利用对称求最小值

合集下载

轴对称中几何动点最值问题总结

轴对称中几何动点最值问题总结

轴对称中几何动点最值问题总结轴对称的作用是“搬点移线”,可以把图形中比较分散、缺乏联系的元素集中到“新的图形”中,为应用某些基本定理提供方便。

比如我们可以利用轴对称性质求几何图形中一些线段和的最大值或最小值问题。

利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个:(1)两点之间线段最短;(2)三角形两边之和大于第三边;(3)垂线段最短。

初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线,点两线三类线段和的最值问题。

下面对三类线段和的最值问题进行分析、讨论。

问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线段和最短。

核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。

方法:1.定点过动点所在直线做对称。

2. 连结对称点与另一个定点,则直线段长度就是我们所求。

变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。

1.如图,直线I和I的同侧两点A B,在直线I上求作一点P,使PA+PB最小。

问题特征:已知一个定点位于平面内两相交直线之间,分别在两直线上确定两个动点使线段和最短核心思路:这类问题实际上是两点两线段最值问题的变式,通过做这一定点关于两条线的对称点,实现“搬点移线”,把线段“移”到同一直线上来解决。

变异类型:1.如图,点P是/ MON内的一点,分别在OM ON上作点A, B。

使△PAB的周长最小。

(3)两点两线的最值问题:(两个动点+两个定点)问题特征:两动点,其中一个随另一个动(一个主动,一个从动),并且两动点间的距离保持不变。

核心思路:用平移方法,可把两动点变成一个动点,转化为“两个定点和一个动点”类型来解。

变异类型:1.如图,点P, Q为/ MON内的两点,分别在OM ON上作点A,B。

圆中最值问题10种求法

圆中最值问题10种求法

圆中最值的十种求法在圆中求最值是中考的常见题型,也是中考中的热点、难点问题,有的学生对求最值问题感到束手无策,主要原因就是对求最值的方法了解不多,思路不够灵活.现对在圆中求最值的方法,归纳如下:一、利用对称求最值1.如图:⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值.[分析]:延长AO交⊙O于D,连接CD交⊙O于P,即此时PA+PC最小,且PA+PC的最小值就等于弦CD的长.解:延长AO交⊙O于D,连接CD交OB于P连接PA,过O作OE⊥CD,垂足为E在△OCD中,因为∠AOC=60°所以∠D=∠C=30°在Rt△ODE中 cos30°=即DE=2×cos30°= 所以CD=2DE=2即PA+PC的最小值为2.二、利用垂线段最短求最值2.如图:在直角坐标系中,点A的坐标为(-3,-2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则PQ长度的最小值为 .[分析]:连接AQ、PA,可知AQ⊥PQ. 在Rt△PQA中,PQ=,求PQ的最小值转化为求PA的最小值,根据垂线段最短易求PA的最小值为2。

解:连接PA、QA因为PQ切⊙A于点Q 所以PQ⊥AQ在Rt△APQ中,PQ2=PA2-AQ2即PQ=又因为A(-3,-2) ,根据垂线段最短。

所以PA的最小值为2所以PQ的最小值=三、利用两点之间线段最短求最值3.如图:圆锥的底面半径为2,母线PB的长为6,D为PB的中点,一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )A.B.2 C.3 D.3[分析]:因为圆锥的侧面是曲面蚂蚁从A爬行到点D,不好求爬行的最小值,要把立体图形展开为平面图形,再利用两点之间线段最短来解决问题.解:圆锥的侧面展开图如图2,连接AB根据题意得:弧AC的长为2πr=2π·2=4π,PA=6因为4π= 所以n=120°即∠APB=60°又因为PA=PB所以△PAB是等边三角形因为D为PB中点所以AD⊥PB PD=DB=3在Rt△PAD中,AD=,故选C。

专题复习1:利用轴对称求最值_

专题复习1:利用轴对称求最值_

专题复习1:利用轴对称求最值Ⅱ. 请你设计一个用时最少的方案.二、关于两(多)条线段和最小问题思路指导:此类问题一般通过适当的几何变换实现“折”转“直”。

即将连接两点的折线转化为线段最短问题1.直接运用两点间线段最短解决问题.例:如图8,已知A(1,1)B(3,-3),C为x轴上一个动点,当AC+BC最小时,C点坐标为,此时AC+BC的最小值为.练习:如图9,四边形ABCD为边长为5的正方形,以B为圆心4为半径画弧交BA与M,交BC于N,P在MN上运动,则PA+PB+PC的最小值为.2.平移后应用两点间线段最短例:已知:如图10,A(1,2),B(4,-2),C(m,0),D(m+2,0)(1)在图中作出当AC+CD+DB最小时C点的位置,并求出此时m的值(2)求AC+CD+DB的最小值.练习:如图11,NP,MQ为一段河的两岸(河的两侧为平坦的地面,可以任意穿行),NP∥MQ,河宽PQ 为60米,在NP一侧距离河岸110米处有一处藏宝处A,某人从MQ一侧距离河岸40米的B处出发,随身携带恰好横穿(与河岸垂直)河面的绳索(将绳索利用器械投掷至河对岸并固定,人扶绳索涉水过河),请计算此人从出发到目的地最少的行进路程,并确定固定绳索处(MQ一侧)到B处的最近距离.3.旋转后应用两点间线段最短例:如图12,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.⑴求证:△AMB≌△ENB;⑵①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;⑶当AM+BM+CM的最小值为31+时,求正方形的边长.练习:点O 为正方形ABCD内一点,(1)正方形边长为4,求OB+OD的最小值(2)若OB+OC+OD的最小值为26+,求正方形的边长4.对称后应用两点间线段最短数学模型已知:如图14,直线l 及直线同侧两点P、Q,在直线l 上求作点M,使线段PM+QM最小,并说明理由关系探究上图中:相等的角:线段关系:类型一:单动点单对称轴(直线同侧两线段和转化为异侧,进而应用两点间线段最短)练习:1.如图15,已知菱形ABCD的边长为6,M、N 分别为AB、BC边的中点,P为对角线AC上的一动点,则PM+PN的最小值.2. 如图16,已知菱形ABCD的边长为6,点E为AB边的中点,∠BAD=60°,点P为对角线AC上的一动点,则PE+PB的最小值..3. 如图17,已知正方形ABCD的边长为2,点M为BC 边的中点,P为对角线BD上的一动点,则PM+PC的最小值4. 如图18,正方形ABCD的面积为a,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,PD+PE的和最小值为4,则a= .5.如图19,已知⊙O的半径为1,AB、CD为⊙O的两互相垂直的直径,点M在弧AD上,且∠MOD=30°,点P为半径OD上的一动点,则PM+PA的最小值.6. 如图20,已知⊙O的半径为1,AB为⊙O的直径,C是⊙O上的一点,且∠CAB=30°点M是弧CB的中点,,点P为直径AB上的一动点,则PM+PC的最小值.7.如图21,⊙O的直径为10,A,B在圆周上,AC⊥MN,BD⊥MN,AC=6,BD=8.P为MN上一个动点,则PA+PB的最小值为.8.如图22,已知∠AOB=60°,OA=6,C为OA的中点,OD平分∠AOB,M为OD上一动点,则AM+CM的最小值为9.如图23,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过路径的长为.10.如图24,已知抛物线y=x2-2x-3,与x轴相交于点A、B两点(点A在点B的左边),与y轴相较于点C,P 为抛物线对称轴上的一点,则PO+PC的最小值是.11.如图25,以正方形ABCD中AB为边向外作等边三角形AMB,N为对角线BD上一点,若AN+MN的最小值为2226,则正方形边长为.12.一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设C为AB的中点,P为OB上一动点,求PC+PA取最小值时P点的坐标.13.如图27,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由14.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(不必证明);运用与拓广:(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.类型二:双动点单对称轴(在类型一基础上应用垂线段最短)例:如图,已知∠CAB=30°,BA=6,AF平分∠BAC,P,Q分别为AB,AF上的动点,则BQ+PQ的最小值为练习:1.如图29,正方形ABCD中,AE为∠BAC的平分线,M,N分别为AE,AB上的动点,若MN+BM最小值为3,则正方形边长为.2.如图30,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC 的平分线交BC于点D, M、N分别是AD和AB上的动点,则BM+MN的最小值是___________ .3.如图31,矩形ABCD中,AB=6,BC=8,M,N分别为BD,BC上的动点,则CM+MN的最小值为. 类型三:单动点双对称轴例:如图32,已知:∠AOB=30°,P为∠AOB内一点,OP=6,M,N分别为OA,OB上的动点,则△PMN的周长最小值为.练习:1.如图33,已知:∠AOB=60°,P为∠AOB内一点,OP=10,M,N分别为OA,OB上的动点,则△PMN的周长最小值为.2.如图34,两个镜子成45°角,P为夹角内一个光源,P距离交点2米,光线从P发出后经过OB,OA反射后经过点P,则光线经过的路线长为.3.如图35,已知A(3,2)为坐标平面上一点,在x,y 轴上确定点M,N,使△AMN周长最小,并求出此时M,N坐标.类型四. 双动点双对称轴例:已知P,Q为∠AOB内两个定点,M,N分别为OA,OB上的动点。

圆中最值的十种求法

圆中最值的十种求法
又因为∠A=∠P 所以△ACB∽△PCQ
所以 所以CQ=CP
因为CP是⊙O的动弦 最大值为⊙O的直径
所以CP的最大值为5
此时当点P运动到CP为⊙O的直径时
CQ的最大值为×5=
五、利用弧的中点到弦的距离最大求最值
5.如图:已知⊙O的半径为2,弦BC的长为2,点A为弦BC所对优弧上任意一点,(B、C两点除外),求△ABC面积的最大值.
[分析]:连接AQ、PA,可知AQ⊥PQ. 在Rt△PQA中,PQ=,求PQ的最小值转化为求PA的最小值,根据垂线段最短易求PA的最小值为2.
解 所以PQ⊥AQ
在Rt△APQ中,PQ2=PA2-AQ2
即PQ=
又因为A(-3,-2) ,根据垂线段最短。
所以PA的最小值为2
所以PQ的最小值=
三、利用两点之间线段最短求最值
3.如图:圆锥的底面半径为2,母线PB的长为6,D为PB的中点,一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )
A. B.2 C.3 D.3
1
连接PA,过O作OE⊥CD,垂足为E
在△OCD中,因为∠AOC=60° 所以∠D=∠C=30°
在Rt△ODE中 cos30°=
即DE=2×cos30°= 所以CD=2DE=2
即PA+PC的最小值为2.
二、利用垂线段最短求最值
2.如图:在直角坐标系中,点A的坐标为(-3, -2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则PQ长度的最小值为 .
[分析]:因为圆锥的侧面是曲面蚂蚁从A爬行到点D,不好求爬行的最小值,要把立体图形展开为平面图形,再利用两点之间线段最短来解决问题.

