冲刺集训2-与全等三角形有关的几何探究题

合集下载

中考数学复习《全等三角形》专题训练-附带参考答案

中考数学复习《全等三角形》专题训练-附带参考答案

中考数学复习《全等三角形》专题训练-附带参考答案一、选择题1.下列选项中表示两个全等的图形的是()A.形状相同的两个图形B.周长相等的两个图形C.面积相等的两个图形D.能够完全重合的两个图形2.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,则不一定能使△ABE≌△ACD的条件是()A.AB=AC B.∠B=∠CC.∠AEB=∠ADC D.CD=BE3.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A.SAS B.ASA C.AAS D.SSS4.如图△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.25°B.30°C.35°D.65°5.如图EF=CF,BF=DF则下列结论不一定正确的是()A.△BEF≌△DCF B.△ABC≌△ADEC.DC=AC D.AB=AD6.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2 B.3 C.4 D.57.如图,CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE、CD相交于点O.∠1=∠2,则图中全等三角形共有()A.2对B.3对C.4对D.5对8.如图,AD 是△ABC中∠BAC的平分线,DE⊥AB于点E,△ABC的面积为12,DE =2,AB = 7,则 AC 的长是()A.3 B.4 C.5 D.6二、填空题9.如图,∠ACD=∠BCE,BC=EC,要使△ABC≌△DEC,则可以添加的一个条件是.10.如图所示,在△ABC中,∠C=90°,AB=8,AD是△ABC的一条角平分线.若CD=2,则△ABD的面积为.11.如图,在Rt△ABC中,∠BAC=90°,分别过点B,C作过点A的直线的垂线BD,若BD=4cm,CE=3cm则DE= cm.12.如图,把两根钢条AB,CD的中点连在一起做成卡钳,已知AC的长度是6cm,则工件内槽的宽BD是cm.13.如图,△ABC为等腰直角三角形AC=BC,若A(−3,0),C(0,2),则点B的坐标为.三、解答题14.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°(1)求证:△ADE≌△CDE.(2)求∠BDC度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A =25°,∠D =15°,求∠ACB 的度数.16.如图,AB =AC ,AD =AE ,∠BAC =∠DAE.(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,在ABC 中90C ∠=︒,BD 是ABC ∠的平分线,DE AB ⊥于点E ,点F 在BC 上,连接DF ,且AD DF =. (1)求证:CF AE =;(2)若3AE =,BF=4,求AB 的长.18.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD =2BF+DE .1.D2.D3.D4.A5.C6.B7.C8.C9.AC =DC (答案不唯一)10.811.712.613.(2,-1)14.(1)证明:∵DE 是线段AC 的垂直平分线 ∴DA=DC ,AE=CE在△ADE 与△CDE 中:DA=DCAE=CEDE=DE∴△ADE ≌△CDE (SSS );(2)解:∵△ADE ≌△CDE .∴∠DCA=∠A=50°∴∠BDC=∠DCA+∠A=100°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:(1)∵90C ∠=︒∴DC BC ⊥又∵BD 是ABC ∠的平分线DE AB ⊥∴DE DC = 90AED ∠=︒在Rt AED △和Rt FCD △中∵AD DFDE DC =⎧⎨=⎩∴()Rt Rt AED FCD HL ≌△△∴CF AE =.(2)解:由(1)可得3CF AE ==∴437BC BF CF =+=+=∵DE AB ⊥∴90DEB ∠=︒∴DEB C ∠=∠∵BD 是ABC ∠的平分线∴ABD CBD ∠=∠在BED 和BCD △中∵DEB C EBD CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BED BCD AAS ≌△△ ∴7BE BC ==∴7310AB BE AE =+=+=∴AB 的长为10.18.(1)证明:∵90BAD CAE ∠=∠=︒∴90BAC CAD ∠+∠=︒ 90CAD DAE ∠+∠=︒ ∴BAC DAE ∠=∠在△BAC 和△DAE 中∵AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴()BAC DAE SAS ≌△△;(2)解:∵90CAE ∠=︒,AC=AE∴45E ∠=︒由(1)知BAC DAE ≌△△∴45BCA E ∠=∠=︒∵AF BC ⊥∴90CFA ∠=︒∴45CAF ∠=︒∴4590135FAE FAC CAE ∠=∠+∠=︒+︒=︒;(3)证明:延长BF 到G ,使得FG FB = ∵AF BG ⊥∴90AFG AFB ∠=∠=︒在△AFB 和△AFG 中∴BF GF AFB AFG AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AFB AFG SAS ≌△△∴AB AG = ABF G ∠=∠∵BAC DAE ≌△△∴AB AD = CBA EDA ∠=∠ CB=ED ∴AG AD = ABF CDA ∠=∠∴CGA CDA ∠=∠∵45GCA DCA ∠=∠=︒∴在△CGA 和△CDA 中GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CGA CDA AAS ≌△△∴CG CD =∵22CG CB BF FG CB BF DE BF =++=+=+ ∴2CD BF DE =+.。

全等三角形的提高拓展训练全等三角形经典题型50题(含答案)

全等三角形的提高拓展训练全等三角形经典题型50题(含答案)

全等三角形的提高拓展训练知识点睛全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】 (06年北京中考题)已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.DOECB AD【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?【变式拓展训练】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?【例3】 已知:如图,ABCD 是正方形,∠F AD =∠F AE . 求证:BE +DF =AE .【例4】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.NC D EB M A F E DCB A O ED CA【例5】 (北京市、天津市数学竞赛试题)如图所示,ABC ∆是边长为1的正三角形,BDC∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.【例6】 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°, 求证:AD 平分∠CDE板块二、全等与角度【例7】如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.D CB ANM D CB AC EDBA【例8】在等腰ABC ∆中,AB AC =,顶角20A ∠=︒,在边AB 上取点D ,使AD BC =,求BDC ∠.【例9】(“勤奋杯”数学邀请赛试题) 如图所示,在ABC ∆中,AC BC =,20C ∠=︒,又M 在AC 上,N 在BC 上,且满足50BAN ∠=︒,60ABM ∠=︒,求NMB ∠.【例10】 在四边形ABCD 中,已知AB AC =,60ABD ︒∠=,76ADB ︒∠=,28BDC ︒∠=,求DBC ∠的度数.【例11】 (日本算术奥林匹克试题) 如图所示,在四边形ABCD 中,12DAC ︒∠=,36CAB ︒∠=,48ABD ︒∠=,24DBC ︒∠=,求ACD ∠的度数.CDBADCBAANMCBA【例12】 (河南省数学竞赛试题) 在正ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.【例13】 (北京市数学竞赛试题) 如图所示,在ABC ∆中,44BAC BCA ︒∠=∠=,M 为ABC∆内一点,使得30MCA ︒∠=,16MAC ︒∠=,求BMC ∠的度数.M CA B全等三角形证明经典50题(含答案)1.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD延长AD到E,使DE=AD,则三角形ADC全等于三角形EBD即BE=AC=2 在三角形ABE中,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又AD是整数,则AD=52.已知:D是AB中点,∠ACB=90°,求证:12 CD ABADB C3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。

(完整)全等三角形的提高拓展经典题(教师版)

(完整)全等三角形的提高拓展经典题(教师版)

全等三角形的提高拓展训练知识点睛全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】 已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.D OECBA【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?【变式拓展训练】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?【例3】 已知:如图,ABCD 是正方形,∠F AD =∠F AE . 求证:BE +DF =AE .【例4】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.NEB M A DF AB C D EO O E D C B A _ F _ E_ D_ C _ B _ A _ N _ C _ D _ E _ B _ M _ A【例5】 如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.【例6】 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDE板块二、全等与角度【例7】如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC∠的度数.【例8】在等腰ABC ∆中,AB AC =,顶角20A ∠=︒,在边AB 上取点D ,使AD BC =,求BDC ∠.D CB A N MDCB AC ED BA DC BA【例9】 如图所示,在ABC ∆中,AC BC =,20C ∠=︒,又M 在AC 上,N 在BC 上,且满足50BAN ∠=︒,60ABM ∠=︒,求NMB ∠.【例10】 在四边形ABCD 中,已知AB AC =,60ABD ︒∠=,76ADB ︒∠=,28BDC ︒∠=,求DBC∠的度数.【例11】 如图所示,在四边形ABCD 中,12DAC ︒∠=,36CAB ︒∠=,48ABD ︒∠=,24DBC ︒∠=,求ACD ∠的度数.【例12】 在正ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.CDB ADCBAD E C B A NMCBA【例13】 如图所示,在ABC ∆中,44BAC BCA ︒∠=∠=,M 为ABC ∆内一点,使得30MCA ︒∠=,16MAC ︒∠=,求BMC ∠的度数.M C A B全等三角形证明经典50题(含答案)1.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD延长AD到E,使DE=AD,则三角形ADC全等于三角形EBD即BE=AC=2 在三角形ABE中,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又AD是整数,则AD=52.已知:D是AB中点,∠ACB=90°,求证:12 CD AB3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2 证明:连接BF和EF。

全等三角形的提高拓展训练经典题型50题(含答案)

全等三角形的提高拓展训练经典题型50题(含答案)

全等三角形的提高拓展训练知识点睛全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】 (06年北京中考题)已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?DO ECB AND【变式拓展训练】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?【例3】 已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =AE .【例4】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.NC D EB M A F EDCBA O ED CA【例5】 (北京市、天津市数学竞赛试题)如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.【例6】 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDE板块二、全等与角度【例7】如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.【例8】在等腰ABC ∆中,AB AC =,顶角20A ∠=︒,在边AB 上取点D ,使AD BC =,求BDC ∠.D CB ANMDCBA C EDBADA【例9】(“勤奋杯”数学邀请赛试题) 如图所示,在ABC ∆中,AC BC =,20C ∠=︒,又M 在AC 上,N 在BC 上,且满足50BAN ∠=︒,60ABM ∠=︒,求NMB ∠.【例10】 在四边形ABCD 中,已知AB AC =,60ABD ︒∠=,76ADB ︒∠=,28BDC ︒∠=,求DBC ∠的度数.【例11】 (日本算术奥林匹克试题) 如图所示,在四边形ABCD 中,12DAC ︒∠=,36CAB ︒∠=,48ABD ︒∠=,24DBC ︒∠=,求ACD ∠的度数.CDBA D CBA DECBANM CBA【例12】 (河南省数学竞赛试题) 在正ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.【例13】 (北京市数学竞赛试题) 如图所示,在ABC ∆中,44BAC BCA ︒∠=∠=,M 为ABC∆内一点,使得30MCA ︒∠=,16MAC ︒∠=,求BMC ∠的度数.全等三角形证明经典20题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求ADMCAB延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2 又∵CD=DE∴⊿ADC ≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1 ∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC3. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD又∵AE=AB ,AD=AD∴⊿AED ≌⊿ABD (SAS ) ∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠CCDB ADBCABA CDF2 1 E∴∠B=2∠C4. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明:在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC所以△ADC ≌△AFC (SAS ) 所以AD =AF所以AE =AF +FE =AD +BE5. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

全等三角形的提高拓展练习题.docx

全等三角形的提高拓展练习题.docx

全等三角形的提高拓展训练知识点睛全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理(SSS):三边对应相等的两个三角形全等.(4)角角边定理(44S):两个角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】(06年北京中考题)已知中,ZA = 60 , BD、CE分别平分Z仙C和.ZACB , BD、CE交于点0 ,试判断BE、CD、的数量关系,并加以证明.【例2】如图,点M为正三角形仙D的边所在直线上的任意一点(点B除外),作Z.DMN = 60° ,射线MN与ZQ34外角的平分线交于点N , DM与MN有怎样的数量关系?M B E【变式拓展训练】如图,点M 为正方形4BCD 的边A3上任意一点,MN 丄DM 且与ZABC 外角的平分线交 于点N , MD 与MN 有怎样的数量关系?【例3】已知:如图,ABCD 是正方形,ZFAD=ZFAE.求证:BE+DF=AE ・【例4】以\ABC 的AB. AC 为边向三角形外作等边MBD. MCE ,连结CD. BE 相交 于点0 •求证:0A 平分乙DOE •B C A EB C【例5】(北京市.天津市数学竞赛试题)如图所示,AABC 是边长为1的正三角形, 是顶角为120。

全等三角形的判定和性质专题训练

全等三角形的判定和性质专题训练

全等三角形判定与性质专题训练一、全等三角形实际应用问题1如图,要测量河两岸相对的两点A、B间的距离,先在过B点的AB的垂线L上取两点C、D,使CD=BC,再在过D点的垂线上取点E,使A、C、E在一条直线上,ED=AB这时,测ED的长就得AB得长,判定△ACB≌△ECD的理由是()A. SASB. ASAC. SSS D .AAS2.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A.PO B.PQ C.MO D.MQ3、如图所示,将两根钢条AA′,BB′的中点O连在一起,使A A′,BB′可以绕着点O自由转动,就做成了一个测量工具,则A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A、SSS B、SAS C、ASA D、HL4、如图:工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是()A、SSSB、SASC、ASAD、HL5、如图,有两个长度相等的滑梯靠在一面墙上.已知左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则这两个滑梯与地面的夹角∠ABC+∠DFE= 度6、如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是:( )A 、带①去,B 、带②去C 、带③去D 、①②③都带去二、证两次全等相关问题1:如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证: CF=DF2:如图已知AD∥BC,AB∥CD BF=DE,求证:AE=CF,3:如图AB⊥AC,AD⊥AE AB=AD,BC=DE,求证AM=AN三、探索两线段的关系问题1.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB 至点D,连接CD,以CD为直角边作等腰直角三角形CDE,其中∠DCE=90°,连接BE交CD于点F,试探索线段BE与AD的关系,并证明。

全等三角形的提高拓展训练典范题型50题(含答案解析)

全等三角形的提高拓展训练典范题型50题(含答案解析)

全等三角形的提高拓展训练知识点睛全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】 (06年北京中考题)已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.DOECB AND【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?【变式拓展训练】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?【例3】 已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =AE .【例4】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD∆、ACE ∆,连结CD 、BE 相交NCDE BMAFEDCBA OEDCBA于点O.求证:OA平分DOE∠.【例5】(北京市、天津市数学竞赛试题)如图所示,ABC∆是边长为1的正三角形,BDC∆是顶角为120︒的等腰三角形,以D为顶点作一个60︒的MDN∠,点M、N分别在AB、AC上,求AMN∆的周长.【例6】五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:AD平分∠CDEA NMD CBACE DBA板块二、全等与角度【例7】如图,在ABC∆中,60BAC∠=︒,AD是BAC∠的平分线,且AC AB BD=+,求ABC∠的度数.【例8】在等腰ABC∆中,AB AC=,顶角20A∠=︒,在边AB上取点D,使AD BC=,求BDC∠.【例9】(“勤奋杯”数学邀请赛试题) 如图所示,在ABC∆中,AC BC=,20C∠=︒,又M在AC上,N在BC上,且满足50BAN∠=︒,60ABM∠=︒,求NMB∠. NMCB A【例10】 在四边形ABCD 中,已知AB AC =,60ABD ︒∠=,76ADB ︒∠=,28BDC ︒∠=,求DBC ∠的度数.【例11】 (日本算术奥林匹克试题) 如图所示,在四边形ABCD 中,12DAC ︒∠=,36CAB ︒∠=,48ABD ︒∠=,24DBC ︒∠=,求ACD ∠的度数.【例12】 (河南省数学竞赛试题) 在正ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.【例13】 (北京市数学竞赛试题) 如图所示,在ABC ∆中,44BAC BCA ︒∠=∠=,M 为ABC∆内一点,使得30MCA ︒∠=,16MAC ︒∠=,求BMC ∠的度数.全等三角形证明经典20题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求ADMCAB_延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2 又∵CD=DE∴⊿ADC ≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1 ∵∠1=∠2 ∴∠DFE=∠DGE ∴EF=EG ∴EF=ACADBCBA CDF2 1 E3. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS ) ∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C4. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明:在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥ABCDB A所以∠CEB=∠CEF=90°因为EB=EF,CE=CE,所以△CEB≌△CEF所以∠B=∠CFE因为∠B+∠D=180°,∠CFE+∠CFA=180°所以∠D=∠CFA因为AC平分∠BAD所以∠DAC=∠FAC又因为AC=AC所以△ADC≌△AFC(SAS)所以AD=AF所以AE=AF+FE=AD+BE5. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

全等三角形探究类型综合题

全等三角形探究类型综合题

全等三角形探究类型综合题1、下列说法中正确的是()A. 两个全等图形是中心对称的B. 关于某一点中心对称的两个三角形全等C. 全等图形一定是中心对称的D. 中心对称的两个图形是全等的2、已知∠A=∠B,若∠A+∠B=180∘,则∠A____度,∠B____度。

3、已知∠A=∠B,若∠A+∠C=180∘,则∠B+∠C=____度。

4、下列说法中正确的是()A. 两个全等图形一定是中心对称的B. 能完全重合的两个图形一定关于某点成中心对称C. 成中心对称的两个图形一定全等D. 一个图形关于某点成中心对称,则这个图形上任一点与对称中心的距离相等5、已知∠A=∠B,若∠A+∠C=180∘,则____∽____。

6、已知∠A=∠B,若再增加一个条件____,则____∽____。

7、若一个三角形的两边长分别为5cm和7cm,则第三边的最大整数值为____cm。

8、已知∠A=∠B,若∠A+∠C=180∘,则____∽____。

9、若一个三角形的两边长分别为5cm和7cm,则第三边的最小整数值为____cm。

10、下列说法中正确的是()A. 能够完全重合的两个图形叫做全等形B. 全等三角形的对应边相等、对应角相等C. 全等三角形的周长、面积和所有的对应角分别相等D. 全等三角形的周长、面积和所有的对应边分别相等全等三角形综合测试题1111、已知∠A=∠B,若∠A+∠C=180∘,则____∽____。

12、若一个三角形的两边长分别为5cm和7cm,则第三边的最小整数值为____cm。

13、下列说法中正确的是()A. 能够完全重合的两个图形叫做全等形B. 全等三角形的对应边相等、对应角相等C. 全等三角形的周长、面积和所有的对应角分别相等D. 全等三角形的周长、面积和所有的对应边分别相等14、已知∠A=∠B,若∠A+∠C=180∘,则____∽____。

