高一数学题
高一数学试题大全
高一数学试题答案及解析1.抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为()A.B.C.D.【答案】D【解析】抛掷一枚骰子,共会出现共有6中情况,点数不超过4有共3种情况,因此.【考点】古典概型的应用.2.是().A.奇函数B.偶函数C.既是奇函数也是偶函数D.既不是奇函数也不是偶函数【答案】A.【解析】由二倍角的正弦公式有,此函数定义域为R,且满足f(-x)=-f(x),即为奇函数.【考点】二倍角的正弦公式,奇偶函数的定义.3.在中,角的对边分别是,已知,则()A.B.C.D.或【答案】B【解析】由已知知,所以B<A=,由正弦定理得,==,所以,故选B【考点】正弦定理4.在△ABC中,内角A,B,C的对边分别为a,b,c.若,b+c=7,cosB=,则=()A.3B.4C.5D.6【答案】A【解析】,解得。
故A正确。
【考点】余弦定理。
5.已知函数,,则下列选项正确的是()A.B.C.D.【答案】B【解析】因为,,,故,又因为在单调递增,所以,故选B.【考点】1.对数函数的图像与性质;2.指数函数的图像与性质.6.已知集合,,则=A.B.C.D.【答案】A【解析】,,,故选:A.【考点】集合的运算7.由直线上的一点向圆引切线,则切线长的最小值为()A.B.C.D.【答案】A【解析】即,连接直线上的一点P与圆心C(3,0),切点Q与圆心,由直角三角形PQC可知,为使切线长的最小,只需PC最小,因此,PC垂直于直线。
由勾股定理得,切线长的最小值为:,故选A。
【考点】直线与圆的位置关系点评:中档题,研究直线与圆的位置关系问题,要注意利用数形结合思想,充分借助于图形的特征及圆的切线性质。
8.集合,,则等于()A.B.C.D.【答案】C【解析】因为,,,交集是两个集合中的相同元素构成的集合,所以,,选C。
【考点】集合的运算点评:简单题,交集是两个集合中的相同元素构成的集合。
高一数学试题及答案
高一数学试题及答案一、选择题(每题4分,共40分)1. 下列哪个选项是函数y=|x|在x=0处的极限值?A. 1B. 0C. 2D. 不存在2. 已知函数f(x) = 3x^2 - 2x + 1,求f(2)的值。
A. 10B. 11C. 12D. 133. 若a、b为等差数列的连续项,且a+b=10,而a与b的倒数之和为\(\frac{2}{5}\),则a的值为:A. 1B. 2C. 3D. 44. 一个圆的半径为5cm,求该圆的面积(圆周率取3.14)。
A. 78.5平方厘米B. 85平方厘米C. 90平方厘米D. 95平方厘米5. 已知一个等比数列的前三项分别为2, 6, 18,求该数列的公比。
A. 2B. 3C. 4D. 66. 若x满足方程x^2 - 5x + 6 = 0,求x的值。
A. 2, 3B. 1, 4C. 1, 6D. 3, 47. 直线y = 2x + 3与x轴的交点坐标为:A. (-1.5, 0)B. (1.5, 0)C. (-3, 0)D. (3, 0)8. 已知一个三角形的三边长分别为3cm, 4cm, 5cm,该三角形的面积是多少?A. 6平方厘米B. 7.5平方厘米C. 9平方厘米D. 12平方厘米9. 函数y = |2x - 3|与x轴所围成的图形面积为:A. 2B. 3C. 4D. 610. 若a, b, c是等差数列,且a + c = 2b,若b = 5,则a + c的值为:A. 5B. 10C. 15D. 20二、填空题(每题4分,共20分)11. 若f(x) = x^3 - 6x^2 + 11x - 6,求f(2) = ______。
12. 一个圆的直径为10cm,求该圆的周长(圆周率取3.14)为______。
13. 已知等比数列的前两项为3和9,求该数列的第四项为______。
14. 若x和y满足方程组\(\begin{cases} 2x + y = 8 \\ x - y = 2 \end{cases}\),求x的值为______。
高一数学试题大全
高一数学试题答案及解析1.在△ABC中,若a =" 2" ,, , 则B等于()A.B.或C.D.或【答案】B【解析】由正弦定理得,由于是三角形的内角,或,符合大边对大角.【考点】正弦定理的应用.2.已知ABC的重心为G,内角A,B,C的对边分别为a,b,c,若,则角A为()A.B.C.D.【答案】A【解析】由于是的重心,,.代入得由于不共线,【考点】平面向量共线定理和余弦定理的应用.3.等差数列的通项公式,设数列,其前n项和为,则等于A.B.C.D.以上都不对【答案】A【解析】由题意得====【考点】裂项抵消法求数列的前项和4.等于()A.B.C.D.【解析】,故选A.【考点】诱导公式.5.在等差数列中,若,则等于A.45B.75C.180D.300【答案】C【解析】解:∵a3+a4+a5+a6+a7=450,∴5a5=450∴a5=90∴a1+a9=2a5=180,故选C..【考点】等差数列的性质.6.若定义在区间上的函数满足:对于任意的,都有,且时,有,的最大值、最小值分别为,则的值为( )A.2012B.2013C.4024D.4026【答案】C【解析】设,,,,即所以是单调递增函数,其最大值和最小值是,,令代入得:,得,所以,,故选C.【考点】抽象函数7.设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是 ( )A.①和②B.②和③C.③和④D.①和④【答案】A【解析】因为平行于同一个平面的两条直线可能相交,也可能异面所以命题②不正确;垂直于同一个平面的两个平面有可能是相交的,所以命题③也不正确.故选A【考点】1、线面平行的性质与判定;2、线面垂直的判定与性质.8.设a,b,c,均为正数,且则( )A.B.C.D.【答案】C【解析】由考虑函数与图像,可知交点横坐标大于1,即c>1.由得,,即,所以0<<1,由得,,所以0<b<1.,.由,即(*).i)当时(*)式左边为负,右边为正,所以不成立;ii)时,(*)式左边为0,右边不为0,所以不成立;所以<1.综上.【考点】本题中通过函数的特殊性选出C最大.通过求差的方法结合对数函数和指数函数的范围比较可得.9. A为△ABC的内角,且A为锐角,则的取值范围是()A.B.C.D.【答案】C【解析】∵,又A为锐角,∴,∴,∴,即的取值范围是,故选C【考点】本题考查了三角函数的值域问题点评:求解三角函数的最值问题,一般都要经过三角恒等变换,转化为y=Asin(ωx+Φ)型等,然后根据基本函数y=sinx等相关的性质进行求解10.在△ABC中,如果,那么cos C等于()【答案】D【解析】∵,∴a:b:c=2:3:4,∴,故选D【考点】本题考查了正余弦定理的综合运用点评:熟练掌握正余弦定理及其变形是解决此类问题的关键,属基础题11.将的图象向左平移个单位,得到的图象,则等于 ( ) A.B.C.D.【答案】D【解析】将的图象向左平移个单位,得到函数的图象,即,所以等于,故选D。
高一数学试题大全
高一数学试题答案及解析1.下列说法中不正确的是()A.对于线性回归方程,直线必经过点B.茎叶图的优点在于它可以保存原始数据,并且可以随时记录C.将一组数据中的每一个数据都加上或减去同一常数后,方差恒不变D.掷一枚均匀硬币出现正面向上的概率是,那么一枚硬币投掷2次一定出现正面【答案】D【解析】对于A由线性回归方程的推导可知直线必经过点,作为常规结论最好记住;对于B也正确;对于C可以对新的一组数据重新计算它的方差会发现方差与原来的方差一样,不会改变,也正确,作为常规结论最好记住;对于D,主要是对概率概念的理解不正确,概率说的是一种可能性,概率大的事件一次实验中也可能不发生,概率小的事件一次试验中也可能发生,所以一枚硬币投掷2次也可能不会出现正面,因此D不正确.【考点】统计与概率的基本概念.2.如图BC是单位圆A的一条直径, F是线段AB上的点,且,若DE是圆A中绕圆心A运动的一条直径,则的值是().A.B.C.D.【答案】C.【解析】根据题意有,则,又且圆的半径为1,所以则因此.【考点】向量的三角形法则,向量的数乘运算,数量积的定义,相反向量,.3.已知,则的值为()A.B.C.D.【答案】D【解析】根据诱导公式,故选D.【考点】诱导公式4.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到300度之间,频率分布直方图所示,则在这些用户中,用电量落在区间内的户数为()A.B.C.D.