辽宁大连中考数学试卷(解析)

合集下载

2024年辽宁省大连市中考数学模拟试卷(4月份)(含解析)

2024年辽宁省大连市中考数学模拟试卷(4月份)(含解析)

2024年辽宁省大连市中考数学模拟试卷(4月份)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.2024年元旦假期,全国文化和旅游市场平稳有序.经文化和旅游部数据中心测算,元旦假期3天,全国国内旅游出游1.35亿人次,同比增长155.3%,数据“1.35亿”用科学记数法表示为( )A. 1.35×108B. 1.35×107C. 0.135×108D. 13.5×1072.如图所示的几何体是由6个大小相同的小正方体组成的,从左面观察该几何体,看到的形状图为( )A.B.C.D.3.如图图案中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.4.下列运算中正确的是( )=a2 D. a5+a5=2a5A. a3⋅a2=a6B. (a3)4=a7C. a6a35.若关于x的方程x2+bx+36=0有两个相等的实数根,则b的值是( )A. 12B. −12C. ±12D. ±66.若一次函数y=kx+b的图象如图所示,则下列说法正确的是( )A. k>0B. b=2C. y随x的增大而增大D. 当x=3时,y=07.我市为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB,CD都与地面l平行,∠BCD=60°,∠BAC=50°,当∠MAC为度时,AM//BE.( )A. 15B. 65C. 70D. 1158.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是( )A. 8B. 7C. 4D. 39.明代的数学著作《算法统宗》中有这样一个问题“隔墙听得客分银,不知人数不知银,七两分之少四两,五两分之多半斤.”其大意为:有一群人分银子,如果每人分七两,则还差四两,如果每人分五两,则还多半斤(注:明代1斤=16两,故有“半斤八两”这个成语).设共有x两银子,则可列方程为( )A. 7x−4=5x+8B. x−47=x+85C. 7x+4=5x−8D. x+47=x−8510.如图,在四边形ABCD中,对角线AC与BD交于点E,过点E作EF⊥BC于点F,AC=5,∠CAB=90°,按以下步骤作图:分别以点A,F为圆心,大于12AF的长为半径作弧,两弧交于点P,Q,作直线PQ,若点B,E在直线PQ上,且AE:EC=2:3,则BC的长为( )A. 26B. 35C. 8D. 13二、填空题:本题共5小题,每小题3分,共15分。

(历年中考)辽宁省大连市中考数学试题含答案

(历年中考)辽宁省大连市中考数学试题含答案

2016 年辽宁省大连市中考数学试卷一、选择题:本大题共 8小题,每小题 3 分,共 24分 1.﹣ 3 的相反数是( ) A . B .C .3D .﹣ 32.在平面直角坐标系中,点( 1, 5)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.方程 2x+3=7 的解是( ) A .x=5 B .x=4 C . x=3.5 D .x=2A .x>﹣ 2B .x<1C .﹣ 1<x<2D .﹣2<x<1 6.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4 随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于 4的概率是( )A .B .C .D .7.某文具店三月份销售铅笔 100 支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )22A .100(1+x )B .100(1+x )C .100( 1+x )D .100(1+2x ) 8.如图,按照三AB ∥CD ,AE 平分∠CAB .AE 与 CD 相交于点 E , ∠ACD=40°,则 ∠BAE 5.不等式组 的解集是4.如图,直线140视图确定该几何体的全面积是(图中尺寸单位:cm)()二、填空题:本大题共 8小题,每小题 3 分,共 24分29.因式分解: x ﹣ 3x= .10.若反比例函数 y= 的图象经过点( 1,﹣ 6),则 k 的值为 .11.如图,将△ ABC 绕点 A 逆时针旋转的到 △ADE ,点 C 和点 E 是对应点, 若∠CAE=90°,12.下表是某校女子排球队队员的年龄分布 年龄 /岁13 14 15 16 频数1173则该校女子排球队队员的平均年龄是 岁.15.如图,一艘渔船位于灯塔 P 的北偏东 30°方向,距离灯塔 18 海里的 A 处,它沿正南方 向航行一段时间后, 到达位于灯塔 P 的南偏东 55°方向上的 B 处,此时A .40π cm 2B . 65π cm 2C . 80π cm 2D . 105π cm 213.如图,在菱形 ABCD 中, AB=5 , AC=8 ,则菱形的面积是a 的取值范是渔船与灯塔 P的距离约为海里(结果取整数)(参考数据: sin55 °≈ 0,.8cos55°≈ 0,.6tan55 °≈1).4.20.为了解某小区某月家庭用水量的情况, 从该小区随机抽取部分家庭进行调查,据调查数据绘制的统计图表的一部分 分组 家庭用水量 x/ 吨 家庭数 /户A 0≤x ≤ 4.0 4B 4.0<x ≤ 6.513C 6.5<x ≤ 9.0D 9.0<x ≤ 11.5E11.5< x ≤ 14.06 F x>4.03根据以上信息,解答下列问题216.如图,抛物线 y=ax 2+bx+c 与 x 轴相交于点 A 、 B ( m+2, 0)与 y 轴相交于点 在该抛物线上,坐标为( m , c ),则点 A 的坐标是 .C ,点 D三、解答题:本大题共 4小题, 17、18、19各 9分 20 题 12分,共 39分17.计算:( +1)( ﹣ 1)+(﹣2)0﹣.18.先化简,再求值:( 2a+b )2﹣a ( 4a+3b ),其中 a=1, b= . 19.如图, BD 是? ABCD 的对角线, AE ⊥BD ,CF ⊥BD ,垂足分别为 E 、F ,AE=CF .以下是根1)家庭用水量在 4.0< x ≤6.5范围内的家庭有 户,在 6.5< x ≤9.0范围内的家庭数占被调查家庭数的百分比是 %; ( 2)本次调查的家庭数为 户,家庭用水量在 9.0< x ≤11.5范围内的家庭数占被 调查家庭数的百分比是 %;3)家庭用水量的中位数落在组;四、解答题:本大题共 3小题, 21、22各 9分 23题 10分,共 28分21.A 、B 两地相距 200千米,甲车从 A 地出发匀速开往 B 地,乙车同时从 B 地出发匀速 开往 A 地,两车相遇时距 A 地 80 千米.已知乙车每小时比甲车多行驶 30 千米,求甲、乙 两车的速度.222.如图,抛物线 y=x 2﹣3x+ 与 x 轴相交于 A 、B 两点,与 y 轴相交于点 C ,点 D 是直线BC 下方抛物线上一点,过点 D 作 y 轴的平行线,与直线 BC 相交于点 E ( 1)求直线 BC 的解析式; (2)当线段 DE 的长度最大时,求点 D 的坐标.23.如图, AB 是⊙O 的直径,点 C 、D 在⊙O 上, ∠ A=2 ∠ BCD ,点 E 在 AB 的延长线上, ∠AED= ∠ABC ( 1)求证: DE 与⊙O 相切; (2)若 BF=2,DF= ,求⊙O 的半径.200 户家庭,请估计该月用水量不超过9.0 吨的家庭数. 4)若该小区共五、解答题:本大题共3小题,24题11分,25、26各12分,共35分24.如图 1,△ABC 中,∠ C=90°,线段 DE 在射线 BC 上,且 DE=AC ,线段 DE 沿射线 BC 运动,开始时,点 D 与点 B 重合,点 D 到达点 C 时运动停止,过点 D 作 DF=DB ,与射线 BA 相交于点 F,过点 E 作 BC 的垂线,与射线 BA 相交于点G .设 BD=x ,四边形 DEGF 与△ABC 重叠部分的面积为 S,S关于 x 的函数图象如图 2所示(其中 0<x≤m,1<x≤m, m< x ≤3时,函数的解析式不同)( 1)填空: BC 的长是;( 2)求 S 关于 x 的函数关系式,并写出 x 的取值范围.25.阅读下面材料:小明遇到这样一个问题:如图 1,△ABC 中, AB=AC ,点 D在BC 边上,∠DAB= ∠ABD, BE⊥AD ,垂足为 E,求证: BC=2AE .小明经探究发现,过点 A 作 AF⊥BC,垂足为 F,得到∠AFB= ∠ BEA ,从而可证△ABF ≌△BAE (如图 2),使问题得到解决.(1)根据阅读材料回答:△ABF 与△BAE 全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“ AAS”或“ HL中”的一个)参考小明思考问题的方法,解答下列问题:(2)如图 3,△ ABC 中, AB=AC ,∠BAC=90° ,D为BC的中点, E为 DC的中点,点 F 在 AC 的延长线上,且∠ CDF= ∠ EAC ,若 CF=2,求 AB 的长;3)如图 4,△ABC 中,AB=AC ,∠BAC=12°0 ,点 D、E分别在 AB、AC 边上,且AD=kDB其中 0<k< ),∠AED= ∠BCD ,求的值(用含 k 的式子表示).26.如图,在平面直角坐标系xOy 中,抛物线 y=x2+ 与 y 轴相交于点 A,点 B 与点 O关于点 A 对称1)填空:点 B 的坐标是2)过点 B 的直线 y=kx+b (其中 k<0)与 x轴相交于点 C,过点 C 作直线 l 平行于 y轴,P是直线 l 上一点,且 PB=PC,求线段 PB 的长(用含 k 的式子表示),并判断点P是否在抛物线上,说明理由;3)在( 2)的条件下,若点 C关于直线 BP 的对称点 C′恰好落在该抛物线的对称轴上,求2016 年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题 3 分,共24分1.﹣ 3 的相反数是()A. B.C.3 D.﹣ 3【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣ 3)+3=0 .故选 C.【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.在平面直角坐标系中,点( 1, 5)所在的象限是()A .第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点( 1, 5)所在的象限是第一象限.故选 A .【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣, +);第三象限(﹣,﹣);第四象限( +,﹣).3.方程 2x+3=7 的解是() A.x=5 B.x=4 C . x=3.5 D .x=2 【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】方程移项合并,把 x 系数化为1,即可求出解.【解答】解: 2x+3=7 ,移项合并得: 2x=4 ,解得: x=2,故选 D点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.如图,直线 AB ∥CD, AE 平分∠CAB.AE 与 CD 相交于点 E,∠ACD=40°,则∠BAE【考点】平行线的性质.【分析】先由平行线性质得出∠ACD 与∠BAC 互补,并根据已知∠ACD=4°0 计算出∠ BAC 的度数,再根据角平分线性质求出∠ BAE 的度数.【解答】解:∵AB ∥CD,∴∠ ACD+ ∠ BAC=18°0 ,∵∠ ACD=4°0 ,∴∠ BAC=18°0 ﹣ 40°=140°,∵AE 平分∠CAB ,∴∠ BAE= ∠ BAC= ×140°=70°,故选 B.【点评】本题考查了平行线的性质和角平分线的定义,比较简单;做好本题要熟练掌握两直线平行①内错角相等,②同位角相等,③ 同旁内角互补;并会书写角平分线定义的三种表达式:若 AP 平分∠BAC ,则①∠ BAP= ∠PAC,②∠ BAP= ∠ BAC ,③∠ BAC=2 ∠BAP .5.不等式组的解集是A.x>﹣ 2 B.x<1 C.﹣ 1<x<2 D.﹣2<x<1考点】解一元一次不等式组.分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集. 解答】解: 解① 得 x>﹣2, 解② 得 x<1, 则不等式组的解集是:﹣ 2< x<1. 故选 D .【点评】 本题考查了一元一次不等式组的解法: 解一元一次不等式组时, 一般先求出其中各 不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大 中间找;大大小小找不到.6.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为 1,2,3,4 随机摸出个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于考点】列表法与树状图法.【分析】 首先根据题意画出树状图, 然后由树状图求得所有等可能的结果与两次摸出的小球 标号的积小于 4 的情况,再利用概率公式求解即可求得答案. 解答】解:画树状图得:故选 C .【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为: 概率 =所求情况数与总情况数之比.4 的概率是( )A .B .C .D .∵共有 12 种等可能的结果,两次摸出的小球标号的积小于 4 的有 4 种情况, ∴ 两次摸出的小球标号的积小于 4 的概率是: =.7.某文具店三月份销售铅笔 100 支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )22A .100(1+x )B .100(1+x )C .100( 1+x )D .100(1+2x ) 【考点】由实际问题抽象出一元二次方程. 【专题】增长率问题.【分析】设出四、五月份的平均增长率,则四月份的市场需求量是 100( 1+x ),五月份的产量是 100(1+x )2,据此列方程即可. 【解答】解:若月平均增长率为x ,则该文具店五月份销售铅笔的支数是: 100(1+x ) 2, 故选: B .【点评】 本题考查数量平均变化率问题, 解题的关键是正确列出一元二次方程. 原来的数量 为 a ,平均每次增长或降低的百分率为 x 的话,经过第一次调整,就调整到a ×( 1±x ),再经过第二次调整就是 a ×(1±x )( 1±x )=a (1±x )2.增长用 “+”,下降用 “﹣”.8.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆 锥的母线长和底面半径,从而确定其表面积.【解答】 解: 由主视图和左视图为三角形判断出是锥体, 由俯视图是圆形可判断出cm )( )A .40π cm 2B . 65π cm 2C .80π cm 2D .105π cm 2这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为8cm,底面半径为 10÷2=5cm ,2 2 2故表面积 =π rl+ π=rπ× 5× 8+ π=6×55π cm.故选: B.【点评】考查学生对三视图掌握程度和灵活运用同时也体现了对空间想象能力方面的能力,考查.二、填空题:本大题共8小题,每小题 3 分,共24分29.因式分解: x2﹣3x= x( x﹣3).【考点】因式分解 -提公因式法.【专题】因式分解.【分析】确定公因式是 x ,然后提取公因式即可.【解答】解: x 2﹣ 3x=x (x﹣3).故答案为: x(x﹣ 3)【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.10.若反比例函数 y= 的图象经过点( 1,﹣ 6),则 k 的值为﹣6 .【考点】反比例函数图象上点的坐标特征.【分析】直接把点( 1,﹣ 6)代入反比例函数 y= ,求出 k 的值即可.【解答】解:∵反比例函数 y= 的图象经过点( 1,﹣ 6),∴ k=1×(﹣ 6) =﹣6.故答案为:﹣ 6.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.如图,将△ ABC 绕点 A 逆时针旋转的到△ADE ,点 C和点 E是对应点,若∠ CAE=90°,【分析】由旋转的性质得: AB=AD=1 ,∠BAD= ∠CAE=90° ,再根据勾股定理即可求出 BD .【解答】解:∵将△ABC 绕点 A 逆时针旋转的到△ADE ,点C和点 E 是对应点,∴ AB=AD=1 ,∠BAD= ∠CAE=90° ,∴ BD= = = .故答案为.【点评】本题考查了旋转的性质:① 对应点到旋转中心的距离相等;② 对应点与旋转中心所连线段的夹角等于旋转角;③ 旋转前、后的图形全等.也考查了勾股定理,掌握旋转的性质是解决问题的关键.12.下表是某校女子排球队队员的年龄分布年龄 /岁13 14 15 16频数 1 1 7 3则该校女子排球队队员的平均年龄是 15 岁.【考点】加权平均数;频数与频率.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得: (13×1+14×1+15×7+16×3)÷12=15(岁),即该校女子排球队队员的平均年龄为15 岁.故答案为: 15.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键.13.如图,在菱形 ABCD 中, AB=5 , AC=8 ,则菱形的面积是 24【分析】直接利用菱形的性质结合勾股定理得出 BD 的长,再利用菱形面积求法得出答案.【解答】解:连接 BD ,交 AC 于点 O,考点】旋转的性∵ 四边形 ABCD 是菱形,∴AC ⊥BD ,AO=CO=4 ,∴ BO= =3,故 BD=6 ,则菱形的面积是:×6×8=24 .点评】此题主要考查了菱形的性质以及勾股定理,正确求出214.若关于 x 的方程 2x 2+x ﹣a=0 有两个不相等的实数根,则实数 a的取值范围是 a>﹣【考点】根的判别式;解一元一次不等式.【分析】由方程有两个不相等的实数根结合根的判别式,可以得出关于 a 的一元一次不等式,解不等式即可得出结论.【解答】解:2∵关于 x 的方程 2x2+x﹣a=0 有两个不相等的实数根,2∴△ =12﹣ 4×2×(﹣ a)=1+8a>0,解得: a>﹣.故答案为: a>﹣.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是找出1+8a> 0.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(不等式组或方程)是关键.15.如图,一艘渔船位于灯塔 P的北偏东 30°方向,距离灯塔 18海里的 A 处,它沿正南方向航行一段时间后,到达位于灯塔 P的南偏东 55°方向上的 B 处,此时渔船与灯塔 P的距离约为 11 海里(结果取整数)(参考数据:BD 的长是解题关键.sin55 °≈0,.8cos55°≈0,.6tan55°≈1).4.考点】解直角三角形的应用 - 方向角问题.分析】作 PC⊥AB 于 C,先解 Rt△ PAC ,得出 PC= PA=9 ,再解 Rt△PBC,得出PB= ≈ 11.解答】解:如图,作 PC⊥ AB 于 C,在 Rt△PAC 中,∵PA=18 ,∠A=30°,∴PC= PA= ×18=9,在 Rt△PBC中,∵ PC=9,∠ B=55°,∴ PB= ≈≈11,答:此时渔船与灯塔 P 的距离约为 11海里.【点评】本题考查了解直角三角形的应用﹣方向角问题,含30°角的直角三角形的性质,锐角三角函数定义.解一般三角形的问题可以转化为解直角三角形的问题,解决的方法就是作高线.216.如图,抛物线 y=ax 2+bx+c 与 x 轴相交于点 A 、 B( m+2, 0)与 y 轴相交于点 C,点 D 在该抛物线上,坐标为( m, c),则点 A 的坐标是(﹣ 2,0).【分析】根据函数值相等两点关于对称轴对称,可得对称轴,根据 A 、B 关于对称轴对称,可得 A 点坐标.【解答】解:由 C ( 0, c ), D ( m , c ),得函数图象的对称轴是 x= , 设 A 点坐标为( x ,0),由 A 、 B 关于对称轴 x= ,得=,解得 x= ﹣2,即 A 点坐标为(﹣ 2, 0), 故答案为:(﹣ 2,0).【点评】本题考查了抛物线与 x 轴的交点,利用函数值相等的点关于对称轴对称是解题关键.三、解答题: 本大题共 4小题, 17、18、19各 9分 20 题 12分,共 39分 17.计算:(+1)( ﹣ 1)+(﹣2)0﹣ . 【考点】实数的运算;零指数幂.【分析】本题涉及平方差公式、零指数幂、三次根式化简 3 个考点.在计算时,需要针对每 个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【解答】解:( +1)(﹣ 1) +(﹣ 2)0﹣=5﹣ 1+1﹣3 =2.【点评】 本题主要考查了实数的综合运算能力, 是各地中考题中常见的计算题型. 解决此类 题目的关键是熟练掌握平方差公式、零指数幂、三次根式等考点的运算.18.先化简,再求值:( 2a+b)2﹣ a( 4a+3b),其中 a=1, b= .考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把 a与 b的值代入计算即可求出值.【解答】解:原式 =4a2+4ab+b2﹣4a2﹣ 3ab=ab+b2,当 a=1, b= 时,原式 = +2 .【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.如图, BD 是? ABCD 的对角线, AE⊥BD,CF⊥BD,垂足分别为 E、F,求证:AE=CF .【考点】平行四边形的性质.【专题】证明题.【分析】根据平行四边形的性质得出AB=CD ,AB ∥CD,根据平行线的性质得出∠ABE= ∠CDF ,求出∠AEB=∠CFD=90°,根据 AAS 推出△ ABE ≌△ CDF,得出对应边相等即可.【解答】证明:∵ 四边形 ABCD 是平行四边形,∴ AB=CD ,AB ∥CD,∴∠ ABE= ∠CDF,∵AE ⊥BD ,CF⊥BD ,∴∠ AEB= ∠ CFD=90° ,在△ ABE 和△CDF 中,,∴△ ABE ≌△ CDF( AAS ),∴AE=CF .【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定的应用;证明△ ABE ≌△ CDF 是解决问题的关键.20.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分根据以上信息,解答下列问题(1)家庭用水量在 4.0<x≤6.5范围内的家庭有13 户,在 6.5< x≤9.0范围内的家庭数占被调查家庭数的百分比是 30 %;( 2)本次调查的家庭数为50 户,家庭用水量在 9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是 18 %;( 3)家庭用水量的中位数落在 C 组;(4)若该小区共有 200 户家庭,请估计该月用水量不超过 9.0 吨的家庭数.【考点】扇形统计图;用样本估计总体;频数(率)分布表;中位数.【分析】( 1)观察表格和扇形统计图就可以得出结果;(2)利用 C 组所占百分比及户数可算出调查家庭的总数,从而算出 D 组的百分比;( 3)从第二问知道调查户数为50,则中位数为第 25、26 户的平均数,由表格可得知落在 C组;( 4)计算调查户中用水量不超过 9.0 吨的百分比,再乘以小区内的家庭数就可以算出.【解答】解:( 1)观察表格可得 4.0< x≤6.5的家庭有 13 户, 6.5< x≤9.0范围内的家庭数占被调查家庭数的百分比为 30%;(2)调查的家庭数为: 13÷26%=50 ,6.5<x≤ 9.0的家庭数为: 50×30%=15 ,D 组 9.0<x≤ 11.5的家庭数为: 50﹣4﹣13﹣6﹣3﹣15=9,9.0<x≤ 11.5 的百分比是: 9÷50×100%=18%;(3)调查的家庭数为 50 户,则中位数为第 25、26 户的平均数,从表格观察都落在C组;故答案为:( 1)13,30;(2)50,18;( 3)C;( 4)调查家庭中不超过 9.0吨的户数有: 4+13+15=32 ,=128(户),答:该月用水量不超过 9.0 吨的家庭数为 128 户.【点评】本题考查了扇形统计图、统计表,解题的关键是要明确题意,找出所求问题需要的条件.四、解答题:本大题共3小题,21、22各9分23题10分,共28分21.A、B 两地相距 200千米,甲车从 A 地出发匀速开往 B 地,乙车同时从 B 地出发匀速开往 A 地,两车相遇时距 A 地 80 千米.已知乙车每小时比甲车多行驶30 千米,求甲、乙两车的速度.【考点】一元一次方程的应用.【专题】应用题.【分析】根据题意,可以设出甲、乙的速度,然后根据题目中的关系,列出相应的方程,本题得以解决.【解答】解:设甲车的速度是 x 千米 /时,乙车的速度为( x+30 )千米 /时,解得, x=60,则 x+30=90 ,即甲车的速度是 60千米/时,乙车的速度是 90 千米/时.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,发现题目中的数量关系,列出相应的方程.考点】抛物线与 x 轴的交点;二次函数的性质.分析】( 1)利用坐标轴上点的特点求出 A 、B 、C 点的坐标,再用待定系数法求得直线BC 的解析式;2)设点 D 的横坐标为 m ,则纵坐标为 (m , ),E 点的坐标为 ( m , ),解答】解:( 1)∵抛物线 y=x 2﹣ 3x+ 与 x 轴相交于 A 、B 两点,与 y 轴相交于点 C , ∴ 令 y=0,可得 x= 或 x= , ∴A ( ,0), B ( ,令 x=0 ,则 y= , ∴ C 点坐标为( 0, )设 DE 的长度为 d ,可得两点间的距离为 d=,利用二次函数的最值可得 m ,可得点 D 的坐标.0);设直线 BC 的解析式为: y=kx+b ,则有,解得:∴ 直线 BC 的解析式为: y= x ;2)设点 D 的横坐标为 m ,则纵坐标为( m , ),∴ E 点的坐∵ 点 D 是直线 BC 下方抛物线上一点,整理得, d=﹣m2+ m,a=﹣1<0,∴ 当 m= = 时, d= 时, d 最大= = = ,∴ D 点的坐标为(,).【点评】此题主要考查了二次函数的性质及其图象与坐标轴的交点,设出 D 的坐标,利用二次函数最值得 D 点坐标是解答此题的关键.23.如图, AB 是⊙O 的直径,点 C、D 在⊙O 上,∠ A=2 ∠ BCD ,点 E 在 AB 的延长线上,∠AED= ∠ABC( 1)求证: DE 与⊙O 相切;(2)若 BF=2,DF= ,求⊙O 的半径.【考点】切线的判定.【分析】( 1)连接 OD,由 AB 是⊙O的直径,得到∠ACB=90° ,求得∠A+∠ABC=90°,等量代换得到∠ BOD= ∠A ,推出∠ODE=9°0 ,即可得到结论;(2)连接 BD,过 D 作 DH⊥BF 于 H,由弦且角动量得到∠BDE= ∠BCD,推出△ACF 与△ FDB 都是等腰三角形,根据等腰直角三角形的性质得到 FH=BH= BF=1,则FH=1,根据勾股定理得到 HD= =3,然后根据勾股定理列方程即可得到结论.【解答】( 1)证明:连接 OD,∵ AB 是⊙O 的直径,∴∠ ACB=90° ,∴∠ A+ ∠ABC=90° ,∵∠ BOD=2 ∠BCD ,∠A=2∠BCD , ∴∠ BOD= ∠A , ∵∠ AED= ∠ABC , ∴∠ BOD+ ∠ AED=90° , ∴∠ ODE=9°0 , 即 OD ⊥DE ,∴DE 与⊙O 相切; (2)解:连接 BD ,过 D 作 DH ⊥BF 于 H , ∵DE 与⊙O 相切, ∴∠ BDE=∠ BCD , ∵∠ AED= ∠ABC , ∴∠ AFC=∠ DBF ,∵∠ AFC=∠ DFB , ∴△ ACF 与 △FDB 都是等腰三角形, ∴ FH=BH= BF=1,则 FH=1 ,∴ HD==3, 在 Rt △ ODH 中, OH 2+DH 2=OD 2,2 2 2 即( OD ﹣ 1)2+32=OD 2,∴ OD=5 ,五、解答题:本大题共 3小题, 24题 11 分, 25、26 各 12分,共 35分【点评】 本题考查了切线的判定和性质, 正确的作出辅助线是解题的等腰三角形的判定, 直角三角形的性质, 勾股定理, ∴⊙ O 的半径是24.如图 1,△ABC 中,∠C=90°,线段 DE 在射线 BC 上,且 DE=AC ,线段 DE 沿射线 BC 运动,开始时,点 D 与点 B 重合,点 D 到达点 C 时运动停止,过点 D 作 DF=DB ,与射线 BA 相交于点 F,过点 E 作 BC 的垂线,与射线 BA 相交于点G .设 BD=x ,四边形 DEGF 与△ABC 重叠部分的面积为 S,S关于 x 的函数图象如图 2所示(其中 0<x≤m,1<x≤m, m<x≤3时,函数的解析式不同)( 1)填空: BC 的长是 3 ;( 2)求 S 关于 x 的函数关系式,并写出 x 的取值范围.【考点】四边形综合题.【分析】( 1)由图象即可解决问题.(2)分三种情形①如图 1中,当 0≤x≤1时,作 DM ⊥AB 于 M,根据 S=S△ABC﹣S△BDF﹣S 四边形ECAG 即可解决.②如图 2中,作AN∥DF 交 BC 于 N,设 BN=AN=x ,在RT△ANC 中,利用勾股定理求出 x,再根据 S=S△ABC﹣S△BDF﹣S四边形ECAG 即可解决.③如图 3 中,根据 S= CD?CM ,求出 CM 即可解决问题.【解答】解;( 1)由图象可知 BC=3 .故答案为 3.(2)①如图 1中,当 0≤x≤1时,作 DM⊥AB 于 M,由题意 BC=3 , AC=2 ,∠C=90°,∴ AB= = ,∵∠ B=∠B,∠DMB= ∠ C=90°,∴△ BMD ∽△ BCA ,====∴DM= ∵BM=BD=DF ,DM⊥BF,∴ BM=MF ,∴ S △BDF = x 2 ∵EG ∥AC ,∴EG= (x+2 ),∴S四边形 ECAG = [2+ (x+2)]?(1﹣ x ),22∴ S=S△ ABC﹣ S △BDF ﹣ S 四边形 ECAG =3﹣x ﹣ [2+ (x+2)]?(1﹣x )=﹣ x + x+ .作 AN ∥DF 交 BC 于 N ,设 BN=AN=x ,③如图 3 中,当 <x ≤3时, ∵DM ∥AN ,∴ = ,∴ CM= (3﹣x ),综上所述 S=② 如图 ②中,在 RT △ ANC 中, ∵AN 2=CN 2+AC 2, ∴x 2=22+(3﹣x ) 2,∴ x= ,∴当 1< x ≤ 时,2S=S △ABC ﹣S△BDF =3﹣ x ,∴S= CD?CM= (3﹣x ) 2,【点评】本题考查四边形综合题、等腰三角形的性质、相似三角形的性质、勾股定理等知识,解题的关键是学会分类讨论,正确画出图形,属于中考压轴题.25.阅读下面材料:小明遇到这样一个问题:如图 1,△ABC 中, AB=AC ,点 D 在 BC 边上,∠DAB= ∠ABD, BE ⊥ AD ,垂足为 E ,求证: BC=2AE .小明经探究发现,过点 A 作 AF⊥BC,垂足为 F,得到∠AFB= ∠BEA ,从而可证△ABF ≌△ BAE (如图 2),使问题得到解决.( 1)根据阅读材料回答:△ABF 与△BAE 全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“ AAS”或“ HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图 3, △ ABC 中, AB=AC ,∠BAC=90°,D 为 BC 的中点, E 为 DC 的中点,点 F 在 AC 的延长线上,且 ∠ CDF= ∠ EAC ,若 CF=2,求 AB 的长; (3)如图 4,△ABC 中,AB=AC ,∠BAC=12°0 ,点 D 、E 分别在 AB 、AC 边上,且 AD=kDB(其中 0<k< ), ∠AED= ∠BCD ,求 的值(用含 k 的式子表示).【考点】相似形综合题.【分析】( 1)作 AF ⊥ BC ,判断出 △ABF ≌△ BAE ( AAS ),得出 BF=AE ,即可;( 2)先求出 tan ∠DAE= ,再由 tan ∠ F=tan ∠ DAE ,求出 CG ,最后用 △DCG ∽△ ACE 求 出 AC ;( 3)构造含 30°角的直角三角形,设出 DG ,在 Rt △ABH ,Rt △ ADN ,Rt △ABH 中分别用 a ,k 表示出 AB=2a ( k+1 ),BH= a (k+1),BC=2BH=2 a ( k+1),CG= a (2k+1 ),DN= ka ,最后用 △NDE ∽△ GDC ,求出 AE ,EC 即可. 【解答】证明:( 1)如图 2,∵BE ⊥AD ,∴∠AFB= ∠BEA , 在△ ABF 和△BAE 中,作 AF ⊥BC ,,∴△ ABF≌△ BAE (AAS ),∴ BF=AE∵ AB=AC ,AF ⊥BC,∴BF= BC ,∴ BC=2AE ,故答案为 AAS( 2)如图 3,在 Rt△ABC 中, AB=AC ,点 D 是 BC 中点,∴ AD=CD ,∵点 E是 DC 中点,∴DE= CD= AD ,∴ tan ∠ DAE= ∵ AB=AC ,∠BAC=90° ,点 D 为 BC 中点,∴∠ ADC=9°0 ,∠ ACB= ∠DAC=4°5 ,∴∠ F+∠CDF=∠ACB=45° ,∵∠ CDF=∠ EAC ,∴∠ F+∠ EAC=45° ,∵∠ DAE+ ∠EAC=45° ,∴∠ F=∠DAE ,∴ tan∠ F=tan ∠ DAE= ,,∴,∴,∴ CG= ×2=1,∵∠ ACG=9°0 ,∠ ACB=45° ,∴∠ DCG=4°5 ,∵∠ CDF=∠ EAC ,∴△ DCG∽△ ACE,∴,∴ AC=4 ; ∴ AB=4 ; 3)如图 4,过点 D 作 DG ⊥BC ,设 DG=a , 在 Rt △BGD 中, ∠B=30°, ∴ BD=2a , BG= a , ∵ AD=kDB ,∴ AD=2ka , AB=BD+AD=2a+2ka=2a ( k+1 ), 过点 A 作 AH ⊥BC , 在 Rt △ABH 中, ∠B=30°. ∴ BH= a (k+1), ∵ AB=AC ,AH ⊥BC , ∴ BC=2BH=2 a ( k+1), ∴ CG=BC ﹣BG= a ( 2k+1), 过 D 作 DN ⊥ AC 交 CA 延长线与 N , ∵∠ BAC=12°0 , ∴∠ DAN=6°0 ,∴ AN=ka , DN= ka , ∵∠ DGC= ∠ AND=9°0 ,∠AED= ∠BCD , ∴△ NDE ∽△ GDC .∴∠∴,∴,∴ NE=3ak (2k+1),∴ EC=AC ﹣ AE=AB ﹣AE=2a ( k+1)﹣ 2ak( 3k+1) =2a(1﹣ 3k2),【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的性质和判定,等腰三角形的性质,等腰直角三角形的性质,中点的定义,解本题的关键是作出辅助线,也是本题的难点.226.如图,在平面直角坐标系 xOy中,抛物线 y=x2+ 与y轴相交于点 A,点B与点 O 关于点 A 对称( 1)填空:点 B 的坐标是( 0,);(2)过点 B 的直线 y=kx+b (其中 k<0)与 x轴相交于点 C,过点 C 作直线 l平行于 y轴, P是直线 l 上一点,且 PB=PC,求线段 PB 的长(用含 k 的式子表示),并判断点 P 是否在抛物线上,说明理由;( 3)在( 2)的条件下,若点 C关于直线 BP 的对称点 C′恰好落在该抛物线的对称轴上,求此时点 P 的坐标.考点】二次函数综合题.分析】( 1)由抛物线解析式可求得 A 点坐标,再利用对称可求得 B 点坐标; 2)可先用 k 表示出 C 点坐标,过 B 作 BD ⊥l 于点 D ,条件可知 P 点在 x 轴上方,设 P 点纵坐标为 y ,可表示出 PD 、PB 的长,在 Rt △PBD 中,利用勾股定理可求得 y ,则可求出PB 的长,此时可得出 P 点坐标,代入抛物线解析式可判断 P 点在抛物线上; ∠ OBC=∠ CBP= ∠C ′BP=60°,则可求得OC 的长, 代入抛物线解析式可求得 P 点坐标. 解答】解:∴A (0, ), ∵点 B 与点 O 关于点 A 对称, ∴BA=OA= ,∴OB= ,即 B 点坐标为( 0, ), 故答案为:( 0, ); (2)∵B 点坐标为( 0, ),∴ 直线解析式为 y=kx+ ,令 y=0 可得 ∴OC= ﹣ , ∵ PB=PC , ∴点 P 只能在 x 轴上方, 如图 1,过 B 作 BD ⊥l 于点 D ,设 PB=PC=m ,3)利用平行线和轴对称的性质可得到 1)∵抛物线 y=x 2+ 与 y 轴相交于点 A ,kx+ =0,解得 x=﹣ ,∵l ∥y 轴, ∴∠ OBC= ∠PCB , 又 PB=PC , ∴∠ PCB=∠ PBC , ∴∠ PBC=∠OBC ,又 C 、C ′关于 BP 对称,且 C ′在抛物线的对称轴上,即在 ∴∠ PBC=∠ PBC ′,∴∠ OBC= ∠CBP=∠C ′BP=60°, 在 Rt △OBC 中, OB= ,则 BC=1则 BD=OC= ﹣ , CD=OB= , ∴PD=PC ﹣CD=m ﹣ ,在 Rt △PBD 中,由勾股定理可得 PB 2=PD 2+BD 2,即 m 2=(m ﹣ )(﹣)∴ PB + , 2+( )2,解得 m= + ,∴P 点坐标为(﹣),当 x= ﹣ 时,代入抛物线解析式可得 y= + , ∴点 P 在抛物线上; y 轴上, 3)如图 2,连接CC ′,∴OC= ,即 P 点的横坐标为,代入抛物线解析式可得 y=()2+ =1,∴P 点坐标为(,1).【点评】本题为二次函数的综合应用,涉及知识点有轴对称的性质、平行线的性质、勾股定理、等腰三角形的性质、二次函数的性质等.在(2)中构造直角三角形,利用勾股定理得到关于 PC 的长的方程是解题的关键,在( 3)中求得∠OBC= ∠CBP=∠C′BP=60°是解题的关键.本题考查知识点较多,综合性较强,难度适中.222.如图,抛物线 y=x2﹣3x+ 与 x轴相交于 A、B 两点,与 y 轴相交于点 C,点 D 是直线BC 下方抛物线上一点,过点 D 作 y轴的平行线,与直线 BC 相交于点 E( 1)求直线 BC 的解析式;( 2)当线段 DE 的长度最大时,求点 D 的坐标.。

