2017年山东省枣庄市山亭区七年级上学期数学期中试卷和解析答案

合集下载

七年级数学上学期期中检测试卷及答案

七年级数学上学期期中检测试卷及答案

七年级数学上学期期中检测试卷及答案2017七年级数学上学期期中检测试卷及答案一年一度的期中考试马上就要开始了,同学们正在进行紧张的复习,根据以往的教学经验,店铺精选了2017七年级数学上学期期中检测试卷给大家,希望对你有所帮助!一、选择题(每小题3分,共36分)1.太阳与地球的距离大约是150000000千米,其中150000000可用科学记数法表示,下列正确的是( )A. 15×107B. 0.15×109C. 1.5×108D. 1.5亿2.下列不是有相反意义的量是( )A. 上升5米与下降3米B. 零下5℃与零下1℃C. 高出海拔100米与低于海拔10米D. 亏损100元与收入100元3. 的平方根是( )A. ±4B. 4C. ±2D. 24.①倒数是本身的数是±1;②立方根是本身的数是0.1;③平方等于本身的数0.1;④绝对值是本身的数是0.1,其中是错的有( )个.A. 1B. 2C. 3D. 45.数轴上有两点A、B分别是﹣2, +1,则AB之间的距离是( )A. B. 3 C. D.6.在、﹣、、中最大的数是( )A. B. C. ﹣ D.7.若用a表示的整数部分,则在数轴上与2+a最接近的数所表示的点是( )A. AB. BC. CD. D8.已知下列各数:、、 +1、、0.10101001、0.2 ,其中无理数有( )个.A. 2B. 3C. 4D. 59.由半圆和直角三角形组成的图形,如图,空白部分面积等于(π取3.14,精确到0.1)( )A. 15.0B. 15.1C. 15.2D. 15.310.正整数排列如图:第一行 1第二行 1 2第三行 2 3 4第四行 3 4 5 6按照这样的规律排列,你认为100第一次出现在( )A. 第50行第50个B. 50行第 51个C. 第51行第50个D. 第51行51个11.10头大象1天的食品可供1000只老鼠吃600天,假定每头大象的食量都一样,每只老鼠的食量也相等,那么m头大象1天的食物可供100只老鼠吃( )天.A. 500mB. 600mC.D.二、填空题(共6题,每小题3分,共18分)12.﹣3的相反数是.13.下列的代数式:﹣x2y,0,,,,中单项式有个.14 .x的倍与y的平方的和可表示为.15.细胞每分裂一次,1个细胞就变成2个,洋葱根尖细胞每分裂一次间隔的时间为12小时,2个洋葱根尖细胞经3昼夜变成个.16.若棱长为10cm的立方体的体积减少Vcm3而保存立方体形状不变,则棱长应该减少cm.17.若5x2y|m|﹣(m+1)y2﹣3是关于字母x、y的3次3项式,则m= .三、解答(共66分)18.计算:(1)(﹣ + ﹣)×(﹣48)(2)(﹣2)÷ × ﹣(﹣5)(3)﹣﹣(4)﹣32﹣(2.5+ ﹣3 + )19.(1)已知|a﹣2|+|b+1|=0,求代数式(a+ b)2015+b2014的值;(2)如果代数式2y2﹣y+5的值等于﹣2,求代数式5﹣2y2+y的值.20.在数轴上表示下列各数,并用“<”连接,|﹣3|,0,,,(﹣1)2.21.3是2x﹣1的平方根,y是8的立方根,z是绝对值为9的数,求2x+y﹣5z的值.22.王明从甲地到乙地骑自行车共100千米路程,原计划用V千米/时的速度前进,行到一半路程时接到电话有急事,加速到原计划的2倍前进,求王明从甲地到乙地用了多少时间?当V=15千米/时时,求王明所用的时间.23.正方形网格中的每个小正方形边长都为1,每个小格的顶点称为格点,如图(1)中正方形的面积为5,则此正方形的边长为,我们通过画正方形可求出无理数的线段长度.(1)请在图(2)中画出一个面积为10的正方形,此正方形的边长为;(2)求出图(3)中A,B,C点为顶点的三角形的面积和AB的长度.24.阅读材料:求1+2+22+23+…+22013的值.解:设S=1+2+22+ (22013)将等式两边同时乘以2得:2S=2+22+ (22014)将下式减去上式得:2S﹣S=22014﹣1,即S=1+2+22+…+22013=22014﹣1.请你按照此法计算:(1)1+2+22+…+210(2)1+3+32+33+…+3n(其中n为正整数).参考答案与试题解析一、选择题(每小题3分,共36分)1.太阳与地球的距离大约是150000000千米,其中150000000可用科学记数法表示,下列正确的是( )A. 15×107B. 0.15×109C. 1.5×108D. 1.5亿考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将150000000用科学记数法表示为:1.5×108.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n的值.2.下列不是有相反意义的量是( )A. 上升5米与下降3米B. 零下5℃与零下1℃C. 高出海拔100米与低于海拔10米D. 亏损100元与收入100元考点:正数和负数.分析:首先知道正负数的含义,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.解答:解:A、上升5米与下降3米具有相反意义,不符合题意,此选项错误,B、根据零下与零下没有相反意义,符合题意,此选项正确,C、高出海拔100米与低于海拔10米具有相反意义,不符合题意,此选项错误,D、亏损与收入具有相反意义,不符合题意,此选项错误,故选:B.点评:此题主要考查了正数与负数,理解正数与负数的相反意义是解题关键.3. 的平方根是( )A. ±4B. 4C. ±2D. 2考点:平方根;算术平方根.分析:根据算术平方根的意义,可得16的算术平方根,再根据平方根的意义,可得答案.解答:解: =4,± =±2,故选:C.点评:本题考查了平方根,先求算术平方根,再求平方根.4.(3分)(2014秋•余姚市校级期中)①倒数是本身的数是±1;②立方根是本身的数是0.1;③平方等于本身的数0.1;④绝对值是本身的数是0.1,其中是错的有( )个.A. 1B. 2C. 3D. 4考点:立方根;绝对值;倒数;有理数的乘方.分析:根据倒数,立方根,有理数的乘方,绝对值的意义进行判断即可.解答:解:∵倒数是本身的数是±1;立方根是本身的数是0.1,﹣1;平方等于本身的数0.1;绝对值是本身的数是0和正数,∴正确的有①③,共2个,故选B.点评:本题考查了倒数,立方根,有理数的乘方,绝对值的意义的应用,主要考查学生的理解能力和辨析能力,题目比较好,但是也比较容易出错.5.数轴上有两点A、B分别是﹣2, +1,则AB之间的距离是( )A. B. 3 C. D.考点:实数与数轴.分析:根据数轴上点的坐标即可列出算式( +1)﹣( ﹣2),求出即可.解答:解:∵数轴上有两点A、B分别是﹣2, +1,∴A、B两点之间的'距离是( +1)﹣( ﹣2)=3,故选B.点评:本题考查了实数与数轴,两点之间的距离的应用,关键是能根据题意列出算式.6.在、﹣、、中最大的数是( )A. B. C. ﹣ D.考点:实数大小比较.分析:首先利用平方根以及立方根分别化简各数,进而比较得出即可.解答:解:∵ =﹣、﹣ =﹣0.1、 =﹣0.1、 =﹣ =﹣0.04,∴ 最大.故选;A.点评:此题主要考查了实数比较大小,正确化简各数是解题关键.7.若用a表示的整数部分,则在数轴上与2+a最接近的数所表示的点是( )A. AB. BC. CD. D考点:估算无理数的大小;实数与数轴.分析:利用“夹逼法”求得a,然后在数轴上找(2+a).解答:解:∵﹣27<﹣10<﹣8,∴ < ,即﹣3< <﹣2,则a=﹣2,∴2+a=0,故在数轴上与2+a最接近的数所表示的点是B.故选:B.点评:此题主要考查了估计无理数的大小以及实数与数轴,得出a的值是解题关键.8.已知下列各数:、、 +1、、0.10101001、0.2 ,其中无理数有( )个.A. 2B. 3C. 4D. 5考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有: +1, +1共有2个.故选A.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.由半圆和直角三角形组成的图形,如图,空白部分面积等于(π取3.14,精确到0.1)( )A. 15.0B. 15.1C. 15.2D. 15.3考点:有理数的混合运算.分析:空白部分面积等于直径为10半圆的面积减去底为8,高为6的直角三角形的面积即可.解答:解:π( )2﹣×6×8=39.25﹣24=15.25≈15.3.故选:D.点评:此题考查有理数的混合运算,掌握基本图形的面积计算方法是解决问题的关键.10.正整数排列如图:第一行 1第二行 1 2第三行 2 3 4第四行 3 4 5 6按照这样的规律排列,你认为100第一次出现在( )A. 第50行第50个B. 50行第51个C. 第51行第50个D. 第51行51个考点:规律型:数字的变化类.分析:由排列的数可知:第几行就有几个数字,从第二行开始开头的数字都是所在的行数减去1,在第50行出现的数字是从49﹣98,从第51行出现的数字是从50﹣100,由此得出答案即可.解答:解:第一行 1第二行 1 2第三行 2 3 4第四行 3 4 5 6…第50行49 50 (98)第51行50 51 (100)所以100第一次出现在第51行51个.故选:D.点评:此题考查数字的变化规律,找出数字之间的联系,得出规律,解决问题.11.10头大象1天的食品可供1000只老鼠吃600天,假定每头大象的食量都一样,每只老鼠的食量也相等,那么m头大象1天的食物可供100只老鼠吃( )天.A. 500mB. 600mC.D.考点:列代数式.专题:应用题.分析:根据已知10头大象1天的食品可供1000只老鼠吃600天,假定每头大象的食量都一样,每只老鼠的食量也相等,可求出那么m头大象1天的食品可供100只老鼠吃多少天.解答:解:m÷100=600m(天).故选:B.点评:本题考查列代数式,理解题意,先求出一头大象吃的相当于多少只老鼠一天吃的,最后求出结果.二、填空题(共6题,每小题3分,共18分)12.﹣3的相反数是 3 .考点:相反数.分析:一个数的相反数就是在这个数前面添上“﹣”号.解答:解:﹣(﹣3)=3,故﹣3的相反数是3.故答案为:3.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.13.下列的代数式:﹣x2y,0,,,,中单项式有 3 个.考点:单项式.分析:根据单项式的概念求解即可.解答:解:单项式有::﹣x2y,0,,共3个.故答案为:3.点评:本题考查了单项式的概念:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.14.x的倍与y的平方的和可表示为.考点:列代数式.分析:先求x的倍,再加上y的平方即可.解答:解:x的倍与y的平方的和可表示为 x+y2.故答案为: x+y2.点评:此题考查列代数式,理解题意,搞清数量关系是解决问题的关键.15.细胞每分裂一次,1个细胞就变成2个,洋葱根尖细胞每分裂一次间隔的时间为12小时,2个洋葱根尖细胞经3昼夜变成128 个.考点:有理数的乘方.专题:计算题.分析:根据题意列出算式计算,即可得到结果.解答:解:根据题意得:2×26=128(个),故答案为:128点评:此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.16.若棱长为10cm的立方体的体积减少Vcm3而保存立方体形状不变,则棱长应该减少(10﹣ ) cm.考点:立方根.专题:计算题.分析:根据题意列出算式,计算即可.解答:解:根据题意得:10﹣,则棱长应该减少(10﹣ )cm.故答案为:10﹣点评:此题考查了立方根,熟练掌握立方根的定义是解本题的关键.17.若5x2y|m|﹣(m+1)y2﹣3是关于字母x、y的3次3项式,则m= 1 .考点:多项式.分析:直接利用多项式的定义得出|m|=1,m+1≠0,进而求出即可.解答:解:∵5x2y|m|﹣(m+1)y2﹣3是关于字母x、y的3次3项式,∴|m|=1,m+1≠0,解得:m=1.故答案为:1.点评:此题主要考查了多项式的定义,得出关于m的等式是解题关键.三、解答(共66分)18.计算:(1)(﹣ + ﹣)×(﹣48)(2)(﹣2)÷ × ﹣(﹣5)(3)﹣﹣(4)﹣32﹣(2.5+ ﹣3 + )考点:实数的运算.分析: (1)直接利用有理数乘法运算法则求出即可;(2)利用绝对值以及乘方运算法则化简求出即可;(3)分别利用平方根、立方根的性质化简各数,进而求出;(4)利用有理数混合运算法则求出即可.解答:解:(1)(﹣ + ﹣)×(﹣48)=16﹣8+4=12;(2)(﹣2)÷ × ﹣(﹣5)=2×32× +5=405 ;(3)﹣﹣=﹣ +=;(4)﹣32﹣(2.5+ ﹣3 + )=﹣9﹣1=﹣10.点评:此题主要考查了立方根以及平方根和绝对值的性质以及有理数混合运算,正确掌握相关性质是解题关键.19.(1)已知|a﹣2|+|b+1|=0,求代数式(a+b)2015+b2014的值;(2)如果代数式2y2﹣y+5的值等于﹣2,求代数式5﹣2y2+y的值.考点:代数式求值;非负数的性质:绝对值.分析:(1)根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解;(2)根据代数式2y2﹣y+5的值等于﹣2,即可求得2y2﹣y的值为﹣7,5﹣2y2+y可以变形为:5﹣(2y2﹣y),代入即可求解.解答: (1)解:∵|a﹣2|+|b+1|=0,∴ ,解得:a=2,b=﹣1,∴原式(a+b)2015+b2014=(2﹣1)2015+(﹣1)2014=1+1=2(2)∵2y2﹣y+5=﹣2,∴2y2﹣y=﹣7,∵5﹣2y2+y=5﹣(2y2﹣y)=5﹣(﹣7)=12.点评:此题主要考查了学生运用整体思想求代数式值的掌握.(1)解题关键是:若非负数的和为0,则非负数为0;(2)解题关键是:将5﹣2y2+y可以变形为:5﹣(2y2﹣y).20.在数轴上表示下列各数,并用“<”连接,|﹣3|,0,,,(﹣1)2.考点:实数大小比较;实数与数轴.分析:根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.解答:解:|﹣3|=3, =﹣2,(﹣1)2=1,如图所示:用“<”连接为: <0< <(﹣1)2<|﹣3|.点评:本题考查了有理数大小比较,利用了数轴上的点表示的数右边的总比左边的大.21.3是2x﹣1的平方根,y是8的立方根,z是绝对值为9的数,求2x+y﹣5z的值.考点:实数的运算.分析:分别利用立方根以及平方根和绝对值的性质得出x,y,z 的值进而求出即可.解答:解:∵3是2x﹣1的平方根,∴2x﹣1=9,解得:x=5,∵y是8的立方根,∴y=2,∵z是绝对值为9的数,∴z=±9,∴2x+y﹣5z=20+2﹣5×9=﹣33或2x+y﹣5z=20+2+5×9=57.点评:此题主要考查了立方根以及平方根和绝对值的性质,正确掌握相关性质是解题关键.22.王明从甲地到乙地骑自行车共100千米路程,原计划用V千米/时的速度前进,行到一半路程时接到电话有急事,加速到原计划的2倍前进,求王明从甲地到乙地用了多少时间?当V=15千米/时时,求王明所用的时间.考点:代数式求值;列代数式.分析:根据路程=速度×时间的变形公式即可表示王明从甲地到乙地用的时间;将V=15代入即可.解答:解:由时间= ,可得:(时),∴王明从甲地到乙地用了小时;当V=15千米/时时,= (小时),所以当V=15千米/时时,王明所用的时间为5小时.点评:此题考查了代数式求值,解题关键是:熟练掌握公式:路程=速度×时间.23.正方形网格中的每个小正方形边长都为1,每个小格的顶点称为格点,如图(1)中正方形的面积为5,则此正方形的边长为,我们通过画正方形可求出无理数的线段长度.(1)请在图(2)中画出一个面积为10的正方形,此正方形的边长为;(2)求出图(3)中A,B,C点为顶点的三角形的面积和AB的长度.考点:算术平方根;三角形的面积.分析: (1)根据面积得出边长即可;(2)利用矩形的面积减去三个三角形的面积即为三角形ABC的面积,再根据勾股定理求AB即可.解答:解:(1)如图,正方形的边长为 ;(2)S=2×3﹣×1×2﹣×1×3﹣×1×2=6﹣1﹣1.5﹣1=2.5,画如下图可得,正方形ABCD的面积为2.5×2=5,因此AB的边长为 .点评:本题考查了算术平方根,以及三角形的面积、勾股定理,是基础题比较简单.24.阅读材料:求1+2+22+23+…+22013的值.解:设S=1+2+22+ (22013)将等式两边同时乘以2得:2S=2+22+ (22014)将下式减去上式得:2S﹣S=22014﹣1,即S=1+2+22+…+22013=22014﹣1.请你按照此法计算:(1)1+2+22+…+210(2)1+3+32+33+…+3n(其中n为正整数).考点:有理数的混合运算.专题:阅读型.分析: (1)设原式=S,两边乘以2变形后,相减求出S即可;(2)设原式=S,两边乘以3变形后,相减求出S即可.解答:解:(1)设S=1+2+22+ (210)两边乘以2得:2S=2+22+ (211)两式相减得:2S﹣S=S=211﹣1,则原式=211﹣1;(2)设S=1+3+32+33+…+3n,两边乘以3得:3S=3+32+33+…+3n+1,两式相减得:3S﹣S=3n+1﹣1,即S= ,则原式= .点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.下载全文。