【答案】B【解析】所以用电户的频率之和等于,所以,所以,所以用电量落在区间内的频率等于,所以户数等于,故选B.【考点】频率分布直方图的应用5.数列满足,其中,设,则等于()A.B.C.D.【答案】C【解析】由题意可知该数列依次为1,1,3,1,5,3,7,1,9,5 ,可以计算出,, ,,推理可得.【考点】数列的表示法.6.下面四个判断中,正确的是()A.式子1+k+k2+…+k n(n∈N*)中,当n=1时式子值为1B.式子1+k+k2+…+k n-1(n∈N*)中,当n=1时式子值为1+kC.式子1++…+(n∈N*)中,当n=1时式子值为1+D.设f(x)=(n∈N*),则f(k+1)=f(k)+【答案】C【解析】对于A,f(1)恒为1,正确;对于B,f(1)恒为1,错误;对于C,f(1)恒为1,错误;对于D,f(k+1)=f(k)+++-,错误;故选A..【考点】数学归纳法.7.若直线的倾斜角为,则直线的斜率为()A.B.C.D.【答案】【解析】【考点】利用倾斜角求斜率.8.的值是A.B.C.D.【答案】C【解析】根据三角函数的诱导公式可知,故C为正确答案.【考点】三角函数的诱导公式、三角函数值的计算.9.在△ABC中,已知++ab=,则∠C=()A.30°B.60°C.120°D.150°【答案】C【解析】因为,△ABC中,已知++ab=,所以,,∠C=120°,选C。
高一数学试题及答案
高一数学试题及答案注意事项:在答题卡的密封线内填写班别、姓名、考号。
选择题用2B铅笔涂黑答题卡上对应题目的答案标号,非选择题用黑色字迹的钢笔或签字笔作答,写在答题卷指定区域内。
不按要求作答的答案无效。
一、选择题1.已知U={1,3,5,7,9},A={3,5},则C_U^A={1,7,9}。
2.已知集合P={x|x<2},Q={x|-1≤x≤3},则P∪Q={x|-1≤x<2}。
3.已知函数f(x)=2x,则f(1+x)=2+2x。
4.在区间(0,∞)上为增函数的是y=x^2.5.运行程序框图输出的结果是38.6.设x是函数f(x)=lnx+x-4的零点,则x所在的区间为(3,4)。
7.已知函数f(x)={2x,x>1;x+1,x≤1},f(a)+f(1)=3,则a=1.8.如果a>1,b<-1,则函数f(x)=ax+b的图像经过第二、三、四象限。
9.已知函数f(x)=(x-a)(x-b),若f(x)的图象如图B所示,则函数g(x)=ax+b的图象是图C。
二、改写请注意格式错误和明显有问题的段落已经被删除,以下是对每段话的小幅度改写:1.选择题需要在答题卡上用2B铅笔涂黑对应题目的答案标号,非选择题需要用黑色字迹的钢笔或签字笔写在答题卷指定区域内。
2.选择题中每小题有四个选项,只有一项是符合题目要求的。
3.对于函数f(x)=2x,f(1+x)=2+2x。
4.在区间(0,∞)上为增函数的是y=x^2.5.运行程序框图输出的结果是38.6.设x是函数f(x)=lnx+x-4的零点,则x在区间(3,4)内。
7.已知函数f(x)={2x,x>1;x+1,x≤1},f(a)+f(1)=3,则a=1.8.如果a>1,b<-1,则函数f(x)=ax+b的图像经过第二、三、四象限。
9.已知函数f(x)=(x-a)(x-b),若f(x)的图象如图B所示,则函数g(x)=ax+b的图象是图C。
高一数学必修1习题及答案5篇
高一数学必修1习题及答案5篇习题1:已知∠ABC=60°,AB=4,BC=6,求AC的长度。
解答:通过画图可知,△ABC为一个等边三角形,因此AC=AB=4。
习题2:已知一条直线l1:x-2y+3=0,求平行于l1且过点P(1,2)的直线l2的方程式。
解答:l1的斜率为2,因此l2的斜率也为2。
同时,由于l2过点P(1,2),因此可得l2的方程式为y-2=2(x-1),即y=2x。
习题3:已知函数f(x)=2x-1,求f(3)的值和f(-2)的值。
解答:将3代入f(x)=2x-1,可得f(3)=2(3)-1=5。
将-2代入f(x)=2x-1,可得f(-2)=2(-2)-1=-5。
习题4:已知弧AB所对的圆心角为60°,AB的弧长为π,求该圆的半径。
解答:圆心角60°所对的弧长为圆的1/6,即π/6。
因此可知该圆的周长为2π,因此半径为1。
习题5:已知平面直角坐标系中两点A(2,5)和B(-3,-4),求线段AB的长度。
解答:通过勾股定理可知,线段AB的长度为√(2-(-3))^2+(5-(-4))^2=√25+81=√106。
以上是数学必修1的5道典型习题及解答,这些题目涵盖了数学必修1的不同知识点,包括三角函数、直线方程、函数、圆和勾股定理等。
对于高一学生来说,这些内容都是必须掌握的基础知识。
在学习数学时,不仅要了解知识点本身的定义和公式,还要学会思考如何运用所学知识解决问题。
因此,在学习习题时,除了知晓解答方法和答案外,还需深入思考,理解其背后的思维过程和逻辑。
在解答习题时,需要注意的是细节问题。
比如在第三道题中,如果没有注意到f(x)的定义式中有-1这一项,就会出现计算错误。
因此,在解答问题时,不仅需要整体考虑,还需要对计算细节进行仔细检查。
在学习数学时,还需要注重实践操作和分类整理。
对于复杂的习题和知识点,可以多练习相关问题,通过不断反复联系和思考,形成自己的解题思路和方法。
高一数学考试试题及答案
高一数学考试试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=2x+1,则f(-1)的值为:A. -1B. 1C. 3D. -3答案:A2. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B3. 函数y=x^2-4x+3的顶点坐标为:A. (2,-1)B. (2,1)C. (-2,1)D. (-2,-1)答案:A4. 圆的方程为(x-2)^2+(y-3)^2=25,则圆心坐标为:A. (2,3)B. (-2,-3)C. (-2,3)D. (2,-3)答案:A5. 直线y=2x+3与x轴的交点坐标为:A. (-3/2, 0)B. (3/2, 0)C. (0, -3/2)D. (0, 3/2)答案:B6. 函数y=|x|的图像是:A. 一条直线B. 两条直线C. 一条曲线D. 两条曲线答案:B7. 已知等差数列{an}的前三项分别为2, 5, 8,则该数列的公差为:A. 1B. 2C. 3D. 4答案:B8. 函数y=sin(x)的周期为:B. 2πC. π/2D. 4π答案:B9. 已知向量a=(3, -4),b=(2, 5),则a·b的值为:A. -1B. 11C. -11D. 1答案:C10. 圆的方程为x^2+y^2-6x+8y-24=0,则该圆的半径为:A. 2B. 4C. 6D. 8答案:C二、填空题(每题4分,共20分)11. 函数y=3x-2的反函数为______。
答案:y=(1/3)x+2/312. 已知等比数列{bn}的前三项分别为3, 6, 12,则该数列的公比为______。
13. 若a, b, c是三角形的三边长,且满足a^2+b^2=c^2,则该三角形为______三角形。
答案:直角14. 函数y=1/x的图像在第二象限内是______的。
答案:递减15. 已知向量a=(4, 1),b=(2, -3),则|a+b|的值为______。
高一数学题目及答案100道计算题必修一
高一数学题目及答案100道计算题必修一题目1:求下列各组数的最大公因数和最小公倍数:18,24。
解:18 = 2 x 3^224 = 2^3 x 3最大公因数 = 2 x 3 = 6最小公倍数 = 2^3 x 3^2 = 72题目2:计算:(2 + √3)(2 - √3)。
解:(2 + √3)(2 - √3) = 2^2 - √3^2 = 4 - 3 = 1题目3:化简:√75。
解:√75 = √(3 x 5^2) = 5√3题目4:求解下列方程:2x + 5 = 7。
解:2x + 5 = 72x = 7 - 52x = 2x = 1题目5:计算:√(-16)。
解:√(-16) = 4i题目6:求解下列方程组:3x + 2y = 74x - y = 5解:通过消元法可得:首先将第二个式子乘以2,得到:8x - 2y = 10相加得到:11x = 17解得:x = 17/11带入第一个方程得到:3 * (17/11) + 2y = 7解得:y = 5/11题目7:计算:sin^2(30°) + cos^2(30°)。