人教版数学八年上册第十三章轴对称巧解三角形周长的最小值

人教版数学八年上册第十三章轴对称巧解三角形周长的最小值

人教版数学八年级轴对称巧解三角形周长的最小值轴对称是初中数学中三大变换之一,是中考的重要考点来源之一,其最大的特点就是以线段和最小或者三角形的周长最小为硬件生成考题,考题通常具有一定的综合性,耐人思考,发人深思.下面介绍以三角形的周长最小为条件的轴对称考题的求解与反思,供学习时借鉴.1.三角形周长最小时,求点的坐标例1如图1,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0) B.(0,1) C.(0,2) D.(0,3)分析:三角形ABC的周长为AB+BC+AC,由于A,B两点的坐标是定值,因此边AB的长度也是定值,这样三角形ABC的周长最小就转化成线段AC和线段BC的和最小,也就是我们常说的轴对称中的最短路线问题.解:如图2,设点B关于y轴的对称点为D,因为点B的坐标为(3,0),所以点D的坐标为(-3,0),连接AD,交y轴于点C,此时三角形ABC的周长最小.设直线AD的解析式为y=kx+b,把A(1,4),D(-3,0)分别代入解析式,得304k bk b-+=⎧⎨+=⎩,解得13kb=⎧⎨=⎩,所以直线的解析式为y=x+3,令x=0,得y=3,所以点C的坐标为(0,3),所以选择D.点评:把三角形周长最小转化成线段和最小是解题的关键.2.三角形周长最小时,求角的大小例2 如图3,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A. 50°B. 60°C. 70°D. 80°分析:这里三角形AEF 的周长是AE+EF+AF ,三边AE,EF,AF 都是可变的,所以要使△AEF 的周长最小,就要利用点的对称,使三角形的三边在同一直线上,作图的基本要领如下:1、确定定点 这里是点A ;2、作定点关于动点所在直线的对称点,作出A 关于BC 和CD 的对称点A ′,A ″,3、连接两个对称点,得到线段的长就是三角形的周长的最小值.解:如图4,作A 关于BC 和CD 的对称点A ′,A ″,连接A ′A ″,交BC 于E ,交CD 于F , ,则A ′A ″即为△AEF 的周长最小值.作DA 延长线AH ,因为∠C=50°,∠B=∠D=90°,所以∠DAB=130°,所以∠HAA ′=50°,所以∠AA ′E+∠A ″=∠HAA ′=50°,因为∠EA ′A=∠EAA ′,∠FAD=∠A ″,且∠EA ′A+∠EAA ′=∠AEF ,∠FAD+∠A ″=∠AFE , 所以∠AEF+∠AFE=∠EA ′A+∠EAA ′+∠FAD+∠A ″=2(∠AA ′E+∠A ″)=2×50°=100°, 所以∠EAF=180°﹣100°=80°,所以选D .点评:根据轴对称的性质,结合三角形周长最小时成立条件,确定出E ,F 的位置是解题关键.3.三角形周长最小时,求四边形的面积例3 如图5,∠AOB=30°,点M 、N 分别是射线OA 、OB 上的动点,OP 平分∠AOB,且OP=6,当△PMN 的周长取最小值时,四边形PMON 的面积为 .分析:设点P 关于OA 的对称点为C ,关于OB 的对称点为D ,当点M 、N 在CD 上时,△PMN 的周长最小,此时△COD 是等边三角形,求得三角形PMN 和△OMN 的面积,即可求得四边形PMON 的面积.解:如图6,分别作点P 关于OA 、OB 的对称点C 、D ,连接CD ,分别交OA 、OB 于点M 、N ,连接OP 、OC 、OD 、PM 、PN .因为点P 关于OA 的对称点为C ,关于OB 的对称点为D , 所以PM=CM ,OP=OC ,∠COA=∠POA;因为点P 关于OB 的对称点为D ,所以PN=DN ,OP=OD ,∠DOB=∠POB,所以OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,所以△COD 是等边三角形, 所以CD=OC=OD=6.因为∠POC=∠POD,所以OP⊥CD,所以CQ=3,在直角三角形OCQ 中, 222263OC OQ -=-3PQ=6﹣3,设MQ=x ,则PM=CM=3﹣x ,在直角三角形PMQ 中,根据勾股定理,得 222(3)(633)x x -=+-,解得39,所以四边形PMON 的面积为: OMN PMN S S +=111222MN OQ MN PQ MN OP += =PO ×x=6(39)354.所以答案为3﹣54.点评:将三角形周长的最小转化成两点之间线段最短的原理是解题的关键.跟踪练习1、如图1,在△ABC 中,∠ACB=90°,AB=5,BC=3,P 是AB 边上的动点(不与点B 重合),将△BCP 沿CP 所在的直线翻折,得到△B′CP,连接B′A,则B′A 长度 的最小值是 .解:在Rt△ABC 中,由勾股定理可知:AC=222253AB BC -=-=4,由轴对称的性质可知:BC=CB′=3,因为CB′长度固定不变,所以当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A 、B′、C 三点在一条直线上时,AB′有最小值,所以AB′=AC﹣B′C=4﹣3=1.所以应该填:1.2、菱形ABCD 在平面直角坐标系中的位置如图2所示,顶点B (2,0),∠DOB =60°,点P 是对角线OC 上一个动点,E (0,﹣1),当EP+BP 最短时,点P 的坐标为 .答案:().。

勾股定理培优专项练习

勾股定理培优专项练习

勾股定理练习(根据对称求最小值)基本模型:已知点A 、B 为直线 m 同侧的两个点,请在直线m 上找一点M ,使得AM+BM 有最小值。

1、已知边长为4的正三角形ABC 上一点E ,AE=1,AD ⊥BC 于D,请在AD 上找一点N ,使得EN+BN有最小值,并求出最小值。

2、.已知边长为4的正方形ABCD 上一点E ,AE=1,请在对角线AC 上找一点N ,使得EN+BN 有最小值,并求出最小值。

3、如图,已知直线 a ∥b ,且a 与b 之间的距离为4,点A 到直线 a 的距离为2,点B 到直线b 的距离为3,AB=2.试在直线a 上找一点M ,在直线b 上找一点N ,满足30MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( )A .6B .8C .10D .124、已知AB=20,DA ⊥AB 于点A ,CB ⊥AB 于点B ,DA=10,CB=5.(1)在AB 上找一点E ,使EC=ED ,并求出EA 的长;(2)在AB 上找一点F ,使FC+FD 最小,并求出这个最小值25、如图,在梯形ABCD 中,∠C=45°,∠BAD=∠B=90°,AD=3 ,CD=2 ,M为BC上一动点,则△AMD 周长的最小值为.6、如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AB.边上一点,则EM+BM的最小值为7、如图∠AOB = 45°,P是∠AOB内一点,PO = 10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.8.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()66A.2 B.2C.3D.9、在边长为2 cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,cm连接PB、PQ,则△PBQ周长的最小值为____________10、在长方形ABCD中,AB=4,BC=8,E为CD边的中点,若P、Q是BC边上的两动点,且PQ=2,当四边形APQE的周长最小时,求BP的长.几何体展开求最短路径1、如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm,3dm,2dm,A和B是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,则昆虫沿着台阶爬到B 点的最短路程是多少dm?2、如图:一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.3、如图,一个高18m,周长5m的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?(建议:拿一张白纸动手操作,你一定会发现其中的奥妙)4、如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?5、如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离。

圆中最值问题10种求法(供参考)

圆中最值问题10种求法(供参考)

圆中最值的十种求法在圆中求最值是中考的常见题型,也是中考中的热点、难点问题,有的学生对求最值问题感到束手无策,主要原因就是对求最值的方法了解不多,思路不够灵活.现对在圆中求最值的方法,归纳如下:一、利用对称求最值1.如图:⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值.[分析]:延长AO交⊙O于D,连接CD交⊙O于P,即此时PA+PC最小,且PA+PC的最小值就等于弦CD的长.解:延长AO交⊙O于D,连接CD交OB于P连接PA,过O作OE⊥CD,垂足为E在△OCD中,因为∠AOC=60°所以∠D=∠C=30°在Rt△ODE中cos30°=即DE=2×cos30°= 所以CD=2DE=2即PA+PC的最小值为2.二、利用垂线段最短求最值2.如图:在直角坐标系中,点A的坐标为(-3, -2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则PQ长度的最小值为.[分析]:连接AQ、PA,可知AQ⊥PQ. 在Rt△PQA中,PQ=,求PQ的最小值转化为求PA的最小值,根据垂线段最短易求PA的最小值为2.解:连接PA、QA因为PQ切⊙A于点Q 所以PQ⊥AQ在Rt△APQ中,PQ2=PA2-AQ2即PQ=又因为A(-3,-2) ,根据垂线段最短。

所以PA的最小值为2所以PQ的最小值=三、利用两点之间线段最短求最值3.如图:圆锥的底面半径为2,母线PB的长为6,D为PB的中点,一只蚂蚁从点A 出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )A.B.2C.3D.3[分析]:因为圆锥的侧面是曲面蚂蚁从A爬行到点D,不好求爬行的最小值,要把立体图形展开为平面图形,再利用两点之间线段最短来解决问题.解:圆锥的侧面展开图如图2,连接AB根据题意得:弧AC的长为2πr=2π·2=4π,PA=6因为4π= 所以n=120°即∠APB=60°又因为PA=PB所以△PAB是等边三角形因为D为PB中点所以AD⊥PB PD=DB=3在Rt△PAD中,AD=,故选C.四、利用直径是圆中最长的弦求最值4.如图:半径为2.5的⊙O中,直径AB的两侧有定点C和动点P,已知BC:CA=4:3,点P在劣弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,(1)求∠P的正切值;(2)当CP⊥AB时,求CD和CQ的长;当点P运动到什么位置时,CQ取得最大值,并求出此时CQ的长.[分析]:易证明△ACB∽△PCQ,所以,即CQ=PC. 当PC最大时,CQ最大,而PC是⊙O 的动弦,当PC是⊙O的直径时最大.五、利用弧的中点到弦的距离最大求最值5.如图:已知⊙O的半径为2,弦BC的长为2,点A为弦BC所对优弧上任意一点,(B、C两点除外),求△ABC面积的最大值.[分析]:设BC边上的高为h因为S△ABC=BC h=×2h=h当h最大时S△ABC最大,当点A在优弧的中点时h最大.解:当点A为优弧的中点时,作AD⊥BC于D连接BO 即BD=CD=在Rt△BDO中,OD2=OB2-BD2=22-()2=1所以OD=1 所以AD=2+1=3所以S△ABC=×BC·AD=×2×3=3即△ABC面积的最大值为3六、利用周长一定时,圆的面积最大求最值6.用48米长的篱笆材料,在空地上围成一个绿化场地,现有两种方案:一种是围成正方形的场地,另一种是围成圆形场地,试问选用哪一种方案,围成的场地面积较大?并说明理由.[分析]:周长一定的几何图形,圆的面积最大.解:围成圆形场地的面积较大设S1、S2分别表示围成的正方形场地、圆形场地的面积则S1=()2=144 S2=π·()2=因为π<4 所以>所以>=144 所以S2>S1 所以应选用围成圆形场地的方案面积较大七、利用判别式求最值7.如图:在半径为1的⊙O中,AB是弦,OM⊥AB,垂足为M,求OM+AB的最大值.[分析]:可设AM=x,把OM用x的代数式表示出来,构造关于x的一元二次方程,然后利用判别式来求最值.解:设AM=x,在Rt△OAM中OM=所以OM+AB=+2x=a整理得:5x2-4ax+(a2-1)=0因为△=(-4a)2-4×5×(a2-1)≥0即a2≤5 所以a≤所以OM+AB的最大值为八、利用一条弧所对的圆周角大于圆外角求最值8.如图:海边立有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=80°,为避免触礁,轮船P与A、B的张角∠APB的最大值为.[分析]:连接AC,易知∠ACB=∠AOB=40°,又因为∠ACB≥∠P,所以∠P的最大值为40°.解:如图:连接AC,根据圆周角定理可知∠ACB=∠AOB=×80°=40°又因为∠ACB≥∠P 即∠APB≤40°所以∠APB的最大值为40°九、利用经过⊙O内一定点P的所有弦中,与OP垂直的弦最短来求最值9.如图:⊙O的半径为5cm,点P为⊙O内一点,且OP=3cm,则过点P的弦AB长度的最小值为cm.[分析]:过P作AB⊥OP,交⊙O于A、B,则AB的长最小.解:在Rt△OAP中,AP=所以AB=2AP=2×4=8所以AB的最小值为8十、利用经过圆外一点与圆心的直线与⊙O的两个交点与点P的距离最大或最小求最值10.如图:点P为⊙O外一点,PQ切⊙O于点Q,⊙O的半径为3cm,切线PQ的长为4cm,则点P与⊙O上各点的连线长度的最大值为,最小值为.[分析]:过P、O两点作直线交⊙O于A、B,则PA的长度最大,PB的长度最小.解:连接OQ 因为PQ切⊙O于Q所以OQ⊥PQ在Rt△PQO中PQ2+OQ2=OP2即42+32=OP2 所以OP=5所以PB=5-3=2 PA=6+2=8所以点P与⊙O上各点连线长度的最大为8cm,最小值为2cm.。

