倒立摆系统的建模及Matlab仿真资料

合集下载

倒立摆系统的建模及Matlab仿真资料

倒立摆系统的建模及Matlab仿真资料

第1 页共11 页倒立摆系统的建模及Matlab仿真1.系统的物理模型考虑如图(1)所示的倒立摆系统。

图中,倒立摆安装在一个小车上。

这里仅考虑倒立摆在图面内运动的二维问题。

图(1)倒立摆系统假定倒立摆系统的参数如下。

摆杆的质量:m=0.1gl=1m小车的质量:摆杆的长度:2重力加速度:g=9.8m/M=1kg s摆杆的质量在摆杆的中心。

设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量?≤10%,调节时间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。

2.系统的数学模型2.1建立倒置摆的运动方程并将其线性化。

为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。

?),在u设小车瞬时位置为z,摆心瞬时位置为(作用下,小车及摆均产生加速远动,sin?lz根据牛顿第二定律,在水平直线远动方向的惯性力应与u平衡,于是有22dzd?)?sinu?M?m(zl22dtdt???2????z(M?mml?)cos?mlusin?即:??①绕摆轴转动的惯性力矩与重力矩平衡,因而有.第2 页共11 页2??d??? sin??lcosm(z?lsinmgl)??2dt?????22???????即:nis?l?ocgcosincoszs?ls??②以上两个方程都是非线性方程,为求得解析解,需作线性化处理。

由于控制的目的是保持倒立摆直?2?????且可忽略则,立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,1sincos??,项。

于是有???M?zm?u?ml??)(③????g?z?l??④联立求解可得1mg?u?z????MM 1)?m(M????u??MlMl 列写系统的状态空间表达式。

2.2??T xx,x,x,,选取系统变量则xx,x,xx?,42134123xx??211mgux???x?32MM x?x?431)(M?mu?x?x?34MlMl 即00100????z??1mg??????000?z?????dMM??Bu?Ax?xux????????00001???dt????1gm?(M)????000???????MlMl??????Cx?0?y?xx1001代入数据计算得到:0100????000?1??????T0D,?0??1BA?,?001,C100??1000??00011??11 页3 页共第3.设计控制器3.1判断系统的能控性和稳定性1100????0011????23BBAABAB?Q?故被控对象完全可控,rank()=4,Q kk??11?0?10??011?10???22???11?。

基于Matlab的一级倒立摆模型的仿真

基于Matlab的一级倒立摆模型的仿真

基于Matlab的一级倒立摆模型的仿真一.倒立摆模型的研究意义倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想的实验平台。

对倒立摆系统的研究能有效的反应控制中的典型问题:如非线性问题、鲁莽性问题、镇定问题等。

通过对倒立摆的控制,用来检测新的控制方法是否有较强的处理非线性和不稳定性问题的能力。

二.倒立摆模型的数学建模质量为m的小球固结于长度为L的细杆上(细杆质量不计),细杆和质量为M的小车铰链相接分析过程如下:如图所示,设细杆摆沿顺时针方向转东伟正方向,水平向右为水平方向上的正方向。

当细杆白顺时针想要运动时水平方向施加的里应该是水平相应。

对方程组进行拉普拉斯变化,得到摆杆角度和小车位移的传递函数:摆杆角度和小车加速度之间的传递函数:摆杆角度和小车加速度之间的传递函数:位移X对外力F的传递函数:三.在Matlab中输入得到的反馈矩阵:采用MATLAB/Simulink构造单级倒立摆状态反馈控制系统的仿真模型,如下图所示。

首先,在M A T L A B的Command Window中输入各个矩阵的值,并且在模型中的积分器中设置非零初值(这里我们设置为[0 0 0.1 0]。

然后运行仿真程序。

得到的仿真曲线从仿真结果可以看出,可以将倒立摆的杆子与竖直方向的偏角控制在θ=0(即小球和杆子被控制保持在竖直倒立状态),另外说明下黄线代表位移,紫线代表角度。

四.总结由实验中可知,倒立摆系统是一个非线性的较复杂的不稳定系统,故要满足故要满足稳定性要求,就得对系统进行线性化近似和稳定控制。

当然我们调节出来的只是一个理想模型,在实际中会更加复杂,稳定性也会更难获得。

在这次实验中掌握了倒立摆仿真的整个过程,熟悉了MATLAB仿真软件Simulingk的使用,也对系统有了更好的理解。

一阶倒立摆控制系统设计matlab

一阶倒立摆控制系统设计matlab

一阶倒立摆控制系统设计matlab一、控制系统简介控制系统是指通过对某些物理系统或过程的改变以获取期望输出或行为的一种系统。

其中涉及到了对系统的建模、分析以及控制方法的选择和设计等多方面的问题。

控制系统可以通过标准的数学和物理模型来描述,并可以通过物理或者仿真实验进行验证。

本文将围绕一阶倒立摆控制系统设计和仿真展开。

主要内容包括:1.一阶倒立摆系统简介2.系统建模3.系统分析4.设计控制器5.仿真实验及结果分析一阶倒立摆(controlled inverted pendulum)是一种比较常见的控制系统模型。

它的系统模型简单,有利于系统学习和掌握。

一般而言,一阶倒立摆系统是由一个竖直的支杆和一个质量为$m$的小球组成的。

假设球只能在竖直方向上运动,当球从垂直平衡位置偏离时,支杆会向相反的方向采取动作,使得小球可以回到平衡位置附近。

为了控制一阶倒立摆系统,我们首先需要对其进行建模。

由于系统并不是非常复杂,所以建模过程相对简单。

假设支杆长度为$l$,支杆底端到小球的距离为$h$,支杆与竖直方向的夹角为$\theta$,小球的质量为$m$,地球重力为$g$,该系统的拉格朗日方程可以表示为:$L =\frac{1}{2}m\dot{h}^{2}+\frac{1}{2}ml^{2}\dot{\theta}^{2}-mgh\cos{\theta}-\frac{1}{2}I\dot{\theta}^{2}$$I$表示支杆的惯性矩,它可以通过支杆的质量、长度以及截面积等参数计算得出。

