙出发时距离甲出发点45-x千米。
根据题意,甲和乙的总路程为45千米,且甲的速度等于乙的速度加上9千米/小时(即他们相向而行的速度)。
七年级解一元一次方程(行程问题)
设A、B两地的距离为x千米,根据相遇问题的基本等量关 系式“速度和×时间=路程和”列出方程,解得x=16。
解题关键
理解相遇问题的基本等量关系式,并能根据题意灵活应 用。
例题2
两地相距280千米,一艘轮船在其间航行,顺流用去14 小时,逆流用去20小时,求这艘轮船在静水中的速度 和水流速度。
解题思路
解题思路
设甲乙两站的距离为x千米,根据两车在距两站中点16千 米处相遇的条件列出方程,解得x=288。
解题关键
理解两车在距两站中点一定距离处相遇的条件,并能根据 题意列出方程求解。
环形跑道问题例题解答
例题1
一条环形跑道长400米,甲骑自行车每分钟骑450米,乙 跑步每分钟250米,两人同时从同地同向出发,经过多少 分钟两人可以相遇?
关系列出方程。
注意比例关系的正确应用,避免 出现计算错误。
检查答案是否符合实际情况
解出方程后,要检查答案是否符合题目的实际情况。 例如,检查时间是否为正数、路程是否合理等。
如果答案不符合实际情况,需要重新审视题目和解题过程,找出错误并加以纠正。
06 练习与巩固提高
基础练习题选讲
01
02
03
04
设这艘轮船在静水中的速度为x千米/时,水流速度为y千 米/时,根据顺流和逆流的时间和路程关系列出方程组, 解得x=17,y=3。
解题关键
理解顺流和逆流的时间和路程关系,并能根据题意列出 方程组求解。
追及问题例题解答
例题1
甲、乙两人同地同向出发,甲骑自行车,乙步行,如果乙 先走12千米,那么甲用1小时就能追上乙;如果乙先走1 小时,那么甲只用1/2小时就能追上乙,求两人的速度。
03 图形化辅助解决行程问题
一元一次方程应用题——行程问题
1. 某人从家里骑自行车到学校。
假设每小时行15千米,可比预定的时间早到15分钟;假设每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?2.在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,t分钟后第一次相遇,t等于多少分钟.3.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?4.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时40分钟,逆风飞行需要3小时,求两城市间距离?5.轮船在静水中的速度是20千米/小时,从甲港顺流到乙港需8小时,返航时行走了6小时在距甲港68千米处发生故障,求水流速度?6.甲、乙两站相距280千米,一列慢车从甲站出发,每小时行驶60千米,一列快车从乙站出发,每小时行驶80千米,问两车同时开出,相向而行,出发后多少小时相遇?7.甲、乙两列火车,长为144米和180米,甲车比乙车每秒钟多行4米,两列火车相向而行,从相遇到错开需要9秒钟,问两车的速度各是多少?8.甲、乙两人分别同时从相距300米的A、B两地相向而行,甲每分钟走15米,乙每分钟走13米,问几分钟后,两个相距20米?9.甲乙两人骑自行车,从相距42千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如甲走12分钟后乙再出发,问甲出发后几小时与乙相遇?10.小红和小军两人同时从各自的家里出发去找对方,两家的直线距离为1200米,小红每分走55米,两人最后用61小时在途中某点相遇,那么小军每分钟走多少米?11.A 、B 两地相距80米,甲从A 地出发,每秒走1米,乙从B 地出发每秒走1.5米,如甲先走15米,求乙出发后多少秒与甲相遇?12.某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6倍还多15千米,半小时后相遇。
一元一次方程与实际问题(行程问题)
xx
例 3.一艘船从甲码头到乙码头顺流行驶,用了 2 小时;从乙码头返 回甲码头逆流行驶,用了 2.5 小时.已知水流的速度是 3 千米/时, 求船在静水中的平均速度.
速度 时间
路程
顺 X+3 2 2(X+3)
逆 X-3 2.5 2.5(X-3)
解:设船在静水中的平均速度为 x 千米/时.则 2(x+3)=2.5(x-3) 解方程,得 2x+6=2.5x-7.5 2x-2.5x=-7.5-6 -0.5x=-13.5 x=27 答:船在静水中的平均速度为 27 千米/时.
6.一架飞机在两城之间飞行,顺风需要 4 小时,逆风需要 4.5 小 时.测得风速为 45 千米/时,求两城之间的距离.