七年级上册数学期中考试卷及答案

七年级上册数学期中考试卷及答案

七年级上册数学期中考试卷及答案七年级上册数学期中考试卷及答案马上就到2017年七年级数学期中考试了,愿你用坚强的心,微笑的情开拓自己的精彩未来!以下是店铺为你整理的七年级上册数学期中考试卷,希望对大家有帮助!2017年七年级上册数学期中考试卷一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.16的平方根是( )A.4B.﹣4C.±4D.±22.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是( )A.(﹣4,5)B.(﹣4,﹣5)C.(﹣5,4)D.(﹣5,﹣4)3.下列命题中,真命题的个数是( )①同位角相等;②a,b,c是三条直线,若a⊥b,b⊥c,则a⊥c.③a,b,c是三条直线,若a∥b,b∥c,则a∥c;④过一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个4.用代入法解方程组时,代入正确的是( )A.x﹣2﹣x=4B.x﹣2﹣2x=4C.x﹣2+2x=4D.x﹣2+x=45.估计的值在哪两个整数之间( )A.75和77B.6和7C.7和8D.8和96.已知不等式组,其解集在数轴上表示正确的是( )A. B. C. D.7.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为( )A.20°B.80°C.160°D.20°或160°8.如,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD 的条件为( )A.①②③④B.①②④C.①③④D.①②③9.已知方程组和有相同的解,则a,b的值为( )A. B. C. D.10.某校书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如不完整的统计,已知甲类书有30本,则丙类书的本数是( )A.90B.144C.200D.8011.小明用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么小明最多能买笔的数目为( )A.14B.13C.12D.1112.已知方程组:的解是:,则方程组:的解是( )A. B. C. D.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.已知点P(a+1,a﹣1)在第四象限,则a的取值范围是.14.在下列各数中:3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、、﹣π、、、、,无理数的个数是.15.为了解某市七年级学生的身体素质情况,随机抽取了1000名七年级学生进行检测,身体素质达标的有950人,请你估计该市12万名七年级学生,身体素质达标的大约有人.16.已知是二元一次方程ax+by=2的一组解,则4﹣2a+b= .17.已知点P的坐标是(a+2,3a﹣6),且点P到两坐标轴的距离相等,则点P的坐标是.18.关于x的不等式3x﹣a≤0,只有两个正整数解,则a的取值范围是.19.如,将周长为8的三角形ABC向右平移1个单位后得到三角形DEF,则四边形ABFD的周长等于.20.对于有理数x,y,定义新运算:x*y=ax+by,其中a,b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣5)的值是.三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤)21.计算(1)(2) .22.计算(1)解方程组:(2)解不等式组: .23.已知:如,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在中画出△A′B′C′;(2)写出点A′、B′、C′的坐标;A′的坐标为;B′的坐标为;C′的坐标为;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,请直接写出点P的坐标;若不存在,说明理由.24.①表示的是某综合商场今年1~5月的商品各月销售总额的情况,②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察①、②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将①中的统计补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.25.根据中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大球水面升高cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?26.在“老人节”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人报名参加,旅行前,旅行社承诺每车保证有且只有一名随团医生,并为此次旅行请了7名医生,现打算选租甲、乙两种客车,其中甲种客车每辆载客40人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为350元每辆,乙种客车租金为280元每辆,旅行社按照哪种方案租车最省钱?此时租金是多少?27.已知:如,直线a∥b,直线c与直线a、b分别相交于C、D 两点,直线d与直线a、b分别相交于A、B两点.(1)如1,当点P在线段AB上(不与A、B两点重合)运动时,∠1、∠2、∠3之间有怎样的大小关系?请说明理由;(2)如2,当点P在线段AB的延长线上运动时,∠1、∠2、∠3之间的大小关系为;(3)如3,当点P在线段BA的延长线上运动时,∠1、∠2、∠3之间的大小关系为.2017年七年级上册数学期中考试卷答案与解析一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.16的平方根是( )A.4B.﹣4C.±4D.±2【考点】平方根.【分析】根据平方根定义求出即可.【解答】解:16的平方根是±4,故选C.2.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是( )A.(﹣4,5)B.(﹣4,﹣5)C.(﹣5,4)D.(﹣5,﹣4)【考点】点的坐标.【分析】根据P到x轴的距离可得P的纵坐标的绝对值,根据P 到y轴的距离可得P的横坐标的绝对值,根据第二象限的点的符号特点可得点P的坐标.【解答】解:∵点P到x轴的距离是4,到y轴的距离是5,∴P的纵坐标的绝对值为4,横坐标的绝对值为5,∵点P在第二象限内,∴横坐标的符号为负,纵坐标的符号为正,∴P的坐标为(﹣5,4).故选C.3.下列命题中,真命题的个数是( )①同位角相等;②a,b,c是三条直线,若a⊥b,b⊥c,则a⊥c.③a,b,c是三条直线,若a∥b,b∥c,则a∥c;④过一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①同位角相等,是假命题;②a,b,c是三条直线,若a⊥b,b⊥c,则a∥c,是假命题.③a,b,c是三条直线,若a∥b,b∥c,则a∥c,是真命题;④过直线外一点有且只有一条直线与已知直线平行,是假命题,故选A4.用代入法解方程组时,代入正确的是( )A.x﹣2﹣x=4B.x﹣2﹣2x=4C.x﹣2+2x=4D.x﹣2+x=4【考点】解二元一次方程组.【分析】将①代入②整理即可得出答案.【解答】解:,把①代入②得,x﹣2(1﹣x)=4,去括号得,x﹣2+2x=4.故选C.5.估计的值在哪两个整数之间( )A.75和77B.6和7C.7和8D.8和9【考点】估算无理数的大小.【分析】先对进行估算,再确定是在哪两个相邻的整数之间.【解答】解:∵ < < ,∴8<<9,∴ 在两个相邻整数8和9之间.故选:D.6.已知不等式组,其解集在数轴上表示正确的是( )A. B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.【解答】解:∵解不等式①得:x>3,解不等式②得:x≥﹣1,∴不等式组的解集为:x>3,在数轴上表示不等式组的解集为:故选:B.7.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为( )A.20°B.80°C.160°D.20°或160°【考点】平行线的性质.【分析】首先根据题意画出形,由∠A的两边与∠B的两边互相平行,根据平行线的性质,即可求得∠B的度数.【解答】解:如1:∵∠A的两边与∠B的两边互相平行,∴∠1=∠A,∠B=∠1,∵∠A=20°,∴∠B=∠A=20°;如2:∵∠A的两边与∠B的两边互相平行,∴∠1=∠A,∠1+∠B=180°,∴∠B=180°﹣∠A=160°.故选D.8.如,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD 的条件为( )A.①②③④B.①②④C.①③④D.①②③【考点】平行线的判定.【分析】根据平行线的判定定理求解,即可求得答案.【解答】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选C.9.已知方程组和有相同的解,则a,b的值为( )A. B. C. D.【考点】二元一次方程组的解.【分析】因为方程组和有相同的解,所以把5x+y=3和x﹣2y=5联立解之求出x、y,再代入其他两个方程即可得到关于a、b的方程组,解方程组即可求解.【解答】解:∵方程组和有相同的解,∴方程组的解也它们的解,解得:,代入其他两个方程得,解得:,故选D.10.某校书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如不完整的统计,已知甲类书有30本,则丙类书的本数是( )A.90B.144C.200D.80【考点】扇形统计.【分析】根据甲类书籍有30本,占总数的15%即可求得总书籍数,丙类所占的比例是1﹣15%﹣45%,所占的比例乘以总数即可求得丙类书的本数.【解答】解:总数是:30÷15%=200(本),丙类书的本数是:200×(1﹣15%﹣45%)=200×40%=80(本)故选D.11.小明用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么小明最多能买笔的数目为( )A.14B.13C.12D.11【考点】一元一次不等式的应用.【分析】本题可设钢笔数为x,则笔记本有30﹣x件,根据小明用100元钱购得笔记本和钢笔共30件,就是已知不等关系:买笔记本用的钱数+买钢笔用的'钱数≤100元.根据这个不等关系就可以得到一个不等式.求出钢笔数的范围.【解答】解:设钢笔数为x,则笔记本有30﹣x件,则有:2(30﹣x)+5x≤10060﹣2x+5x≤100即3x≤40x≤13 因此小明最多能买13只钢笔.故选B.12.已知方程组:的解是:,则方程组:的解是( )A. B. C. D.【考点】二元一次方程组的解.【分析】在此题中,两个方程组除未知数不同外其余都相同,所以可用换元法进行解答.【解答】解:在方程组中,设x+2=a,y﹣1=b,则变形为方程组,由题知,所以x+2=8.3,y﹣1=1.2,即 .故选C.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.已知点P(a+1,a﹣1)在第四象限,则a的取值范围是﹣1【考点】点的坐标;解一元一次不等式组.【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【解答】解:∵点P(a+1,a﹣1)在第四象限,∴ ,由①得:a>﹣1,由②得:a<1,所以,a的取值范围是﹣1故答案为:﹣114.在下列各数中:3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、、﹣π、、、、,无理数的个数是 3 .【考点】无理数.【分析】无理数就是无限不循环小数,依据定义即可作出判断.【解答】解:在3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、、﹣π、、、、中,0.2060060006(相邻的两个6之间依次多一个0)、3.1415、0、、是有理数,﹣π、、这3个数是无理数,故答案为3.15.为了解某市七年级学生的身体素质情况,随机抽取了1000名七年级学生进行检测,身体素质达标的有950人,请你估计该市12万名七年级学生,身体素质达标的大约有114000 人.【考点】用样本估计总体.【分析】根据题意计算出身体素质达标的人数所占百分比,然后再计算出该市12万名七年级学生身体素质达标的人数.【解答】解:120000× =114000,故答案为:114000.16.已知是二元一次方程ax+by=2的一组解,则4﹣2a+b= 2 .【考点】二元一次方程的解.【分析】将方程的解代入方程可得到关于a、b的方程,最后应用整体代入法求解即可.【解答】解:将代入ax+by=2得:2a﹣b=2.原式4﹣(2a﹣b)=4﹣2=2.故答案为:2.17.已知点P的坐标是(a+2,3a﹣6),且点P到两坐标轴的距离相等,则点P的坐标是(6,6)或(3,﹣3) .【考点】点的坐标.【分析】分点的横坐标与纵坐标相等和互为相反数两种情况讨论求解.【解答】解:∵点P(a+2,3a﹣6)到两坐标轴的距离相等,∴a+2=3a﹣6或a+2+3a﹣6=0,解得a=4或a=1,当a=4时,a+2=4+2=6,此时,点P(6,6),当a=1时,a+2=3,此时,点P(3,﹣3),综上所述,点P(6,6)或(3,﹣3).故答案为:(6,6)或(3,﹣3).18.关于x的不等式3x﹣a≤0,只有两个正整数解,则a的取值范围是6≤a<9.【考点】一元一次不等式的整数解.【分析】解不等式得x≤ ,由于只有两个正整数解,即1,2,故可判断的取值范围,求出a的取值范围.【解答】解:原不等式解得x≤ ,∵解集中只有两个正整数解,则这两个正整数解是1,2,∴2≤<3,解得6≤a<9.故答案为:6≤a<9.19.如,将周长为8的三角形ABC向右平移1个单位后得到三角形DEF,则四边形ABFD的周长等于10 .【考点】平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故答案为:10.20.对于有理数x,y,定义新运算:x*y=ax+by,其中a,b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣5)的值是﹣7 .【考点】解二元一次方程组;有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题意得:,①+②得:a=﹣1,b=1,则原式=2a﹣5b=﹣2﹣5=﹣7.故答案为:﹣7三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤)21.计算(1)(2) .【考点】实数的运算.【分析】(1)原式利用二次根式性质,乘方的意义,以及立方根定义计算即可得到结果;(2)原式利用二次根式乘法法则,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)原式=4﹣1﹣3=0;(2)原式=2+2 ﹣2+ =3 .22.计算(1)解方程组:(2)解不等式组: .【考点】解一元一次不等式组;解二元一次方程组.【分析】(1)先把①变形为x﹣y=5的形式,再用代入消元法求解即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)解方程组:由①得,x﹣y=5③,把③代入②得,20﹣y=5,解得,y=15.把y=11代入③得,x=20,所以方程组的解为: ;(2) ,由①得,x≥ ,由②得,x> ,故方程组的解为:x≥ .23.已知:如,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在中画出△A′B′C′;(2)写出点A′、B′、C′的坐标;A′的坐标为(0,4) ;B′的坐标为(﹣1,1) ;C′的坐标为(3,1) ;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,请直接写出点P的坐标;若不存在,说明理由.【考点】作-平移变换.【分析】(1)根据形平移的性质画出△A′B′C′即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)根据同底等高的三角形面积相等即可得出结论.【解答】解:(1)略;(2)由可知,A′(0,4);B′(﹣1,1);C′(3,1);故答案为:(0,4);(﹣1,1);(3,1);(3)设P(0,y),∵△BCP与△ABC同底等高,∴|y+2|=3,即y+2=3或y+2=﹣3,解得y1=1,y2=﹣5,∴P(0,1)或(0,﹣5).24.①表示的是某综合商场今年1~5月的商品各月销售总额的情况,②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察①、②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将①中的统计补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.【考点】条形统计;折线统计.【分析】(1)根据①可得,1235月份的销售总额,再用总的销售总额减去这四个月的即可;(2)由可知用第5月的销售总额乘以16%即可;(3)分别计算出4月和5月的销售额,比较一下即可得出答案.【解答】解:(1)410﹣=410﹣335=75;如:(2)商场服装部5月份的销售额是80万元×16%=12.8万元;(3)4月和5月的销售额分别是75万元和80万元,服装销售额各占当月的17%和16%,则为75×17%=12.75万元,80×16%=12.8万元,故小刚的说法是错误的.25.根据中给出的信息,解答下列问题:(1)放入一个小球水面升高 2 cm,放入一个大球水面升高 3 cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?【考点】二元一次方程组的应用;一元一次方程的应用.【分析】(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据象提供的数据建立方程求解即可;(2)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可.【解答】解:(1)设一个小球使水面升高x厘米,由意,得3x=32﹣26,解得x=2;设一个大球使水面升高y厘米,由意,得2y=32﹣26,解得:y=3.所以,放入一个小球水面升高2cm,放入一个大球水面升高3cm;(2)设应放入大球m个,小球n个.由题意,得解得:,答:如果要使水面上升到50cm,应放入大球4个,小球6个.26.在“老人节”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人报名参加,旅行前,旅行社承诺每车保证有且只有一名随团医生,并为此次旅行请了7名医生,现打算选租甲、乙两种客车,其中甲种客车每辆载客40人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为350元每辆,乙种客车租金为280元每辆,旅行社按照哪种方案租车最省钱?此时租金是多少?【考点】一次函数的应用;一元一次不等式组的应用.【分析】(1)设租甲种客车x辆,则租乙种客车(7﹣x)辆,依题意关系式为:40x+30(7﹣x)≥253+7,(2)分别算出各个方案的租金,比较即可.【解答】解:(1)设租甲种客车x辆,则租乙种客车(7﹣x)辆,依题意,得40x+30(7﹣x)≥253+7,解得x≥5,又x≤7,即5≤x≤7,x=5,6,7,有三种租车方案:租甲种客车5辆,则租乙种客车2辆,租甲种客车6辆,则租乙种客车1辆,租甲种客车7辆,则租乙种客车0辆;(2)∵5×350+2×280=2310元,6×350+1×280=2380元,7×350=2450元,∴租甲种客车5辆;租乙种客车2辆,所需付费最少为2310(元).27.已知:如,直线a∥b,直线c与直线a、b分别相交于C、D 两点,直线d与直线a、b分别相交于A、B两点.(1)如1,当点P在线段AB上(不与A、B两点重合)运动时,∠1、∠2、∠3之间有怎样的大小关系?请说明理由;(2)如2,当点P在线段AB的延长线上运动时,∠1、∠2、∠3之间的大小关系为∠1=∠2+∠3;(3)如3,当点P在线段BA的延长线上运动时,∠1、∠2、∠3之间的大小关系为∠2=∠1+∠3.【考点】平行线的性质.【分析】(1)过点P作a的平行线,根据平行线的性质进行解题;(2)过点P作b的平行线PE,由平行线的性质可得出a∥b∥PE,由此即可得出结论;(3)设直线AC与DP交于点F,由三角形外角的性质可得出∠1+∠3=∠PFA,再由平行线的性质即可得出结论.【解答】解:(1)如1,过点P作PE∥a,则∠1=∠CPE.∵a∥b,PE∥a,∴PE∥b,∴∠2=∠DPE,∴∠3=∠1+∠2;(2)如2,过点P作PE∥b,则∠2=∠EPD,∵直线a∥b,∴a∥PE,∴∠1=∠3+∠EPD,即∠1=∠2+∠3.故答案为:∠1=∠2+∠3;(3)如3,设直线AC与DP交于点F,∵∠PFA是△PCF的外角,∴∠PFA=∠1+∠3,∵a∥b,∴∠2=∠PFA,即∠2=∠1+∠3.故答案为:∠2=∠1+∠3.【七年级上册数学期中考试卷及答案】。