15、下列说法中正确的是()A. 全等图形的面积一定相等B. 能够完全重合的两个三角形一定关于某点成中心对称C. 全等三角形的面积一定相等D. 能够完全重合的两个三角形一定是全等的16、已知∠A=∠B,若再增加一个条件____,则____∽____。

【八年级数学几何培优竞赛专题】专题2 全等三角形判定方法的选择【含答案】

【八年级数学几何培优竞赛专题】专题2 全等三角形判定方法的选择【含答案】

专题2 全等三角形判定方法的选择知识解读三角形全等判定方法的选择已知条件可供选择的判定方法一边和这边邻角对应相等选边:只能选角的另一边(SAS )选角:可选另外两对角中任意一对角(AAS ,ASA )一边及它的对角对应相等只能再选一角:可选另外两对角中任意一对角(AAS )两边对应相等选边;只能选剩下的一边(SSS )选角:只能选两边的夹角(SAS )两角对应相等只能选边:可选三条边的任意一对对应边(AAS .ASA )典例示范一、从变换的角度理解“全等”1.轴对称变换例1如图1-2-1,点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,且AB =AC ,∠B =∠C ,求证:BD =CE .【提示】从结论“BD =CE ”来看,有两种思路,思路一:通过证明△BOD ≌△COE 得到对应边相等;思路二:通过证明“△ACD ≌△ABE ”得到AD =AE ,然后运用等式性质证得.从题设看,由“AB =AC ,∠B =∠C ”加上公共角∠A ,可得△ACD ≌△ABE ,所以我们考虑使用思路二给出证明过程.图1-2-1B【技巧点评】哪些情况下,可考虑利用全等的性质来证明线段相等和角相等呢?本题中,这个图形很显然是轴对称图形,而BD 和CE 也是轴对称的,这时候就可以考虑把BD 和CE 置于一对轴对称的三角形中,且BD 和CE 恰好是一对对应边.跟踪训练1.如图1-2-2,已知AB =DC ,AE =DF ,CE =F B .求证:AF =DE .图1-2-22.旋转变换例2如图1-2-3,AD 是△ABC 的中线,在AD 及其延长线上截取DE =DF ,连接CE ,BF ,试判断△BDF 与△CDE 全等吗?BF 与CE 有何位置关系?【提示】若△BDF 与△CDE 全等,需要寻找三个相等的要素,题中已知一对对顶角相等,由中线可得到BD =CD ,加上DE =DF ,即可根据“SAS ”得到两个三角形全等.图1-2-3B【技巧点评】本题是一个简单的全等证明题,本题意在说明图中△BDF 与△CDE 是中心对称的图形.,其中一个三角形可以看作另一个三角形绕点D 旋转180°得到.从中心对称的角度寻找相等的线段和相等的角,可以为证明全等提供方便.跟踪训练2.如图1-2-4,AB =AE ,∠1=∠2,∠B =∠E ,求证:BC =E D .图1-2-4二、线段和角度相等,常考虑证全等例3如图1-2-5,AC 交BD 于点O ,AC =BD ,AB =CD ,求证:∠C =∠B .【提示】要证明∠C =∠B ,可考虑将∠C 和∠B 置于一对三角形中,证明两个三角形全等,由于本题图中△AOB 和ACOD 全等不容易证明,可考虑连接AD ,证明△ACD 与△DBA 全等.图1-2-5跟踪训练3.已知,如图1-2-6,AD ⊥DB ,BC ⊥CA ,AC ,BD 相交于点O ,且AC =BD ,求证:AD =B C .图1-2-6B【技巧点评】由于全等三角形的对应角相等,对应边相等,因此证明两个三角形全等是证明两个角相等和两条线段相等常用的方法.利用全等三角形证明线段相等和角相等的思路:对应边(角)相等→两个三角形全等→线段相等或者角相等,可以看出全等三角形类似于一个桥梁,建立起角度相等与线段相等、线段相等与另两条相等的线段、角相等与另一对相等的角之间的联系.跟踪训练4.如图1-2-7,A ,D ,B 三点在同一条直线上,△ADC ,△BDO 均为等腰三角形,AO ,BC 的大小关系和位置关系分别如何?证明你的结论.图1-2-7三、借助“同角的余角相等”寻找相等的角例4如图1-2-8,在△ABC 中,BD ⊥AC 于D ,CE ⊥AB 于E ,F 是BD 上一点,BF =AC ,G 是CE 延长线一点,CG =AB ,连接AG ,AF .(1)求证:∠ABD =∠ACE ;(2)探求线段AF ,AG 有什么关系,并证明.【提示】(1)∠ABD ,∠ACE 都和∠BAC 互余,根据“同角的余角相等”可证明∠ABD =∠ACE ;(2)由已知条件“BF =AC ”“CG =AB ” “∠ABD =∠ACE ”可证明△ABF ≌△GCA ,AF ,AG 恰好是这对全等三角形的对应边,所以这两条线段的大小关系是相等.又由于∠G =∠BAF ,∠G +∠GAE =90°,因此∠GAF =90°,所以AF 和AG 的位置关系是垂直.图1-2-8B 【技巧点评】(1)当已知两条边相等,要证明两个三角形全等时,“同角的余角相等”是常用的证明夹角相等的手段.(2)要证明两直线垂直,证明夹角等于90°也是常用思路,当夹角是由两个角的和组成的时候,常考虑证明这两个角的和等于90°.跟踪训练5.如图1-2-9,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过E 点作AC 的垂线,交CD 的延长线于点F .求证:AB =F C .图1-2-9A四、从等腰、等边、正方形中获取全等所需的元素例5如图1-2-10,在Rt △ABC 中,∠ACB =90°,AC =BC ,D 为BC 的中点,CE ⊥AD ,垂足为E ,BF ∥AC 交CE 的延长线于点F .求证:DB =BF .【提示】要证明DB =BF ,由于D 为BC 的中点,所以CD =BD ,因此本题可转证CD =BF ,将这两条线段放置到三角形中,可证明△ACD ≌△CBF .图1-2-10A【技巧点评】本题证明△ACD ≌△CBF 需要的三个要素AC =BC ,∠CAD =∠BCF ,∠ACD =∠CBF 都和△ABC 是等腰直角三角形相关.当题目中出现等边三角形、等腰三角形、正方形、菱形等条件时,往往图形中隐含着一对全等三角形,这对全等三角形的一对对应边往往和等边三角形、等腰三角形、正方形、菱形的边长相等有关.跟踪训练6.如图1-2-11,在Rt △ABC 中,∠BAC =90°,AC =2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A ,D 重合,连接BE ,E C .试猜想线段BE 和EC 的数量关系和位置关系,并证明你的猜想.图1-2-11B拓展延伸五、AAS 华丽变全等例6 如图1-2-12,在△ABC 中,∠DBC =∠ECB =∠A ,求证:BE =CD .21ABCD E F【提示】要证明BE =CD ,一般考虑证明两个三角形全等,而△DCF 和△EBF 显然不全等,本题有三种构造全等的方法,如图1-2-13①②③.图1-2-12GFE D CBAHFE D CBAFE D CBAH G 【技巧点评】本题△BEF 和△CDF 虽然不全等,但是∠BFE =∠CFD ,加之可证FB =FC 以及待证的BE =CD ,可见这两个三角形虽然不全等,但也有3对相等的要素.构造全等三角形可将小三角形补上一部分,或者将大三角形截去一部分.跟踪训练7.如图1-2-14,OC 平分∠AOB ,点D 、E 分别在OA 、OB 上,点P 在OC 上,且有PD =PE ,求证:∠PDO =∠PEB .(有三种解法)P OD C BA E竞赛链接图1-2-13图1-2-14②③①例7 (全国初中数学竞赛浙江赛区题)如图1-2-15,在四边形ABCD 中,∠A =∠BCD =90°,BC =CD ,E 是AD 延长线上一点,若DE =AB =3cm ,CE =4cm ,则AD 的长是.2【提示】如图1-2-16,连接CA ,构造△BAC ≌△DEC ,利用勾股定理求出AE 的长.EDCB AAB CDE【技巧点评】勾股定理——如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么a 2+b 2=c 2.跟踪训练8.(希望杯竞赛题)如图1-2-17,在四边形ABCD 中,AB ∥CD ,AD ∥BC ,AC 与BD 相交于O ,AE ⊥BD 于E ,CF ⊥BD 于F ,那么图中的全等三角形共有()A .5对B .6对C .7对D .8对F OABCDE 培优训练1.如图1-2-18,AC ,BD 交于点E ,且∠1=∠2,∠3=∠4,求证:AC =BD .4321ABCED2.如图1-2-19,已知AD =AE ,AB =AC .求证:BF =FC .图1-2-17图1-2-15图1-2-16图1-2-18ABCDEF3.如图1-2-20,已知△ABD 、△AEC 都是等边三角形,AF ⊥CD 于F ,AH ⊥BE 于H ,问:(1)BE 与CD 有何数量关系?为什么?(2)AF 、AH 有何数量关系?O HFEDCBA 4.如图1-2-21,△ACD 和△BCE 都是等腰直角三角形,∠ACD =∠BCE =90°,AE 交DC 于点F ,BD分别交CE ,AE 于点G ,H 试猜测线段AE 和BD 的位置关系和数量关系,并说明理由.DBCFH AE G 5.将两个全等的直角三角形ABC 和DBE 按图1-2-22①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .(1)求证:AF +EF =DE ;(2)若将图1-2-22①中的△DBE 绕点B 按顺时针方向旋转角,且0°<<60°,其他条件不变,请在αα图1-2-22②中画出变换后的图形,并直接写出(1)中的结论是否仍然成立.AC BABCE FD①图1-2-19图1-2-20图1-2-21②图1-2-226.如图1-2-23,AD 是△ABC 的高,作∠DCE =∠ACD ,交AD 的延长线于点E ,点F 是点C 关于直线AE 的对称点,连接AF .(1)求证:CE =AF(2)在线段AB 上取一点N ,使∠ENA =∠ACE ,EN 交BC 于点M ,连接AM 请你判断∠B 与∠MAF 21的数量关系,并说明理由.DBEAF CN M直击中考7.★★(2017江苏常州)如图1-2-24,在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.ECDBA 8.(凉山州中考题)如图1-2-25,△ABO 与△CDO 关于O 点中心对称,点E 、F 在线段AC 上,且AF =CE .求证:FD =BE .FBECDAO9.(内江中考题)如图1-2-26,△ABC 和△ECD 都是等腰直角三角形,∠ACB =∠DCE =90°,D 为AB 边上一点.求证:AE =BD .图1-2-23图1-2-24图1-2-25CDEBA10.(重庆中考题)如图1-2-27,在△ABC 中,∠ACB =90°,AC =BC ,E 为AC 边的中点,过点A 作AD ⊥AB 交BE 的延长线于点D .CG 平分∠ACB 交BD 于点G ,F 为AB 边上一点,连接CF ,且∠ACF =∠CBG .求证:(1)AF =CG ;(2)CF =2DE .GCDFEBA挑战竟赛11.(希望杯竞赛题)如图1-2-28,在△ABC 中,∠ACB =60°,∠BAC =75°,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 交于H ,则∠CHD =.HBCE ADBGF E ADC12.(希望杯竞赛题)如图1-2-29,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,∠BCA 的平分线交AD 于F ,交AB 于E ,FG ∥BC 交AB 于G .AE =4,AB =14,则BG =.图1-2-26图1-2-27图1-2-28图1-2-29。

专题02 全等三角形的性质与判定压轴题八种模型全攻略(解析版)

专题02 全等三角形的性质与判定压轴题八种模型全攻略(解析版)