解:sin^2(30°) + cos^2(30°) = (1/2)^2 + (√3/2)^2 = 1/4 + 3/4 = 1题目8:若三角形的两条边长分别为5cm和12cm,夹角为30°,求第三边的长。
解:根据余弦定理,第三边长为√(5^2 + 12^2 - 2 * 5 * 12 * cos(30°)) = 5√3 cm题目9:计算:log(1000) - log(10)。
解:log(1000) - log(10) = log(1000/10) = log(100) = 2题目10:求下列数列的通项公式:1, 3, 5, 7, 9, …解:通项公式为a_n = 2n - 1(后续内容省略,继续提供计算题目和答案)。
数学题高一试题及答案
数学题高一试题及答案一、选择题1. 若函数f(x) = 2x^2 - 4x + 3,求f(2)的值。
A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{an}的前三项分别为a1 = 1,d = 2,求a3的值。
A. 5B. 6C. 7D. 8答案:A3. 函数y = x^3 - 3x^2 + 2x + 1的极值点个数是:A. 0B. 1C. 2D. 3答案:C二、填空题4. 计算复数(1 + 2i)(3 - 4i)的结果为______。
答案:11 - 10i5. 已知圆的方程为x^2 + y^2 - 6x + 8y - 24 = 0,求该圆的半径。
答案:5三、解答题6. 已知函数f(x) = x^3 - 3x^2 + 2,求证f(x)在x = 2处取得极小值。
证明:首先求导数f'(x) = 3x^2 - 6x。
令f'(x) = 0,解得x = 0 或x = 2。
验证f''(x) = 6x - 6,代入x = 2,得到f''(2) = 6 > 0,因此f(x)在x = 2处取得极小值。
7. 解不等式:x^2 - 4x + 4 > 0。
解:将不等式转化为(x - 2)^2 > 0,由于平方项总是非负的,所以不等式成立当x ≠ 2。
因此,解集为{x|x ≠ 2}。
四、计算题8. 计算定积分∫(0到1) (2x + 3) dx。
解:首先求被积函数(2x + 3)的原函数F(x) = x^2 + 3x。
计算定积分,得到F(1) - F(0) = (1^2 + 3*1) - (0^2 + 3*0) = 4。
答案:49. 已知函数f(x) = √x,求f(x)在区间[1, 4]上的平均变化率。
解:平均变化率定义为(f(b) - f(a)) / (b - a),代入f(x) = √x,得到平均变化率= (√4 - √1) / (4 - 1) = (2 - 1) / 3 = 1/3。
高一数学全册试题及答案
高一数学全册试题及答案一、选择题(每题5分,共20分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 若f(x) = 2x + 1,则f(-1)的值为:A. -1B. 1C. 3D. -33. 等差数列{an}的首项为2,公差为3,则a5的值为:A. 17B. 14C. 11D. 84. 以下哪个选项是不等式x^2 - 4x + 3 < 0的解集?A. (1, 3)B. (-∞, 1) ∪ (3, +∞)C. (-∞, 1) ∪ (3, +∞)D. (1, 3)二、填空题(每题5分,共20分)5. 若函数f(x) = x^2 - 2x + 1,求f(1)的值为______。
6. 等比数列{bn}的首项为1,公比为2,则b3的值为______。
7. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},求A∩B的值为______。
8. 已知直线方程为y = 2x + 1,求该直线与x轴的交点坐标为______。
三、解答题(每题10分,共60分)9. 已知函数f(x) = x^2 - 4x + 3,求该函数的最小值。
10. 计算定积分∫(0到1) (2x + 3)dx。
11. 已知数列{an}满足a1 = 1,an+1 = 2an + 1,求a5。
12. 求函数y = ln(x)在区间[1, e]上的值域。
13. 已知直线l:y = 3x + 2与圆C:(x - 2)^2 + (y - 3)^2 = 9相交,求交点坐标。
14. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。
答案:一、选择题1. C2. D3. B4. A二、填空题5. 06. 87. {2, 3}8. (-1/2, 0)三、解答题9. 函数f(x) = x^2 - 4x + 3的最小值为f(2) = -1。
10. 定积分∫(0到1) (2x + 3)dx = (x^2 + 3x)|_0^1 = 4。
(完整版)高一数学试题及答案解析
高一数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题,满分50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确的答案填在指定位置上.)1.9090αβ<<<,则2β-A.第二象限角C.第三象限角2.α终边上的一点,且满足A.3.设()g x1 (30)2=,则A1sin2x.2sin4.α的一个取值区间为()A.5.A.6.设A.C.7.ABC∆中,若cot cot1A B>,则ABC∆一定是()A.钝角三角形B.直角三角形C.锐角三角形D.以上均有可能8.发电厂发出的电是三相交流电,它的三根导线上的电流分别是关于时间t的函数:2sin sin()sin()3A B C I I t I I t I I t πωωωϕ==+=+且0,02A B C I I I ϕπ++=≤<,则ϕ=() A .3πB .23πC .43πD .2π9.当(0,)x π∈时,函数21cos 23sin ()sin x x f x x++=的最小值为()A ..3C ..410.()f x =的A .1112131415的映射:(,)()cos3sin3f a b f x a x b x→=+.关于点(的象()f x 有下列命题:①3()2sin(3)4f x x π=-; ②其图象可由2sin3y x =向左平移4π个单位得到; ③点3(,0)4π是其图象的一个对称中心④其最小正周期是23π⑤在53[,124x ππ∈上为减函数 其中正确的有三.解答题(本大题共5个小题,共计75分,解答应写出文字说明,证明过程或演算步骤.)24)t ≤≤经长期观察,()y f t =的曲线可近似的看成函数cos (0)y A t b ωω=+>.(1)根据表中数据,求出函数cos y A t b ω=+的最小正周期T 、振幅A 及函数表达式;(2)依据规定,当海浪高度高于1m 时才对冲浪者开放,请根据(1)中的结论,判断一天中的上午8:00到晚上20:00之间,有多少时间可供冲浪者运动?20.(本题满分13分)关于函数()f x 的性质叙述如下:①(2)()f x f x π+=;②()f x 没有最大值;③()f x 在区间(0,2π上单调递增;④()f x 的图象关于原点对称.问:(1)函数()sin f x x x =⋅符合上述那几条性质?请对照以上四条性质逐一说明理由.(221.0)(0,)+∞上的奇函数)x 满足(1)f =cos 2m θ-(1(2的最大值和最小值;(3N . 的两个不等实根,函数22()1x tf x x -+的(1(2(3123。
高一数学试题大全
高一数学试题答案及解析1.设的内角所对的边分别为,若,则的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【答案】B【解析】由正弦定理当,整理得,即,,得,因此该三角形为直角三角形.【考点】利用正弦定理判定三角形的形状.2.()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【答案】D【解析】由得, =,用两角和与差的公式展开得,,由正弦定理得,所以,所以或,所以或,所以△ABC是等腰三角形或直角三角形,故选D.【考点】正弦定理;三角恒等变换3.( )A.B.C.D.【答案】D.【解析】看清本题的结构特点符合平方差公式,化简得,然后将二倍角公式的逆用,得到最终化简结果为,用特殊角的三角函数即得结果.【考点】二倍角的余弦.4.下左图所示的几何体,是由下列哪个平面图形旋转得到的()A. B. C. D【答案】A【解析】所给几何体是是上面为圆锥、下面为圆台的组合体,根据圆锥、圆台的定义可知选A。