2020年辽宁省大连市中考数学试卷含答案解析

2020年辽宁省大连市中考数学试卷含答案解析

5
这个公司平均每人所创年利润是______万元. 13. 我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八
百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的
第 2 页,共 22 页
面积为 864 平方步,宽比长少 12 步,问宽和长各多少步?设矩形的宽为 x 步,根 据题意,可列方程为______. 14. 如图,菱形 ABCD 中,∠ACD=40°,则 ∠ABC=______°.
(1)当点 D 与点 A 重合时,求 t 的值; (2)求 S 关于 t 的函数解析式,并直接写出自变量 t 的取值范围.
D. (2,0)
A. 50°
B. 70°
C. 110°
D. 120°
二、填空题(本大题共 6 小题,共 18.0 分)
11. 不等式 5x+1>3x-1 的解集是______.
12. 某公司有 10 名员工,他们所在部门及相应每人所创年利润如下表所示.
部门
人数
每人所创年利润/万 元
A
1
10
B
2
8
C
7
第 5 页,共 22 页
22. 某化肥厂第一次运输 360 吨化肥,装载了 6 节火车车厢和 15 辆汽车;第二次运输 440 吨化肥,装载了 8 节火车车厢和 10 辆汽车.每节火车车厢与每辆汽车平均各 装多少吨化肥?
23. 甲、乙两个探测气球分别从海拔 5m 和 15m 处同时出发,匀速上升 60min.如图是 甲、乙两个探测气球所在位置的海拔 y(单位:m)与气球上升时间 x(单位:min) 的函数图象. (1)求这两个气球在上升过程中 y 关于 x 的函数解析式; (2)当这两个气球的海拔高度相差 15m 时,求上升的时间.

2019年辽宁省大连市中考数学试卷(答案解析版)

2019年辽宁省大连市中考数学试卷(答案解析版)
5.【答案】B
【解析】
解:5x+1≥3x-1,
移 项得5x-3x≥-1-1,
合并同类项得2x≥-2,
系数化 为1得,x≥-1,
在数轴上表示 为:
故选:B.
先求出不等式的解集,再在数 轴上表示出来即可.
本题考查了在数 轴上表示不等式的解集,把每个不等式的解集在数 轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数 轴 的某一段上面表示解集的 线的条数与不等式的个数一 样,那么这 段就是不等 式组的解集.有几个就要几个.在表示解集时“≥,”“≤要”用实心圆点表示;“<”,“>”要用空心圆点表示.
A. B. C.在平面直角坐标系中,将点P(3,1)向下平移 2个单位长度, 标为( )
A. B. C.
不等式5x+1 ≥3x-1的解集在数轴上表示正确的是
A.
B.
D.
得到的点P′的坐
D.
C.
下列所述图形中,既是轴对称图形又是中心对称图形的是(
A.等腰三角形B.等边三角形
计算(-2a)3的结果是()
答案和解析
1.【答案】A
【解析】
解:-2的绝对值是2.
故选:A.
根据绝对值 是实数轴上的点到原点的距离,可得答案. 本题考查了绝对值,正数的绝对值 等于它本身;负数的绝对值 等于它的相反 数;0的绝对值等于0.
2.【答案】B
【解析】
解:左视图有3列,每列小正方形数目分 别为2,1,1.
故选:B.
找到从正面看所得到的 图形即可,注意所有的看到的棱都 应表现在主视图 中. 本题考查了三视图的知识,主视图 是从物体的正面看得到的 视图 .
25.阅读下面材料,完成( 1) -(3)题

2020年辽宁省大连市中考数学试卷(含详细解析)

2020年辽宁省大连市中考数学试卷(含详细解析)

2020年辽宁省大连市中考数学试卷 题号一 二 三 总分得分注意事项:1.答题前填写好自己的姓需、班级、考号等信息2 •请将答案正确填写在答题卡上下列四个数中,比一小的数是(2・如图是由5个相同的小正方体组成的立体图形,它的主视图是()A. 360× IO 2B. 36×103C. 3.6×104D. O.36×1O 54・如图,A A3C 中,ZA = 60∖ZB = 40∖DE / /BC ,则 ZAED 的度数是( )保密★启用前评卷人得分 一、单选题A. -2C. 0D. 1全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示 为()5.在直角坐标系中,点P (3, 1)关于X轴对称点的坐标是( )8・如图,小明在一条东西走向公路的。

处,测得图书馆人在他的北偏东60°方向,且与他相距200m,则图书馆人到公路的距离AB为()A. l∞mB. 100√2mC. 100√3mD. m9・抛物线y = ax2 +bx + c(a<O)与X轴的一个交点坐标为(70),对称轴是直线χ = ∖ ,其部分图彖如图所示,则此抛物线与X轴的另一个交点坐标是()(7 A <5A・亍° B. (3,0) C. -,0U丿<2D. (2,0)10.如图,A A3C中,ZAe3 = 90:ZABC = 40°・将A A3C绕点B逆时针旋转得到ΛA,BC,,使点Q的对应点C'恰好落在边AB±,则ZCAA*的度数是() •・:⅛ ....... O•:•…熬. .............O…※※国※※他※※-E※※垃※※⅛※※煞※※灼※※张※※÷※※≡※※…O ..........亠令・:A.⑶ 1)B. (-3, 1)C.⑶ -1)D. (-3, - 1)6.下列计算正确的是()A. a2 +a^ =a5B. a' ∙a y = a'C.(小)=α"D. (-2/) =-6α"7・在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()11・不等式5x + ↑>3x 一1的解集是 这个公司平均每人所创年利润是 ___________ 万元. 13. 1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直 田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形而积864 平方步,宽比长少12步,问宽和长各几步.若设长为X 步,则可列方程为__________________ .14. 如图,菱形 ABCD 中,ZACD = 40°,则 ZABC = ____________15.如图,在平面直角坐标系中,正方形ABCD 的顶点A 与D 在函数y = -(χ>0)的图 XW <,⅝7C. IIO eD. 120° c>评卷人 得分 部门 人数 每人所创年利润/万元 A 1 10 B 2 8 C 7 5 • • •• : 必 : CA. 50°B. 二、填空题 • ・12.某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.象上,AC丄x轴,垂足为G点B的坐标为(0,2),则k的值为__________________6如图,矩形ABCD^. AB = 6.AD = S9点E在边AD上,CE与BD相交于点F•设DE = x, BF = y9当0≤x≤8l⅛, y关于X的函数解析式为_____________ ・评卷人得分三、解答题17.计算(√2 + l)(√2-l) + √^8 +√9 .18.计算X2 + 4x + 4 X2 + IXx + 2x-219.如图,A A3C中,AB = AC9点DE在边BC上,BD = CE.求证ZADE = ZAED.20.某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,以下是根据调查结果绘制的统汁图表的一部分.•…報............O ........⅛…••…熬............O…※※国※※他※※-E※※垃※※⅛※※煞※※灼※※张※※÷※※≡※※•…議 ............O……O....亠令・:•读书量频数(人)频率1本 42本0.33本4本及以上10c>根据以上信息,解答下列问题:(1) ____________________________________ 被调查学生中,读书量为1本的学生数为人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为____________ %;(2) _____________________ 被调查学生的总人数为_______________________ 人,苴中读书量为2本的学生数为________________ 人:(3)若该校八年级共有550名学生,根据调査结果,估计该校八年级学生读书量为3 本的学生人数.21.某化肥厂第一次运输360吨化肥,装载了6肖火车车厢和15辆汽车:第二次运输440吨化肥,装载了8肖火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?22.四边形ABCD内接于OaAB是Oo的直径,AD = CD・P图1 图2(I)如图1,求证ZABC = 2ZACD :⑵过点D作。