中考数学《最值问题》及参考答案

中考数学《最值问题》及参考答案

中考数学《最值问题》及参考答案一、轴对称求最小值1.如图,四边形ABCD是边长为6的正方形,△ABC是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的值最小,求这个最小值.2.四边形ABCD中,∠BAD=122°,∠B=∠D=90°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数.3.如图,∠AOB =45°,OC为∠AOB内部一条射线,点D为射线OC上一点,OD=√2,点E、F分别为射线0A、OB上的动点,求△DEF周长的最小值.二、垂线段最短求最值4.如图,矩形ABCD中,AD=3,AB=4,M为线段BD上一动点,MP⊥CD于点P,MQ⊥BC于点Q,求PQ 的最小值.5.如图,边长为6的等边三角形ABC中,E是对称轴AD上一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动的过程中,求DF的最小值.6.如图所示,在RtΔABC中,∠C=90°,AC=4,BC=3,P为AB上一动点(不与A、 B重合),作PE ⊥AC于点E,PF⊥BC于点F,连接EF,求EF的最小值.7.如图,在ΔABC中,∠BAC=90,AB=6,BC=10,BD平分∠ABC,若P,Q分别是BD,AB上的动点,求PA+PQ的最小值.8.如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE,P,N分别为AC,BE上的动点,连接AN, PN,若DF=5,AC=9,求AN+PN的最小值.二、两点之间,线段最短求最值9.如图,等边△ABC的边长为4,过点B的直线l⊥AB,且△ABC与△A´B´C´公关于直线l对称,D为线段BC´上一动点,求AD+CD的最小值是( )10.如图,在长方形ABCD中,AB=3,AD=4,动点P满足S△PCD=14S长方形ABCD´,求点P到A,B两点的距离之和PA+PB的最小值.三、三角形三边的关系求最值问题11.如图,在平面直角坐标系中,平行四边形ABCD的坐标分别为A(-1,0)、B(0,2)、 C(4,2)、D(3,0),点P是AD边上的一个动点,若点A关于BP的对称点为A´,求则A´C的最小值.参考答案1.析:连接BP.因为点B 与点D 关于直线AC 对称,所以PB=PD .所以PD+PE =PB+PE≥BE,所以PD+PE 的最小值即为BE 的长.BE =AB =6,则PD+PE 的值最小为6.2.析:如图,延长AB 到A ´使得BA ´=AB,延长AD 到A ´使得DA"=AD,连接A ´A"与BC 、CD 分别交于点M 、N.∵∠ABC=∠ADC=90° ∴ A 、A ´关于BC 对称,A 、A"关于CD 对称,此时ΔAMN 的周长最小∵BA=BA ´,MB ⊥ AB ∴MA =MA ´同理:NA=NA" ∴∠A ´=∠MAB,∠A"=∠NAD∵∠AMN =∠A ´+∠MAB =2∠A ´,∠ANM =∠A"+∠NAD =2∠A"∴∠AMN +∠ANM = 2(∠A ´+∠A")∵∠BAD=122° ∴ ∠A ´+LA"=180°-∠BAD=58° ∴∠AMN +∠ANM=2x58°=116∴∠MAN =180-116°=64°3.析:作点D 作关于OA 的对称点P,点D 关于OB 的对称点Q,连接PQ,与OA 的交点为点E,与OB 的交点为点F.△DEF 的最小周长为DE +EF +QF =PE+EF+QF =PQ连接OP 、OQ,则OP=0Q=√2 ∵∠POQ =2∠AOB=90°∴ΔOPQ 是等腰直角三角形∴PQ =√2OD=2∴ΔDEF 的周长的最小值是2.4.析:如图,连接CM∵MP ⊥CD 于点P,MQ ⊥BC 于点Q ∴∠CPM =∠CQM=90°∴四边形ABCD 是矩形∴BC=AD=3,CD=AB=4,∠BCD=90°∴四边形PCQM 是矩形,PQ =CM∴BD =√32+42=5当CM ⊥BD 时,CM 最小,则PQ 最小,此时,S △BCD =1 2BD ·CM=12BC ·CD ∴PQ 的最小值为125.5.析:取线段AC 的中点G,连接EG∵ΔABC 为等边三角形,AD 为△ABC 的对称轴∴CD=CG=1 2AB=3,∠ACD =60° ∵ ∠ECF =60°∴∠FCD =∠ECG在ΔFCD 和ΔECG 中,FC =EC,∠FCD=∠ECG,DC=GC∴ΔFCD ≌AECG ∴DF =GE当EG ⊥AD 时,EG 最短,即DF 最短∵点G 为AC 的中点,EG=DF=1 2CD=32 6.析: 连接CP.∵∠C=90,AC=3,BC =4 ∴AB =√32+42=5∵PE ⊥AC,PF ⊥BC,∠C=90°∴四边形CFPE 是矩形∴EF =CP由垂线段最短可得CP ⊥AB 时,线段EF 的值最小S △ABC=1 2BC ·AC=12AB ·CP ∴1 2×4×3=12×5·CP ∴CP =2.4 7.如图,作点Q 关于直线BD 的对称点Q ´∵BD 平分∠ABC ∴点Q 在BC 上连接PQ ´,则PA+PQ 的最小值即为PA+PQ ´的最小值∴当A 、P 、Q ´三点共线且AQ ´⊥BC 时,PA+PQ 的值最小过点A 作AM ⊥BC 于点M,则PA+PQ 的最小值即为AM 的长∵AB=6,BC=10 ∴AC ²=10²-6²=64 ∴AC=8∵ S △ABC =1 2AM ·BC=1 2AB ·AC ∴AM=AB·AC BC =48 10=4.88.析:连接AD ,与BE 交于点O∵四边形ABDE 是正方形 ∴BE ⊥AD,OD =OA ,点A 与点D 关于直线BE 对称 求PN + AN 的最小值,只需D ,N ,P 在同一条直线上,由于P ,N 分别是AC 和BE 上的动点,过点D 作DP ⊥AC 于P 交BE 于点 N ,此时PN + AN =PN+ND=PD ,由△ABC ≌ △BDF 可知,BF= AC = 9,BC=DF=5,易知四边形DFCP 是矩形,CF=PD=BF+BC=9+5=149.析:如图,连接AD∵△ABC 是边长为4的等边三角形 ∴AB =BC=4,∠ABC=60° ∵△ABC 与△ A ´B ´C ´关于直线l 对称∴A ´B=BC,∠AB ´C ´=60°∴∠CBC ´=60°=∠A ´BD∴△BCD ≌△BA ´D(SAS)∴A ´D=CD ∴CD +AD =AD +A ´D当A 、D 、A ´三点共线时,AD+A ´D 最小,此时CD+AD 最小,最小为4+4=8.10.析:如图,设APC 的CD 边上的高是h.∵S △PCD =1 2S 长形ABCD ,AD=4 ∴1 2·CD ·h =1 4CD ·AD ∴h=12AD=2 ∵动点P 在与CD 平行且与CD 的距离是2的直线l 上连接AC 交直线l 于点P ´∵l//CD,AD=4,四边形ABCD 是长方形 ∴l ⊥AD,l ⊥BC∴直线l 是BC 边的垂直平分线 ∴BP ´=CP ´∴AP ´+BP ´=AP ´+CP ´ ∴ AC 的长是最短距离∴AC=√32+4=5,PA +PB 的最小值为5.11.析:连接BA ´∵AB=√5,BC =4若点A 关于BP 的对称点为A ´ ∴BA ´=BA=√5在△BA ´C 中,A ´C ≥BC-BA ´,即AC ´≥4-√5∴AC ´的最小值为4-√5。

浅析用轴对称知识求线段和的最小值.doc

浅析用轴对称知识求线段和的最小值.doc

浅析用轴对称知识求线段和的最小值求线段和的最小值问题,在初中数学中经常会遇到,利用轴对称知识可以比较简单的解决。

我们先通过一个非常典型的例题来推导一个性质:一、性质推导例题:如图所示,在河岸L的一侧有两个村庄A、B,现要在河岸L上修建一个供水站,问供水站应建在什么地方,才能到A,B两村庄的距离之和最短?首先,我们来推导一个轴对称的性质,如图,作B点关于L的对称点B1, 在直线L上任意定一点M,连接B B1,BM,B1M,根据轴对称知识,我们可以求证BM=B1M,所以,我们可以得出这样的性质:成轴对称的两个对应点到对称轴上任意一点的距离相等。

在该例题中,利用这一性质,我们可得出:点B到河岸L上任意点M的距离等于对称B1到点M的距离。

要使AM+ B1M最小,必须使A、M、B1三点共线,也就是说,必须使点M,与A B1连线和L的交点N重合,所以,河岸上的N点为到A、B的距离之和最小的点。

B1证明:M为L上的任意点因为BM=B1M所以,BM+AM=B1M+AM,而B1M+AM大于B1A,所以,结论成立二、应用1:在图(1)中,若A到直线L的距离AC是3千米,B到直线L的距离BD是1千米,并且CD的距离4千米,在直线L上找一点P,使PA+PB的值最小。

求这个最小值。

解:作出A1B(作法如上图)过A1点画直线L的平行线与BD的延长线交于H,在Rt△A1BH中,A1H=4千米,BH=4千米,用勾股定理求得A1B的长度为42千米,即PA+PB的最小值为42千米。

A12、 如图(1),在直角坐标系XOY 中,X 轴上的动点M (x ,0)到定点P (5,5)和到Q (2,1)的距离分别为MP 和MQ ,那么当MP+MQ 取最小值时,点M 的横坐标x=__________________。