专题02全等三角形的性质与判定压轴题八种模型全攻略考点一全等三角形的概念考点二利用全等图形求正方形网格中角度之和考点三全等三角形的性质考点四用SSS证明三角形全等考点五用SAS证明三角形全等考点六用ASA证明三角形全等考点七用AAS证明三角形全等考点八用HL证明三角形全等考点一全等三角形的概念例题:(2021·福建·福州三牧中学八年级期中)有下面的说法:①全等三角形的形状相同;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法有() A.1个B.2个C.3个D.4个【答案】D【解析】【分析】先分别验证①②③④的正确性,并数出正确的个数,即可得到答案.【详解】①全等三角形的形状相同,根据图形全等的定义,正确;②全等三角形的对应边相等,根据全等三角形的性质,正确;③全等三角形的对应角相等,根据全等三角形的性质,正确;④全等三角形的周长、面积分别相等,正确;故四个命题都正确,故D为答案.【点睛】本题主要考查了全等的定义、全等三角形图形的性质,即全等三角形对应边相等、对应角相等、面积周长均相等.【变式训练】1.(2022·上海·七年级专题练习)如图,在△ABC和△A′B′C′中,已知AB=A′B′,∠A=∠A′,AC=A′C′,那么△ABC≌△A′B′C′.说理过程如下:把△ABC放到△A′B′C′上,使点A与点A′重合,由于=,所以可以使点B与点B′重合.又因为=,所以射线能落在射线上,这时因为=,所以点与重合.这样△ABC和△A′B′C′重合,即△ABC≌△A′B′C′.【答案】AB,A'B',∠A,∠A′,AC,A'C',AC=A'C',C,C'【解析】【分析】直接利用已知结合全等的定义得出答案.【详解】解:把△ABC放到△A′B′C′上,使点A与点A′重合,由于AB=A'B',所以可以使点B与点B′重合.又因为∠A=∠A′,所以射线AC能落在射线A'C'上,这时因为AC=A'C',所以点C与C'重合.这样△ABC和△A′B′C′重合,即△ABC≌△A′B′C′.故答案为:AB,A'B',∠A,∠A′,AC,A'C',AC=A'C',C,C'.【点睛】本题考查了全等三角形的判定,解答本题的关键是仔细读题,理解填空.考点二利用全等图形求正方形网格中角度之和例题:(2021·全国·八年级专题练习)如图为6个边长相等的正方形的组合图形,则∠1+∠3-∠2=()A.30°B.45°C.60°D.135°【答案】B【解析】【分析】首先利用SAS定理判定△ABC≌△DBE,根据全等三角形的性质可得∠3=∠ACB,再由∠ACB+∠1=∠1+∠3=90°,可得∠1+∠3-∠2.【详解】∵在△ABC 和△DBE 中AB BD A D AC ED ⎧⎪∠∠⎨⎪⎩===,∴△ABC ≌△DBE (SAS ),∴∠3=∠ACB ,∵∠ACB +∠1=90°,∴∠1+∠3=90°,∵∠2=45°∴∠1+∠3-∠2=90°-45°=45°,故选B .【点睛】此题主要考查了全等图形,关键是掌握全等三角形的判定,以及全等三角形对应角相等.【变式训练】1.(2022·山东·济南市槐荫区教育教学研究中心二模)如图,在44⨯的正方形网格中,求αβ+=______度.【答案】45【解析】【分析】连接AB ,根据正方形网格的特征即可求解.【详解】解:如图所示,连接AB∵图中是44⨯的正方形网格∴AD CE =,ADB AEC ∠=∠,DB AE =∴()ADB CEA SAS △≌△∴EAC ABD α∠=∠=,AB AC =∵90ABD BAD ∠+∠=︒∴90EAC BAD ∠+∠=︒,即90CAB ∠=︒∴45ACB ABC ∠=∠=︒∵BD CE ∥∴BCE DBC β==∠∠∵ABC ABD DBC αβ=+=+∠∠∠∴45αβ+=︒故答案为:45.【点睛】本题考查了正方形网格中求角的度数,利用了平行线的性质、同角的余角相等、等腰直角三角形的性质等知识点,解题的关键是能够掌握正方形网格的特征.2.(2020·江苏省灌云高级中学城西分校八年级阶段练习)如图,由4个相同的小正方形组成的格点图中,∠1+∠2+∠3=________度.【答案】135【解析】【分析】首先利用全等三角形的判定和性质求出13∠+∠的值,即可得出答案;【详解】 如图所示,在△ACB 和△DCE 中,AB DE A D AC DC ⎧=⎪∠=∠⎨⎪=⎩,∴()△△ACB DCE SAS ≅,∴3ABE ∠=∠,∴()12313459045135∠+∠+∠=∠+∠+︒=︒+︒=︒;故答案是:135︒.【点睛】本题主要考查了全等图形的应用,准确分析计算是解题的关键.考点三 全等三角形的性质例题:(2021·重庆大足·八年级期末)如图,ABC 和DEF 全等,且A D ∠=∠,AC 对应DE .若6AC =,5BC =,4AB =,则DF 的长为( )A .4B .5C .6D .无法确定【答案】A【解析】【分析】 全等三角形对应边相等,对应角相等,根据题中信息得出对应关系即可.【详解】∵ABC 和DEF 全等,A D ∠=∠,AC 对应DE∴ABC DFE ≅∴AB =DF =4故选:A .【点睛】本题考查了全等三角形的概念及性质,应注意①对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系②可以进一步推广到全等三角形对应边上的高相等,对应角的平分线相等,对应边上的中线相等,周长及面积相等③全等三角形有传递性.【变式训练】1.(2022·云南昆明·三模)如图,ABC DEF △≌△,若80,30A F ∠=︒∠=︒,则B 的度数是( )A .80°B .70°C .65°D .60°【答案】B【解析】【分析】 由ABC DEF △≌△根据全等三角形的性质可得30C F ∠=∠=︒,再利用三角形内角和进行求解即可.【详解】ABC DEF ≌,C F ∠=∠∴,30F ∠=︒,30C ∴∠=︒,80,180A A B C ∠=︒∠+∠+∠=︒,18070B A C ∴∠=︒-∠-∠=︒,故选:B .【点睛】本题考查了全等三角形的性质及三角形的内角和定理,熟练掌握知识点是解题的关键.2.(2022·上海·七年级专题练习)如图所示,D ,A ,E 在同一条直线上,BD ⊥DE 于D ,CE ⊥DE 于E ,且△ABD ≌△CAE ,AD =2cm ,BD =4cm ,求(1)DE 的长;(2)∠BAC 的度数.【答案】(1)6cm DE =;(2)90BAC ︒∠=【解析】【分析】(1)根据全等三角形的性质即可得到结论;(2)根据垂直的定义得到∠D =90°,求得∠DBA +∠BAD =90°,根据全等三角形的性质得到∠DBA =∠CAE 等量代换即可得到结论.(1)解:∵△ABD ≌△CAE ,AD =2cm ,BD =4cm ,∴AE =BD =4cm ,∴DE =AD +AE =6cm .(2)∵BD ⊥DE ,∴∠D =90°,∴∠DBA +∠BAD =90°,∵△ABD ≌△CAE ,∴∠DBA =∠CAE∴∠BAD +∠CAE =90°,∴∠BAC =90°.【点睛】本题主要考查了全等三角形的性质,垂直的定义,熟练掌握全等三角形的性质是解题的关键.考点四 用SSS 证明三角形全等例题:(2022·河北·平泉市教育局教研室二模)如图,BD BC =,点E 在BC 上,且BE AC =,DE AB =.(1)求证:ABC EDB ≌;(2)判断AC 和BD 的位置关系,并说明理由.【答案】(1)见解析(2)AC BD ,理由见解析【解析】【分析】(1)运用SSS 证明即可;(2)由(1)得DBE BCA ∠=∠,根据内错角相等,两直线平行可得结论.(1)在ABC ∆和EDB ∆中,BD BC BE AC DE AB =⎧⎪=⎨⎪=⎩,∴ABC EDB ∆≅∆(SSS );(2)AC 和BD 的位置关系是AC BD ,理由如下:∵ABC EDB ∆≅∆∴DBE BCA ∠=∠,∴AC BD .【点睛】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解答本题的关键.【变式训练】1.(2021·河南省实验中学七年级期中)如图,在线段BC 上有两点E ,F ,在线段CB 的异侧有两点A ,D ,且满足AB CD =,AE DF =,CE BF =,连接AF;(1)B 与C ∠相等吗?请说明理由.(2)若40B ∠=︒,20∠=DFC °,AF 平分BAE ∠时,求BAF ∠的度数.【答案】(1)B C ∠=∠,理由见解析(2)60︒【解析】【分析】(1)由“SSS ”可证△AEB ≌△DFC ,可得结论;(2)由全等三角形的性质可得∠AEB =∠DFC =20°,可求∠EAB =120°,由角平分线的性质可求解.(1)解:B C ∠=∠,理由如下:∵CE BF =∴BE CF =在AEB △和DFC △中AB CD AE DF BE CF =⎧⎪=⎨⎪=⎩∴()SSS AEB DFC ≌△△∴B C ∠=∠(2)解:∵AEB DFC ≌∴20AEB DFC ∠=∠=︒∴180120EAB B AEB ∠=︒-∠-∠=︒∵AF 平分BAE ∠ ∴1602BAF BAE ∠=∠=︒ 【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定是本题的关键.2.(2022·山东济宁·八年级期末)如图,在四边形ABCD 中,CB AB ⊥于点B ,CD AD ⊥于点D ,点E ,F 分别在AB ,AD 上,AE AF =,CE CF =.(1)若8AE =,6CD =,求四边形AECF 的面积;(2)猜想∠DAB ,∠ECF ,∠DFC 三者之间的数量关系,并证明你的猜想.【答案】(1)48(2)∠DAB +∠ECF =2∠DFC ,证明见解析【解析】【分析】(1)连接AC ,证明△ACE ≌△ACF ,则S △ACE =S △ACF ,根据三角形面积公式求得S △ACF 与S △ACE ,根据S 四边形AECF =S △ACF +S △ACE 求解即可;(2)由△ACE ≌△ACF 可得∠FCA =∠ECA ,∠F AC =∠EAC ,∠AFC =∠AEC ,根据垂直关系,以及三角形的外角性质可得∠DFC +∠BEC =∠FCA +∠F AC +∠ECA +∠EAC =∠DAB +∠ECF .可得∠DAB +∠ECF =2∠DFC(1)解:连接AC ,如图,在△ACE 和△ACF 中AE AF CE CF AC AC =⎧⎪=⎨⎪=⎩∴△ACE ≌△ACF (SSS ).∴S △ACE =S △ACF ,∠F AC =∠EAC .∵CB ⊥AB ,CD ⊥AD ,∴CD =CB =6.∴S △ACF =S △ACE =12AE ·CB =12×8×6=24.∴S 四边形AECF =S △ACF +S △ACE =24+24=48.(2)∠DAB +∠ECF =2∠DFC证明:∵△ACE ≌△ACF ,∴∠FCA =∠ECA ,∠F AC =∠EAC ,∠AFC =∠AEC .∵∠DFC 与∠AFC 互补,∠BEC 与∠AEC 互补,∴∠DFC =∠BEC .∵∠DFC =∠FCA +∠F AC ,∠BEC =∠ECA +∠EAC ,∴∠DFC +∠BEC =∠FCA +∠F AC +∠ECA +∠EAC=∠DAB +∠ECF .∴∠DAB +∠ECF =2∠DFC【点睛】本题考查了三角形全等的性质与判定,三角形的外角的性质,掌握三角形全等的性质与判定是解题的关键.考点五 用SAS 证明三角形全等例题:(2022·福建省福州第十九中学模拟预测)如图,点O 是线段AB 的中点,∥OD BC 且OD BC =.求证:AOD OBC ≌.【答案】见解析【解析】【分析】根据线段中点的定义得到AO BO =,根据平行线的性质得到AOD OBC ∠=∠,根据全等三角形的判定定理即可得到结论.【详解】证明:∵点O 是线段AB 的中点,∴AO BO =,∵∥OD BC ,∴AOD OBC ∠=∠,在△AOD 与△OBC 中,AO BO AOD OBC OD BC =⎧⎪∠=∠⎨⎪=⎩,∴()AOD OBC SAS ≌.【点睛】本题考查了全等三角形的判定,平行线的性质,熟练掌握全等三角形的判定是解题的关键.【变式训练】1.(2022·云南普洱·二模)如图,ABC 和EFD 分别在线段AE 的两侧,点C ,D 在线段AE 上,AC DE =,//AB EF ,.AB EF =求证:BC FD =.【答案】见解析【解析】【分析】利用//AB EF ,得到A E ∠=∠,再用AC DE =,AB EF =,得到ABC ≌EFD △(SAS ),然后用三角形全等的性质得到结论即可.【详解】证明://AB EF ,A E ∴∠=∠,在ABC 和EFD △中AC DE A E AB EF =⎧⎪∠=∠⎨⎪=⎩,ABC ∴≌EFD △(SAS ),BC FD ∴=.【点睛】本题考查三角形全等的判定,平行线的性质,找到三角形全等的条件是解答本题的关键.2.(2022·四川省南充市白塔中学八年级阶段练习)如图,点B 、C 、E 、F 共线,AB =DC ,∠B =∠C ,BF =CE . 求证:△ABE ≌△DCF.【答案】证明见解析;【解析】【分析】根据两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”);即可证明;【详解】证明:∵点B、C、E、F共线,BF=CE,∴BF+EF=CE+EF,∴BE=CF,△ABE和△DCF中:BA=CD,∠ABE=∠DCF,BE=CF,∴△ABE≌△DCF(SAS);【点睛】本题考查了全等三角形的判定;掌握(SAS)的判定条件是解题关键.考点六用ASA证明三角形全等例题:(2022·上海·七年级专题练习)已知:如图,AB⊥BD,ED⊥BD,C是BD上的一点,AC⊥CE,AB =CD,求证:BC=DE.【答案】见解析【解析】【分析】根据直角三角形全等的判定方法,ASA即可判定三角形全等.【详解】证明:∵AB⊥BD,ED⊥BD,AC⊥CE(已知)∴∠ACE=∠B=∠D=90°(垂直的意义)∵∠BCA+∠DCE+∠ACE=180°(平角的意义)∠ACE=90°(已证)∴∠BCA +∠DCE =90°(等式性质)∵∠BCA +∠A +∠B =180°(三角形内角和等于180°)∠B =90°(已证)∴∠BCA +∠A =90°(等式性质)∴∠DCE =∠A (同角的余角相等)在△ABC 和△CDE 中,A DCE AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△CDE (ASA )∴BC =DE (全等三角形对应边相等)【点睛】本题考查了全等三角形的判定和性质;熟练掌握三角形全等的判定定理是解题的关键.【变式训练】1.(2022·广西百色·二模)如图,在△ABC 和△DCB 中,∠A =∠D ,AC 和DB 相交于点O ,OA =OD .(1)AB =DC ;(2)△ABC ≌△DCB .【答案】(1)证明见解析;(2)证明见解析【解析】【分析】(1)证明△ABO ≌△DCO (ASA ),即可得到结论;(2)由△ABO ≌△DCO ,得到OB =OC ,又OA =OD ,得到BD =AC ,又由∠A =∠D ,即可证得结论.(1)证明:在△ABO 与△DCO 中,A D OA ODAOB DOC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABO ≌△DCO (ASA )∴AB =DC ;(2)证明:∵△ABO ≌△DCO ,∴OB =OC ,∵OA =OD ,∴OB +OD =OC +OA ,∴BD =AC ,在△ABC 与△DCB 中,AC BD A D AB DC =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DCB (SAS ).【点睛】此题考查了全等三角形的判定和性质,熟练掌握并灵活选择全等三角形的判定方法是解题的关键. 2.(2022·贵州遵义·八年级期末)如图,已知AB DE ∥,ACB D ∠=∠,AC DE =.(1)求证:ABC EAD ≅.(2)若60BCE ∠=︒,求BAD ∠的度数.【答案】(1)见解析(2)60︒【解析】【分析】(1)利用平行线的性质得CAB E ∠=∠,利用“角边角”即可证明ABC EAD ≅;(2)由邻补角的定义求出180120ACB BCE ∠=︒-∠=︒,进而得到120D ∠=︒,再利用两直线平行同旁内角互补求出BAD ∠.由两直线平行得(1)证明:AB DE ,CAB E ∴∠=∠,在ABC 和EAD中,CAB E AC DEACB D ∠=∠⎧⎪=⎨⎪∠=∠⎩, ABC EAD ∴≅.(2)解:60BCE ∠=︒,180ACB BCE ∠+∠=︒,180120ACB BCE ∴∠=︒-∠=︒,120D ACB ∴∠=∠=︒,AB DE ,180∴∠+∠=︒D BAD ,180********BAD D ∴∠=︒-∠=︒-︒=︒.【点睛】本题考查平行线的性质、邻补角的定义、全等三角形的判定等知识,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.考点七 用AAS 证明三角形全等例题:(2022·上海·七年级专题练习)如图,已知BE 与CD 相交于点O ,且BO =CO ,∠ADC =∠AEB ,那么△BDO 与△CEO 全等吗?为什么?【答案】△BDO ≌△CEO (AAS );原因见解析【解析】【分析】根据AAS 证明△BDO 与△CEO 全等即可.【详解】解:△BDO 与△CEO 全等;∵∠BDO =180°﹣∠ADC ,∠CEO =180°﹣∠AEB ,又∵∠ADC =∠AEB ,∴∠BDO =∠CEO,∵在△BDO 与△CEO 中,BDO CEO BOD COE BO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDO ≌△CEO (AAS ).【点睛】本题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【变式训练】1.(2022·福建省福州第一中学模拟预测)如图,已知A ,F ,E ,C 在同一直线上,AB ∥CD ,∠ABE =∠CDF ,AF =CE .求证:AB =CD .【答案】见详解【解析】【分析】根据全等三角形证明△ABE ≌△CDF ,再根据全等三角形的性质解答即可.【详解】证明:∵AB ∥CD ,∴∠ACD =∠CAB ,∵AF=CE ,∴AF+EF=CE+EF ,即AE =FC ,在△ABE 和△CDF 中,ACD CAB ABE CDF AE CF ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△ABE ≌△CDF (AAS ).∴AB =CD .【点睛】此题主要考查了三角形全等的判定及性质,一般证明线段相等先大致判断两个线段所在三角形是否全等,然后再看证明全等的条件有哪些.2.(2022·全国·九年级专题练习)如图,D 是△ABC 的边AB 上一点,CF //AB ,DF 交AC 于E 点,DE=EF .(1)求证:△ADE ≌△CFE ;(2)若AB =5,CF =4,求BD 的长.【答案】(1)证明见解析(2)BD =1【解析】【分析】(1)利用角角边定理判定即可;(2)利用全等三角形对应边相等可得AD 的长,用AB ﹣AD 即可得出结论.(1)证明:∵CF ∥AB ,∴∠ADF =∠F ,∠A =∠ECF .在△ADE 和△CFE 中,A ECF ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CFE (AAS ).(2)∵△ADE ≌△CFE ,∴AD =CF =4.∴BD =AB ﹣AD =5﹣4=1.【点睛】此题考查了全等三角形的判定及性质,熟记全等三角形的判定定理是解题的关键.考点八 用HL 证明三角形全等例题:(2022·四川省南充市白塔中学八年级阶段练习)如图,AB =CD ,AE ⊥BC 于E ,DF ⊥BC 于F ,且BF =CE.(1)求证AE=DF;(2)判定AB和CD的位置关系,并说明理由.【答案】(1)见解析∥,理由见解析(2)AB CD【解析】【分析】(1)只需要利用HL证明Rt△ABE≌Rt△DCF即可证明结论;∥.(2)根据Rt△ABE≌Rt△DCF即可得到∠B=∠C,即可证明AB CD(1)解:∵BF=CE,∴BF-EF=CE-EF,即BE=CF,∵AE⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,又∵AB=DC,∴Rt△ABE≌Rt△DCF(HL),∴AE=DF;(2)∥,理由如下:解:AB CD∵Rt△ABE≌Rt△DCF,∴∠B=∠C,∥.∴AB CD【点睛】本题主要考查了全等三角形的性质与判定,平行线的判定,熟知全等三角形的性质与判定条件是解题的关键.【变式训练】1.(2022·安徽安庆·八年级期末)如图,AD,BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB ≌△BDA ;(2)若∠CAB =54°,求∠CAO 的度数.【答案】(1)见解析(2)18°【解析】【分析】(1)根据HL 证明Rt △ABC ≌Rt △BAD ;(2)先求出∠ABC 的度数,即可利用全等三角形的性质求出∠BAD 的度数,由此即可得到答案.(1)证明:∵∠D =∠C =90°,∴△ABC 和△BAD 都是直角三角形,在Rt △ABC 和Rt △BAD 中,BC AD AB BA ⎧⎨⎩==, ∴Rt △ABC ≌Rt △BAD (HL );(2)解:在Rt △ABC 中,∠CAB =54°,∠ACB =90°,∴∠ABC =36°,∵Rt △ABC ≌Rt △BAD ,∴∠ABC =∠BAD =36°,∴∠CAO =∠CAB -∠BAD =54°-36°=18°.【点睛】本题主要考查了全等三角形的性质与判定,直角三角形两锐角互余,熟练掌握全等三角形的性质与判定条件是解题的关键.2.(2022·江西·永丰县恩江中学八年级阶段练习)如图,在△ABC 中,BC =AB ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF .(1)求证:Rt △ABE ≌Rt △CBF ;(2)若∠CAB =30°,求∠ACF 的度数.【答案】(1)证明见解析(2)60︒【解析】【分析】(1)由“HL ”可证Rt △ABE ≌Rt △CBF ;(2)由AB =CB ,∠ABC =90°,即可求得∠CAB 与∠ACB 的度数,即可得∠BAE 的度数,又由Rt △ABE ≌Rt △CBF ,即可求得∠BCF 的度数,则由∠ACF =∠BCF +∠ACB 即可求得答案.(1)∵∠ABC =90°,∴∠CBF =∠ABE =90°,在Rt △ABE 和Rt △CBF 中,AE CF AB BC=⎧⎨=⎩ ∴Rt △ABE ≌Rt △CBF (HL );(2)∵AB =BC ,∠ABC =90°,∴∠CAB =∠ACB =45°,∴∠BAE =∠CAB -∠CAE =45°-30°=15°。

八年级全等三角形专题训练

八年级全等三角形专题训练

八年级全等三角形专题训练大家好,今天我们来聊聊全等三角形。

这是一个听起来有点复杂但其实很有趣的话题,尤其当你掌握了它的要点,你会发现它的奥秘远比你想象的要简单。

让我们一步步来剖析全等三角形的知识点,希望能让大家感到轻松有趣!1. 全等三角形的基本概念1.1 什么是全等三角形?全等三角形其实就是两个三角形在形状和大小上完全一样。