辽宁省大连市普兰店区2024届中考联考数学试卷含解析

辽宁省大连市普兰店区2024届中考联考数学试卷含解析

辽宁省大连市普兰店区2024届中考联考数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(共10小题,每小题3分,共30分)1.下列式子成立的有( )个①﹣12的倒数是﹣2②(﹣2a2)3=﹣8a5③2(32)=5﹣2④方程x2﹣3x+1=0有两个不等的实数根A.1 B.2 C.3 D.42.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是()A.A1(4,4),C1(3,2)B.A1(3,3),C1(2,1)C.A1(4,3),C1(2,3)D.A1(3,4),C1(2,2)3.下列计算正确的是()A.(8)2=±8 B.38+32=62 C.(﹣12)0=0 D.(x﹣2y)﹣3=63xy4.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是()A .56B .58C .63D .725.在Rt △ABC 中,∠C=90°,BC=a ,AC=b ,AB=c ,下列各式中正确的是( )A .a=b•cosAB .c=a•sinAC .a•cotA=bD .a•tanA=b6.某运动会颁奖台如图所示,它的主视图是( )A .B .C .D .7.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( ) A .1一定不是关于x 的方程x 2+bx+a=0的根B .0一定不是关于x 的方程x 2+bx+a=0的根C .1和﹣1都是关于x 的方程x 2+bx+a=0的根D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根8.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .9.如图,直线,AB CD 被直线EF 所截,155∠=,下列条件中能判定//AB CD 的是( )A .235∠=B .245∠=C .255∠=D .2125∠=10.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉( )A .6.5千克B .7.5千克C .8.5千克D .9.5千克二、填空题(本大题共6个小题,每小题3分,共18分)11.化简1111x x -+-的结果是_______________. 12.如图,点,,D E F 分别在正三角形ABC 的三边上,且DEF ∆也是正三角形.若ABC ∆的边长为a ,DEF ∆的边长为b ,则AEF ∆的内切圆半径为__________.13.数据5,6,7,4,3的方差是.14.已知双曲线k1yx+=经过点(-1,2),那么k的值等于_______.15.如图所示,P为∠α的边OA上一点,且P点的坐标为(3,4),则sinα+cosα=_____.16.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.该年级共有700人,估计该年级足球测试成绩为D等的人数为_____人.三、解答题(共8题,共72分)17.(8分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)18.(8分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.19.(8分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:△ACE≌△BCD;若AD=5,BD=12,求DE的长.20.(8分)如图,将平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处.(1)连接CF,求证:四边形AECF是菱形;(2)若E为BC中点,BC=26,tan∠B=125,求EF的长.21.(8分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.当每件的销售价为52元时,该纪念品每天的销售数量为件;当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.22.(10分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD 于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE= ;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.23.(12分)已知△ABC 中,AD 是∠BAC 的平分线,且AD=AB,过点C 作AD 的垂线,交AD 的延长线于点H.(1)如图1,若∠BAC=60°.①直接写出∠B 和∠ACB 的度数;②若AB=2,求AC 和AH 的长;(2)如图2,用等式表示线段AH 与AB+AC 之间的数量关系,并证明.24.如图,已知直线AB经过点(0,4),与抛物线y=14x2交于A,B两点,其中点A的横坐标是2.求这条直线的函数关系式及点B的坐标.在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】根据倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式进行判断.【题目详解】解:①﹣12的倒数是﹣2,故正确;②(﹣2a2)3=﹣8a6,故错误;2,故错误;④因为△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有两个不等的实数根,故正确.故选B.【题目点拨】考查了倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式,属于比较基础的题目,熟记计算法则即可解答.2、A【解题分析】分析:根据B点的变化,确定平移的规律,将△ABC向右移5个单位、上移1个单位,然后确定A、C平移后的坐标即可.详解:由点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,则点A(﹣1,3)的对应点A1的坐标为(4,4)、点C(﹣2,1)的对应点C1的坐标为(3,2),故选A.点睛:此题主要考查了平面直角坐标系中的平移,关键是根据已知点的平移变化总结出平移的规律.3、D【解题分析】各项中每项计算得到结果,即可作出判断.【题目详解】解:A.原式=8,错误;B.原式=2+42,错误;C.原式=1,错误;D.原式=x6y﹣3=63xy,正确.故选D.【题目点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.4、B【解题分析】试题分析:第一个图形的小圆数量=1×2+2=4;第二个图形的小圆数量=2×3+2=8;第三个图形的小圆数量=3×4+2=14;则第n个图形的小圆数量=n(n+1)+2个,则第七个图形的小圆数量=7×8+2=58个.考点:规律题5、C【解题分析】∵∠C=90°,∴cosA=bc,sinA=ac,tanA=ab,cotA=ba,∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,∴只有选项C正确,故选C.【题目点拨】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.6、C【解题分析】从正面看到的图形如图所示:,故选C.7、D【解题分析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x2+bx+a=0的根;当b=-(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠-(a+1),可得出1和-1不都是关于x的方程x2+bx+a=0的根.【题目详解】∵关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,∴()()2210{2410a b a +≠-+==, ∴b=a+1或b=-(a+1).当b=a+1时,有a-b+1=0,此时-1是方程x 2+bx+a=0的根;当b=-(a+1)时,有a+b+1=0,此时1是方程x 2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是关于x 的方程x 2+bx+a=0的根.故选D .【题目点拨】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键. 8、A【解题分析】根据轴对称图形的概念判断即可.【题目详解】A 、是轴对称图形;B 、不是轴对称图形;C 、不是轴对称图形;D 、不是轴对称图形.故选:A .【题目点拨】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9、C【解题分析】试题解析:A 、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB ∥CD ,故本选项错误;B 、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB ∥CD ,故本选项错误;C 、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB ∥CD ,故本选项正确;D 、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB ∥CD ,故本选项错误;故选C .10、C【解题分析】【分析】设每个小箱子装洗衣粉x 千克,根据题意列方程即可.【题目详解】设每个小箱子装洗衣粉x 千克,由题意得:4x+2=36,解得:x=8.5,即每个小箱子装洗衣粉8.5千克,故选C .【题目点拨】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、221x -- 【解题分析】先将分式进行通分,即可进行运算.【题目详解】1111x x -+-=211x x ---211x x +-=221x -- 【题目点拨】此题主要考查分式的加减,解题的关键是先将它们通分.123)a b - 【解题分析】根据△ABC 、△EFD 都是等边三角形,可证得△AEF ≌△BDE ≌△CDF ,即可求得AE+AF=AE+BE=a ,然后根据切线长定理得到AH=12(AE+AF-EF )=12(a-b );,再根据直角三角形的性质即可求出△AEF 的内切圆半径. 【题目详解】解:如图1,⊙I 是△ABC 的内切圆,由切线长定理可得:AD=AE ,BD=BF ,CE=CF ,∴AD=AE=12[(AB+AC )-(BD+CE )]=12 [(AB+AC )-(BF+CF )]=12(AB+AC-BC ),如图2,∵△ABC ,△DEF 都为正三角形,∴AB=BC=CA ,EF=FD=DE ,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°, ∴∠1+∠2=∠2+∠3=120°,∠1=∠3;在△AEF 和△CFD 中,13BAC C EF FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△CFD (AAS );同理可证:△AEF ≌△CFD ≌△BDE ;∴BE=AF ,即AE+AF=AE+BE=a .设M 是△AEF 的内心,过点M 作MH ⊥AE 于H ,则根据图1的结论得:AH=12(AE+AF-EF )=12(a-b ); ∵MA 平分∠BAC ,∴∠HAM=30°;∴HM=AH•tan30°=12(a-b )3)3a b - )3a b -. 【题目点拨】本题主要考查的是三角形的内切圆、等边三角形的性质、全等三角形的性质和判定,切线的性质,圆的切线长定理,根据已知得出AH的长是解题关键.13、1【解题分析】先求平均数,再根据方差的公式S1=1n[(x1-x)1+(x1-x)1+…+(x n-x)1]计算即可.【题目详解】解:∵x=(5+6+7+4+3)÷5=5,∴数据的方差S1=15×[(5-5)1+(6-5)1+(7-5)1+(4-5)1+(3-5)1]=1.故答案为:1. 考点:方差.14、-1【解题分析】分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入k1yx+=,得:k121+=-,解得:k=-1.15、7 5【解题分析】根据正弦和余弦的概念求解.【题目详解】解:∵P是∠α的边OA上一点,且P点坐标为(3,4),∴PB=4,OB=3,222234PB OB+=+=5,故sinα=PBOP=45,cosα=35OBOP=,∴sinα+cosα=7 5 ,故答案为7 5【题目点拨】此题考查的是锐角三角函数的定义,解答此类题目的关键是找出所求角的对应边.16、1【解题分析】试题解析:∵总人数为14÷28%=50(人),∴该年级足球测试成绩为D等的人数为47005650⨯=(人).故答案为:1.三、解答题(共8题,共72分)17、4 9【解题分析】【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【题目详解】列表如下:由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为49.【题目点拨】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.18、(1)证明见解析(2)四边形AFBE是菱形【解题分析】试题分析:(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF即可;(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.19、(1)证明见解析(2)13【解题分析】(1)先根据同角的余角相等得到∠ACE=∠BCD,再结合等腰直角三角形的性质即可证得结论;(2)根据全等三角形的性质可得AE=BD,∠EAC=∠B=45°,即可证得△AED是直角三角形,再利用勾股定理即可求出DE的长.【题目详解】(1)∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA∴∠ACE=∠BCD∴△ACE≌△BCD(SAS);(2)∵△ACB和△ECD都是等腰直角三角形∴∠BAC=∠B=45°∵△ACE≌△BCD∴AE=BD=12,∠EAC=∠B=45°∴∠EAD=∠EAC+∠BAC=90°,∴△EAD是直角三角形13DE∴==【题目点拨】解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.20、(1)证明见解析;(2)EF=1.【解题分析】(1)如图1,利用折叠性质得EA=EC,∠1=∠2,再证明∠1=∠3得到AE=AF,则可判断四边形AECF为平行四边形,从而得到四边形AECF为菱形;(2)作EH⊥AB于H,如图,利用四边形AECF为菱形得到AE=AF=CE=13,则判断四边形ABEF为平行四边形得到EF=AB,根据等腰三角形的性质得AH=BH,再在Rt△BEH中利用tanB=EHBH=125可计算出BH=5,从而得到EF=AB=2BH=1.【题目详解】(1)证明:如图1,∵平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处,∴EA=EC,∠1=∠2,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠2=∠3,∴∠1=∠3,∴AE=AF,∴AF=CE,而AF∥CE,∴四边形AECF为平行四边形,∵EA=EC,∴四边形AECF为菱形;(2)解:作EH⊥AB于H,如图,∵E为BC中点,BC=26,∴BE=EC=13,∵四边形AECF为菱形,∴AE=AF=CE=13,∴AF=BE,∴四边形ABEF为平行四边形,∴EF=AB,∵EA=EB,EH⊥AB,∴AH=BH,在Rt△BEH中,tanB=EHBH=125,设EH=12x,BH=5x,则BE=13x,∴13x=13,解得x=1,∴BH=5,∴AB=2BH=1,∴EF=1.【题目点拨】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了平行四边形的性质、菱形的判定与性质.21、(1)180;(2)每件销售价为55元时,获得最大利润;最大利润为2250元.【解题分析】分析:(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;(2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.详解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为180;(2)由题意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.点睛:此题主要考查了二次函数的应用,根据已知得出二次函数的最值是中考中考查重点,同学们应重点掌握.22、(1);(2)①证明见解析;②;(3).【解题分析】试题分析:(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;(2)①A、P、O、E四点共圆,即可得出结论;②连接OA、AC,由勾股定理求出AC=,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE的表达式,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可.试题解析:(1)∵四边形ABCD、四边形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴,即,解得:AE=,故答案为:;(2)①∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四点共圆,∴点O一定在△APE的外接圆上;②连接OA、AC,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==,∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,即点O经过的路径长为;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:则MN∥AE,∵ME=MP,∴AN=PN,∴MN=AE,设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,∴,即,解得:AE==,∴x=2时,AE的最大值为1,此时MN的值最大=×1=,即△APE的圆心到AB边的距离的最大值为.【题目点拨】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明△APE∽△BCP是解题的关键.23、(1)①45°,②3+32;(2)线段AH 与AB+AC 之间的数量关系:2AH=AB+AC.证明见解析.【解题分析】(1)①先根据角平分线的定义可得∠BAD=∠CAD=30°,由等腰三角形的性质得∠B=75°,最后利用三角形内角和可得∠ACB=45°;②如图1,作高线DE,在Rt△ADE 中,由∠DAC=30°,AB=AD=2 可得DE=1,AE=3,在Rt△CDE 中,由∠ACD=45°,DE=1,可得EC=1,AC= 3+1,同理可得AH 的长;(2)如图2,延长AB 和CH 交于点F,取BF 的中点G,连接GH,易证△ACH≌△AFH,则AC=AF,HC=HF,根据平行线的性质和等腰三角形的性质可得AG=AH,再由线段的和可得结论.【题目详解】(1)①∵AD 平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B=180302︒︒-=75°,∴∠ACB=180°﹣60°﹣75°=45°;②如图1,过 D 作DE⊥AC 交AC 于点E,在Rt△ADE 中,∵∠DAC=30°,AB=AD=2,∴DE=1,3在Rt△CDE 中,∵∠ACD=45°,DE=1,∴EC=1,∴3,在Rt△ACH 中,∵∠DAC=30°,∴CH=123+1∴AH=222231(31)2AC CH⎛⎫+-=+- ⎪⎝⎭=332+;(2)线段AH 与AB+AC 之间的数量关系:2AH=AB+AC.证明:如图2,延长AB 和CH 交于点F,取BF 的中点G,连接GH.易证△ACH≌△AFH,∴AC=AF,HC=HF,∴GH∥BC,∵AB=AD,∴∠ABD=∠ADB,∴∠AGH=∠AHG,∴AG=AH,∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.【题目点拨】本题是三角形的综合题,难度适中,考查了三角形全等的性质和判定、等腰三角形的性质和判定、勾股定理、三角形的中位线定理等知识,熟练掌握这些性质是本题的关键,第(2)问构建等腰三角形是关键.24、(1)直线y=32x+4,点B的坐标为(8,16);(2)点C的坐标为(﹣12,0),(0,0),(6,0),(32,0);(3)当M的横坐标为6时,MN+3PM的长度的最大值是1.【解题分析】(1)首先求得点A的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标;(2)分若∠BAC=90°,则AB2+AC2=BC2;若∠ACB=90°,则AB2=AC2+BC2;若∠ABC=90°,则AB2+BC2=AC2三种情况求得m的值,从而确定点C的坐标;(3)设M(a,14a2),得MN=14a2+1,然后根据点P与点M纵坐标相同得到x=2166a-,从而得到MN+3PM=﹣14a2+3a+9,确定二次函数的最值即可.【题目详解】(1)∵点A 是直线与抛物线的交点,且横坐标为-2,21(2)14y =⨯-=,A 点的坐标为(-2,1), 设直线的函数关系式为y=kx+b ,将(0,4),(-2,1)代入得421b k b =⎧⎨-+=⎩解得324k b ⎧=⎪⎨⎪=⎩∴y =32x +4 ∵直线与抛物线相交,231424x x ∴+= 解得:x=-2或x=8,当x=8时,y=16,∴点B 的坐标为(8,16);(2)存在.∵由A (-2,1),B (8,16)可求得AB 2=22(82)(161)=325 .设点C (m ,0),同理可得AC 2=(m +2)2+12=m 2+4m +5,BC 2=(m -8)2+162=m 2-16m +320,①若∠BAC =90°,则AB 2+AC 2=BC 2,即325+m 2+4m +5=m 2-16m +320,解得m =-12; ②若∠ACB =90°,则AB 2=AC 2+BC 2,即325=m 2+4m +5+m 2-16m +320,解得m =0或m =6; ③若∠ABC =90°,则AB 2+BC 2=AC 2,即m 2+4m +5=m 2-16m +320+325,解得m =32, ∴点C 的坐标为(-12,0),(0,0),(6,0),(32,0) (3)设M (a ,14a 2), 则MN2114a =+, 又∵点P 与点M 纵坐标相同, ∴32x +4=14a 2,∴x=2166a-,∴点P的横坐标为2166a-,∴MP=a-2166a-,∴MN+3PM=14a2+1+3(a-2166a-)=-14a2+3a+9=-14(a-6)2+1,∵-2≤6≤8,∴当a=6时,取最大值1,∴当M的横坐标为6时,MN+3PM的长度的最大值是1。

2020年辽宁省大连市中考数学试卷及答案解析

2020年辽宁省大连市中考数学试卷及答案解析

第 1 页 共 24 页
2020年辽宁省大连市中考数学试卷
一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)
1.(3分)下列四个数中,比﹣1小的数是( )
A .﹣2
B .−12
C .0
D .1
2.(3分)如图是由5个相同的小正方体组成的立体图形,它的主视图是( )
A .
B .
C .
D .
3.(3分)2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一
颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为( )
A .360×102
B .36×103
C .3.6×104
D .0.36×105
4.(3分)如图,△ABC 中,∠A =60°,∠B =40°,DE ∥BC ,则∠AED 的度数是( )
A .50°
B .60°
C .70°
D .80°
5.(3分)平面直角坐标系中,点P (3,1)关于x 轴对称的点的坐标是( )
A .(3,1)
B .(3,﹣1)
C .(﹣3,1)
D .(﹣3,﹣1)
6.(3分)下列计算正确的是( )
A .a 2+a 3=a 5
B .a 2•a 3=a 6。

2020年辽宁省大连市中考数学试题及参考答案(word解析版)

2020年辽宁省大连市中考数学试题及参考答案(word解析版)

大连市2020年初中毕业升学考试数学试卷(满分150,考试时间120分钟)一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.下列四个数中,比﹣1小的数是()A.﹣2 B.﹣C.0 D.12.如图是由5个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为()A.360×102B.36×103C.3.6×104D.0.36×1054.如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°5.平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)6.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(﹣2a2)3=﹣6a67.在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A.B.C.D.8.如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为()A.100m B.100m C.100m D.m9.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)10.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°二、填空题(本题共6小题,每小题3分,共18分)11.不等式5x+1>3x﹣1的解集是.12.某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A 1 10B 2 8C 7 5这个公司平均每人所创年利润是万元.13.我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为.14.如图,菱形ABCD中,∠ACD=40°,则∠ABC=°.15.如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y=(x>0)的图象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为.16.如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为.(第14题图)(第15题图)(第16题图)三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)计算(+1)(﹣1)++.18.(9分)计算﹣1.19.(9分)如图,△ABC中,AB=AC,点D,E在边BC上,BD=CE.求证:∠ADE=∠AED.20.(12分)某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为 人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为 %;(2)被调查学生的总人数为 人,其中读书量为2本的学生数为 人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.(9分)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?22.(10分)四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,AD =CD .(1)如图1,求证∠ABC =2∠ACD ;(2)过点D 作⊙O 的切线,交BC 延长线于点P (如图2).若tan ∠CAB =,BC =1,求PD的长.23.(10分)甲、乙两个探测气球分别从海拔5m 和15m 处同时出发,匀速上升60min .如图是甲、乙两个探测气球所在位置的海拔y (单位:m )与气球上升时间x (单位:min )的函数图象.(1)求这两个气球在上升过程中y 关于x 的函数解析式;(2)当这两个气球的海拔高度相差15m 时,求上升的时间.读书量 频数(人) 频率 1本 4 2本 0.3 3本 4本及以上 10五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.(11分)如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点D从点B出发,沿边BA →AC以2cm/s的速度向终点C运动,过点D作DE∥BC,交边AC(或AB)于点E.设点D的运动时间为t(s),△CDE的面积为S(cm2).(1)当点D与点A重合时,求t的值;(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.25.(11分)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.26.(12分)在平面直角坐标系xOy中,函数F1和F2的图象关于y轴对称,它们与直线x=t(t>0)分别相交于点P,Q.(1)如图,函数F1为y=x+1,当t=2时,PQ的长为;(2)函数F1为y=,当PQ=6时,t的值为;(3)函数F1为y=ax2+bx+c(a≠0),①当t=时,求△OPQ的面积;②若c>0,函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),当c≤x≤c+1时,设函数F1的最大值和函数F2的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.下列四个数中,比﹣1小的数是()A.﹣2 B.﹣C.0 D.1【知识考点】有理数大小比较.【思路分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解题过程】解:根据有理数比较大小的方法,可得﹣2<﹣1,0>﹣1,﹣>﹣1,1>﹣1,∴四个数中,比﹣1小的数是﹣2.故选:A.【总结归纳】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.如图是由5个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,画出从正面看所得到的图形即可.【解题过程】解:从正面看,底层是三个小正方形,上层右边的一个小正方形.故选:B.【总结归纳】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.3.2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为()A.360×102B.36×103C.3.6×104D.0.36×105【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解题过程】解:36000=3.6×104,故选:C.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°【知识考点】平行线的性质;三角形内角和定理.【思路分析】利用三角形内角和定理求出∠C,再根据平行线的性质求出∠AED即可.【解题过程】解:∵∠C=180°﹣∠A﹣∠B,∠A=60°,∠B=40°,∴∠C=80°,∵DE∥BC,∴∠AED=∠C=80°,故选:D.【总结归纳】本题考查三角形内角和定理,平行线的性质,解题的关键是熟练掌握三角形内角和定理,平行线的性质解决问题,属于中考常考题型.5.平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解题过程】解:点P(3,1)关于x轴对称的点的坐标是(3,﹣1)故选:B.【总结归纳】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(﹣2a2)3=﹣6a6【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】分别根据合并同类项法则,同底数幂的乘法法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.【解题过程】解:A.a2与a3不是同类项,所以不能合并,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.(a2)3=a6,故本选项符合题意;D.(﹣2a2)3=﹣8a6,故本选项不合题意.故选:C.【总结归纳】本题主要考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.7.在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A.B.C.D.【知识考点】概率公式.【思路分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.【解题过程】解:根据题意可得:袋子中有3个白球,4个红球,共7个,从袋子中随机摸出一个球,它是红球的概率.故选:D.【总结归纳】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为()A.100m B.100m C.100m D.m【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】根据题意求出∠AOB,根据直角三角形的性质解答即可.【解题过程】解:由题意得,∠AOB=90°﹣60°=30°,∴AB=OA=100(m),故选:A.【总结归纳】本题考查的是解直角三角形的应用﹣方向角问题,掌握方向角的概念、熟记含30度角的直角三角形的性质是解题的关键.9.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)【知识考点】二次函数的性质;抛物线与x轴的交点.【思路分析】根据抛物线的对称性和(﹣1,0)为x轴上的点,即可求出另一个点的交点坐标.【解题过程】解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2,根据两个交点关于对称轴直线x=1对称可知:x1+x2=2,即x2﹣1=2,得x2=3,∴抛物线与x轴的另一个交点为(3,0),故选:B.【总结归纳】本题考查了抛物线与x轴的交点,要知道抛物线与x轴的两交点关于对称轴对称.10.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°【知识考点】旋转的性质.【思路分析】根据旋转可得∠A′BA=∠ABC=40°,A′B=AB,得∠BAA′=70°,根据∠CAA'=∠CAB+∠BAA′,进而可得∠CAA'的度数.【解题过程】解:∵∠ACB=90°,∠ABC=40°,∴∠CAB=90°﹣∠ABC=90°﹣40°=50°,∵将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,∴∠A′BA=∠ABC=40°,A′B=AB,∴∠BAA′=∠BA′A=(180°﹣40°)=70°,∴∠CAA'=∠CAB+∠BAA′=50°+70°=120°.故选:D.【总结归纳】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.二、填空题(本题共6小题,每小题3分,共18分)11.不等式5x+1>3x﹣1的解集是.【知识考点】解一元一次不等式.【思路分析】先对不等式进行移项,合并同类项,再系数化1即可求得不等式的解集.【解题过程】解:5x+1>3x﹣1,移项得,5x﹣3x>﹣1﹣1,合并得,2x>﹣2,即x>﹣1,故答案为x>﹣1.【总结归纳】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A 1 10B 2 8C 7 5这个公司平均每人所创年利润是万元.【知识考点】加权平均数.【思路分析】直接利用表格中数据,求出10人的总创年利润进而求出平均每人所创年利润.【解题过程】解:这个公司平均每人所创年利润是:(10+2×8+7×5)=6.1(万).故答案为:6.1.【总结归纳】此题主要考查了加权平均数,正确利用表格获取正确信息是解题关键.13.我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为.【知识考点】数学常识;由实际问题抽象出一元二次方程.【思路分析】由矩形的宽及长与宽之间的关系可得出矩形的长为(x+12)步,再利用矩形的面积公式即可得出关于x的一元二次方程,此题得解.【解题过程】解:∵矩形的宽为x步,且宽比长少12步,∴矩形的长为(x+12)步.依题意,得:x(x+12)=864.故答案为:x(x+12)=864.【总结归纳】本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.14.如图,菱形ABCD中,∠ACD=40°,则∠ABC=°.【知识考点】菱形的性质.【思路分析】由菱形的性质得出AB∥CD,∠BCD=2∠ACD=80°,则∠ABC+∠BCD=180°,即可得出答案.【解题过程】解:∵四边形ABCD是菱形,∴AB∥CD,∠BCD=2∠ACD=80°,∴∠ABC+∠BCD=180°,∴∠ABC=180°﹣80°=100°;故答案为:100.【总结归纳】本题考查了菱形的性质、平行线的性质;熟练掌握菱形的性质是解题的关键.15.如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y=(x>0)的图象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为.【知识考点】反比例函数图象上点的坐标特征;正方形的性质.【思路分析】连接BD,与AC交于点O′,利用正方形的性质得到O′A=O′B=O′C=O′D=2,从而得到点A坐标,代入反比例函数表达式即可.【解题过程】解:连接BD,与AC交于点O′,∵四边形ABCD是正方形,AC⊥x轴,∴BD所在对角线平行于x轴,∵B(0,2),∴O′C=2=BO′=AO′=DO′,∴点A的坐标为(2,4),∴k=2×4=8,故答案为:8.【总结归纳】本题考查了正方形的性质,反比例函数表达式的求法,解题的关键是利用正方形的性质求出点A的坐标.16.如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为.【知识考点】矩形的性质;相似三角形的判定与性质.【思路分析】根据题干条件可证得△DEF∽△BCF,从而得到,由线段比例关系即可求出函数解析式.【解题过程】解:在矩形中,AD∥BC,∴△DEF∽△BCF,∴,∵BD==10,BF=y,DE=x,∴DF=10﹣y,∴,化简得:,∴y关于x的函数解析式为:,故答案为:.【总结归纳】本题主要考查的是相似三角形的判定与性质定理,难度不大,熟练掌握性质和判定定理是解得本题的关键,注意掌握数形结合思想与函数思想的应用.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)计算(+1)(﹣1)++.【知识考点】实数的运算;平方差公式.【思路分析】原式利用平方差公式,立方根、算术平方根性质计算即可求出值.【解题过程】解:原式=2﹣1﹣2+3=2.【总结归纳】此题考查了平方差公式,以及实数的运算,熟练掌握公式及运算法则是解本题的关键.18.(9分)计算﹣1.【知识考点】分式的混合运算.【思路分析】直接利用分式的混合运算法则分别化简得出答案.【解题过程】解:原式=•﹣1=﹣1==﹣.【总结归纳】此题主要考查了分式的混合运算,正确化简分式是解题关键.19.(9分)如图,△ABC中,AB=AC,点D,E在边BC上,BD=CE.求证:∠ADE=∠AED.【知识考点】全等三角形的判定与性质.【思路分析】根据等腰三角形等边对等角的性质可以得到∠B=∠C,然后证明△ABD和△ACE 全等,根据全等三角形对应边相等有AD=AE,再根据等边对等角的性质即可证明.【解题过程】证明:∵AB=AC,∴∠B=∠C(等边对等角),在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴AD=AE(全等三角形对应边相等),∴∠ADE=∠AED(等边对等角).【总结归纳】本题考查了全等三角形的判定与性质以及等腰三角形的性质,找出已知边的夹角相等是证明三角形全等的关键,也是本题的突破点.20.(12分)某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.读书量频数(人)频率1本 42本0.33本4本及以上10根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为%;(2)被调查学生的总人数为人,其中读书量为2本的学生数为人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.【知识考点】用样本估计总体;频数(率)分布表;扇形统计图.【思路分析】(1)直接根据图表信息可得;(2)用4本及以上对应的频数除以所占百分比可得总人数,再乘以读书量为2本的频率即可;(3)求出读书量为3本的人数,除以样本人数50,再乘以全校总人数550可得结果.【解题过程】解:(1)由图表可知:被调查学生中,读书量为1本的学生数为4人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为20%,故答案为:4;20;(2)10÷20%=50人,50×0.3=15人,∴被调查学生的总人数为50人,其中读书量为2本的学生数为15人,故答案为:50;15;(3)(50﹣4﹣10﹣15)÷50×550=231人,该校八年级学生读书量为3本的学生有231人.【总结归纳】本题考查了频数统计表和扇形统计图,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.(9分)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?【知识考点】二元一次方程组的应用.【思路分析】设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥,根据“第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解题过程】解:设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥,依题意,得:,解得:.答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.【总结归纳】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(10分)四边形ABCD内接于⊙O,AB是⊙O的直径,AD=CD.(1)如图1,求证∠ABC=2∠ACD;(2)过点D作⊙O的切线,交BC延长线于点P(如图2).若tan∠CAB=,BC=1,求PD 的长.【知识考点】垂径定理;圆周角定理;圆内接四边形的性质;切线的性质;解直角三角形.【思路分析】(1)由等腰三角形的性质得出∠DAC=∠ACD,由圆内接四边形的性质得出∠ABC+∠ADC=180°,则可得出答案;(2)由切线的性质得出∠ODP=90°,由垂径定理得出∠DEC=90°,由圆周角定理∠ACB=90°,可得出四边形DECP为矩形,则DP=EC,求出EC的长,则可得出答案.【解题过程】(1)证明:∵AD=CD,∴∠DAC=∠ACD,∴∠ADC+2∠ACD=180°,又∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∴∠ABC=2∠ACD;(2)解:连接OD交AC于点E,∵PD是⊙O的切线,∴OD⊥DP,∴∠ODP=90°,又∵=,∴OD⊥AC,AE=EC,∴∠DEC=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ECP=90°,∴四边形DECP为矩形,∴DP=EC,∵tan∠CAB=,BC=1,∴,∴AC=,∴EC=AC=,∴DP=.【总结归纳】本题考查了切线的性质,圆周角定理的应用,圆内接四边形的性质,垂径定理,解直角三角形等知识,熟练切线的性质是解题的关键.23.(10分)甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.【知识考点】一次函数的应用.【思路分析】(1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x大于20时,两个气球的海拔高度可能相差15m,可得方程x+5﹣(x+15)=15,解之即可.【解题过程】解:(1)设甲气球的函数解析式为:y=kx+b,乙气球的函数解析式为:y=mx+n,分别将(0,5),(20,25)和(0,15),(20,25)代入,,,解得:,,∴甲气球的函数解析式为:y=x+5,乙气球的函数解析式为:y=x+15;(2)由初始位置可得:当x大于20时,两个气球的海拔高度可能相差15m,且此时甲气球海拔更高,∴x+5﹣(x+15)=15,解得:x=50,∴当这两个气球的海拔高度相差15m时,上升的时间为50min.【总结归纳】本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象.五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.(11分)如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点D从点B出发,沿边BA →AC以2cm/s的速度向终点C运动,过点D作DE∥BC,交边AC(或AB)于点E.设点D的运动时间为t(s),△CDE的面积为S(cm2).(1)当点D与点A重合时,求t的值;(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.【知识考点】函数关系式;函数自变量的取值范围.【思路分析】(1)根据勾股定理即可得到结论;(2)根据相似三角形的判定和性质以及三角形的面积公式即可得到结论.【解题过程】解:(1)∵△ABC中,∠ACB=90°,AC=6cm,BC=8cm,∴AB===10(cm),当点D与点A重合时,BD=AB=10cm,∴t==5(s);(2)当0<t<5时,(D在AB上),∵DE∥BC,∴△ADE∽△ABC,∴,∴==,解得:DE=,CE=t,∵DE∥BC,∠ACB=90°,∴∠CED=90°,∴S=DE•CE=×t=﹣t2+;当t=5时,点D与点A重合,△CDE不存在;如图2,当5<t<8时,(D在AC上),则AD=2t﹣10,∴CD=16﹣2t,∵DE∥BC,∴△ADE∽△ACB,∴==,∴=,∴DE=,∴S=DE•CD=×(16﹣2t)=﹣t2+t﹣,综上所述,S关于t的函数解析式为S=.【总结归纳】本题考查了函数关系式,相似三角形的判定和性质,勾股定理,正确的理解题意是解题的关键.25.(11分)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.【知识考点】三角形综合题.【思路分析】(1)根据等腰三角形等边对等角回答即可;(2)在CG上取点M,使GM=AF,连接AM,EM,证明△AGM≌△GAF,得到AM=GF,∠AFG=∠AMG,从而证明四边形AMED为平行四边形,得到AD=EM,AD∥EM,最后利用中位线定理得到结论;(3)延长BA至点N,使AD=AN,连接CN,证明△BCN为等腰三角形,设AD=1,可得AB 和BC的长,利用勾股定理求出AC,即可得到的值.【解题过程】解:(1)∵CA=CG,∴∠CAG=∠CGA,故答案为:∠CGA;(2)AD=BD,理由是:如图,在CG上取点M,使GM=AF,连接AM,EM,∵∠CAG=∠CGA,AG=GA,∴△AGM≌△GAF(SAS),∴AM=GF,∠AFG=∠AMG,∵GF=DE,∠AFG=∠CDE,∴AM=DE,∠AMG=∠CDE,∴AM∥DE,∴四边形AMED为平行四边形,∴AD=EM,AD∥EM,∵BE=CE,即点E为BC中点,∴ME为△BCD的中位线,∴AD=ME=BD;(3)延长BA至点N,使AD=AN,连接CN,∵∠BAC=∠NAC=90°,∴AC垂直平分DN,∴CD=CN,∴∠ACD=∠ACN,设∠ACD=α=∠ACN,则∠ABC=2α,则∠ANC=90﹣α,∴∠BCN=180﹣2α﹣(90﹣α)=90﹣α,∴BN=BC,即△BCN为等腰三角形,设AD=1,则AN=1,BD=2,∴BC=BN=4,AB=3,∴AC=,∴.【总结归纳】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,平行四边形的判定和性质,中位线定理,解题的关键是根据题意构造平行四边形,转化已知条件.26.(12分)在平面直角坐标系xOy中,函数F1和F2的图象关于y轴对称,它们与直线x=t(t>0)分别相交于点P,Q.(1)如图,函数F1为y=x+1,当t=2时,PQ的长为;(2)函数F1为y=,当PQ=6时,t的值为;(3)函数F1为y=ax2+bx+c(a≠0),①当t=时,求△OPQ的面积;②若c>0,函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),当c≤x≤c+1时,设函数F1的最大值和函数F2的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.【知识考点】二次函数综合题.【思路分析】(1)根据F1和F2关于y轴对称得出F2的解析式,求出P、Q两点坐标,即可得到PQ;(2)根据F1和F2关于y轴对称得出F2的解析式,求出P、Q两点坐标,根据PQ=6得出方程,解出t值即可;(3)①根据F1和F2关于y轴对称得出F2的解析式,将x=代入解析式,求出P、Q两点坐标,从而得出△OPQ的面积;②根据题意得出两个函数的解析式,再分当0<c<1时,当1≤c≤2时,当c>2时,三种情况,分析两个函数的增减性,得出最值,相减即可.【解题过程】解:(1)∵F1:y=x+1,F1和F2关于y轴对称,∴F2:y=﹣x+1,分别令x=2,则2+1=3,﹣2+1=﹣1,∴P(2,3),Q(2,﹣1),∴PQ=3﹣(﹣1)=4,故答案为:4;(2)∵F1:,可得:F2:,∵x=t,可得:P(t,),Q(t,),∴PQ=﹣==6,解得:t=1,经检验:t=1是原方程的解,故答案为:1;(3)①∵F1:y=ax2+bx+c,∴F2:y=ax2﹣bx+c,∵t=,分别代入F1,F2,可得:P(,),Q(,),∴PQ=||=,∴S△OPQ==1;②∵函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),而函数F1和F2的图象关于y轴对称,∴函数F1的图象经过A(5,0)和(﹣1,0),∴设F1:y=a(x+1)(x﹣5)=ax2﹣4ax﹣5a,则F2:y=ax2+4ax﹣5a,∴F1的图象的对称轴是直线x=2,且c=﹣5a,∴a=,∵c>0,则a<0,c+1>1,而F2的图象在x>0时,y随x的增大而减小,当0<c<1时,F1的图象y随x的增大而增大,F2的图象y随x的增大而减小,∴当x=c+1时,y=ax2﹣4ax﹣5a的最大值为a(c+1)2﹣4a(c+1)﹣5a,y=ax2+4ax﹣5a的最小值为a(c+1)2+4a(c+1)﹣5a,则h=a(c+1)2﹣4a(c+1)﹣5a﹣[a(c+1)2+4a(c+1)﹣5a]=﹣8ac﹣8a,又∵a=,∴h=;当1≤c≤2时,F1的最大值为=﹣9a,F2的图象y随x的增大而减小,∴F2的最小值为:a(c+1)2+4a(c+1)﹣5a,则h=﹣9a﹣[a(c+1)2+4a(c+1)﹣5a]=﹣a(c+1)2﹣4a(c+1)﹣4a=﹣ac2﹣6ac﹣9a,又∵a=,∴h=,当c>2时,F1的图象y随x的增大而减小,F2的图象y随x的增大而减小,∴当x=c时,y=ax2﹣4ax﹣5a的最大值为ac2﹣4ac﹣5a,当x=c+1时,y=ax2+4ax﹣5a的最小值为a(c+1)2+4a(c+1)﹣5a,则h=ac2+4ac﹣5a﹣[a(c+1)2+4a(c+1)﹣5a],又∵a=,∴h=2c2+c;综上:h关于x的解析式为:h=.【总结归纳】本题是二次函数综合题,考查了一次函数,反比例函数,以及二次函数的图象与性质,二次函数的最值,解题的关键是要理解题意,尤其(3)问中要读懂题干,结合图象进行分析求解.21。