$h$和$\theta$分别表示小球和支杆的位置。

我们可以通过拉格朗日方程可以得出系统的动力学方程:$b$表示摩擦系数,$f_{c}$表示对支杆的控制力。

由于一阶倒立摆会发生不稳定的倾斜运动,即未受到外部控制时会继续倾斜。

我们需要对系统加上控制力,使得系统保持在稳定的位置上。

在进行控制器设计之前,我们需要对系统进行分析,以便更好地了解系统在不同条件下的特性表现。

直线二级倒立摆建模与matlab仿真LQR

直线二级倒立摆建模与matlab仿真LQR

直线二级倒立摆建模与仿真1、直线二级倒立摆建模为进行性线控制器的设计,首先需要对被控制系统进行建模.二级倒立摆系统数学模型的建立基于以下假设:1)每一级摆杆都是刚体;2)在实验过程中同步带长保持不变;3)驱动力与放大器输入成正比,没有延迟直接拖加于小车;4)在实验过程中动摩擦、库仑摩擦等所有摩擦力足够小,可以忽略不计。

图1 二级摆物理模型二级倒立摆的参数定义如下:M 小车质量m1摆杆1的质量m2摆杆2的质量m3质量块的质量l1摆杆1到转动中心的距离l2摆杆2到转动中心的距离θ1摆杆1到转动与竖直方向的夹角θ2摆杆2到转动与竖直方向的夹角F 作用在系统上的外力利用拉格朗日方程推导运动学方程拉格朗日方程为:其中L 为拉格朗日算子,q 为系统的广义坐标,T 为系统的动能,V 为系统的势能其中错误!未找到引用源。

,错误!未找到引用源。

为系统在第i 个广义坐标上的外力,在二级倒立摆系统中,系统有三个广义坐标,分别为x,θ1,θ2,θ3。

首先计算系统的动能:其中错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

分别为小车的动能,摆杆1的动能,摆杆2的动能和质量块的动能。

小车的动能:错误!未找到引用源。

,其中错误!未找到引用源。

,错误!未找到引用源。

分别为摆杆1的平动动能和转动动能。

错误!未找到引用源。

,其中错误!未找到引用源。

,错误!未找到引用源。

分别为摆杆2的平动动能和转动动能。

对于系统,设以下变量: xpend1摆杆1质心横坐标 xpend2摆杆2质心横坐标 yangle1摆杆1质心纵坐标 yangle2摆杆2质心纵坐标 xmass 质量块质心横坐标 ymass 质量块质心纵坐标 又有:(,)(,)(,)L q q T q q V q q =-则有:系统总动能:系统总势能:则有:求解状态方程:可解得:使用MATLAB对得到的系统进行阶跃响应分析,执行命令:A=[0 0 0 1 0 0;0 0 0 0 1 0;0 0 0 0 1 01;0 0 0 0 0 0;0 86.69 -21.62 0 0 0;0 -40.31 39.45 0 0 0];B=[0;0;0;1;6.64;-0.808];C=[1 0 0 0 0 0;0 1 0 0 0 0;0 0 1 0 0 0];D=[0;0;0];sys=ss(A,B,C,D);t=0:0.001:5;step(sys,t)求取系统的单位阶跃响应曲线:图2 二级摆阶跃响应曲线由图示可知系统小车位置、摆杆1角度和摆杆2角度均发散,需要设计控制器以满足期望要求。

倒立摆系统建模及MATLAB仿真

倒立摆系统建模及MATLAB仿真

倒立摆系统的建模及MATLAB仿真通过建立倒立摆系统的数学模型,应用状态反馈控制配置系统极点设计倒立摆系统的控制器,实现其状态反馈,从而使倒立摆系统稳定工作。

之后通过MA TLAB 软件中Simulink工具对倒立摆的运动进行计算机仿真,仿真结果表明,所设计方法可使系统稳定工作并具有良好的动静态性能。

倒立摆系统是1个经典的快速、多变量、非线性、绝对不稳定系统,是用来检验某种控制理论或方法的典型方案。

倒立摆控制理论产生的方法和技术在半导体及精密仪器加工、机器人技术、导弹拦截控制系统和航空器对接控制技术等方面具有广阔的开发利用前景。

因此研究倒立摆系统具有重要的实践意义,一直受到国内外学者的广泛关注。

本文就一级倒立摆系统进行分析和研究,建立倒立摆系统的数学模型,采用状态反馈极点配置的方法设计控制器,并应用MA TLAB 软件进行仿真。

1 一级倒立摆系统的建模1. 1 系统的物理模型如图1 所示,在惯性参考系下,设小车的质量为M ,摆杆的质量为m ,摆杆长度为l ,在某一瞬间时刻摆角(即摆杆与竖直线的夹角)为θ,作用在小车上的水平控制力为f 。

这样,整个倒立摆系统就受到重力,水平控制力和摩擦力的3 外力的共同作用。

图1 一级倒立摆物理模型1. 2 系统的数学模型在系统数学模型中,本文首先假设:(1) 摆杆为刚体。

(2)忽略摆杆与支点之间的摩擦。

(3)忽略小车与导轨之间的摩擦。

然后根据牛顿第二运动定律,求得系统的运动方程为:方程(1) , (2) 是非线性方程,由于控制的目的是保持倒立摆直立,在施加合适的外力条件下,假定θ很小,接近于零是合理的。