【考点】旋转体、圆锥、圆台概念的应用。
5.函数的最小值是()A.B.C.D.【解析】利用三角函数2倍角公式可得:=由三角函数的值域可知即最小值为A.【考点】二倍角,三角函数性质.6.点为圆的弦的中点,则直线的方程为()A.B.C.D.【答案】C【解析】由弦中点与圆心连线垂直于弦所在直线得:弦所在直线斜率为再由点斜式得直线的方程为善于利用几何条件揭示特征值(直线斜率)是解析几何一个基本思想方法.【考点】直线与圆关系(弦中点与圆心连线垂直于弦所在直线),点斜式直线方程.7.若一个矩形的对角线长为常数,则其面积的最大值为()A.B.C.D.【答案】B【解析】设矩形的长宽分别为【考点】不等式性质点评:不等式中常考的性质有8.设正六边形的中心为点,为平面内任意一点,则( )A. B.C.3D.6【答案】D【解析】根据题意,由于对于正六边形内任意一点,与其两个顶点构成的向量的和等于该点P到中心O的向量的二倍,这是平行四边形法则得到的,因此可知6,故选D.【考点】向量的加法点评:主要是考查了向量的加法运算,属于基础题。
高一数学试题及答案(8页)
高一数学试题及答案第一部分:选择题1. 设函数f(x) = x^2 4x + 3,求f(2)的值。
A. 1B. 0C. 1D. 22. 已知等差数列{an}的公差为2,且a1 = 3,求a5的值。
A. 7B. 9C. 11D. 133. 设集合A = {x | x > 0},B = {x | x < 5},求A∩B的值。
A. {x | x > 0, x < 5}B. {x | x > 5}C. {x | x < 0}D. {x | x < 5, x > 0}4. 若直线y = kx + 2与圆x^2 + (y 1)^2 = 4相切,求k的值。
A. 1B. 1C. 2D. 25. 设函数g(x) = |x 1| + |x + 1|,求g(x)的最小值。
A. 0B. 1C. 2D. 36. 若等比数列{bn}的首项为2,公比为3,求bn的第5项。
A. 162B. 243C. 4D. 7297. 已知函数h(x) = x^3 3x^2 + 2x,求h(x)的导数。
A. 3x^2 6x + 2B. 3x^2 6x 2C. 3x^2 + 6x + 2D. 3x^2 + 6x 28. 若直线y = mx + 1与直线y = 2x + 4平行,求m的值。
A. 2B. 2C. 1D. 19. 设集合C = {x | x^2 5x + 6 = 0},求C的值。
A. {2, 3}B. {1, 4}C. {2, 4}D. {1, 3}10. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的顶点坐标为(2,3),求b的值。
A. 12B. 12C. 6D. 6答案:1. A2. C3. A4. B5. B6. D7. A8. D9. C10. B第一部分:选择题答案解析1. 解析:将x = 2代入f(x) = x^2 4x + 3中,得到f(2) =2^2 42 + 3 = 1。
高一数学试题大全
高一数学试题答案及解析1.函数的单调递增区间是()A.B.(0,3)C.(1,4)D.【答案】D【解析】,由,得,的单调递增区间是.故选D.【考点】利用导数求单调性.2.已知为第二象限角,,则().A.B.C.D.【答案】D.【解析】由于为第二象限角,,因此.【考点】二倍角的正弦公式.3.已知,则( )A. B. C D.【答案】B【解析】.【考点】同角三角函数的基本关系.4.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是( ).A.甲B.乙C.丙D.丁【答案】C.【解析】分析表格可知,乙与丙的平均环数最多,又丙的方差比乙小说明丙成绩发挥的较为稳定,所以最佳人选为丙.【考点】数据的平均数与方差的意义.5.如果且,那么下列不等式中不一定成立的是( )A.B.C.D.【答案】D【解析】A是不等式两边同乘-1,正确;B,,C,由,得所以正确,D,不等式两边同乘,但不知道的符号,不一定成立.【考点】不等式的基本性质.6.已知向量,,,若,则k =()A.1B.3C.5D.7【答案】C【解析】,又,可得.【考点】共线向量的判定,向量的坐标运算.7.采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2, (960)分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间的人做问卷,编号落入区间的人做问卷,其余的人做问卷,则抽到的人中,做问卷的人数为()A.7B.9C.10D.15【答案】C【解析】法一:因为,根据系统抽样的定义,可知,在编号为1,2,……,960的编号中,每隔30个抽取一个样本,编号在中的编号数共有个,所以在该区间的人中抽取个人做问卷,故选C.法二:因为,又因为第一组抽到的号码为9,则各组抽到的号码为,由解得,因为为整数,所以且,所以做问卷的人数为10人,故选C.【考点】系统抽样.8.下列四个命题中正确的是()①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.A.①和②B.②和③C.③和④D.②和④【答案】D【解析】①对这两条直线缺少“相交”这一限制条件,故错误;③中缺少“平面内”这一前提条件,故错误.【考点】空间中线面的位置关系的判定.9.设,则函数的值域是( ).A.B.C.D.【答案】A【解析】当时,,当时,所以值域是.【考点】分段函数应用.10.设,则()A.B.C.D.【答案】A【解析】根据对数函数的性质可知,,,根据指数函数的性质可知,,故c<a<b,选A.【考点】1、对数函数的单调性;2、指数函数的单调性.11.已知集合,,则=()A.B.C.D.{-4,-3,-2,-1,0,1}【答案】B【解析】由,,则,选B.【考点】集合的运算.12.已知M (-2,0), N (2,0), 则以MN为斜边的直角三角形直角顶点P的轨迹方程是( )A.B.C.D.【答案】D【解析】设P(x,y),则由两点间距离公式、勾股定理得x2+4x+4+y2+x2-4x+4+y2=16,x≠±2,整理,得x2+y2=4(x≠±2).故选D.【考点】求轨迹方程点评:简单题,求点的轨迹方程,方法较为灵活。
高一数学练习题及答案
高一数学练习题及答案一、选择题(每题5分,共30分)1. 已知函数\( f(x) = 3x^2 - 2x + 1 \),求\( f(-1) \)的值。
A. 6B. 4C. 2D. -22. 若\( a \)和\( b \)是方程\( x^2 - 5x + 6 = 0 \)的两个根,则\( a + b \)的值为:A. 3B. 5C. 6D. 83. 已知\( \sin 45^\circ = \frac{\sqrt{2}}{2} \),求\( \cos 45^\circ \)的值。
A. \( \frac{\sqrt{2}}{2} \)B. \( \frac{1}{2} \)C. \( \frac{\sqrt{3}}{2} \)D. \( \frac{\sqrt{6}}{3} \)4. 圆的半径为5,圆心到直线的距离为3,求圆与直线的位置关系。
A. 相离B. 相切C. 相交D. 包含5. 已知等差数列的首项是2,公差是3,求第5项的值。
A. 17B. 14C. 11D. 86. 函数\( y = \log_2 x \)的定义域是:A. \( x > 1 \)B. \( x < 1 \)C. \( x \geq 1 \)D. \( x \geq 0 \)二、填空题(每题4分,共20分)1. 若\( a \),\( b \),\( c \)是三角形的三边,且\( a^2 + b^2= c^2 \),则此三角形是________。
2. 已知\( \tan \theta = 3 \),求\( \sin \theta \)的值。
3. 函数\( y = x^3 - 3x^2 + 2 \)的导数是________。