2023年辽宁省大连市中考数学试卷(含解析)

2023年辽宁省大连市中考数学试卷(含解析)

2023年辽宁省大连市中考数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. −6的绝对值是( )A. 6B. 16C. −16D. −62. 如图,几何体的主视图是( )A. B.C. D.3. 2023年5月10日“大连1号——连理卫星”搭乘天舟六号货运飞船飞向太空,它的质量为17000g .数17000用科学记数法表示为( )A. 17×103B. 0.17×105C. 1.7×104D. 1.7×1054.如图,AB //CD ,∠A =45°,∠C =20°,则∠E 的度数为( )A. 20°B. 25°C. 35°D. 45°5. 下列计算正确的是( )A. ( 2)0= 2B. 327=9C. 8=4 2D. 3( 3− 2)=3− 66. 解方程1x−1−2=3x 1−x 去分母,两边同乘(x−1)后的式子为( )A. 1−2=−3xB. 1−2(x−1)=−3xC. 1−2(1−x )=−3xD. 1−2(x−1)=3x7. 在半径为3的圆中,90°的圆心角所对的弧长是( )A. 92πB. 9πC. 32πD. 14π8. 某种蓄电池的电压U (单位:V )为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系.当R =5时,I =8,则当R =10时,I 的值是( )A. 4B. 5C. 10D. 09. 已知二次函数y =x 2−2x−1,当0≤x ≤3时,函数的最大值为( )A. −2B. −1C. 0D. 210. 2023年5月18日,《大连日报》公布《下一站,去博物馆!》问卷调查结果.本次调查共收回3666份有效问卷,其中将“您去博物馆最喜欢看什么?”这一问题的调查数据制成扇形统计图,如图所示.下列说法错误的是( )A. 最喜欢看“文物展品”的人数最多B. 最喜欢看“文创产品”的人数占被调查人数的14.3%C. 最喜欢看“布展设计”的人数超过500人D. 统计图中“特效体验及其他”对应的圆心角是23.76°二、填空题(本大题共6小题,共18.0分)11. 不等式−3x >9的解集是______ .12. 一个不透明的口袋中有2个完全相同的小球,分别标号为1,2.随机摸出一个小球记录标号后放回,再随机摸出一个小球记录标号,两次摸出小球标号的和等于3的概率是______ .13.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,∠ADC=60°,AC =10,E 是AD 的中点,则OE 的长是______ .14. 如图,在平面直角坐标系中,点A,B的坐标分别为(1,0)和(0,2),连接AB,以点A为圆心、AB的长为半径画弧,与x轴正半轴相交于点C,则点C的横坐标是______ .15. 我国古代著作《九章算术》中记载了这样一个问题:“今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何.”其大意是:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、鸡价各是多少.”设共有x人合伙买鸡,根据题意,可列方程为______ .16. 如图,正方形ABCD中,AB=3,点E在BC的延长线上,且CE=2.连接AE,∠DCE的平分线与AE相交于点F,连接DF,则DF的长为______ .三、解答题(本大题共10小题,共102.0分。

2020年辽宁省大连市中考数学试卷(附答案详解)

2020年辽宁省大连市中考数学试卷(附答案详解)

2020年辽宁省大连市中考数学试卷1.(2021·山东省·单元测试)下列四个数中,比−1小的数是()C. 0D. 1A. −2B. −122.(2021·天津市市辖区·模拟题)如图是由5个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.(2021·江西省上饶市·期中考试)2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为()A. 360×102B. 36×103C. 3.6×104D. 0.36×1054.(2020·安徽省·单元测试)如图,△ABC中,∠A=60°,∠B=40°,DE//BC,则∠AED的度数是()A. 50°B. 60°C. 70°D. 80°5.(2021·全国·单元测试)平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是()A. (3,1)B. (3,−1)C. (−3,1)D. (−3,−1)6.(2021·江苏省宿迁市·模拟题)下列计算正确的是()A. a2+a3=a5B. a2⋅a3=a6C. (a2)3=a6D. (−2a2)3=−6a67.(2020·福建省厦门市·月考试卷)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A. 14B. 13C. 37D. 478.(2020·河北省石家庄市·期中考试)如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为()A. 100mB. 100√2mC. 100√3mD. 200√33m9.(2021·湖南省·单元测试)抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(−1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A. (72,0)B. (3,0)C. (52,0)D. (2,0)10.(2021·河北省·其他类型)如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A. 50°B. 70°C. 110°D. 120°11.(2021·辽宁省大连市·模拟题)不等式5x+1>3x−1的解集是______.12.(2020·全国·历年真题)某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.每人所创年利润/万部门人数元A110B28C75这个公司平均每人所创年利润是______万元.13.(2020·广东省·单元测试)我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为______.14.(2020·陕西省西安市·期中考试)如图,菱形ABCD中,∠ACD=40°,则∠ABC=______°.15.(2021·上海市·单元测试)如图,在平面直角坐标系中,(x>0)的图正方形ABCD的顶点A与D在函数y=kx象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为______.16.(2020·全国·历年真题)如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为______.3+√9.17.(2020·全国·历年真题)计算(√2+1)(√2−1)+√−818.(2020·全国·历年真题)计算x2+4x+4x+2÷x2+2xx−2−1.19.(2021·辽宁省大连市·期末考试)如图,△ABC中,AB=AC,点D,E在边BC上,BD=CE.求证:∠ADE=∠AED.20.(2020·全国·历年真题)某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.读书量频数(人)频率根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为______人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为______%;(2)被调查学生的总人数为______人,其中读书量为2本的学生数为______人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.21.(2021·海南省省直辖县级行政区划·单元测试)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?22.(2021·北京市市辖区·模拟题)四边形ABCD内接于⊙O,AB是⊙O的直径,AD=CD.(1)如图1,求证∠ABC=2∠ACD;(2)过点D作⊙O的切线,交BC延长线于点P(如图2).若tan∠CAB=5,BC=1,12求PD的长.23.(2020·江苏省·期末考试)甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.24.(2020·全国·历年真题)如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点D从点B出发,沿边BA→AC以2cm/s的速度向终点C运动,过点D作DE//BC,交边AC(或AB)于点E.设点D的运动时间为t(s),△CDE的面积为S(cm2).(1)当点D与点A重合时,求t的值;(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.25.(2020·全国·历年真题)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是______;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求AC的值.AB26.(2020·福建省福州市·月考试卷)在平面直角坐标系xOy中,函数F1和F2的图象关于y轴对称,它们与直线x=t(t>0)分别相交于点P,Q.(1)如图,函数F1为y=x+1,当t=2时,PQ的长为______;(2)函数F1为y=3,当PQ=6时,t的值为______;x(3)函数F1为y=ax2+bx+c(a≠0),①当t=√b时,求△OPQ的面积;b②若c>0,函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),当c≤x≤c+1时,设函数F1的最大值和函数F2的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.答案和解析1.【答案】A【知识点】有理数大小比较【解析】解:根据有理数比较大小的方法,可得>−1,1>−1,−2<−1,0>−1,−12∴四个数中,比−1小的数是−2.故选:A.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.【答案】B【知识点】简单组合体的三视图【解析】解:从正面看,底层是三个小正方形,上层右边的一个小正方形.故选:B.从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,画出从正面看所得到的图形即可.此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.3.【答案】C【知识点】科学记数法-绝对值较大的数【解析】解:36000=3.6×104,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.【答案】D【知识点】三角形内角和定理、平行线的性质【解析】解:∵∠C=180°−∠A−∠B,∠A=60°,∠B=40°,∴∠C=80°,∵DE//BC,∴∠AED=∠C=80°,故选:D.利用三角形内角和定理求出∠C,再根据平行线的性质求出∠AED即可.本题考查三角形内角和定理,平行线的性质,解题的关键是熟练掌握三角形内角和定理,平行线的性质解决问题,属于中考常考题型.5.【答案】B【知识点】轴对称中的坐标变化【解析】解:点P(3,1)关于x轴对称的点的坐标是(3,−1)故选:B.关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6.【答案】C【知识点】同底数幂的乘法、幂的乘方与积的乘方、合并同类项【解析】解:A.a2与a3不是同类项,所以不能合并,故本选项不合题意;B.a2⋅a3=a5,故本选项不合题意;C.(a2)3=a6,故本选项符合题意;D.(−2a2)3=−8a6,故本选项不合题意.故选:C.分别根据合并同类项法则,同底数幂的乘法法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.本题主要考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.7.【答案】D【知识点】概率公式【解析】解:根据题意可得:袋子中有有3个白球,4个红球,共7个,.从袋子中随机摸出一个球,它是红球的概率47故选:D.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中.事件A出现m种结果,那么事件A的概率P(A)=mn8.【答案】A【知识点】解直角三角形的应用【解析】解:由题意得,∠AOB=90°−60°=30°,OA=100(m),∴AB=12故选:A.根据题意求出∠AOB,根据直角三角形的性质解答即可.本题考查的是解直角三角形的应用−方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.9.【答案】B【知识点】二次函数与一元二次方程、二次函数的性质【解析】【分析】本题考查了抛物线与x轴的交点,要知道抛物线与x轴的两交点关于对称轴对称.根据抛物线的对称性和(−1,0)为x轴上的点,即可求出另一个点的交点坐标.【解答】解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2,根据两个交点关于对称轴直线x=1对称可知:x1+x2=2,即x2−1=2,得x2=3,∴抛物线与x轴的另一个交点为(3,0),故选:B.10.【答案】D【知识点】旋转的基本性质【解析】解:∵∠ACB=90°,∠ABC=40°,∴∠CAB=90°−∠ABC=90°−40°=50°,∵将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,∴∠A′BA=∠ABC=40°,A′B=AB,∴∠BAA′=∠BA′A=1(180°−40°)=70°,2∴∠CAA′=∠CAB+∠BAA′=50°+70°=120°.故选:D.根据旋转可得∠A′BA=∠ABC=40°,A′B=AB,得∠BAA′=70°,根据∠CAA′=∠CAB+∠BAA′,进而可得∠CAA′的度数.本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.11.【答案】x>−1【知识点】一元一次不等式的解法【解析】解:5x+1>3x−1,移项得,5x−3x>−1−1,合并得,2x>−2,即x>−1,故答案为x>−1.先对不等式进行移项,合并同类项,再系数化1即可求得不等式的解集.本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.【答案】6.1【知识点】加权平均数(10+2×8+7×5)=6.1(万).【解析】解:这个公司平均每人所创年利润是:110故答案为:6.1.直接利用表格中数据,求出10人的总收入进而求出平均收入.此题主要考查了加权平均数,正确利用表格获取正确信息是解题关键.13.【答案】x(x+12)=864【知识点】由实际问题抽象出一元二次方程、数学常识【解析】解:∵矩形的宽为x,且宽比长少12,∴矩形的长为(x+12).依题意,得:x(x+12)=864.故答案为:x(x+12)=864.由矩形的宽及长与宽之间的关系可得出矩形的长为(x+12),再利用矩形的面积公式即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.14.【答案】100【知识点】菱形的性质【解析】解:∵四边形ABCD是菱形,∴AB//CD,∠BCD=2∠ACD=80°,∴∠ABC+∠BCD=180°,∴∠ABC=180°−80°=100°;故答案为:100.由菱形的性质得出AB//CD,∠BCD=2∠ACD=80°,则∠ABC+∠BCD=180°,即可得出答案.本题考查了菱形的性质、平行线的性质;熟练掌握菱形的性质是解题的关键.15.【答案】8【知识点】反比例函数图象上点的坐标特征、正方形的性质【解析】解:连接BD,与AC交于点O,∵四边形ABCD是正方形,AC⊥x轴,∴BD所在对角线平行于x轴,∵B(0,2),∴OC=2=BO=AO=DO,∴点A的坐标为(2,4),∴k=2×4=8,故答案为:8.连接BD,与AC交于点O,利用正方形的性质得到OA=OB=OC=OD=2,从而得到点A坐标,代入反比例函数表达式即可.本题考查了正方形的性质,反比例函数表达式的求法,解题的关键是利用正方形的性质求出点A的坐标.16.【答案】y=80x+8【知识点】矩形的性质、相似三角形的判定与性质【解析】解:在矩形中,AD//BC,∴△DEF∽△BCF,∴DEBC =DFBF,∵BD=√BC2+CD2=10,BF=y,DE=x,∴DF=10−y,∴x8=10−yy,化简得:y=80x+8,∴y关于x的函数解析式为:y=80x+8,故答案为:y=80x+8.根据题干条件可证得△DEF∽△BCF,从而得到DEBC =DFBF,由线段比例关系即可求出函数解析式.本题主要考查的是相似三角形的判定与性质定理,难度不大,熟练掌握性质和判定定理是解得本题的关键,注意掌握数形结合思想与函数思想的应用.17.【答案】解:原式=2−1−2+3=2.【知识点】平方差公式、实数的运算【解析】原式利用平方差公式,立方根、算术平方根性质计算即可求出值.此题考查了平方差公式,以及实数的运算,熟练掌握公式及运算法则是解本题的关键.18.【答案】解:原式=(x+2)2x+2⋅x−2x(x+2)−1=x−2x−1=x−2−xx=−2x.【知识点】分式的混合运算【解析】直接利用分式的混合运算法则分别化简得出答案.此题主要考查了分式的混合运算,正确化简分式是解题关键.19.【答案】证明:∵AB=AC,∴∠B=∠C(等边对等角),在△ABD和△ACE中,{AB=AC ∠B=∠C BD=CE∴△ABD≌△ACE(SAS),∴AD=AE(全等三角形对应边相等),∴∠ADE=∠AED(等边对等角).【知识点】全等三角形的判定与性质【解析】根据等腰三角形等边对等角的性质可以得到∠B=∠C,然后证明△ABD和△ACE全等,根据全等三角形对应边相等有AD=AE,再根据等边对等角的性质即可证明.本题考查了全等三角形的判定与性质以及等腰三角形的性质,找出已知边的夹角相等是证明三角形全等的关键,也是本题的突破点.20.【答案】4 20 50 15【知识点】扇形统计图、用样本估计总体、频数(率)分布表【解析】解:(1)由图表可知:被调查学生中,读书量为1本的学生数为4人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为20%, 故答案为:4;20; (2)10÷20%=50, 50×0.3=15,∴被调查学生的总人数为50人,其中读书量为2本的学生数为15人, 故答案为:50;15;(3)(50−4−10−15)÷50×550=231, 该校八年级学生读书量为3本的学生有231人. (1)直接根据图表信息可得;(2)用4本及以上对应的频数除以所占百分比可得总人数,再乘以读书量为2本的频率即可;(3)求出读书量为3本的人数,除以样本人数50,再乘以全校总人数550可得结果. 本题考查了频数统计表和扇形统计图,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.21.【答案】解:设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥,依题意,得:{6x +15y =3608x +10y =440,解得:{x =50y =4.答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.【知识点】二元一次方程组的应用【解析】设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥,根据“第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论. 本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.【答案】(1)证明:∵AD =CD ,∴∠DAC =∠ACD , ∴∠ADC +2∠ACD =180°, 又∵四边形ABCD 内接于⊙O ,∴∠ABC+∠ADC=180°,∴∠ABC=2∠ACD;(2)解:连接OD交AC于点E,∵PD是⊙O的切线,∴OD⊥DP,∴∠ODP=90°,又∵AD⏜=CD⏜,∴OD⊥AC,AE=EC,∴∠DEC=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ECP=90°,∴四边形DECP为矩形,∴DP=EC,∵tan∠CAB=512,BC=1,∴CBAC =1AC=512,∴AC=125,∴EC=12AC=65,∴DP=65.【知识点】圆内接四边形的性质、解直角三角形、垂径定理、切线的性质、圆周角定理【解析】(1)由等腰三角形的性质得出∠DAC=∠ACD,由圆内接四边形的性质得出∠ABC+∠ADC=180°,则可得出答案;(2)由切线的性质得出∠ODP=90°,由垂径定理得出∠DEC=90°,由圆周角定理∠ACB =90°,可得出四边形DECP 为矩形,则DP =EC ,求出EC 的长,则可得出答案. 本题考查了切线的性质,圆周角定理的应用,圆内接四边形的性质,垂径定理,解直角三角形等知识,熟练切线的性质是解题的关键.23.【答案】解:(1)设甲气球的函数解析式为:y =kx +b ,乙气球的函数解析式为:y =mx +n ,分别将(0,5),(20,25)和(0,15),(20,25)代入, {5=b 25=20k +b ,{15=n 25=20m +n , 解得:{k =1b =5,{m =12n =15,∴甲气球的函数解析式为:y =x +5,乙气球的函数解析式为:y =12x +15;(2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15m , 且此时甲气球海拔更高, ∴x +5−(12x +15)=15, 解得:x =50,∴当这两个气球的海拔高度相差15m 时,上升的时间为50min .【知识点】一次函数的应用【解析】(1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x 大于20时,两个气球的海拔高度可能相差15m ,可得方程x +5−(12x +15)=15,解之即可.本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象.24.【答案】解:(1)∵△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,∴AB =√AC 2+BC 2=√62+82=10(cm), 当点D 与点A 重合时,BD =AB =10cm , ∴t =102=5(s);(2)当0<t <5时,(D 在AB 上), ∵DE//BC , ∴△ADE∽△ABC ,∴DE BC =AD AB =AEAC , ∴DE 8=10−2t 10=6−CE 6,解得:DE =40−8t 5,CE =65t ,∵DE//BC ,∠ACB =90°, ∴∠CED =90°, ∴S =12DE ⋅CE =12×40−8t 5×65t =−2425t 2+245;如图2,当5<t <8时,(D 在AC 上), 则AD =2t −10, ∴CD =16−2t , ∵DE//BC , ∴△ADE∽△ACB , ∴DECB =AEAB =AD AC,∴DE 8=2t−106, ∴DE =8t−403,∴S =12DE ⋅CD =12×8t−403×(16−2t)=−83t 2+1043t −3203,综上所述,S 关于t 的函数解析式为S ={−2425t 2+245t(0<t <5)−83t 2+1043t −3203(5<t <8).【知识点】函数自变量的取值范围、一元一次方程的应用、函数关系式 【解析】(1)根据各过各的了即可得到结论;(2)根据相似三角形的判定和性质以及三角形的面积公式即可得到结论.本题考查了函数关系式,相似三角形的判定和性质,勾股定理,正确的理解题意是解题的关键.25.【答案】∠CGA【知识点】三角形综合 【解析】解:(1)∵CA =CG , ∴∠CAG =∠CGA , 故答案为:∠CGA ;(2)AD=12BD,理由是:如图,在CG上取点M,使GM=AF,连接AM,EM,∵∠CAG=∠CGA,AG=GA,∴△AGM≌△GAF(SAS),∴AM=GF,∠AFG=∠AMG,∵GF=DE,∠AFG=∠CDE,∴AM=DE,∠AMG=∠CDE,∴AM//DE,∴四边形AMED为平行四边形,∴AD=EM,AD//EM,∵BE=CE,即点E为BC中点,∴ME为△BCD的中位线,∴AD=ME=12BD;(3)延长BA至点N,使AD=AN,连接CN,∵∠BAC=∠NAC=90°,∴AC垂直平分DN,∴CD=CN,∴∠ACD=∠ACN,设∠ACD=α=∠ACN,则∠ABC=2α,则∠ANC=90−α,∴∠BCN=180−2α−(90−α)=90−α,∴BN=BC,即△BCN为等腰三角形,设AD=1,则AN=1,BD=2,∴BC=BN=4,AB=3,∴AC=√BC2−AB2=√7,∴ACAB =√73.第21页,共23页(1)根据等腰三角形等边对等角回答即可;(2)在CG 上取点M ,使GM =AF ,连接AM ,EM ,证明△AGM≌△GAF ,得到AM =GF ,∠AFG =∠AMG ,从而证明四边形AMED 为平行四边形,得到AD =EM ,AD//EM ,最后利用中位线定理得到结论;(3)延长BA 至点N ,使AD =AN ,连接CN ,证明△BCN 为等腰三角形,设AD =1,可得AB 和BC 的长,利用勾股定理求出AC ,即可得到AC AB 的值.本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,平行四边形的判定和性质,中位线定理,解题的关键是根据题意构造平行四边形,转化已知条件. 26.【答案】4 1【知识点】二次函数综合【解析】解:(1)∵F 1:y =x +1,F 1和F 2关于y 轴对称,∴F 2:y =−x +1,分别令x =2,则2+1=3,−2+1=−1,∴P(2,3),Q(2,−1),∴PQ =3−(−1)=4,故答案为:4;(2)∵F 1:y =3x ,可得:F 2:y =−3x ,∵x =t ,可得:P(t,3t ),Q(t,−3t ), ∴PQ =3t −−3t =6t =6, 解得:t =1,经检验:t =1是原方程的解,故答案为:1;(3)①∵F1:y=ax2+bx+c,∴F2:y=ax2−bx+c,∵t=√bb,分别代入F1,F2,可得:P(√bb ,ab+√b+c),Q(√bb,ab−√b+c),∴PQ=|ab +√b+c−(ab−√b+c)|=2√b,∴S△OPQ=12×2√b×√bb=1;②∵函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),而函数F1和F2的图象关于y轴对称,∴函数F1的图象经过A(5,0)和(−1,0),∴设F1:y=a(x+1)(x−5)=ax2−4ax−5a,则F2:y=ax2+4ax−5a,∴F1的图象的对称轴是直线x=2,且c=−5a,∴a=−c5,∵c>0,则a<0,c+1>1,而F2的图象在x>0时,y随x的增大而减小,当0<c<1时,F1的图象y随x的增大而增大,F2的图象y随x的增大而减小,∴当x=c+1时,y=ax2−4ax−5a的最大值为a(c+1)2−4a(c+1)−5a,y=ax2+4ax−5a的最小值为a(c+1)2+4a(c+1)−5a,则ℎ=a(c+1)2−4a(c+1)−5a−[a(c+1)2+4a(c+1)−5a]=−8ac−8a,又∵a=−c5,∴ℎ=85c2+85c;当1≤c≤2时,F1的最大值为4a×(−5a)−(−4a)24a=−9a,F2的图象y随x的增大而减小,∴F2的最小值为:a(c+1)2+4a(c+1)−5a,则ℎ=−9a−[a(c+1)2+4a(c+1)−5a]=−a(c+1)2−4a(c+1)−4a=−ac2−6ac−9a,又∵a=−c5,第22页,共23页第23页,共23页 ∴ℎ=15c 3+65c 2+95c ,当c >2时,F 1的图象y 随x 的增大而减小,F 2的图象y 随x 的增大而减小,∴当x =c 时,y =ax 2−4ax −5a 的最大值为ac 2−4ac −5a ,当x =c +1时,y =ax 2+4ax −5a 的最小值为a(c +1)2−4a(c +1)−5a , 则ℎ=ac 2−4ac −5a −[a(c +1)2−4a(c +1)−5a]=3a −2ac ,又∵a =−c 5,∴ℎ=25c 2−35c ;综上:h 关于x 的解析式为:{ 85c 2+85c(0<c <1)15c 3+65c 2+95c(1≤c ≤2)25c 2−35c(c >2). (1)根据F 1和F 2关于y 轴对称得出F 2的解析式,求出P 、Q 两点坐标,即可得到PQ ;(2)根据F 1和F 2关于y 轴对称得出F 2的解析式,求出P 、Q 两点坐标,根据PQ =6得出方程,解出t 值即可;(3)①根据F 1和F 2关于y 轴对称得出F 2的解析式,将x =√b b代入解析式,求出P 、Q 两点坐标,从而得出△OPQ 的面积;②根据题意得出两个函数的解析式,再分当0<c <1时,当1≤c ≤2时,当c >2时,三种情况,分析两个函数的增减性,得出最值,相减即可.本题是二次函数综合题,考查了一次函数,反比例函数,以及二次函数的图象与性质,二次函数的最值,解题的关键是要理解题意,尤其(3)问中要读懂题干,结合图象进行分析求解.。