则sinθ≈θ,co sθ≈1 。

在以上假设条件下,对方程线性化处理后,得倒立摆系统的数学模型:1. 3 系统的状态方程以摆角θ,角速度θ',小车的位移x ,速度x'为状态变量,输出为y 。

即令:则一级倒立摆系统的状态方程为:2 控制器设计及MATLAB 仿真2. 1 极点配置状态反馈的基本原理图2 状态反馈闭环控制系统极点配置的方法就是通过一个适当的状态反馈增益矩阵的状态反馈方法,将闭环系统的极点配置到任意期望的位置。

基于MATLAB的一级倒立摆控制系统仿真与设计

基于MATLAB的一级倒立摆控制系统仿真与设计

《控制系统分析与综合》任务书题目:基于MATLAB的一级倒立摆控制系统仿真分析与设计要求:对给定直线倒立摆系统模型,首先利用matlab对系统进行根轨迹、bode 图或能控性分析,然后根据控制系统设计指标进行相应控制器设计,在matlab 仿真环境下得到控制器参数,再将其写入实际倒立摆控制系统中,观察实际控制效果,进行控制参数的适当调整。

任务:1、超前校正控制器设计设计指标:调整时间t s=0.5s (2%) ;最大超调量δp≤10%设计步骤:先对传递函数模型进行根轨迹分析,讨论原系统的稳定性等,然后利用sisotool设计超前校正控制器,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。

2、滞后超前校正控制器设计设计指标:系统的静态位置误差常数为10,相位裕量为500,增益裕量等于或大于10 分贝。

设计步骤:先对传递函数模型进行bode图分析,讨论原系统的稳定性等,然后利用sisotool设计滞后超前校正控制器,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。

3、PID控制设计指标:调整时间t s尽量小;最大超调量δp≤10%设计步骤:先在matlab/simulink下构建PID仿真控制系统,依照PID参数整定原则进行系统校正,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。

4、状态空间极点配置控制设计指标:要求系统具有较短的调整时间(约3秒)和合适的阻尼(阻尼比ζ= 0.5-0.7)。

设计步骤:先对系统进行能控性分析,然后根据设计要求选择期望极点(考虑主导极点),编程求出反馈矩阵K,进行系统仿真。

仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。

设计报告要求:报告提供如下内容1 封面2 目录3 正文(1)任务书(2)分别对四个设计任务按照系统分析、控制器仿真设计、实际系统运行分析形成报告4 收获、体会5 参考文献格式要求:题目小三,宋体加粗目录、正文、小标题均为小四宋体,其中标题加粗。

基于MATLAB的旋转倒立摆建模和控制仿真

基于MATLAB的旋转倒立摆建模和控制仿真

倒立摆系统作为一个被控对象具有非线性、强耦合、欠驱动、不稳定等典型特点,因此一直被研究者视为研究控制理论的理想平台,其作为控制实验平台具有简单、便于操作、实验效果直观等诸多优点。

倒立摆具有很多形式,如直线倒立摆、旋转倒立摆、轮式移动倒立摆等等。

其中,旋转倒立摆本体结构仅由旋臂和摆杆组成,具有结构简单、空间布置紧凑的优点,非常适合控制方案的研究,因此得到了研究者们广泛的关注[1-2]。

文献[3]介绍了直线一级倒立摆的建模过程,并基于MATLAB 进行了仿真分析;文献[4]通过建立倒立摆的数学模型,采用MATLAB 研究了倒立摆控制算法及仿真。

在倒立摆建模、仿真和研究中大多数研究者常用理论建模方法,也可以利用SimMechanics 搭建三维可视化模型仿真;文献[5]使用SimMechanics 工具箱建立旋转倒立摆物理模型,通过极点配置、PD 控制和基于线性二次型控制实现了倒立摆的平衡控制;文献[6]通过设计的全状态观反馈控制器来实现单极旋转倒立摆SimMechanics 模型控制,表明了SimMechanics 可用于不稳定的非线性系统;文献[7]通过单级倒立摆SimMechanics 仿真,研究了Bang-Bang 控制和LQR 控制对倒立摆的自起摆和平衡控制;文献[8]基于Sim⁃Mechanics 建立了直线六级倒立摆模型,并基于LRQ 设计状态反馈器进行了仿真控制分析。

本文首先采用Lagrange 方法建立了旋转倒立摆的动力学模型,在获得了旋转倒立摆动力学微分方程后建立了s-func⁃tion 仿真模型;然后,本文采用SimMechanics 建立了旋转的可视化动力学模型。

针对两种动力学模型,采用同一个PID 控制器进行了控制,从控制结果可以看出两种模型的响应曲线完全一致,这两种模型相互印证了各自的正确性。

1旋转倒立摆系统的动力学建模旋转倒立摆是由旋臂和摆杆构成的系统,如图1所示,旋臂绕固定中心旋转(角度记为θ)带动摆杆运动,摆杆可以绕旋臂自由转动,角度记为α。

直线一级倒立摆MATLAB仿真报告

直线一级倒立摆MATLAB仿真报告

1便携式倒立摆实验简介倒立摆装置被公认为是自动控制理论中的典型试验设备,是控制理论教学和科研中不可多得的典型物理模型。

本实验基于便携式直线一级倒立摆试验系统研究其稳摆控制原理。

1.1主要实验设备及仪器便携式直线一级倒立摆实验箱一套控制计算机一台便携式直线一级倒立摆实验软件一套1.2便携式倒立摆系统结构及工作原理便携式直线一级倒立摆试验系统总体结构如图1所示:图1 便携式一级倒立摆试验系统总体结构图主体结构包括摆杆、小车、便携支架、导轨、直流伺服电机等。

主体、驱动器、电源和数据采集卡都置于实验箱内,实验箱通过一条USB数据线与上位机进行数据交换,另有一条线接220v交流电源。

便携式直线一级倒立摆的工作原理如图2所示:图2 便携式一级倒立摆工作原理图数据采集卡采集到旋转编码器数据和电机尾部编码器数据,旋转编码器与摆杆同轴,电机与小车通过皮带连接,所以通过计算就可以得到摆杆的角位移以及小车位移,角位移差分得角速度,位移差分可得速度,然后根据自动控制中的各种理论转化的算法计算出控制量。