4. 已知\( \cos \alpha = \frac{4}{5} \),\( \alpha \)在第一象限,求\( \sin \alpha \)的值。
5. 等比数列\( 2, 4, 8, \ldots \)的第6项是________。
高一数学必修1习题及答案5篇
高一数学必修1习题及答案5篇高一数学必修1习题及答案1一、选择题:(在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合,则m∩p= ( )a. b. c. d.2.下列函数与有相同图象的一个函数是( )a. b. c. d.3. 设a={x|0≤x≤2},b={y|1≤y≤2},在下列各图中,能表示从集合a到集合b的映射的是( )4设,,,则,,的大小关系为( ). . . . .5.定义为与中值的较小者,则函数的值是( )6.若,则的表达式为( )a. b. c. d.7.函数的反函数是( )a. b.c. d.8若则的值为( )a.8b.c.2d.9若函数在区间上的图象为连续不断的一条曲线,则下列说法正确的是( )a.若,不存在实数使得;b.若,存在且只存在一个实数使得;c.若,有可能存在实数使得;d.若,有可能不存在实数使得;10.求函数零点的个数为( ) a. b. c. d.11.已知定义域为r的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是( )a.f(-1)f(9)f(13) p=""b.f(13)f(9)f(-1)c.f(9)f(-1)f(13) p=""d.f(13)f(-1)f(9)12.某学生离家去学校,由于怕迟到,一开始就跑步,等跑累了再步行走完余下的路程,若以纵轴表示离家的距离,横轴表示离家后的时间,则下列四个图形中,符合该学生走法的是( )二、填空题:本大题共6小题,每小题4分,共24分.把答案直接填在题中横线上.13、,则的取值范围是14.已知实数满足等式,下列五个关系式:(1) ,(2) ,(3) ,(4) ,(5)其中可能成立的关系式有.15.如果在函数的图象上任取不同的两点、,线段(端点除外)总在图象的下方,那么函数的图象给我们向上凸起的印象,我们称函数为上凸函数;反之,如果在函数的图象上任取不同的两点、,线段(端点除外)总在图象的上方,那么我们称函数为下凸函数.例如:就是一个上凸函数.请写出两个不同类型的下凸函数的解析式:16.某批发商批发某种商品的单价p(单位:元/千克)与一次性批发数量q(单位:千克)之间函数的图像如图2,一零售商仅有现金2700元,他最多可购买这种商品千克(不考虑运输费等其他费用).三、解答题:.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知全集u=r,集合,,求,,。
高一数学考试题及答案
高一数学考试题及答案一、选择题(每题4分,共40分)1. 下列哪个选项是函数y=|x|的定义域?A. (-∞, 0)B. (-∞, 0) ∪ (0, +∞)C. (-1, 1)D. 全实数集2. 若a、b、c是等差数列,且a+b+c=6,b+c-a=2,则a的值为:A. 1B. 2C. 3D. 43. 已知一个等比数列的前三项分别为a, b, c,且abc=16,b-c=2,求a的值。
A. 1B. 2C. 4D. 84. 在直角坐标系中,点A(2,3)和点B(-2,-1)之间的距离是:A. 2√5B. √20C. 3√5D. 55. 若f(x) = 2x^2 + 3x - 4,求f(-2)的值。
A. -11B. -5C. 5D. 116. 已知一个圆的半径为5,圆心在坐标轴上,且圆上有一点P(3,4),则这个圆的方程是:A. (x-3)^2 + (y-4)^2 = 25B. (x-3)^2 + y^2 = 25C. (x-4)^2 + (y-3)^2 = 25D. x^2 + (y-4)^2 = 257. 函数y = 3^x的反函数是:A. y = log3xB. y = 3^(-x)C. y = -log3xD. y = logx/38. 已知一个等差数列的前n项和为Sn = n^2 + 2n,当n=5时,Sn的值是:A. 35B. 40C. 45D. 509. 在复数z1 = 3 + 4i 和 z2 = 2 - i中,|z1 - z2|的模长是:A. 2√2B. √10C. 5D. √2110. 若a:b = 3:4,b:c = 5:6,则a:b:c的比例是:A. 15:20:24B. 15:20:25C. 3:4:5D. 5:6:8二、填空题(每题4分,共20分)11. 若f(x) = x^3 - 6x^2 + 11x - 6,求f(2)的值。
12. 一个等比数列的前三项分别是2, 6, 18,该数列的公比是。
高一数学试题大全
高一数学试题答案及解析1.已知△ABC中,=,=,A=45°,那么角B等于 ( )A.30°B.60°C.30°或150°D.60°或120°【答案】D【解析】略2.一个多面体的三视图如图所示,其中正视图是正方形,侧视图是等腰三角形,则该几何体的表面积和体积分别为()A.88 ,48B.98 ,60C.108,72D.158,120【答案】A【解析】解:由三视图可知:该几何体是一个横放的直三棱柱,高为4,底面是一个等腰三角形,其高为4,底边长为6.在Rt△ABD中,由勾股定理可得AB=∴该几何体的表面积S=4×5×2+4×6+2××6×4=88;V=×6×4×4=48.故选A.【考点】由三视图求面积、体积.3.在等差数列项的和等于()A.B.C.D.【答案】C【解析】由,可得,公差,,.故选C.【考点】等差数列的性质.4.公比不为1的等比数列{an }的前n项和为Sn,且成等差数列,若=1,则=().A.-20B.0C.7D.40【答案】A【解析】设公比为,因为成等差数列且=1所以,即,得;所以.【考点】等差数列与等比数列的综合应用.5.己知函数为奇函数,该函数的部分图象如图所示,△EFG是边长为2的等边三角形,则的值为( )A.B.C.D.【答案】C.【解析】∵是边长为的等边三角形,∴,,又∵为奇函数,∴,∴.【考点】三角函数的图象与性质.6.已知tan(α+β)=,tan(α+)=, 那么tan(β-)的值是()A.B.C.D.【答案】B【解析】.【考点】三角恒等变形.7.的值是()A.B.C.D.【答案】C【解析】.任意角的三角函数值可利用诱导公将角化为锐角的三角函数值求得.【考点】诱导公式,特殊角的三角函数值.8.若点到点及的距离之和最小,则m的值为( )A.2B.C.1D.【答案】B【解析】点关于轴的对称点为。
高一数学试题及解析答案
高一数学试题及解析答案一、选择题(每题5分,共20分)1. 函数f(x) = x^2 - 4x + 3的零点是:A. 1B. 2C. 3D. 4答案:B解析:将f(x)设为0,即x^2 - 4x + 3 = 0,解得x = 1 或 x = 3。
由于题目要求零点,所以正确选项是B。
2. 集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B是:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}答案:B解析:集合A与集合B的交集是它们共有的元素,即A∩B = {2, 3}。
3. 若a, b, c是三角形的三边长,且满足a^2 + b^2 = c^2,则该三角形是:A. 直角三角形B. 钝角三角形C. 锐角三角形D. 不能确定答案:A解析:根据勾股定理,若a^2 + b^2 = c^2,则三角形为直角三角形。
4. 函数y = 2x - 1的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C解析:函数y = 2x - 1的斜率为正,截距为负,因此图象经过第一、三、四象限,不经过第二象限。
二、填空题(每题5分,共20分)1. 等差数列{an}的首项a1 = 2,公差d = 3,则第五项a5 = _______。
答案:17解析:等差数列的通项公式为an = a1 + (n - 1)d,代入n = 5,a1= 2,d = 3,得a5 = 2 + (5 - 1) * 3 = 17。
2. 已知函数f(x) = x^3 - 3x^2 + 2x + 1,求f'(x) = _______。