解:设飞机在无风时的平均飞行速度为 x 千米/时,则 4(x+45)=4.5(x-45) 解方程,得 4x+180=4.5x-202.5 4x-4.5x=-202.5-180 -0.5x=-382.5,x=765 4×(765+45)=3240(千米) 答:两城之间的距离为 3240 千米.
二、过关检测 第1关 7.一轮船往返于甲、乙两码头之间,顺水航行需要 3 h,逆水航行
比顺水航行多用 30 m in,若轮船在静水中的速度为 26 km /h,求
水流的速度. 解:设水流的速度为 x km/h.则 3(26+x)=(3+0.5)(26-x)
解方程,得 3×26+3x=3.5×26-3.5x
客车的行驶速度是 70 km /h,卡车的行驶速度是 60 km /h,客车比
卡车早 1 h 经过 B 地,A ,B 两地间的路程是多少?
解:设客车行驶x h到达B地.由题意得 70x=60(x+1) 解得x=6 70x=70×6=420 (km) 答:A,B两地的路程是420 km.
(完整版)一元一次方程应用行程问题
:一元一次方程应用之--------------行程问题专题一、【根本概念】行程类应用题根本关系:路程=速度×时间速度=路程÷时间时间=路程÷速度相遇问题:甲、乙相向而行,那么:甲走地路程+乙走地路程=总路程.追及问题:①甲、乙同向不同地,那么:追者走地路程=前者走地路程+两地间地距离.②甲、乙同向同地不同时,那么:追者走地路程=前者走地路程环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快地必须多跑一圈才能追上慢地.②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时地总路程为环形跑道一圈地长度.飞行〔航行〕问题、根本等量关系:①顺风〔顺水〕速度=无风〔静水〕速度+风速〔水速〕②逆风〔逆水〕速度=无风〔静水〕速度-风速〔水速〕顺风〔水〕速度-逆风〔水〕速度=2×风〔水〕速车辆〔车身长度不可忽略〕过桥问题:车辆通过桥梁〔或隧道等〕,那么:车辆行驶地路程=桥梁〔隧道〕长度+车身长度超车〔会车〕问题:超车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度差.会车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度和.在行程问题中,按照题意画出行程图,可以使问题地分析过程更直观,更容易理解.特别是问题中运动状态复杂,涉及地量较多地时候,画行程图就成了理解题意地关键.所以画行程图是我们必须学会地一种分析手段.另外,由于行程问题中地根本量只有“路程〞、“速度〞和“时间〞三项,所以,列表分析也是解决行程问题地一种重要方法.二、【典型例题】〔一〕相遇问题相遇问题:甲、乙相向而行,那么:甲走地路程+乙走地路程=总路程.例1、甲、乙两站相距 600km,慢车每小时行40km,快车每小时行60km.⑴经过xh后,慢车行了km,快车行了 km,两车共行了km;⑵慢车从甲站开出,快车从乙站开出,相向而行,两车相遇共行了km, 如果两车同时开出,xh相遇,那么可得方程:;⑶如果两车相向而行,快车先行50km,在慢车开出yh后两车相遇,那么可得方程:;⑷如果两车相向而行,慢车先开50min,在快车开出th后两车相遇,那么可得方程:.例2、甲、乙两站地路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米.两车同时开出,相向而行,多少小时相遇?分析:1/3慢车的路程快车的路程甲站乙站两站相距450km例3、甲、乙两地相距376km,A车从甲地开往乙地,半小时后B车从乙地开往甲地,A车开出5h后与B车相遇,又知B车地时速是A车时速地倍,求B车地时速?例4、甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都匀速前进.两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A、B两地间地路程.课堂练习1:电气机车和磁悬浮列车从相距298千米地两地同时出发相对而行,磁悬浮列车地速度比电气机车速度地5倍还快20千米/时,半小时后两车相遇.两车地速度各是多少?2、甲、乙两人从相距35km地两地同时出发,相向而行,甲步行每小时走4km,乙骑车小时后相遇,求乙地速度.3、甲步行,乙骑自行车,同时从相距 27km地两地相向而行,2h 相遇,乙比甲每小时多走5.5km,求甲、乙两人地速度.4、A、B两地相距153km,汽车从A地开往B地,时速为38km;摩托车从B地开往A地,时速为24km.