2017年山东省枣庄市山亭区七年级(上)期中数学试卷与参考答案PDF

2017年山东省枣庄市山亭区七年级(上)期中数学试卷与参考答案PDF

2016-2017学年山东省枣庄市山亭区七年级(上)期中数学试卷一、选择题(本题共12小题,每小题3分)1.(3分)如果温泉河的水位升高0.8m时,水位变化记作+0.8m,那么水位下降0.5m时,水位变化记作()A.0m B.0.5m C.﹣0.8m D.﹣0.5m2.(3分)在数﹣3,﹣2,0,0.01中,最大的数是()A.﹣3 B.﹣2 C.0 D.0.013.(3分)(﹣3)2的相反数是()A.﹣6 B.9 C.﹣9 D.4.(3分)如图所示立体图形从上面看到的图形是()A.B.C.D.5.(3分)计算(﹣3)+(﹣9)结果是()A.﹣6 B.﹣12 C.6 D.126.(3分)今年十一国庆黄金周,山亭区推出了精彩多样的节庆产品和亲民的优惠活动,全区共接待游客大约10.97万人,用科学记数法表示10.97万是()A.1.097×104B.1.097×105C.10.97×104D.10.97×1057.(3分)数a,b在数轴上的位置如图所示,则a﹣b是()A.正数B.零C.负数D.都有可能8.(3分)若a+b<0,>0,则下列成立的是()A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>09.(3分)按组成面的平或曲划分,与圆柱为同一类的几何体是()A.长方体B.正方体C.棱柱D.圆锥10.(3分)当x=1时,ax3﹣2bx+3=6,则当x=﹣1时,这个代数式的值是()A.6 B.0 C.﹣6 D.﹣311.(3分)如图,是一个正方体的平面展开图,在正方体中写有“心”字的那一面的对面的字是()A.祝B.你C.事D.成12.(3分)观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…根据上述算式中的规律,你认为32016的末位数字是()A.1 B.9 C.7 D.3二、填空题(每题4分,共24分)13.(4分)的系数是.14.(4分)点A在数轴上距离原点3个单位长度,若将点A向右移动4个单位长度,此时点表示的数是.15.(4分)如果代数式x2+(2a﹣6)xy+x2+y2+9中不含xy项,则a=.16.(4分)已知非零有理数a、b满足+=﹣2.则的值为.17.(4分)如图是一数值转换机,若输入的x为﹣2,则输出的结果为.18.(4分)同学们玩过算24的游戏吧!下面就来玩一下,我们约定的游戏规则是:只能用加、减、乘、除四种运算,利用1,3,6,8来算24,每个数只能用一次,在横线上写出一种运算过程.三、解答题(共60分)19.(8分)(1)计算:(﹣8)﹣(﹣15)+(﹣9)﹣(﹣)(2)计算:﹣22﹣(﹣2)2+(﹣3)2×(﹣)﹣42÷|﹣4|20.(8分)一个几何体由大小相同的小立方块搭成,从上面观察这个几何体看到的形状如图所示,其中小正方形里的数字表示该位置小立方块的个数,请画出从正面、左面看到的这个几何体的形状图.21.(8分)把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来0,+3.5,﹣3,﹣1,﹣(﹣5)22.(8分)“十•一”黄金周期间,武汉东湖风景区在7天假期中每天旅游人数变化如下表(正号表示人数比前一天多,负号表示比前天少)(1)若9月30日的旅客人数为4.2万人,则10月4日的旅客人数为万人;(2)七天中旅客人数最多的一天比最少的一天多万人(3)如果每万人带来的经济收入约为100万元,则黄金周七天的旅游总收入约为多少万元?23.(8分)下列是小朋友用火柴棒拼出的一组图形:仔细观察,找出规律,解答下列各题:(1)第四个图中共有根火柴棒,第六个图中共有根火柴棒;(2)按照这样的规律,第n个图形中共有根火柴棒(用含n的代数式表示);(3)按照这样的规律,第2016个图形中共有多少根火柴棒?24.(10分)某种T型零件尺寸如图所示(左右宽度相同),求:(1)阴影部分的周长是多少?(用含x,y的代数式表示)(2)阴影部分的面积是多少?(用含x,y的代数式表示)(3)当|x﹣2|+(y﹣)2=0时,计算阴影部分的面积.25.(10分)海洋服装厂生产一种夹克和一种牛仔裤,夹克每件定价140元,牛仔裤每件定价70元,厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件牛仔裤;②夹克和牛仔裤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,牛仔裤x件(x>30).(1)若该客户按方案①购买,夹克需付款元,牛仔裤需付款元(用含x的式子表示);若该客户按方案②购买,夹克需付款元,牛仔裤需付款元(用含x的式子表示);(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?2016-2017学年山东省枣庄市山亭区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分)1.(3分)如果温泉河的水位升高0.8m时,水位变化记作+0.8m,那么水位下降0.5m时,水位变化记作()A.0m B.0.5m C.﹣0.8m D.﹣0.5m【解答】解∵水位升高0.8 m时水位变化记作+0.8 m,∴水位下降0.5 m时水位变化记作﹣0.5 m,故选:D.2.(3分)在数﹣3,﹣2,0,0.01中,最大的数是()A.﹣3 B.﹣2 C.0 D.0.01【解答】解:根据有理数比较大小的方法,可得﹣3<﹣2<0<0.01,故在数﹣3,﹣2,0,0.01中,最大的数是0.01.故选:D.3.(3分)(﹣3)2的相反数是()A.﹣6 B.9 C.﹣9 D.【解答】解:(﹣3)2的相反数是﹣9,故选:C.4.(3分)如图所示立体图形从上面看到的图形是()A.B.C.D.【解答】解:从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.5.(3分)计算(﹣3)+(﹣9)结果是()A.﹣6 B.﹣12 C.6 D.12【解答】解:(﹣3)+(﹣9)=﹣12.故选:B.6.(3分)今年十一国庆黄金周,山亭区推出了精彩多样的节庆产品和亲民的优惠活动,全区共接待游客大约10.97万人,用科学记数法表示10.97万是()A.1.097×104B.1.097×105C.10.97×104D.10.97×105【解答】解:10.97万=109700=1.097×105,故选:B.7.(3分)数a,b在数轴上的位置如图所示,则a﹣b是()A.正数B.零C.负数D.都有可能【解答】解:∵a在原点左边,∴a<0,∵b在原点右边,∴b>0,∴a﹣b=a+(﹣b)<0.故选:C.8.(3分)若a+b<0,>0,则下列成立的是()A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>0【解答】解:∵a+b<0,>0,∴a与b同号,且同时为负数,则a<0,b<0,故选:C.9.(3分)按组成面的平或曲划分,与圆柱为同一类的几何体是()A.长方体B.正方体C.棱柱D.圆锥【解答】解:圆柱由平面和曲面组成,长方体由平面组成;正方体由平面组成;棱柱由平面组成,圆锥由平面和曲面组成,故选:D.10.(3分)当x=1时,ax3﹣2bx+3=6,则当x=﹣1时,这个代数式的值是()A.6 B.0 C.﹣6 D.﹣3【解答】解:当x=1时,则有a﹣2b+3=6,∴a﹣2b=3,则当x=﹣1时,ax3﹣2bx+3=(﹣1)3a+2b+3=﹣a+2b+3=﹣3+3=0,故选:B.11.(3分)如图,是一个正方体的平面展开图,在正方体中写有“心”字的那一面的对面的字是()A.祝B.你C.事D.成【解答】解:正方体的平面展开图中,相对的面一定相隔一个正方形,所以在正方体中写有“心”字的那一面的对面的字是成.故选:D.12.(3分)观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…根据上述算式中的规律,你认为32016的末位数字是()A.1 B.9 C.7 D.3【解答】解:已知31=3,末位数字为3,32=9,末位数字为9,33=27,末位数字为7,34=81,末位数字为1,35=243,末位数字为3,36=729,末位数字为9,37=2187,末位数字为7,38=6561,末位数字为1,…由此得到:3的1,2,3,4,5,6,7,8,…次幂的末位数字以3、9、7、1四个数字为一循环,又2016÷4=504,所以32016的末位数字与34的末位数字相同是1.故选:A.二、填空题(每题4分,共24分)13.(4分)的系数是.【解答】解:根据单项式系数的定义,单项式的系数为﹣.14.(4分)点A在数轴上距离原点3个单位长度,若将点A向右移动4个单位长度,此时点表示的数是1或7.【解答】解:当点A在原点的左边时,平移后点表示的数为:﹣3+4=1;当点A在原点的右边时,平移后点表示的数为:3+4=7,故答案为:1或7.15.(4分)如果代数式x2+(2a﹣6)xy+x2+y2+9中不含xy项,则a=3.【解答】解:∵代数式x2+(2a﹣6)xy+x2+y2+9中不含xy项,∴2a﹣6=0,解得a=3.故答案为:3.16.(4分)已知非零有理数a、b满足+=﹣2.则的值为1.【解答】解:∵非零有理数a、b满足+=﹣2.∴a<0,b<0,∴ab>0,∴==1,故答案为:1.17.(4分)如图是一数值转换机,若输入的x为﹣2,则输出的结果为9.【解答】解:把x=﹣2代入数值转换机中得:(﹣2﹣1)×(﹣3)=﹣3×(﹣3)=9,故答案为:918.(4分)同学们玩过算24的游戏吧!下面就来玩一下,我们约定的游戏规则是:只能用加、减、乘、除四种运算,利用1,3,6,8来算24,每个数只能用一次,在横线上写出一种运算过程(6﹣3÷1)×8=24.【解答】解:(6﹣3÷1)×8=24.故答案为:(6﹣3÷1)×8=24.(答案不唯一)三、解答题(共60分)19.(8分)(1)计算:(﹣8)﹣(﹣15)+(﹣9)﹣(﹣)(2)计算:﹣22﹣(﹣2)2+(﹣3)2×(﹣)﹣42÷|﹣4|【解答】解:(1)原式=﹣8+15﹣9+=﹣;(2)原式=﹣4﹣4﹣6﹣4=﹣18.20.(8分)一个几何体由大小相同的小立方块搭成,从上面观察这个几何体看到的形状如图所示,其中小正方形里的数字表示该位置小立方块的个数,请画出从正面、左面看到的这个几何体的形状图.【解答】解:如图所示:.21.(8分)把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来0,+3.5,﹣3,﹣1,﹣(﹣5)【解答】解:如图所示:,﹣3<﹣1<0<+3.5<﹣(﹣5).22.(8分)“十•一”黄金周期间,武汉东湖风景区在7天假期中每天旅游人数变化如下表(正号表示人数比前一天多,负号表示比前天少)(1)若9月30日的旅客人数为4.2万人,则10月4日的旅客人数为 4.9万人;(2)七天中旅客人数最多的一天比最少的一天多 4.3万人(3)如果每万人带来的经济收入约为100万元,则黄金周七天的旅游总收入约为多少万元?【解答】解:(1)根据题意列得:4.2+(1.8﹣0.6+0.2﹣0.7)=4.2+0.7=4.9(万人);(2)根据表格得:七天中旅客最多的是1日为6万人,最少的是7日为1.7万人,则七天中旅客人数最多的一天比最少的一天多6﹣1.7=4.3(万人);(3)根据表格得:每天旅客人数分别为6万人、5.4万人、5.6万人、4.9万人、3.6万人、4.1万人、1.7万人,则黄金周七天的旅游总收入约为(6+5.4+5.6+4.9+3.6+4.1+1.7)×100=3130(万元).故答案为:(1)4.9;(2)4.323.(8分)下列是小朋友用火柴棒拼出的一组图形:仔细观察,找出规律,解答下列各题:(1)第四个图中共有13根火柴棒,第六个图中共有19根火柴棒;(2)按照这样的规律,第n个图形中共有3n+1根火柴棒(用含n的代数式表示);(3)按照这样的规律,第2016个图形中共有多少根火柴棒?【解答】解:(1)第1个图有3×1+1=4根火柴棒;第2个图有3×2+1=7根火柴棒;第3个图有3×3+1=10根火柴棒;第4个图有3×4+1=13根火柴棒;第6个图中有3×6+1=19根火柴棒;故答案为:13;19;(2)当n=1时,火柴的根数是3×1+1=4;当n=2时,火柴的根数是3×2+1=7;当n=3时,火柴的根数是3×3+1=10;…所以第n个图形中火柴的根数有3n+1.故答案为:3n+1;(3)当n=2016时,3n+1=3×2016+1=6048+1=6049.则第2016个图形中共有6049根火柴棒.24.(10分)某种T型零件尺寸如图所示(左右宽度相同),求:(1)阴影部分的周长是多少?(用含x,y的代数式表示)(2)阴影部分的面积是多少?(用含x,y的代数式表示)(3)当|x﹣2|+(y﹣)2=0时,计算阴影部分的面积.【解答】解:(1)阴影部分的周长是x+0.5x+x+3y+3y+y+y+x+x+0.5x=5x+8y;(2)阴影部分的面积是2.5xy+4.5xy=7xy;(3)因为|x﹣2|+(y﹣)2=0,可得:x=2,y=2.5,把x=2,y=2.5代入7xy=35.所以阴影部分的面积为35.25.(10分)海洋服装厂生产一种夹克和一种牛仔裤,夹克每件定价140元,牛仔裤每件定价70元,厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件牛仔裤;②夹克和牛仔裤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,牛仔裤x件(x>30).(1)若该客户按方案①购买,夹克需付款4200元,牛仔裤需付款(70x ﹣2100)元(用含x的式子表示);若该客户按方案②购买,夹克需付款3360元,牛仔裤需付款(56x﹣1680)元(用含x的式子表示);(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?【解答】解:(1)方案①:夹克需要付款:30×140=4200元,牛仔裤需要付款为:70(x﹣30)=(70x﹣2100)元,方案②:夹克需要付款:140×0.8×30=3360元,牛仔裤需要付款:0.8×70(x﹣30)=(56x﹣1680)元(2)当x=40时,方案①总价钱为:4200+70x﹣2100=4900元,方案②总价钱为:3360+56x﹣1680=3920元∴方案②较为合算,故答案为:(1)4200,(70x﹣2100),3360,(56x﹣1680)赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

山东省枣庄市山亭区七年级(上)期中数学试卷

山东省枣庄市山亭区七年级(上)期中数学试卷
分别画出从正面和左面看该几何体的形状.
第 3 页,共 9 页
答案和解析 1.【答案】A
【解析】
解∵-2+2=0, ∴与 2 的和为 0 的数是-2; 故选:A. 根据相反数的意义即可得出答案. 本题主要考查了相反数,掌握相反数的意义是本题的关键,只有符号不同的 两个数互为相反数,a 的相反数是-a.
13.【答案】-32x 或 x+5
【解析】
解:答案不唯一,如- x 或 x+5.
故答案为:- x 或 x+5
写出一个整式,使 x=-2 时值为 3 即可. 此题考查了代数式求值,熟练掌握运算法则是解本题的关键.
14.【答案】-4 或 0
【解析】
解:若向左平移 2 个单位长度,则为:-2-2=-4; 若是向右平移 2 个单位长度,则为-2+2=0. 本题应从左移和右移两方面进行讨论即可解出答案. 此题注意可能有两种情况,计算的时候是左减右加. 15.【答案】②③④
【解析】
解:∵单项式- x2y2 的系数为 m=- ,次数为 n=4,
∴mn 的值为:- ×4=-3.
故答案为:-3. 直接利用单项式的次数与系数的定义分别得出 m,n 的值,即可得出答案. 此题主要考查了单项式,正确把握单项式次数与系数的定义是解题关键. 18.【答案】29 2n-1
【解析】
解:根据题意可得:第十行有 29 个.
第 2 页,共 9 页
20. 定义一种运算“⊗”,其规则为 a⊗b=(a2-b2)÷(a-b),根据此规则求(-2)⊗12 的值.
四、解答题(本大题共 2 小题,共 12.0 分) 21. 张明同学设计了某个产品的正方体包装盒如图所示,由于粗心
少设计了其中一个顶盖,请你把它补上,使其成为一个两面