解:如图(2),只要画出点Q 关于x 轴的对称点Q1(2,-1),连结PQ1 交x 轴于点M ,则M 点即为所求。

点M 的横坐标只要先求出经过PQ1两点的直线的解析式,(y=2x-5),令y=0,求得x=5/2。

中考数学专题(一)利用二次函数的对称性求最小值-

中考数学专题(一)利用二次函数的对称性求最小值-

利用二次函数的对称性求最小值1.如图,抛物线217322y x x =++与直线1122y x =--交于,A B 两点,点C 为y 轴上点,当ABC 周长最短时;周长的值为( )A 7353B 7335C 4335D 4353【答案】B【解析】【分析】 联立方程先求出抛物线和直线的交点坐标,然后已知在ABC 中的边AB 的长已经确定,只需要求出AC BC +的最小值即可,可以做B 点关于y 轴的对称点B ',连接AB '交y 轴于点C ,此时AB '就为AC BC +的最小值,所以ABC 周长最短为+AB AB '的长,求出即可.【详解】解:根据题意联立方程得:2173221122y x x y x ⎧=++⎪⎪⎨⎪=--⎪⎩,得出71x x =-=-、,把横坐标分别代入表达式得出交点坐标, 即:(7,3)A -,(1,0)B -,已知在ABC 中的边AB 的长已经确定,做B 点关于y 轴的对称点B ',连接AB '交y 轴于点C,如图所示, 此时AB '就为AC BC +的最小值,2296473AB AD DB ''=+=+=2293635AB AD DB =+=+=ABC ∴周长最小为:7335+;故选B.【点睛】本题考查的是两个函数图像的交点问题,以及求线段的最小值问题,需要根据题意去解读信息,借助于勾股定理去求最终结果.2.已知抛物线2114y x =+具有如下性质:抛物线上任意一点到定点F (0,2)的距离与到x 轴的距离相等,点M 的坐标为(3,6),P 是抛物线2114y x =+上一动点,则△PMF 周长的最小值是( )A .5B .9C .11D .13【答案】C【解析】【分析】 过点M 作ME ⊥x 轴于点E ,交抛物线2114y x =+于点P ,由PF=PE 结合三角形三边关系,即可得出此时△PMF 周长最小,再由点F 、M 的坐标即可得出MF 、ME 的长度,进而得出△PMF 周长的最小值.【详解】如图过点M 作ME ⊥x 轴于点E ,交抛物线2114y x =+于点P ,此时△PMF 周长最小 ∵F (0,2)M (3,6),∴ME=6,FM 22(30)(62)5=-+-= ∴△PMF 周长的最小值=ME+FM=6+5=11 故选C【点睛】 本题考查了二次函数的性质和最短路径问题,熟练掌握各个知识点是解题关键.,3.如图,抛物线y=x 2+bx-2与x 轴交于A 、B 两点,与y 交于C 点,且A (-1,0),点M (m ,0)是x 轴上的一个动点,当MC+MD 的值最小时,m 的值是( )A .B .C .D .【答案】B【解析】 试题分析:∵点A (-1,0)在抛物线y=x 2+bx-2上,∴×(-1)2+b×(-1)-2=0,∴b=-,∴抛物线的解析式为y=x 2-x-2,∴顶点D 的坐标为(,-),作出点C 关于x 轴的对称点C′,则C′(0,2),OC′=2连接C′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,MC+MD 的值最小.设抛物线的对称轴交x 轴于点E .∵ED ∥y 轴,∴∠OC′M=∠EDM ,∠C′OM=∠DEM∴△C′OM ∽△DEM . ∴, 即,∴m=.故选B .考点:1.轴对称-最短路线问题;2.二次函数的性质;3.相似三角形的判定与性质.4.如图,顶点为M 的抛物线23y ax bx =++与x 轴交于()3,0A ,()1,0B -两点,与y 轴交于点C .(1)请求此抛物线的函数解析式;(2)在抛物线的对称轴上有一点Q ,使得QBC ∆的周长最小,请求出点Q 的坐标; (3)在直线AC 的上方的抛物线上,是否存在一点P (不与点M 重合),使得ACP ∆的面积等于ACM ∆的面积,若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)2y x 2x 3=-++;(2)点Q 的坐标为()1,2;(3)存在,点P 的坐标为:()2,3【解析】【分析】(1)根据抛物线23y ax bx =++与x 轴交于()3,0A ,()1,0B -,可得抛物线的表达式为(1)(3)y a x x =+-,展开即可求解;(2)根据题意得抛物线的对称轴为:1312x -+==,由抛物线的对称性可知,点B 关于对称轴1x =的对称点是点A ,所以BQ=AQ ,要使QCB △的周长最小,只需AQ+CQ 最小即可,连接AC ,交对称轴点Q ,此时AQ+CQ 最小,即QCB △的周长最小,利用待定系数法求出直线AC 的解析式,然后令x=1即可求出C 点坐标;(3)过点M 作直线//m AC ,直线m 与抛物线交点即为点P ,根据点M 的坐标可求出m 直线的表达式,联立抛物线的解析式与直线m 的解析式即可求出点P 的坐标.【详解】解:(1)抛物线23y ax bx =++与x 轴交于()3,0A ,()1,0B -, ∴抛物线的表达式为:(1)(3)y a x x =+-()223a x x =--=223ax ax a --, 故33a -=,解得:1a =-,故抛物线的表达式为:2y x 2x 3=-++ ;(2)由题意可知抛物线的对称轴为: 1312x -+==, 由抛物线的对称性可知,点B 关于对称轴1x =的对称点是点A ,∴BQ=AQ ,∵QCB △的周长=QC+BQ+BC ,∴QCB △的周长=QC+AQ+BC ,要使QCB △的周长最小,只需AQ+CQ 最小,连接AC ,交对称轴点Q ,此时QCB △的周长最小,当0x =时,3y =,()0,3C ∴,设直线AC 的解析式为y kx b =+,把()3,0A ,()0,3C 代入,则303k b b +=⎧⎨=⎩, 解得13k b =-⎧⎨=⎩, ∴直线AC 的解析式为3y x =-+,当1x =时,2y =,∴点Q 的坐标为()1,2;(3)存在.过点M 作直线//m AC ,直线m 与抛物线交点即为点P ,点()1,4M ,则m 直线的表达式为:5y x =-+,∴2235y x x y x ⎧=-++⎨=-+⎩整理得2320x x -+-=解得:1x =(舍去)2x =;故点P 的坐标为:()2,3;【点睛】本题是二次函数的综合运用,考查了求二次函数的解析式和性质,求一次函数解析式,平行线的性质等知识.掌握平行线间的距离相等是解(3)题的关键.5.如图,抛物线经过A (﹣1,0),B (5,0),C (0,52-)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P ,使PA+PC 的值最小,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由.【答案】(1)抛物线的解析式为:215y x 2x 22=--. (2)P (2,52-). (3)存在点N 的坐标为(4,52-),(214-,52)或(214+,52) 【解析】【分析】 本题考查的是二次函数综合题,涉及到用待定系数法求一次函数与二次函数的解析式、平行四边的判定与性质、全等三角形等知识,在解答(3)时要注意进行分类讨论.(1)设抛物线的解析式为y=ax 2+bx+c (a≠0),再把A (﹣1,0),B (5,0),C (0,)三点代入求出a 、b 、c 的值即可;(2)因为点A 关于对称轴对称的点B 的坐标为(5,0),连接BC 交对称轴直线于点P ,求出P 点坐标即可;(3)分点N 在x 轴下方或上方两种情况进行讨论.【详解】解:(1)设抛物线的解析式为y=ax 2+bx+c (a≠0),∵A (﹣1,0),B (5,0),C (0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2﹣2x﹣;(2)∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,∵B(5,0),C(0,﹣)∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣∴P(2,﹣);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣)∴N1(4,﹣);②当点N在x轴上方时,如图2,过点N2作N2D⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA)∴N2D=OC=,即N2点的纵坐标为.∴x2﹣2x﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,).综上所述,符合条件的点N的坐标为N1(4,﹣),N2(2+,)或N3(2﹣,).考点:二次函数综合题.6.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.【答案】(1)y=﹣x2﹣2x+3;y=﹣x+1;(2)当x=﹣12时,△APC的面积取最大值,最大值为278,此时点P的坐标为(﹣12,154);(3)在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为102【解析】【分析】(1)根据点A ,C 的坐标,利用待定系数法即可求出抛物线及直线AC 的函数关系式;(2)过点P 作PE ∥y 轴交x 轴于点E ,交直线AC 于点F ,过点C 作CQ ∥y 轴交x 轴于点Q ,设点P 的坐标为(x ,﹣x 2﹣2x +3)(﹣2<x <1),则点E 的坐标为(x ,0),点F 的坐标为(x ,﹣x +1),进而可得出PF 的值,由点C 的坐标可得出点Q 的坐标,进而可得出AQ 的值,利用三角形的面积公式可得出S △APC =﹣32x 2﹣32x +3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N 的坐标,利用配方法可找出抛物线的对称轴,由点C ,N 的坐标可得出点C ,N 关于抛物线的对称轴对称,令直线AC 与抛物线的对称轴的交点为点M ,则此时△ANM 周长取最小值,再利用一次函数图象上点的坐标特征求出点M 的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM 周长的最小值即可得出结论.【详解】(1)将A (1,0),C (﹣2,3)代入y =﹣x 2+bx +c ,得:10423b c b c -++=⎧⎨--+=⎩,解得:23b c =-⎧⎨=⎩, ∴抛物线的函数关系式为y =﹣x 2﹣2x +3;设直线AC 的函数关系式为y =mx +n (m ≠0),将A (1,0),C (﹣2,3)代入y =mx +n ,得:023m n m n +=⎧⎨-+=⎩,解得:11m n =-⎧⎨=⎩, ∴直线AC 的函数关系式为y =﹣x +1.(2)过点P 作PE ∥y 轴交x 轴于点E ,交直线AC 于点F ,过点C 作CQ ∥y 轴交x 轴于点Q ,如图1所示.设点P 的坐标为(x ,﹣x 2﹣2x +3)(﹣2<x <1),则点E 的坐标为(x ,0),点F 的坐标为(x ,﹣x +1),∴PE =﹣x 2﹣2x +3,EF =﹣x +1,EF =PE ﹣EF =﹣x 2﹣2x +3﹣(﹣x +1)=﹣x 2﹣x +2. ∵点C 的坐标为(﹣2,3),∴点Q 的坐标为(﹣2,0),∴AQ =1﹣(﹣2)=3,∴S △APC =12AQ •PF =﹣32x 2﹣32x +3=﹣32(x +12)2+278.∵﹣32<0, ∴当x =﹣12时,△APC 的面积取最大值,最大值为278,此时点P 的坐标为(﹣12,154). (3)当x =0时,y =﹣x 2﹣2x +3=3, ∴点N 的坐标为(0,3). ∵y =﹣x 2﹣2x +3=﹣(x +1)2+4, ∴抛物线的对称轴为直线x =﹣1. ∵点C 的坐标为(﹣2,3),∴点C ,N 关于抛物线的对称轴对称.令直线AC 与抛物线的对称轴的交点为点M ,如图2所示. ∵点C ,N 关于抛物线的对称轴对称, ∴MN =CM ,∴AM +MN =AM +MC =AC , ∴此时△ANM 周长取最小值. 当x =﹣1时,y =﹣x +1=2, ∴此时点M 的坐标为(﹣1,2).∵点A 的坐标为(1,0),点C 的坐标为(﹣2,3),点N 的坐标为(0,3), ∴AC =2233+ =32,AN =2231+ =10, ∴C △ANM =AM +MN +AN =AC +AN =32+10.∴在对称轴上存在一点M (﹣1,2),使△ANM 的周长最小,△ANM 周长的最小值为32+10.【点睛】本题考查待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC 的函数关系式;(2)利用三角形的面积公式找出S △APC =﹣32x 2﹣32x +3的最值;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M 的位置. 7.如图,抛物线y=12x 2+mx+4m 与x 轴交于点A(1x ,0)和点B(2x ,0),与y 轴交于点C ,22121220x x x x +=且、满足,若对称轴在y 轴的右侧. (1)求抛物线的解析式(2)在抛物线的对称轴上取一点M ,使|MC-MB|的值最大;(3)点Q 是抛物线上任意一点,过点Q 作PQ ⊥x 轴交直线BC 于点P ,连接CQ ,当△CPQ 是等腰三角形时,求点P 的坐标.【答案】(1)y=212x -x-4;(2)M(1,-6);(3)P 1 (42222--,,P 2(2,-2),P 3(42222+,. 【解析】 【分析】(1)利用根与系数的关系即可求出m ,结合对称轴在y 轴右侧可得结果;(2)根据点A 和点B 关于对称轴对称,过点AC 作直线交对称轴于点M ,求出A ,B ,C 的坐标,求出AC 的表达式,得到点M 的坐标即可;(3)分PC=PQ ,QC=QP ,CP=CQ 分别讨论,求出相应x 值即可. 【详解】解:(1)∵y=12x 2+mx+4m 与x 轴交于1(x ,0)和点B(2x ,0), ∴12 x x 、是方程12x 2+mx+4m=0的两个根,122x x m ∴+=-,128x x m ∴=,221220x x +=∴(-2m)2-16m=20, 解得m 1=5,m 2=-1, ∵对称轴在y 轴的右侧, ∴m=-1,∴y=212x -x-4; (2)y=212x -x-4中,当x=0时,y=-4,当y=0时1x =-2,2x =4, ∴A(-2,0),B(4,0),C(0,-4), 过点AC 作直线交对称轴于点M , 设直线AC 的解析式为y=kx+b , 将(-2,0),(0,-4)代入, 则024k bb=-+⎧⎨-=⎩,解得24k b =-⎧⎨=-⎩,得y=-2x-4,当x=1时,y=-6, ∴M(1,-6);(3)直线BC 的解析式为y=k 1x+b 1, 将(4,0),(0,-4)代入,则111044k b b =+⎧⎨-=⎩,解得1114k b =⎧⎨=-⎩,得y=x-4,∴∠OCB=∠OBC=45°,设P 的横坐标为x ,作PH ⊥y 轴于H , 则PC=2x,∴PQ=|(x-4)-212x (-x-4)|(图一) (图二)如图一图二,当CQ=CP 时,(x-4)+212x (-x-4)=-8, x=0,不合题意,所以不存在;(图三) (图四) (图五)如图三,当PC=PQ 2x =(x-4)-212x (-x-4), 解得x=42- ∴P(42222--,如图四,当CQ=PQ 时,x=(x-4)-212x (-x-4), 解得x=2, ∴P(2,-2);如图五,当PC=PQ 时 ,212x (-x-4)2x , 解得:x=422+, ∴P(42222+,;综上:P 1(42222--,,P 2(2,-2),P 3(42222+,【点睛】本题是二次函数综合题,考查了待定系数法求二次函数表达式,二次函数的图像和性质,最值问题,等腰三角形的性质,解题的关键是学会分类讨论,利用等腰三角形的性质解题.8.已知y 是x 的二次函数,该函数的图象经过点A(0,5)、B(1,2)、C(3,2). (1)求该二次函数的表达式,画出它的大致图象并标注顶点及其坐标; (2)结合图象,回答下列问题: ①当1≤x≤4时,y 的取值范围是 ;②当m≤x≤m+3时,求y 的最大值(用含m 的代数式表示);③是否存在实数m 、n (m≠n ),使得当m≤x≤n 时,m≤y≤n ?若存在,请求出m 、n ;若不存在,请说明理由.【答案】(1)y =x 2﹣4x+5,见解析;(2)①1≤y≤5,②当x =m+3时,y 有最大值为y=m 2﹣+2m+2;当x =m 时,y 有最大值为y =m 2﹣4m+5,③存在,mn=【解析】 【分析】(1)用待定系数法求出解析式,用描点法画出函数图象;(2)①根据函数图象找出横坐标由1到4的点的纵坐标的最大值与最小值,便可写出y 的取值范围; ②先求出对称轴x =﹣2b a ,分两种情况:﹣2b a ﹣m ≥m +3﹣(﹣2b a )或﹣2ba﹣m <m +3﹣(﹣2ba),根据二次函数的性质求y 的最大值便可; ③利用已知可得图象过(a ,a )点,进而得出a 的值,即可得出m ,n 的值. 【详解】(1)设二次函数的解析式为:y =ax 2+bx +c (a ≠0),则52932c a b c a b c =⎧⎪++=⎨⎪++=⎩, 解得,145a b c =⎧⎪=-⎨⎪=⎩,∴二次函数的解析式为:y =x 2﹣4x +5, 列表如下:描点、连线,(2)①由函数图象可知,当2,1x y ==最小时,当4,5x y ==最大时 ∴当1≤x ≤4时,1≤y ≤5, 故答案为:1≤y ≤5;②∵二次函数的解析式为:y =x 2﹣4x +5, ∴对称轴为x =2, 当2﹣m ≤m +3﹣2,即m ≥12时,则在m ≤x ≤m +3内,当x =m +3时,y 有最大值为y =x 2﹣4x +5=(m +3)2﹣4(m +3)+5=m 2﹣+2m +2; 当2﹣m >m +3﹣2,即m <12时,则在m ≤x ≤m +3内,当x =m 时,y 有最大值为y =x 2﹣4x +5=m 2﹣4m +5;③由已知可得图象过(a ,a )点, ∴a =a 2﹣4a +5, 解得,a 55± ∵当m ≤x ≤n 时,m ≤y ≤n , ∴可以取m 55-n =552+.【点睛】本题是二次函数的综合题,主要考查了待定系数法求二次函数的解析式,画二次函数图象,由函数图象解决问题,后两问难度较大,关键是分情况讨论和根据特征点解题. 9.如图,抛物线经过()1,0A -,()3,0B ,30,2C ⎛⎫⎪⎝⎭三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P ,使PA PC +的值最小,求点P 的坐标; (3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由. 【答案】(1)21322y x x =-++;(2)()1,1P ;(3)存在,点N 的坐标为32,2⎛⎫⎪⎝⎭,317,2⎛⎫+- ⎪⎝⎭,317,2⎛⎫- ⎪⎝⎭【解析】 【分析】(1)设抛物线的解析式为()20y ax bx c a =++≠,然后根据待定系数法进行求解;(2)根据点A 关于对称轴对称的点B 的坐标为(3,0),连接BC 交对称轴直线于点P ,求出P 点坐标即可;(3)分点N 在x 轴下方或上方两种情况进行讨论. 【详解】解:(1)设抛物线的解析式为()20y ax bx c a =++≠,∵()1,0A -,()3,0B ,30,2C ⎛⎫⎪⎝⎭三点在抛物线上, ∴093032a b c a b c c ⎧⎪-+=⎪++=⎨⎪⎪=⎩, 解得,12132a b c ⎧=-⎪⎪=⎨⎪⎪=⎩,∴抛物线的解析式为:21322y x x =-++; (2)∵抛物线的解析式为21322y x x =-++,∴其对称轴为直线:12bx a=-=, 如图1所示,连接BC ,设直线BC 的解析式为()0y kx b k =+≠, ∵()3,0B ,30,2C ⎛⎫ ⎪⎝⎭, ∴3032k b b +=⎧⎪⎨=⎪⎩, 解得,1232k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+, 当1x =时,13122y =-+=, ∴()1,1P ;(3)存在,如图2所示, ①当点N 在x 轴上方时,∵抛物线的对称轴为直线1x =,30,2C ⎛⎫ ⎪⎝⎭, ∴132,2N ⎛⎫ ⎪⎝⎭;②当点N 在x 轴下方时,过点2N 作2N D x ⊥轴于点D , ∴22AN D M CO ≅△△,∴232N D OC ==,即2N 点的纵坐标为32-, ∴2133222x x -++=-,解得,1x =+1x =-∴2312N ⎛⎫+-⎪⎝⎭,3312N ⎛⎫- ⎪⎝⎭,综上所述,点N 的坐标为32,2⎛⎫ ⎪⎝⎭,317,2⎛⎫+-⎪⎝⎭,317,2⎛⎫-- ⎪⎝⎭.【点睛】本题是二次函数与几何的综合题,考查了利用待定系数法求解函数的解析式,二次函数的对称轴,平行四边形的性质,全等三角形的性质,第(3)小题要注意进行分类讨论.10.如图,在平面直角坐标系中,抛物线2y x bx c =-++与x 轴交于(10)A -,,(30)B ,两点,与y 轴交于点C .