控制量由计算机通过USB数据线下发给伺服驱动器,由驱动器实现对电机控制,电机尾部编码器连接到驱动器形成闭环,从而可以实现摆杆直立不倒以及自摆起。

2便携式倒立摆控制原理方框图便携式倒立摆是具有反馈功能的闭环系统,其控制目标是实现在静态和动态下的稳摆。

当输入量为理想摆角,即时,偏差为0,控制器不工作;当输入量不为理想摆角时,偏差存在,控制器做出决策,驱动电机,使小车摆杆系统发生相应位移,输出的摆角通过角位移传感器作用于输出量,达到减小偏差的目的。

根据控制原理绘制出控制方框图如图3所示:图3 便携式一级倒立摆控制原理方框图3建立小车-摆杆数学模型便携式倒立摆系统主要由小车、摆杆等组成,它们之间自由连接。

小车可以在导轨上自由移动,摆杆可以在铅垂的平面内自由地摆动。

在忽略了空气阻力和各种摩擦之后,可将便携式倒立摆系统抽象成小车和匀质杆组成的刚体系统,在惯性坐标内应用经典力学理论建立系统的动力学方程,采用力学分析方法建立小车-摆杆的数学模型。

用Matlab完成倒立摆系统的分析与综合

用Matlab完成倒立摆系统的分析与综合

现代控制理论用Matlab 完成倒立摆系统的分析与综合2013/5/23 Thursday 学号:**********杨 博用Matlab 完成倒立摆系统的分析与综合一、实验要求1、熟悉非线性系统数学模型的建立过程。

2、非线性数学模型的近似线性化。

3、判断系统的能控性及能观性。

4、学习利用MATLAB 来分析系统的能观性、能控性和稳定性(Lyapunov 第一法)。

5、掌握状态反馈极点配置控制,并能用MATLAB 仿真软件进行控制算法的仿真验证与分析。

二、实验原理底座导轨摆杆XFϕl图1 一级倒立摆系统模型 图2 小车水平方向受力分析图3 摆杆垂直方向的受力分析Pb ẋ N F小车水平方向受力: Mẍ+bẋ+N =F摆杆水平方向受力:2(sin )2d N m x l dtθ=+即: N =mẍ+mlθcos θ−mlθsin θ得第一个运动方程:(M +m )ẍ+bẋ+mlθcos θ−mlθsin θ=F摆杆垂直方向受力:2(cos )2d P mg m l dtθ-=力矩平衡方程:−Pl sin θ−Nl cos θ=Iθ=+θπφ,cos cos φ=-sin sin φθ=-第二个运动方程:(I +ml 2)θ+mgl sin θ=−mlẍcos θ 两个运动方程化简得:{(I +ml 2)ϕ−mgl∅=mlẍ(M +m )ẍ+bẋ−mlϕ=u拉普拉斯变换得:222()()()()22()()()()()I ml s s mgl s mlX s sM m X s s bX s s ml s s U s ⎧+Φ-Φ=⎪⎨⎪++-Φ=⎩三、实验内容1、一级直线倒立摆传递函数的建立 摆杆输出角度和电机作用力的传递函数为:2()2()()()432ml s s qU s b I ml mgl M m bmgls s s sq q q⋅Φ=+++⋅-⋅-⋅ 其中22[()()()]q M m I ml ml =++-2、一级直线倒立摆状态空间方程的建立求解可得ẍ、ϕ,整理后得到系统的状态空间方程为:010002222()00222()()()00010()00222()()()x x I ml b m gl I ml x xI M m Mml I M m Mml I M m Mml umlbmgl M m ml I M m Mml I M m Mml I M m Mml φφφφ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤-++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++++++⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥++++++⎣⎦⎣⎦1000000100x x x y u φφφ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦3、MATLAB 仿真要求 ➢ 求出状态空间表达式矩阵。

基于Matlab的一级倒立摆模型的仿真

基于Matlab的一级倒立摆模型的仿真

(以论文、报告等形式考核专用)二○○九~二○○一零学年度第 2 学期课程编号课程名称计算机控制系统主讲教师李东评分学号姓名专业年级2007级光电工程学院测控技术与仪器教师评语:题目:一级倒立摆模型的仿真一、倒立摆模型的研究意义倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。

对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。

通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。

同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。

故其研究意义广泛。

二、倒立摆模型的数学建模质量为m的小球固结于长度为L的细杆(可忽略杆的质量)上,细杆又和质量为M的小车铰接相连。

由经验知:通过控制施加在小车上的力F(包括大小和方向)能够使细杆处于θ=0的稳定倒立状态。

在忽略其他零件的质量以及各种摩擦和阻尼的条件下,推导小车倒立摆系统的数学模型分析过程如下:如图所示,设细杆摆沿顺时针方向转动为正方向,水平向右方向为水平方向上的正方向。