简单来说,就是如果你把一个三角形贴到另一个三角形上,它们会完全重合。

就像两个小伙伴穿了完全一样的衣服,不管从哪个角度看,都一模一样。

真的是“同款”无差别啊!1.2 怎么判断三角形是否全等?有几个标准可以帮助我们判断。

最常用的是“全等三角形的三大标准”:SSS、SAS 和ASA。

听上去有点复杂,但其实很简单:SSS(边边边):三个边的长度分别相等。

SAS(边角边):两边和它们夹角的长度分别相等。

ASA(角边角):两角和它们夹角的长度分别相等。

这就像你在拍照时,如果对着镜子自拍,只要你站得正、角度对,照片上的你和镜子里的你就完全一样了。

2. 全等三角形的实际应用2.1 为什么要学全等三角形?全等三角形不仅在数学题里用到,其实在我们的日常生活中也能派上用场。

比如,在制作一些工艺品或建筑设计时,我们需要保证各部分的对称性和一致性,这时候全等三角形就帮了大忙。

如果你做的工艺品每个角度都对得上,那就能确保整体效果美观大方。

2.2 全等三角形在解题中的作用在解决几何问题时,利用全等三角形的性质,我们可以快速找到未知的边长或角度,省时又省力。

就像是在解密游戏中,有了密码锁的标准答案,所有的谜题都能迎刃而解。

这种方法能让我们在解题时更加得心应手,轻松搞定问题。

3. 实战演练3.1 典型例题解析假如题目给你两个三角形,告诉你它们的两边和夹角相等,你可以直接用SAS标准来证明它们全等。

比如,设想你有一个大三角形和一个小三角形,你知道它们的两边和夹角都是一样的,那么它们肯定全等。

这就像你在玩拼图游戏时,知道几个拼图的形状和位置完全一致,就可以轻松把它们拼到一起。

全等三角形培优专题训练

全等三角形培优专题训练

八年级数学培优专题训练(二)探索三角形全等的条件1、一张长方形纸片沿对角线剪开,得到两张三角形纸片,再将这两张纸片摆成如下图形式,使点B 、F 、C 、D 在同一条直线上. ⑴求证:AB ⊥ED ;⑵若PB =BC ,请找出图中与此条件有关的一对全等三角形,并给予证明2、如图,在△ABC 中,AC =BC ,∠ACB =90°,AD 平分∠BAC ,BE ⊥AD 交AC 的延长线于F ,E 为垂足,则结论:①AD =BF ;②CF =CD ;③AC+CD =AB ;④BE =CF ;⑤BF =2BE.其中正确的是( )3、如图,点C在线段AB上,DA ⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EBA4、如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,O 为对角线AC 的中点,过点O作一条直线分别与AB 、CD 交于点M 、N ,点E 、F 在直线M 、N 上,且OE =OF.⑴图中共有几对全等三角形,请把它们都写下来; ⑵求证:∠MAE =∠NCF5、在△ABC 中,高所在直线AD 和BE 交于H 点,且BH =AC ,则∠ABC =_____________.6、下列三个判断:⑴有两边及其中一边上的高对应相等的两个三角形全等; ⑵有两边及第三边上的高对应相等的两个三角形全等; ⑶一边及其它两边上的高对应相等的两个三角形全等.上述判断是否正确?若正确,说明理由;若不正确,请举出反例.E八年级数学培优专题训练(三)全等三角形的应用全等三角形常用来转移线段和角,用它来证明:①线段和角的等量关系②线段和角的和差倍分关系③直线与直线的平行或垂直等位置关系1、如图,已知BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.试判断AP与AQ的关系,并证明.2、如图,AD是△ABC的高,E为AC上一点,BE交AD于点F,且BF=AC,FD=CD,求证:BE⊥ACB3、(2012·阜新中考)如图,在△ABC 中,AB =AC,AD =AE,∠BAC =∠DAC =90°.⑴当点D 在AC 上时,如图①,线段BD,CE 有怎样的数量和位置关系?证明你猜想的结论.⑵将图①中的△ADE 绕点A 顺时针旋转α角(0°<α<90°) ,如图②,线段BD 、CE 有怎样的数量关系和位置关系?问明理由.②B①4、在△ABC中,AB=AC,点D是直线 BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.⑴如图①,当点D在线段BC上时,若∠BAC=90°,则∠BCE=_______度.⑵设∠BAC=α,∠BCE=βa、如图②,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.b、当点D在直线BC上移动时,α,β之间有怎样的数量关系?请直接写出你的结论.①②八年级数学培优专题训练(四)辅助线作法之连接法在几何证明中,常通过添加辅助线来构造全等三角形.常见的添加辅助线方法有:连接法、截长补短法、倍长中线法、翻折法、旋转法以及利用特殊条件构造全等三角形等等.1、如图,△ABC的两条高BD,CE相交于点P,且PD=PE.证明∶AC=AB2、已知AB=DE,BC=EF,∠B=∠E,AF=CD 求证:AC∥DFABC..3、如图,AB交CD于点O,AD、CB的延长线相交于点E,且OA=OC,EA=EC.∠A=∠C吗?点O在∠AEC的平分线上吗?E..八年级数学培优专题训练(五)辅助线作法之倍长中线法在题目条件中含有中线的问题,我们常用的辅助线就是将中线延长一倍,其目的是为了得一对全等三角形,将分散的条件集中到一个三角形中去.1、△ABC中,AB=5,AC=3,求中线AD的取值范围.2、如图,在△ABC中,AD是∠BAC的平分线,又是BC上的中线求证:AB=ACBB..3、(2014·襄阳初三模拟)在△ABC中,D是边BC上的一点,且CD=AB,∠BAD=∠BDA,AE是△ABD的中线.求证∶AC=2AEB..4、(竞赛014)△ABC 中,D 为BC 的中点,DE ⊥DF 交AB ,AC 于点E ,F.求证:BE +CF >EF6、(竞赛015)例:已知AD 是△ABC 的中线,BE 交AC 于点E ,交AD 于点F ,且AE =EF.求证:AC =BFAB八年级数学培优专题训练(六)辅助线作法之截长补短法截长法:在第三条线段上截下一段使其等于两条线段中的一条,再证明剩余部分与另一条相等. 补短法:把两条线段中的一条补到另一条线段上去,证明所得新线段与第三条线段相等. 1、已知AC ∥BD ,EA ,EB 分别平分∠CAB 和∠DBA ,点E在CD 上.求证:AB =AC +BD2、在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =½(AB +AD ). 求证∶∠B +∠D =180°ABD3、如图,已知△ABC 中,∠A =90°,AB =AC ,D 为AC 的中点,AE ⊥BD 于E ,延长AE 交BC 于F.求证:∠ADB =∠CDF4、如图,∠C =90°,AC =BC ,AD 是∠BAC 的角平分线. 求证∶AC +CD =AB12、如图,已知AB =CD =AE =BC +DE =2,∠ABC =∠AED =90°,求五边形ABCDE 的面积.BB八年级数学培优专题训练(七)辅助线作法之利用特殊条件构造全等三角形2、(2012·“华罗庚杯”)如图,在△ABC中,AC=½AB,AD平求证:CD⊥ACB八年级数学培优专题训练(八)全等三角形在动态几何中的运用1、(竞赛·014·3)如图,△ABC的边BC在直线l上,AC⊥BC,且AC=BC.△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.⑴在图①中,请你通过观察、测量、猜想并写出AB与AP所满足的数量关系和位置关系;⑵将△EFP沿直线l向左平移到图②的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;⑶将△EFP沿直线l向左平移到图③的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为⑵中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.八年级数学培优专题训练(九)探究角平分线一、知识清单角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线). 由定义可知,三角形的角平分线是一条线段.角平分线性质:1、角平分线上的点,到这个角的两边的距离相等.2、角平分线分得的两个角相等,都等于该角的一半.3、三角形的三条角平分线交于一点,且到各边的距离相等,这个点称为内心.二、方法点拨证明角平分线有两种方法:一是运用定义证明两个角相等;二是运用角平分线的判定方法.三、规律清单①遇到角平分线,可从角平分线上的某一点向角的两边作垂线段(图1).②遇到角平分线,常可利用翻折法或截长补短法解题(图2).③有两条角平分线(内角或外角)交于一点,则连接该点与三角形第三个顶点的线段会平分一个内角或外角(图3).④有垂直于角平分线的线段,则延长这条线段以利用三线合一解题(图4).⑤遇到角内的一点到角的两边有垂线段时,就连接这点与角的顶点,看能否平分已知角(图5). ⑥遇到有多条角平分线时,可尝试用整体的思想解题(图6).⑦有翻折条件时,除注意全等的结论,还应关注折线就是角平分线、是对称轴(如图7). ⑧角平分线、平行线、等腰三角形三个条件中出现任意两个,常可直接得到另一个(如图8).图3B图1B图2四、真题训练1、(2011·鄂州·竞赛·018 ·重庆中考)如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC的平分线BP 相交于点P ,若∠BPC =40°,则∠CAP =_____________.2、(竞赛·019)如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC.求证:AM 平分∠DABBBBB..3、(竞赛·019)如图,在△ABC 中,∠BAC =90°,AB =AC,BE 平分∠ABC,CE ⊥BE.求证:CE =12 BD4、如图,在△ABC 中,AD 平分∠BAC ,BD =CD 求证:∠B =∠C5、如图,在Rt △ABC 中,∠C =90°,AC =BC ,AD 是∠BAC 的平分线,交BC 于D ,DE ⊥AB 于E ,若AB =10cm ,则△DBE 的周长是多少?B6、(2011,恩施中考)AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为多少?7、如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F.求证:BE =CF8、在△ABC 中,AD 是∠BAC 的平分线,E 、F 分别为AB 、AC 上的点,且∠EDF +∠BAF =180°⑴求证:DE =DF⑵如果把最后一个条件改为AE >AF ,且∠AED +∠AFD =180°,那么结论还成立吗?9、如图,已知AB =AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,BE 与CF 交于点D求证:点D 在∠BAC 的平分线上.B10、如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论正确的是( )A.AB-AD>CB-CDB.AB-AD=CB-CDC.AB-AD<CB-CDD.AB-CD与CB-CD的大小关系不确定11、(竞赛014)如图,已知△ABC中,∠B=60°,∠BAC,∠BCA的平分线AD,CE相交于点O.求证:DC+AE=AC12、(竞赛·019)如图,已知△ABC,P为内角平分线AD、BE、CF的交点,过点P作PG⊥BC于G点。

全等三角形的提高拓展训练学生版he全等三角形经典题型题含答案

全等三角形的提高拓展训练学生版he全等三角形经典题型题含答案

全等三角形的提高拓展训练知识点睛对应角相等,对应边相等,对应边上的中线相等,对应边上的高相全等三角形的性质:等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.( 2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.( 3)有公共边的,公共边常是对应边.( 4)有公共角的,公共角常是对应角.()有对顶角的,对顶角常是对应角.(5,一对最短边或对应角)(或最大角)是对应边((6)两个全等的不等边三角形中一对最长边).)是对应边(或对应角(或最小角要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法::两边和它们的夹角对应相等的两个三角形全等.边角边定理(SAS))(1:两角和它们的夹边对应相等的两个三角形全等.角边角定理(ASA)(2):三边对应相等的两个三角形全等.(SSS)(3)边边边定理AAS):两个角和其中一个角的对边对应相等的两个三角形全等.角角边定理(4)( HL):斜边和一条直角边对应相等的两个直角三角形全等.(5)斜边、直角边定理(运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在全等三角形的应用:证明的过程中,注意有时会添加辅助线.能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而拓展关键点:证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短0660??A和中已知,分别平分,、(【例1】中考年北京题)ABC?CE?ABCBD的数量关系,并加以证、、,交于点,试判断、OBCCDCE?.ACBBEBD 明.AE DOCBD1 / 12,作除外)为正三角形的边所在直线上的任意一点(点【例2】如图,点BABDABM有怎样的与,射线与外角的平分线交于点,NMNMN?60??DMNDM∠DBA?数量关系【变式拓展训练】外角的平分线交的边如图,点为正方形上任意一点,且与ABCDMABCD∠MN?ABM于点,与有怎样的数量关系?NMNMD CDNEMBA. BE+DF=AE. ABCD】已知:如图,是正方形,∠FAD=∠FAE求证:3【例DAFCBE相,连结为边向三角形外作等边、、、的【例4】以ACCD??ABCACEBE?ABABD..求证:交于点平分OAODOE?DAECB2 / 12的正三角形,是边长为5】 (北京市、天津市数学竞赛试卷)如图所示,【例ABC?1、,点是顶角为的等腰三角形,以为顶点作一个的MDN60?BDC?120??DM上,求分别在、的周长.ACNAMN?AB AN MCBD,,∠ABC+∠AED=180°,】【例6五边形ABCDE中,AB=AEBC+DE=CD A CDE 求证:AD平分∠BED C板块二、全等与角度】【例7,如图,在中,的平分线,且,是BD60?BAC??AB??BACAC??ABCAD的度数求.ABC?A】【例8,使在等腰,在边中,,,顶角上取点AD?ABCAB?AC?A??BC?20DAB CDB求.BDC?ACD3 / 12M.【例9】(“勤奋杯”数学邀请赛试卷)如图所示,在中,,,?20CAC?BC??ABC?又在上,在上,且满足,,求.NACNMB???ABMBC60?BAN?50??M???,,,,【例10】在四边形中,已知28??ADB?7660?ABD?BDC?ACAB?ABCD求的度数. DBC??12??DAC,四边,形中,如克术(11】日本算奥林匹试卷) 图所示在【例ABCD???24??DBC??CAB36?ABD?48,求的度数,,.ACD?4 / 12,使,内取一点(河南省数学竞赛试卷) 在正【例12】ABC?DDBDA?,求.在外取一点,使,且DBC?ABC?DBE??EBEDBA?BE??为如图所示,在中,,】 (北京市数学竞赛试卷) 13【例44BAC??BCA??ABC?M??1630??MAC?MCA?.,求内一点,使得,的度数BMC?ABC?BMCA题(含答20全等三角形证明经典案)ADADBCDAC=2AB=41.已知:,,是中点,是整数,求5 / 12ACBDDE=AD,使延长AD到E,EBD全等于三角形则三角形ADC,AB-BE<AE<AB+BE 中BE=AC=2 在三角形ABE即:10-2<2AD<10+2 4<AD<6 即A AD=5是整数,则又AD2 1 EF=AC,求证:∠2,CD=DE,EF//AB2.已知:∠1=G 交AD延长线于明证:过E点,作EG//AC,F 2 ∠,∠DGE=则∠DEG=∠DCACCD=DE 又∵DEG=AC ∴≌∴⊿ADC⊿GDE(AAS)EEF//AB ∵B 1 ∠∠DFE=∴2 1=∠∠∵DGE DFE=∠∴∠EF=EG∴EF=AC ∴CB=2∠平分∠3.已知:ADBAC,AC=AB+BD,求证:∠ACDED 接AE=AB,连取明:在AC上截证BAC ∠AD平分∵BAD ∠∴∠EAD=AD=AD ,∵AE=AB 又DE=DB B,∠)∴AED=∠AED∴⊿≌⊿ABD(SASAC=AB+BD ∵AC=AE+CECE=DE ∴EDC C=∠∴∠C ∠C+∠EDC=2∵∠AED=∠C ∠∴∠B=2AE=AD+BE °,求证:B+∠D=180,∠,已知:4.AC平分∠BADCE⊥ABCF连EBEF,取AE:证明在上F使=,接6 / 12AB ⊥为CE因90°CEF=∠CEB=∠所以CEF ≌△所以△CEBEB=EF,CE=CE,因为CFE =∠所以∠B =180°+∠CFAD+∠=180°,∠CFE因为∠BCFA =∠以∠D所BAD 分∠为AC平因FAC =∠以∠DAC所AC =因为AC又AF =所以AD≌△AFC(SAS)所以△ADCBE +FE=AD以AE=AF+所AD在,且点ECE分别平分∠ABC、∠BCD5. 如图,四边形ABCD中,AB∥DC,BE、。