(1)直接写出抛物线的解析式为:;(2)点D 为第一象限内抛物线上的一动点,作DE x ⊥轴于点E ,交BC 于点F ,过点F 作BC 的垂线与抛物线的对称轴和y 轴分别交于点G ,H ,设点D 的横坐标为m . ①求DF HF +的最大值;②连接EG ,若45GEH ∠=,求m 的值.【答案】(1)2y x 2x 3=-++;(2)①1124+;②1m =,95【解析】 【分析】(1)将点(10)A -,,(30)B ,代入抛物线2y x bx c =-++,求出b 、c 的值,继而求出抛物线解析式;(2)①先求出点C 的坐标,由待定系数法求出直线BC 的解析式,作FK y ⊥轴于点K ,可得: FH ==,由线段的和差可得:DF HF DE EF +=-+,代入数据得到二次函数,由二次函数的性质可知当m =,DF HF +有最大值; ②作GM y ⊥轴于点M ,记直线FH 与x 轴交于点N ,易知45EFH ENF ∠=∠=,由等角对等边可知:EN =EF ,OH =ON ,由抛物线的性质可得MG =1,继而可得HG,根据相似三角形的判定及其性质可得~EHG FHE ∆∆,HE HF HG HE=,代入数据可得22HE HG HF m =⋅=,在Rt OEH ∆中,由勾股定理可得22225129HE OE OH m m =+=-+,可得一元二次方程,继而解方程求解.【详解】(1)将点(10)A -,,(30)B ,代入抛物线2y x bx c =-++得: 01093b c b c=--+⎧⎨=-++⎩ 解得:23b c故抛物线的解析式为:2y x 2x 3=-++;(2)①当0x =时,2y x 2x 3=-++∴点(0,3)C ,又点(3,0)B ,BC ∴的解析式为:3y x =-+,3OC OB ==,45OBC OCB ∴∠=∠=,作FK y ⊥轴于点K ,又FH BC ⊥,45KFH KHF ∴∠=∠=,FH ∴==,2(23)(3)DF HF DE EF m m m ∴+=-+=-++--++,化简得:2(3DF HF m m +=-+,由题意有03m <<,且3232032(1)2++<-=<⨯-,10-<, ∴当322m +=时,DF HF +取最大值, DF HF +的最大值为232321162()(32)+++-++⨯= ②作GM y ⊥轴于点M ,记直线FH 与x 轴交于点N ,FK y ⊥轴,DE x ⊥轴,45KFH ∠=,45EFH ENF ∴∠=∠=,EF EN ∴=,45KHF ONH ∠=∠=,OH ON ∴=,2y x 2x 3=-++的对称轴为1x =,1MG =∴,22HG MG ==,45GEH ∠=GEH EFH ∴∠=∠,又∠EHF =∠GHE ,~EHG FHE ∴∆∆,HE HF HG HE∴=, 2222HE HG HF m m ∴=⋅=⋅=在Rt OEH ∆中,(3)23OH ON OE EN OE EF m m m ==-=-=--+=-,OE m =222222(23)5129HE OE OH m m m m ∴=+=+-=-+251292m m m ∴-+=,解得:1m =或95【点睛】本题考查一次函数与二次函数的综合题,还涉及到相似三角形的判定及其性质,等角对等边的性质和等边对等角的性质,考查学生的数形结合能力,解题的关键是熟练掌握一次函数与二次函数的性质.11.如图,直线112y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线2y x bx c =-++经过A 、B 两点.(1)求抛物线的解析式;(2)若P 是抛物线上一点,且P 点坐标为3,12⎛⎫ ⎪⎝⎭,点Q 为抛物线对称轴上一点,求QP QA +的最小值;(3)点N 为直线AB 上的动点,点M 为抛物线上的动点,当以点O 、B 、M 、N 为顶点的四边形是平行四边形时,求点M 的坐标.【答案】(1)2312y x x =-++;(2)QP +QA 5(3)满足条件的点M 的坐标为112,(12)2⎛⎫+-+ ⎪⎝⎭或112,(12)2⎛⎫--- ⎪⎝⎭或31,2⎛⎫ ⎪⎝⎭. 【解析】【分析】(1)先通过直线112y x =-+与x 轴交于点A ,与y 轴交于点B 计算出A 、B 点的坐标,再代入2y x bx c =-++计算即可;(2)根据对称性知A 点关于抛物线对称轴的对称点是1,02C ⎛⎫-⎪⎝⎭,连接PC ,则QP +QA 的最小值就是PC ,从而计算即可;(3)根据平行四边形的性质分为以OB 为边和对角线两种情况分类讨论计算.【详解】(1)∵直线112y x =-+与x 轴交于点A ,与y 轴交于点B ∴A (2,0),B (0,1)∵抛物线y=-x2+bx+c经过A、B两点∴4201b cc-++=⎧⎨=⎩∴321 bc⎧=⎪⎨⎪=⎩∴抛物线解析式为2312y x x=-++(2)如解图①,由(1)知,抛物线解析式为2312y x x=-++∴抛物线的对称轴为直线34x=,抛物线与x轴的另一交点为1,02C⎛⎫-⎪⎝⎭∵点A与点C关于对称轴对称∴QP+QA的最小值就是5PC=(3)①OB为平行四边形的边时,MN=OB,MN∥OB∵点N在直线AB上∴设1,12N m m⎛⎫-+⎪⎝⎭∴23,12M m m m⎛⎫-++⎪⎝⎭∴2231112122MN m m m m m⎛⎫=-++--+=-+=⎪⎝⎭Ⅰ.-m 2+2m =1解得,m =1 ∴31,2M ⎛⎫ ⎪⎝⎭Ⅱ.-m 2+2m =-1 解得,12m∴11(12M ⎛⎫+-+ ⎪⎝⎭或11(12⎛⎫--- ⎪⎝⎭②当OB 为对角线时,OB 与MN 互相平分,交点为H ,∴OH =BH ,MH =NH ,∵B (0,1),O (0,0),∴10,2H ⎛⎫ ⎪⎝⎭, 设1,12N n n ⎛⎫-+ ⎪⎝⎭,23,12M d d d ⎛⎫-++ ⎪⎝⎭, ∴202131112222n d n d d +⎧=⎪⎪⎨-+-++⎪=⎪⎩,∴1(1d n ⎧=+⎪⎨=-⎪⎩或1(1d n ⎧=⎪⎨=-⎪⎩,∴11(12M ⎛⎫+-+ ⎪⎝⎭或11(12M ⎛⎫--- ⎪⎝⎭; 即:满足条件的点M的坐标为11(12⎛⎫+-+ ⎪⎝⎭或11(12⎛⎫--- ⎪⎝⎭或31,2⎛⎫ ⎪⎝⎭. 【点睛】本题考查二次函数与线段之和最短、平行四边形相结合,难度较大.数形结合的思维是解题关键.12.如图,在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,抛物线经过点D (﹣2,﹣3)和点E (3,2),点P 是第一象限抛物线上的一个动点.(1)求直线DE 和抛物线的表达式;(2)在y 轴上取点F (0,1),连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且MN =2Q 从点P 出发,沿P →M →N →A 的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.【答案】(1)y =x ﹣1,y =12-x 2+32x +2;(2)P (2,3)或(32,258);(3)N (12,12-). 【解析】【分析】(1)将点D 、E 的坐标代入函数表达式,即可求解;(2)S 四边形OBPF =S △OBF +S △PFB =12×4×1+12×PH ×BO ,即可求解; (3)过点M 作A ′M ∥AN ,过作点A ′直线DE 的对称点A ″,连接PA ″交直线DE 于点M ,此时,点Q 运动的路径最短,即可求解.【详解】(1)将点D 、E 的坐标代入函数表达式得:34229322a b a b -=-+⎧⎨++=⎩,解得: 1232a b ⎧=-⎪⎪⎨⎪=⎪⎩,故抛物线的表达式为:y =12-x 2+32x +2, 同理可得直线DE 的表达式为:y =x ﹣1…①;(2)如图1,连接BF ,过点P 作PH ∥y 轴交BF 于点H ,将点FB 代入一次函数表达式,同理可得直线BF 的表达式为:y =14x -+1, 设点P (x ,213222x x -++),则点H (x ,14x -+1), S 四边形OBPF =S △OBF +S △PFB =12×4×1+12×PH ×BO =2+2(213121224x x x -+++-)=7,解得:x =2或32, 故点P (2,3)或(32,258); (3)当点P 在抛物线对称轴的右侧时,点P (2,3),过点M 作A ′M ∥AN ,过作点A ′直线DE 的对称点A ″,连接PA ″交直线DE 于点M ,此时,点Q 运动的路径最短,∵MN =2,相当于向上、向右分别平移2个单位,故点A ′(1,2),A ′A ″⊥DE ,则直线A ′A ″过点A ′,则其表达式为:y =﹣x +3…②,联立①②得x =2,则A ′A ″中点坐标为(2,1),由中点坐标公式得:点A ″(3,0),同理可得:直线AP ″的表达式为:y =﹣3x +9…③,联立①③并解得:x =52,即点M (52,32),点M沿BD向下平移22个单位得:N(12,12-).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形的平移、面积的计算等,其中(3),通过平移和点的对称性,确定点Q运动的最短路径,是本题解题的关键.13.如图,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c 经过点A,C.(1)求抛物线的解析式;(2)已知点P是抛物线上的一个动点,并且点P在第二象限内,过动点P作PE⊥x轴于点E,交线段AC于点D.①如图1,过D作DF⊥y轴于点F,交抛物线于M,N两点(点M位于点N的左侧),连接EF,当线段EF的长度最短时,求点P,M,N的坐标;②如图2,连接CD,若以C,P,D为顶点的三角形与△ADE相似,求△CPD的面积.【答案】(1)y=﹣x2﹣3x+4;(2)①点P坐标为(﹣2,6),点M、N的坐标分别为(3172--,2)、(3172-+,2);②△CPD的面积为92或4.【解析】【分析】(1)将点A的坐标分别代入直线和抛物线表达式,即可求解;(2)①四边形DEOF为矩形,故:EF=OD,当OD垂直于AC时,OD最小,点D 为AC的中点,其坐标为(﹣2,2),即可求解;②分△ADE∽△CDP、△ADE∽△PCD两种情况,求解即可.【详解】(1)将点A的坐标代入直线y=x+c得:0=﹣4+c,解得:c=4,将点A 坐标代入抛物线表达式得:0=﹣16﹣4b+4,解得:b =﹣3,故抛物线的表达式为:y =﹣x2﹣3x+4,故点A 、C 的坐标分别为(﹣4,0)、(0,4),将A 、C 点坐标代入一次函数表达式y =kx+b 得:044k b b =-+⎧⎨=⎩,解得14k b =⎧⎨=⎩, 则直线AC 的表达式为:y =x+4;(2)①∵四边形DEOF 为矩形,故:EF =OD ,当OD 垂直于AC 时,OD 最小(即EF 最小),∵OA =OC ,∴点D 为AC 的中点,其坐标为(﹣2,2),故点P 坐标为(﹣2,6),把点D 纵坐标代入二次函数表达式得:﹣x2﹣3x+4=2,解得:x =32-±,故点M 、N 2)、,2); ②当△ADE ∽△CDP 时,则∠CPD =90°,PC =PD ,则PC ∥x 轴,则点P 的纵坐标为4,则点P 坐标为(﹣3,4),点D 在直线AC :y =x+4上,则点D 坐标为(﹣3,1),则PD =4﹣1=3=PC ,则S △CPD =12×PC•PD =92; 当△ADE ∽△PDC 时,同理可得:S △CPD =12×PD•CH =4,故:△CPD的面积为92或4.【点睛】本题考查的是二次函数知识的综合运用,涉及到三角形相似、矩形基本性质等知识点,其中(2),利用矩形性质OD=EF,确定EF最小值,是本题的难点.14.已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=23,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.(1)求经过点O,C,A三点的抛物线的解析式.(2)若点M是抛物线上一点,且位于线段OC的上方,连接MO、MC,问:点M位于何处时三角形MOC的面积最大?并求出三角形MOC的最大面积.(3)抛物线上是否存在一点P,使∠OAP=∠BOC?若存在,请求出此时点P的坐标;若不存在,请说明理由.【答案】(1)y=﹣x23x;(2)333⎝⎭33;(3)存在,3,53)或(3﹣7 3 )【解析】【分析】(1)根据折叠的性质可得OC=OA,∠BOC=∠BAO=30°,过点C作CD⊥OA于D,求出OD、CD,然后写出点C的坐标,再利用待定系数法求二次函数解析式解答;(2)求出直线OC的解析式,根据点M到OC的最大距离时,面积最大;平行于OC 的直线与抛物线只有一个交点,利用根的判别式求出m的值,利用锐角三角函数的定义求解即可;(3)分两种情况求出直线AP与y轴的交点坐标,然后求出直线AP的解析式,与抛物线解析式联立求解即可得到点P的坐标.【详解】解:(1)∵Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处,∴OC=OA=23,∠BOC=∠BAO=30°,∴∠AOC=30°+30°=60°, 过点C 作CD ⊥OA 于D ,则OD=12×33 3×3, 所以,顶点C 33),设过点O ,C ,A 抛物线的解析式为为y=ax 2+bx ,则223)33(23)30a b a b ⎧+=⎪⎨+=⎪⎩, 解得:13a b =-⎧⎪⎨=⎪⎩ ∴抛物线的解析式为y=﹣x 23;(2)∵C 3,3),∴直线OC 的解析式为:3y x =,设点M 到OC 的最大距离时,平行于OC 的直线解析式为3y x m =+,联立233y x m y x x⎧=+⎪⎨=-+⎪⎩, 消掉未知数y 并整理得,230x x m -+=,△=(32-4m=0,解得:m=34.∴230 4x+=,∴x=;∴点M到OC的最大距离=34×sin30°=313428⨯=;∵OC==∴13288MOCS∆=⨯⨯=;此时,M⎝⎭,最大面积为8;(3)∵∠OAP=∠BOC=∠BOA =30°,∴2=,∴直线AP与y轴的交点坐标为(0,2)或(0,﹣2),当直线AP经过点(0)、(0,2)时,解析式为2y=+,联立223y xy x⎧=-+⎪⎨=-+⎪⎩,解得11xy⎧=⎪⎨=⎪⎩22353xy⎧=⎪⎪⎨⎪=⎪⎩.所以点P53),当直线AP经过点(0)、(0,﹣2)时,解析式为2y x=-,联立223y xy x⎧=-+⎪⎨=-⎪⎩解得110x y ⎧=⎪⎨=⎪⎩2273x y ⎧=⎪⎪⎨⎪=-⎪⎩; 所以点P的坐标为(-73-). 综上所述,存在一点P5373),使∠OAP=∠BOA . 【点睛】本题是二次函数综合题型,主要利用了折叠的性质,待定系数法求二次函数解析式,联立两函数解析式求交点的方法,(2)判断出点M 到OC 的距离最大是,平行于OC 的直线与抛物线只有一个交点是解题的关键,(3)确定出直线AP 的解析式是解题的关键. 15.抛物线2y x bx c =-++ (b c ,为常数)与x 轴交于点()1,0x 和()2,0x 与y 轴交于点A ,点E 为抛物线顶点.(Ⅰ)当121,3x x =-=时,求点E ,点A 的坐标;(Ⅱ)①若顶点E 在直线y x =上时,用含有b 的代数式表示c ;②在①的前提下,当点A 的位置最高时,求抛物线的解析式;(Ⅲ)若11,0x b =->,当()1,0P 满足PA PE +值最小时,求b 的值.【答案】(Ⅰ)2y x 2x 3=-++;(Ⅱ)①21142c b b =-+;②214y x x =-++;(Ⅲ)3b =+【解析】【分析】(Ⅰ)当121,3x x =-=时,y=0,由二次函数的交点式即可求出解析式;(Ⅱ)①由题意得24(,)24b c b E +,代入直线y=x 中即可解答; ②表达出211(0,)42A b b -+,根据二次函数的性质可知,当b=1时,点A 在最高点,即可得到二次函数解析式;(Ⅲ)将(-1,0)代入得到c=b+1,表达出2(2)(,)24b b E +, A (0,b+1),求出点E 关于x 轴的对称点2(2)(,)24b b E +'-,根据当()1,0P 满足PA PE +值最小时,则此时点P ,A ,E '三点共线,求出直线AP 的解析式,将点2(2)(,)24b b E +'-代入直线AP 的解析式即可求出b 的值.【详解】解:(Ⅰ)当121,3x x =-=时,y=0,∴(1)(3)y x x =-+-,∴2y x 2x 3=-++(Ⅱ)①∵点E 是抛物线2y x bx c =-++的顶点, ∴24(,)24b c b E +, ∵顶点E 在直线y x =上, ∴24=24b c b +, ∴21142c b b =-+, ②由①可知211(0,)42A b b -+, 21142c b b =-+,104-<, ∴当12112()4b =-=⨯-时,21142c b b =-+最大,即点A 是最高点, 此时14c =, ∴214y x x =-++; (Ⅲ)∵抛物线经过(-1,0),∴-1-b+c=0,∴c=b+1,∵24(,)24b c b E +,A (0,c ) ∴2(2)(,)24b b E +, A (0,b+1), ∴点E 关于x 轴对称的点2(2)(,)24b b E +'-, ∵当()1,0P 满足PA PE +值最小时,则此时点P ,A ,E '三点共线,设过点A ,P 的直线为y=kx+t ,将点A (0,b+1),P (1,0)代入得10t b k t =+⎧⎨+=⎩,解得:11t b k b =+⎧⎨=--⎩, ∴y=(-b-1)x+b+1, 将2(2)(,)24b b E +'-代入得:2(2)(1)124b b b b +--++=-, 整理得:2680b b --=,解得:3b =3b =∵b >0,∴3b =+【点睛】本题考查了二次函数的图象及性质,掌握待定系数法求函数解析式,利用轴对称求最短距离是解题的关键.16.已知:抛物线)222y kx k x k k =++++经过坐标原点. (1)求抛物线的解析式和顶点B 的坐标;(2)设点A 是抛物线与x 轴的另一个交点且A 、C 两点关于y 轴对称,试在y 轴上确定一点P ,使PA+PB 最短,并求出点P 的坐标;(3)过点A 作AD ∥BP 交y 轴于点D ,求到直线AP 、AD 、CP 距离相等的点的坐标.【答案】(1)抛物线的解析式是y =﹣x 2,顶点B ,3);(2)点P 的坐标是(0,2);(3)到直线AP 、AD 、CP 距离相等的点的坐标是(0,0)和(2).【解析】【分析】(1)根据抛物线经过原点求出k 的值,即可求出解析式,在求顶点坐标即可; (2)先找出P 的位置,再求直线BC 的解析式,再求点P 的坐标即可;(3)先求得y 轴是∠APC 的角平分线,x 轴是∠DAP 的角平分线,交点符合要求,∠DAP的外角∠EAP 的平分线和∠CPA 的外角∠FPA 的平分线的交点M 也符合要求.【详解】解:(1)∵抛物线2223(2)y kx k x k k =++++经过坐标原点,∴k 2+k =0,解得:k =0(舍去),k =﹣1,∴抛物线的解析式是y =﹣x 2+23x , ∴y =﹣x 2+23x ,=﹣(x ﹣3)2+3,∴顶点B 的坐标是(3,3),答:抛物线的解析式是y =﹣x 2+23x ,顶点B 的坐标是(3,3);(2)当y =0时﹣x 2+23x =0,解得:x 1=0,x 2=23,∴A 的坐标是(23,0),A 关于y 轴的对称点C 的坐标是C (﹣23,0),设直线BC 的解析式是y =kx+b ,把B 33),C (﹣30)代入得:33k b 03k b⎧=+⎪⎨=-+⎪⎩,解得:32kb⎧=⎪⎨⎪=⎩,∴直线BC的解析式是y=33x+2,当x=0时,y=2,∴点P的坐标是(0,2),答:点P的坐标是(0,2).(3)∵A、C关于y轴对称,P在Y轴上,∴AP=CP,∵∠CAP=∠ACP,x轴⊥y轴,∴y轴是∠APC的角平分线,即y轴上任意一点到AP、CP的距离都相等,∵AD∥PC,∴∠DAC=∠ACP,∴∠DAC=∠CAP,∴x轴是∠DAP的角平分线,即x轴上任意一点到AP、AD的距离都相等,∴x轴与y轴的交点O到AP、AD、CP距离相等,∴点的坐标是(0,0),如图,∠DAP的外角∠EAP的平分线和∠CPA的外角∠FPA的平分线的交点M也符合要求,根据作图条件能得到矩形MAOP,即点M的坐标是(3,2),到直线AP、AD、CP距离相等的点的坐标是(0,0)和(32),答:到直线AP、AD、CP距离相等的点的坐标是(0,0)和(23,2).【点睛】本题考查了二次函数的综合题:熟练掌握待定系数法求函数解析式,最值问题,角平分线的性质. 找出PA+PB有最小值的条件是解题的关键.17.已知,如图,二次函数y=﹣x2+bx+c的图象经过点A(﹣1,0),B(3,0),点E为二次函数第一象限内抛物线上一动点,EH⊥x轴于点H,交直线BC于点F,以EF为直径的圆⊙M与BC交于点R.(1)求这个二次函数关系式.(2)当△EFR周长最大时.①求此时点E点坐标及△EFR周长.②点P为⊙M上一动点,连接BP,点Q为BP的中点,连接HQ,求HQ的最大值.【答案】(1)y=﹣x2+2x+3;(2)①E(32,154),周长为94+942;②HQ的最大值大为:365 16+9 16.【解析】【分析】(1)用交点式函数表达式,即可求解;(2)①证明△ERF为等腰直角三角形,当△EFR周长最大时,EF最长,EF=﹣m2+3m,即可求解;②HQ=12OP,利用OP≤OM+PM=365988+,即可求解.【详解】(1)用交点式函数表达式得:y=﹣(x+1)(x﹣3)=﹣x2+2x+3;(2)①由(1)知C(0,3),∴OC=OB=3,∴∠OBC=45︒,。