当细杆摆顺时针往右运动时水平方向施加的力应该为水平向右。

现对小车和细杆摆分别进行隔离受力分析:(1)对小车有: F-F’sinθ=Mx’’(a)(2)对小球有:水平方向上运动为 x+lsinθ故水平方向受力为 F’sinθ= m(x+lsinθ)’’=m(x’+lcosθθ’)’= mx’’+mlcosθθ’’-mlsinθ(θ’)^2 (b)由(a)、(b)两式得 F= (M+m)x’’+mlcosθθ’’-mlsinθ(θ’)^2 <1>小球垂直方向上位移为 lcosθ故受力为F’cosθ-mg=m(lcosθ)’’=-ml θ’’sin θ-ml cos θ(θ’)^2 即 F ’cos θ=mg-ml θ’’sin θ-ml cos θ(θ’)^2 (c ) 由(b )、(c )两式得cos θx ’’ =gsin θ- l θ’’ <2>故可得以下运动方程组:F= (M+m)x ’’ +mlcos θθ’’-mlsin θ(θ’)^2cos θx ’’ =gsin θ- l θ’’以上方程组为非线性方程组,故需做如下线性化处理:32sin ,cos 13!2!θθθθθ≈-≈-当θ很小时,由cos θ、sin θ的幂级数展开式可知,忽略高次项后, 可得cos θ≈1,sin θ≈θ,θ’’≈0 故线性化后运动方程组简化为 F= (M+m)x ’’ +ml θ’’ x ’’ =g θ- l θ’’下面进行系统状态空间方程的求解:以摆角θ、角速度θ’、小车位移x 、加速度x ’为系统状态变量,Y 为输出,F 为输入即X=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡x'x 'θθ Y=⎥⎦⎤⎢⎣⎡x θ=⎥⎦⎤⎢⎣⎡31x x由线性化后运动方程组得 x1’=θ’=x2 x2’=''θ=()Mlg m M +x1-Ml1 F X3’ =x ’=x4 x4’=x ’’=-Mmg x1+M 1 F故空间状态方程如下:X ’=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'4'3'2'1x x x x =()⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-+0010000000010MmgMlg m M ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x + ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-M Ml 1010 FY= ⎥⎦⎤⎢⎣⎡31x x =⎥⎦⎤⎢⎣⎡01000001 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x + 0⨯F 用MATLAB 将状态方程转化成传递函数,取M=2kg m=0.1kg l=0.5m 代入得 >>A=[0 1 0 0;20.58 0 0 0;0 0 0 1;-0.49 0 0 0] >>B=[0;-1;0;0.5] >>C=[1 0 0 0;0 0 1 0] >>D=[0;0]>> [num,den]=ss2tf(A,B,C,D,1); >> [num,den]=ss2tf(A,B,C,D,1) num =0 -0.0000 -1.0000 0 0 0 -0.0000 0.5000 -0.0000 -9.8000den =1.0000 0 -20.5800 0 0由上可以得出角度 对力F 的传递函数:位移X 对外力F 的传递函数:58.201)()(2--=Φs s F s 24258.208.95.0)()(s s s s F s X --=三、用MATLAB 的Simulink 仿真系统进行建模1、没校正之前的θ-F 控制系统由于未加进控制环节,故系统输出发散2、加进控制环节,实现时域的稳定控制给系统加入PID 控制,设置系统稳定值为0,给系统一个初始干扰冲击信号 采用试凑法不断调整PID 参数,使系统达到所需的控制效果 当系统Kp=-100,Ti=Td=0时输出如下:Transfer Fcn-s 2s +-20.58s 42ScopePulseGeneratorConstant 1Transfer Fcn-1s +-20.582ScopePulseGeneratorIntegrator1s Gain 3-40Gain 11Gain -K-Derivative du/dt Constant不断地调整参数,最后得到稳定的响应 Kp=-1000,Ti=1,Td=-40时可见调整好参数后,系统基本达到稳定,净差基本为0,超调较小,响应时间较小。

倒立摆的s函数建模及仿真

倒立摆的s函数建模及仿真

倒立摆的s函数建模及仿真倒立摆是一类普遍存在于现实生活中的控制工程问题,也是机器人控制领域中的典型问题。

为了探究倒立摆的控制方法,需要进行建模和仿真研究。

本文将介绍如何对倒立摆进行s函数建模,并进行仿真研究。

一、倒立摆的建模1. 系统假设倒立摆系统假设为:(1)摆杆质量可以忽略,只考虑质点的重量;(2)摆杆的摩擦系数可以忽略;(3)摆杆的惯性可以忽略。

2. 系统模型假设摆杆长度为L,质点质量为m,摆杆与竖直方向成θ角度,摩擦系数为f,则可得到如下系统模型:mx”=mgLsinθ-fx’+uθ’=x其中,x表示质点距离垂直方向的距离,u是外部输入信号,可用来控制系统。

3. s函数模型根据系统模型,可以进行s函数建模。

将其转化为状态空间的形式,得到如下s函数模型:function [sys,x0,str,ts] = pendulum(t,x,u,flag)switch flag% Initializationcase 0sys = [0 0 1 2 0 1];x0 = [0; 0];str = [];ts = [];% Derivativescase 1sys = [x(2); (u(1)*cos(x(1))-9.8*sin(x(1)))/0.5];% Outputscase 3sys = [x(1)];% Unhandled flagscase {2, 4, 9}sys = [];otherwiseerror(['Unhandled flag = ',num2str(flag)]);end二、倒立摆的仿真倒立摆的仿真可以使用Matlab软件进行实现。

下面介绍具体的仿真过程:1. 创建仿真模型打开Matlab软件,选择“Simulink”工具栏,创建一个新的模型文件。

2. 添加控制器在模型中添加一个控制器,用于产生外部输入信号u。

具体可选择Proportional Integral Derivative(PI D)控制器或者其他控制器。

单级倒立摆控制系统设计及MATLAB中的仿真

单级倒立摆控制系统设计及MATLAB中的仿真

单级倒立摆控制系统设计及simulink仿真摘要:倒立摆系统是一个典型的多变量、非线性、强藕合和快速运动的自然不稳定系统。

因此倒立摆在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果己经应用到航天科技和机器人学等诸多领域。

单级倒立摆系统是一种广泛应用的物理模型。

控制单级倒立摆载体的运动是保证倒立摆稳定性的关键因素。

为了避免常用的物理反馈分析方法和运动轨迹摄像制导控制方法的某些缺点,本文从力学的角度提出对倒立摆的运动进行纯角度制导分析,完成了对倒立摆载体的角度制导运动微分方程的数学建模,设计了该模型的模糊控制系统,并利用 Matlab\simulink软件工具对倒立摆的运动进行了计算机仿真。