中考数学二轮复习全等三角形压轴几何题知识归纳总结及答案

中考数学二轮复习全等三角形压轴几何题知识归纳总结及答案

中考数学二轮复习全等三角形压轴几何题知识归纳总结及答案一、全等三角形旋转模型1.ABC △和ADE 都是等腰直角三角形,CE 与BD 相交于点,M BD 交AC 于点,N CE 交AD 于点H .试确定线段BD CE 、的关系.并说明理由.解析:BD CE ⊥且BD CE =【分析】由已知条件可证明BAD CAE ≅△△,再根据全等三角形的性质,得到BD CE ∴= ADB AEC ∠=∠,在AEH △中90AEC AHE ∠+∠=︒,又AHE MHD ∠=∠,可得:90HMD ∠=︒,即可证明BD CE ⊥且BD CE =.【详解】解: ABC 和ADE 是直角三角形BAC DAE ∴∠=∠AB AC =AD AE =则BAC CAD DAE CAD ∠+∠=∠+∠即BAD CAE ∠=∠在BAD 与CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩S )AS BAD CAE ∴≅(△△BD CE ∴= ADB AEC ∠=∠在AEH △中90AEC AHE ∠+∠=︒又AHE MHD ∠=∠90ADB MHD ∴∠+∠=︒则MHD 中90HMD ∠=︒,即,BD CE ⊥,综上所述,BD CE ⊥且BD CE =.【点睛】本题主要考查三角形全等的判定方法和性质定理和等腰直角三角形的性质,从复杂的图形中找到全等三角形和“8”字形三角形是解题的关键.2.如图所示,ABC ∆中,1AB BC ==,90ABC ∠=︒,把一块含30角的直角三角板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为DF ,长直角边为DE ),将三角板DEF 绕D 点按逆时针方向旋转.(1)在如图所见中,DE 交AB 于M ,DF 交BC 于N ,证明DM DN =;(2)继续旋转至如图所见,延长AB 交DE 于M ,延长BC 交DF 于N ,证明DM DN =.答案:B解析:(1)见解析;(2)见解析.【解析】【分析】(1)连接BD ,证明△DMB ≌△DNC .根据已知,全等条件已具备两个,再证出∠MDB=∠NDC ,用ASA 证明全等,四边形DMBN 的面积不发生变化,因为它的面积始终等于△ABC 面积的一半;(2)同样利用(1)中的证明方法可以证出△DMB ≌△DNC ;(3)方法同(1).【详解】证明:(1)连接BD,∵AB=BC ,∠ABC=90°,点D 为AC 的中点∴BD ⊥AC ,∠A=∠C=45°∴BD=AD=CD∴∠ABD=∠A=45°∴∠MBD=∠C=45°∵∠MDB+∠BDN=90°∠NDC+∠BDN=90°∴∠MDB=∠NDC在△MDB 和△NDC 中MBD C BD CDMDB NDC ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△MDB ≌△NDC (ASA )∴DM=DN (5分)(2)DM=DN 仍然成立.理由如下:连接BD ,由(1)知BD ⊥AC ,BD=CD∴∠ABD=∠ACB=45°∵∠ABD+∠MBD=180°∠ACB+∠NCD=180°∴∠MBD=∠NCD∵BD ⊥AC∴∠MDB+∠MDC=90°又∠NDC+∠MDC=90°∴∠MDB=∠NDC在△MDB 和△NDC 中MBD NCD BD CDMDB NDC ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△MDB ≌△NDC (ASA )∴DM=DN.【点睛】本题主要考查学生的推理能力,题目比较典型,利用ASA 求三角形全等(手拉手模型),还运用了全等三角形的性质,等腰直角三角形的性质,及等腰三角形三线合一定理等知识.3.(1)如图1,在OAB 和OCD 中,OA=OB ,OC=OD ,∠AOB=∠COD=40°,连接AC ,BD 交于点M .求:①AC BD的值; ②∠AMB 的度数. (2)如图2,在OAB 和OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M .请判断AC BD的值及∠AMB 的度数,并说明理由; (3)在(2)的条件下,将OCD 点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD=2,OB=23,请直接写出当点C 与点M 重合时AC 的长.答案:A解析:(1)①1,②40°;(2)AC BD 3∠AMB=90°,见解析;(3)33【分析】(1)①根据已知条件证明△COA ≌△DOB ,即可证明AC=BD ;②根据△COA ≌△DOB 可得∠CAO=∠DBO ,根据已知条件可得∠OAB+∠ABO=140°,然后在△AMB 中,根据等角的转换即可得到答案; (2)根据已知条件证明△AOC ∽△BOD ,可得∠CAO=∠DBO ,进而可得∠MAB=∠OAB+∠DBO ,最后可得∠AMB=180°-(∠OAB+∠ABM+∠DBO )=90°;(3)分两种情况讨论,根据题(2),同理可得OAC OBD △△,90AMB ∠=︒,3AC BD=,设BD=x ,则3AC x = 用x 表示出AM 、BM 的长,在Rt AMB 中,根据勾股定理222AM BM AB +=列出方程,求解即可.【详解】 解:(1)①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB ,∵OC=OD ,OA=OB ,∴△COA ≌△DOB (SAS ),∴AC=BD , ∴AC BD =1, ②∵△COA ≌△DOB ,∴∠CAO=∠DBO ,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB 中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD )=180°﹣(∠DBO+∠OAB+∠ABD )=180°﹣140°=40°,(2)如图2,AC BD=3,∠AMB=90°,理由是:在Rt △COD 中,∠DCO=30°,∠DOC=90°,∴3tan 303OD OC =︒=,同理得:3tan 303OB OA =︒=, ∴OD OB OC OA=, ∵∠AOB=∠COD=90°,∴∠AOC=∠BOD ,∴△AOC ∽△BOD ,∴AC OC BD OD==3,∠CAO=∠DBO , 在△AMB 中,∠AMB=180°﹣(∠MAB+∠ABM )=180°﹣(∠OAB+∠ABM+∠DBO )=90°;(3)AC 的长为23或43.①如图,点C 与点M 重合,同理可得:OAC OBD △△,90AMB ∴∠=︒,3AC BD =设BD=x ,则3AC x =,在Rt ODC 中,30OCD ∠=︒,OD=2,4CD ∴=,在Rt AOB 中,30OAB ∠=︒,33AB ∴=,在Rt AMB 中,222AM BM AB +=,即222(3)(4)(43)x x ++=,解得:x=2或-4(舍),323x =②如图,点C 与点M 重合,同理可得:90AMB ∠=︒,3AC BD =, 设BD=x ,则AC=3x ,在Rt COD 中, 90OCD ∠=︒,OD=2,4CD ∴=,4BC x =-,在Rt AOB 中,30OAB ∠=︒,23OB =,243AB OB ∴==,在Rt AMB 中,222AM BM AB +=,即222(3)(4)(43)x x +-=,解得:x=4或-2(舍),AC=343x =,综上所述,AC 的长为23或43.【点睛】本题主要考查三角形的综合运用,涉及全等三角形与相似三角形的性质和判定、勾股定理、解一元一次方程、图形旋转证明、特殊角的三角函数值等知识点,难度较大,第(1)题证明△COA ≌△DOB 是关键,第(2)题证明△AOC ∽△BOD 是关键,第(3)题要特别注意分情况讨论.4.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.解析:(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点,//PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠, 90BAC ∠=︒, 90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,22AM ∴=在Rt ABC ∆中,10AB AC ==,52AN =22522MN ∴=最大,222111149(72)22242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==,PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.5.如图1,在Rt △ABC 中,AB =AC ,∠A =90°,点D 、E 分别在边AB 、AC 上,AD =AE ,连结DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是________,位置关系是__________;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连结MN ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若DE =2,BC =4,请直接写出△PMN 面积的最大值.答案:C解析:(1)PM=PN ,PM ⊥PN ,理由见详解;(2)△PMN 是等腰直角三角形,理由见详解;(3)△PMN 面积的最大值是94. 【分析】(1)利用三角形的中位线得出PM=12CE ,PN=12BD ,进而判断出BD=CE ,即可得出结论,再利用三角形的中位线得出PM ∥CE 得出∠DPM=∠DCA ,最后用互余即可得出结论; (2)先判断出△ABD ≌△ACE ,得出BD=CE ,同(1)的方法得出PM=12BD ,PN=12BD ,即可得出PM=PN ,同(1)的方法即可得出结论;(3)先判断出BD 最大时,△PMN 的面积最大,而BD 最大是AB+AD=14,即可得出结论.【详解】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=12BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=12CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN;故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形;理由:由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=12BD,PM=12CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)由(2)知,△PMN 是等腰直角三角形,PM=PN=12BD , ∴PM 最大时,△PMN 面积最大,即:BD 最大时,△PMN 面积最大,∴点D 在BA 的延长线上,∵DE =2,BC =4,∴2222AD =⨯=,24222AB =⨯= ∴BD=AB+AD=32,∴PM=322, ∴S △PMN 最大=12PM 2=21329()224⨯=; 【点睛】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=12CE ,PN=12BD ,解(2)的关键是判断出△ABD ≌△ACE ,解(3)的关键是判断出BD 最大时,△PMN 的面积最大,是一道中考常考题.6.如图,在ABC 中,,AB AC BAC α=∠=,过A 作AD BC ⊥于点D ,点E 为直线AD 上一动点,把线段CE 绕点E 顺时针旋转α,得到线段EF ,连接FC 、FB ,直线AD 与BF 相交于点G .(1)(发现)如图1,当60α=︒时,填空:①AE BF的值为___________; ②AGB ∠的度数为___________; (2)(探究)如图2,当120α=︒时,请写出AE BF的值及AGB ∠的度数,并就图2的情形给出证明;(3)(应用)如图3,当90α=︒时,若15AB ACE =∠=︒,请直接写出DFG 的面积.答案:G解析:(1)1;60°;(2)AE BF =∠G =30°,理由见解析;(3) 【分析】(1)①根据已知条件可以证明三角形ABC 和三角形EFC 都是等边三角形,然后根据等边三角形的性质证明△AEC ≌△BFC ,即BF =AE 从而得出答案;②根据①中的证明∠ABG =90°,∠BAG =30°,从而计算出∠AGB 的度数;(2)根据题目已知条件可以计算出BC =,同理可以证得CF =,再证ECA FCB ∠=∠即△ACE ∽△BCF ,从而得到比值和角的度数;(3)根据第(2)问的计算结论分E 在AD 上和E 在DA 的延长线上分类讨论求解即可.【详解】解:(1)①∵AB =AC ,CE =EF ,∠BAC =∠FEC =60°∴△ABC 和△EFC 都是等边三角形∴∠ACB =∠ECF =60°,AC =CB ,CE =CF∴∠ACE =∠BCF∴△ACE ≌△BCF∴A E =BF ,即1AE BF= ②∵△ACE ≌△BCF∴∠EAC =∠CBF 由①可知△ABC 是等边三角形∴AD 平分∠BAC ,BD ⊥AD∴∠CAE =∠CBF =30°∴∠AGB =∠180°-∠CBF -∠BDG =60°(2)AE BF = ∵AB =AC ,∠BAC =120°,AD ⊥BC∴∠ABD =30°=∠ACB∴BD AB AC CD === ∴BC =同理∵∠FEC =120°,EF =EC ∴CF =∴BC CF AC CE=,∠ACB =∠ECF =30°∴△ACE ∽△BCF∴∠CAE =∠CBF∴3AE AC BF BC == ∵AD ⊥BC ,∠BAC =120°,∴∠CAE =∠CBF =60°又∵∠BDG =90°∴∠G =30°(3)第一种情况,如图所示,当E 在AD 上时 ∵AB AC ==∠BAC =90°,AD ⊥BC ∴sin 4562BC AD BD CD AB =====∠DAC =45° ∵∠ACE =15° ∴∠CED =∠CAD +∠ACE =60° ∴2tan 60DC DE ==∴AE AD DE =-=BC CF AC CE==,∠ACB =∠ECF =45° 又∵AD ⊥BC ,∠BAC =90°,∴∠CAE =∠CBF =45°∴△ACE ∽△BCF∴BF BC AE AC==∴2BF == ∵∠ADC =∠BDG∴∠G =∠ACB =45°∴BG ==∴2FG BG BF =-=过点D 作DM ⊥BG 交BG 于M ,∵∠G =∠ACB =45°,∠BDG =90°∴=DG BD CD ==∴2DM DG == ∴132DFG S FG DM ==△第二种情况:当E 在DA 的延长线上时过点D 作DM ⊥BG 交BG 于M , 同上可证2BF BC AE AC ==,6BG BD ==,3DM = ∵∠ACE =15°,∠DAC =45°∴∠DEC =30° ∵AD ⊥CD ,6CD =∴32tan 30DC DE == ∴=6DG BD CD ==326AE DE AD =-=-∴2623FB AE ==-∴6FG BF BG =+=1332DFG S FG DM ==△ 故答案为:3或33.【点睛】本题主要考查了相似三角形的性质与判定,旋转的性质,三角函数等知识点,解题的关键在于能够熟练的掌握相关知识点.7.在ABC 中,,AB AC BAC α=∠=,点P 为线段CA 延长线上一动点,连接PB ,将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD ,连接,DB DC .(1)如图1,当60α=︒时,请直接写出线段PA 与线段CD 的数量关系是__________,DCP ∠为______度;(2)如图2,当120α=︒时,写出线段PA 和线段DC 的数量关系,并说明理由; (3)如图2,在(2)的条件下,当23AB =13BP PC +的最小值. 答案:A解析:(1)PA =DC ,60;(2)CD 3PA .理由见详解;(232【分析】(1)先证明△ABC ,△PBD 是等边三角形,再证明△PBA ≌△DBC ,进而线段PA 与线段CD 的数量关系,利用全等三角形的性质以及三角形内角和等于180°,解决问题即可;(2)证明△CBD ∽△ABP ,可得3CD BC PA AB== (3)过点C 作射线CM ,使得sin ∠ACM =13,过点P 作PN ⊥CM 于点N ,则PN =13PC , 过点B 作BG ⊥BA 于点G ,当点B 、P 、N 共线时,BP +PN 最小,即13BP PC +最小,由BGP CNP ∽,得13GP NP BP CP ==,结合勾股定理求出GP ,从而得CP ,进而即可求解. 【详解】(1)①证明: ∵将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD , ∴PB =PD ,∵AB =AC ,PB =PD ,∠BAC =∠BPD =60°,∴△ABC ,△PBD 是等边三角形,∴∠ABC =∠PBD =60°,∴∠PBA =∠DBC ,∵BP =BD ,BA =BC ,∴△PBA ≌△DBC (SAS ),∴PA =DC .设BD 交PC 于点O ,如图1,∵△PBA ≌△DBC ,∴∠BPA =∠BDC ,∵∠BOP =∠COD ,∴∠OBP =∠OCD =60°,即∠DCP =60°.故答案是:PA =DC ,60;(2)解:结论:CD 3.理由如下:∵AB =AC ,PB =PD ,∠BAC =∠BPD =120°,∴BC =2•AB •cos30°3,BD ═2BP •cos30°3, ∴BC BD BA BP=3 ∵∠ABC =∠PBD =30°,∴∠ABP =∠CBD ,∴△CBD ∽△ABP , ∴3CD BC PA AB== ∴CD 3; (3) 过点C 作射线CM ,使得sin ∠ACM =13,过点P 作PN ⊥CM 于点N ,则PN =13PC , 过点B 作BG CA ⊥于点G ,则BG =AB ×sin ∠BAG 3=3,AG = AB ×cos ∠BAG 3 当点B 、P 、N 共线时,BP +PN 最小,即13BP PC +最小, ∵∠BGP =∠CNP =90°,∠BPG =∠CPN , ∴BGP CNP ∽, ∴13GP NP BP CP ==, 设GP =x ,则AP 3-x ,BP =3x ,∴()22233x x +=,解得:x 324∴BP =924,AP =3-324, ∴CP =AC +AP =23+3-324=33-324, ∴13BP PC +最小值=924+13×(33-324)=3+22.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,第(1)(2)题解题的关键是正确寻找全等三角形或相似三角形解决问题,第(3)题的关键是过点C 作射线CM ,使得sin ∠ACM =13,过点P 作PN ⊥CM 于点N .8.如图1,在正方形ABCD 中,点,E F 分别在边,AB AD 上,且AE AF =,延长FD 到点G ,使得DG DF =,连接,,EF GE CE .(特例感知)(1)图1中GE 与CE 的数量关系是______________.(结论探索)(2)图2,将图1中的AEF 绕着点A 逆时针旋转()090αα︒<<︒,连接FD 并延长到点G ,使得DC DF =,连接,,GE CE BE ,此时GE 与CE 还存在(1)中的数量关系吗?判断并说明理由.(拓展应用)(3)在(2)的条件下,若5,32AB AE ==,当EFG 是以EF 为直角边的直角三角形时,请直接写出GE 的长.答案:G解析:(1) GE =2CE ,(2)存在,证明见解析,(3)258或210或16或4.【分析】(1)连接GC ,证△CDG ≌△CBE ,得出△GCE 为等腰直角三角形即可;(2)类似(1)的方法,先证△AFD ≌△AEB ,再证△CDG ≌△CBE ,得出△GCE 为等腰直角三角形即可;(3)根据E 、F 是直角顶点分类讨论,结合(2)中结论,利用勾股定理求解即可.【详解】解:(1)连接GC ,∵AE =AF ,AD =AB ,∴DF =BE ,∵DG DF =,∴DG = BE ,∵∠GDC =∠B =90°,DC =BC ,∴△CDG ≌△CBE ,∴CE =CG ,∠GCD =∠ECB ,∵∠ECB +∠DCE =90°,∴∠GCE =∠GCD +∠DCE =90°,∴GE =2CE ;故答案为:GE =2CE ;(2) 存在,连接GC ,∵AE =AF ,AD =AB ,∠FAE =∠DAB =90°,∴∠FAD=∠EAB,∴△FAD≌△EAB,∴FD=EB=GD,∠FDA=∠EBA,∵∠GDC+∠FDA=90°,∠EBC+∠EBA=90°,∴∠GDC=∠EBC,∵DC=BD,∴△CDG≌△CBE,与(1)同理,GE=2CE;(3)当∠FEG=90°时,如图1,因为∠FEA=∠GEC=45°,所以,A、E、C在一条直线上,∵AB=5,∴AC=52,CE=52-32=22,GE=2EC=4;如图2,E在CA延长线上,同理可得,EC2,GE =2EC =16;当∠EFG =90°时,如图3,∠AFD =∠EFG +∠AFE =135°,由(2)得,∠AFD =∠AEB =135°,DF =BE ,所以,B 、E 、F 在一条直线上,作AM ⊥EF ,垂足为M ,∵5,32AB AE ==,∴EF =6,AM =ME =MF =3,224BM AB AM =-=,BE =DF =1,FG =2,22210GE FG EF =+=;如图4,同图3,BE =DF =7,FG =14,EF =6,22258GE FG EF =+=,综上,GE的长为258或210或16或4.【点睛】本题考查了旋转的性质、全等三角形的判定与性质、勾股定理和等腰直角三角形的性质,解题关键是恰当的连接辅助线,构造全等三角形;会分类讨论,结合题目前后联系,解决问题.9.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)将图①中BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).答案:E解析:(1)见解析;(2)依然成立,见解析;(3)依然成立,EG⊥CG【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG;(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG;(3)结论依然成立,证明方法类似(2).【详解】(1)证明:∵四边形ABCD是正方形,∴∠DCF=90°,在Rt△FCD中,∵G为DF的中点,∴CG=12FD,同理,在Rt△DEF中,EG=12 FD,∴CG=EG.(2)解:(1)中结论仍然成立,即EG=CG.证法:如图,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG;∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN,在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.(3)解:(1)中的结论仍然成立.理由如下:如图,过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N ,∵G 为FD 中点,∴FG =GD ,∵MF ∥CD ,∴∠FMG =∠DCG ,∠GDC =∠GFM ,∴△CDG ≌△MFG ,∴CD =FM ,∵NF ∥BC ,∴∠NFH +∠NHF =∠EHB +∠EBH ,又∵∠NHF =∠EBH ,∴∠NFH =∠EBH ,∴∠EFM =∠EBC ,又∵BE =EF ,则△EFM ≌△EBC ,∠FEM =∠BEC ,EM =EC∵∠FEC +∠BEC =90°,∴∠FEC +∠FEM =90°,即∠MEC =90°,∴△MEC 是等腰直角三角形,∵G 为CM 中点,∴EG =CG ,EG ⊥CG .【点睛】本题考查全等三角形的判定和性质、矩形的判定与性质,正方形的性质,旋转的性质,解题的关键是掌握相关性质.10.如图.四边形ABCD 、BEFG 均为正方形.(1)如图1,连接AG 、CE ,请直接写出.....AG 和CE 的数量和位置关系(不必证明).(2)将正方形BEFG 绕点B 顺时针旋转β角(0180β︒︒<<),如图2,直线AG 、CE 相交于点M .①AG 和CE 是否仍然满足(1)中的结论?如果是,请说明理由:如果不是,请举出反例:②连结MB ,求证:MB 平分AME ∠.(3)在(2)的条件下,过点A 作AN MB ⊥交MB 的延长线于点N ,请直接写出.....线段CM与BN 的数量关系.答案:A解析:(1)AG=EC ,AG ⊥EC ;(2)①满足,理由见解析;②见解析;(3)2.【分析】(1)由正方形BEFG 与正方形ABCD ,利用正方形的性质得到两对边相等,一对直角相等,利用SAS 得出三角形ABG 与三角形CBE 全等,利用全等三角形的对应边相等,对应角相等得到CE=AG ,∠BCE=∠BAG ,再利用同角的余角相等即可得证;(2)①利用SAS 得出△ABG ≌△CEB 即可解决问题;②过B 作BP ⊥EC ,BH ⊥AM ,由全等三角形的面积相等得到两三角形面积相等,而AG=EC ,可得出BP=BH ,利用到角两边距离相等的点在角的平分线上得到BM 为角平分线;(3)在AN 上截取NQ=NB ,可得出三角形BNQ 为等腰直角三角形,利用等腰直角三角形的性质得到2BN ,接下来证明BQ=CM ,即要证明三角形ABQ 与三角形BCM 全等,利用同角的余角相等得到一对角相等,再由三角形ANM 为等腰直角三角形得到NA=NM ,利用等式的性质得到AQ=BM ,利用SAS 可得出全等,根据全等三角形的对应边相等即可得证.【详解】解:(1)AG=EC ,AG ⊥EC ,理由为:∵正方形BEFG ,正方形ABCD ,∴GB=BE ,∠ABG=90°,AB=BC ,∠ABC=90°,在△ABG 和△BEC 中,BG BE ABC EBC BA BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABG ≌△BEC (SAS ),∴CE=AG ,∠BCE=∠BAG ,延长CE 交AG 于点M ,∴∠BEC=∠AEM ,∴∠ABC=∠AME=90°,∴AG=EC ,AG ⊥EC ;(2)①满足,理由是:如图2中,设AM 交BC 于O .∵∠EBG=∠ABC=90°,∴∠ABG=∠EBC ,在△ABG 和△CEB 中,AB BC ABG CBE BG EB =⎧⎪∠=∠⎨⎪=⎩,∴△ABG ≌△CEB (SAS ),∴AG=EC ,∠BAG=∠BCE ,∵∠BAG+∠AOB=90°,∠AOB=∠COM ,∴∠BCE+∠COM=90°,∴∠OMC=90°,∴AG ⊥EC .②过B 作BP ⊥EC ,BH ⊥AM ,∵△ABG ≌△CEB ,∴S △ABG =S △EBC ,AG=EC , ∴12EC•BP=12AG•BH , ∴BP=BH ,∴MB 平分∠AME ;(3)CM=2BN ,理由为:在NA 上截取NQ=NB ,连接BQ ,∴△BNQ 为等腰直角三角形,即BQ=2BN ,∵∠AMN=45°,∠N=90°,∴△AMN 为等腰直角三角形,即AN=MN ,∴MN-BN=AN-NQ ,即AQ=BM ,∵∠MBC+∠ABN=90°,∠BAN+∠ABN=90°,∴∠MBC=∠BAN ,在△ABQ 和△BCM 中,AQ BM BAN MBC AB BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABQ ≌△BCM (SAS ),∴CM=BQ ,则CM=2BN .【点睛】此题考查了正方形,全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线的判定,熟练掌握正方形的性质是解本题的关键.11.在平面直角坐标系中,点A 在y 轴正半轴上,点B 在x 轴负半轴上,BP 平分∠ABO . (1)如图1,点T 在BA 延长线上,若AP 平分∠TAO ,求∠P 的度数;(2)如图2,点C 为x 轴正半轴上一点,∠ABC =2∠ACB ,且P 在AC 的垂直平分线上. ①求证:AP //BC ;②D 是AB 上一点,E 是x 轴正半轴上一点,连接AE 交DP 于H .当∠DHE 与∠ABE 满足什么数量关系时,DP =AE .给出结论并说明理由.答案:D解析:(1)45°;(2)①见解析;②∠DHE+∠ABE=180°,理由见解析【分析】(1)由三角形的外角性质和角平分线的性质可得∠AOB=2∠P=90°,可求解;(2)①过点P作PE⊥AB交BA延长线于E,过点P作PF⊥BC于F,连接PC,由角平分线的性质可得PE=PF,由垂直平分线的性质可得PA=PC,由“HL”可证Rt△APE≌Rt△CPF,可得∠EPA=∠CPF,由四边形内角和定理可得∠EBF+∠EPF=180°,由角的数量关系可证∠ACB=∠PAC,由平行线的判定可证AP∥BC;②如图3,在OE上截取ON=OB,连接AN,通过证明△ADP≌△NEA,可得DP=AE.【详解】解:(1)∵BP平分∠ABO,AP平分∠TAO,∴∠PBT=12∠ABO,∠TAP=12∠TAO,∵∠TAO=∠ABO+∠AOB,∠TAP=∠P+∠ABP,∴∠AOB=2∠P=90°,∴∠P=45°;(2)①如图2,过点P作PE⊥AB交BA延长线于E,过点P作PF⊥BC于F,连接PC,又∵PB平分∠ABC,∴PE=PF,∵P在AC的垂直平分线上,∴PA=PC,∴∠PAC=∠PCA,在Rt△APE和Rt△CPF中,AP PC PE PF =⎧⎨=⎩, ∴Rt △APE ≌Rt △CPF (HL ),∴∠EPA =∠CPF ,∴∠EPF =∠APC ,在四边形BEPF 中,∠EBF+∠BEP+∠EPF+∠PFB =180°,∴∠EBF+∠EPF =180°,∴∠ABC+∠APC =180°,∵∠APC+∠PAC+∠PCA =180°,∴∠ABC =∠PAC+∠PCA =2∠PAC ,∵∠ABC =2∠ACB ,∴∠ACB =∠PAC ,∴AP ∥BC ;②当∠DHE+∠ABE =180°时,DP =AE ,理由如下:如图3,在OE 上截取ON =OB ,连接AN ,∵OB =ON ,AO ⊥BE ,∴AB =AN ,∴∠ABN =∠ANB ,∵AP ∥BE ,BP 平分∠ABE ,∴∠APB =∠PBE =∠ABP ,∠ABN+∠BAP =180°,∴AP =AB ,∴AP =AN ,∵∠ANB+∠ANE =180°,∴∠BAP =∠ANE ,∵∠DHE+∠ABE =180°,∠DHE+∠ABE+∠BDH+∠BEH =360°,∴∠BDH+∠BEH =180°,∵∠ADP+∠BDP =180°,∴∠ADP =∠AEN ,在△ADP 和△NEA 中,DAP ANEADP AEN AP AN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADP ≌△NEA (AAS ),∴DP =AE .【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,角平分线的性质,线段垂直平分线的性质,四边形内角和定理等知识,添加恰当辅助线构造全等三角形是本题的关键. 12.综合与实践实践操作:①如图1,ABC ∆是等边三角形,D 为BC 边上一个动点,将ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,连接CE .②如图2,在ABC ∆中,AD BC ⊥于点D ,将ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,延长FE 与BC 交于点G .③如图3,将图2中得到AEF ∆沿AE 再一次折叠得到AME ∆,连接MB .问题解决:(1)小明在探索图1时发现四边形ABCE 是菱形.小明是这样想的:请根据小明的探索直接写出图1中线段CD ,CF ,AC 之间的数量关系为 : (2)猜想图2中四边形ADGF 的形状,并说明理由;问题再探:(3)在图3中,若AD=6,BD=2,则MB 的长为 .答案:C解析:(1)CD+CF=AC ;(2)四边形ADGF 为正方形;理由见解析;(3)13【分析】(1)先证明C 、F 、E 在同一直线上,再证明△BAD ≌△CAF (SAS ),则∠ADB=∠AFC ,BD=CF,可得AC=CF+CD;(2)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF是矩形,由邻边相等可得四边形ADGF是正方形;(3)证明△BAM≌△EAD(SAS),根据BM=DE及勾股定理可得结论.【详解】解:(1)如图:由旋转得:∠DAF=60°=∠BAC,AD=AF,∴∠BAD=∠CAF,∵△ABC是等边三角形,∴AB=AC,∴△BAD≌△CAF(SAS),∴∠ADB=∠AFC,BD=CF,∵∠ADC+∠ADB=∠AFC+∠AFE=180°,∴C、F、E在同一直线上,∴AC=BC=BD+CD=CF+CD,+=;故答案为:CD CF AC(2)四边形ADGF是正方形,理由如下:如图:∵Rt△ABD绕点A逆时针旋转90°得到△AEF,∴AF=AD,∠DAF=90°,∵AD⊥BC,∴∠ADC=∠DAF=∠F=90°,∴四边形ADGF是矩形,∵AF=AD,∴四边形ADGF是正方形;(3)如图3,连接DE,∵四边形ADGF是正方形,DG=FG=AD=AF=6,∵△ABD绕点A逆时针旋转90°,得到△AEF,∴∠BAD=∠EAF,BD=EF=2,∴EG=FG-EF=6-2=4,∵将△AFE沿AE折叠得到△AME,∴∠MAE=∠FAE,AF=AM,∴∠BAD=∠EAM,∴∠BAD+∠DAM=∠EAM+∠DAM,即∠BAM=∠DAE,∵AF=AD,∴AM=AD,在△BAM和△EAD中,∵AM ADBAM DAEAB AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAM≌△EAD(SAS),∴22EG DG+2246213+=故答案为:13【点睛】本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.13.如图,BC⊥CA,BC=CA,DC⊥CE,DC=CE,直线BD与AE交于点F,交AC于点G,连接CF.(1)求证:△ACE≌△BCD;(2)求证:BF⊥AE;(3)请判断∠CFE与∠CAB的大小关系并说明理由.答案:C解析:(1)见解析;(2)见解析;(3)∠CFE =∠CAB ,见解析【分析】(1)根据垂直的定义得到∠ACB =∠DCE =90°,由角的和差得到∠BCD =∠ACE ,即可得到结论;(2)根据全等三角形的性质得到∠CBD =∠CAE ,根据对顶角的性质得到∠BGC =∠AGE ,由三角形的内角和即可得到结论;(3)过C 作CH ⊥AE 于H ,CI ⊥BF 于I ,根据全等三角形的性质得到AE =BD ,S △ACE =S △BCD ,根据三角形的面积公式得到CH =CI ,于是得到CF 平分∠BFH ,推出△ABC 是等腰直角三角形,即可得到结论.【详解】(1)证明:∵BC ⊥CA ,DC ⊥CE ,∴∠ACB =∠DCE =90°,∴∠BCD =∠ACE ,在△BCD 与△ACE 中,BC CA ACD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD ;(2)∵△BCD ≌△ACE ,∴∠CBD =∠CAE ,∵∠BGC =∠AGE ,∴∠AFB =∠ACB =90°,∴BF ⊥AE ;(3)∠CFE =∠CAB ,过C 作CH ⊥AE 于H ,CI ⊥BF 于I ,∵△BCD ≌△ACE ,∴ACE BCD AE BD,S S ∆∆==,∴CH =CI ,∴CF 平分∠BFH ,∵BF ⊥AE ,∴∠BFH =90°,∠CFE =45°,∵BC ⊥CA ,BC =CA ,∴△ABC 是等腰直角三角形,∴∠CAB =45°,∴∠CFE =∠CAB .【点睛】角的和差、对顶角的性质这些知识点在证明全等和垂直过程中经常会遇到,需要掌握。