摩托车开出小时后,汽车再出发.问汽车开出几小时后遇到摩托车?5、甲骑自行车从A地出发,以12km/h地速度驶向B地,同时,乙也骑自行车从B地出发,以14km/h 地速度驶向A地.两人相遇时,乙已超过A、B两地中点1.5km,求A、B两地地距离.〔二〕追及问题例1、甲、乙两地相距10km,A、B两人分别从甲、乙两地同时、同向出发,A在前,B在后,A地速度是每小时4km,B地速度是每小时5km,xh后A走了km,B走了km.如果这时刚好B追上A,那么可列方程:.例2、甲、乙两人都从A地出发到B地,甲先走5km后乙再出发,甲速度是4km/h,乙速度是5km/h.如果A、B两地相距xkm,那么甲先走地时间是h,乙走地时间是h, 假设两人同时到达B地,那么可列方程:.例3、甲、乙两人同时以4km/h地速度从A地前往B地,走了后,甲要回去取一份文件.他以6km/h 地速度往回走,在办公室耽误了15min后,仍以6km/h地速度追赶乙,结果两人同时到达B地.求A、B两地间地距离.分析:你能求出第二段甲乙所用时间为h吗?假设设A、B两地间地距离为xkm,可以用表示第四段甲乙所用时间.课堂练习1:跑得快地马每天走240里,跑得慢地马每天走150里.慢马先走12天,快马几天可以追上慢马?课堂练习2:一辆每小时行30km地卡车由甲地驶往乙地,1h后,一辆每小时行40km地摩托车也由甲地驶往乙地,问卡车开出几h后摩托车可追上卡车?家庭练习:1、甲、乙两人相距18km,乙出发后甲再出发,甲在后,乙在前同向而行,甲骑车每小时行8km,乙步行每小时行5km,问甲出发几h后追上乙?2、甲每小时走5km,出发2h后乙骑车追甲.⑴如乙地速度为每小时20km,问乙多少分钟追上甲?⑵如果要求乙出发14km时追上甲,问乙地速度是多少?3、从甲地到乙地走水路比走公路近20km,上午10时,一条轮船甲地从驶往乙地,下午1时一2/3辆汽车也从甲地驶向乙地,结果汽车与轮船同时到达乙地.轮船时速20km,汽车时速60km,求甲地到乙地地水路和公路地长.4、同村地甲、乙两人都去县城,甲比乙早走1h,却迟到半小时,甲每小时走4km,乙每小时走5km.问村庄到县城地距离是多少?〔三〕环形跑道问题例1、某城举行环城自行车赛,骑得最快地人在出发后 35min就遇到骑得最慢地人,骑得最慢地人地车速是骑得最快地人地车速地5,环城一周是6km,求骑得最快地人地车速.7例2、一环形公路周长是24千米,甲乙两人从公路上地同一地点同一时间出发,背向而行,3小时后他们相遇.甲每小时比乙慢千米,求甲、乙两人速度各是多少?家庭练习:1、甲、乙两人在400m环形跑道上练竞走,乙每分钟走80m,甲地速度是乙地速度地11倍,现4甲在乙前面100m,问多少分钟后两人可首次相遇?2、运动场地跑道一圈长 400m.甲练习骑自行车,平均每分骑350m;乙练习跑步,平均每分钟跑250m.两人从同一处同时反向出发 ,经过多少时间首次相遇?又经过多少时间再次相遇?〔四〕航行〔飞行〕问题例1、一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了小时.水流速度是3千米/时,求船在静水中地平均速度.例2、一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机地航速和两城之间地航程.课堂练习1:一艘船从A港到B港顺流行驶,用了5小时;从B港返回A港逆流而行,用了小时,水流速度是3千米/小时,求船在静水中地速度.课堂练习2:有A、B、C三个码头,BC相距24km,某船从B顺水而下到达A后,立即逆水而上到达C.共用8h,水流速度为5km/h,船在静水中地速度为20km/h,求A、B之间地距离.1、客机和战斗机从相距600km地两个机场起飞,30min相遇,客机顺风飞行,战斗机逆风飞行,如果在静风中战斗机地速度是客机地3倍,风速是每小时24km,问两机地速度各是多少?2、船在静水中地速度是14km/h,水流速度是2km/h,船先顺流由一码头开出,再逆流返回,假设要船在3h30min内返回,那么船最远能开出多远?3、甲船从A地顺流下行,乙船同时从B地逆水上行,12h后相遇,此时甲船已走了全程地一半多9km,甲船在静水中地速度是每小时4km,乙船在静水地速度是每小时5km,求水流地速度.〔五〕错车问题例1.甲乙两人辞别后,沿着铁轨反向而行.此时,一列火车匀速地向甲迎面驶来,列车从甲身旁开过,用了15s;然后从乙身旁开过用了17s.两人地速度都是3.6km/h,这列火车有多长?随堂练习:1.