2020年辽宁省大连中考数学试卷-答案

2020年辽宁省大连中考数学试卷-答案

2020年辽宁省大连市初中学业水平考试数学答案解析 一、1.【答案】A【解析】解:根据有理数比较大小的方法,可得21--<,01->,112--,11->, ∴四个数中,比1-小的数是2-.故选:A . 【考点】有理数大小比较2.【答案】B【解析】解:从正面看,底层是三个小正方形,上层右边的一个小正方形.故选:B . 【考点】简单组合体的三视图3.【答案】C【解析】解:436000 3.610=⨯,故选:C .【考点】科学记数法—表示较大的数4.【答案】D【解析】解:1806040C A B A B ∠=︒-∠-∠∠=︒∠=︒∵,,,80C ∠=︒∴,DE BC ∵,80AED C ∠=∠=︒∴,故选:D . 【考点】平行线的性质,三角形内角和定理5.【答案】B【解析】解:点()3,1P 关于x 轴对称的点的坐标是()3,1-故选:B .【考点】关于x 轴、y 轴对称的点的坐标6.【答案】C【解析】解:A .2a 与3a 不是同类项,所以不能合并,故本选项不合题意;B .235a a a ⋅=,故本选项不合题意;C .()326a a =,故本选项符合题意; D .()32628a a -=-,故本选项不合题意. 故选:C .【考点】合并同类项,同底数幂的乘法,幂的乘方与积的乘方7.【答案】D【解析】解:根据题意可得:袋子中有3个白球,4个红球,共7个,从袋子中随机摸出一个球,它是红球的概率47. 故选:D .【考点】概率公式8.【答案】A【解析】解:由题意得,906030AOB ∠=︒-︒=︒, ()1100 m 2AB OA ==∴, 故选:A .【考点】解直角三角形的应用—方向角问题9.【答案】B【解析】解:设抛物线与x 轴交点横坐标分别为1x 、2x ,且12x x <,根据两个交点关于对称轴直线1x =对称可知:122x x +=,即212x -=,得23x =,∴抛物线与x 轴的另一个交点为()3,0,故选:B .【考点】二次函数的性质,抛物线与x 轴的交点10.【答案】D【解析】解:9040ACB ABC ∠=︒∠=︒∵,,90904050CAB ABC ∠=︒-∠=︒-︒=︒∴,∵将ABC △绕点B 逆时针旋转得到A BC ''△,使点C 的对应点C '恰好落在边AB 上,40A BA ABC A B AB ''∠=∠==∴,,()118040702BAA BA A ''∠=∠=︒-︒=︒∴, 5070120CAA CAB BAA ''∠=∠+∠=︒+︒=︒∴.故选:D . 【考点】旋转的性质二、11.【答案】1x ->【解析】解:5131x x +->,移项得,5311x x --->,合并得,22x ->,即1x ->,故答案为1x ->.【考点】解一元一次不等式12.【答案】6.1【解析】解:这个公司平均每人所创年利润是:()1102875 6.110+⨯+⨯=(万). 故答案为:6.1.【考点】加权平均数13.【答案】()12864x x +=【解析】解:∵矩形的宽为x ,且宽比长少12, ∴矩形的长为()12x +.依题意,得:()12864x x +=.故答案为:()12864x x +=.【考点】数学常识,由实际问题抽象出一元二次方程14.【答案】100【解析】解:∵四边形ABCD 是菱形,280AB CD BCD ACD ∠=∠=︒ ∴,,180ABC BCD ∠+∠=︒∴,18080100ABC ∠=︒-︒=︒∴;故答案为:100.【考点】菱形的性质15.【答案】8【解析】解:连接BD ,与AC 交于点O ,∵四边形ABCD 是正方形,AC x ⊥轴,BD ∴所在对角线平行于x 轴,()0,2B ∵,2OC BO AO DO ====∴,∴点A 的坐标为()2,4,248k =⨯=∴,故答案为:8.【解析】解:在矩形ABCD 中,AD BC ,DEF BCF ∴△∽△,DE DF BC BF=∴,10BD BF y DE x ====∵,,,10DF y =-∴,108x y y -=∴,化简得:808y x =+, y ∴关于x 的函数解析式为:808y x =+, 故答案为:808y x =+. 【考点】矩形的性质,相似三角形的判定与性质三、17.【答案】解:原式21232=--+=.【考点】实数的运算,平方差公式18.【答案】解:原式()()2222221122x x x x x x x x x x x+----=⋅-=-==-++. 【考点】分式的混合运算19.【答案】证明:AB AC =∵,B C ∠=∠∴(等边对等角), 在ABD △和ACE △中,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩()ABD ACE SAS ∴△≌△,AD AE =∴(全等三角形对应边相等), ADE AED ∠=∠∴(等边对等角). 【考点】全等三角形的判定与性质20.【答案】(1)420(2)5015(3)()504101550550231---÷⨯=,该校八年级学生读书量为3本的学生有231人.【解析】(1)解:由图表可知:被调查学生中,读书量为1本的学生数为4人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为20%,故答案为:4;20;(2)1020%50÷=,500.315⨯=,∴被调查学生的总人数为50人,其中读书量为2本的学生数为15人,故答案为:50;15.(3)具体解题过程参照答案【考点】用样本估计总体,频数(率)分布表,扇形统计图四、21.【答案】解:设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥,依题意,得:615360810440x y x y +=⎧⎨+=⎩, 解得:504x y =⎧⎨=⎩. 答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥. 【考点】二元一次方程组的应用22.【答案】(1)证明:AD CD =∵,DAC ACD ∠=∠∴,2180ADC ACD ∠+∠=︒∴,又∵四边形ABCD 内接于O ,180ABC ADC ∠+∠=︒∴,2ABC ACD ∠=∠∴;(2)解:连接OD 交AC 于点E ,PD ∵是O 的切线,OD DP ⊥∴,90ODP ∠=︒∴,又 AD CD =∵,OD AC AE EC ⊥=∴,,90DEC ∠=︒∴,AB ∵是O 的直径,90ACB ∠=︒∴,90ECP ∠=︒∴,23.【答案】解:(1)设甲气球的函数解析式为:y kx b =+,乙气球的函数解析式为:y mx n =+, 分别将()0,5,()20,25和()0,15,()20,25代入,52520b k b =⎧⎨=+⎩,152520n m n =⎧⎨=+⎩, 解得:15k b =⎧⎨=⎩,1215m n ⎧=⎪⎨⎪=⎩, ∴甲气球的函数解析式为:5y x =+,乙气球的函数解析式为:1152y x =+; (2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15 m ,且此时甲气球海拔更高, 1515152x x ⎛⎫+-+= ⎪⎝⎭∴, 解得:50x =,∴当这两个气球的海拔高度相差15 m 时,上升的时间为50 min .【考点】一次函数的应用五、24.【答案】解:(1)ABC ∵△中,90 6 cm 8 cm ACB AC BC ∠=︒==,,,()10 cm AB ===∴,当点D 与点A 重合时,10 cm BD AB ==,()10 5 s 2t ==∴; (2)当05t <<时,(D 在AB 上),DE BC ∵,ADE ABC ∴△∽△,DE AD AE BC AB AC==∴, 10268106DE t CE --==∴, 解得:408655t DE CE t -==,, 90DE BC ACB ∠=︒ ∵,,90CED ∠=︒∴,211408624242255255t S DE CE t t -=⋅=⨯⨯=-+∴; 如图2,当58t <<时,(D 在AC 上),则210AD t =-,162CD t =-∴,DE BC ∵,ADE ACB ∴△∽△,DE AE AD CB AB AC==∴, 21086DE t -=∴, 8403t DE -=∴, ()2118408104320162223333t S DE CD t t t -=⋅=⨯⨯-=-+-∴,综上所述,S 关于t 的函数解析式为()()22242405255810432058333t t S t t t ⎧-+⎪⎪=⎨⎪-+-⎪⎩<<<<.【考点】一元一次方程的应用,函数关系式,函数自变量的取值范围25.【答案】(1)CGA ∠;解:(2)12AD BD =,理由是: 如图,在CG 上取点M ,使GM AF =,连接AM ,EM , CAG CGA AG GA ∠=∠=∵,,()AGM GAF SAS ∴△≌△,AM GF AFG AMG =∠=∠∴,,GF DE AFG CDE =∠=∠∵,,AM DE AMG CDE =∠=∠∴,,AM DE ∴,∴四边形AMED 为平行四边形,AD EM AD EM = ∴,,BE CE =∵,即点E 为BC 中点,ME ∴为BCD △的中位线,12AD ME BD ==∴; (3)延长BA 至点N ,使AD AN =,连接CN ,90BAC NAC ∠=∠=︒∵,AC ∴垂直平分DN ,CD CN =∴,ACD ACN ∠=∠∴,设ACD ACN α∠==∠,则2ABC α∠=,则90ANC α∠=-,()18029090BCN ααα∠=---=-∴, BN BC =∴,即BCN △为等腰三角形, 设1AD =,则1AN =,2BD =, 43BC BN AB ===∴,,AC ==∴,AC AB =∴【解析】(1)解:(1)CA CG =∵, CAG CGA ∠=∠∴,故答案为:CGA ∠;【考点】三角形综合题26.【答案】(1)4(2)1(3)解:①21F y ax bx c =++∵:, 22F y ax bx c =-+∴:,t =∵1F ,2F ,可得:a a P c Q c b b ⎫⎫++-+⎪⎪⎪⎪⎝⎭⎝⎭,,a a PQ c cb b ⎛⎫=++--+= ⎪⎝⎭∴,112OPQ S =⨯=△∴; ②∵函数1F 和2F 的图象与x 轴正半轴分别交于点()5,0A ,()1,0B ,而函数1F 和2F 的图象关于y 轴对称,∴函数1F 的图象经过()5,0A 和()1,0-,∴设()()211545F y a x x ax ax a =+-=--:,则2245F y ax ax a =+-:,1F ∴的图象的对称轴是直线2x =,且5c a =-,5c a =-∴, 0c ∵>,则0a <,11c +>,而2F 的图象在0x >时,y 随x 的增大而减小,当01c <<时,1F 的图象y 随x 的增大而增大,2F 的图象y 随x 的增大而减小,∴当1x c =+时,245y ax ax a =+-的最大值为()()21415a c a c a +-+-, 245y ax ax a =+-的最小值为()()21415a c a c a +++-,则()()()()221415141588h a c a c a a c a c a ac a ⎡⎤=+-+--+++-=--⎣⎦, 又5c a =-∵, 28855h c c =+∴; 当12c 时,1F 的最大值为()()245494a a a a a⨯---=-,2F 的图象y 随x 的增大而减小, 2F ∴的最小值为:()()21415a c a c a +++-,则()()()()22291415141469h a a c a c a a c a c a ac ac a ⎡⎤=--+++-=-+-+-=---⎣⎦, 又5c a =-∵, 32169555h c c c =++∴, 当2c >时,1F 的图象y 随x 的增大而减小,2F 的图象y 随x 的增大而减小,∴当x c =时,245y ax ax a =--的最大值为245ac ac a --,当1x c =+时,245y ax ax a =--的最小值为()()21415a c a c a +-+-,则()()22451415h ac ac a a c a c a ⎡⎤=---+-+-⎣⎦, 又5c a =-∵, 22h c c =+∴;综上:h 关于x 的解析式为:()()2322880155169125552<<⎧+⎪⎪⎪++⎨⎪⎪+⎪⎩c c c c c c c c c . 【解析】解:(1)11F y x =+∵:,1F 和2F 关于y 轴对称,21F y x =-+∴:,分别令2x =,则213+=,211-+=-,()()2,32,1P Q -∴,,()314PQ =--=,故答案为:4;(2)13F y x=∵:, 可得:23F y x -=:, x t =∵,可得:33,,P t Q t t t -⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,, 3366PQ t t t-=-==∴, 解得:1t =,经检验:1t =是原方程的解,故答案为:1.【考点】二次函数综合题。

辽宁省大连市中考数学试卷及答案

辽宁省大连市中考数学试卷及答案

辽宁省大连市中考数学试卷及答案一、选择题(共10小题,每小题2分,满分20分)1.(2分)方程x2﹣2x=0的根是()A.x=0 B.x=2 C.x=0或x=2 D.x=0或x=﹣22.(2分)已知sina=,且a是锐角,则a=()A.75° B.60° C.45° D.30°3.(2分)下列方程中,有实数根的是()4.(2分)已知变量y和x成反比例,当x=3时,y=﹣6,那么当y=3时,x的值是()A.6 B.﹣6 C.9 D.﹣95.(2分)在半径为6cm的圆中,长为2πcm的弧所对的圆周角的度数是()A.30° B.45° C.60° D.90°6.(2分)在同一直角坐标系中,正比例函数y=﹣3x与反比例函数的图象的交点个数()A.3 B.2 C.1 D.07.(2分)如图,⊙O的直径为12cm,弦AB垂直平分半径OC,那么弦AB的长为()8.(2分)样本8,8,9,10,12,12,12,13的中位数和众数分别是()A.11,3 B.10,12 C.12,12 D.11,129.(2分)已知两圆的半径分别是2、3,圆心距是d,若两圆有公共点,则下列结论正确的是()A.d=1 B.d=5 C.1≤d≤5 D.1<d<510.(2分)李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出自行车行进路程y千米与行进时间t的函数图象的示意图,同学们画出的示意图如下,你认为正确的是()二、填空题(共10小题,每小题2分,满分20分)11.(2分)函数的自变量x的取值范围是_____________.12.(2分)已知x≤1,化简=_____________.13.(2分)设x1,x2是方程2x2﹣4x﹣3=0的两个根,则=_____________.14.(2分)方程的解是___________.15.(2分)已知a<0,那么点P(﹣a2﹣2,2﹣a)关于x轴的对称点P′在第___________象限.16.(2分)已知:如图,⊙O的弦AB平分弦CD,AB=10,CD=8.且PA<PB,则PB﹣PA =__________.17.(2分)半径分别为3cm和4cm的圆,一条内公切线长为7cm,则这条内公切线与连心线所夹的锐角的度数是__________度.18.(2分)小华用一张直径为20cm的圆形纸片,剪出一个面积最大的正六边形,这个正六边形的面积是__________cm2.19.(2分)为了考察一个养鸡场里鸡的生长情况,从中抽取5只,称得它们的重量如下(单位:千克):3.0,3.4,3.1,3.3,3.2,在这个问题中,样本方差是__________.20.(2分)矩形ABCD中,AB=3,AD=2,则以该矩形的一边为轴旋转一周而所得到的圆柱的表面积为__________.三、解答题(共10小题,满分80分)21.(5分)已知,求a3b+ab3的值.22.(5分)已知:如图,P是⊙O外一点,PA切⊙O于A,AB是⊙O的直径,PB交⊙O于C,若PA=2cm,PC=1cm,怎样求出图中阴影部分的面积S?写出你的探求过程.23.(6分)解方程:24.(8分)为增强学生的身体素质,某校坚持长年的全员体育锻炼,井定期进行体能测试.下面是将某班学生的立定跳远成绩(精确到0.01米)进行整理后,分成三组,画出的频率分布直方图的一部分.已知从左到右4个小组的频率分别是0.05,0.15,0.30,0.35,第5小组的频数是9.(1)请将频率分布直方图补充完整;(2)该班参加这次测试的学生有多少人?(3)若成绩在2.00米以上(含2.00米)的为合格,问该班成绩的合格率是多少?(4)这次测试中,你能肯定该班学生成绩的众数和中位数各落在哪一个组内吗?(只需写出能或不能,不必说明理由)25.(8分)为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定如下用水收费标准:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费.该市某户今年3,4月份的用水量和水费如下表所示:设某户该月用水量为x(立方米),应交水费y(元).(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?26.(8分)为了农田灌溉的需要,某乡利用一土堤修筑条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的上堆在两旁,使土堤高度比原来增加0.6米.(如图所示)求:(1)渠面宽EF;(2)修200米长的渠道需挖的土方数.27.(8分)某县位于沙漠边缘地带,治理沙漠、绿化家乡是全县人民的共同愿望,到1998年底,全县沙漠的绿化率已达30%,此后政府计划在近几年内,每年将当年年初未被绿化的沙漠面积的m%进行绿化,到底,全县沙漠的绿化率已达43.3%,求m值.(注:沙漠绿化率=)28.(10分)已知如图,抛物线y=ax2+bx+c过点A(﹣1,0),且经过直线y=x﹣3与坐标轴的两个交点B、C.(1)求抛物线的解析式;(2)求抛物线的顶点坐标;(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标.29.(10分)已知:如图(1),⊙O1与⊙O2相交于A、B两点,经过A点的直线分别交⊙O1、⊙O2于C、D两点(C、D不与B重合).连接BD,过C作BD的平行线交⊙O1于点E,连接BE.(1)求证:BE是⊙O2的切线;(2)如图(2),若两圆圆心在公共弦AB的同侧,其它条件不变,判断BE和⊙O2的位置关系;(不要求证明)(3)若点C为劣弧AB的中点,其它条件不变,连接AB、AE,AB与CE交于点F,如图(3),写出图中所有的相似三角形.(不另外连线,不要求证明)30.(12分)已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x 轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.(1)求证:PC⊥OA;(2)若△APO为等边三角形,求直线AB的解析式;(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,解析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.。