中考数学二轮复习全等三角形压轴几何题知识归纳总结及解析

中考数学二轮复习全等三角形压轴几何题知识归纳总结及解析

中考数学二轮复习全等三角形压轴几何题知识归纳总结及解析一、全等三角形旋转模型1.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.答案:C解析:(1)CF=CG;(2)CF=CG,见解析【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,∴∠MCN=30º+30º=60º,∴∠MCN=∠DCE ,∵∠MCF=∠MCN-∠DCN ,∠NCG=∠DCE-∠DCN ,∴∠MCF=∠NCG ,在△MCF 和△NCG 中,CMF CNG CM CNMCF NCG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF ≌△NCG (ASA ),∴CF=CG (全等三角形对应边相等);【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等 .2.探究问题:(1)方法感悟:如图①,在正方形ABCD 中,点E ,F 分别为DC ,BC 边上的点,且满足∠BAF =45°,连接EF ,求证DE +BF =EF .感悟解题方法,并完成下列填空:将△ADE 绕点A 顺时针旋转90°得到△ABG ,此时AB 与AD 重合,由旋转可得:AB =AD ,BG =DE ,∠1=∠2,∠ABG =∠D =90°,∴ ∠ABG +∠ABF =90°+90°=180°,因此,点G ,B ,F 在同一条直线上.∵ ∠EAF =45°∴ ∠2+∠3=∠BAD -∠EAF =90°-45°=45°.∵ ∠1=∠2,∠1+∠3=45°.即∠GAF =∠________.又AG =AE ,AF =AE∴ △GAF ≌△________.∴ _________=EF ,故DE +BF =EF .(2)方法迁移:如图②,将Rt △ABC 沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF =∠DAB .试猜想DE ,BF ,EF 之间有何数量关系,并证明你的猜想.答案:E解析:(1)EAF、△EAF、GF;(2)DE+BF=EF.【解析】【分析】(1)利用角之间的等量代换得出∠GAF=∠FAE,再利用SAS得出△GAF≌△EAF,得出答案;(2)将△ADE顺时针旋转90°得到△ABG,再证明△AGF≌△AEF,即可得出答案;【详解】解:(1)如图①所示;根据等量代换得出∠GAF=∠FAE,利用SAS得出△GAF≌△EAF,∴GF=EF,故答案为:FAE;△EAF;GF;(2)DE+BF=EF,理由如下:假设∠BAD的度数为m,将△ADE绕点A顺时针旋转,m°得到△ABG,如图,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵,∴.∵∠1=∠2,∴∠1+∠3=.即∠GAF=∠EAF.∵在△AGF和△AEF中,,∴△GAF≌△EAF(SAS).∴GF=EF.又∵GF=BG+BF=DE+BF,∴DE+BF=EF.【点睛】此题主要考查了全等三角形的判定和性质、以及折叠的性质和旋转变换性质等知识,证得△GAF≌△EAF是解题的关键.3.(1)如图1,在OAB和OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.求:①ACBD的值;②∠AMB的度数.(2)如图2,在OAB和OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断ACBD的值及∠AMB的度数,并说明理由;(3)在(2)的条件下,将OCD点O在平面内旋转,AC,BD所在直线交于点M,若OD=2,OB=23,请直接写出当点C与点M重合时AC的长.答案:A解析:(1)①1,②40°;(2)ACBD3∠AMB=90°,见解析;(3)33【分析】(1)①根据已知条件证明△COA ≌△DOB ,即可证明AC=BD ;②根据△COA ≌△DOB 可得∠CAO=∠DBO ,根据已知条件可得∠OAB+∠ABO=140°,然后在△AMB 中,根据等角的转换即可得到答案;(2)根据已知条件证明△AOC ∽△BOD ,可得∠CAO=∠DBO ,进而可得∠MAB=∠OAB+∠DBO ,最后可得∠AMB=180°-(∠OAB+∠ABM+∠DBO )=90°;(3)分两种情况讨论,根据题(2),同理可得OAC OBD △△,90AMB ∠=︒,3AC BD=,设BD=x ,则3AC x = 用x 表示出AM 、BM 的长,在Rt AMB 中,根据勾股定理222AM BM AB +=列出方程,求解即可. 【详解】 解:(1)①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB ,∵OC=OD ,OA=OB ,∴△COA ≌△DOB (SAS ),∴AC=BD ,∴AC BD=1, ②∵△COA ≌△DOB ,∴∠CAO=∠DBO ,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB 中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD )=180°﹣(∠DBO+∠OAB+∠ABD )=180°﹣140°=40°,(2)如图2,AC BD3∠AMB=90°,理由是:在Rt △COD 中,∠DCO=30°,∠DOC=90°, ∴3tan 303OD OC =︒=, 同理得:3tan 303OB OA =︒=, ∴OD OB OC OA=, ∵∠AOB=∠COD=90°,∴∠AOC=∠BOD ,∴△AOC ∽△BOD ,∴AC OC BD OD==3,∠CAO=∠DBO , 在△AMB 中,∠AMB=180°﹣(∠MAB+∠ABM )=180°﹣(∠OAB+∠ABM+∠DBO )=90°;(3)AC 的长为23或43.①如图,点C 与点M 重合,同理可得:OAC OBD △△,90AMB ∴∠=︒,3AC BD =设BD=x ,则3AC x =,在Rt ODC 中,30OCD ∠=︒,OD=2,4CD ∴=,在Rt AOB 中,30OAB ∠=︒,OB=23,43AB ∴=,在Rt AMB 中,222AM BM AB +=, 即222(3)(4)(43)x x ++=,解得:x=2或-4(舍), AC=323x =;②如图,点C 与点M 重合,同理可得:90AMB ∠=︒,3AC BD =设BD=x ,则3x ,在Rt COD 中, 90OCD ∠=︒,OD=2,4CD ∴=,4BC x =-, 在Rt AOB 中,30OAB ∠=︒,3OB = 243AB OB ∴==,在Rt AMB 中,222AM BM AB +=,即222(3)(4)(43)x x +-=,解得:x=4或-2(舍),343x =综上所述,AC 的长为2343【点睛】本题主要考查三角形的综合运用,涉及全等三角形与相似三角形的性质和判定、勾股定理、解一元一次方程、图形旋转证明、特殊角的三角函数值等知识点,难度较大,第(1)题证明△COA ≌△DOB 是关键,第(2)题证明△AOC ∽△BOD 是关键,第(3)题要特别注意分情况讨论.4.△CDE 和△AOB 是两个等腰直角三角形,∠CDE =∠AOB =90°,DC =DE =1,OA =OB =a (a >1).(1)将△CDE 的顶点D 与点O 重合,连接AE ,BC ,取线段BC 的中点M ,连接OM . ①如图1,若CD ,DE 分别与OA ,OB 边重合,则线段OM 与AE 有怎样的数量关系?请直接写出你的结果;②如图2,若CD 在△AOB 内部,请你在图2中画出完整图形,判断OM 与AE 之间的数量关系是否有变化?写出你的猜想,并加以证明;③将△CDE 绕点O 任意转动,写出OM 的取值范围(用含a 式子表示);(2)是否存在边长最大的△AOB ,使△CDE 的三个顶点分别在△AOB 的三条边上(都不与顶点重合)?如果存在,请你画出此时的图形,并求出边长a 的值;如果不存在,请说明理由.答案:A解析:(1)①OM =12AE ;②OM =12AE ,证明详见解析;③12a -≤OM ≤12a +;(2)5【分析】(1)①利用△CDE ≌△AOB 得出BC =AE ,再由直角三角形斜边的中线等于斜边的一半求解.②作辅助线,利用△COF ≌△EOA 及三角形中位线得出OM =12AE . ③分两种情况,当OC 与OB 重合时OM 最大,当OC 在BO 的延长线上时OM 最小,据此求出OM 的取值范围.(2)分两种情况:当顶点D 在斜边AB 上时,设点C ,点E 分别在OB ,OA 上.由DM +OM ≥OF 求出直角边a 的最大值;当顶点D 在直角边AO 上时,点C ,点E 分别在OB ,AB 上时,利用△EHD ≌△DOC ,得出OD =EH ,在Rt △DHE 中,运用勾股定理ED 2=DH 2+EH 2,得出方程,由△判定出a 的最大值.【详解】解:(1)①∵△CDE 和△AOB 是两个等腰直角三角形,∴CD =ED ,AO =B 0,∠CDE =∠AOB ,在△CDE 和△AOB 中,CD ED CDE AOB AO BO =⎧⎪∠=∠⎨⎪=⎩∴△CDE ≌△AOB (SAS ),∴BC =AE∵M 为BC 中点,∴OM =12BC , ∴OM =12AE . ②猜想:OM =12AE . 证明:如图2,延长BO 到F ,使OF =OB ,连接CF ,∵M 为BC 中点,∴OM =12CF , ∵△CDE 和△AOB 是两个等腰直角三角形,∴CD =ED ,AO =BO =OF ,∠CDE =∠AOB ,∵∠AOC +∠COB =∠BOE +∠COB =90°,∴∠AOC =∠BOE ,∠FOC =∠AOE ,在△COF 和△EOA 中,CD ED FOC AOE OF AO =⎧⎪∠=∠⎨⎪=⎩∴△COF ≌△EOA ,∴CF =AE ,∴OM =12AE . ③Ⅰ、如图3,当OC 与OB 重合时,OM 最大,OM=11122 a a-++=Ⅱ、如图4,当OC在BO的延长线上时,OM最小,OM=12a+﹣1=12a-,所以12a-≤OM≤12a+,(2)解:根据△CDE的对称性,只需分两种情况:①如图5,当顶点D在斜边AB上时,设点C,点E分别在OB,OA上.作OF⊥AB于点F,取CE的中点M,连接OD,MD,OM.∵△AOB和△CDE是等腰直角三角形,∠AOB=∠CDE=90°,OA=OB=a(a>1),DC=DE=1,∴AB =2a ,OF =12AB =22a , ∴CE =2,DM =12CE =22, 在RT △COE 中,OM =12CE =22, 在RT △DOM 中,DM +OM ≥OD ,又∵OD ≥OF , ∵DM +OM ≥OF ,即22+22≥22a , ∴a ≤2,∴直角边a 的最大值为2.②如图6,当顶点D 在直角边AO 上时,点C ,点E 分别在OB ,AB 上,作EH ⊥AO 于点H . ∵∠AOB =∠CDE =∠DHE =90°,∵∠HED +∠EDH =∠CDO +∠EDH =90°,∴∠HED =∠CDO ,∵DC =DE ,在△EHD 和△DOC 中,EHD COD HED CDO DE DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EHD ≌△DOC (AAS )设OD =x ,∴OD =EH =AH =x ,DH =a ﹣2x ,在Rt △DHE 中,ED 2=DH 2+EH 2,∴1=x 2+(a ﹣2x )2,整理得,5x 2﹣4ax +a 2﹣1=0,∵x 是实数,∴△=(4a )2﹣4×5×(a 2﹣1)=20﹣4a 2≥0,∴a 2≤5,∴a 2的最大值为5,∴a 的最大值为5. 综上所述,a 的最大值为5.【点睛】本题主要考查了几何变换综合题及三角形全等的判定和性质,解题的关键是在取最大值时,对三角形的位置进行讨论分别求值.5.问题提出(1)如图①,在ABC 中,AD 是BC 边上的高,若∠BAD =45°,∠DAC =30°,则ABD ACDS S = .问题探究(2)如图②,在正方形ABCD 中,边长为8,点E 是AB 的中点,作∠EDF =45°,交BC 于点F ,求DEF 的面积.问题解决(3)如图③,某市为迎接城市运动会,打造融体育、文化、饮食、旅游为一体的综合商业品牌,规划了如图所示的矩形ABCD 观光区,如图,在矩形ABCD 中,AB =16km ,AD =12km ,要求在边AB 上确定一点E 为观光区的南门,在边BC 上确定一点F 为观光区的东门,且∠EDF =30°,同时为了方便市民游览,还要修建一条观光通道FG ,使FG ∥AB ,交DE 于点G (观光带的宽度不计),为了节约成本,要使FG 的长度最小,那么是否存在符合条件的修建方案?若存在,请求出FG 的最小值;若不存在,请说明理由.答案:B解析:3(2)803,(3) 323. 【分析】(1)根据∠BAD =45°,∠DAC =30°,求出BD 、AD 、DC 的关系即可;(2)将△DCF 绕点D 顺时针旋转90°得到△DAG ,可证△DEF ≌△DEG ,得到EF =CF +AE ,求出CF 长即可;(3) 作DM ⊥DF ,交BA 延长线于点M ,作EN ⊥DF 于N ,EH ⊥DM 于H ,作△DME 的外接圆⊙O ,连接OD 、OE 、OM ,作OQ ⊥ME 于Q ,求出△DEF 的面积最小值,再用面积求FG 最小值.【详解】解:(1)∵AD 是BC 边上的高,若∠BAD =45°,∠DAC =30°,∴AD =BD ,AD = tan 603DC DC ︒=,12312ABD ACD BD AD SS CD AD ⋅==⋅, (2) 将△DCF 绕点D 顺时针旋转90°得到△DAG ,∵∠DAG =∠C =90°,∠DAE =90°,∴G 、A 、E 三点共线,由旋转可知,∠FDG =∠CDA =90°,DF =DG ,∴∠GDE =∠FDE =45°,DE =DE ,∴△GDE ≌△FDE ,∴GE =EF ,∴EF =AE +CF ,设EF 为x ,则CF =x -4,BF =12-x ,2224(12)x x +-=,解得,x =203, DEF 的面积=DEG 的面积=120808233⨯⨯=;(3)作DM ⊥DF ,交BA 延长线于点M ,作EN ⊥DF 于N ,EH ⊥DM 于H ,作△DME 的外接圆⊙O ,连接OD 、OE 、OM ,作OQ ⊥ME 于Q ,∵∠FDM =∠CDA =90°,∴∠ADM =∠CDF ,∵∠C =∠DAM =90°,∴△ADM ∽△CDF ,∴34MD AD DF DC ==, ∵∠FDE =30°,∴∠EDM =60°, ∵1sin 302EN DE DE =︒=,3sin 602EH DE DE =︒=,∴3EH EN =,1432192DEFDME DF EN S S DM EH ⋅==⋅, 设⊙O 的半径为R ,∵∠MDE =60°,∴∠MOE =120°,∠MOQ =60°,3sin 602R MQ OM =︒=,ME =3R ,OQ =12R , OD +OQ ≥AD , 1122R R +≥,解得,8R ≥, 138122DME S ≥⨯⨯⨯,即483DME S ≥,DME S △的最小值为483,DEF S △的最小值为43483649⨯=, 1()62DEF DGF EGF S S S FG CF BF FG =+=+=, FG 的最小值为643263=.【点睛】本题考查了全等三角形的判定与性质,相似三角形的判定与性质,三角形的外接圆,解直角三角形等,解题关键是充分理解题意,恰当的构建全等三角形、相似三角形和外接圆. 6.如图1,在正方形ABCD 中,点,E F 分别在边,AB AD 上,且AE AF =,延长FD 到点G ,使得DG DF =,连接,,EF GE CE .(特例感知)(1)图1中GE 与CE 的数量关系是______________.(结论探索)(2)图2,将图1中的AEF 绕着点A 逆时针旋转()090αα︒<<︒,连接FD 并延长到点G ,使得DC DF =,连接,,GE CE BE ,此时GE 与CE 还存在(1)中的数量关系吗?判断并说明理由.(拓展应用)(3)在(2)的条件下,若5,32AB AE ==EFG 是以EF 为直角边的直角三角形时,请直接写出GE 的长.答案:G解析:(1) GE 2CE ,(2)存在,证明见解析,(3)25810或16或4.【分析】(1)连接GC ,证△CDG ≌△CBE ,得出△GCE 为等腰直角三角形即可;(2)类似(1)的方法,先证△AFD ≌△AEB ,再证△CDG ≌△CBE ,得出△GCE 为等腰直角三角形即可;(3)根据E 、F 是直角顶点分类讨论,结合(2)中结论,利用勾股定理求解即可.【详解】解:(1)连接GC ,∵AE =AF ,AD =AB ,∴DF =BE ,∵DG DF =,∴DG = BE ,∵∠GDC =∠B =90°,DC =BC ,∴△CDG ≌△CBE ,∴CE =CG ,∠GCD =∠ECB ,∵∠ECB +∠DCE =90°,∴∠GCE =∠GCD +∠DCE =90°,∴GE 2CE ;故答案为:GE 2CE ;(2) 存在,连接GC,∵AE=AF,AD=AB,∠FAE=∠DAB=90°,∴∠FAD=∠EAB,∴△FAD≌△EAB,∴FD=EB=GD,∠FDA=∠EBA,∵∠GDC+∠FDA=90°,∠EBC+∠EBA=90°,∴∠GDC=∠EBC,∵DC=BD,∴△CDG≌△CBE,与(1)同理,GE=2CE;(3)当∠FEG=90°时,如图1,因为∠FEA=∠GEC=45°,所以,A、E、C在一条直线上,∵AB =5,∴AC =52, CE =52-32=22,GE =2EC =4;如图2,E 在CA 延长线上,同理可得,EC =82,GE =2EC =16;当∠EFG =90°时,如图3,∠AFD =∠EFG +∠AFE =135°,由(2)得,∠AFD =∠AEB =135°,DF =BE ,所以,B 、E 、F 在一条直线上,作AM ⊥EF ,垂足为M ,∵5,32AB AE ==∴EF =6,AM =ME =MF =3,224BM AB AM =-=,BE =DF =1,FG =2, 22210GE FG EF =+=;如图4,同图3,BE =DF =7,FG =14,EF =6, 22258GE FG EF =+=,综上,GE 的长为258210或16或4.