某部队执行任务,以6km/h地速度前进,通信员在队尾接到命令后把命令传给了排头,然后立即返回队尾,通讯员来回地速度是10km/h,共用7.5min,求队伍地长度.2.在高速公路上,一辆长4米,速度为110千米/时地轿车准备超越一辆长12米,速度为100千米/时地卡车,那么轿车从开始超越到超越卡车需要花费地时间约是多少?3.某隧道长500m,现有一列火车从隧道内通过,测得火车通过隧道〔即从车头进入入口到车尾地离开出口〕共用30s,而整列火车完全在隧道内地时间为10s,求火车地速度和火车地长.4.一列火车用26s地时间通过一个长256m地隧道〔即从车头进入隧道到车尾离开隧道〕,这列火车又以同样地速度用16s地时间通过了另一个长96m地隧道,求这列火车地长度3/3。
一元一次方程行程问题
一元一次方程——行程问题例1.西安站和武汉站相距1500km,一列慢车从西安开出,速度为65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?西安站和武汉站相距1500km,一列慢车从西安开出,速度为68km/h,一列快车从武汉开出,速度为85km/h,若两车相向而行,慢车先开30分钟,快车行使几小时后两车相遇?例2.两匹马赛跑,黄色马的速度是6m/s,棕色马的速度是7m/s,如果让黄马先跑5m,棕色马再开始跑,几秒后可以追上黄色马?一个自行车队进行训练,训练时所有队员都以35千米/小时的速度前进,突然一号队员以45千米/小时的速度独自行进,行进10千米后调转车头,仍以45千米/小时的速度往回骑,直到与其他队员会和。
经过多长时间一号队员从离队开始到与队员重新会和?例3.一列长200米的火车,速度是20m/s,完全通过一座长400米的大桥需要几秒?火车用26秒的时间通过了一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求这列火车的长度。
例4.一船航行于A、B两个码头之间,顺水航行需要3小时,逆水航行需要5小时,已知水流速度是4km/h,求这两个码头之间的距离。
一架飞机贮油量允许飞机最多在空中飞4.6小时,飞机在静风中的速度是575km/h,风速是25km/h,这架飞机最远能飞出多少千米就应返回?拓展:1.小明家离学校5千米,放学后,爸爸从家里出发去学校接小明,与此同时小明从学校出发往家走,已知爸爸的速度是6千米/小时,小明的速度是4千米/小时.(1) 爸爸与小明相遇时,爸爸走了多少时间?(2) 若小明出发10分钟..后发现书本忘带了,立刻转身以8千米/小时的速度返回学校拿到书本后仍以此速度继续往家走.请问爸爸与小明相遇时,离学校还有多远?(不计途中耽搁)(家)(学校)(备用图)2.为赴台湾考察学习,小颗的爸爸在元旦节的早晨7点自驾一辆小轿车(平均速度为60千米/时)从家里出发赶往距家45千米的重庆江北机场,此时,距规定到达机场的时间仅剩90分钟.7点30分时小颖发现爸爸忘了带身份证,急忙通知爸爸返同,同时她乘坐出租车以40千米/时的平均速度直奔机场(打电话和上出租车的时间忽略不计),与此同时,爸爸接到通知后继续往机场方向行驶了5分钟后返回,结果不到30分钟就遇上了小颖(拿身份证的时间忽略不计),并立即赶赴机场,请问:(1)设小颖从7点30分出发经过x小时与爸爸相遇,则与爸爸相遇时小颖行驶了千米,爸爸返回了千米(均用含x的代数式表示).(2)小颖的爸爸能否在规定的时间内赶到机场?3.某中学租用两辆小汽车(速度相同)同时送1名带队老师和7名七年级学生到市区参加数学竞赛.每辆车限坐4人(不包括司机),其中一辆小汽车在距离考场15千米的地方出现故障,此时离截止进考场时刻还有42分钟,这时唯一可利用的只有另一辆小汽车,且这辆车的平均速度是60千米/时,人步行速是15千米/时.(人上下车的时间不记)(1)若小汽车送4人到达考场后再返回到出故障处接其他4人.请你通过计算说明能否在截止进考场的时刻前到达考场?(2)带队老师提出一种方案:先将4人用车送到考场,另外4人同时步行前往考场,小汽车到达考场后返回再接步行的4人到达考场.请你通过计算说明方案的可行性.(3)所有学生、老师都到达考场,最少需要多少时间?1、两地相距28公里,小明以15公里/小时的速度,小亮以30公里/小时的速度,分别骑自行车和开汽车从同一地前往另一地,小明先出发1小时,小亮几小时后才能追上小明?2、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么经过2分钟他们两人就要相遇。
实际问题与一元一次方程行程问题