七年级上册数学期中考试卷及答案解析

七年级上册数学期中考试卷及答案解析

七年级上册数学期中考试卷及答案解析2017年七年级上册数学期中考试卷及答案解析畏难只有输,爱拼才会赢,输赢一念间。

2017年七年级数学期中考试你拼搏了吗?以下是店铺为你整理的2017年七年级上册数学期中考试卷,希望对大家有帮助!2017年七年级上册数学期中考试卷一、精心选一选(每小题3分,满分30分)1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是( )A.6℃B.﹣6℃C.10℃D.﹣10℃2.下列各数中,绝对值最大的数是( )A.﹣3B.﹣2C.0D.13.下列运算中,正确的是( )A.3x+2y=5xyB.4x﹣3x=1C.ab﹣2ab=﹣abD.2a+a=2a24.据了解,受到台风“海马”的影响,潮阳区金灶镇农作物受损面积约达35800亩,将数35800用科学记数法可表示为( )A.0.358×105B.3.58×104C.35.8×103D.358×1025.已知a﹣b=1,则代数式2a﹣2b﹣3的值是( )A.﹣5B.﹣1C.1D.56.如图,O是线段AB的中点,C在线段OB上,AC=6,CB=3,则OC的长等于( )A.0.5B.1C.1.5D.27.某件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A.120元B.100元C.80元D.60元8.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )A.文B.明C.城D.市9.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,则∠AOB的大小为( )A.69°B.111°C.159°D.141°10.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是( )A.M或NB.M或RC.N或PD.P或R二、耐心填一填(每小题4分,共24分)11.如果a的相反数是1,那么a2017等于.12.若ax﹣3b3与﹣3ab2y﹣1是同类项,则xy= .13.若∠1=35°21′,则∠1的余角是.14.如果x=6是方程2x+3a=6x的解,那么a的值是.15.如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB=度.16.规定a*b=5a+2b﹣1,则(﹣3)*7的值为.三、细心解一解(每小题6分,满分18分)17.计算: .18.解方程:4x﹣6=2(3x﹣1)19.一个角的余角比它的补角的大15°,求这个角的度数.四、专心试一试(每小题7分,满分21分)20.某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下表:2 ﹣1 03 ﹣2 ﹣3 1 0(1)这8名男生的达标率是百分之几?(2)这8名男生共做了多少个俯卧撑?21.已知A=2a2﹣a,B=﹣5a+1.(1)化简:3A﹣2B+2;(2)当时,求3A﹣2B+2的值.22.如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.五、综合运用(每小题9分,满分27分)23.找规律.一张长方形桌子可坐6人,按如图方式把桌子拼在一起.(1)2张桌子拼在一起可坐人;3张桌子拼在一起可坐人;n张桌子拼在一起可坐人.(2)一家餐厅有45张这样的长方形桌子,按照如图方式每5张桌子拼成一张大桌子,请问45张长方形桌子这样摆放一共可坐多少人.24.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,求∠BOE的度数.25.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.2017年七年级上册数学期中考试卷答案与解析一、精心选一选(每小题3分,满分30分)1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是( )A.6℃B.﹣6℃C.10℃D.﹣10℃【考点】有理数的减法.【分析】这天的温差就是最高气温减去最低气温的差,由此列式得出答案即可.【解答】解:这天最高温度与最低温度的温差为8﹣(﹣2)=10℃.故选:C.2.下列各数中,绝对值最大的数是( )A.﹣3B.﹣2C.0D.1【考点】绝对值;有理数大小比较.【分析】根据绝对值是实数轴上的点到原点的距离,可得答案.【解答】解:|﹣3|>|﹣2|>|1|>|0|,故选:A.3.下列运算中,正确的是( )A.3x+2y=5xyB.4x﹣3x=1C.ab﹣2ab=﹣abD.2a+a=2a2【考点】合并同类项.【分析】分别根据合并同类项法则求出判断即可.【解答】解:A、3x+2y无法计算,故此选项错误;B、4x﹣3x=x,故此选项错误;C、ab﹣2ab=﹣ab,故此选项正确;D、2a+a=3a,故此选项错误.故选:C.4.据了解,受到台风“海马”的影响,潮阳区金灶镇农作物受损面积约达35800亩,将数35800用科学记数法可表示为( )A.0.358×105B.3.58×104C.35.8×103D.358×102【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:35800=3.58×104,故选:B.5.已知a﹣b=1,则代数式2a﹣2b﹣3的值是( )A.﹣5B.﹣1C.1D.5【考点】代数式求值.【分析】将代数式2a﹣2b﹣3化为2(a﹣b)﹣3,然后代入(a﹣b)的值即可得出答案.【解答】解:2a﹣2b﹣3=2(a﹣b)﹣3,∵a﹣b=1,∴原式=2×1﹣3=﹣1.故选:B.6.如图,O是线段AB的中点,C在线段OB上,AC=6,CB=3,则OC的长等于( )A.0.5B.1C.1.5D.2【考点】两点间的距离.【分析】首先根据AC=6,CB=3,求出AB的长度是多少;然后用它除以2,求出AO的长度是多少;最后用AC的长度减去AO的长度,求出OC的长等于多少即可.【解答】解:∵AC=6,CB=3,∴AB=6+3=9,∵O是线段AB的中点,∴AO=9÷2=4.5,∴OC=AC﹣AO=6﹣4.5=1.5.故选:C.7.某件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的.进价为( )A.120元B.100元C.80元D.60元【考点】一元一次方程的应用.【分析】设这种商品每件的进价为x元,等量关系为:售价=进价+利润,根据这两个等量关系,可列出方程,再求解.【解答】解:设这种商品每件的进价为x元,则:x+20=200×0.5,解得:x=80.答:这件商品的进价为80元,故选B.8.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )A.文B.明C.城D.市【考点】专题:正方体相对两个面上的文字.【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图很容易找到与“创”相对的字.【解答】解:结合展开图可知,与“创”相对的字是“明”.故选B.9.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,则∠AOB的大小为( )A.69°B.111°C.159°D.141°【考点】方向角.【分析】根据方向角,可得∠1,∠2,根据角的和差,可得答案.【解答】解:如图,由题意,得∠1=54°,∠2=15°.由余角的性质,得∠3=90°﹣∠1=90°﹣54°=36°.由角的和差,得∠AOB=∠3+∠4+∠2=36°+90°+15°=141°,故选:D.10.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是( )A.M或NB.M或RC.N或PD.P或R【考点】数轴.【分析】先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.【解答】解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在M、R时且|Ma|=|bR|时,|a|+|b|=3;综上所述,此原点应是在M或R点.故选:B.二、耐心填一填(每小题4分,共24分)11.如果a的相反数是1,那么a2017等于﹣1 .【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:a的相反数是1,a=﹣1,那么a2017=﹣1,故答案为:﹣1.12.若ax﹣3b3与﹣3ab2y﹣1是同类项,则xy= 16 .【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意,得x﹣3=1,2y﹣1=3,解得x=4,y=2.xy=24=16,故答案为:16.13.若∠1=35°21′,则∠1的余角是54°39′.【考点】余角和补角;度分秒的换算.【分析】根据互为余角的两个角的和为90度计算即可.【解答】解:根据定义,∠1的余角度数是90°﹣35°21′=54°39′.故答案为54°39′.14.如果x=6是方程2x+3a=6x的解,那么a的值是8 .【考点】一元一次方程的解.【分析】将x=6代入方程得到关于a的一元一次方程,从而可求得a的值.【解答】解:当x=6时,原方程变形为:12+3a=36,移项得:3a=36﹣12,解得:a=8.故答案为:8.15.如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB=180 度.【考点】角的计算.【分析】本题考查了角度的计算问题,因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故答案为180°.16.规定a*b=5a+2b﹣1,则(﹣3)*7的值为﹣2 .【考点】有理数的混合运算.【分析】根据*的含义,以及有理数的混合运算的运算方法,求出(﹣3)*7的值为多少即可.【解答】解:(﹣3)*7=5×(﹣3)+2×7﹣1=﹣15+14﹣1=﹣2故答案为:﹣2.三、细心解一解(每小题6分,满分18分)17.计算: .【考点】有理数的混合运算.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=10+8× ﹣2×5=10+2﹣10=2.18.解方程:4x﹣6=2(3x﹣1)【考点】解一元一次方程.【分析】方程去括号,移项合并,将x系数化为1,即可求出解.【解答】解:去括号得:4x﹣6=6x﹣2,移项得:4x﹣6x=6﹣2,合并得:﹣2x=4,解得:x=﹣2.19.一个角的余角比它的补角的大15°,求这个角的度数.【考点】余角和补角.【分析】设这个角为x°,则它的余角为(90°﹣x),补角为,再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),补角为,依题意,得:(90°﹣x)﹣=15°,解得x=40°.答:这个角是40°.四、专心试一试(每小题7分,满分21分)20.某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下表:2 ﹣1 03 ﹣2 ﹣3 1 0(1)这8名男生的达标率是百分之几?(2)这8名男生共做了多少个俯卧撑?【考点】正数和负数.【分析】(1)达标的人数除以总数就是达标的百分数.(2)要求学生共做的俯卧撑的个数,需理解所给出数据的意义,根据题意知,正数为超过的次数,负数为不足的次数.【解答】解:(1)这8名男生的达标的百分数是×100%=62.5%;(2)这8名男生做俯卧撑的总个数是:(2﹣1+0+3﹣2﹣3+1+0)+8×7=56个.21.已知A=2a2﹣a,B=﹣5a+1.(1)化简:3A﹣2B+2;(2)当时,求3A﹣2B+2的值.【考点】整式的加减—化简求值;整式的加减.【分析】(1)把A、B代入3A﹣2B+2,再去括号、合并同类项;(2)把代入上式计算.【解答】解:(1)3A﹣2B+2,=3(2a2﹣a)﹣2(﹣5a+1)+2,=6a2﹣3a+10a﹣2+2,=6a2+7a;(2)当时,3A﹣2B+2= .22.如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.【考点】比较线段的长短.【分析】由已知条件可知,BC=AC+BD﹣AB,又因为E、F分别是线段AB、CD的中点,故EF=BC+ (AB+CD)可求.【解答】解:∵AD=6cm,AC=BD=4cm,∴BC=AC+BD﹣AD=2cm;∴EF=BC+ (AB+CD)=2+ ×4=4cm.五、综合运用(每小题9分,满分27分)23.找规律.一张长方形桌子可坐6人,按如图方式把桌子拼在一起.(1)2张桌子拼在一起可坐8 人;3张桌子拼在一起可坐10 人;n张桌子拼在一起可坐2n+4 人.(2)一家餐厅有45张这样的长方形桌子,按照如图方式每5张桌子拼成一张大桌子,请问45张长方形桌子这样摆放一共可坐多少人.【考点】规律型:图形的变化类.【分析】(1)根据图形查出2张桌子,3张桌子可坐的人数,然后得出每多一张桌子可多坐2人的规律,然后解答;(2)求出每一张大桌子可坐的人数与可拼成的大桌子数,然后相乘计算即可.【解答】解:(1)由图可知,2张桌子拼在一起可坐8人,3张桌子拼在一起可坐10人,…依此类推,每多一张桌子可多坐2人,所以,n张桌子拼在一起可坐2n+4;故答案为:8,10,2n+4;(2)当n=5时,2n+4=2×5+4=14(人),可拼成的大桌子数,45÷5=9,14×9=116(人);24.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,求∠BOE的度数.【考点】角的计算;角平分线的定义.【分析】设∠DOE=x,则∠BOE=2x,用含x求出∠COE的表达式,然后根据∠COE=α列出方程即可求出∠BOE的度数.【解答】解:设∠DOE=x,则∠BOE=2x,∵∠BOD=∠BOE+∠EOD∴∠BOD=3x∴∠AOD=180°﹣∠BOD=180°﹣3x∵OC平分∠AOD∴∠COD= ∠AOD=90°﹣ x∵∠COE=∠COD+∠DOE=90°﹣x+x=90°﹣∴90°﹣=α∴x=180°﹣2α,即∠DOE=180°﹣2α∴∠BOE=360°﹣4α25.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.【考点】一元一次方程的应用.【分析】(1)根据“第n节套管的长度=第1节套管的长度﹣4×(n ﹣1)”,代入数据即可得出结论;(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×2×相邻两节套管间的长度”,得出关于x的一元一次方程,解方程即可得出结论.【解答】解:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm).(2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm),设每相邻两节套管间重叠的长度为xcm,根据题意得:(50+46+42+…+14)﹣9x=311,即:320﹣9x=311,解得:x=1.答:每相邻两节套管间重叠的长度为1cm.。