人教版八年级数学下册-解题技巧专题:特殊平行四边形中的解题方法

人教版八年级数学下册-解题技巧专题:特殊平行四边形中的解题方法

解题技巧专题:特殊平行四边形中的解题方法◆类型一特殊四边形中求最值、定值问题一、利用对称性求最值【方法10】1.(2017·青山区期中)如图,四边形ABCD是菱形,AC=8,DB=6,P,Q分别是AC,AD上的动点,连接DP,PQ,则DP+PQ的最小值为________.第1题图第2题图2.(2017·安顺中考)如图,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为________.二、利用面积法求定值3.如图,在矩形ABCD中,点P是线段BC上一动点,且PE⊥AC,PF⊥BD,AB=6,BC=8,则PE+PF的值为________.【变式题】矩形两条垂线段之和→菱形两条垂线段之和→正方形两条垂线段之和(1)(2017·眉山期末)如图,菱形ABCD的周长为40,面积为25,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于________.变式题(1)图变式题(2)图(2)如图,正方形ABCD的边长为1,E为对角线BD上一点且BE=BC,点P为线段CE 上一动点,且PM⊥BE于M,PN⊥BC于N,则PM+PN的值为________.◆类型二正方形中利用旋转性解题4.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是__________.5.如图,在正方形ABCD中,点E,F分别在BC,CD上,∠EAF=45°.求证:S△AEF =S△ABE+S△ADF.6.如图,在正方形ABCD中,对角线AC,BD交于点O,P为正方形ABCD外一点,且BP⊥CP,连接OP.求证:BP+CP=2OP.参考答案与解析1. 245解析:如图,过点Q 作QE ⊥AC 交AB 于点E ,则PQ =PE .∴DP +PQ =DP +PE .当点D ,P ,E 三点共线的时候DP +PQ =DP +PE =DE 最小,且DE 即为所求.当DE ⊥AB 时,DE 最小.∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =12AC =4,OB =12BD =3,∴AB =5.∵S菱形ABCD =12AC ·BD =AB ·DE ,∴12×8×6=5·DE ,∴DE =245.∴DP +PQ 的最小值为245.2.6 解析:如图,设BE 与AC 交于点P ,连接BD .∵点B 与D 关于AC 对称,∴PD =PB ,∴PD +PE =PB +PE =BE ,即P 为AC 与BE 的交点时,PD +PE 最小,为BE 的长度.∵正方形ABCD 的边长为6,∴AB =6.又∵△ABE 是等边三角形,∴BE =AB =6.故所求最小值为6.故答案为6.3. 245解析:∵四边形ABCD 为矩形,∴∠ABC =90°.∵AB =6,BC =8,∴AC =10,∴OB =OC =12AC =5.如图,连接OP ,∵S △OBP +S △OCP =S △OBC ,∴OB ·PF 2+OC ·PE 2=S △OBC ,∴5·PF 2+5·PE 2=S △OBC .∵S △OBC =14S 矩形ABCD =14AB ·BC =14×6×8=12,∴5·PF 2+5·PE 2=12,∴PE +PF =245.【变式题】(1)52解析:∵菱形ABCD 的周长为40,面积为25,∴AB =AD =10,S △ABD =252.连接AP ,则S △ABD =S △ABP +S △ADP ,∴12×10(PE +PF )=252,∴PE +PF =52.(2)22解析:连接BP,过点E作EH⊥BC于H.∵S△BPE+S△BPC=S△BEC,∴BE·PM2+BC·PN2=BC·EH2.又∵BE=BC,∴PM2+PN2=EH2,即PM+PN=EH.∵△BEH为等腰直角三角形,且BE=BC=1,∴EH=22,∴PM+PN=EH=22.4.325.证明:延长CB到点H,使得HB=DF,连接AH.∵四边形ABCD是正方形,∴∠ABH =∠D=90°,AB=AD.∴△ADF绕点A顺时针旋转90°后能和△ABH重合,∴AH=AF,∠BAH =∠DAF.∵∠HAE=∠HAB+∠BAE=∠DAF+∠BAE=90°-∠EAF=90°-45°=45°,∴∠HAE=∠EAF=45°.又∵AE=AE,∴△AEF与△AEH关于直线AE对称,∴S△AEF=S△AEH =S△ABE+S△ABH=S△ABE+S△ADF.6.证明:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°.将△OCP顺时针旋转90°至△OBE(如图所示),∴OE=OP,BE=CP,∠OBE=∠OCP,∠BOE=∠COP.∵BP⊥CP,∴∠BPC=90°.∵∠BOC+∠OBP+∠BPC+∠OCP=360°,∴∠OBP+∠OCP=180°,∴∠OBP+∠OBE=180°,∴E,B,P在同一直线上.∵∠POC+∠POB=∠BOC=90°,∠BOE=∠COP,∴∠BOE+∠POB=90°,即∠EOP=90°.在Rt△EOP中,由勾股定理得PE=OE2+OP2=OP2+OP2=2OP.∵PE=BE+BP,BE=CP,∴BP+CP=2OP.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.。