2023年辽宁省大连市中考数学真题(解析版)

2023年辽宁省大连市中考数学真题(解析版)

大连市2023年初中毕业升学考试数学注意事项:1.请在答题卡上作答,在试卷上作答无效.2.本试卷共五大题,26小题,满分150分.考试时间为120分钟.参考公式:抛物线()20y ax bx c a ++≠的顶点为24,24b ac b a a −− .一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有1个选项正确)1. -6的绝对值是( ) A. -6 B. 6C. -16D.16【答案】B 【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值. 【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6. 故选:B .2. 如图所示的几何体中,主视图是( )A. B. C. D.【分析】根据主视图是从正面看得到的图形解答即可. 【详解】解:从正面看看到的是,故选:B .【点睛】本题考查了三视图的知识,属于简单题,熟知主视图是从物体的正面看得到的视图是解题的关键. 3. 如图,直线,45,20AB CD ABE D ∠=∠=°°∥,则E ∠的度数为( )A. 20°B. 25°C. 30°D. 35°【答案】B 【解析】【分析】先根据平行线的性质可得45ABE BCD ∠∠==°,再根据三角形的外角性质即可得.【详解】解:,45AB CD ABE ∠=°Q ∥, 45ABE BCD ∴=∠=∠°, 20D ∠=°Q ,25BCD D E ∠−∠==∴∠°,故选:B .【点睛】本题考查了平行线的性质、三角形的外角性质,熟练掌握平行线的性质是解题关键. 4. 某种离心机的最大离心力为17000g .数据17000g 用科学计数法表示为( ) A. 40.1710×B. 51.710×C. 41.710×D. 31710×【分析】用科学记数法表示较大的数时,一般形式为10n a ×,其中1||10a ≤<,n 为整数. 【详解】解:417000 1.710=×. 故选:C .【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ×的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键. 5. 下列计算正确的是( )A.=B. +C.=D.)26−=−【答案】D 【解析】【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解. 【详解】解:A.)1=,故该选项不正确,不符合题意;B. +,故该选项不正确,不符合题意;C. =D.)26−=−故选:D .【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键. 6. 将方程13311xx x+=−−去分母,两边同乘()1x −后式子为( ) A. ()1331x x +=− B. ()1313x x +−=− C. 133x x −+=−D. ()1313x x +−=【答案】B 【解析】【分析】根据解分式方程的去分母的方法即可得.的【详解】解:13311x x x+=−−, 两边同乘()1x −去分母,得()1313x x +−=−, 故选:B .【点睛】本题考查了解分式方程,熟练掌握去分母的方法是解题关键.7. 已知蓄电池两端电压U 为定值,电流I 与R 成反比例函数关系.当4A I =时,10ΩR =,则当5A I =时,R 的值为( )A. 6ΩB. 8ΩC. 10ΩD. 12Ω【答案】B 【解析】【分析】利用待定系数法求出U 的值,由此即可得. 【详解】解:由题意得:UR I=, ∵当4A I =时,10ΩR =,104U ∴=,解得40U =,40R I ∴=,则当5A I =时,()Ω4085R ==, 故选:B .【点睛】本题考查了反比例函数,熟练掌握待定系数法是解题关键. 8. 圆心角为90°,半径为3的扇形弧长为( ) A. 2π B. 3πC.32π D.12π 【答案】C 【解析】【分析】根据弧长公式180n rl π=(弧长为l ,圆心角度数为n ,圆的半径为r ),由此计算即可. 【详解】解:该扇形的弧长90331801802n r l πππ×===, 故选:C .【点睛】本题考查了扇形的弧长计算公式180n rl π=(弧长为l ,圆心角度数为n ,圆的半径为r ),正确记忆弧长公式是解答此题的关键. 9. 已知抛物线221y x x =−−,则当03x ≤≤时,函数的最大值为( )A. 2−B. 1−C. 0D. 2【答案】D 【解析】【分析】把抛物线221y xx =−−化为顶点式,得到对称轴为1x =,当1x =时,函数的最小值为2−,再分别求出0x =和3x =时的函数值,即可得到答案. 【详解】解:∵()222112y x x x −−−−,∴对称轴为1x =,当1x =时,函数的最小值为2−,当0x =时,2211y x x =−−=−,当3x =时,232312y −×−, ∴当03x ≤≤时,函数的最大值为2, 故选:D【点睛】此题考查了二次函数的最值,熟练掌握二次函数的性质是解题的关键.10. 某小学开展课后服务,其中在体育类活动中开设了四种运动项目:乒乓球、排球、篮球、足球.为了解学生最喜欢哪一种运动项目,随机选取100名学生进行问卷调查(每位学生仅选一种),并将调查结果绘制成如下的扇形统计图.下列说法错误的是( )A. 本次调查的样本容量为100B. 最喜欢篮球的人数占被调查人数的30%C. 最喜欢足球的学生为40人D. “排球”对应扇形的圆心角为10°【答案】D 【解析】【分析】A.随机选取100名学生进行问卷调查,数量100就是样本容量,据此解答; B.由扇形统计图中喜欢篮球的占比解答; C.用总人数乘以40%即可解答;D.先用1减去足球、篮球、乒乓球的占比得到排球的占比,再利用360°乘以排球的占比即可解答.【详解】解:A. 随机选取100名学生进行问卷调查,数量100就是样本容量,故A正确;B.由统计图可知,最喜欢篮球的人数占被调查人数的30%,故B正确;C. 最喜欢足球的学生为10040%40×=(人),故C正确;D. “排球”对应扇形的圆心角为360(140%30%20%)36010%36°×−−−=°×=°,故D错误故选:D.【点睛】本题考查扇形统计图及其相关计算、总体、个体、样本容量、样本、用样本估计总体等知识,是基础考点,掌握相关知识是解题关键.二、填空题(本题共6小题,每小题3分,共18分)11. 93x>−的解集为_______________.【答案】3x>−【解析】【分析】根据不等式的性质解不等式即可求解.【详解】解:93x>−,解得:3x>−,故答案为:3x>−.【点睛】本题考查了求不等式的解集,熟练掌握不等式的性质是解题的关键.12. 一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球,记下标号后放回并再次摸出一个球,记下标号后放回.则两次标号之和为3的概率为_______________.【答案】1 2【解析】【分析】先画出树状图,从而可得两次摸球的所有等可能的结果,再找出两次标号之和为3的结果,然后利用概率公式求解即可得.【详解】解:由题意,画出树状图如下:由图可知,两次摸球的所有等可能的结果共有4种,其中,两次标号之和为3的结果有2种,则两次标号之和为3概率为2142P==, 故答案为:12.【点睛】本题考查了利用列举法求概率,熟练掌握列举法解题关键.13. 如图,在菱形ABCD 中,AC BD 、为菱形的对角线,60,10DBC BD °∠==,点F 为BC 中点,则EF 的长为_______________.【答案】5 【解析】【分析】根据题意得出BDC V 是等边三角形,进而得出10DC BD ==,根据中位线的性质即可求解. 【详解】解:∵在菱形ABCD 中,AC BD 、为菱形的对角线, ∴AB AD DC BC ===,AC BD ⊥, ∵60DBC ∠=°, ∴BDC V 是等边三角形, ∵10BD =, ∴10DC BD ==,∵E 是BD 的中点,点F 为BC 中点,∴152EF DC ==,的是故答案为:5.【点睛】本题考查了菱形的性质,等边三角形的性质与判定,中位线的性质,熟练掌握以上知识是解题的关键.14. 如图,在数轴上,1OB =,过O 作直线l OB ⊥于点O ,在直线l 上截取2OA =,且A 在OC 上方.连接AB ,以点B 为圆心,AB 为半径作弧交直线OB 于点C ,则C 点的横坐标为_______________.【答案】11 【解析】【分析】根据勾股定理求得AB ,根据题意可得BC AB ==,进而即可求解.【详解】解:∵l OB ⊥,1OB =,2OA =,在Rt AOB △中,AB ===,∴BC AB ==,∴1OC OB BC =+=+,O为原点,OC 为正方向,则C 点的横坐标为1+;故答案为:1+.【点睛】本题考查了勾股定理与无理数,实数与数轴,熟练掌握勾股定理是解题的关键.15. 我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8元钱,会多3钱;每人出7元钱,又差4钱,问人数有多少.设有x 人,则可列方程为:_______________. 【答案】8374x x −+ 【解析】【分析】设有x 人,每人出8元钱,会多3钱,则物品的钱数为:()83x −元,每人出7元钱,又差4钱,则物品的钱数为:()74+x 元,根据题意列出一元一次方程即可求解.【详解】设有x 人,每人出8元钱,会多3钱,则物品的钱数为:()83x −元,每人出7元钱,又差4钱,则物品的钱数为:()74+x 元, 则可列方程为:8374x x −+ 故答案为:8374x x −+.【点睛】本题考查了一元一次方程的应用,根据题意列出一元一次方程是解题的关键.16. 如图,在正方形ABCD 中,3AB =,延长BC 至E ,使2CE =,连接AE ,CF 平分DCE ∠交AE 于F ,连接DF ,则DF 的长为_______________.【解析】【分析】如图,过F 作FM BE ⊥于M ,FN CD ⊥于N ,由CF 平分DCE ∠,可知45FCM FCN ∠=∠=°,可得四边形CMFN 是正方形,FM AB ∥,设FM CM NF CN a ====,则2ME a =−,证明EFM EAB V V ∽,则FM ME AB BE =,即2332a a −=+,解得34a =,94DN CD CN =−=,由勾股定理得DF=,计算求解即可.【详解】解:如图,过F 作FM BE ⊥于M ,FN CD ⊥于N ,则四边形CMFN 是矩形,FM AB ∥,∵CF 平分DCE ∠, ∴45FCM FCN ∠=∠=°, ∴=CM FM ,∴四边形CMFN 是正方形,设FM CM NF CN a ====,则2ME a =−,∵FM AB ∥, ∴EFM EAB V V ∽,∴FM ME AB BE =,即2332a a −=+,解得34a =,∴94DN CD CN =−=,由勾股定理得DF =,【点睛】本题考查了正方形的判定与性质,勾股定理,相似三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.三、解答题(本题共4小题,其中17题9分,18、19、20题各10分,共39分)17. 计算:21123926a a a a − +÷+−+ . 【答案】23a − 【解析】【分析】先计算括号内的加法,再计算除法即可. 【详解】解:21123926a a a a − +÷+−+()()()()()312333323a a a a a a a −−=+÷+−+−+ ()()()223323a a a a a −−÷+−+()()()232332a a a a a +−⋅+−−23a =− 【点睛】此题考查了分式的混合运算,熟练掌握分式的运算法则和顺序是解题的关键.18. 某服装店的某件衣服最近销售火爆.现有A B 、两家供应商到服装店推销服装,两家服装价格相同,品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料,通过特殊操作检验出其纯度(单位:%),并对数据进行整理、描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72 73 74 75 76 78 79频数 1 1 5 3 3 1 1Ⅱ.B供应商供应材料的纯度(单位:%)如下:72 75 72 75 78 77 73 75 76 77 71 78 79 72 75Ⅲ.A B、两供应商供应材料纯度的平均数、中位数、众数和方差如下:平均数中位数众数方差A75 75 74 3.07B a75 b c根据以上信息,回答下列问题:(1)表格中的=a_______________,b=_______________,c=_______________;(2)你认为服装店应选择哪个供应商供应服装?为什么?【答案】(1)75,75,6(2)服装店应选择A供应商供应服装.理由见解析.【解析】【分析】(1)根据平均数、众数、方差的计算公式分别进行解答即可;(2)根据方差的定义,方差越小数据越稳定即可得出答案.【小问1详解】解:B供应商供应材料纯度的平均数为1(72375478277273767179)75 15××+×+×+×++++=,故75a=,75出现的次数最多,故众数75b=,方差22222222 1[3(7275)4(7575)2(7875)2(7775)(7375)(7675)(7175)(7975)]6 15c=−+−+−+−+−+−+−+−=故答案为:75,75,6【小问2详解】解:服装店应选择A供应商供应服装.理由如下:由于A、B平均值一样,B的方差比A的大,故A更稳定,所以选A供应商供应服装.【点睛】本题考查了方差、平均数、中位数、众数,熟悉相关的统计量的计算公式和意义是解答此题的关键.19. 如图,在ABC V 和ADE V 中,延长BC 交DE 于F ,,BC DEAC AE == ,180ACF AED ∠+∠=°.求证:AB AD =.【答案】证明见解析 【解析】【分析】由180ACF AED ∠+∠=°,180ACF ACB ∠+∠=°,可得ACB AED ∠=∠,证明()SAS ABC ADE △≌△,进而结论得证.【详解】证明:∵180ACF AED ∠+∠=°,180ACF ACB ∠+∠=°, ∴ACB AED ∠=∠, ∵BC DE =,ACB AED ∠=∠,AC AE =, ∴()SAS ABC ADE △≌△, ∴AB AD =.【点睛】本题考查了全等三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用. 20. 为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求20202022−年买书资金的平均增长率.【答案】20% 【解析】【分析】设20202022−年买书资金的平均增长率为x ,根据2022年买书资金=2020年买书资金()21x ×+建立方程,解方程即可得.【详解】解:设20202022−年买书资金的平均增长率为x , 由题意得:()2500017200x +=,解得0.220%x ==或 2.20x =−<(不符合题意,舍去),答:20202022−年买书资金的平均增长率为20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确建立方程是解题关键.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21. 如图所示是消防员攀爬云梯到小明家的场景.已知,,AE BE BC BE CD BE ⊥⊥∥,10.4m, 1.26m AC BC ==,点A 关于点C 的仰角为70°,则楼AE 的高度为多少m (结果保留整数.参考数据:sin700.94,cos700.34,tan70 2.75°°≈°≈≈)【答案】楼AE 的高度为11m 【解析】【分析】延长CD 交AE 于点F ,依题意可得 1.26m EF BC ==,在Rt ACF V ,根据sin AF AC ACF =⋅∠,求得AF ,进而根据AE AF EF =+,即可求解. 【详解】解:如图所示,延长CD 交AE 于点F ,∵,,AE BE BC BE CD BE ⊥⊥∥, ∴ 1.26m EF BC ==在Rt ACF V 中,70ACF ∠=°,10.4m AC =, ∵sin AFACF AC∠=, ∴sin 10.4sin 7010.40.949.776m AF AC ACF =⋅∠=×°≈×= ∴9.776 1.2611m AE AF EF =+=+≈, 答:楼AE 的高度为11m .【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.22. 为了增强学生身体素质,学校要求男女同学练习跑步.开始时男生跑了50m ,女生跑了80m ,然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m /s ,当到达终点时男、女均停止跑步,男生从开始匀速跑步到停止跑步共用时120s .已知x 轴表示从开始匀速跑步到停止跑步的时间,y 轴代表跑过的路程,则:(1)男女跑步的总路程为_______________.(2)当男、女相遇时,求此时男、女同学距离终点的距离. 【答案】(1)1000m (2)315m 【解析】【分析】(1)根据男女同学跑步的路程相等,求得男生跑步的路程,乘以2,即可求解(2)根据题意男生从开始匀速跑步到停止跑步的直线解析式为:50 4.5y x =+,求得女生的速度,进而得出解析式为3.580y x =+, 联立求得30s x =,进而即可求解. 【小问1详解】解:∵开始时男生跑了50m ,男生的跑步速度为4.5m /s ,从开始匀速跑步到停止跑步共用时100s . ∴男生跑步的路程为50 4.5100500+×=m , ∴男女跑步的总路程为50021000m ×=, 故答案为:1000m . 【小问2详解】解:男生从开始匀速跑步到停止跑步的直线解析式为:50 4.5y x =+, 设女生从开始匀速跑步到停止跑步的直线解析式为:80y kx =+, 依题意,女生匀速跑了50080420−=m ,用了120s ,则速度为420120 3.5÷=m/s , ∴3.580y x =+,联立50 4.53.580y x y x =+=+解得:30x =将30x =代入50 4.5y x =+ 解得:185y =,∴此时男、女同学距离终点的距离为500185315−=m .【点睛】本题考查了一次函数的应用,根据题意求得函数解析式是解题的关键.23. 如图1,在O e 中,AB 为O e 的直径,点C 为O e 上一点,AD 为CAB ∠的平分线交O e 于点D ,连接OD 交BC 于点E .(1)求BED ∠的度数;(2)如图2,过点A 作O e 的切线交BC 延长线于点F ,过点D 作DG AF P 交AB 于点G.若4AD DE =,求DG 的长.【答案】(1)90°;(2). 【解析】【分析】(1)根据圆周角定理证明两直线平行,再利用平行线性质证明角度相等即可; (2)由勾股定理找到边的关系,求出线段长,再利用等面积法求解即可. 【小问1详解】 ∵AB 是O e 的直径, ∴90ACB ∠=°, ∵AD 平分CAB ∠,的∴12BAD BAC ∠=∠,即2BAC BAD ∠=∠, ∵OA OD =, ∴BAD ODA ∠=∠,∴2BOD BAD ODA BAD ∠=∠+∠=∠, ∴BOD BAC ∠=∠, ∴OD AC P ,∴90OEB ACB ∠=∠=°, ∴90BED ∠=°, 【小问2详解】如图,连接BD ,设OA OB OD r ===,则4OE r =−,228AC OE r ==−,2AB r =, ∵AB 是O e 的直径, ∴90ADB ∠=°,在Rt ADB V 中,有勾股定理得:222BD AB AD =−由(1)得:90BED ∠=°, ∴90BED BEO ∠=∠=°,由勾股定理得:222BE OB OE =−,222BE BD DE =−,∴22222222BD AB AD BE DE OB OE DE =−=+=−+,∴()(()22222244r r r −=−−+,整理得:22350r r −−=,解得:7r =或5r =−(舍去), ∴214AB r ==,∴BD ===∵AF 是O e 的切线,∴AF AB ⊥, ∵DG AF P , ∴DG AB ⊥,∴11··22ABDS AD BD AB DG ==V ,∴·AD BD DG AB == 【点睛】此题考查了圆周角定理和勾股定理,三角形中位线定理,切线的性质,解一元二次方程,熟练掌握圆周角定理和勾股定理是解题的关键.五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24. 如图1,在平面直角坐标系xOy 中,直线y x =与直线BC 相交于点A ,(),0P t 为线段OB 上一动点(不与点B 重合),过点P 作PD x ⊥轴交直线BC 于点D .OAB V 与DPB V 的重叠面积为S .S 关于t 的函数图象如图2所示.(1)OB 的长为_______________;OAB V 的面积为_______________. (2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围. 【答案】(1)4,83(2)2218402331424443t t S t t t −+≤≤=−+<≤【解析】【分析】(1)根据函数图象即可求解. (2)根据(1)的结论,分403t ≤≤,443t <≤,根据OAB V 与DPB V 的重叠面积为S ,分别求解即可.【小问1详解】解:当0=t 时,P 点与O 重合,此时83ABO SS ==V , 当4t =时,0S =,即P 点与B 点重合, ∴4OB =,则()4,0B , 故答案为:4,83. 【小问2详解】∵A 在y x =上,则45OAB ∠=°设(),A a a ,∴1184223AOB S OB a a =××=××=V ∴43a =,则44,33A 当403t ≤≤时,如图所示,设DP 交OA 于点E , ∵45OAB ∠=°,DP OB ⊥, 则EP OP t == ∴28132S t =−当443t <≤时,如图所示,∵()4,0B ,44,33A 设直线AB 的解析式为y kx b =+, ∴404433k b k b +=+=解得:212b k = =−,∴直线AB 的解析式为122y x =−+, 当0x =时,2y =,则()0,2C , ∴2OC =,∵21tan 42DP OC CBO PD OB ∠====, ∵4BP t =−,则122DP t =−, ∴12DPBS S DP BP ==×V ()()222111144242244t t t t =××−=−=−+, 综上所述:2218402331424443t t S t t t −+≤≤=−+<≤.【点睛】本题考查了正切的定义,动点问题的函数图象,一次函数与坐标轴交点问题,从函数图象获取信息是解题的关键. 25. 综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知,90ABAC A =∠>°,点E 为AC 上一动点,将ABE V 以BE 为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D 落在BC 上时,2EDC ACB ∠=∠.” 小红:“若点E 为AC 中点,给出AC 与DC 的长,就可求出BE 的长.” 实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰ABC V 中,,90,ABAC A BDE =∠>°△由ABE V 翻折得到. (1)如图1,当点D 落在BC 上时,求证:2EDC ACB ∠=∠;(2)如图2,若点E 为AC 中点,43AC CD ==,,求BE 的长. 问题解决:小明经过探究发现:若将问题1中的等腰三角形换成90A ∠<°的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰ABC V 中,90,4,2A AB AC BD D ABD ∠<===∠=∠°.若1CD =,则求BC 的长.【答案】(1)见解析;(2;问题2:BC =【解析】【分析】(1)根据等边对等角可得ABC C ∠=∠,根据折叠以及三角形内角和定理,可得BDE A∠=∠1802C =°−∠,根据邻补角互补可得180EDC BDE ∠+∠=°,即可得证; (2)连接AD ,交BE 于点F ,则EF 是ADC △的中位线,勾股定理求得,AF BF ,根据BE BF EF =+即可求解;问题2:连接AD ,过点B 作BM AD ⊥于点M ,过点C 作CG BM ⊥于点G ,根据已知条件可得BM CD ∥,则四边形CGMD 是矩形,勾股定理求得AD ,根据三线合一得出,MD CG ,根据勾股定理求得BC 的长,即可求解.【详解】(1)∵等腰ABC V 中,,90,ABAC A BDE =∠>°△由ABE V 翻折得到∴ABC C ∠=∠,BDE A ∠=∠1802C =°−∠, ∵180EDC BDE ∠+∠=°, ∴2EDC ACB ∠=∠;(2)如图所示,连接AD ,交BE 于点F ,∵折叠,∴EA ED =,AF FD =,122AE AC ==,AD BE ⊥, ∵E 是AC 的中点, ∴EA EC =,∴1322EF CD ==,在Rt V AEF 中,AF ,在Rt ABF V 中,BF∴BE BF EF =+=问题2:如图所示,连接AD ,过点B 作BM AD ⊥于点M ,过点C 作CG BM ⊥于点G ,∵AB BD =,∴AM MD =,12ABM DBM ABD ∠=∠=∠, ∵2BDC ABD ∠=∠,∴BDC DBM ∠=∠, ∴BM CD ∥, ∴CD AD ⊥, 又CG BM ⊥,∴四边形CGMD 是矩形, 则CD GM =,在Rt ACD △中,1CD =,4=AD ,AD =,∴AM MD ==,CG MD ==在Rt BDM V 中,72BM =, ∴75122BGBM GM BM CD =−=−=−=,在Rt BCG V 中,BC【点睛】本题考查了等腰三角形的性质,折叠的性质,勾股定理,矩形的性质与判定,熟练掌握以上知识是解题的关键.26. 如图,在平面直角坐标系中,抛物线21:C y x =上有两点A B 、,其中点A 的横坐标为2−,点B 的横坐标为1,抛物线22:C y x bx c =−++过点A B 、.过A 作AC x ∥轴交抛物线1C 另一点为点C .以12AC AC 、长为边向上构造矩形ACDE .(1)求抛物线2C 的解析式;(2)将矩形ACDE 向左平移m 个单位,向下平移n 个单位得到矩形A C D E ′′′′,点C 的对应点C ′落在抛物线1C 上.①求n 关于m 的函数关系式,并直接写出自变量m 的取值范围;②直线A E ′′交抛物线1C 于点P ,交抛物线2C 于点Q .当点E ′为线段PQ 中点时,求m 的值; ③抛物线2C 与边E D A C ′′′′、分别相交于点M N 、,点M N 、在抛物线2C的对称轴同侧,当MN =时,求点C ′的坐标. 【答案】(1)224y x x =−−+(2)①()2404n m m m =−+<<;②m =5936C ′或5936C ′ 【解析】【分析】(1)根据题意得出点()2,4A −,()1,1B ,待定系数法求解析式即可求解;(2)①根据平移的性质得出()2,4C m n ′−−,根据点C 的对应点C ′落在抛物线1C 上,可得()224m n −=−,进而即可求解;②根据题意得出()()222,442,24,P m m m Q m m m −−++−−−−+,求得中点坐标,根据题意即可求解; ③连接MN ,过点N 作NG E D ′′⊥于点G ,勾股定理求得23MG =,设N 点的坐标为()2,24a a a −−+,的则22,263M a a a −−−+,将22,263M a a a−−−+代入224y x x =−−+,求得56a =,求得559,636N,进而根据C ′落在抛物线1C 上,将5936y =代入21:C y x =,即可求解.【小问1详解】解:依题意,点A 的横坐标为2−,点B 的横坐标为1,代入抛物线21:C y x = ∴当2x =−时,()224y =−=,则()2,4A −, 当1x =时,1y =,则()1,1B ,将点()2,4A −,()1,1B ,代入抛物线22:C y x bx c =−++, ∴()222411b c b c −−−+=−++=解得:24b c =− =∴抛物线2C 的解析式为224y x x =−−+; 【小问2详解】①解:∵AC x ∥轴交抛物线21:C y x =另一点为点C , 当4y =时,2x =±, ∴()2,4C ,∵矩形ACDE 向左平移m 个单位,向下平移n 个单位得到矩形A C D E ′′′′,点C 的对应点C ′落在抛物线1C 上∴()2,4C m n ′−−,()224m n −=− 整理得24n m m =−+ ∵0,0m n >> ∴04m <<∴()2404n m m m =−+<<; ②如图所示,∵()2,4A −,()2,4C ∴4AC =,∵122AE AC == ∴()2,6E −,由①可得()22,44A m m m ′−−−+,()22,46E m m m ′−−−+∴P ,Q 的横坐标为2m −−,分别代入 21:C y x =,224y x x =−−+ ∴()()222,442,24,P m m m Q m m m −−++−−−−+,∴22442442m m m m m ++−−+=+∴PQ 的中点坐标为()2,4m m −−+ ∵点E ′为线段PQ 的中点, ∴2464m m m −+=+解得:m =m =(大于4,舍去) ③如图所示,连接MN ,过点N 作NG E D ′′⊥于点G ,则2NG =,∵MN =∴23MG =, 设N 点的坐标为()2,24a a a −−+,则22,263M a a a −−−+, 将22,263M a a a−−−+代入224y x x =−−+, 2222242633a a a a−−−×−+=−−+,解得:56a =, 当56a =,22555924246636a a −−+=−−×+=∴559,636N, 将5936y =代入21:C y x =解得:12x x ==,∴5936C ′或5936C′ . 【点睛】本题考查了二次函数综合运用,矩形的性质,平移的性质,熟练掌握二次函数的性质是解题的关键.。