【点睛】本题考查了旋转的性质、全等三角形的判定与性质、勾股定理和等腰直角三角形的性质,解题关键是恰当的连接辅助线,构造全等三角形;会分类讨论,结合题目前后联系,解决问题.7.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ;(2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由;(3)解决问题:如图③,90ACB AED ∠∠︒==,25AC =,AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.答案:C解析:(1)60BD CE ,=;(2)452CEB BD CE ∠︒=,=,理由见解析;(3)CE 的长为2或2【分析】(1)证明ACE ABD ≌,得出CE =BD ,AEC ADB ∠=∠,即可得出结论; (2)证明ACE ABD ∽,得出AEC ADB ∠=∠,2BD CE =,即可得出结论; (3)先判断出2BD CE =,再求出210AB =:①当点E 在点D 上方时,先判断出四边形APDE 是矩形,求出AP =DP =AE =2,再根据勾股定理求出,BP =6,得出BD =4;②当点E 在点D 下方时,同①的方法得,AP =DP =AE =1,BP =6,进而得出BD =BP +DP =8,即可得出结论.【详解】解:(1)ABC 为等腰三角形,60AC BC ACB ∠︒=,=,∴ABC 是等边三角形,同理可得ADE 是等边三角形6018012060BAD DAC DAC CAE BAD CAE AD AE AB ACEAC DAB ACE ABD SAS BD CEAEC ADB ADE AEC AED CEBCEB ∠+∠=∠+∠=︒∴∠=∠=⎧⎪=⎨⎪∠∠⎩∴∴=∠=∠=︒-∠=︒∠=∠+∠∴∠=︒=≌()故答案为:60CEB BD CE ∠=︒=;.(2)45CEB BD ∠︒=,,理由如下: 在等腰三角形ABC 中,AC =BC ,90ACB ∠︒=,45AB CAB ∴∠︒,= ,同理,45AD ADE DAE ∠∠︒,==, ∴AE AC AD AB =,DAE CAB ∠∠=, EAC DAB ∴∠∠=,ACE ABD ∴∽ ,∴BD AD CE AE== ∴AEC ADB BD ∠∠=,, 点B 、D 、E 在同一条直线上:180135ADB ADE ∴∠︒-∠︒==135AEC ∴∠︒=45CEB AEC AED ∴∠∠-∠︒==; (3)由(2)知,ACE ABD ∽,BD ∴,在Rt ABC 中,AC =AB ∴=,①当点E 在点D 上方时,如图③,过点A 作AP BD ⊥交BD 的延长线于P , DE BD ⊥,PDE AED APD ∴∠∠∠==,∴四边形APDE 是矩形,AE DE = ,∴矩形APDE 是正方形,2AP DP AE ∴===,在Rt APB △中,根据勾股定理得,6BP , 4BD BP AP ∴-==,CE BD ∴= ②当点E 在点D 下方时,如图④同①的方法得,AP =DP =AE =2,BP =6, ∴BD =BP +DP =8,CE ∴=综上CE 的长为或.【点睛】本题是几何变换的综合题,主要考查了旋转的性质,全等三角形的判定和定理,相似三角形的判定和性质,勾股定理,等边三角形的性质,判断出三角形ACE 和三角形ABD 相似是关键.8.如图,ABD △和ACE △都是等边三角形.(1)连接CD 、BE 交于点P ,求∠BPD ;(2)连接PA ,判断线段PA 、PB 、PD 之间的数量关系并证明;(3)如图,等腰ABC 中AB =AC ,∠BAC =α(0<α<90),在ABC 内有一点M ,连接MA 、MB 、MC .当MA +MB +MC 最小时,∠ABM = (用含α的式子表示)答案:D解析:(1)60BPD ∠=︒(2)PD PB PA =+,证明见详解(3)1602α︒-【分析】(1)证明()DAC BAE SAS ≅,得ADC ABE ∠=∠,就可以证明60BPD DAB ∠=∠=︒;(2)在DP 上截取PF=PB ,连接BF ,证明()DBF ABP SAS ≅,得DF PA =,即可证明PD PB PA =+;(3)分别以AB 和AC 为边,向两边作等边三角形ABD 和等边三角形ACE ,连接BE 和CD ,交于点M ,连接AM ,此时MA MB MC ++最小,然后利用等腰三角形ADC ,求出ADC ∠的度数,即可得到ABM ∠的度数.【详解】解:(1)∵ABD △和ACE △是等边三角形,∴AD AB =,AC AE =,60DAB CAE ∠=∠=︒,∵DAB BAC CAE BAC ∠+∠=∠+∠,∴DAC BAE ∠=∠,在DAC △和BAE △中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴()DAC BAE SAS ≅,∴ADC ABE ∠=∠,∵ADC DAB ABE BPD ∠+∠=∠+∠,∴60BPD DAB ∠=∠=︒;(2)如图,在DP 上截取PF=PB ,连接BF ,∵60BPD ∠=︒,PF PB =,∴PFB △是等边三角形,∴BF BP =,60FBP ∠=︒,∴DBA FBP ∠=∠,∵DBA FBA FBP FBA ∠-∠=∠-∠,∴DBF ABP ∠=∠,在DBF 和ABP △中,DB AB DBF ABP BF BP =⎧⎪∠=∠⎨⎪=⎩,∴()DBF ABP SAS ≅,∴DF PA =,∵PD PF FD =+,∴PD PB PA =+;(3)如图,分别以AB 和AC 为边,作等边三角形ABD 和等边三角形ACE ,连接BE 和CD ,交于点M ,连接AM ,此时MA MB MC ++最小,由(2)中的结论可得MD MA MB =+,则当D 、M 、C 三点共线时MA MB MC ++最小,即CD 的长,由(1)得ADC ABM ∠=∠,∵AD AB AC ==,60DAC α∠=︒+,∴()1806016022ADC αα︒-︒+∠==︒-, ∴1602ABM α∠=︒-,故答案是:1602α︒-.【点睛】本题考查全等三角形的性质和判定,等边三角形的性质,解题的关键是做辅助线构造全等三角形来进行证明求解.9.探究:(1)如图①,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,若∠B =28°,则∠ACD 的度数是 .拓展:(2)如图②,∠MCN =90°,射线CP 在∠MCN 的内部,点A 、B 分别存CM 、CN 上,分别过点A 、B 作AD ⊥CP 、BE ⊥CP 于点D 、E ,若AC =CB ,则AD 、DE 、BE 三者间的数量关系为 .请说明理由;应用:(3)如图③,点A 、B 分别在∠MCN 的边CM 、CN 上,射线CP 在∠MCN 的内部,点D 、E 在射线CP 上,连结AD 、BE 、AE ,且使∠MCN =∠ADP =∠BEP .当AC =BC 时,△ ≌△ ;此时如果CD =2DE ,且S △CBE =6,则△ACE 的面积是 .答案:D解析:(1)28° (2)DE =AD ﹣BE ;理由见解析 (3)ACD ;CBE ;9【分析】(1)利用直角三角形的两锐角互余,即可得出结论;(2)利用同角的余角相等判断出∠CAD =∠BCE ,进而判断出△ACD ≌△CBE ,即可得出结论;(3)利用等式的性质判断出∠ADC =∠CEB ,进而判断出△ACD ≌△CBE ,得出S △ACD =S △CBE ,再求出S △ADE =3,即可得出结论.【详解】解:探究:∵CD ⊥AB ,∴∠CDB =90°,∵∠B =28°,∴∠BCD =90°﹣∠B =68°,∵∠ACB =90°,∴∠ACD =90°﹣∠BCD =28°,故答案为:28°;拓展:(2)∵∠MCN =90°,∴∠ACD+∠BCE =90°,∵AD ⊥CP ,BE ⊥CP ,∴∠ADC =∠BEC =90°,∴∠ACD+∠CAD =90°,∴∠CAD =∠BCE ,在△ACD 和△CBE 中,ADC CEB CAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴CD =BE ,AD =CE ,∴DE =CE ﹣CD =AD ﹣BE ,故答案为:DE =AD ﹣BE ;应用:(3)∵∠MCN =∠ACD+∠BCD ,∠MCN =∠ADP ,∴∠ADP =∠ACD+∠BCD ,∵∠ADP =∠ACD+∠CAD ,∴∠CAD =∠BCE ,∵∠ADP =∠BEP ,∴∠ADC =∠CEB ,在△ACD 和△CBE 中,ADC CEB CAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴S △ACD =S △CBE ,∵S △CBE =6,∴S△ACD=6,∵CD=2DE,∴S△ACD=2S△ADE,∴S△ADE=1S△ACD=3,2∴S△ACE=S△ACD+S△ADE=9,故答案为:ACD,CBE,9.【点睛】此题是三角形综合题,主要考查了直角三角形的性质,同角的余角相等,等式的性质,全等三角形的判定和性质,判断出△ACD≌△CBE是解本题的关键.10.问题:如图(1),点M、N分别在正方形ABCD的边BC、CD上,∠MAN=45°,试判断BM、MN、ND之间的数量关系.(1)研究发现如图1,小聪把△ADN绕点A顺时针旋转90°至△ABG,从而发现BM、MN、DN之间的数量关系为(直接写出结果,不用证明)(2)类比引申如图2,在(1)的条件下,AM、AN分别交正方形ABCD的对角线BD于点E、F.已知EF =5,DF=4.求BE的长.(3)拓展提升如图3,在(2)的条件下,AM、AN分别交正方形ABCD的两个外角平分线于Q、P,连接PQ.请直接写出以BQ、PQ、DP为边构成的三角形的面积.答案:B解析:(1)BM+DN=MN,理由见解析;(2)BE=3;(3)以BQ、PQ、DP为边构成的三角形的面积为36.【分析】(1)结论是:BM+DN=MN,如图1,利用三角形AND旋转90º得三角形ABG,∠DAN=∠BAG,可证∠GAM=∠GAB+∠BAM=∠MAN,利用SAS证△AMN≌△AMG即可;(2)如图2,按同样方法△AFD顺时针旋转90º,使AD与AB重合,得△ABF′,连结EF′,△BEF′是直角三角形,用勾股定理求EF′=5,再证△AEF≌△AEF即可;(3)如图3,由(2)可得BD=12,可求正方形边长,构建△P′AQ,P′B=DP,将△ADP顺时针转90º,AD与AB重合,得△BQP′,连OP′,可证△BQP′是直角三角形,可证PQ=P′Q,再证△ABQ∽△PDA,将△P′BQ面积=12BQ•BP′=12BQ•DP=12AD•AB可求.【详解】(1)如图1,BM+DN=MN,理由如下:∵四边形ABCD是正方形,∴AB=AD,∠D=∠ABC=∠BAD=90°,小聪把△ADN绕点A顺时针旋转90°至△ABG,由旋转可得:BG=DN,AN=AG,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABM=90°+90°=180°,因此,点G,B,M在同一条直线上,∵∠MAN=45°,∴∠2+∠3=∠BAD﹣∠MAN=90°﹣45°=45°,∵∠1=∠2,∴∠1+∠3=45°,∴∠GAM=∠MAN,∵AM=AM,∴△AMN≌△AMG(SAS),∴MN=GM,∵GM=BM+BG=BM+DN,∴BM+DN=MN;故答案为:BM+DN=MN;(2)如图2,把△ADF绕点A顺时针旋转90°至△ABF',连接EF',∴AF ′ =AF,∠DAF=∠BAF ',∠ABF ′ =∠ADF=45°,BF ′ =DF=4,∵∠ABE=45°,∴∠EBF ′ =45°+45°=90°,∵AE=AE,同理得△EAF ≌△EAF '(SAS ),∴EF '=EF =5,在Rt △EBF '中,由勾股定理得:BE =()()2222EF +BF =5-4=3''=3; (3)由(2)知:BE =3,EF =5,DF =4,∴BD =3+4+5=12,由勾股定理得:AB 2+AD 2=BD 2,∵AB =AD ,∴AB 2=72,如图3,把△ADP 绕点A 顺时针旋转90°至△ABP ',连接BP ′,则∠ABP′=∠ADP ,PD =P ′B ,AP =AP ′,∵AM 、AN 分别交正方形ABCD 的两个外角平分线于Q 、P ,∴∠ADP =∠ABQ =135°,∴∠DAP +∠APD =45°,∵∠DAP +∠BAQ =45°,∴∠BAQ =∠APD ,∴△ADP ∽△QBA ,∴AD PD =BQ AB, ∴BQ •PD =AD •AB =72,∵∠ABP '=∠ABQ =135°,∴∠QBP '=360°﹣135°﹣135°=90°,∴S △BP 'Q =12BQ•BP′=12BQ•DP =12×72=36, ∵AP =AP ',∠PAQ =∠P 'AQ ,AQ =AQ ,∴△QAP ≌△QAP '(SAS ),∴PQ =P 'Q ,∴以BQ 、PQ 、DP 为边构成的三角形的面积为36.【点睛】本题是感知,探究,创新新题型,主要考查了学生对正方形的性质,旋转变换,勾股定理及全等三角形与相似三角形的判定方法的综合运用.关键是灵活掌握所学知识,同时会从感知中学到方法,结合下一图形,找到解决问题的方法,以及突破口,在创新中,注意把给出的问题进行转化,利用转化思想来解决.11.综合与实践实践操作:①如图1,ABC ∆是等边三角形,D 为BC 边上一个动点,将ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,连接CE .②如图2,在ABC ∆中,AD BC ⊥于点D ,将ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,延长FE 与BC 交于点G .③如图3,将图2中得到AEF ∆沿AE 再一次折叠得到AME ∆,连接MB .问题解决:(1)小明在探索图1时发现四边形ABCE 是菱形.小明是这样想的:请根据小明的探索直接写出图1中线段CD ,CF ,AC 之间的数量关系为 : (2)猜想图2中四边形ADGF 的形状,并说明理由;问题再探:(3)在图3中,若AD=6,BD=2,则MB 的长为 .答案:C解析:(1)CD+CF=AC ;(2)四边形ADGF 为正方形;理由见解析;(3)13【分析】(1)先证明C 、F 、E 在同一直线上,再证明△BAD ≌△CAF (SAS ),则∠ADB=∠AFC ,BD=CF ,可得AC=CF+CD ;(2)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF 是矩形,由邻边相等可得四边形ADGF 是正方形;(3)证明△BAM ≌△EAD (SAS ),根据BM=DE 及勾股定理可得结论.【详解】解:(1)如图:由旋转得:∠DAF=60°=∠BAC,AD=AF,∴∠BAD=∠CAF,∵△ABC是等边三角形,∴AB=AC,∴△BAD≌△CAF(SAS),∴∠ADB=∠AFC,BD=CF,∵∠ADC+∠ADB=∠AFC+∠AFE=180°,∴C、F、E在同一直线上,∴AC=BC=BD+CD=CF+CD,+=;故答案为:CD CF AC(2)四边形ADGF是正方形,理由如下:如图:∵Rt△ABD绕点A逆时针旋转90°得到△AEF,∴AF=AD,∠DAF=90°,∵AD⊥BC,∴∠ADC=∠DAF=∠F=90°,∴四边形ADGF是矩形,∵AF=AD,∴四边形ADGF是正方形;(3)如图3,连接DE,∵四边形ADGF是正方形,DG=FG=AD=AF=6,∵△ABD绕点A逆时针旋转90°,得到△AEF,∴∠BAD=∠EAF,BD=EF=2,∴EG=FG-EF=6-2=4,∵将△AFE沿AE折叠得到△AME,∴∠MAE=∠FAE,AF=AM,∴∠BAD=∠EAM,∴∠BAD+∠DAM=∠EAM+∠DAM,即∠BAM=∠DAE,∵AF=AD,∴AM=AD,在△BAM和△EAD中,∵AM ADBAM DAEAB AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAM≌△EAD(SAS),∴BM=DE=22EG DG+=2246213+=.故答案为:213.【点睛】本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.12.如图,BC⊥CA,BC=CA,DC⊥CE,DC=CE,直线BD与AE交于点F,交AC于点G,连接CF.(1)求证:△ACE≌△BCD;(2)求证:BF⊥AE;(3)请判断∠CFE与∠CAB的大小关系并说明理由.答案:C解析:(1)见解析;(2)见解析;(3)∠CFE=∠CAB,见解析【分析】(1)根据垂直的定义得到∠ACB =∠DCE =90°,由角的和差得到∠BCD =∠ACE ,即可得到结论;(2)根据全等三角形的性质得到∠CBD =∠CAE ,根据对顶角的性质得到∠BGC =∠AGE ,由三角形的内角和即可得到结论;(3)过C 作CH ⊥AE 于H ,CI ⊥BF 于I ,根据全等三角形的性质得到AE =BD ,S △ACE =S △BCD ,根据三角形的面积公式得到CH =CI ,于是得到CF 平分∠BFH ,推出△ABC 是等腰直角三角形,即可得到结论. 【详解】(1)证明:∵BC ⊥CA ,DC ⊥CE , ∴∠ACB =∠DCE =90°, ∴∠BCD =∠ACE , 在△BCD 与△ACE 中,BC CA ACD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△BCD ; (2)∵△BCD ≌△ACE , ∴∠CBD =∠CAE , ∵∠BGC =∠AGE , ∴∠AFB =∠ACB =90°, ∴BF ⊥AE ;(3)∠CFE =∠CAB ,过C 作CH ⊥AE 于H ,CI ⊥BF 于I , ∵△BCD ≌△ACE , ∴ACE BCD AE BD,S S ∆∆==,∴CH =CI , ∴CF 平分∠BFH , ∵BF ⊥AE ,∴∠BFH =90°,∠CFE =45°, ∵BC ⊥CA ,BC =CA , ∴△ABC 是等腰直角三角形, ∴∠CAB =45°, ∴∠CFE =∠CAB .【点睛】角的和差、对顶角的性质这些知识点在证明全等和垂直过程中经常会遇到,需要掌握。