答案:3x^2 - 6x + 2解析:对f(x)求导得f'(x) = 3x^2 - 6x + 2。
3. 圆的方程为(x - 2)^2 + (y + 3)^2 = 25,圆心坐标为(2, -3),半径为_______。
答案:5解析:圆的半径为方程中的常数项的平方根,即r = √25 = 5。
高一数学练习及答案
高一数学练习及答案一、单选题1.已知全集U ={1,2,3,4,5,6,7} ,集合A ={1,3,5,6} ,则∁U A = ( ) A .{1,3,5,6} B .{2,3,7} C .{2,4,7} D .{2,5,7} 【答案】C【解析】直接利用补集的定义求解即可. 【详解】全集U ={1,2,3,4,5,6,7} ,集合A ={1,3,5,6} , 所以∁U A ={2,4,7}. 【点睛】本题主要考查了集合的补集运算,属于基础题. 2.函数f (x )=√2x+1x的定义域为( )A .(−12,+∞) B .[−12,+∞) C .(−12,0)∪(0,+∞) D .[−12,0)∪(0,+∞) 【答案】D【解析】直接由根式内部的代数式大于等于0,分式的分母不等于0,联立不等式组求解即可. 【详解】解:由{2x +1⩾0x ≠0,解得x ⩾−12且x ≠0.∴函数f(x)=√2x+1x 的定义域为[−12,0)∪(0,+∞).故选:D . 【点睛】本题考查函数的定义域及其求法,考查不等式的解法,是基础题.3.已知函数f (x )={3−x,x >0x 2+4x+3,x≤0则f (f (5))=( ) A .0 B .−2 C .−1 D .1 【答案】C【解析】分段函数求函数值时,看清楚自变量所处阶段,分别代入不同的解析式求值即可得结果. 【详解】解:因为5>0,代入函数解析式f(x)={x 2+4x +3,x ⩽ 03−x,x >0得f (5)=3−5=−2,所以f(f (5))=f(−2),因为−2<0,代入函数解析式f(x)={x 2+4x +3,x ⩽ 03−x,x >0 得f(−2)=(−2)2+4×(−2)+3=−1.故选:C . 【点睛】本题考查了分段函数的定义,求分段函数函数值的方法,属于基础题. 4.若角α的顶点在坐标原点,始边在x 轴的非负半轴上,终边经过点(1,-2),则tanα的值为( ) A .√55 B .−2 C .−2√55 D .−12【答案】B【解析】根据任意角的三角函数的定义即可求出. 【详解】解:由题意可得x =1,y =−2,tanα=yx =−2, 故选:B . 【点睛】本题主要考查任意角的三角函数的定义,属于基础题.5.下列函数中,在其定义域内既是奇函数又是增函数的是( ) A .y =log 3x B .y =1x C .y =x 3D .y =x 12【答案】C【解析】对选项一一判断函数的奇偶性和单调性,即可得到结论.【详解】解:A,y=log3x(x>0)在x>0递增,不具奇偶性,不满足条件;B,函数y=1x是奇函数,在(−∞,0),(0,+∞)上是减函数,在定义域内不具备单调性,不满足条件;C,y=x3,y′=3x2⩾0,函数为增函数;(−x)3=−x3,函数是奇函数,满足条件;D,y=x 12=√x,其定义域为[0,+∞),不是奇函数,不符合题意.故选:C.【点睛】本题考查函数的奇偶性和单调性的判断,掌握常见函数的单调性和奇偶性是解题的关键,属于基础题.6.函数f(x)=lnx+3x-4的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(2,4)【答案】B【解析】根据函数零点的判定定理可得函数f(x)的零点所在的区间.【详解】解:∵函数f(x)=lnx+3x−4在其定义域上单调递增,∴f(2)=ln2+2×3−4=ln2+2>0,f(1)=3−4=−1<0,∴f(2)f(1)<0.根据函数零点的判定定理可得函数f(x)的零点所在的区间是(1,2),故选:B.【点睛】本题考查求函数的值及函数零点的判定定理,属于基础题.7.若a=50.3,b=0.35,c=log0.35,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.b>a>c D.c>a>b【答案】A【解析】利用指数函数、对数函数的单调性直接求解.【详解】解:∵a=50.3>50=1,0<b=0.35<0.30=1,c=log0.35<log0.31=0,∴a,b,c的大小关系为a>b>c.故选:A.【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,是基础题.8.已知函数y=x2+2(a-1)+2在(-∞,4)上是减函数,则实数a的取值范围是()A.[3,+∞)B.(−∞.−3]C.[−3,+∞)D.(−∞,3]【答案】B【解析】求出函数y=x2+2(a−1)+2的对称轴,结合二次函数的性质可得1−a⩾4,可得a的取值范围.【详解】解:根据题意,函数y=x2+2(a−1)+2开口向上,且其对称轴为x=1−a,若该函数在(−∞,4)上是减函数,必有1−a⩾4,解可得:a⩽−3,即a的取值范围为(−∞,−3];故选:B.【点睛】本题考查二次函数的性质,分析该二次函数的对称轴与区间端点是解题关键,属于基础题.9.为了得到函数y=sin(2x+π3)的图象,只要将y=sinx(x∈R)的图象上所有的点()A.向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B.向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D.向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【答案】A【解析】利用左加右减的原则,直接推出平移后的函数解析式即可.【详解】解:将函数y=sinx的图象向左平移π3个单位后所得到的函数图象对应的解析式为:y=sin(x+π3),再把所得各点的横坐标缩短到原来的12倍,所得到的函数图象对应的解析式为y=sin(2x+π3).故选:A.【点睛】本题考查三角函数的图象变换,平移变换中x的系数为1是解题关键,属于基础题.10.已知sinα,cosα是方程3x2-2x+a=0的两根,则实数a的值为()A.65B.−56C.43D.−34【答案】B【解析】根据韦达定理表示出sinα+cosα及sinαcosα,利用同角三角函数间的基本关系得出关系式,把表示出的sinα+cosα及sinαcosα代入得到关于a 的方程,求出方程的解可得a 的值. 【详解】解:由题意,根据韦达定理得:sinα+cosα=23,sinαcosα=a3,∵sin 2α+cos 2α=1 ∴sin 2α+cos 2α=(sinα+cosα)2−2sinαcosα=49−2a 3=1,解得:a =−56,把a =−56,代入原方程得:3x 2−2x −56=0,∵△>0, ∴a =−56符合题意. 故选:B . 【点睛】本题考查三角函数的化简求值,同角三角函数基本关系及韦达定理的应用,属于基础题.11.已知函数f (x )={log a x,x ≥1(3a−1)x+4a,x<1的值域为R ,则实数a 的取值范围为()A .(0,1)B .[17,1) C .(0,17]∪(1,+∞) D .[17,13)∪(1,+∞) 【答案】C【解析】运用一次函数和对数函数的单调性可解决此问题. 【详解】 解:根据题意得,(1)若f(x)两段在各自区间上单调递减,则: {3a −1<00<a <1(3a −1)·1+4a ≤log a 1 ; 解得0<a ≤17;(2)若f(x)两段在各自区间上单调递增,则: {3a −1>0a >1(3a −1)·1+4a ≥log a 1 ;解得a >1;∴综上得,a 的取值范围是(0,17]∪(1,+∞) 故选:C . 【点睛】本题考查一次函数、对数函数以及分段函数单调性的判断,值域的求法,属于基础题.12.设函数f (x )={3x +4,x <0x 2−2x+2,x≥0,若互不相等的实数x1,x2,x3满足f (x1)=f (x2)=f (x3),则x1+x2+x3的取值范围是( ) A .[43,+∞) B .[1,43) C .(1,43] D .(1,+∞) 【答案】C【解析】作出函数f(x)的图象,根据对称求得x 1+x 2+x 3的取值范围即可. 