•实际问题•行程问题建模•一元一次方程在行程问题中的应用•典型例题解析目•行程问题的实际应用•总结与反思录相遇问题总结词01详细描述02数学模型03总结词详细描述数学模型01 02 03总结词详细描述数学模型速度时间距离速度、时间、距离的关系同向行驶反向行驶相对速度顺风行驶相对速度=风速+船速逆风行驶相对速度=船速-风速航行问题中的相对速度总结词详细描述总结词在两个或多个物体同向运动,其中一个或多个物体加速或减速追赶另一个物体时,通常需要使用一元一次方程来求解追赶完成时各物体所走的路程和时间。
详细描述在追及问题中,通常需要找出追赶完成时各个物体所走的路程和时间。
为了解决这些问题,可以使用一元一次方程来求解。
例如,在两个物体同向运动,其中一个加速追赶另一个的问题中,可以使用一元一次方程来求解追赶完成时的时间和各个物体的速度和路程。
在航行问题中,通常需要使用一元一次方程来求解船舶或飞行器从起点到终点的航行时间和速度。
详细描述航行问题中,通常需要找出船舶或飞行器从起点到终点的航行时间和速度。
为了解决这些问题,可以使用一元一次方程来求解。
例如,在飞行器从地球飞往火星的问题中,可以使用一元一次方程来求解飞行器的速度和航行时间。
总结词VS总结词假设两个物体在t时间内相遇,它们之间的距离为d,速度分别为v1和v2,则有v1×t + v2×t = d。
详细描述例题详细描述假设两个物体在t时间内相遇,它们之间的距离为d,速度分别为v1和v2(v1>v2),则有v1×t - v2×t = d。
总结词追及问题主要考查的是两个物体在相同时间下所行驶的距离和速度之间的关系,以及如何求解追及时间。
例题甲车从A地出发前往B地,乙车从B地出发前往A地,甲车的速度为80公里/小时,乙车的速度为60公里/小时,两车相距100公里,问它们多久会相遇?详细描述例题相遇问题在实际中的应用总结词详细描述详细描述总结词详细描述行程问题的特点行程问题是一种常见的数学应用题,通常涉及速度、时间和距离等概念。
一元一次方程路程公式
我们要找出一元一次方程在路程问题中的应用。
首先,我们需要理解一元一次方程和路程的基本概念。
一元一次方程是只含有一个变量的方程,其最高次幂为一次。
路程是物体运动时所经过的轨迹长度。
在路程问题中,我们经常使用以下公式:
路程= 速度×时间
这个公式告诉我们,如果我们知道速度和时间,就可以计算出路程。
假设我们有一个物体,它的速度是v 米/秒,并且它运动了t 秒。
根据公式,我们可以得到以下方程:
s = v × t
其中s 是路程,v 是速度,t 是时间。
这是一个一元一次方程,因为它只包含一个变量(s、v 或t),并且这个变量的最高次幂是1。
一元一次方程在路程问题中的应用是:s = v × t
通解为:s = t*v
请注意,为了得到具体的s、v和t的值,我们需要更多的信息或条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程与行程问题一、计算题1.解方程:(1)3x =-9x -12 (2)2(3y -5)=-3(1-y )+1 2.(3)= (4)-x =x -224-2x 35x +463x -24二、解答题3.小明和小刚从学校出发去敬老院送水果,小明带着东西先走了2.5分钟,小刚才出发.若小明每分钟行80m ,小刚每分钟行120m .则小刚用几分钟可以追上小明?4.某自行车队在一次全程5千米的训练中,要经过一段平路和一段山路.已知平路上自行车的速度为600米/分钟,山路上自行车的速度为200米/分钟,全程共用时15分钟,求平路和山路路程各多少米.5.A,B 两地间的路程为448千米,一列慢车从A 站出发,每小时行驶60千米,一列快车从B 站出发,每小时行驶80千米,问:(1)两车同时出发,相向而行,快车开出后多少小时两车相遇?(2)两车相向而行,慢车先开28分钟,快车开出后多少小时两车相遇?(3)两车同时出发,同向而行,如果慢车在前,出发后多少小时快车追上慢车?6.A,B两站间的距离为448k m,一列慢车从A站出发,每小时行驶60k m,一列快车从B站出发,每小时行驶80k m,问:(1)两车同时开出,相向而行,出发后多少小时相遇?(2)两车相向而行,慢车先开28mi n,快车开出多少小时后辆车相遇?(3)如果两车都从A站开向B站,要使两车同时到达,慢车应先出发多少小时?7.甲、乙两站相距360千米,一列快车从甲站开出,每小时行160千米,一列慢车从乙站开出,每小时行80千米.(1)两车同时开出,相向而行多少小时后两车相遇?(2)两车同向而行,快车在慢车的后面,且慢车提前半小时出发,经过多少小时后快车追上慢车?8.甲乙两地相距120千米,一辆汽车和一辆摩托车从两地同时出发相向而行,1.2小时相遇.