中考数学复习---《利用对称求最值问题》知识点总结与专项练习题(含答案)

中考数学复习---《利用对称求最值问题》知识点总结与专项练习题(含答案)

中考数学复习---《利用对称求最值问题》知识点总结与专项练习题(含答案)知识点总结1.基本知识点:①两点之间线段最短;②点到直线的距离最短。

2.求最值问题的类型问题基本图形解题图形解题思路与步骤如图①:如图,存在直线l 以及直线外的点P和点Q,直线l 上存在一点M,使得MP+MQ 的值最小。

解题思路:找点作对称解题步骤:①从问题中确定定点与动点。

②作其中一个定点关于动点所在直线的对称点。

通常情况下其中一个定点的关于动点所在直线的对称点存在,找出即可。

③连接对称点与另一个定点。

与动点所在直线的交点即是如图②:如图,已知∠MON 以及角内一点P,角的两边OM 与ON上存在点A与点B,使得△PAB的周长最小。

微专题1.(2022•德州)如图,正方形ABCD 的边长为6,点E 在BC 上,CE =2.点M 是对角线BD 上的一个动点,则EM +CM 的最小值是( )A .62B .35C .213D .413【分析】要求ME +MC 的最小值,ME 、MC 不能直接求,可考虑通过作辅助线转化ME ,MC 的值,从而找出其最小值求解.【解答】解:如图,连接AE 交BD 于M 点, ∵A 、C 关于BD 对称, ∴AE 就是ME +MC 的最小值,如图③:如图:已知∠AOB 以及角内两点点P 与点Q ,角的两边上分别存在M 、N 使得四边形PQMN 的周长最小。

动点的位置。

然后解题。

∵正方形ABCD中,点E是BC上的一定点,且BE=BC﹣CE=6﹣2=4,∵AB=,∴AE==2,∴ME+MC的最小值是2.故选:C.2.(2022•资阳)如图,正方形ABCD的对角线交于点O,点E是直线BC上一动点.若AB=4,则AE+OE的最小值是()A.42B.25+2 C.213D.210【分析】本题为典型的将军饮马模型问题,需要通过轴对称,作点A关于直线BC的对称点A',再连接A'O,运用两点之间线段最短得到A'O为所求最小值,再运用勾股定理求线段A'O的长度即可.【解答】解:如图所示,作点A关于直线BC的对称点A',连接A'O,其与BC的交点即为点E,再作OF⊥AB交AB于点F,∵A与A'关于BC对称,∴AE=A'E,AE+OE=A'E+OE,当且仅当A',O,E在同一条线上的时候和最小,如图所示,此时AE+OE=A'E+OE=A'O,∵正方形ABCD,点O为对角线的交点,∴,∵A与A'关于BC对称,∴AB=BA'=4,∴FA'=FB+BA'=2+4=6,在Rt△OFA'中,,故选:D.3.(2022•菏泽)如图,在菱形ABCD中,AB=2,∠ABC=60°,M是对角线BD上的一个动点,CF=BF,则MA+MF的最小值为()A.1 B.2C.3D.2【分析】当MA+MF的值最小时,A、M、F三点共线,即求AF的长度,根据题意判断△ABC为等边三角形,且F点为BC的中点,根据直角三角形的性质,求出AF的长度即可.【解答】解:当A、M、F三点共线时,即当M点位于M′时,MA+MF的值最小,由菱形的性质可知,AB=BC,又∵∠ABC=60°,∴△ABC为等边三角形,∵F点为BC的中点,AB=2,∴AF⊥BC,CF=FB=1,∴在Rt△ABF中,AF==.故选:C.4.(2022•广安)如图,菱形ABCD的边长为2,点P是对角线AC上的一个动点,点E、F分别为边AD、DC的中点,则PE+PF的最小值是()A.2 B.3C.1.5 D.5【分析】如图,取AB的中点T,连接PT,FT.首先证明四边形ADFT是平行四边形,推出AD=FT=2,再证明PE+PF=PT+PF,由PF+PT≥FT=2,可得结论.【解答】解:如图,取AB的中点T,连接PT,FT.∵四边形ABCD是菱形,∴CD∥AB,CD=AB,∵DF=CF,AT=TB,∴DF=AT,DF∥AT,∴四边形ADFT是平行四边形,∴AD=FT=2,∵四边形ABCD是菱形,AE=DE,AT=TB,∴E,T关于AC对称,∴PE=PT,∴PE+PF=PT+PF,∵PF+PT≥FT=2,∴PE+PF≥2,∴PE+PF的最小值为2.故选:A.5.(2022•赤峰)如图,菱形ABCD,点A、B、C、D均在坐标轴上.∠ABC=120°,点A (﹣3,0),点E是CD的中点,点P是OC上的一动点,则PD+PE的最小值是()3A.3 B.5 C.22D.32【分析】根据题意得,E点关于x轴的对称点是BC的中点E',连接DE'交AC与点P,此时PD+PE有最小值,求出此时的最小值即可.【解答】解:根据题意得,E点关于x轴的对称点是BC的中点E',连接DE'交AC与点P ,此时PD +PE 有最小值为DE ',∵四边形ABCD 是菱形,∠ABC =120°,点A (﹣3,0), ∴OA =OC =3,∠DBC =60°, ∴△BCD 是等边三角形, ∴DE '=OC =3,即PD +PE 的最小值是3, 故选:A .6.(2022•安顺)已知正方形ABCD 的边长为4,E 为CD 上一点,连接AE 并延长交BC 的延长线于点F ,过点D 作DG ⊥AF ,交AF 于点H ,交BF 于点G ,N 为EF 的中点,M 为BD 上一动点,分别连接MC ,MN .若91=∆∆FCEDCG S S ,则MC +MN 的最小值为 .【分析】由正方形的性质,可得A 点与C 点关于BD 对称,则有MN +CM =MN +AM ≥AN ,所以当A 、M 、N 三点共线时,MN +CM 的值最小为AN ,先证明△DCG ∽△FCE ,再由=,可知=,分别求出DE =1,CE =3,CF =12,即可求出AN .【解答】解:如图,连接AM,∵四边形ABCD是正方形,∴A点与C点关于BD对称,∴CM=AM,∴MN+CM=MN+AM≥AN,∴当A、M、N三点共线时,MN+CM的值最小,∵AD∥CF,∴∠DAE=∠F,∵∠DAE+∠DEH=90°,∵DG⊥AF,∴∠CDG+∠DEH=90°,∴∠DAE=∠CDG,∴∠CDG=∠F,∴△DCG∽△FCE,∵=,∴=,∵正方形边长为4,∴CF=12,∵AD∥CF,∴==,∴DE=1,CE=3,在Rt△CEF中,EF2=CE2+CF2,∴EF==3,∵N是EF的中点,∴EN=,在Rt△ADE中,EA2=AD2+DE2,∴AE==,∴AN=,∴MN+MC的最小值为,故答案为:,7.(2022•内江)如图,矩形ABCD中,AB=6,AD=4,点E、F分别是AB、DC上的动点,EF∥BC,则AF+CE的最小值是.【分析】延长BC到G,使CG=EF,连接FG,则四边形EFGC是平行四边形,得CE=FG,则AF+CE=AF+FG,可知当点A、F、G三点共线时,AF+CE的值最小为AG,利用勾股定理求出AG的长即可.【解答】解:延长BC到G,使CG=EF,连接FG,∵EF∥CG,EF=CG,∴四边形EFGC是平行四边形,∴CE=FG,∴AF+CE=AF+FG,∴当点A、F、G三点共线时,AF+CE的值最小为AG,由勾股定理得,AG===10,∴AF+CE的最小值为10,故答案为:10.8.(2022•贺州)如图,在矩形ABCD中,AB=8,BC=6,E,F分别是AD,AB的中点,∠ADC的平分线交AB于点G,点P是线段DG上的一个动点,则△PEF的周长最小值为.【分析】如图,在DC上截取DT,使得DT=DE,连接FT,过点T作TH⊥AB于点H.利用勾股定理求出FT=,EF=5,证明PE+PF=PF+PT≥FT,可得结论.【解答】解:如图,在DC上截取DT,使得DT=DE,连接FT,过点T作TH⊥AB于点H.∵四边形ABCD是矩形,∴∠A=∠ADT=90°,∵∠AHT=90°,∴四边形AHTD是矩形,∵AE=DE=AD=3.AF=FB=AB=4,∴AH=DT=3,HF=AF﹣AH=4﹣3=1,HT=AD=6,∴FT===,∵DG平分∠ADC,DE=DT,∴E、T关于DG对称,∴PE=PT,∴PE+PF=PF+PT≥FT=,∵EF===5,∴△EFP的周长的最小值为5+,故答案为:5+.9.(2022•娄底)菱形ABCD的边长为2,∠ABC=45°,点P、Q分别是BC、BD上的动点,CQ+PQ的最小值为.【分析】连接AQ,作AH⊥BC于H,利用SAS证明△ABQ≌△CBQ,得AQ=CQ,当点A、Q、P共线,AQ+PQ的最小值为AH的长,再求出AH的长即可.【解答】解:连接AQ,作AH⊥BC于H,∵四边形ABCD是菱形,∴AB=CB,∠ABQ=∠CBQ,∵BQ=BQ,∴△ABQ≌△CBQ(SAS),∴AQ=CQ,∴当点A、Q、P共线,AQ+PQ的最小值为AH的长,∵AB=2,∠ABC=45°,∴AH=,∴CQ+PQ的最小值为,故答案为:.10.(2022•眉山)如图,点P为矩形ABCD的对角线AC上一动点,点E为BC的中点,连接PE,PB,若AB=4,BC=43,则PE+PB的最小值为.【分析】作点B关于AC的对称点B',交AC于点F,连接B′E交AC于点P,则PE+PB的最小值为B′E的长度;然后求出B′B和BE的长度,再利用勾股定理即可求出答案.【解答】解:如图,作点B关于AC的对称点B',交AC于点F,连接B′E交AC于点P,则PE+PB的最小值为B′E的长度,∵四边形ABCD为矩形,∴AB=CD=4,∠ABC=90°,在Rt△ABC中,AB=4,BC=4,∴tan∠ACB==,∴∠ACB=30°,由对称的性质可知,B'B=2BF,B'B⊥AC,∴BF=BC=2,∠CBF=60°,∴B′B=2BF=4,∵BE=BF,∠CBF=60°,∴△BEF是等边三角形,∴BE=BF=B'F,∴△BEB'是直角三角形,∴B′E===6,∴PE+PB的最小值为6,故答案为:6.11.(2022•滨州)如图,在矩形ABCD中,AB=5,AD=10.若点E是边AD上的一个动点,过点E作EF⊥AC且分别交对角线AC、直线BC于点O、F,则在点E移动的过程中,AF+FE+EC的最小值为.【分析】如图,过点E作EH⊥BC于点H.利用相似三角形的性质求出FH,EF,设BF =x,则DE=10﹣x﹣=﹣x,因为EF是定值,所以AF+CE的值最小时,AF+EF+CE 的值最小,由AF+CE=+,可知欲求AF+CE的最小值相当于在x轴上找一点P(x,0),使得P到A(0,5),B(,5)的距离和最小,如图1中,作点A关于x轴的对称点A′,连接BA′交x轴于点P,连接AP,此时PA+PB的值最小,最小值为线段A′B的长,由此即可解决问题.【解答】解:如图,过点E作EH⊥BC于点H.∵四边形ABCD是矩形,∴∠B=∠BAD=∠BHE=90°,∴四边形ABHE是矩形,∴EH=AB=5,∵BC=AD=10,∴AC===5,∵EF⊥AC,∴∠COF=90°,∴∠EFH+∠ACB=90°,∵∠BAC+∠ACB=90°,∴∠EFH=∠BAC,∴△EHF∽△CBA,∴==,∴==,∴FH=,EF=,设BF=x,则DE=10﹣x﹣=﹣x,∵EF是定值,∴AF+CE的值最小时,AF+EF+CE的值最小,∵AF+CE=+,∴欲求AF+CE的最小值相当于在x轴上找一点P(x,0),使得P到A(0,5),B(,5)的距离和最小,如图1中,作点A关于x轴的对称点A′,连接BA′交xz轴于点P,连接AP,此时PA+PB的值最小,最小值为线段A′B的长,∵A′(0,﹣5),B(,5),∴A′B==,∴AF+CE的最小值为,∴AF+EF+CE的最小值为+.解法二:过点C作CC′∥EF,使得CC′=EF,连接C′F.∵EF=CC′,EF∥CC′,∴四边形EFC′C是平行四边形,∴EC=FC′,∵EF⊥AC,∴AC⊥CC′,∴∠ACC=90°,∵AC′===,∴AF+EC=AF+FC′≥AC′=,∴AF+EF+CE的最小值为+.故答案为:+.12.(2022•自贡)如图,矩形ABCD中,AB=4,BC=2,G是AD的中点,线段EF在边AB上左右滑动,若EF=1,则GE+CF的最小值为.【分析】解法一:利用已知可以得出GC,EF长度不变,求出GE+CF最小时即可得出四边形CGEF周长的最小值,利用轴对称得出E,F位置,即可求出.解法二:设AE=x,则BF=3﹣x,根据勾股定理可得:EG+CF=+,由勾股定理构建另一矩形EFGH,根据线段的性质:两点之间线段最短可得结论.【解答】解:解法一:如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,∵CH=EF=1,CH∥EF,∴四边形EFCH是平行四边形,∴EH=CF,∴G'H=EG'+EH=EG+CF,∵AB=4,BC=AD=2,G为边AD的中点,∴DG'=AD+AG'=2+1=3,DH=4﹣1=3,由勾股定理得:HG'==3,即GE+CF的最小值为3.解法二:∵AG=AD=1,设AE=x,则BF=AB﹣EF﹣AE=4﹣x﹣1=3﹣x,由勾股定理得:EG+CF=+,如图,矩形EFGH中,EH=3,GH=2,GQ=1,P为FG上一动点,设PG=x,则FP=3﹣x,∴EP+PQ=+,当E,P,Q三点共线时,EP+PQ最小,最小值是3,即EG+CF的最小值是3.故答案为:3.13.(2022•泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为()A.2B.2 C.22D.4【分析】连接AE,那么,AE=CG,所以这三个d的和就是AE+EF+FC,所以大于等于AC,故当AEFC四点共线有最小值,最后求解,即可求出答案.【解答】解:如图,连接AE,∵四边形DEFG是正方形,∴∠EDG=90°,EF=DE=DG,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∴d1+d2+d3=EF+CF+AE,∴点A,E,F,C在同一条线上时,EF+CF+AE最小,即d1+d2+d3最小,连接AC,∴d1+d2+d3最小值为AC,在Rt△ABC中,AC=AB=2,∴d1+d2+d3最小=AC=2,故选:C.14.(2022•安徽)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP 长的最小值是()A.233B.235C.33D.237【分析】如图,不妨假设点P在AB的左侧,证明△PAB的面积是定值,过点P作AB的平行线PM,连接CO延长CO交AB于点R,交PM于点T.因为△PAB的面积是定值,推出点P的运动轨迹是直线PM,求出OT的值,可得结论.【解答】解:如图,不妨假设点P在AB的左侧,∵S△PAB+S△ABC=S△PBC+S△PAC,∴S1+S0=S2+S3,∵S1+S2+S3=2S0,∴S1+S1+S0=2,∴S1=S0,∵△ABC是等边三角形,边长为6,∴S0=×62=9,∴S1=,过点P作AB的平行线PM,连接CO延长CO交AB于点R,交PM于点T.∵△PAB的面积是定值,∴点P的运动轨迹是直线PM,∵O是△ABC的中心,∴CT⊥AB,CT⊥PM,∴•AB•RT=,CR=3,OR=,∴RT=,∴OT=OR+TR=,∵OP≥OT,∴OP的最小值为,当点P在②区域时,同法可得OP的最小值为,如图,当点P在①③⑤区域时,OP的最小值为,当点P在②④⑥区域时,最小值为,∵<,故选:B.。