七年级上期中数学试卷含答案解析

七年级上期中数学试卷含答案解析

2016-2017学年山东省泰安市宁阳七年级(上)期中数学试卷一、选择题:1.下列运算正确的是()A.a4+a5=a9B.a3•a3•a3=3a3C.2a4×3a5=6a9D.(﹣a3)4=a72.已知x a=3,x b=5,则x3a﹣2b=()A.B.C.D.523.用科学记数法表示0.0000907,得()A.9.07×10﹣4B.9.07×10﹣5C.9.07×10﹣6D.9.07×10﹣74.计算(﹣a﹣b)2等于()A.a2+b2 B.a2﹣b2C.a2+2ab+b2 D.a2﹣2ab+b25.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣196.计算4﹣2的结果是()A.﹣8 B.﹣ C.﹣D.7.计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a68.下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.9.已知∠A:∠B:∠C=5:2:7,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定形状10.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC 的长是()A.4 B.5 C.6 D.无法确定11.如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC的度数等于()A.120°B.70° C.60° D.50°12.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.DB=DC D.AB=AC13.已知(2x+1)x+2=1,则x的值是()A.0 B.﹣2 C.﹣2或0 D.﹣2、0、﹣114.计算(2+1)(22+1)(23+1)…(22n+1)的值是()A.42n﹣1 B.C.2n﹣1 D.22n﹣115.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个二、填空题(共5小题,每小题3分,满分15分)16.若x2+mx+16是完全平方式,则m= .17.2007×42008= .18.若等腰三角形的两边长分别为3cm和8cm,则它的周长是.19.在△ABC中,AD是中线,则△ABD的面积△ACD的面积.(填“>”,“<”或“=”)20.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 度.三、解答题:(共60分)21.计算(1)(﹣2x3)2(﹣4x3)(2)﹣2a2(ab+b2)+ab(a2﹣1)(3)(x﹣3)(x+2)﹣(x+1)2(4)(6m2n﹣6m2n2﹣3m2)÷(﹣3m2)(5)20082﹣2007×2009(用乘法公式计算)(6)(﹣1)2006+(﹣)﹣2﹣(3.14﹣π)0.22.先化简,再求值:(a﹣2b)2﹣a•(a+3b)﹣4b2,其中a=,b=﹣2.23.解方程:x(x﹣2)+15=(x+3)(x﹣2).24.已知ab=9,a﹣b=﹣3,求a2+3ab+b2的值.25.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.26.如图,AD⊥AB,AE⊥AC,AD=AB,AE=AC.证明:CD=BE.27.已知(如图):点D,E分别在AB,AC上,BE,CD交于O,且AB=AC,∠B=∠C.( 1)试说明:AD=AE;(2)△BOD与△COE全等吗?为什么?28.对于任意有理数a、b、c、d,我们规定=ad﹣bc,求的值.2016-2017学年山东省泰安市宁阳七年级(上)期中数学试卷参考答案与试题解析一、选择题:1.下列运算正确的是()A.a4+a5=a9B.a3•a3•a3=3a3C.2a4×3a5=6a9D.(﹣a3)4=a7【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】①同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加;②幂的乘方法则,幂的乘方底数不变指数相乘;③合并同类项法则,把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.【解答】解:A、a4+a5=a4+a5,不是同类项不能相加;B、a3•a3•a3=a9,底数不变,指数相加;C、正确;D、(﹣a3)4=a12.底数取正值,指数相乘.故选C.【点评】注意把各种幂运算区别开,从而熟练掌握各种题型的运算.2.已知x a=3,x b=5,则x3a﹣2b=()A.B.C.D.52【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】利用同底数幂的除法和幂的乘方的性质的逆用计算即可.【解答】解:∵x a=3,x b=5,∴x3a﹣2b=(x a)3÷(x b)2,=27÷25,=.故选:A.【点评】本题本题考查同底数的幂的除法,幂的乘方的性质,逆用性质,把原式转化为(x a)3÷(x b)2是解决本题的关键.3.用科学记数法表示0.0000907,得()A.9.07×10﹣4B.9.07×10﹣5C.9.07×10﹣6D.9.07×10﹣7【考点】科学记数法—表示较小的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:0.000 090 7=9.07×10﹣5.故选B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.用科学记数法表示数,一定要注意a的形式,以及指数n的确定方法.4.计算(﹣a﹣b)2等于()A.a2+b2 B.a2﹣b2C.a2+2ab+b2 D.a2﹣2ab+b2【考点】完全平方公式.【分析】根据两数的符号相同,所以利用完全平方和公式计算即可.【解答】解:(﹣a﹣b)2=a2+2ab+b2.故选C.【点评】本题主要考查我们对完全平方公式的理解能力,如何确定用哪一个公式,主要看两数的符号是相同还是相反.5.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣19【考点】完全平方公式.【分析】把x2+y2利用完全平方公式变形后,代入x+y=﹣5,xy=3求值.【解答】解:∵x+y=﹣5,xy=3,∴x2+y2=(x+y)2﹣2xy=25﹣6=19.故选:C.【点评】本题的关键是利用完全平方公式求值,把x+y=﹣5,xy=3当成一个整体代入计算.6.计算4﹣2的结果是()A.﹣8 B.﹣ C.﹣D.【考点】负整数指数幂.【分析】根据负整数指数幂的运算法则进行计算,即可求出答案.【解答】解:4﹣2==;故选D.【点评】此题考查了负整数指数幂;幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.7.计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a6【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】首先利用同底数幂的乘法运算法则以及结合积的乘方运算法则分别化简求出答案.【解答】解:原式=a6﹣4a6=﹣3a6.故选:D.【点评】此题主要考查了同底数幂的乘法运算法则以及积的乘方运算,正确掌握运算法则是解题关键.8.下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高.【解答】解:线段BE是△ABC的高的图是D.故选D.【点评】三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.9.已知∠A:∠B:∠C=5:2:7,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定形状【考点】三角形内角和定理.【分析】根据比例设∠A、∠B、∠C分别为5k、2k、7k,然后利用三角形的内角和定理,列出方程求出最大角的度数,判断三角形的形状.【解答】解:设∠A、∠B、∠C分别为5k、2k、7k,则5k+2k+7k=180°,解得7k=90°,即∠C=90°,∴△ABC是直角三角形.故选:B.【点评】本题考查了三角形的内角和定理:三角形内角和是180°.利用“设k法”求解更简便.10.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC 的长是()A.4 B.5 C.6 D.无法确定【考点】全等三角形的性质.【分析】根据全等三角形△ABC≌△BAD的性质:对应边相等,来求BC的长.【解答】解:∵△ABC≌△BAD,点A和点B,点C和点D是对应点,∴BC=AD;又∵AD=4cm,∴BC=4cm.故选A.【点评】本题考查了全等三角形的性质;解题时,注意一定要找准全等三角形相对应的边.11.如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC的度数等于()A.120°B.70° C.60° D.50°【考点】全等三角形的性质.【分析】利用三角形内角和定理得出∠BAN的度数,再利用全等三角形的性质得出∠MAC的度数.【解答】解:∵∠ANC=120°,∴∠ANB=180°﹣120°=60°,∵∠B=50°,∴∠BAN=180°﹣60°﹣50°=70°,∵△ABN≌△ACM,∴∠BAN=∠MAC=70°.故选:B.【点评】此题主要考查了全等三角形的性质,得出∠BAN的度数是解题关键.12.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.DB=DC D.AB=AC【考点】全等三角形的判定.【分析】先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.本题中C、AB=AC与∠1=∠2、AD=AD组成了SSA是不能由此判定三角形全等的.【解答】解:A、加∠ADB=∠ADC,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD(ASA),是正确选法;B、加∠B=∠C∵∠1=∠2,AD=AD,∠B=∠C,∴△ABD≌△ACD(AAS),是正确选法;C、加DB=DC,满足SSA,不能得出△ABD≌△ACD,是错误选法;D、加AB=AC,∵∠1=∠2,AD=AD,AB=AC,∴△ABD≌△ACD(SAS),是正确选法.故选C.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.13.已知(2x+1)x+2=1,则x的值是()A.0 B.﹣2 C.﹣2或0 D.﹣2、0、﹣1【考点】零指数幂;有理数的乘方.【专题】分类讨论.【分析】根据零指数幂可得x+2=0,2x+1≠0,根据有理数的乘方可得x﹣1=1;x﹣1=﹣1,x+2为偶数,再解即可.【解答】解:由题意得:①x+2=0,2x+1≠0,解得:x=﹣2;②2x+1=1,解得:x=0;③2x+1=﹣1,x+2为偶数,无解.综上可得x的值为:﹣2或0.故选C.【点评】此题主要考查了零指数幂,以及有理数的乘方,关键是注意要分类讨论,不要漏解.14.计算(2+1)(22+1)(23+1)…(22n+1)的值是()A.42n﹣1 B.C.2n﹣1 D.22n﹣1【考点】平方差公式.【分析】原式乘以变形的1,即(2﹣1),变形后,利用平方差公式计算即可得到结果.【解答】解:原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)…(22n+1)=(22﹣1)(22+1)(24+1)(28+1)(216+1)…(22n+1)=(24﹣1)(24+1)(28+1)(216+1)…(22n+1)=(28﹣1)(28+1)(216+1)…(22n+1)=(216﹣1)(216+1)…(22n+1)=…=24n﹣1=42n﹣1.故选A.【点评】此题考查了平方差公式,熟练掌握平方差公式及巧添1【(2﹣1)】是解本题的关键.15.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定.【分析】∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.【解答】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.二、填空题(共5小题,每小题3分,满分15分)16.若x2+mx+16是完全平方式,则m= ±8 .【考点】完全平方式.【专题】计算题.【分析】利用完全平方公式的结构特征判断即可得到m的值.【解答】解:∵x2+mx+16是完全平方式,∴m=±8.故答案为:±8.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.17.(﹣0.25)2007×42008= ﹣4 .【考点】幂的乘方与积的乘方.【专题】计算题.【分析】原式利用同底数幂的乘法法则变形后,再利用积的乘法逆运算法则计算,即可得到结果.【解答】解:原式=(﹣0.25×4)2007×4=﹣4.故答案为:﹣4.【点评】此题考查了幂的乘方与积的乘方,以及同底数幂的乘法,熟练掌握法则是解本题的关键.18.若等腰三角形的两边长分别为3cm和8cm,则它的周长是19cm .【考点】等腰三角形的性质;三角形三边关系.【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当3cm是腰时,3+3<8,不符合三角形三边关系,故舍去;当8cm是腰时,周长=8+8+3=19cm.故它的周长为19cm.故答案为:19cm.【点评】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.19.在△ABC中,AD是中线,则△ABD的面积= △ACD的面积.(填“>”,“<”或“=”)【考点】三角形的面积.【分析】根据三角形的面积公式以及三角形的中线的概念,知:三角形的中线可以把三角形的面积分成相等的两部分.【解答】解:根据等底同高可得△ABD的面积=△ACD的面积.【点评】注意:三角形的中线可以把三角形的面积分成相等的两部分.此结论是在图形中找面积相等的三角形的常用方法.20.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 45 度.【考点】直角三角形全等的判定;全等三角形的性质.【分析】根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.【解答】解:∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.三、解答题:(共60分)21.(18分)(2016秋•宁阳县校级期中)计算(1)(﹣2x3)2(﹣4x3)(2)﹣2a2(ab+b2)+ab(a2﹣1)(3)(x﹣3)(x+2)﹣(x+1)2(4)(6m2n﹣6m2n2﹣3m2)÷(﹣3m2)(5)20082﹣2007×2009(用乘法公式计算)(6)(﹣1)2006+(﹣)﹣2﹣(3.14﹣π)0.【考点】整式的混合运算;实数的运算;零指数幂;负整数指数幂.【分析】(1)首先计算平方,然后利用单项式的乘法法则求解;(2)首先利用单项式与多项式的乘法法则计算,然后合并同类项即可;(3)首先利用多项式乘以多项式的法则,以及完全平方公式计算,然后合并同类项即可求解;(4)利用多项式与单项式的除法法则求解;(5)变形成20082﹣(2008﹣1)(2008+1)的形式,利用平方差公式即可求解;(6)首先计算乘方、负指数次幂、0次幂,然后利用加减计算即可.【解答】解:(1)原式=4x6•(﹣4x3)=﹣16x9;(2)原式=﹣a3b﹣2a2b2+a3b﹣ab=﹣2a2b2﹣ab;(3)原式=x2﹣x﹣6﹣(x2+2x+1)=x2﹣x﹣6﹣x2﹣2x﹣1=﹣3x﹣7;(4)原式=﹣2n+2n2+1;(5)原式=20082﹣(2008﹣1)(2008+1)=20082﹣(20082﹣1)=1;(6)原式=1+4﹣1=4.【点评】本题考查了整式的混合运算和0指数次幂、负指数次幂,正确理解乘法公式是关键.22.先化简,再求值:(a﹣2b)2﹣a•(a+3b)﹣4b2,其中a=,b=﹣2.【考点】整式的混合运算—化简求值.【分析】本题应先去掉括号、再合并同类项,把要求的式子进行化简,再将a=,b=﹣2代入即可.【解答】解:原式=﹣7ab当a=,b=﹣2,﹣7ab=﹣7××(﹣2)=﹣7.【点评】本题考查了整式的加减,去括号、合并同类项是解答此题的关键.23.解方程:x(x﹣2)+15=(x+3)(x﹣2).【考点】整式的混合运算;解一元一次方程.【分析】首先利用单项式与多项式,以及多项式与多项式的乘法法则计算,然后移项、合并同类项,系数化成1即可求解.【解答】解:原式即x2﹣2x+15=x2+x﹣6,移项,得x2﹣x2﹣2x﹣x=﹣6﹣15,合并同类项,得﹣3x=﹣21,系数化成1得x=7.【点评】本题考查了整式的混合运算以及一元一次方程的解法,正确利用整式相乘的法则对式子进行化简是关键.24.已知ab=9,a﹣b=﹣3,求a2+3ab+b2的值.【考点】完全平方公式.【分析】应把所求式子整理为和所给等式相关的式子.【解答】解:∵ab=9,a﹣b=﹣3,∴a2+3ab+b2,=a2﹣2ab+b2+5ab,=(a﹣b)2+5ab,=9+45,=54.【点评】本题考查了完全平方公式,利用完全平方公式把a2+3ab+b2整理成已知条件的形式是解题的关键.25.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.【考点】三角形的外角性质;角平分线的定义;三角形内角和定理.【分析】首先根据三角形的内角和定理求得∠ACB的度数,再根据CE平分∠ACB求得∠ACE的度数,则根据三角形的外角的性质就可求得∠CED=∠A+∠ACE,再结合CD⊥AB,DF⊥CE就可求解.【解答】解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°,∵CE平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=74°.【点评】此题主要考查了三角形的内角和定理、三角形的外角的性质、以及角平分线定义和垂直定义.26.如图,AD⊥AB,AE⊥AC,AD=AB,AE=AC.证明:CD=BE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】利用全等三角形△CAD≌△EAB(边角边)证明CD=BE.【解答】证明:∵AD⊥AB,AE⊥AC,∴∠CAD=∠BAD+∠CAB,∠EAB=∠CAE+CAB,∠BAD=90°,∠CAE=90°,∴∠CAD=∠EAB.在△CAD和△EAB,,∴△CAD≌△EAB(SAS).∴CD=BE【点评】本题主要考查全等三角形的判定及相似三角形的判定和性质,关键是利用全等三角形△CAD≌△EAB解答.27.已知(如图):点D,E分别在AB,AC上,BE,CD交于O,且AB=AC,∠B=∠C.( 1)试说明:AD=AE;(2)△BOD与△COE全等吗?为什么?【考点】全等三角形的判定.【分析】(1)直接根据ASA定理得出△ABE≌△ACD即可得出结论;(2)根据AB=AC,AD=AE可得出BD=CE,由AAS定理即可得出结论.【解答】(1)证明:在△ABE与△ACD中,∵,∴△ABE≌△ACD(ASA),∴AD=AE;(2)解:∵AB=AC,AD=AE,∴BD=CE.在△BOD与△COE中,∵,∴△BOD≌△COE(AAS).【点评】本题考查的是全等三角形的判定,熟知全等三角形的判定定理是解答此题的关键.28.对于任意有理数a、b、c、d,我们规定=ad﹣bc,求的值.【考点】整式的混合运算.【专题】新定义.【分析】按照规定的运算方法把=(x﹣y)(x+y)﹣2x•3y,利用平方差公式计算整理即可.【解答】解: =(x﹣y)(x+y)﹣2x•3y=x2﹣y2﹣6xy.【点评】此题考查整式的混合运算,理解规定的运算方法是解决问题的关键.。

山东省枣庄 七年级(上)期中数学试卷-(含答案)

山东省枣庄  七年级(上)期中数学试卷-(含答案)