2020年辽宁省大连市中考数学试题及参考答案(word解析版)

2020年辽宁省大连市中考数学试题及参考答案(word解析版)

大连市2020年初中毕业升学考试数学试卷(满分150,考试时间120分钟)一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.下列四个数中,比﹣1小的数是()A.﹣2 B.﹣C.0 D.12.如图是由5个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为()A.360×102B.36×103C.3.6×104D.0.36×1054.如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°5.平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)6.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(﹣2a2)3=﹣6a67.在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A.B.C.D.8.如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为()A.100m B.100m C.100m D.m9.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)10.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°二、填空题(本题共6小题,每小题3分,共18分)11.不等式5x+1>3x﹣1的解集是.12.某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A 1 10B 2 8C 7 5这个公司平均每人所创年利润是万元.13.我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为.14.如图,菱形ABCD中,∠ACD=40°,则∠ABC=°.15.如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y=(x>0)的图象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为.16.如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为.(第14题图)(第15题图)(第16题图)三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)计算(+1)(﹣1)++.18.(9分)计算﹣1.19.(9分)如图,△ABC中,AB=AC,点D,E在边BC上,BD=CE.求证:∠ADE=∠AED.20.(12分)某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为 人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为 %;(2)被调查学生的总人数为 人,其中读书量为2本的学生数为 人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.(9分)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?22.(10分)四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,AD =CD .(1)如图1,求证∠ABC =2∠ACD ;(2)过点D 作⊙O 的切线,交BC 延长线于点P (如图2).若tan ∠CAB =,BC =1,求PD的长.23.(10分)甲、乙两个探测气球分别从海拔5m 和15m 处同时出发,匀速上升60min .如图是甲、乙两个探测气球所在位置的海拔y (单位:m )与气球上升时间x (单位:min )的函数图象.(1)求这两个气球在上升过程中y 关于x 的函数解析式;(2)当这两个气球的海拔高度相差15m 时,求上升的时间.读书量 频数(人) 频率 1本 4 2本 0.3 3本 4本及以上 10五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.(11分)如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点D从点B出发,沿边BA →AC以2cm/s的速度向终点C运动,过点D作DE∥BC,交边AC(或AB)于点E.设点D的运动时间为t(s),△CDE的面积为S(cm2).(1)当点D与点A重合时,求t的值;(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.25.(11分)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.26.(12分)在平面直角坐标系xOy中,函数F1和F2的图象关于y轴对称,它们与直线x=t(t>0)分别相交于点P,Q.(1)如图,函数F1为y=x+1,当t=2时,PQ的长为;(2)函数F1为y=,当PQ=6时,t的值为;(3)函数F1为y=ax2+bx+c(a≠0),①当t=时,求△OPQ的面积;②若c>0,函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),当c≤x≤c+1时,设函数F1的最大值和函数F2的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.下列四个数中,比﹣1小的数是()A.﹣2 B.﹣C.0 D.1【知识考点】有理数大小比较.【思路分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解题过程】解:根据有理数比较大小的方法,可得﹣2<﹣1,0>﹣1,﹣>﹣1,1>﹣1,∴四个数中,比﹣1小的数是﹣2.故选:A.【总结归纳】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.如图是由5个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,画出从正面看所得到的图形即可.【解题过程】解:从正面看,底层是三个小正方形,上层右边的一个小正方形.故选:B.【总结归纳】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.3.2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为()A.360×102B.36×103C.3.6×104D.0.36×105【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解题过程】解:36000=3.6×104,故选:C.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°【知识考点】平行线的性质;三角形内角和定理.【思路分析】利用三角形内角和定理求出∠C,再根据平行线的性质求出∠AED即可.【解题过程】解:∵∠C=180°﹣∠A﹣∠B,∠A=60°,∠B=40°,∴∠C=80°,∵DE∥BC,∴∠AED=∠C=80°,故选:D.【总结归纳】本题考查三角形内角和定理,平行线的性质,解题的关键是熟练掌握三角形内角和定理,平行线的性质解决问题,属于中考常考题型.5.平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解题过程】解:点P(3,1)关于x轴对称的点的坐标是(3,﹣1)故选:B.【总结归纳】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(﹣2a2)3=﹣6a6【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】分别根据合并同类项法则,同底数幂的乘法法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.【解题过程】解:A.a2与a3不是同类项,所以不能合并,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.(a2)3=a6,故本选项符合题意;D.(﹣2a2)3=﹣8a6,故本选项不合题意.故选:C.【总结归纳】本题主要考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.7.在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A.B.C.D.【知识考点】概率公式.【思路分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.【解题过程】解:根据题意可得:袋子中有3个白球,4个红球,共7个,从袋子中随机摸出一个球,它是红球的概率.故选:D.【总结归纳】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为()A.100m B.100m C.100m D.m【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】根据题意求出∠AOB,根据直角三角形的性质解答即可.【解题过程】解:由题意得,∠AOB=90°﹣60°=30°,∴AB=OA=100(m),故选:A.【总结归纳】本题考查的是解直角三角形的应用﹣方向角问题,掌握方向角的概念、熟记含30度角的直角三角形的性质是解题的关键.9.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)【知识考点】二次函数的性质;抛物线与x轴的交点.【思路分析】根据抛物线的对称性和(﹣1,0)为x轴上的点,即可求出另一个点的交点坐标.【解题过程】解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2,根据两个交点关于对称轴直线x=1对称可知:x1+x2=2,即x2﹣1=2,得x2=3,∴抛物线与x轴的另一个交点为(3,0),故选:B.【总结归纳】本题考查了抛物线与x轴的交点,要知道抛物线与x轴的两交点关于对称轴对称.10.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°【知识考点】旋转的性质.【思路分析】根据旋转可得∠A′BA=∠ABC=40°,A′B=AB,得∠BAA′=70°,根据∠CAA'=∠CAB+∠BAA′,进而可得∠CAA'的度数.【解题过程】解:∵∠ACB=90°,∠ABC=40°,∴∠CAB=90°﹣∠ABC=90°﹣40°=50°,∵将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,∴∠A′BA=∠ABC=40°,A′B=AB,∴∠BAA′=∠BA′A=(180°﹣40°)=70°,∴∠CAA'=∠CAB+∠BAA′=50°+70°=120°.故选:D.【总结归纳】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.二、填空题(本题共6小题,每小题3分,共18分)11.不等式5x+1>3x﹣1的解集是.【知识考点】解一元一次不等式.【思路分析】先对不等式进行移项,合并同类项,再系数化1即可求得不等式的解集.【解题过程】解:5x+1>3x﹣1,移项得,5x﹣3x>﹣1﹣1,合并得,2x>﹣2,即x>﹣1,故答案为x>﹣1.【总结归纳】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A 1 10B 2 8C 7 5这个公司平均每人所创年利润是万元.【知识考点】加权平均数.【思路分析】直接利用表格中数据,求出10人的总创年利润进而求出平均每人所创年利润.【解题过程】解:这个公司平均每人所创年利润是:(10+2×8+7×5)=6.1(万).故答案为:6.1.【总结归纳】此题主要考查了加权平均数,正确利用表格获取正确信息是解题关键.13.我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为.【知识考点】数学常识;由实际问题抽象出一元二次方程.【思路分析】由矩形的宽及长与宽之间的关系可得出矩形的长为(x+12)步,再利用矩形的面积公式即可得出关于x的一元二次方程,此题得解.【解题过程】解:∵矩形的宽为x步,且宽比长少12步,∴矩形的长为(x+12)步.依题意,得:x(x+12)=864.故答案为:x(x+12)=864.【总结归纳】本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.14.如图,菱形ABCD中,∠ACD=40°,则∠ABC=°.【知识考点】菱形的性质.【思路分析】由菱形的性质得出AB∥CD,∠BCD=2∠ACD=80°,则∠ABC+∠BCD=180°,即可得出答案.【解题过程】解:∵四边形ABCD是菱形,∴AB∥CD,∠BCD=2∠ACD=80°,∴∠ABC+∠BCD=180°,∴∠ABC=180°﹣80°=100°;故答案为:100.【总结归纳】本题考查了菱形的性质、平行线的性质;熟练掌握菱形的性质是解题的关键.15.如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y=(x>0)的图象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为.【知识考点】反比例函数图象上点的坐标特征;正方形的性质.【思路分析】连接BD,与AC交于点O′,利用正方形的性质得到O′A=O′B=O′C=O′D=2,从而得到点A坐标,代入反比例函数表达式即可.【解题过程】解:连接BD,与AC交于点O′,∵四边形ABCD是正方形,AC⊥x轴,∴BD所在对角线平行于x轴,∵B(0,2),∴O′C=2=BO′=AO′=DO′,∴点A的坐标为(2,4),∴k=2×4=8,故答案为:8.【总结归纳】本题考查了正方形的性质,反比例函数表达式的求法,解题的关键是利用正方形的性质求出点A的坐标.16.如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为.【知识考点】矩形的性质;相似三角形的判定与性质.【思路分析】根据题干条件可证得△DEF∽△BCF,从而得到,由线段比例关系即可求出函数解析式.【解题过程】解:在矩形中,AD∥BC,∴△DEF∽△BCF,∴,∵BD==10,BF=y,DE=x,∴DF=10﹣y,∴,化简得:,∴y关于x的函数解析式为:,故答案为:.【总结归纳】本题主要考查的是相似三角形的判定与性质定理,难度不大,熟练掌握性质和判定定理是解得本题的关键,注意掌握数形结合思想与函数思想的应用.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)计算(+1)(﹣1)++.【知识考点】实数的运算;平方差公式.【思路分析】原式利用平方差公式,立方根、算术平方根性质计算即可求出值.【解题过程】解:原式=2﹣1﹣2+3=2.【总结归纳】此题考查了平方差公式,以及实数的运算,熟练掌握公式及运算法则是解本题的关键.18.(9分)计算﹣1.【知识考点】分式的混合运算.【思路分析】直接利用分式的混合运算法则分别化简得出答案.【解题过程】解:原式=•﹣1=﹣1==﹣.【总结归纳】此题主要考查了分式的混合运算,正确化简分式是解题关键.19.(9分)如图,△ABC中,AB=AC,点D,E在边BC上,BD=CE.求证:∠ADE=∠AED.【知识考点】全等三角形的判定与性质.【思路分析】根据等腰三角形等边对等角的性质可以得到∠B=∠C,然后证明△ABD和△ACE 全等,根据全等三角形对应边相等有AD=AE,再根据等边对等角的性质即可证明.【解题过程】证明:∵AB=AC,∴∠B=∠C(等边对等角),在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴AD=AE(全等三角形对应边相等),∴∠ADE=∠AED(等边对等角).【总结归纳】本题考查了全等三角形的判定与性质以及等腰三角形的性质,找出已知边的夹角相等是证明三角形全等的关键,也是本题的突破点.20.(12分)某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.读书量频数(人)频率1本 42本0.33本4本及以上10根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为%;(2)被调查学生的总人数为人,其中读书量为2本的学生数为人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.【知识考点】用样本估计总体;频数(率)分布表;扇形统计图.【思路分析】(1)直接根据图表信息可得;(2)用4本及以上对应的频数除以所占百分比可得总人数,再乘以读书量为2本的频率即可;(3)求出读书量为3本的人数,除以样本人数50,再乘以全校总人数550可得结果.【解题过程】解:(1)由图表可知:被调查学生中,读书量为1本的学生数为4人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为20%,故答案为:4;20;(2)10÷20%=50人,50×0.3=15人,∴被调查学生的总人数为50人,其中读书量为2本的学生数为15人,故答案为:50;15;(3)(50﹣4﹣10﹣15)÷50×550=231人,该校八年级学生读书量为3本的学生有231人.【总结归纳】本题考查了频数统计表和扇形统计图,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.(9分)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?【知识考点】二元一次方程组的应用.【思路分析】设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥,根据“第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解题过程】解:设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥,依题意,得:,解得:.答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.【总结归纳】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(10分)四边形ABCD内接于⊙O,AB是⊙O的直径,AD=CD.(1)如图1,求证∠ABC=2∠ACD;(2)过点D作⊙O的切线,交BC延长线于点P(如图2).若tan∠CAB=,BC=1,求PD 的长.【知识考点】垂径定理;圆周角定理;圆内接四边形的性质;切线的性质;解直角三角形.【思路分析】(1)由等腰三角形的性质得出∠DAC=∠ACD,由圆内接四边形的性质得出∠ABC+∠ADC=180°,则可得出答案;(2)由切线的性质得出∠ODP=90°,由垂径定理得出∠DEC=90°,由圆周角定理∠ACB=90°,可得出四边形DECP为矩形,则DP=EC,求出EC的长,则可得出答案.【解题过程】(1)证明:∵AD=CD,∴∠DAC=∠ACD,∴∠ADC+2∠ACD=180°,又∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∴∠ABC=2∠ACD;(2)解:连接OD交AC于点E,∵PD是⊙O的切线,∴OD⊥DP,∴∠ODP=90°,又∵=,∴OD⊥AC,AE=EC,∴∠DEC=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ECP=90°,∴四边形DECP为矩形,∴DP=EC,∵tan∠CAB=,BC=1,∴,∴AC=,∴EC=AC=,∴DP=.【总结归纳】本题考查了切线的性质,圆周角定理的应用,圆内接四边形的性质,垂径定理,解直角三角形等知识,熟练切线的性质是解题的关键.23.(10分)甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.【知识考点】一次函数的应用.【思路分析】(1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x大于20时,两个气球的海拔高度可能相差15m,可得方程x+5﹣(x+15)=15,解之即可.【解题过程】解:(1)设甲气球的函数解析式为:y=kx+b,乙气球的函数解析式为:y=mx+n,分别将(0,5),(20,25)和(0,15),(20,25)代入,,,解得:,,∴甲气球的函数解析式为:y=x+5,乙气球的函数解析式为:y=x+15;(2)由初始位置可得:当x大于20时,两个气球的海拔高度可能相差15m,且此时甲气球海拔更高,∴x+5﹣(x+15)=15,解得:x=50,∴当这两个气球的海拔高度相差15m时,上升的时间为50min.【总结归纳】本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象.五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.(11分)如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点D从点B出发,沿边BA →AC以2cm/s的速度向终点C运动,过点D作DE∥BC,交边AC(或AB)于点E.设点D的运动时间为t(s),△CDE的面积为S(cm2).(1)当点D与点A重合时,求t的值;(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.【知识考点】函数关系式;函数自变量的取值范围.【思路分析】(1)根据勾股定理即可得到结论;(2)根据相似三角形的判定和性质以及三角形的面积公式即可得到结论.【解题过程】解:(1)∵△ABC中,∠ACB=90°,AC=6cm,BC=8cm,∴AB===10(cm),当点D与点A重合时,BD=AB=10cm,∴t==5(s);(2)当0<t<5时,(D在AB上),∵DE∥BC,∴△ADE∽△ABC,∴,∴==,解得:DE=,CE=t,∵DE∥BC,∠ACB=90°,∴∠CED=90°,∴S=DE•CE=×t=﹣t2+;当t=5时,点D与点A重合,△CDE不存在;如图2,当5<t<8时,(D在AC上),则AD=2t﹣10,∴CD=16﹣2t,∵DE∥BC,∴△ADE∽△ACB,∴==,∴=,∴DE=,∴S=DE•CD=×(16﹣2t)=﹣t2+t﹣,综上所述,S关于t的函数解析式为S=.【总结归纳】本题考查了函数关系式,相似三角形的判定和性质,勾股定理,正确的理解题意是解题的关键.25.(11分)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.【知识考点】三角形综合题.【思路分析】(1)根据等腰三角形等边对等角回答即可;(2)在CG上取点M,使GM=AF,连接AM,EM,证明△AGM≌△GAF,得到AM=GF,∠AFG=∠AMG,从而证明四边形AMED为平行四边形,得到AD=EM,AD∥EM,最后利用中位线定理得到结论;(3)延长BA至点N,使AD=AN,连接CN,证明△BCN为等腰三角形,设AD=1,可得AB 和BC的长,利用勾股定理求出AC,即可得到的值.【解题过程】解:(1)∵CA=CG,∴∠CAG=∠CGA,故答案为:∠CGA;(2)AD=BD,理由是:如图,在CG上取点M,使GM=AF,连接AM,EM,∵∠CAG=∠CGA,AG=GA,∴△AGM≌△GAF(SAS),∴AM=GF,∠AFG=∠AMG,∵GF=DE,∠AFG=∠CDE,∴AM=DE,∠AMG=∠CDE,∴AM∥DE,∴四边形AMED为平行四边形,∴AD=EM,AD∥EM,∵BE=CE,即点E为BC中点,∴ME为△BCD的中位线,∴AD=ME=BD;(3)延长BA至点N,使AD=AN,连接CN,∵∠BAC=∠NAC=90°,∴AC垂直平分DN,∴CD=CN,∴∠ACD=∠ACN,设∠ACD=α=∠ACN,则∠ABC=2α,则∠ANC=90﹣α,∴∠BCN=180﹣2α﹣(90﹣α)=90﹣α,∴BN=BC,即△BCN为等腰三角形,设AD=1,则AN=1,BD=2,∴BC=BN=4,AB=3,∴AC=,∴.【总结归纳】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,平行四边形的判定和性质,中位线定理,解题的关键是根据题意构造平行四边形,转化已知条件.26.(12分)在平面直角坐标系xOy中,函数F1和F2的图象关于y轴对称,它们与直线x=t(t>0)分别相交于点P,Q.(1)如图,函数F1为y=x+1,当t=2时,PQ的长为;(2)函数F1为y=,当PQ=6时,t的值为;(3)函数F1为y=ax2+bx+c(a≠0),①当t=时,求△OPQ的面积;②若c>0,函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),当c≤x≤c+1时,设函数F1的最大值和函数F2的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.【知识考点】二次函数综合题.【思路分析】(1)根据F1和F2关于y轴对称得出F2的解析式,求出P、Q两点坐标,即可得到PQ;(2)根据F1和F2关于y轴对称得出F2的解析式,求出P、Q两点坐标,根据PQ=6得出方程,解出t值即可;(3)①根据F1和F2关于y轴对称得出F2的解析式,将x=代入解析式,求出P、Q两点坐标,从而得出△OPQ的面积;②根据题意得出两个函数的解析式,再分当0<c<1时,当1≤c≤2时,当c>2时,三种情况,分析两个函数的增减性,得出最值,相减即可.【解题过程】解:(1)∵F1:y=x+1,F1和F2关于y轴对称,∴F2:y=﹣x+1,分别令x=2,则2+1=3,﹣2+1=﹣1,∴P(2,3),Q(2,﹣1),∴PQ=3﹣(﹣1)=4,故答案为:4;(2)∵F1:,可得:F2:,∵x=t,可得:P(t,),Q(t,),∴PQ=﹣==6,解得:t=1,经检验:t=1是原方程的解,故答案为:1;(3)①∵F1:y=ax2+bx+c,∴F2:y=ax2﹣bx+c,∵t=,分别代入F1,F2,可得:P(,),Q(,),∴PQ=||=,∴S△OPQ==1;②∵函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),而函数F1和F2的图象关于y轴对称,∴函数F1的图象经过A(5,0)和(﹣1,0),∴设F1:y=a(x+1)(x﹣5)=ax2﹣4ax﹣5a,则F2:y=ax2+4ax﹣5a,∴F1的图象的对称轴是直线x=2,且c=﹣5a,∴a=,∵c>0,则a<0,c+1>1,而F2的图象在x>0时,y随x的增大而减小,当0<c<1时,F1的图象y随x的增大而增大,F2的图象y随x的增大而减小,∴当x=c+1时,y=ax2﹣4ax﹣5a的最大值为a(c+1)2﹣4a(c+1)﹣5a,y=ax2+4ax﹣5a的最小值为a(c+1)2+4a(c+1)﹣5a,则h=a(c+1)2﹣4a(c+1)﹣5a﹣[a(c+1)2+4a(c+1)﹣5a]=﹣8ac﹣8a,又∵a=,∴h=;当1≤c≤2时,F1的最大值为=﹣9a,F2的图象y随x的增大而减小,∴F2的最小值为:a(c+1)2+4a(c+1)﹣5a,则h=﹣9a﹣[a(c+1)2+4a(c+1)﹣5a]=﹣a(c+1)2﹣4a(c+1)﹣4a=﹣ac2﹣6ac﹣9a,又∵a=,∴h=,当c>2时,F1的图象y随x的增大而减小,F2的图象y随x的增大而减小,∴当x=c时,y=ax2﹣4ax﹣5a的最大值为ac2﹣4ac﹣5a,当x=c+1时,y=ax2+4ax﹣5a的最小值为a(c+1)2+4a(c+1)﹣5a,则h=ac2+4ac﹣5a﹣[a(c+1)2+4a(c+1)﹣5a],又∵a=,∴h=2c2+c;综上:h关于x的解析式为:h=.【总结归纳】本题是二次函数综合题,考查了一次函数,反比例函数,以及二次函数的图象与性质,二次函数的最值,解题的关键是要理解题意,尤其(3)问中要读懂题干,结合图象进行分析求解.21。

2021年辽宁大连中考真题数学试卷(含答案解析)

2021年辽宁大连中考真题数学试卷(含答案解析)