实验表明,这种模糊控制配合代数解析方法的运算速度和计算机仿真的效果均较物理反馈制导控制方法有了一定的提高。

该方法可以有效地改善单级倒立摆控制系统的性能。

本论文的主要工作是研究了直线一级倒立摆系统的模糊控制问题,用Matlab和Simulink对一级倒立摆模糊控制系统进行了仿真,验证了设计的可行性。

本文论述了一级倒立摆数学建模方法,推导出他们的微分方程,以及线性化后的状态方程。

讨论了单级倒立摆系统的模糊控制方法和操作步骤。

用Simulink实现了单级倒立摆模糊控制仿真系统,分别给出一级倒立摆系统控制量的响应曲线。

通过仿真说明控制器的有效性和实现性。

关键词:单级倒立摆;仿真;模糊控制;运动;建模;SimulinkDesign of single stage inverted pendulum control systemand Simulink simulationAbstract: inverted pendulum system is unstable system with a typical multi variable, nonlinear, strong coupled and fast motion. So the research on the attitude adjustment of the double foot robot and the attitude adjustment of the rocket launching process and the helicopter flight control field have practical,significance. The related scientific research achievements have been applied to many fields such as aerospace science and robotics. Single inverted pendulum system is a widely used physical model. Controlling the movement of the single inverted pendulum is the key factor to guarantee the stability of the inverted pendulum. In order to avoid some shortcomings of common physical feedback analysis method and motion trajectory camera guidance control method, this paper presents a pure angle guidance analysis on the motionof the inverted pendulum, and designs the fuzzy control system of the model. Experimental results show that the operation speed and computer simulation of this kind of fuzzy control combined with algebraic analysis method are improved by the physical feedback control method. This method can effectively improve the performance of a single stage inverted pendulum control system. In this paper, the main work of this paper is to study the fuzzy control of a linear inverted pendulum system, and the Matlab and Simulink to simulate the fuzzy control system of a single inverted pendulum, verify the feasibility of the design. And a mathematical modeling method of an inverted pendulum is described, their differential equations are derived, and the equation of state is linearized. The fuzzy control method and operation steps of single stage inverted pendulum system are discussed. Using Simulink to realize the fuzzy control simulation system of a single inverted pendulum, the response curve of the control of an inverted pendulum system is given. The effectiveness and the implementation of the controller are illustrated by simulation.Keywords: Inverted pendulum; Simulation; Fuzzy control; Motion; modeling; Simulink 引言倒立摆系统是研究控制理论的一种典型实验装置,具有成本低廉,结构简单,物理参数和结构易于调整的优点,是一个具有高阶次、不稳定、多变量、非线性和强藕合特性的不稳定系统。

基于matlab的一级倒立摆自适应仿真资料

基于matlab的一级倒立摆自适应仿真资料

第一章绪论1.1倒立摆系统的简介1.1.1倒立摆系统的研究背景及意义倒立摆系统的最初分析研究开始于二十世纪五十年代,是一个比较复杂的不稳定、多变量、带有非线性和强耦合特性的高阶机械系统,它的稳定控制是控制理论应用的一个典型范例[1]。

倒立摆系统存在严重的不确定性,一方面是系统的参数的不确定性,一方面是系统的受到不确定因素的干扰。

通过对它的研究不仅可以解决控制中的理论问题,还将控制理论涉及的相关主要学科:机械、力学、数学、电学和计算机等综合应用。

在多种控制理论与方法的研究和应用中,特别是在工程中,存在一种可行性的实验问题,将其理论和方法得到有效的验证,倒立摆系统可以此提供一个从控制理论通过实践的桥梁。

近些年来,国内外不少专家、学者一直将它视为典型的研究对象,提出了很多控制方案,对倒立摆系统的稳定性和镇定问题进行了大量研究,都在试图寻找不同的控制方法实现对倒立摆的控制,以便检查或说明该方法的严重非线性和绝对不稳定系统的控制能力,其控制方法在军工、航天、机械人领域和一般工业过程中都有着广泛的用途,如精密仪器的加工、机器人行走过程中的平衡控制、火箭发射中的垂直度控制、导弹拦截控制、航空对接控制、卫星飞行中的姿态控制等方面均涉及到倒置问题。

因此,从控制这个角度上讲,对倒立摆的研究在理论和方法论上均有着深远意义。

倒立摆系统是一个典型的自不稳定系统,其中摆作为一个典型的振动和运动问题,可以抽象为许多问题来研究。

随着非线性科学的发展,以前的采用线性化方法来描述非线性的性质,固然无可非议,但这种方法是很有局限性,非线性的一些本质特征往往不是用线性的方法所能体现的。

非线性是造成混乱、无序或混沌的核心因素,造成混乱、无序或混沌并不意味着需要复杂的原因,简单的非线性就会产生非常的混乱、无序或混沌。

在倒立摆系统中含有极其丰富和复杂的动力学行为,如分叉、分形和混沌动力学,这方面的问题也值得去探讨和研究。

无论哪种类型的倒立摆系统都具有如下特性[2]:(1)非线性倒立摆是一个典型的非线性复杂系统。

基于MATLAB的倒立摆最优控制设计和仿真

基于MATLAB的倒立摆最优控制设计和仿真
I NTE LLG E N T RO BO T
《 智能机器人》 O c t o b e r . 2 0 1 6 L l _ 二 1
J : MAT L AB 的倒 摆妓优控制 没计 仿典
广州海洋工程有限公司 姜洪发
摘 要 : 本 文通过 对单级倒 立摆控制 系统研 究和分析 ,采用 了线性二 次型最优控制 的方法 ,通过改 变二 次型
址 优控 f ; J J 设 汁 仿 r
( 4 ) 传送带与皮带轮之 间相互无滑动 ,并且传送带 是实
时 的:
车 垂直之 间 的夹角 0、摆 杆 的运 动速 度 、小 车的移 动位 置 和小车 的移动 速度 。将 上述 单级倒 立摆 的运动 系统 方程
( 5)各组件摩擦力 和阻尼对系统的影响可忽略 不计 ,除 导轨与滑块之 间的摩擦力和摆杆转动轴承 的摩擦力除外 。 设摆 杆与小 车垂 直位置之 间 的角度 为 0,倒 立摆 摆杆 的
± : 。