全等三角形的提高拓展训练(学生版)1he全等三角形经典题型50题(含答案)

全等三角形的提高拓展训练(学生版)1he全等三角形经典题型50题(含答案)

全等三角形的提高拓展训练知识点睛全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】 (06年北京中考题)已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?DOE CB ANEBM A D【变式拓展训练】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?【例3】 已知:如图,ABCD 是正方形,∠F AD =∠F AE . 求证:BE +DF =AE .【例4】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.N C D EB M A F ED C BA O ED CB AN M CBA【例5】 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDE板块二、全等与角度【例7】如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.【例8】在等腰ABC ∆中,AB AC =,顶角20A ∠=︒,在边AB 上取点D ,使AD BC =,求BDC ∠.【例9】(“勤奋杯”数学邀请赛试题) 如图所示,在ABC ∆中,AC BC =,20C ∠=︒,又M 在AC 上,N 在BC 上,且满足50BAN ∠=︒,60ABM ∠=︒,求NMB ∠.NM C BA C ED B A全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题训练(2)几何探究题
类型1与全等三角形有关的几何探究题
1.已知,点D为直线BC上一动点(点D不与点B,C重合),∠BAC=90°,AB=AC,∠DAE=90°,AD=AE,连接CE.
(1)如图1,当点D在线段BC上时,求证:①BD⊥CE,②CE=BC-CD;
(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CE,BC,CD三条线段之间的关系;
(3)如图3,当点D在线段BC的反向延长线上时,且点A,E分别在直线BC的两侧,点F是DE的中点,连接AF,CF,其他条件不变,请判断△ACF的形状,并说明理由.
2.(1)阅读理解:如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断
中线AD的取值范围是2<AD<8;
(2)问题解决:如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:如图3,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以点C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.
3.如图,正方形ABCD,点O为两条对角线的交点.
(1)如图1,点M,N分别在AD,CD边上,∠MON=90°,求证:OM=ON;
(2)如图2,若AE交CD于点E,DF⊥AE于点F,在AE上截取AG=DF,连接OF,OG,则△OFG是哪种特殊三角形,证明你的结论;
(3)如图3,若AE交BC于点E,DF⊥AE于点F,连接OF,求∠DFO的度数.
4.正方形ABCD 中,对角线AC ,BD 交于点O ,点P 在线段BC 上(不含点B),∠BPE =12∠ACB ,PE 交BO 于点E ,过点B 作BF ⊥PE ,垂足为F ,交AC 于点G.
(1)当点P 与点C 重合时(如图1).求证:△BOG ≌△POE ;
(2)通过观察、测量、猜想:BF PE =12
,并结合图2证明你的猜想; (3)把正方形ABCD 改为菱形,其他条件不变(如图3),若∠ACB =α,求BF PE
的值.(用含α的式子表示)
解:(1)证明:∵四边形ABCD 是正方形,点P 与点C 重合,
∴OB =OP ,∠BOC =∠BOG =90°.
∵PF ⊥BG ,∴∠PFB =90°.
∴∠GBO =90°-∠BGO ,∠EPO =90°-∠BGO.
∴∠GBO =∠EPO.∴△BOG ≌△POE(ASA ).
(2)证明:过P 作PM ∥AC 交BG 于点M ,交BO 于点N ,
∴∠PNE =∠BOC =90°,∠BPN =∠OCB.
∵∠OBC =∠OCB =45°,∴∠NBP =∠NPB.
∴NB =NP.
∵∠MBN =90°-∠BMN ,∠NPE =90°-∠BMN ,∴∠MBN =∠NPE.
∴△BMN ≌△PEN(ASA ).∴BM =PE.
∵∠BPE =12∠ACB ,∠BPN =∠ACB.
∴∠BPF =∠MPF.
∵PF ⊥BM ,∴∠BFP =∠MFP =90°.
又∵PF =PF ,∴△BPF ≌△MPF(ASA ).
∴BF =MF ,即BF =12BM.
∴BF =12PE ,即BF PE =12.
(3)过P 作PM ∥AC 交BG 于点M ,交BO 于点N.
∴∠BPN =∠ACB =α,∠PNE =∠BOC =90°.
由(2)同理可得BF =12BM ,∠MBN =∠EPN.
∵∠BNM =∠PNE =90°.∴△BMN ∽△PEN.
∴BM PE =BN PN .
在Rt △BNP 中,tan α=BN PN .∴BM PE =tan α,
即2BF PE =tan α.∴BF PE =12tan α.
解:(1)证明:∵∠BAC =∠DAE =90°,
∴∠BAD =∠CAE ,
在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠BAD =∠CAE ,
AD =AE ,
∴△ABD ≌△ACE(SAS ).
∴∠ABD =∠ACE =45°,
BD =CE.
∴∠ACB +∠ACE =90°.∴∠ECB =90°.
∴BD ⊥CE ,CE =BC -CD.
(2)CE =BC +CD.
(3)△ACF 是等腰三角形.理由:
在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,
∠BAD =∠CAE ,AD =AE ,
∴△ABD ≌△ACE(SAS ).∴∠ABD =∠ACE.
∵∠ABC =∠ACB =45°,
∴∠ACE =∠ABD =135°.∴∠DCE =90°.
又∵点F 是DE 中点,∴AF =CF =12
DE. ∴△ACF 是等腰三角形.
解:(2)证明:延长FD 至点M ,使DM =DF ,连接BM ,EM.由(1)得△BMD ≌△CFD(SAS ), ∴BM =CF.∵DE ⊥DF ,DM =DF ,∴EM =EF.
在△BME 中,由三角形的三边关系得:BE +BM>EM ,∴BE +CF>EF.
(3)BE +DF =EF ,理由:
延长AB 至点N ,使BN =DF ,连接CN.
∵∠ABC +∠D =180°,∠NBC +∠ABC =180°,
∴∠NBC =∠D.
在△NBC 和△FDC 中,⎩⎨⎧BN =DF ,∠NBC =∠D ,BC =DC ,
∴△NBC ≌FDC(SAS ).
∴CN =CF ,∠NCB =∠FCD.
∵∠BCD =140°,∠ECF =70°,
∴∠BCE +∠FCD =70°.∴∠ECN =70°=∠ECF.
在△NCE 和△FCE 中,⎩⎨⎧CN =CF ,
∠ECN =∠ECF ,CE =CE ,
∴△NCE ≌△FCE(SAS ).∴EN =EF.
∵BE +BN =EN ,∴BE +DF =EF.
解:(1)证明:连接OA ,OD ,则OA =OD.
∵四边形ABCD 是正方形,
∴∠AOD =90°,∠OAM =∠ODN =45°.
∵∠MON =90°,
∴∠AOD -∠MOD =∠MON -∠MOD.
∴∠AOM =∠DON.∴△AOM ≌△DON(ASA ).
∴OM =ON.
(2)△OFG 为等腰直角三角形.
证明:连接OA ,OD ,则OA =OD.
∵四边形ABCD 是正方形,
∴∠AOD =90°,∠OAD =∠ODC =45°.
∵DF ⊥AE ,
∴∠DAE +∠ADF =∠ADF +FDE =90°.
∴OG=OF,∠AOG=∠DOF.
∴∠GOF=∠GOD+∠DOF=∠GOD+∠AOG=90°.
故△OFG为等腰直角三角形.
(3)在AE上截取AG=DF,连接OA,OD,OG,其中OA与DF交于点H,则AO=DO. ∵∠AFD=∠AOD=90°,∠AHF=∠DHO,
∴∠GAO=∠FDO.
∴△OAG≌△ODF(SAS).
∴OG=OF,∠AOG=∠DOF.
∴∠GOF=∠GOA-∠FOA=∠DOF-∠FOA=90°.
∴∠GFO=45°.
∵DF⊥AE.
∴∠DFO=45°.。

相关文档
最新文档