【详解】解:函数f(x)={x 2−2x +2,x ⩾03x +4,x <0,函数的图象如下图所示:不妨设x 1<x 2<x 3,则x 2,x 3关于直线x =1对称,故x 2+x 3=2,∵1<3x +4≤2,∴ −1<x 1⩽−23,则x 1+x 2+x 3的取值范围是:1<x 1+x 2+x 3⩽43; 即x 1+x 2+x 3∈(1,43] 故选:C .【点睛】本题考查分段函数图象的作法、函数的值域的应用、函数与方程的综合运用等基础知识,考查运算求解能力与数形结合思想,化归与转化思想,属于基础题.二、填空题13.在半径为10的圆中,30°的圆心角所对的弧长为______. 【答案】5π3【解析】根据弧长公式l =nπr 180进行计算即可.【详解】解:在半径为10的圆中,30°的圆心角所对的弧长是:30×π×10180=5π3.故答案为:5π3. 【点睛】此题主要考查了弧长公式的应用,熟记弧长公式是解题关键,属于基础题. 14.若cosα=−35,且α∈(π,3π2),则tanα= ;【答案】 【解析】略15.已知函数f (x )=ax3+bx+2,且f (π)=1,则f (-π)=______. 【答案】3【解析】根据题意,设g(x)=f(x)−2=ax 3+bx ,分析可得g(x)为奇函数,进而可得g(π)+g(−π)=[f(π)−2]+[f(−π)−2]=0,计算可得f(π)的值,即可得答案. 【详解】解:根据题意,设g(x)=f(x)−2=ax 3+bx ,则g(−x)=a(−x)3+b(−x)=−(ax 3+bx)=−g(x),则g(x)为奇函数,则g(π)+g(−π)=[f(π)−2]+[f(−π)−2]=0,因为f (π)=1,则有f(−π)=3; 故答案为:3 【点睛】本题考查函数的奇偶性的性质,注意构造g(x)=f(x)−2,分析g(x)的奇偶性是解题关键,属于基础题.16.如果定义在R 上的函数f (x )满足对任意x1≠x2都有x1f (x1)+x2f (x2)>x1f (x2)+x2f (x1),则称函数f (x )为“H 函数”,给出下列函数:①f (x )=2x-5;②f (x )=x2;③f (x )={x +2,x ≥−1−1x ,x,−1 ;④f (x )=(12)x .其中是“H 函数”的有______.(填序号) 【答案】①③【解析】根据题意,将x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1),变形可得:[f(x 1)−f(x 2)](x 1−x 2)>0,分析可得函数f(x)为增函数;依次分析4个函数在R 上的单调性,综合即可得答案. 【详解】解:根据题意,若x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1), 变形可得:[f(x 1)−f(x 2)](x 1−x 2)>0, 则函数f(x)为增函数;对于①,f(x)=2x −5,在R 上是增函数,是“H 函数”,对于②,f(x)=x 2,是二次函数,在R 上不是增函数,不是“H 函数”, 对于③,f(x)={x +2,x ⩾−1−1x,x <−1;是分段函数,在R 上是增函数,是“H 函数”, 对于④,f(x)=(12)x ,是指数函数,在R 上是减函数,不是“H 函数”, 故其中为“H 函数”的有①③; 故答案为:①③. 【点睛】本题考查函数的单调性的性质以及判定,关键是对x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1)的变形分析,属于基础题.三、解答题17.已知全集为R ,集合A={x|2≤x <4},B={x|2x-7≥8-3x},C={x|x <a}. (1)求A∩B ,A ∪(∁RB ); (2)若A∩C=A ,求a 的取值范围.【答案】(1)A ∩B ={x|4>x ≥3},A ∪(C R B )={x|x <4};(2)[4,+∞). 【解析】(1)根据集合的基本运算即可求A ∩B ,(∁R B)∪A ;(2)根据A ∩C =A ,可得A ⊆C ,建立条件关系即可求实数a 的取值范围. 【详解】解:(1)集合A ={x |2≤x <4},B ={x |2x -7≥8-3x }={x |x ≥3}, ∴A ∩B ={x |2≤x <4}∩{x |x ≥3}={x |4>x ≥3}; ∵∁R B ={x |x <3}, ∴A ∪(∁R B )={x |x <4};(2)集合A ={x |2≤x <4},C ={x |x <a }. ∵A ∩C =A ,可得A ⊆C , ∴a ≥4.故a 的取值范围是[4,+∞). 【点睛】本题主要考查集合的基本运算,属于基础题. 18.已知f (α)=sin(π−α)cos(π2+α)cos(π+α)sin(3π2−α)cos(3π2+α)sin(π2−α).(1)化简f (α);(2)若f (α)=12,求sinα−3cosαsinα+cosα的值. 【答案】(1)−tanα;(2)−7.【解析】(1)利用诱导公式化简即可得到结果; (2)由(1)知tanα值,再弦化切,即可得出结论.【详解】解:(1)f (α)=sin(π−α)cos(π2+α)cos(π+α)sin(3π2−α)cos(3π2+α)sin(π2−α)=sinα⋅(−sinα)⋅(−cosα)−cosα⋅sinα⋅cosα=-tanα;(2)由f (α)=12,得tan α=−12, ∴sinα−3cosαsinα+cosα=tanα−3tanα+1=−12−3−12+1=−7.【点睛】此题考查了诱导公式的化简求值,以及同角三角函数间的基本关系,熟练掌握诱导公式是解本题的关键,属于基础题.19.已知函数f (x )=Asin (ωx+φ),x ∈R (其中A >0,ω>0,0<φ<π2)的周期为π,且图象上的一个最低点为M (2π3,−2 ). (1)求f (x )的解析式及单调递增区间; (2)当x ∈[0,π3]时,求f (x )的值域.【答案】(1)[kπ−π3,kπ+π6],k∈Z;; (2)[1,2].【解析】(1)由f(x)的图象与性质求出T、ω和A、φ的值,写出f(x)的解析式,再求f(x)的单调增区间;(2)求出0≤x≤π3时f(x)的最大、最小值,即可得出函数的值域. 【详解】(1)由f(x)=Asin(ωx+φ),且T=2πω=π,可得ω=2; 又f(x)的最低点为M(2π3,−2 )∴A=2,且sin(4π3+φ)=-1; ∵0<φ<π2,∴4π3<4π3+φ<11π6∴4π3+φ=3π2∴φ=π6∴f (x )=2sin (2x+π6); 令2kπ-π2≤2x+π6≤2kπ+π2,k ∈Z , 解得kπ-π3≤x≤kπ+π6,k ∈Z ,∴f(x)的单调增区间为[kπ-π3,kπ+π6],k ∈Z ; (2)0≤x≤π3,π6≤2x+π6≤5π6 ∴当2x+π6=π6或5π6,即x=0或π3时,f min (x )=2×12=1,当2x+π6=π2,即x=π6时,f max (x )=2×1=2; ∴函数f(x)在x∈[0,π3]上的值域是[1,2]. 【点睛】本题考查了正弦型函数的图象与性质的应用问题,是基础题. 20.已知f (x )=mx+n x 2+1是定义在[-1,1]上的奇函数,且f (-14)=817. (1)求f (x )的解析式;(2)用单调性的定义证明:f (x )在[-1,1]上是减函数. 【答案】(1)f (x )=−2xx 2+1;(2)详见解析.【解析】(1)由奇函数的性质f(0)=0,即得n 值,又由f(−14),解可得m 的值,将m 、n 的值代入f(x)的解析式,计算可得答案; (2)根据题意,由作差法证明即可得结论. 【详解】解:(1)根据题意,f (x )=mx+n x 2+1是定义在[-1,1]上的奇函数,且f (-14)=817,则f (0)=n 1=0,即n =0,则f (x )=mxx 2+1, 又由f (-14)=817,则f (-14)=−m 4116+1=817,解可得m =-2,则f (x )=−2xx 2+1;(2)函数f (x )在[-1,1]上为减函数, 证明:设-1≤x 1<x 2≤1,f (x 1)-f (x 2)=−2x 1x 12+1-−2x 2x 22+1=2x 2x 22+1-2x1x 12+1=2×(x 1−x 2)(x 1x 2−1)(x 12+1)(x 22+1),又由-1≤x 1<x 2≤1,则(x 1-x 2)<0,x 1-x 2-1<0,(x 12+1)>0,(x 22+1)>0, 则f (x 1)-f (x 2)>0,则函数f (x )在[-1,1]上是减函数. 