篆( z + c s i n o ) = H
,L

( 4 )
3倒立摆 系 统能 控性 分析
f + ) , +
摆杆 重心进行垂直运动时可表示为 :


、J
篆f c 0 s 0 = m 9
警 — H


系统具有 良好的能控性是进行系统控制器设计 的前提条件 。 根据 系统的状态方程和能控性 的矩阵方程 M= 【 B A B… A 。 B ] ,在 MA T L A B软件 中调用 矩阵可控 性指令 c t r b来进行该 系统可控
如网 1 所 示 为
本 文通过对单级倒立摆控 制系统进

直线二级倒立摆系统MATLAB模型的建立与仿真

直线二级倒立摆系统MATLAB模型的建立与仿真

直线二级倒立摆系统模型的建立与仿真1 引言倒立摆是一个高阶次、非线性、快速、多变量、强藕合、不稳定的系统。

在控制理论发展过程中,倒立摆常常被做为典型的被控对象来验证某一理论的正确性,以及在实际应用中的可行性,通过对倒立摆引入一个适当的控制方法使之成为一个稳定系统,来检验控制方法对不稳定性、非线性和快速性系统的处理能力。

该控制方法在军工、航天、机器人等领域和一般工业过程中都有广泛应用。

本文主要讨论二级倒立摆系统模型的建立和仿真。

2二级倒立摆系统数学模型直线二级倒立摆系统是由直线运动模块和两级倒立摆组件组成。

主要包括导轨、小车和各级摆杆、编码器等元件。

由驱动电机给小车施加一个控制力,迫使小车在导轨上左右移动。

而小车的位移和各级摆杆角度由编码器测得。

倒立摆的控制目标是使倒立摆的摆杆能在有限长的导轨上快速的达到竖直向上的稳定状态,以实现系统的动态平衡,并且小车位移和摆杆角度的振荡幅度较小,系统具有一定的抗干扰能力。

系统简化后的直线二级倒立摆系统物理结构图如图2.1所示。

图1.二级倒立摆系统模型系统模型建立所用的各参数如下:应用Lagrange 方程建立的数学模型为012221221211121221222212212222cos (,)cos()cos cos()1121111121111m +m +m (m l +m L )cos m l H (m l +m L )cos J m l m L m l L m l m l L J m l θθθθθθθθθθ⎡⎤⎢⎥=++-⎢⎥⎢⎥-+⎣⎦.1011...1221212122.11222cos (,,,)0(0(112222222f m l +m L sin m l H f f m l L sin f m l L sin f f θθθθθθθθθθθθθ⎡⎤-•⎢⎥⎢⎥=--•+⎢⎥⎢⎥-•+-⎢⎥⎣⎦111()-)-) 312(,)h θθ= [0 11211()sin m l m L g θ+ 212sin m l g θ] T0h =[1 0 0]T()1121212121312022(,)(,,,),x x H H h h u θθθθθθθθθθθθ⎡⎤⎡⎤⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦3 倒立摆PID控制器系统PID控制是比例积分微分控制的简称。

一阶倒立摆系统建模与仿真研究

一阶倒立摆系统建模与仿真研究

一阶倒立摆系统建模与仿真研究一阶倒立摆系统是一种典型的非线性控制系统,具有多种状态和复杂的运动特性。

在实际生活中,倒立摆被广泛应用于许多领域,如机器人平衡控制、航空航天、制造业等。

因此,对一阶倒立摆系统进行建模与仿真研究具有重要的理论价值和实际意义。

ml''(t) + b*l'(t) + k*l(t) = F(t)其中,m为质量,b为阻尼系数,k为弹簧常数,l(t)为摆杆的位移,l'(t)为摆杆的加速度,l''(t)为摆杆的角加速度,F(t)为外界作用力。

在仿真过程中,需要设定摆杆的初始位置和速度。

一般而言,初始位置设为0,初始速度设为0。

边界条件则根据具体实验需求进行设定,如限制摆杆的最大位移、最大速度等。

利用MATLAB/Simulink等仿真软件进行建模和实验,可以方便地通过改变输入信号的参数(如力F)或系统参数(如质量m、阻尼系数b、弹簧常数k)来探究一阶倒立摆系统的性能和反应。

通过仿真实验,我们可以观察到一阶倒立摆系统在受到不同输入信号的作用下,会呈现出不同的运动规律。

在适当的输入信号作用下,摆杆能够达到稳定状态;而在某些特定的输入信号作用下,摆杆可能会出现共振现象。

在仿真过程中,我们可以发现一阶倒立摆系统具有一定的鲁棒性。

在一定范围内,即使输入信号发生变化或系统参数产生偏差,摆杆也能够保持稳定状态。

然而,当输入信号或系统参数超过一定范围时,摆杆可能会出现共振现象,导致系统失稳。

因此,在实际应用中,需要对输入信号和系统参数进行合理控制,以保证系统的稳定性。

为了避免共振现象的发生,可以通过优化系统参数或采用其他控制策略来实现。

例如,适当增加阻尼系数b能够减小系统的振荡幅度,有利于系统尽快达到稳定状态。

可以采用反馈控制策略,根据摆杆的实时运动状态调整输入信号,以抑制系统的共振响应。

本文对一阶倒立摆系统进行了建模与仿真研究,通过观察不同参数设置下的系统性能和反应,对其运动规律、鲁棒性及稳定性进行了分析。

(完整)倒立摆MATLAB建模

(完整)倒立摆MATLAB建模

Matlab程序设计上交作业要求:1)纸质文档:设计分析报告一份(包括系统建模、系统分析、系统设计思路、程序及其执行结果).2)Matlab程序:按班级统一上交后备查。