相遇后,摩托车继续前进,汽车在相遇处停留10分钟后原速返回,结果在第一次相遇后半小时再次遇到摩托车,问汽车、摩托车每小时各行驶多少千米?9.甲乙两地相距900千米,一列快车从甲地出发匀速开往乙地,速度为120千米/时;快车开出30分钟时,一列慢车从乙地出发匀速开往甲地,速度为90千米/时.设慢车行驶的时间为x小时,快车到达乙地后停止行驶,根据题意解答下列问题:(1)当快车与慢车相遇时,求慢车行驶的时间;(2)请从下列(A),(B)两题中任选一题作答.我选择:______.(A)当两车之间的距离为315千米时,求快车所行的路程;(B)①在慢车从乙地开往甲地的过程中,求快慢两车之间的距离;(用含x的代数式表示)②若第二列快车也从甲地出发匀速驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇后30分钟时,第二列快车与慢车相遇,直接写出第二列快车比第一列快车晚出发多少小时.10.列方程解应用题.沈丹高铁于2015年9月1日正式开通,小明美滋滋的坐上漂亮的和谐号列车从本溪去丹东游玩,大约8点半途径沈丹线最长的南芬隧道.列车进入和驶出隧道用时2.5分钟,已知隧道全长7300米.隧道顶部的灯光照在列车上的时间是4秒.请你帮助小明算出列车的长度是多少?列车的行驶速度是多少?11.甲车和乙车从A、B两地同时出发,沿同一线路相向匀速行驶,出发后1.5h两车在C地相遇,相遇时甲车比乙车少走30k m.相遇后1.2h乙车到达A地.(1)两车的行驶速度分别是多少?(2)相遇后,若甲车想在乙车到达A地的同时到达B地,那么甲车的行驶速度要比原来增加多少k m/h?(3)探索:若从C地到B地的路段中,有一部分限速120k m/h,其余部分限速140k m/h,甲车从C地到B地时,在相应路段均以限速行驶(不超速也不低于限速),则恰好能在乙车到达A地的同时到达B地,求C地到B地间限速120k m/h和限速140k m/h的路程各是多少?12.甲乙两人在一环形场地上锻炼,甲骑自行车,乙跑步,甲比乙每分钟快200m,两人同时从起点同向出发,经过3mi n两人首次相遇,此时乙还需跑150m才能跑完第一圈.(1)求甲、乙两人的速度分别是每分钟多少米?(列方程或者方程组解答)(2)若两人相遇后,甲立即以每分钟300m的速度掉头向反方向骑车,乙仍按原方向继续跑,要想不超过1.2m i n两人再次相遇,则乙的速度至少要提高每分钟多少米?13.已知甲乙两人在一个400米的环形跑道上练习跑步,现在把跑道分成相等的4段,即两条直道和两条弯道的长度相同.甲平均每秒跑4米,乙平均每秒跑6米,若甲乙两人分别从A、C两处同时相向出发(如图),则:(1)几秒后两人首次相遇?请说出此时他们在跑道上的具体位置;(2)首次相遇后,又经过多少时间他们再次相遇?(3)他们第100次相遇时,在哪一条段跑道上?答案和解析【答案】1.解:(1)移项合并得:12x =-12,解得:x =-1;(2)去括号得:6y -10=-3+3y +1,移项合并得:3y =8,解得:y =;83(3)去分母得:3x -6=8-4x ,移项合并得:7x =14,解得:x =2;(4)去分母得:10x +8-12x =9x -6,移项合并得:11x =14,解得:x =.14112.解:设小刚用x 分钟可以追上小明,根据题意得:120x =80(x +2.5),解得:x =5.答:小刚用5分钟可以追上小明.3.解:设平路的路程为x 米,则山路路程为(5000-x )米,根据题意可得:+=15,x 6005000-x200解得:x =3000,故山路路程为:5000-3000=2000(米).答:平路的路程为3000m ,山路路程为2000米.4.解:(1)设快车开出后x 小时两车相遇,根据题意得:(60+80)x =448,解得:x =3.2.答:快车开出后3.2小时两车相遇.(2)设快车开出后y 小时两车相遇,根据题意得:(60+80)y +×60=448,2860解得:y =3.答:快车开出后3小时两车相遇.(3)设出发后z 小时快车追上慢车,根据题意得:(80-60)z =448,解得:z =22.4.答:出发后22.4小时快车追上慢车.5.解:(1)设出发后x 小时两车相遇,根据题意可得:60x +80x =448,解得:x =3.2,答:两车同时开出,相向而行,出发后3.2小时相遇;(2)设快车出发后y 小时两车相遇,根据题意可得:×60+(60+80)y =448,2860解得:y =3,答:快车出发后3小时两车相遇;(3)由题意可得:-=,44860448802815答:慢车应先出发小时.28156.