2021年辽宁大连中考真题数学试卷(含答案解析)一、选择题(本大题共10小题,每小题3分,共30分)1、−5的相反数是().A. −15B. 15C. 5D. −52、某几何体的展开图如图所示,该几何体是().A.B.C.D.3、2021年党中央首次颁发“光荣在党50年”纪念章,约7100000名党员获此纪念章,数7100000用科学记数法表示为().A. 71×105B. 7.1×105C. 7.1×106D. 0.71×1074、如图,AB//CD,CE⊥AD,垂足为E,若∠A=40°,则∠C的度数为().A. 40°B. 50°C. 60°D. 90°5、下列运算正确的是().A. (a2)3=a8B. a2⋅a3=a5C. (−3a)2=6a2D. 2ab2+3ab2=5a2b46、某校健美操队共有10名队员,统计队员的年龄情况,结果如下:13岁3人,14岁5人,15岁2人,该健美操队队员的平均年龄为().A. 14.2岁B. 14.1岁C. 13.9岁D. 13.7岁7、下列计算正确的是().A. (−√3)2=−3B. √12=2√33=1C. √−1D. (√2+1)(√2−1)=38、“杂交水稻之父”袁隆平和他的团队探索培育的“海水稻”在某试验田的产量逐年增加,2018年平均亩产量约500公斤,2020年平均亩产量约800公斤.若设平均亩产量的年平均增长率为x,根据题意,可列方程为().A. 500(1+x)=800B. 500(1+2x)=800C. 500(1+x2)=800D. 500(1+x)2=8009、如图,在△ABC中,∠ACB=90°,∠BAC=α,将△ABC绕点C顺时针旋转90°得到△A′B′C,点B的对应点B′在边AC上(不与点A,C重合),则∠AA′B′的度数为().A. αB. α−45°C. 45°−αD. 90°−α10、下列说法正确的是().中自变量x的取值范围是x≠0;①反比例函数y=2x②点P(−3,2)在反比例函数y=−6的图象上;x的图象,在每一个象限内,y随x的增大而增大.③反比例函数y=3xA. ①②B. ①③C. ②③D. ①②③二、填空题(本大题共6小题,每小题3分,共18分)11、不等式3x<x+6的解集是.12、在平面直角坐标系中,将点A(−2,3)向右平移4个单位长度后得到点A′,则A′的坐标为.13、一个不透明的口袋中有两个完全相同的小球,把它们分别标号为1,2.随机摸取一个小球后,放回并摇匀,再随机摸取一个小球,两次取出的小球标号的和等于4的概率为.14、我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足”其大意是:“牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完”若设有牧童x人,根据题意,可列方程为.15、如图,在菱形ABCD中,∠BAD=60°,点E在边BC上,将△ABE沿直线AE翻折180°,得到△AB′E,点B的对应点是点B′,若AB′⊥BD,BE=2,则BB′的长是.16、如图,在正方形ABCD中,AB=2,点E在边BC上,点F在边AD的延长线上AF=EF,设BE=x,AF=y,当0<x<2时,y关于x的函数解析式为.三、解答题(本大题共4小题,共39分)17、计算:a+3a−3⋅a2+3aa2+6a+9−3a−3.18、某校计划举办以“庆祝建党百年,传承红色基因”为主题的系列活动,活动分为红歌演唱、诗歌朗诵、爱国征文及党史知识竞赛,要求每名学生都参加活动且只能选择一项活动.为了解学生参加活动的情况,随机选取该学校部分学生进行调查,以下是根据调查结果绘制的统计图表的一部分.据以上信息,回答下列问题:(1) 被调查的学生中,参加红歌演唱活动的学生人数为人,参加爱国征文活动的学生人数占被调查学生总人数的百分比为%.(2) 本次调查的样本容量为,样本中参加党史知识竞赛活动的学生人数为人.(3) 若该校共有800名学生,请根据调查结果,估计参加诗歌朗诵活动的学生人数.19、如图,点A,D,B,E在一条直线上,AD=BE,AC=DF,AC//DF.求证:BC=EF.20、某校为实现垃圾分类投放,准备在校园内摆放大、小两种垃圾桶.购买2个大垃圾桶和4个小垃圾桶共需600元;购买6个大垃圾桶和8个小垃圾桶共需1560元.(1) 求大、小两种垃圾桶的单价.(2) 该校购买8个大垃圾桶和24个小垃圾桶共需多少元?四、解答题(本大题共3小题,共29分)21、如图,建筑物BC上有一旗杆AB,从与BC相距20m的D处观测旗杆顶部A的仰角为57°,观测旗杆底部B的仰角为50°,求旗杆AB的高度.(结果取整数)(参考数据:sin⁡50°≈0.766,cos⁡50°≈0.643,tan⁡50°≈1.192;sin⁡57°≈0.839,cos⁡57°≈0.545,tan⁡57°≈1.540)22、如图1,△ABC内接于⊙O,直线MN与⊙O相切于点D,OD与BC相交于点E,BC//MN.(1) 求证:∠BAC=∠DOC.(2) 如图2,若AC是⊙O的直径,E是OD的中点,⊙O的半径为4,求AE的长.23、某电商销售某种商品一段时间后,发现该商品每天的销售量y(单位:千克)和每千克的售价x(单位:元)满足一次函数关系(如图所示),其中50⩽x⩽80,(1) 求y关于x的函数解析式.(2) 若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?五、解答题(本大题共3小题,共34分)24、如图,四边形ABCD为矩形,AB=3,BC=4,P、Q均从点B出发,点P以2个单位每秒的速度沿BA−AC的方向运动,点Q以1个单位每秒的速度沿BC−CD运动,设运动时间为t秒.(1) 求AC的长.(2) 若S△BPQ=S,求S关于t的解析式.25、已知AB=BD,AE=EF,∠ABD=∠AEF.(1) 找出与∠DBF相等的角并证明.(2) 求证:∠BFD=∠AFB.(3) AF=kDF,∠EDF+∠MDF=180°,求AEMF.26、已知函数y={−12x2+12x+m(x<m)x2−mx+m(x⩾m),记该函数图象为G.(1) 当m=2时.①已知M(4,n)在该函数图象上,求n的值.②当0⩽x⩽2时,求函数G的最大值.(2) 当m>0时,作直线x=12m与x轴交于点P,与函数G交于点Q,若∠POQ=45°时,求m的值.(3) 当m⩽3时,设图象与x轴交于点A,与y轴交于点B,过B作BC⊥BA交直线x=m于点C,设点A的横坐标为a,C点的纵坐标为c,若a=−3c,求m的值.答案解析:1 、【答案】 C;【解析】根据相反数的定义得:−5的相反数为5.故选C.2 、【答案】 D;【解析】扇形和圆折叠后,能围成的几何体是圆锥.故选:D.3 、【答案】 C;【解析】科学记数法是一种记数的方法.把一个数表示成a与10的n次幂相乘的形式(1⩽|a|< 10,a不为分数形式,n为整数),这种记数法叫做科学记数法.7100000用科学记数法表示为7.1×106.故选C.4 、【答案】 B;【解析】∵AB//CD,∠A=40°,∴∠D=∠A=40°.∵CE⊥AD,∴∠CED=90°.又∵∠CED+∠C+∠D=180°,∴∠C=180°−∠CED−∠D=180°−90°−40°=50°.故选:B.5 、【答案】 B;【解析】选项A.(a2)3=a2×3=a6,故本选项不符合题意;选项B.a2⋅a3=a2+3=a5,故本选项符合题意;选项C.(−3a)2=9a2,故本选项不符合题意;选项D.2ab2+3ab2=5ab2,故本选项不符合题意.故选B.6 、【答案】 C;【解析】∵13岁3人,14岁5人,15岁2人,=13.9(岁),∴该健美操队队员的平均年龄为:13×3+14×5+15×210故选:C.7 、【答案】 B;【解析】A.(−√3)2=3,故此选项不符合题意;B.√12=2√3,正确,故此选项符合题意;3=−1,故此选项不符合题意;C.√−1D.(√2+1)(√2−1)=2−1=1,故此选项不符合题意.故选:B.8 、【答案】 D;【解析】水稻亩产量的年平均增长率为x,根据题意得:500(1+x)2=800,故选:D.9 、【答案】 C;【解析】∵将△ABC绕点C顺时针旋转90∘得到ΔA′B′C,∴AC=A′C,∠BAC=∠CA′B′,∠ACA′=90∘,∴△ACA′是等腰直角三角形,∴∠CA′A=45∘,∵∠BAC=α,∴∠CA′B′=α,∴∠AA′B′=45∘−α.故选:C.10 、【答案】 A;【解析】①反比例函数y=2中自变量x的取值范围是x≠0,故说法正确;x②因为−3×2=−6,故说法正确;的图象,在每一个象限内,y随x的增大而减小,故说法错误;③因为k=3>0,反比例函数y=3x故选A.11 、【答案】x<3;【解析】3x<x+6,移项,得3x−x<6,合并同类项,得2x<6,系数化成1,得x<3,故答案为:x<3.12 、【答案】(2,3);【解析】点A(−2,3)向右平移4个单位长度后得到点A′的坐标为(−2+4,3),即(2,3).故答案为:(2,3).;13 、【答案】14【解析】画树状图如图:共有4种等可能的结果,两次取出的小球标号的和等于4的结果有1种,.∴两次取出的小球标号的和等于4的概率为14.故答案为:1414 、【答案】6x+14=8x;【解析】设有牧童x人,依题意得:6x+14=8x.故答案为:6x+14=8x.15 、【答案】2√2;【解析】∵菱形ABCD,∴AB=AD,AD//BC,∵∠BAD=60°,∴∠ABC=120°,∵AB′⊥BD,∠BAD=30∘,∴∠BAB′=12∵将△ABE沿直线AE翻折180°,得到△AB′E,∴BE=B′E,AB=AB′,×(180∘−30∘)=75∘,∴∠ABB′=12∴∠EBB′=∠ABE−∠ABB′=120°−75°=45°,∴∠EB′B=∠EBB′=45°,∴∠BEB′=90°,在Rt△BEB′中,由勾股定理得:BB′=√22+22=2√2,故答案为:2√2.(0<x<2);16 、【答案】y=4+x22x【解析】过点F作FM⊥AE,垂足为M,∵AF=EF,∴AM=ME,在Rt△ABE中,AE=√AB2+BE2=√4+x2,∴AM=√4+x22,∵∠B=∠AMF=90°,∠FAM=∠AEB,∴△ABE∽△FMA,∴AEAF =BEAM,即√4+x2y=√22,∴xy=4+x 22,即y=4+x 22x(0<x<2),故答案为:y=4+x 22x(0<x<2).17 、【答案】1.;【解析】原式=a+3a−3⋅a(a+3)(a+3)2−3a−3=aa−3−3a−3=a−3a−3=1.18 、【答案】 (1) 10;40;(2) 50;5;(3) 240人.;【解析】 (1) 由频数分布表可得参加红歌演唱活动的学生人数为10人,由扇形图可得参加爱国征文活动的学生人数占被调查学生总人数的百分比为40%.故答案为:10,40.(2) 被调查的学生总数为10÷0.2=50(人),50×0.1=5(人).故答案为:50,5.(3) 样本中参加爱国征文活动的学生人数:50×40%=20(人),样本中参加诗歌朗诵活动的学生人数:50−10−20−5=15(人),800×1550=240(人).答:估计参加诗歌朗诵活动的学生人数为240人.19 、【答案】 证明见解析.;【解析】 ∵AD =BE ,∴AD +BD =BE +BD ,即AB =DE ,∵AC//DF ,∴∠A =∠EDF ,在△ABC 与△DEF 中,{AB =DE∠A =∠EDF AC =DF,∴△ABC =∽△DEF(SAS),∴BC =EF .20 、【答案】 (1) 大垃圾桶单价为180元,小垃圾桶的单价为60元. ;(2) 2880元.;【解析】 (1) 设大垃圾桶的单价为x 元,小垃圾桶的单价为y 元, 依题意{2x +4y =6006x +8y =1560, 解得:{x =180y =60, 答:大垃圾桶的单价为180元,小垃圾桶的单价为60元.(2) 180×8+60×24=2880(元).答:该校购买8个大垃圾桶和24个小垃圾桶共需2880元.21 、【答案】7m.;【解析】在Rt△BCD中,tan⁡∠BDC=BC,CD∴BC=CD⋅tan⁡∠BDC=20×tan⁡50°≈20×1.192=23.84(m),在Rt△ACD中,tan⁡∠ADC=AC,CD∴AC=CD⋅tan⁡∠ADC=20×tan⁡57°≈20×1.540=30.8(m),∴AB=AC−BC=30.8−23.84≈7(m).答:旗杆AB的高度约为7m.22 、【答案】 (1) 证明见解析.;(2) AE=2√7.;【解析】 (1) 连接OB,如图1,∵直线MN与⊙O相切于点D,∴OD⊥MN,∵BC//MN,∴OD⊥BC∴BD⌢=CD⌢,∴∠BOD=∠COD,∠BOC,∵∠BAC=12∴∠BAC =∠COD .(2) ∵E 是OD 的中点,∴OE =DE =2,在Rt △OCE 中,CE =√OC 2−OE 2=√42−22=2√3,∵OE ⊥BC ,∴BE =CE =2√3,∵AC 是⊙O 的直径,∴∠ABC =90°,∴AB =√AC 2−BC 2=√82−(4√3)2=4,在Rt △ABE 中,AE =√AB 2+BE 2=√42+(2√3)2=2√7.23 、【答案】 (1) y =−2x +200(50⩽x ⩽80). ;(2) 该商品售价为70元时获得最大利润,最大利润是1800元. ;【解析】 (1) 设y =kx +b ,将(50,100)、(80,40)代入,得:{50k +b =10080k +b =40, 解得:{k =−2b =200, ∴y =−2x +200(50⩽x ⩽80).(2) 设电商每天获得的利润为w 元,则w =(x −40)(−2x +200)=−2x 2+280x −8000=−2(x −70)2+1800,∵−2<0,且对称轴是直线x=70,又∵50⩽x⩽80,∴当x=70时,w取得最大值为1800,答:该商品售价为70元时获得最大利润,最大利润是1800元.24 、【答案】 (1) 5.;(2) S={t2(0<t⩽1.5)−3t25+12t5(1.5<t⩽4)2t−8(4<t⩽7).;【解析】 (1) ∵四边形ABCD为矩形,∴∠B=90°,在Rt△ABC中,由勾股定理得:AC=√AB2+BC2=√32+42=5,∴AC的长为5.(2) 当0<t⩽1.5时,如图,S=12×BP×BQ=12×2t×t=t2;当1.5<t⩽4时,如图,作PH⊥BC于H,∴CP=8−2t,∵sin⁡∠BCA=ABAC =PHPC,∴35=PH8−2t,∴PH=245−6t5,∴S=12×BQ×PH=12×t×(245−6t5)=−3t 25+12t5;当4<t⩽7时,如图,点P与点C重合,S=12×4×(t−4)=2t−8.综上所述:S={t2(0<t⩽1.5)−3t25+12t5(1.5<t⩽4)2t−8(4<t⩽7).25 、【答案】 (1) ∠BAE;证明见解析.;(2) 证明见解析.;(3) k−1.;【解析】 (1) 根据题意可知∠AEF=∠ABF+∠BAE,∠ABD=∠ABF+∠DBF,∵∠ABD=∠AEF,∴∠DBF=∠BAE.(2) 如图,在BF上截取BP,使AE=BP,由(1)得∠DBF=∠BAE,即∠DBP=∠BAE,在△ABE和△BDP中,{AB=BD∠BAE=∠DBPAE=BP,∴△ABE=∽△BDP,∴BE=DP,∠AEB=∠BPD,∵BP=AE,AE=EF,∴BP=EF,∴BP−EP=EF−EP,即BE=PF,∵BE=PD,∴PF=PD,∴△AEF和△FPD均为等腰三角形,又∵∠AEB=∠BPD,∴∠AEF=∠FPD,∴△AEF和△FPD为顶角相等的等腰三角形,∴∠EAF=∠EFA=∠PFD=∠PDF,∴∠BFD=∠AFB.(3) 又(1)可知△AEF∽△FPD,∵AF=kDF,∴AFDF =EFPF=k,设PF =PD =a ,则AE =EF =ka ,∵∠EDF +∠MDF =180°,∠MDF =∠MDP +∠PDF ,∠EDF =180°−∠FED −∠PFD ,则180°=∠MDP +∠PDF +180°−∠FED −∠PFD , ∵∠PDF =∠PFD ,∴∠MDP =∠FED ,∵∠EPD =∠DPM ,∴△PMD ∽△PDE ,∴PD PE =PM PD ,即PD 2=PM ⋅PE ,由此得a 2=PM ⋅(k −1)a ,则PM =a k−1,AE MF =kaa+a k−1=k −1.26 、【答案】 (1)① 10.② 218.;(2) 6.;(3) 209.;【解析】 (1)① 当m =2时,y ={−12x 2+12x +2(x <2)x 2−2x +2(x ⩾2),∵M (4,n )在该函数图象上,∴n =42−2×4+2=10.②当0⩽x<2时,y=−12x2+12x+2=−12(x−12)2+218,∵−12<0,∴当x=12时,y有最大值是218,当x=2时,y=22−2×2+2=2,∵2<218,∴当0⩽x⩽2时,函数G的最大值是218.(2) 如图1,由题意得:OP=12m,∵∠POQ=45°,∠OPQ=90°,∴△POQ是等腰直角三角形,∴OP=PQ,∴12m=−12⋅(12m)2+12⋅12m+m,解得:m1=0,m2=6,∵m>0,∴m=6.(3) 如图2,过点C作CD⊥y轴于D,当x =0时,y =m ,∴OB =m ,∵CD =m ,∴CD =OB ,∵AB ⊥BC ,∴∠ABC =∠ABO +∠CBD =90°,∵∠CBD +∠BCD =90°,∴∠ABO =∠BCD ,∵∠AOB =∠CDB =90°,∴△ABO =∽ △BCD (ASA ),∴OA =BD ,当x <m 时,y =0,即−12x 2+12x +m =0, x 2−x −2m =0,解得:x 1=1−√1+8m 2,x 2=1+√1+8m 2, ∴OA =√1+8m−12,且−18⩽m ⩽3,∵点A 的横坐标为a ,C 点的纵坐标为c ,若a =−3c , ∴OD =c =−13a ,∴BD =m −OD =m +13a ,∵OA =BD ,∴√1+8m−12=m+13⋅1−√1+8m2,解得:m1=0(此时,A,B,C三点重合,舍),m2=209.。

2023年大连市中考数学试卷

2023年大连市中考数学试卷

选择题
下列数中,是无理数的是:
A. 3/2
B. √4
C. π(正确答案)
D. -1
点A(2,3)关于x轴对称的点的坐标是:
A. (-2,3)
B. (2,-3)(正确答案)
C. (-2,-3)
D. (3,2)
已知等腰三角形的两边长分别为3和5,则它的周长为:
A. 8
B. 11
C. 13(正确答案)
D. 11或13
函数y = 2x + 1与y = 2x - 3的图象:
A. 平行(正确答案)
B. 相交
C. 重合
D. 无法确定
若a > b,则下列不等式成立的是:
A. a2 > b2
B. ac > bc (c ≠ 0)
C. a - c > b - c(正确答案)
D. |a| > |b|
下列计算正确的是:
A. 3a + 2b = 5ab
B. a6 ÷ a3 = a2
C. (a2)3 = a6(正确答案)
D. a2 · a3 = a5
在直角三角形中,如果一个锐角是30°,那么它所对的直角边与斜边的比是:
A. 1:2(正确答案)
B. 1:3
C. √2:2
D. √3:2
下列方程中,是一元一次方程的是:
A. x2 + y = 5
B. 2x - 3 = 0(正确答案)
C. x/y = 2
D. 3x + 2y = 7
下列图形中,一定是轴对称图形的是:
A. 等腰三角形(非等边)
B. 平行四边形
C. 矩形(正确答案)
D. 梯形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辽宁省大连市2013年中考数学试卷
一、选择题(本题8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)
2.(3分)(2013•大连)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是()
..
23
4.(3分)(2013•大连)一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从
..
取到黄球的概率为:

5.(3分)(2013•大连)如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD 等于()
2
7.(3分)(2013•大连)在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:
8.(3分)(2013•大连)P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接
二、填空题(本题8小题,每小题3分,共24分)
9.(3分)(2013•大连)因式分解:x2+x=x(x+1).
10.(3分)(2013•大连)在平面直角坐标系中,点(2,﹣4)在第四象限.
11.(3分)(2013•大连)把16000 000用科学记数法表示为 1.6×107.
成活的频率
根据表中数据,估计这种幼树移植成活率的概率为0.9(精确到.=
13.(3分)(2013•大连)化简:x+1﹣=.
故答案为:
14.(3分)(2013•大连)用一个圆心角为90°半径为32cm的扇形作为一个圆锥的侧面(接缝处不重叠),则这个圆锥的底面圆的半径为8cm.
的扇形的弧长是=16
=16
15.(3分)(2013•大连)如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D 处测得河岸B处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB约为15.3m(精确到0.1m).(参考数据:≈1.41,,1.73)
CD
16.(3分)(2013•大连)如图,抛物线y=x2+bx+与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为y=x2﹣x+.
y=

×=


﹣=

x+.
﹣.
三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)(2013•大连)计算:()﹣1+(1+)(1﹣)﹣.
2
18.(9分)(2013•大连)解不等式组:.
19.(9分)(2013•大连)如图,▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE=DF.
20.(12分)(2013•大连)以下是根据《2012年大连市环境状况公报》中有关海水浴场环境质量和市区空气质量级别的数据制作的统计图表的一部分(2012年共366天).
2012年7月至9月
(1)2012年7月至9月被监测的8个海水浴场环境质量最好的是浴场5(填浴场名称),海水浴场环境质量为优的数据的众数为30%,海水浴场环境质量为良的数据的中位数为70%;(2)2012年大连市区空气质量达到优的天数为129天,占全年(366)天的百分比约为35.2%(精确到0.1%);
(3)求2012年大连市区空气质量为良的天数(按四舍五入,精确到个位).
×
四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)
21.(9分)(2013•大连)某超市购进A、B两种糖果,A种糖果用了480元,B种糖果用了1260元,A、B两种糖果的重量比是1:3,A种糖果每千克的进价比B种糖果每千克的进价多2元.A、B
两种糖果各购进多少千克?
=2
22.(9分)(2013•大连)如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与反比例函数
y=的图象相交于点A(m,1)、B(﹣1,n),与x轴相交于点C(2,0),且AC=OC.
(1)求该反比例函数和一次函数的解析式;
(2)直接写出不等式ax+b≥的解集.
AC=
OC=
坐标代入一次函数解析式得:
y=
的解集为﹣
23.(10分)(2013•大连)如图,AB是⊙O的直径,CD与⊙O相切于点C,DA⊥AB,DO及DO 的延长线与⊙O分别相交于点E、F,EB与CF相交于点G.
(1)求证:DA=DC;
(2)⊙O的半径为3,DC=4,求CG的长.
==CF
DA AO=
AM=

=.
==,
CM=OM=
,=CE=,
CE=
=
CF=×=
五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)
24.(11分)(2013•大连)如图,一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B.P
是射线BO上的一个动点(点P不与点B重合),过点P作PC⊥AB,垂足为C,在射线CA上截取CD=CP,连接PD.设BP=t.
(1)t为何值时,点D恰好与点A重合?
(2)设△PCD与△AOB重叠部分的面积为S,求S与t的函数关系式,并直接写出t的取值范围.
时,如题图所示,重合部分为

时,如答图
时,无重合部分.
x+4
ABO=ABO=t t
,即t+t=5
t=,
t=
,即t=
时,如题图所示:
=•t•t=t

t+t=t
ABO==ABO==t BP=t t OB=
CP AE t﹣(
时,如答图

OAB==t×=﹣
=CE=(﹣t﹣t+;
时,无重合部分,故
25.(12分)(2013•大连)将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF.
(1)如图1,若∠ABC=α=60°,BF=AF.
①求证:DA∥BC;②猜想线段DF、AF的数量关系,并证明你的猜想;
(2)如图2,若∠ABC<α,BF=mAF(m为常数),求的值(用含m、α的式子表示).
FBN=.
=mAFsin

=1+2msin.
26.(12分)(2013•大连)如图,抛物线y=﹣x2+x﹣4与x轴相交于点A、B,与y轴相交于点
C,抛物线的对称轴与x轴相交于点M.P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上).分别过点A、B作直线CP的垂线,垂足分别为D、E,连接点MD、ME.
(1)求点A,B的坐标(直接写出结果),并证明△MDE是等腰三角形;
(2)△MDE能否为等腰直角三角形?若能,求此时点P的坐标;若不能,说明理由;
(3)若将“P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)”改为“P是抛物线在x轴下方的一个动点”,其他条件不变,△MDE能否为等腰直角三角形?若能,求此时点P的坐标(直接写出结果);若不能,说明理由.
x x
(,
(,故对称轴是直线
x x

时,

坐标为(,
,y=
x代入抛物线解析式得:x x

时,y=4=
,)
坐标为(,
- 21 - / 21。

相关文档
最新文档