七年级(上)期中数学试卷一、选择题(本大题共12小题,共36.0分)1.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作()A. 克B. 克C. 0克D. 克2.2014年5月,中俄两国签署了供气购销合同,从2018年起,俄罗斯开始向我国供气,最终达到每年380亿立方米.380亿这个数据用科学记数法表示为()A. B. C. D.3.在代数式,abc,-5,x-y,,π中,单项式有()A. 6个B. 5个C. 4个D. 3个4.今年学校运动会参加的人数是m人,比去年增加10%,那么去年运动会参加的人数为()人.A. B. C. D.5.下列计算正确的是()A. B.C. D.6.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列如图是以下四个图中的哪一个绕着直线旋转一周得到的()A. B. C. D.7.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,P表示的有理数互为相反数,则图中表示绝对值最大的数的点是()A. 点MB. 点NC. 点PD. 点Q8.若(a+3)2+|b-2|=0,则a b的值是()A. 6B.C. 9D.9.下列语句正确的是()A. 不是一个代数式B. 0是一个单项式C. 一个多项式的次数为5,那么这个多项式的各项的次数都小于510.根据流程图中的程序,当输入数值x为-2时,输出数值y为()A. 2B. 4C. 6D. 811.明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混放在一起,只凭观察,选出墨水在哪个盒子中()A. B. C.D.12.a为有理数,定义运算符号▽:当a>-2时,▽a=-a,当a<-2时,▽a=a;当a=-2时,▽a=0.根据这种运算,则▽[4+▽(2-5)]的值为()A. 7B.C. 1D.二、填空题(本大题共6小题,共24.0分)13.-的倒数的绝对值为______ ;平方得的数是______ .14.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a-b+c-d的值为______ .15.绝对值小于π的所有整数的积是______ .16.从一幅扑克牌(去掉大、小王)中任意抽取4张,根据牌面上的数字进行混合运算(每张牌只能用一次),使得运算结果为24或-24,其中红色扑克代表负数,黑色扑克代表正数,J、Q、K分别代表11,12,13.如果抽到的是下列四张扑克(一张黑Q,一张红Q,一张黑3,一张红A)凑成24所列的算式是______提示:【可运用加、减、乘、除、乘方(例如数2,6,可列62=36或26=64)运算,可用括号:注意:例如4×(1+2+3)=24与(2+1+3)×4=24只是顺序不同,属同一个算式】17.若干个相同的小立方体搭成的几何体从上面和从左面看到的形状如图所示,则满足条件的几何体中18.已知|a|=3,|b|=4,且a<b,则的值为______ .三、计算题(本大题共3小题,共28.0分)19.计算:(1)(-)÷(-)2-4×(-)3(2)-12016×[4-(-3)2]+3÷(-)20.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,-3,+10,-8,-6,+12,-10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.21.初一年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?(3)当m=100时,采用哪种方案优惠?四、解答题(本大题共4小题,共32.0分)22.如图,一个正方体的平面展开图,若图中平面展开图折叠成正方体后,相对面上的两个数字之和均为5,求x+y+z的值.23.把数-2,1.5,-(-4),-3,(-1)4,-|+0.5|在数轴上表示出来,然后用“<”把它们连接起来.24.如图是由8个相同的小立方体组成的一个几何体(1)画出从正面看、左面看、上面看的形状图;(2)现量得小立方体的棱长为2cm,现要给该几何体表面涂色(不含底面),求涂上颜色部分的总面积.25.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,(1)第1个图中所贴剪纸“○”的个数为______ ,第2个图中所贴剪纸“○”的个数为______ ,第3个图中所贴剪纸“○”的个数为______ ;(2)用代数式表示第n个图中所贴剪纸“○”的个数,并求当n=100时,所贴剪纸“○”的个数.答案和解析1.【答案】A【解析】解:∵+0.02克表示一只乒乓球质量超出标准质量0.02克,∴一只乒乓球质量低于标准质量0.02克记作-0.02克,故选A.根据用+0.02克表示一只乒乓球质量超出标准质量0.02克,从而可以得到一只乒乓球质量低于标准质量0.02克记作多少.本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.2.【答案】B【解析】解:将380亿用科学记数法表示为:3.8×1010.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:代数式,abc,-5,x-y,,π中,单项式有,abc,-5,π共4个,故选C.根据单项式的定义进行解答即可.本题考查的是单项式,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.解:设去年运动会参加的人数为x人,根据题意得:x(1+10%)=m,解得:x=,答:去年运动会参加的人数为人;故选C.设去年运动会参加的人数为x人,根据今年参加的人数是m人,比去年增加10%,列出代数式,进行求解即可.此题考查了列代数式,关键是根据题意确定今年与去年学生数的关系,列出代数式.5.【答案】D【解析】解:A、原式=-14-5=-19,不符合题意;B、原式=0+(+3),不符合题意;C、原式=9,不符合题意;D、原式=18×=27,符合题意,故选D原式利用加减乘除法则计算即可得到结果.此题考查了有理数的混合运算,熟练掌握加减乘除法则是解本题的关键.6.【答案】A【解析】解:A、可以通过旋转得到两个圆柱,故本选项正确;B、可以通过旋转得到一个圆柱,一个圆筒,故本选项错误;C、可以通过旋转得到一个圆柱,两个圆筒,故本选项错误;D、可以通过旋转得到三个圆柱,故本选项错误.故选:A.分别根据各选项分析得出几何体的形状进而得出答案.此题主要考查了点、线、面、体,根据基本图形旋转得出几何体需要同学们较好的空间想象能力.7.【答案】D【解析】解:∵点M,P表示的数互为相反数,∴原点为线段MP的中点,∴点Q到原点的距离最大,∴点Q表示的数的绝对值最大.故选D先利用相反数的定义确定原点为线段MP的中点,则可判定点Q到原点的距离最大,然后根据绝对值的定义可判定点Q表示的数的绝对值最大.本题考查了绝对值:数轴上某个数与原点的距离叫做这个数的绝对值.也考查了相反数.解决本题的关键是判断出原点的位置.8.【答案】C【解析】解:由题意得,a+3=0,b-2=0,解得a=-3,b=2,所以,a b=(-3)2=9.故选C.根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.9.【答案】B【解析】解:A、1+a是一个代数式,故错误,不符合题意;B、0是一个单项式,正确,符合题意;C、一个多项式的次数为5,那么这个多项式的各项的次数都小于等于5,故错误,不符合题意;利用单项式及多项式的有关定义进行判断后即可确定正确的选项.本题考查了单项式及多项式的定义,解题的关键是了解单项式及多项式的有关定义,属于基础题,比较简单.10.【答案】C【解析】解:∵x=-2,不满足x≥1∴对应y=-x+5,故输出的值y=-x+5=-×(-2)+5=1+5=6.故选:C.根据所给的函数关系式所对应的自变量的取值范围,将x的值代入对应的函数即可求得y的值.此题考查了求函数值的知识,能够根据所给的自变量的值结合各个函数关系式所对应的自变量的取值范围,确定其对应的函数关系式,再代入计算.11.【答案】B【解析】解:根据展开图中各种符号的特征和位置,可得墨水在B盒子里面.故选:B.在验证立方体的展开图时,要细心观察每一个标志的位置是否一致,然后进行判断.本题考查正方体的表面展开图及空间想象能力.易错易混点:学生对相关图的位置想象不准确,从而错选,解决这类问题时,不妨动手实际操作一下,即可解决问题.12.【答案】D【解析】解:▽[4+▽(2-5)]=▽[4+▽(-3)]=▽[4+(-3)]根据符号▽的含义,以及有理数的混合运算的运算方法,求出算式▽[4+▽(2-5)]的值是多少即可.此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.13.【答案】;±【解析】【分析】本题考查了有理数的乘方,倒数的定义,绝对值的性质,熟记概念与性质是解题的关键.根据倒数的定义,绝对值的性质解答;根据有理数的乘方的定义解答.解:∵-的倒数为-,-的绝对值为,∴-的倒数的绝对值为;∵(±)2=,∴平方得的数是±.故答案为;±.14.【答案】3或2【解析】解:∵a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,∴a=1,b=-1,c=0,d=±1,则a-b+c-d=1-(-1)+0-(±1)=3或2.故答案为:3或2.直接利用正整数以及负整数的定义以及互为倒数的定义分别分析得出a,b,c,d的值进而得出答案.此题主要考查了代数式求值,正确得出a,b,c,d的值是解题关键.15.【答案】0【解析】解:绝对值小于π的所有整数的积是(-3)×(-2)×(-1)×0×1×2×3=0.故答案为:0.根据绝对值的性质和有理数的乘法列出算式,再根据任何数同零相乘都等于0列式计算即可得解.本题考查了有理数的乘法,绝对值的性质,熟记运算法则是解题的关键.16.【答案】12×3-(-12)×(-1)【解析】解:根据题意,12×3-(-12)×(-1)=36-12=24,∴凑成24所列的算式是12×3-(-12)×(-1),故答案为:12×3-(-12)×(-1).由题意得12×3-(-12)×(-1)=36-12=24.本题主要考查有理数的混合运算,理解题意熟练掌握有理数的混合运算是解题的关键.17.【答案】5【解析】解:根据题意知,该几何体小正方体的分布情况如下:其最少数量为5,故答案为:5易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由左视图可得第二层小正方体的最少个数,相加即可.本题考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.18.【答案】-7或-【解析】【分析】本题考查了有理数的除法,绝对值的性质,有理数的加法,熟练掌握运算法则是解题的关键.根据绝对值的性质求出a,b,再根据有理数的加法判断出b 的值,有理数的除法进行计算即可得解.【解答】解:∵|a|=3,|b|=4,∴a=±3,b=±4,∵a<b,∴当a=3时,b=4,∴=-,当a=-3时,b=4,∴=-7,故答案为-7或-.19.【答案】解:(1)原式=-×9+4×=-3+=-2;(2)原式=-1×(-5)-4=5-4=1.【解析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)∵(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10),=5-3+10-8-6+12-10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.【解析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.21.【答案】解:(1)甲方案:m×30×=24m,乙方案:(m+5)×30×=22.5(m+5);(2)当m=70时,甲方案付费为24×70=1680元,乙方案付费22.5×75=1687.5元,所以采用甲方案优惠;(3)当m=100时,甲方案付费为24×100=2400元,乙方案付费22.5×105=2362.5元,所以采用乙方案优惠.【解析】(1)甲方案:学生总价×0.8,乙方案:师生总价×0.75;(2)把m=70代入两个代数式求得值进行比较;(3)把m=100代入两个代数式求得值进行比较.解决问题的关键是读懂题意,找到所求的量的等量关系.根据关系式列出式子后再代值计算是基本的计算能力,要掌握.22.【答案】解:这是一个正方体的平面展开图,共有六个面,其中面“z”与面“3”相对,面“y”与面“-2”相对,“x”与面“10”相对.则z+3=5,y-2=5,x+10=5,解得z=2,y=7,x=-5.故x+y+z═-5+7+2=4.【解析】利用正方体及其表面展开图的特点,根据相对面上的两个数之和为5,列出方程求出x、y、z的值,从而得到x+y+z的值.本题主要考查了正方体注意正方体相对两个面上的文字,从相对面入手,分析及解答问题是解题的关键.23.【答案】解:把数-2,1.5,-(-4),-3,(-1)4,-|+0.5|在数轴上表示出来如下:用“<”把它们连接起来为:-3<-2<-|+0.5|<(-1)4<1.5<-(-4).【解析】把各个数在数轴上表示出来,根据数轴右边的数总比在左边的数大,按照从左到右的顺序排列起来即可.此题考查利用数轴比较有理数的大小;由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.24.【答案】解:(1)如图所示:;(2)涂上颜色部分的总面积:2×2×29=116.【解析】(1)分别画出从正面看、左面看、上面看的图形,注意所看到的棱都要表示到三视图中;(2)数出每个小正方体所需要涂色的面的个数,再求和即需要涂颜色的面的总数,然后计算出总面积即可.此题主要考查了作三视图,以及求几何体的表面积,关键是在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.25.【答案】5;8;11【解析】解:(1)第一个图中所贴剪纸“○”的个数为3+2=5;第二个图中所贴剪纸“○”的个数为2×3+2=8;第三个图中所贴剪纸“○”的个数为3×3+2=11;…第n个图中所贴剪纸“○”的个数为(3n+2);(2)当n=100时,所贴剪纸“○”的个数为100×3+2=302.(1)第一个图中所贴剪纸“○”的个数为3+2=5;第二个图中所贴剪纸“○”的个数为2×3+2=8;第三个图中所贴剪纸“○”的个数为3×3+2=11;…从而可以得出第n个图中所贴剪纸“○”的个数为(3n+2);(2)利用(1)中的规律代入求得答案即可.此题考查图形的变化规律.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,得出规律解决问题.。

山东省枣庄市七年级上学期数学期中考试试卷

山东省枣庄市七年级上学期数学期中考试试卷

山东省枣庄市七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2019·西安模拟) 下列选项中,下边的平面图形能够折成旁边封闭的立体图形的是()A .B .C .D .2. (2分)(2018·重庆) 下列四个数中,是正整数的是()A . ﹣1B . 0C .D . 13. (2分)下列四个图形中是三棱柱的表面展开图的是()A .B .C .D .4. (2分) (2017七上·和平期中) 下列说法中:⑴一个数,如果不是正数,必定就是负数;⑵整数与分数统称为有理数;⑶如果两个数的绝对值相等,那么这两个数相等;⑷符号不同的两个数互为相反数.其中正确的有()A . 1个B . 2个C . 3个D . 4个5. (2分) -(-1)的相反数的倒数是()A . 0B . -1C . 1D . 不存在6. (2分) (2018七上·唐山期末) 下列各组整式中不是同类项的是()A . 3m2n与3nm2B . xy2与2x2+ay3x2y2C . ﹣5ab与﹣5×103abD . 35与﹣127. (2分)单项式-2x2y的系数为()A . 2B . -2C . 3D . -38. (2分)下列各图,表示的数轴正确的是()A . (1)B . (2)C . (3)D . (4)二、填空题 (共8题;共8分)9. (1分) (2018七上·广东期中) 将下列各数的序号填在相应的集合里.① ,② ,③4.3,④ ,⑤42 ,⑥0,⑦ ,⑧ ,⑨3.3030030003……有理数集合:{________ … };正数集合:{________… };负数集合:{________… };无理数集合:{________… }.10. (1分)(2017·鹤岗) 在2017年的“双11”网上促销活动中,淘宝网的交易额突破了3200000000元,将数字3200000000用科学记数法表示________.11. (1分) (2018七上·阳新月考) 用一个平面去截长方体,三棱柱,圆柱,和圆锥,其中不能截出三角形的几何体是__.12. (1分)(2018·昆山模拟) ﹣的绝对值是________.13. (1分) (2019八上·庆元期末) 用不等式表示“x的2倍与3的和大于10”是________.14. (1分) (2017七上·大埔期中) 在,-(-3),,中,负数有________个.15. (1分)列式表示“a的3倍与b的相反数的和”:________.16. (1分)(2017·广西模拟) 下列各个图形中,“•”的个数用a表示,“○”的个数用b表示,如:n=1时,a=4,b=1;n=2时,a=9,b=4;…根据图形的变化规律,当n=2017时, + 的值为________.三、解答题 (共6题;共52分)17. (5分) (2019七上·潼南月考) 计算.(1)(2)(3)×[-32÷(- )2+(-2)3](4)18. (5分) (2018七上·太原月考) 从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.(请用阴影表示出来)19. (5分) (2019七上·孝感月考) 先化简,再求值:3xy 2-4(xy x 2 y)+(3x 2 y -2 xy 2),其中x =-4, y = .20. (15分) (2019七上·下陆期末) 某城市开展省运会,关心中小学生观众,门票价格优惠规定见表.某中学七年级甲、乙两个班共86人去省运会现场观看某一比赛项目,其中乙班人数多于甲班人数,甲班人数不少于35人.如果两班都以班级为单位分别团体购买门票,则一共应付8120元.购票张数1~40张41~80张81张(含81张)以上平均票价(元/张)1009080(1)如果甲、乙两个班联合起来作为一个团体购买门票,则可以节省不少钱,联合起来购买门票能节省多少钱?(2)问甲、乙两个班各有多少名学生?(3)如果乙班有m(0<m<20,且m为整数)名学生因事不能参加,试就m的不同取值,直接写出最省钱的购买门票的方案?21. (7分)小康水平的一个指标是年人均收入1000美元.2008年对某地进行随机抽样调查,得出10户年人均收入,若以人均1000美元以上为达到小康指标,超过1000美元的美元数用正数表示,不足1000美元的美元数用负数表示.此10户的年人均收入如下(单位:美元):+500-300+2000+1000-100+400-200+100+100(1)请你算一下这10户有百分之几达到了小康指标?(2)这10户年平均收入为多少美元?22. (15分) (2017八下·射阳期末) 已知,,求下列各式的值:(1);(2).参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共6题;共52分)17-1、17-2、17-3、17-4、18-1、19-1、20、答案:略21-1、21-2、22-1、22-2、。

2017七年级数学上册期中测试题及答案

2017七年级数学上册期中测试题及答案

七年级上册数学其中考试卷(人教版)(试卷共4页,考试时间为90分钟,满分120分)题号 一二三总分2122232425262728得分一、选择题(本题共12个小题,每小题3分,共36分.将正确答案的字母填入方框中) 题号 123456789101112答案1.2-等于( )A .-2B .12-C .2D .122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚3.下列方程为一元一次方程的是( ) A .y +3= 0B .x +2y =3C .x 2=2xD .21=+y y4.下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1C .1-与1D .-12与15.下列各组单项式中,为同类项的是( ) A .a 3与a 2B .12a 2与2a 2C .2xy 与2xD .-3与a 6.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是A .a +b>0B .ab >0C .110a b -<D .110a b +>7.下列各图中,可以是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90° C .105° D .120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为 ( ) A .69° B .111° C .141° D .159°10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获 利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A .(1+50%)x×80%=x -28 B .(1+50%)x×80%=x +28 C .(1+50%x)×80%=x -28 D .(1+50%x)×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( ) A .32428-=x x B .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A B C D 6 2 224 20 4 884 446 m10 ……AB C第8题图 北O AB第8题图A .110B .158C .168D .178二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 13.-3的倒数是________.14.单项式12-xy 2的系数是_________.15.若x =2是方程8-2x =ax 的解,则a =_________. 16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米. 18.已知,a -b =2,那么2a -2b +5=_________.19.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5. 20.根据图中提供的信息,可知一个杯子的价格是________元.三、解答题(本大题共8个小题;共60分)21.(本小题满分6分)计算:(-1)3-14×[2-(-3)2] . 22.(本小题满分6分)一个角的余角比这个角的21少30°,请你计算出这个角的大小.23.(本小题满分7分) 先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21. 24.(本小题满分7分) 解方程:513x +-216x -=1.25.(本小题满分7分)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…… (1)写出第一次移动后这个点在数轴上表示的数为 ; (2)写出第二次移动结果这个点在数轴上表示的数为 ; (3)写出第五次移动后这个点在数轴上表示的数为 ; (4)写出第n 次移动结果这个点在数轴上表示的数为 ; (5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值. 26.(本小题满分8分)如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE . 求:∠COE 的度数. 27.(本小题满分8分)共43元共94元 CB E D如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB 、CD 的长.28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了. ②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为 元. 2012~2013学年度第一学期七年级期末考试数学试题参考答案及评分说明说明: 1.各校在阅卷过程中,如还有其它正确解法,可参照评分标准按步骤酌情给分. 2.坚持每题评阅到底的原则,当学生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分. 一、选择题(每小题3分,共36分)1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B . 二、填空题(每题3分,共24分) 13.31-;14.21-;15.2;16.58°28′;17.×106;18.9;19.2;20.8. 三、解答题(共60分)21.解:原式= -1-14×(2-9) ………………………………………………………3分 =-1+ 47…………………………………………………………………………5分=43……………………………………………………………………………6分22.解:设这个角的度数为x . ……………………………………………………………1分由题意得:30)90(21=--x x ο ………………………………………………3分 解得:x =80 …………………………………………………………………5分 答:这个角的度数是80° ……………………………………………………………6分 23.解:原式 =1212212+--+-x x x ………………………………………………3分 =12--x ………………………………………………………………4分AE DBFC把x =21代入原式: 原式=12--x =1)21(2--……………………………………………………………5分=45- ……………………………………………………………………………7分24.解:6)12()15(2=--+x x . ……………………………………………2分612210=+-+x x . ………………………………………………………4分8x =3. …………………………………………………………6分83=x . …………………………………………………………7分 25.解:(1)第一次移动后这个点在数轴上表示的数是3; ……………………………1分(2)第二次移动后这个点在数轴上表示的数是4; ……………………………2分 (3)第五次移动后这个点在数轴上表示的数是7; ……………………………3分 (4)第n 次移动后这个点在数轴上表示的数是n +2; …………………………5分 (5)54. ………………………………………………………………………7分 26.解:∵∠AOB =90°,OC 平分∠AOB ∴∠BOC =12∠AOB =45°, ………………………………………………………2分 ∵∠BOD =∠COD -∠BOC =90°-45°=45°, ………………………………4分 ∠BOD =3∠DOE∴∠DOE =15, ……………………………………………………………………7分 ∴∠COE =∠COD -∠DOE =90°-15°=75° …………………………………8分 27.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm . …………………………1分∵点E 、点F 分别为AB 、CD 的中点,∴AE =12AB =,CF =12CD =2x cm . ……………………………………………3分 ∴EF =AC -AE -CF =. ………………………………………………………4分∵EF =10cm ,∴=10,解得:x =4. ………………………………………………………………6分∴AB =12cm ,CD =16cm . ……………………………………………………………8分 28.解:(1)设钢笔的单价为x 元,则毛笔的单价为(x +4)元. ………………………1分由题意得:30x +45(x +4)=1755 ……………………………………………3分解得:x =21则x +4=25. ……………………………………………………………………4分 答:钢笔的单价为21元,毛笔的单价为25元. ……………………………………5分 (2)设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为(105-y )支. …6分 根据题意,得21y +25(105-y )=2447.………………………………………………7分 解之得:y = (不符合题意) . ……………………………………………………8分所以王老师肯定搞错了. ……………………………………………………………9分 (3)2或6. ………………………………………………………………………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z 支,签字笔的单价为a 元 则根据题意,得21z+25(105-z)=2447-a.即:4z=178+a,因为a、z都是整数,且178+a应被4整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8. 当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=,不符合题意.所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。