【点睛】本题考查函数的奇偶性单调性的性质以及应用,关键是求出函数的解析式,属于基础题.21.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数301log lg 2100x v x =-,单位是min km ,其中x 表示候鸟每分钟耗氧量的单位数,0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:lg 20.30=, 1.23 3.74=,1.43 4.66=)(1)若02x =,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少min km ?(2)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位? (3)若雄鸟的飞行速度为2.5min km ,雌鸟的飞行速度为1.5min km ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?【答案】(1)1.70/min km ;(2)466;(3)9【解析】试题分析:(1)直接代入求值即可,其中要注意对数的运算;(2)还是代入求值即可;(3)代入后得两个方程,此时我们不需要解出1x 、2x ,只要求出它们的比值即可,所以由对数的运算性质,让两式相减,就可求得129x x =.试题解析:(1)将02x =,8100x =代入函数式可得:31log 81lg 22lg 220.30 1.702v =-=-=-=故此时候鸟飞行速度为1.70/min km . (2)将05x =,0v =代入函数式可得:310log lg52100x =-即3log 2lg52(1lg 2)20.70 1.40100x ==⋅-=⨯= 1.43 4.66100x∴==于是466x =.故候鸟停下休息时,它每分钟的耗氧量为466个单位. (3)设雄鸟每分钟的耗氧量为1x ,雌鸟每分钟的耗氧量为2x ,依题意可得:13023012.5log lg 210011.5log lg 2100x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩两式相减可得:13211log 2x x =,于是129x x =.故此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的9倍. 【考点】1.函数代入求值;2.解方程;3.对数运算. 22.已知函数f (x )=-sin2x+mcosx-1,x ∈[−π3,2π3].(1)若f (x )的最小值为-4,求m 的值; (2)当m=2时,若对任意x1,x2∈[-π3,2π3]都有|f (x1)-f (x2)|≤2a −1恒成立,求实数a 的取值范围.【答案】(1)m =4.5或m =−3;(2)[2,+∞).【解析】(1)利用函数的公式化简后换元,转化为二次函数问题求解最小值,可得m 的值;(2)根据|f(x 1)−f(x 2)|⩽2a −14恒成立,转化为函数f(x)=|f(x 1)−f(x 2)|的最值问题求解; 【详解】解:(1)函数f (x )=-sin 2x +m cos x -1=cos 2x +m cos x -2=(cos x +m2)2-2-m 24.当cos x =−m2时,则2+m 24=4,解得:m =±2√2那么cos x =±√2显然不成立. x ∈[−π3,2π3].∴−12≤cos x ≤1. 令cos x =t . ∴−12≤t ≤1.①当−12>−m 2时,即m >1,f (x )转化为g (t )min =(−12+m2)2-2-m 24=-4解得:m =4.5,满足题意;②当1<−m2时,即m <-2,f (x )转化为g (t )min =(1+m2)2-2-m 24=-4解得:m =-3,满足题意;故得f (x )的最小值为-4,m 的值4.5或-3; (2)当m =2时,f (x )=(cos x +1)2-3, 令cos x =t . ∴−12≤t ≤1.∴f (x )转化为h (t )=(t +1)2-3,其对称轴t =-1,∴t ∈[−12,1]上是递增函数. h (t )∈[−114,1]. 对任意x 1,x 2∈[-π3,2π3]都有|f (x 1)-f (x 2)|≤2a −14恒成立, |f (x 1)-f (x 2)|max =1−(−114)≤2a −14 可得:a ≥2.故得实数a 的取值范围是[2,+∞). 【点睛】本题考查三角函数的有界性,二次函数的最值,考查转化思想以及计算能力,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且cos A =45
. (1)求sin 2 B +C 2
+cos 2A 的值; (2)若b =2,△ABC 的面积S =3,求a .
2已知ABC ∆的三个内角A 、B 、C 所对的边分别为a b c 、、,向量(4,1),m =-
2(cos ,cos 2)2
A n A =,且72m n ⋅= . (1)求角A 的大小;
(2)若a = b=c 时ABC ∆的面积
3. 在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3
C π=.
(Ⅰ)若ABC △a b ,;
(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC △的面积.
4. 设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =2b sin A .
(1)求B 的大小; (2)求cos A +sin C 的取值范围.
5.设平面内有两个向量(cos ,sin ),(cos ,sin ),0.a b ααββαβπ==<<<且 ⑴证明()()a b a b +⊥-;
⑵若两个向量ka b +与a kb -的模相等,求(0,)k k R βα-≠∈的值.
6已知{}n a 是首相为1,公差为2的等差数列,n S 表示{}n a 的前n 项和.
(I )求
n a 及n S ; (II )设
{}n b 是首相为2的等比数列,公比q 满足()01442=++-S q a q ,求{}n b 的
通 项公式及其前n 项和
n T .
7ABC ∆中,角A ,B ,C 所对的边分别为,,a b c . 已知3,cos 2
a A B A π==
=+. (I)求b 的值;
(II )求ABC ∆的面积.
8、已知:ab a x b ax x f ---+=)8()(2,当)2,3(-∈x 时, 0)(>x f ;),2()3,(+∞--∞∈ x 时,0)(<x f
(1)求)(x f y =的解析式
(2)c 为何值时,02≤++c bx ax 的解集为R.
9.△ABC 角A,B,C 对边分别为,c b a ,,,)1),2
4(sin 2(),2cos 2,sin 2(2-+=-=B n B B m π,⊥.
(1)求角B 的大小;
(2)若1,3==b a ,求边c 的值.
10在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,并且a 2=b (b +c ).
(1)求证:A =2B ;
(2)若a =3b ,判断△ABC 的形状
11已知数列{}n a 的前n 项和为n S ,且n S =)(22*N n a n ∈-,数列{}n b 中,11b =, 点1(,)n n P b b +(*N n ∈)在直线20x y -+=上.
(1)求数列{}{},n n a b 的通项n a 和n b ;
(2)设n n n c a b =⋅,求数列{}n c 的前n 项和n T ,并求满足167n T <的最大正整数n .
12.数列}{n a 中,2,12,531
1≥-==-n a a a n n ,数列}{n b 满足11-=n n a b . (1)求证数列}{b n 为等差数列;
(2)求数列}{n a 中的最大项和最小项,并说明理由.。