解:(1)设两车相向而行x 小时后两车相遇,根据题意得:160x +80x =360,解得:x =1.5.答:两车相向而行1.5小时后两车相遇;(2)设经过x 小时后快车追上慢车,根据题意得:360+80×0.5+80×x =160x ,解得:x =5.答:经过5小时后快车追上慢车.7.解:设汽车每小时行驶x 千米,摩托车每小时行驶y 千米,根据题意得:,{1.2(x +y )=120(-)x =y 12106012解得:.{x =60y =40答:汽车每小时行驶60千米,摩托车每小时行驶40千米.8.(A )9.解:设高铁列车长度x 米.2.5分钟=150秒列方程得:=,7300+x 150x4解得:x =200(米)列车的速度为:=50(米/秒)2004答:高铁列车长为200米,速度为50米/秒.10.解:(1)设甲、乙两车行驶的速度分别是每小时x 千米、y 千米,由题意得,{1.5x =1.5y -301.5x =1.2y解得.{x =80y =100答:甲、乙两车行驶的速度分别是每小时80千米、100千米;(2)100×1.5÷1.2-80=125-80=45(千米/小时).答:甲车的行驶速度要比原来增加45k m /h .(3)设C 地到B 地间限速120k m /h 的路程为a 千米,由题意得+=1.2,a 120150-a 140解得:a =108,则150-a =42千米.答:C 地到B 地间限速120k m /h 的路程为108千米,则限速140k m /h 的路程为42千米.11.解:(1)设乙的速度是每分钟x米,则甲的速度是每分钟(x+200)米,依题意有3x+150=200×3,解得x=150,x+200=150+200=350.答:甲的速度是每分钟350米,乙的速度是每分钟150米.(2)(200×3-300×1.2)÷1.2=(600-360)÷1.2=240÷1.2=200(米),200-150=50(米).答:乙的速度至少要提高每分钟50米.12.解:(1)设x秒后两人首次相遇,依题意得到方程4x+6x=200.解得x=20.甲跑的路程=4×20=80米,答:20秒后两人首次相遇,此时他们在直道A B上,且离B点20米的位置;(2)设y秒后两人再次相遇,依题意得到方程4y+6y=400.解得y=40.答:40秒后两人再次相遇;(3)第1次相遇,总用时20秒,第2次相遇,总用时20+40×1,即60秒,第3次相遇,总用时20+40×2,即60秒,第100次相遇,总用时20+40×99,即3980秒,则此时甲跑的圈数为:3980×4÷400=39.8,400×0.8=320此时甲在A D弯道上.即他们第100次相遇时,在跑道A D上.【解析】1.(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把y系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,去分母时注意方程各项都乘以各分母的最小公倍数.2.设小刚用x分钟可以追上小明,根据路程=速度×时间即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,根据数量关系路程=速度×时间列出关于x的一元一次方程是解题的关键.3.设平路的路程为x米,则山路路程为(5000-x)米,再利用自行车的速度以及全程共用时15分钟得出等式求出答案.此题主要考查了一元一次方程的应用,正确表示两段路程所用的时间是解题关键.4.(1)设快车开出后x小时两车相遇,根据两地间距=相遇时间×两车速度之和,即可列出关于x的一元一次方程,解之即可得出结论;(2)设快车开出后y小时两车相遇,根据两地间距=慢车先行的路程+相遇时间×两车速度和,即可列出关于y的一元一次方程,解之即可得出结论;(3)设出发后z 小时快车追上慢车,根据两地间距=相遇时间×两车速度之差,即可列出关于z 的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,根据数量关系列出一元一次方程是解题的关键.5.(1)根据题意利用两车行驶的距离和=448,进而求出即可;(2)利用两车行驶的距离和=448,进而求出即可;(3)利用两车所用时间的差进而得出即可.此题主要考查了一元一次方程的应用,得出正确等量关系是解题关键.6.(1)设两车相向而行x 小时后两车相遇,根据题意可知,两车走的总路程为360千米,据此列方程求解;(2)设经过x 小时后快车追上慢车,根据题意可知,慢车速度×(时间+0.5)+360=快车走的路程,据此列方程求解.