人教版 七年级(上)期中数学试卷 (10)(含答案)

人教版 七年级(上)期中数学试卷 (10)(含答案)

2017-2018学年山东省枣庄市峄城区七年级(上)期中数学试卷一、选择题(每小题3分,共36分)1.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个2.小丽制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是()3.如图,用一个平面从不同的角度去截一个正方体,则截面大小、形状相同的是()A.①②相同‘③④相同B.①③相同;②④相同C.①④相同;②③相同D.都不相同4.下列四个数中,比﹣3小的数是()A.0 B.1 C.﹣1 D.﹣55.如图所示的几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的()A.B.C.D.6.某商店出售三种品牌的面粉,袋上分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,任意取出两袋,它们的质量最多相差()A.0.4kg B.0.5kg C.0.6kg D.0.8kg7.下列计算正确的是()A.﹣5+2=﹣7 B.(﹣1)2017C.﹣22=4 D.6÷(﹣2)=﹣38.5月14﹣15日“一带一路”论坛峰会在北京隆重召开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人数约为44亿人,44亿这个数用科学记数法表示为()A.4.4×108B.4.4×109C.4×109D.44×1089.下列说法中,正确的是()A.不是整式B.﹣的系数是﹣3,次数是3C.3是单项式D.多项式2x2y﹣xy是五次二项式10.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0 B.1 C.7 D.﹣111.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.5a2﹣4a2=1 D.4a2b﹣3ba2=a2b12.小明做这样一道题“计算:|(﹣3)+■|”,其中“■”是被墨水污染看不清的一个数,他翻开后面的答案知该题计算的结果是等于6,那么“■”表示的数是()A.3 B.﹣3 C.9 D.﹣3或9二、填空题(每小题4分,共24分)13.(4分)笔尖在纸上快速滑动写出英文字母C,这说明了.14.(4分)如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的小正方体的个数最多为.15.(4分)计算()﹣2×()﹣3×()的结果是.16.(4分)有一种“24点”游戏,其游戏规则是这样的,将4个1~13之间的数,进行加减乘除四则运算(每个数且只能用一次),使运算结果为24,例如,1,2,3,4可作如下运算:(1+2+3)×4=24,1×2×3×4=24.现有四个有理数3,4,﹣6,10,你能运用上述规则,写出一种运算式,使其结果等于24.你写出算式是:.17.(4分)若“△”是新规定的某种运算符号,设a△b=2a﹣3b,则(x+y)△(x﹣y)运算后的结果为.18.(4分)如图,用火柴棒搭“小鱼”,则搭10条“小鱼”需用根火柴棒,搭n 条“小鱼”所需火柴棒的根数为(填写化简后的结果).三、解答题(本题6个小题,满分60分)19.(10分)你来算一算!千万别出错!(1)计算:﹣14|0.8﹣1|.(2)计算:﹣36×÷(﹣2).20.(6分)学习有理数得乘法后,老师给同学们这样一道题目:计算:49×(﹣5),看谁算的又快又对,有两位同学的解法如下:小明:原式=﹣×5=﹣=﹣249;小军:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:19×(﹣8)21.(8分)将6个棱长为2cm的小正方体在地面上堆叠成如图所示的几何体,然后将需露出的表面部分染成红色.(1)画出分别从正面、左面、上面观察所看到这个几何体的形状图.(2)求该几何体被染成红色部分的面积.22.(12分)解下列各题:(1)化简:(5a2b﹣3ab2)﹣2(a2b﹣7ab2).(2)先化简,再求值:3x2y﹣[2xy﹣2(xy﹣x2y)+xy],其中x=3,y=﹣.23.(8分)老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.24.(8分)邮递员骑摩托车从邮局出发,先向东骑行2km到达A村,继续向东骑行3km到达B 村,然后向西骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每1km耗油0.03升,这趟路共耗油多少升?25.(8分)按下列程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律?(1)填写表内空格:输入x32﹣2…输出答案0…(2)你发现的规律是.(3)用简要过程说明你发现的规律的正确性.2017-2018学年山东省枣庄市峄城区七年级(上)期中数学试卷参考答案一、选择题(每小题3分,共36分)1.B;2.A;3.A;4.D;5.A;6.C;7.D;8.B;9.C;10.B;11.D;12.D;二、填空题(每小题4分,共24分)13.点动成线;14.7;15.﹣;16.3×[4+10+(﹣6)]=24或3×(10﹣4)﹣(﹣6)=24等;17.﹣x+5y;18.62;6n+2;三、解答题(本题6个小题,满分60分)19.20.21.22.23.24.25.。

山东省枣庄市山亭区七年级数学上学期期中试题(扫描版) 北师大版

山东省枣庄市山亭区七年级数学上学期期中试题(扫描版) 北师大版

山东省枣庄市山亭区2017-2018学年七年级数学上学期期中试题2016—2017学年度第一学期阶段性检测七年级数学(2017.11)参考答案一、(每题3分,共36分)1-5.AACBD.6-10.BACDA.11-12AC二、(每空4分,共24分)13. 14. < 15. -4 16. 1 17. 21 18. 33.三、解答题19. (8分)解:(1解:)3×(-4)+18÷(-6)=-12+(-3) 2分=-15;4分(2) 解: (-2)2×5+(-2)3÷4=4×5+(-8)÷4 2分=20+(-2) 3分=18.4分20.(8分)(1) 解:原式=x2y+2x2y-3xy2-xy2 2分=3x2y-4xy2 4分(2) 解: (-ab+2a)-(3a-ab)=-ab+2a-3a+ab2分=-a 4分21.如图:………………… 3分它们的大小关系为:2>0.5>-0.5>-2.5>-4 ………………………… 5分22.解:原式=-×-÷(-)=-5 + 1=-4 ……………………… 8分23.解:由数轴知:a<0,b>0,c>0且a<b<c、|a|<|c|,(1)c-b>0;a-b<0;a+c>0;……………………………………………3分(2)原式=c-b-(a-b)-(a+c)=c-b-a+b-a-c=-2a…………8分24. 解:(1)或5…………2分(2)依题意得:…………5分①当时,原式…………7分②当时,原式…………9分的值为-3或-9. …………10分25.解:(1)由题意可得,这套住房的建筑总面积是:(1+5+2)×a+5c+b×2=8a+2b+5c,即这套住房的建筑总面积是8a+2b+5c平方米;………………………3分(2)当a=9,b=4,c=7时,8a+2b+5c=8×9+2×4+5×7=72+8+35=115(平方米)……………… 5分(3)客厅为卧室为厨房为卫生间为9000+5250+3240+800=18290(元)。

2017-2018学年山东省枣庄市山亭区七年级上期中考试数学试卷含答案

2017-2018学年山东省枣庄市山亭区七年级上期中考试数学试卷含答案

2017-2018学年山东省枣庄市山亭区七年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.由4个相同的小立方体搭成的几何体如图所示,则从正面看到的几何体的形状是()A.B.C.D.2.的绝对值是()A.B. C.2 D.﹣23.在数0.25,﹣,7,0,﹣3,100中,正数的个数是()A.1个B.2个C.3个D.4个4.下列关于单项式﹣3x5y2的说法中,正确的是()A.它的系数是3 B.它的次数是7 C.它的次数是5 D.它的次数是25.下列说法中正确的是()A.任何有理数的绝对值都是正数B.最大的负有理数是﹣1C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等6.冥王星围绕太阳公转的轨道半径长度约为5 900 000 000千米,这个数用科学记数法表示是()A.5.9×1010千米B.5.9×109千米C.59×108千米D.0.59×1010千米7.已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A.7 B.4 C.1 D.不能确定8.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>09.下列各组数中,互为相反数的是()A.﹣(﹣2)与2 B.(﹣2)2与4 C.|﹣2|与2 D.﹣22与410.如果规定符号“⊗”的意义为a⊗b=,则2⊗(﹣3)的值是()A.6 B.﹣6 C.D.11.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④12.若a是一位数,b是两位数,把b放在a的左边,所得的三位数可以表示为()A.10a+b B.10b+a C.100a+b D.ab二、填空题(共6小题,每小题4分,满分24分)13.如果温度上升2℃,记作+2℃,那么下降8℃,记作.14.比较大小:(用“>或=或<”填空).15.不小于﹣4而不大于3的所有整数之和等于.16.若单项式2a2b m+1与﹣3n b2的和是单项式,则(﹣m)n=.17.如图是一数值运算程序,若输入的x为﹣5,则输出的结果为.18.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第8个图案用多少根火柴棒.三、解答题(共7小题,满分60分)19.(8分)计算:(1)3×(﹣4)+18÷(﹣6)(2)(﹣2)2×5+(﹣3)3÷4.20.(8分)化简:(1)x2y﹣3xy2+2yx2﹣y2x(2)(﹣ab+2a)﹣(3a﹣ab)21.(8分)在数轴上标出下列各数:0.5,﹣4,﹣2.5,2,﹣0.5,并把它们用“>”连接起来.22.(6分)()×.23.(8分)有理数a、b、c在数轴上的位置如图.(1)判断正负,用“<”或“>”填空:c﹣b0 a﹣b0 a+c0(2)化简:|c﹣b|+|a﹣b|﹣|a+c|24.(10分)已知:有理数m所表示的点到点2距离3个单位,a、b互为相反数,且都不为零,c、d互为倒数.(1)求m的值;(2)求代数式:2(a+b)+(﹣3cd)﹣m的值.25.(12分)小王家新买的一套住房的建筑平面图如图所示(单位:米).(1)这套住房的建筑总面积是多少平方米?(用含a,b,c的式子表示)(2)若a=9,b=4,c=7,试求出小王家这套住房的具体面积.(3)地面装修要铺设瓷砖,公司报价是:客厅地面每平方米200元,卧室地面每平方米150元,厨房地面每平方米120元,卫生间地面每平方米100元.在(2)的条件下,小王一共要花多少钱?(4)这套住房的售价为每平方米4500元,购房时首付款为房价的40%,余款向银行申请贷款,在(2)的条件下,小宇家购买这套住房时向银行申请贷款的金额是多少元?2017-2018学年山东省枣庄市山亭区七年级(上)期中数学试卷参考答案一、选择题(共12小题,每小题3分,满分36分)1.A;2.A;3.C;4.B;5.D;6.B;7.A;8.C;9.D;10.A;11.A;12.B;二、填空题(共6小题,每小题4分,满分24分)13.﹣8℃;14.<;15.﹣4;16.1;17.21;18.33;三、解答题(共7小题,满分60分)19.20.21.22.23.24.25.;。

【3套试卷】七年级(上)数学期中考试题(含答案)

【3套试卷】七年级(上)数学期中考试题(含答案)

七年级(上)数学期中考试题(含答案)一、选择题(每题3分,共45分。

在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来并填涂在答题卡上面。

)1.如图,是一个正方形盒子的展开图,若要在展开后的其中的三个正方形A、B、C内分别填入适当的数,使得展开图折成正方体后相对的面上的两个数互为相反数,则填入正方形A、B、C内的三个数依次为()A.1,﹣2,0B.0,﹣2,1C.﹣2,0,1D.﹣2,1,0 2.用一个平面去截一个几何体,若截面形状是长方形(包括正方形),那么该几何体不可能是()A.圆柱B.五棱柱C.圆锥D.正方体3.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.4.在代数式x2+5,﹣1,x2﹣3x+2,π,,x2+中,整式有()A.3个B.4个C.5个D.6个5.多项式2x2y3﹣5xy2﹣3的次数和项数分别是()A.5,3B.5,2C.8,3D.3,36.对于单项式﹣,下列结论正确的是()A.它的系数是,次数是5B.它的系数是﹣,次数是5C.它的系数是﹣,次数是6D.它的系数是﹣π,次数是57.给出下列结论:①﹣a表示负数;②若|x|=﹣x,则x<0;③绝对值最小的有理数是0;④3×102x2y是5次单项式.其中正确的个数是()A.0个B.1个C.2个D.3个8.下列各数:0,|﹣2|,﹣(﹣2),﹣32,,其中非负数有()个.A.4B.3C.2D.19.计算(﹣1)2017+(﹣1)2018的值等于()A.0B.1C.﹣1D.210.如图,数轴上点A、B分别对应实数a、b,则下列结论正确的是()A.a>b B.|a|>|b|C.a+b>0D.﹣a>b11.下列算式:①(﹣2)+(﹣3)=﹣5;②(﹣2)×(﹣3)=﹣6;③﹣32﹣(﹣3)2=0;④﹣9÷×3=﹣9,其中正确的个数是()A.0个B.1个C.2个D.3个12.已知|a|=5,|b|=3,且a+b<0,则a﹣b的值为()A.﹣8B.+2C.﹣8或﹣2D.﹣2或+813.下列说法正确的有()①﹣43表示3个﹣4相乘;②一个有理数和它的相反数的积必为负数;③数轴上表示2和﹣2的点到原点的距离相等;④若a2=b2,则a=b.A.1个B.2个C.3个D.4个14.一次知识竞赛共有20道选择题,规定:答对一道得5分,不答或答错一道扣1分,如果某位学生答对了x道题,则用式子表示他的成绩为()A.5x﹣(20+x)B.100﹣(20﹣x)C.5x D.5x﹣(20﹣x)15.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是()A.4B.5C.6D.7二、填空题(每小题3分,共18分,将答案填在题的横线上。

枣庄市山亭区2017-2018学年七年级上期中考试数学试卷含答案

枣庄市山亭区2017-2018学年七年级上期中考试数学试卷含答案

A.1 个B.2 个C.3 个D.4 个 4.下列关于单项式﹣ 3x5y2 A.它的系数是 3 B.它的的次说数法是中,7 正C确.的它是的(次数是)5 D.它的次数是 2 5.下列说法中正确的是( ) A.任何有理数的绝对值都是正数 B.最大的负有理数是﹣ 1 C.0 是最小的数 D.如果两个数互为相反数,那么它们的绝对值相等 6.冥王星围绕太阳公转的轨道半径长度约为 5 900 000 000 千米,这个数用科学记数法 表示是( ) A.5.9×1010 千米 B.5.9×10 9 千米 C.59×10 8 千米 D.0.59×1010 千米 7.已知代数式 x+2y 的值是 3,则代数式 2x+4y+1 的值是( ) A.7 B.4 C.1 D.不能确定 8.如图,数轴上 A,B 两点分别对应实数 a,b,则下列结论正确的是( )
2017-2018 学年山东省枣庄市山亭区七年级(上)期中数学试卷
一、选择题(共 12 小题,每小题 3 分,满分 36 分) 1.由 4 个相同的小立方体搭成的几何体如图所示,则从正面看到几何体的形状是 ()
A.
B.
C.
D.
2. 的绝对值是( )
A. B. C.2 D.﹣ 2
3.在数 0.25,﹣ ,7,0,﹣ 3,100 中,正数的个数是( )