对称方法求最值

对称方法求最值

对称方法求最值在数学问题中,求解最值是常见的一类问题。

对称方法是一种利用几何图形的对称性来求解最值的有效手段。

本文将详细阐述如何使用对称方法求解最值。

**对称方法求最值**对称方法是一种基于几何图形的对称性质来求解最值的方法。

在几何问题中,尤其是平面几何问题,通过观察图形的对称性,我们可以找到最值点的位置,进而求解出最值。

### 基本原理对称方法的核心在于“对称轴”或“对称中心”。

对于一个几何问题,如果存在对称轴或对称中心,那么问题的最值往往出现在对称轴或对称中心上。

### 求解步骤1.**确定对称轴或对称中心**:观察题目给出的几何图形,确定是否存在对称轴或对称中心。

2.**分析问题**:根据问题的具体要求,分析什么是最值点,例如最大值点或最小值点。

3.**应用对称性**:利用对称性,确定最值点的位置。

通常,最值点会出现在对称轴或对称中心上。

4.**建立方程**:根据问题的具体条件,建立方程或方程组,求解最值点。

5.**计算最值**:将最值点的坐标代入目标函数,计算出最大值或最小值。

### 实例应用#### 例题:在平面直角坐标系中,求点A(1,2)到直线y=3x+1的距离的最小值。

**解**:1.确定对称轴:直线y=3x+1的斜率为3,故垂直于该直线的直线的斜率为-1/3,即垂直线为对称轴。

2.分析问题:要求点A到直线的距离的最小值,此最值出现在点A关于直线y=3x+1的对称点上。

3.应用对称性:点A关于直线y=3x+1的对称点B,其坐标可以通过求解点A到直线的垂线方程与直线y=3x+1的交点得到。

4.建立方程:根据点斜式,垂线方程为y-2=-(1/3)(x-1)。

5.解方程:将垂线方程代入直线方程y=3x+1,解得交点坐标。

6.计算最值:通过求解得到的对称点B的坐标,计算点A到直线y=3x+1的距离,即为所求的最小值。

通过以上步骤,我们可以求解出该问题的答案。

**注意**:实际应用中,问题可能会更加复杂,需要结合具体问题具体分析。

初中数学对称求最小值问题

初中数学对称求最小值问题

初中数学对称求最小值问题一、对称轴问题对于对称轴问题,我们可以通过找到对称轴来求取最小值。

在几何图形中,对称轴是一条直线,它使得图形沿这条直线折叠后两部分能够完全重合。

对于一些具有对称性质的几何图形,如等腰三角形、矩形等,它们的对称轴是固定的。

通过找到这些对称轴,我们可以确定最小值的所在位置。

二、对称点问题对于对称点问题,我们需要找到图形中的对称点来求解。

在一个图形中,如果两个点关于某一条直线对称,那么这两个点的连线与该直线垂直且中点在该直线上。

通过找到这些对称点,我们可以确定最小值的所在位置。

三、对称性应用对称性在数学中有着广泛的应用,它可以用于解决很多问题。

例如,在几何问题中,我们可以通过对称性将复杂的问题简化;在代数问题中,我们可以通过对称性找到函数的极值点;在概率问题中,我们可以通过对称性计算概率分布。

四、对称与最值关系对称性与最值之间存在着密切的联系。

在一些情况下,通过利用对称性,我们可以更方便地找到最小值。

例如,对于一些二次函数,它们的图像具有对称性,我们可以通过找到对称轴来确定最小值的位置;对于一些几何图形,我们可以通过找到对称轴或对称点来确定最小值的位置。

五、对称性质与几何图形几何图形中的对称性质是常见的。

例如,等腰三角形是关于其高线对称的;矩形是关于其对角线所在的直线对称的;圆是关于其任意直径所在的直线对称的。

了解这些对称性质可以帮助我们更好地理解图形的结构,并找到最小值的位置。

六、对称变换与函数图像函数图像的对称变换也是数学中的一个重要概念。

例如,函数y=ax^2+bx+c的图像是一个抛物线,该抛物线可以沿x轴或y轴进行对称变换。

通过了解这些对称变换的性质,我们可以更好地理解函数的图像,并找到最小值的位置。

七、对称不等式问题在一些数学问题中,我们需要证明两个量之间的不等式关系。

如果这两个量具有对称性,那么我们可以利用这种对称性来证明不等式。

例如,对于一些二次函数的最小值问题,我们可以利用二次函数的对称性来证明不等式。

初二数学经典的做对称求最小值问题,也是中考中的常客

初二数学经典的做对称求最小值问题,也是中考中的常客

做对称求最小值问题常见的三种提问方式:①直接求一条线段AB的最小值②求两条线段AB+AC和的最小值③求三条线段构成的三角形ABC的周长的最小值
接下来我们用几道例题来分析一下这几种类型。

方法总结(以例1为例):①将C,F,E三点分为动点和定点(其中c为定点,E,F为动点)
②找到动点运动的轨迹(F在AD上运动,E在AC上运动)
③将定点沿着动点的运动轨迹对对称(将点C沿着AD做对称至B点)
④从对称点出发做一条与另一运动轨迹相垂直的直线(从点B做BE⊥AC)
⑤算出所作出的直线的长度即为最小值(算出BE的长度)
一、求两条线段AB+AC和的最小值
例1、如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线且AD=12,F是AD 上的动点,E是AC边上的动点,则CF+EF的最小值为___________.
二、直接求一条线段AB的最小值
例2、如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM.
(1)请你判断△OMN的形状,并说明理由.
(2)若BC=2√2,则MN的最小值为__________.
三、三条线段构成的三角形ABC的周长的最小值.
常考的题型解法:将△ABC的周长拆成AB+AC+BC,其中一定会有一条边的长度是已知的,若AB的长为3,那么△ABC的周长的最小值就是在求3+AC+BC的最小值,接下来的步骤与例题1相同。

利用轴对称破解最短路径问题

利用轴对称破解最短路径问题

第一章平移、对称与旋转第4 讲利用轴对称破解最短路径问题一、学习目标1.理解“直线上同一侧两点与此直线上一动点距离和最小”问题通过轴对称的性质与作图转化为“两点之间,线段最短”问题求解。

2.能将实际问题或几何问题(对称背景图)中有关最短路径(线段之差最大值)问题借助轴对称转化为两点之间,线段最短问题分析与求解。

二、基础知识•轻松学与轴对称有关的最短路径问题关于最短距离,我们有下面几个相应的结论:(1)在连接两点的所有线中,线段最短(两点之间,线段最短);(2)三角形的两边之和大于第三边,两边之差小于第三边;(3)在三角形中,大角对大边,小角对小边。

(4)垂直平分线上的点到线段两端点的距离相等;【精讲】一般说来,线段和最短的问题,往往把几条线段连接成一条线段,利用“两点之间线段最短” 或者“三角形两边之和大于第三边”加以证明,关键是找相关点关于直线的对称点实现“折”转“直” 。

另外,在平移线段的时候,一般要用到平行四边形的判定和性质。

(判定:如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形;性质:平行四边形的对边相等。

)三、重难疑点•轻松破最短路径问题在平面图形中要解决最短路径问题,自然离不开构建与转化“两点之间,线段最短”的数学公理,通常将涉及到的两点中的任一点作出关于直线的对称点,从而运用两点之间,线段最短解决实际问题.在日常生活、工作中,经常会遇到有关行程路线的问题。

“最短路径问题”的原型来自于“饮马问题” 、“造桥选址问题” ,出题通常以直线、角、等腰(边)三角形、长方形、正方形、坐标轴等对称图形为背景。

(1)“一线同侧两点”问题例1如图,点A B在直线m的同侧,点B'是点B关于m的对称点,AB'交m于点P.(1)AB与AP+PB相等吗为什么(2)在m上再取一点N,并连接AN与NB比较AN+N有AP+PB的大小,并说明理由.解析:(1)T 点B'是点B 关于m 的对称点,••• PB=PB ,••• AB =AP+PB , ••• AB =AP+PB(2)如图:连接 AN, BN B ' N,TAB' =AP+PB• AN+NB=AN+NB> AB', • AN+N > AP+PB点评:两条线段之和最短,往往利用对称的思想,利用两点之间的线段最短得出结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用对称求最小值
1.条件:如下左图,A,B是直线L同旁的两个定点.
问题:在直线L上确定一点P,使PA+PB的值最小
方法:作点A关于直线L的对称点A' ,连接A' B交L于点P,则PA+PB=A' B的值最小(不必证明)
模型应用:
(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点,连接BD,由正方形的对称性可知,B与D关于直线AC对称,连接ED,则PB+PD的最小值是(2)如图2⊙O的半径为2,点A,B,C在⊙O上,OA⊥OB,∠AOC=60ْ,P是OB上一动点,则PA+PC的最小值是
(3)如图3,∠AOB=45ْ,P是∠AOB内一点,PO=10,Q,R分别是OA,OB上的动点则⊿PQR的最小值是
D
A B A
E
L P C C P A O B
B B
R
P
O A
Q
2.一次函数y=kx+b的图像与x,y轴分别交于点A(2,0),B(0,4)。

(1)求该函数的解析式
(2)O为坐标原点,设OA,AB的中点分别为C,D。

P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点的坐标y
B
P D
O C A x
已知在平面直角坐标系中A 点坐标为(21,—2
3
)B 点的坐标为(1,—1),有一动点P 从A 点出发,先到达x=
4
1
上某点E ,再到达X 轴上某点F ,最后回到B 点,要使整个路程最短,求E,F 两点坐标,并求出最短路径长。

已知在平面直角坐标系中B 点坐标为(3,0)P 点的坐标为(23,—3),E 、F 是 y 轴负半轴上的两个动点(点E 在点F 的上面),且EF =2,当四边形PBEF 的周长最小时,求点E 、F 的坐标
已知在平面直角坐标系中两点B (2,2)、C (3,0).在x=1上有两点P 、Q (点Q 在点
P 的上方),且PQ =1,要使四边形BCPQ 的周长最小,求出P 、Q 两点的坐标.

在平面直角坐标系xOy 中,有A (-3,0)、B (4,0)两点,且y 轴上一点C (0,4),一个
动点Q 从点C 出发,沿线段CA 以某一速度向点A 移动.
在AB 的垂直平分线上是否存在一点M ,使MQ +MA 的值最小?若存在,求出点M 的
坐标;若不存在,请说明理由.
y
x
-1
-3
-2
-4
-5
12345
-1-2-3-4
1
2345O。

相关文档
最新文档