本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.7.设汽车每小时行驶x 千米,摩托车每小时行驶y 千米,根据路程=速度×时间,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,根据路程=速度×时间,列出关于x 、y 的二元一次方程组是解题的关键.8.解:(1)设慢车行驶的时间为x 小时,由题意得120(x +)+90x =900,12解得x =4.答:当快车与慢车相遇时,慢车行驶了4小时;(2)(A )当两车之间的距离为315千米时,有两种情况:①两车相遇前相距315千米,此时120(x +)+90x =900-315,12解得x =2.5.120(x +)=360(千米);12②两车相遇后相距315千米,此时120(x +)+90x =900+315,12解得x =5.5.120(x +)=720(千米);12③当快车到达乙地时,快车行驶了7.5小时,慢车行驶了7小时,7×90=630>315,此种情况不存在.答:当两车之间的距离为315千米时,快车所行的路程为360千米或720千米;(B )①当慢车与快车相遇前,即0≤x <4时,两车的距离为900-120(x +)-90x =840-210x ;12当慢车与快车相遇后,快车到达乙地前,即4≤x<7.5时,两车的距离为120(x +)+90x -900=210x -840;12当快车到达乙地时,即7.5≤x ≤10时,两车的距离为90x ;②在第一列快车与慢车相遇后30分钟时,慢车行驶的时间为4+=小时,快车慢1292车行驶的时间为4++=5小时.1212设第二列快车行驶y 小时与慢车相遇,由题意,得120y +×90=900,92解得y=4,185-4=(小时).1878答:第二列快车比第一列快车晚出发小时.78(1)设慢车行驶的时间为x 小时,根据相遇时,快车行驶的路程+慢车行驶的路程=900,依此列出方程,求解即可;(2)(A )当两车之间的距离为315千米时,分三种情况:①两车相遇前相距315千米,快车行驶的路程+慢车行驶的路程=900-315;②两车相遇后相距315千米,快车行驶的路程+慢车行驶的路程=900+315;③当快车到达乙地时,快车行驶了7.5小时,慢车行驶了7小时,7×90=630>315,此种情况不存在;(B )分三种情况:①慢车与快车相遇前;慢车与快车相遇后;快车到达乙地时;②在第一列快车与慢车相遇后30分钟时,慢车行驶的时间为4+=小时,快车慢1292车行驶的时间为4++=5小时.设第二列快车行驶y 小时与慢车相遇,根据相遇时,1212快车行驶的路程+慢车行驶的路程=900,求出y 的值,进而求解即可.本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.设高铁列车长度x 米,根据速度公式就可解答此题.此题考查一元一次方程的应用问题,关键是根据速度等于路程除以时间进行解答.10.(1)设甲、乙行驶的速度分别是每小时x 千米、y 千米,根据题意列出二元一次方程组,求出x 和y 的值即可;(2)求得甲车需要行的路程,再除以需要的时间求得现在的速度,减去原来的速度即可;(3)设C 地到B 地间限速120k m /h 的路程为a 千米,则限速140k m /h 的路程为(150-a )千米,根据行驶的时间和为1.2小时,列出方程解决问题即可.此题考查二元一次方程组与一元一次方程的实际运用,理解题意,找出题目蕴含的数量关系是解决问题的关键.11.(1)可设乙的速度是每分钟x 米,则甲的速度是每分钟(x +200)米,两人同向而行相遇属于追及问题,等量关系为:甲路程与乙路程的差=环形场地的路程,列出方程即可求解;(2)在环形跑道上两人背向而行属于相遇问题,等量关系为:甲路程+乙路程=环形场地的路程,列出算式求解即可.本题考查环形跑道上的相遇问题和追及问题.相遇问题常用的等量关系为:甲路程+乙路程=环形跑道的长度,追及问题常用的等量关系为:甲路程-乙路程=环形跑道的长度.12.(1)甲、乙两人分别从A 、C 两处同时相向出发,从图上可知首次相遇是个相遇问题,找到路程,知道速度,根据路程=速度×时间,可列方程求解;(2)再次相遇仍旧是个相遇问题,找到路程,知道速度,根据路程=速度×时间,可列方程求解;(3)找到每次相遇时间的规律,可求出相遇100次所用的时间,然后根据时间求出甲所跑的位置,从而求解.本题考查了一元一次方程的应用.本题是个行程问题关键是看清是相遇问题以及找到第100次相遇时用的时间为多少.。