枣庄市七年级上学期期中数学试卷

枣庄市七年级上学期期中数学试卷

枣庄市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分)(2017·衡阳模拟) 下列各数中,负数是()A . ﹣(﹣2)B . ﹣|﹣1|C . (﹣1)0D . 1﹣22. (2分) (2016七上·黄冈期末) 若﹣ axb与2ab1﹣y的和是一个单项式,则x﹣y2016的值为()A . 1B . ﹣3C . ﹣1D . 03. (2分)设m=20 , n=(-3)2 , p=,q=()-1 ,则m、n、p、q由小到大排列为A . p<m<q<nB . n<q<m<nC . m<p<q<nD . n<p<m<q4. (2分)(2018·安顺模拟) 下面的计算正确的是()A . 6a﹣5a=1B . a+2a2=3a3C . ﹣(a﹣b)=﹣a+bD . 2(a+b)=2a+b5. (2分)根据阿里巴巴公布的实时数据,截至2016年11月11日24时,天猫双11全球狂欢节总交易额约1207亿,把这个数据用科学记数法表示为()A . 1207×108元B . 12.07×1010元C . 1.207×108元D . 1.207×1011元6. (2分)实数a、b在数轴上的位置如图所示,则化简|a+b|-a的结果为()A . 2a+bB . bC . -2a-bD . -b7. (2分)若a与b互为倒数,当a=3时,代数式(ab)2﹣的值为()A .B . -8C .D . 08. (2分)(2017·长春模拟) 下列各式计算正确的是()A . a+2a2=3a3B . (a+b)2=a2+ab+b2C . 2(a﹣b)=2a﹣2bD . (2ab)2÷(ab)=2ab(ab≠0)9. (2分) (2019七上·临潼月考) 下列运算中,正确的是()A .B .C .D .10. (2分)若m﹣n=﹣1,则(m﹣n)2﹣2m+2n的值是()A . 3B . 2C . 1D . ﹣1二、填空题: (共8题;共13分)11. (4分)a、b为有理数,在数轴上的对应点位置如图所示,把a、b、-a、-b按从小到大的顺序排列:________<________<________<________12. (1分) (2019七上·吉林月考) 定义运算则 ________.13. (1分) (2016七上·武胜期中) 若单项式3x2yn与﹣2xmy3是同类项,则m+n=________.14. (1分)已知a=2014×1001,b=2015×1000,c=2016×999,则数a,b,c按从小到大的顺序排列,结果是________15. (2分) (2017七上·潮阳期中) 多项式x3y+2xy2﹣y5﹣5x3是________次多项式,它的最高次项是________.16. (1分) (2016八上·淮安期末) 小亮的体重为43.90kg,精确到1kg得到的近似数为________.17. (1分) (2017八上·莒县期中) 已知a2﹣a﹣1=0,则a3﹣a2﹣a+2016=________.18. (2分)﹣2的相反数是________;﹣的系数是________.三、解答题 (共5题;共61分)19. (15分)某市第5路公交车从起点到终点共有8个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如下表:二三四五六七八站次人数下车(人)24375816上车(人)7864350(1)求起点站上车人数;(2)若公交车收费标准为上车每人2元,计算此趟公交车从起点到终点的总收入;(3)公交车在哪两个站之间运行时车上乘客最多?是几人?20. (6分) (2017七上·锦屏期中) 直接写出运算结果.(1) 5+(﹣16)=________(2) =________(3)(﹣30)﹣(+4)=________(4) =________(5) =________(6)﹣24÷(﹣2)=________.21. (15分) (2017七上·丰城期中) 计算下列各式:(1)(﹣4)×|﹣3|﹣4÷(﹣2)﹣|﹣5|(2)(a2﹣ab+2b2)﹣(﹣a2+b2);(3)(﹣3)2×[﹣ +(﹣)]﹣6÷(﹣2)×(﹣).22. (15分) (2017七上·建昌期末) 某乡白梨的包装质量为每箱10千克,现抽取8箱样品进行检测,结果称重如下(单位:千克):10.2,9.9,9.8,10.1,9.6,10.1,9.7,10.2,为了求得8箱样品的总质量,我们可以选取的一个恰当的基准数进行简化运算.原质量(千克)10.29.99.89.610.19.710.2与基准数的差距(千克)(1)你认为选取的一个恰当的基准数为多少千克;(2)根据你选取的基准数,用正、负数填写上表;(3)这8箱水果的总质量是多少?23. (10分) (2019七上·黄冈期末) 化简:(1) 3a2+3b2+2ab-4a2-3b2(2) a2+(5a2-2a)-2(a2-3a) .四、解答题 (共5题;共44分)24. (10分) (2015七上·句容期末) 计算:(1)()×45(2)(﹣8)÷(﹣23)×( -2)+1.25. (3分) (2017七上·西城期末) 观察下面的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:① 1× =1-② 2× =2-③ 3× =3-……(1)在下面给出的四个正方形中画出第四个图形,并在右边写出与之对应的等式;________;________(2)猜想并写出与第n个图形相对应的等式:________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年山东省枣庄市山亭区七年级(上)期中数学试卷一、选择题(本题共12小题,每小题3分)1.(3分)如果温泉河的水位升高0.8m时,水位变化记作+0.8m,那么水位下降0.5m时,水位变化记作()A.0m B.0.5m C.﹣0.8m D.﹣0.5m2.(3分)在数﹣3,﹣2,0,0.01中,最大的数是()A.﹣3 B.﹣2 C.0 D.0.013.(3分)(﹣3)2的相反数是()A.﹣6 B.9 C.﹣9 D.4.(3分)如图所示立体图形从上面看到的图形是()A.B.C.D.5.(3分)计算(﹣3)+(﹣9)结果是()A.﹣6 B.﹣12 C.6 D.126.(3分)今年十一国庆黄金周,山亭区推出了精彩多样的节庆产品和亲民的优惠活动,全区共接待游客大约10.97万人,用科学记数法表示10.97万是()A.1.097×104B.1.097×105C.10.97×104D.10.97×1057.(3分)数a,b在数轴上的位置如图所示,则a﹣b是()A.正数B.零C.负数D.都有可能8.(3分)若a+b<0,>0,则下列成立的是()A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>09.(3分)按组成面的平或曲划分,与圆柱为同一类的几何体是()A.长方体B.正方体C.棱柱D.圆锥10.(3分)当x=1时,ax3﹣2bx+3=6,则当x=﹣1时,这个代数式的值是()A.6 B.0 C.﹣6 D.﹣311.(3分)如图,是一个正方体的平面展开图,在正方体中写有“心”字的那一面的对面的字是()A.祝B.你C.事D.成12.(3分)观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…根据上述算式中的规律,你认为32016的末位数字是()A.1 B.9 C.7 D.3二、填空题(每题4分,共24分)13.(4分)的系数是.14.(4分)点A在数轴上距离原点3个单位长度,若将点A向右移动4个单位长度,此时点表示的数是.15.(4分)如果代数式x2+(2a﹣6)xy+x2+y2+9中不含xy项,则a=.16.(4分)已知非零有理数a、b满足+=﹣2.则的值为.17.(4分)如图是一数值转换机,若输入的x为﹣2,则输出的结果为.18.(4分)同学们玩过算24的游戏吧!下面就来玩一下,我们约定的游戏规则是:只能用加、减、乘、除四种运算,利用1,3,6,8来算24,每个数只能用一次,在横线上写出一种运算过程.三、解答题(共60分)19.(8分)(1)计算:(﹣8)﹣(﹣15)+(﹣9)﹣(﹣)(2)计算:﹣22﹣(﹣2)2+(﹣3)2×(﹣)﹣42÷|﹣4|20.(8分)一个几何体由大小相同的小立方块搭成,从上面观察这个几何体看到的形状如图所示,其中小正方形里的数字表示该位置小立方块的个数,请画出从正面、左面看到的这个几何体的形状图.21.(8分)把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来0,+3.5,﹣3,﹣1,﹣(﹣5)22.(8分)“十•一”黄金周期间,武汉东湖风景区在7天假期中每天旅游人数变化如下表(正号表示人数比前一天多,负号表示比前天少)(1)若9月30日的旅客人数为4.2万人,则10月4日的旅客人数为万人;(2)七天中旅客人数最多的一天比最少的一天多万人(3)如果每万人带来的经济收入约为100万元,则黄金周七天的旅游总收入约为多少万元?23.(8分)下列是小朋友用火柴棒拼出的一组图形:仔细观察,找出规律,解答下列各题:(1)第四个图中共有根火柴棒,第六个图中共有根火柴棒;(2)按照这样的规律,第n个图形中共有根火柴棒(用含n的代数式表示);(3)按照这样的规律,第2016个图形中共有多少根火柴棒?24.(10分)某种T型零件尺寸如图所示(左右宽度相同),求:(1)阴影部分的周长是多少?(用含x,y的代数式表示)(2)阴影部分的面积是多少?(用含x,y的代数式表示)(3)当|x﹣2|+(y﹣)2=0时,计算阴影部分的面积.25.(10分)海洋服装厂生产一种夹克和一种牛仔裤,夹克每件定价140元,牛仔裤每件定价70元,厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件牛仔裤;②夹克和牛仔裤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,牛仔裤x件(x>30).(1)若该客户按方案①购买,夹克需付款元,牛仔裤需付款元(用含x的式子表示);若该客户按方案②购买,夹克需付款元,牛仔裤需付款元(用含x的式子表示);(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?2016-2017学年山东省枣庄市山亭区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分)1.(3分)如果温泉河的水位升高0.8m时,水位变化记作+0.8m,那么水位下降0.5m时,水位变化记作()A.0m B.0.5m C.﹣0.8m D.﹣0.5m【解答】解∵水位升高0.8 m时水位变化记作+0.8 m,∴水位下降0.5 m时水位变化记作﹣0.5 m,故选:D.2.(3分)在数﹣3,﹣2,0,0.01中,最大的数是()A.﹣3 B.﹣2 C.0 D.0.01【解答】解:根据有理数比较大小的方法,可得﹣3<﹣2<0<0.01,故在数﹣3,﹣2,0,0.01中,最大的数是0.01.故选:D.3.(3分)(﹣3)2的相反数是()A.﹣6 B.9 C.﹣9 D.【解答】解:(﹣3)2的相反数是﹣9,故选:C.4.(3分)如图所示立体图形从上面看到的图形是()A.B.C.D.【解答】解:从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.5.(3分)计算(﹣3)+(﹣9)结果是()A.﹣6 B.﹣12 C.6 D.12【解答】解:(﹣3)+(﹣9)=﹣12.故选:B.6.(3分)今年十一国庆黄金周,山亭区推出了精彩多样的节庆产品和亲民的优惠活动,全区共接待游客大约10.97万人,用科学记数法表示10.97万是()A.1.097×104B.1.097×105C.10.97×104D.10.97×105【解答】解:10.97万=109700=1.097×105,故选:B.7.(3分)数a,b在数轴上的位置如图所示,则a﹣b是()A.正数B.零C.负数D.都有可能【解答】解:∵a在原点左边,∴a<0,∵b在原点右边,∴b>0,∴a﹣b=a+(﹣b)<0.故选:C.8.(3分)若a+b<0,>0,则下列成立的是()A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>0【解答】解:∵a+b<0,>0,∴a与b同号,且同时为负数,则a<0,b<0,故选:C.9.(3分)按组成面的平或曲划分,与圆柱为同一类的几何体是()A.长方体B.正方体C.棱柱D.圆锥【解答】解:圆柱由平面和曲面组成,长方体由平面组成;正方体由平面组成;棱柱由平面组成,圆锥由平面和曲面组成,故选:D.10.(3分)当x=1时,ax3﹣2bx+3=6,则当x=﹣1时,这个代数式的值是()A.6 B.0 C.﹣6 D.﹣3【解答】解:当x=1时,则有a﹣2b+3=6,∴a﹣2b=3,则当x=﹣1时,ax3﹣2bx+3=(﹣1)3a+2b+3=﹣a+2b+3=﹣3+3=0,故选:B.11.(3分)如图,是一个正方体的平面展开图,在正方体中写有“心”字的那一面的对面的字是()A.祝B.你C.事D.成【解答】解:正方体的平面展开图中,相对的面一定相隔一个正方形,所以在正方体中写有“心”字的那一面的对面的字是成.故选:D.12.(3分)观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…根据上述算式中的规律,你认为32016的末位数字是()A.1 B.9 C.7 D.3【解答】解:已知31=3,末位数字为3,32=9,末位数字为9,33=27,末位数字为7,34=81,末位数字为1,35=243,末位数字为3,36=729,末位数字为9,37=2187,末位数字为7,38=6561,末位数字为1,…由此得到:3的1,2,3,4,5,6,7,8,…次幂的末位数字以3、9、7、1四个数字为一循环,又2016÷4=504,所以32016的末位数字与34的末位数字相同是1.故选:A.二、填空题(每题4分,共24分)13.(4分)的系数是.【解答】解:根据单项式系数的定义,单项式的系数为﹣.14.(4分)点A在数轴上距离原点3个单位长度,若将点A向右移动4个单位长度,此时点表示的数是1或7.【解答】解:当点A在原点的左边时,平移后点表示的数为:﹣3+4=1;当点A在原点的右边时,平移后点表示的数为:3+4=7,故答案为:1或7.15.(4分)如果代数式x2+(2a﹣6)xy+x2+y2+9中不含xy项,则a=3.【解答】解:∵代数式x2+(2a﹣6)xy+x2+y2+9中不含xy项,∴2a﹣6=0,解得a=3.故答案为:3.16.(4分)已知非零有理数a、b满足+=﹣2.则的值为1.【解答】解:∵非零有理数a、b满足+=﹣2.∴a<0,b<0,∴ab>0,∴==1,故答案为:1.17.(4分)如图是一数值转换机,若输入的x为﹣2,则输出的结果为9.【解答】解:把x=﹣2代入数值转换机中得:(﹣2﹣1)×(﹣3)=﹣3×(﹣3)=9,故答案为:918.(4分)同学们玩过算24的游戏吧!下面就来玩一下,我们约定的游戏规则是:只能用加、减、乘、除四种运算,利用1,3,6,8来算24,每个数只能用一次,在横线上写出一种运算过程(6﹣3÷1)×8=24.【解答】解:(6﹣3÷1)×8=24.故答案为:(6﹣3÷1)×8=24.(答案不唯一)三、解答题(共60分)19.(8分)(1)计算:(﹣8)﹣(﹣15)+(﹣9)﹣(﹣)(2)计算:﹣22﹣(﹣2)2+(﹣3)2×(﹣)﹣42÷|﹣4|【解答】解:(1)原式=﹣8+15﹣9+=﹣;(2)原式=﹣4﹣4﹣6﹣4=﹣18.20.(8分)一个几何体由大小相同的小立方块搭成,从上面观察这个几何体看到的形状如图所示,其中小正方形里的数字表示该位置小立方块的个数,请画出从正面、左面看到的这个几何体的形状图.【解答】解:如图所示:.21.(8分)把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来0,+3.5,﹣3,﹣1,﹣(﹣5)【解答】解:如图所示:,﹣3<﹣1<0<+3.5<﹣(﹣5).22.(8分)“十•一”黄金周期间,武汉东湖风景区在7天假期中每天旅游人数变化如下表(正号表示人数比前一天多,负号表示比前天少)(1)若9月30日的旅客人数为4.2万人,则10月4日的旅客人数为 4.9万人;(2)七天中旅客人数最多的一天比最少的一天多 4.3万人(3)如果每万人带来的经济收入约为100万元,则黄金周七天的旅游总收入约为多少万元?【解答】解:(1)根据题意列得:4.2+(1.8﹣0.6+0.2﹣0.7)=4.2+0.7=4.9(万人);(2)根据表格得:七天中旅客最多的是1日为6万人,最少的是7日为1.7万人,则七天中旅客人数最多的一天比最少的一天多6﹣1.7=4.3(万人);(3)根据表格得:每天旅客人数分别为6万人、5.4万人、5.6万人、4.9万人、3.6万人、4.1万人、1.7万人,则黄金周七天的旅游总收入约为(6+5.4+5.6+4.9+3.6+4.1+1.7)×100=3130(万元).故答案为:(1)4.9;(2)4.323.(8分)下列是小朋友用火柴棒拼出的一组图形:仔细观察,找出规律,解答下列各题:(1)第四个图中共有13根火柴棒,第六个图中共有19根火柴棒;(2)按照这样的规律,第n个图形中共有3n+1根火柴棒(用含n的代数式表示);(3)按照这样的规律,第2016个图形中共有多少根火柴棒?【解答】解:(1)第1个图有3×1+1=4根火柴棒;第2个图有3×2+1=7根火柴棒;第3个图有3×3+1=10根火柴棒;第4个图有3×4+1=13根火柴棒;第6个图中有3×6+1=19根火柴棒;故答案为:13;19;(2)当n=1时,火柴的根数是3×1+1=4;当n=2时,火柴的根数是3×2+1=7;当n=3时,火柴的根数是3×3+1=10;…所以第n个图形中火柴的根数有3n+1.故答案为:3n+1;(3)当n=2016时,3n+1=3×2016+1=6048+1=6049.则第2016个图形中共有6049根火柴棒.24.(10分)某种T型零件尺寸如图所示(左右宽度相同),求:(1)阴影部分的周长是多少?(用含x,y的代数式表示)(2)阴影部分的面积是多少?(用含x,y的代数式表示)(3)当|x﹣2|+(y﹣)2=0时,计算阴影部分的面积.【解答】解:(1)阴影部分的周长是x+0.5x+x+3y+3y+y+y+x+x+0.5x=5x+8y;(2)阴影部分的面积是2.5xy+4.5xy=7xy;(3)因为|x﹣2|+(y﹣)2=0,可得:x=2,y=2.5,把x=2,y=2.5代入7xy=35.所以阴影部分的面积为35.25.(10分)海洋服装厂生产一种夹克和一种牛仔裤,夹克每件定价140元,牛仔裤每件定价70元,厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件牛仔裤;②夹克和牛仔裤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,牛仔裤x件(x>30).(1)若该客户按方案①购买,夹克需付款4200元,牛仔裤需付款(70x ﹣2100)元(用含x的式子表示);若该客户按方案②购买,夹克需付款3360元,牛仔裤需付款(56x﹣1680)元(用含x的式子表示);(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?【解答】解:(1)方案①:夹克需要付款:30×140=4200元,牛仔裤需要付款为:70(x﹣30)=(70x﹣2100)元,方案②:夹克需要付款:140×0.8×30=3360元,牛仔裤需要付款:0.8×70(x﹣30)=(56x﹣1680)元(2)当x=40时,方案①总价钱为:4200+70x﹣2100=4900元,方案②总价钱为:3360+56x﹣1680=3920元∴方案②较为合算,故答案为:(1)4200,(70x﹣2100),3360,(56x﹣1680)赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

相关文档
最新文档