题目一:考虑如图所示的倒立摆系统.图中,倒立摆安装在一个小车上。

这里仅考虑倒立摆在图面内运动的二维问题.图倒立摆系统假定倒立摆系统的参数如下。

摆杆的质量:m=0.1g摆杆的长度:2l=1m小车的质量:M=1kg重力加速度:g=10/s2摆杆惯量:I=0.003kgm2摆杆的质量在摆杆的中心.设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量%≤10%,调节时间ts ≤4s ,使摆返回至垂直位置,并使小车返回至参考位置(x=0)。

要求:1、建立倒立摆系统的数学模型2、分析系统的性能指标—-能控性、能观性、稳定性3、设计状态反馈阵,使闭环极点能够达到期望的极点,这里所说的期望的极点确定是把系统设计成具有两个主导极点,两个非主导极点,这样就可以用二阶系统的分析方法进行参数的确定4、用MATLAB 进行程序设计,得到设计后系统的脉冲响应、阶跃响应,绘出相应状态变量的时间响应图。

题目二:根据自身的课题情况,任意选择一个被控对象,按照上题所示步骤进行分析和设计,并给出仿真程序及其执行结果。

题目一:考虑如图所示的倒立摆系统.图中,倒立摆安装在一个小车上。

这里仅考虑倒立摆在图面内运动的二维问题.图倒立摆系统假定倒立摆系统的参数如下。

摆杆的质量:m=0.1g摆杆的长度:2l=1m小车的质量:M=1kg重力加速度:g=10/s2摆杆惯量:I=0。

003kgm2摆杆的质量在摆杆的中心。

设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量%≤10%,调节时间ts ≤4s ,使摆返回至垂直位置,并使小车返回至参考位置(x=0)。

要求:1、建立倒立摆系统的数学模型2、分析系统的性能指标—-能控性、能观性、稳定性3、设计状态反馈阵,使闭环极点能够达到期望的极点,这里所说的期望的极点确定是把系统设计成具有两个主导极点,两个非主导极点,这样就可以用二阶系统的分析方法进行参数的确定4、用MATLAB 进行程序设计,得到设计后系统的脉冲响应、阶跃响应,绘出相应状态变量的时间响应图.设计分析报告1 系统建模在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

倒立摆系统的建模及Matlab 仿真1.系统的物理模型考虑如图(1)面内运动的二维问题。

图(1)倒立摆系统假定倒立摆系统的参数如下。

摆杆的质量:m=0.1g摆杆的长度:l =1m 小车的质量:M=1kg 重力加速度:g=9.8m/2s 摆杆的质量在摆杆的中心。

设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量δ ≤10%,调节时间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。

2.系统的数学模型2.1建立倒置摆的运动方程并将其线性化。

为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。

设小车瞬时位置为z,摆心瞬时位置为(θsin l z +),在u 作用下,小车及摆均产生加速远动,根据牛顿第二定律,在水平直线远动方向的惯性力应与u 平衡,于是有u l z dtd m dt z d M =++)sin (2222θ 即: u ml ml z m M =-++θθθθsin cos )(2① 绕摆轴转动的惯性力矩与重力矩平衡,因而有θθθsin cos )sin (22mgl l l z dt d m =⋅⎥⎦⎤⎢⎣⎡+ 即: θθθθθθθsin cos sin cos cos 22g l l z =-+② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。

由于控制的目的是保持倒立摆直立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,则1cos ,sin ≈≈θθθ,且可忽略θθ2 项。

于是有u ml z m M =++θ)( ③ θθg l z =+④ 联立求解可得u Ml Ml m M u MM mg z1)(1-+=+-=θθθ2.2列写系统的状态空间表达式。

选取系统变量4321,,,x x x x , []Tx x x x x 4321,,,=则u Mlx Ml m M xx x u Mx M mg x x x 1)(134433221-+==+-==即[]Cxx x y Bu Ax u Ml M x Ml g m M Mmgz z dt d x ===+=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000110100)(0010000000011θθ 代入数据计算得到:[][]0,0001,1010,0110010000100001==-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=D C B A T3.设计控制器3.1判断系统的能控性和稳定性[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==01101110100101101032B A BA AB BQ k ,rank(k Q )=4,故被控对象完全可控 由特征方程 0)11(22=-=-λλλA I 解得特征值为 0,0,11±。

出现大于零的特征值,故被控对象不稳定3.2确定希望的极点希望的极点n=4,选其中一对为主导极点1s 和2s ,另一对为远极点,认为系统性能主要由主导极点决定,远极点只有微小影响。

根据二阶系统的关系式,先确定主导极点1.021≤=--ςπξσe p 可得59.0≥ξ,于是取6.0=ξ;取误差带02.0=∆有ns t ξω4=,则 1.67=n ω,闭环主导极点为22,11ξξω-±-=j s n =-1±0.8j,远极点选择使它和原点的距离大于主导极点与原点距离的5倍,取154,3-=s3.3采用状态反馈方法使系统稳定并配置极点状态反馈的控制规律为kx u -=,[]321k k k k k =;状态反馈系统的状态方程为Bv x BK A x+-=)( ,其特征多项式为 0122033141010)11()()(k k k k k k BK A I ----+-+=--λλλλλ ⑤希望特征多项式为3692.49964.28632)8.01)(8.01()15(2342++++=++-++λλλλλλλj j ⑥比较以上两式系数,解得状态反馈矩阵[]92.8154.33492.499.36----=k4.设计全维观测器4.1判断系统的能观性[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--==100001000010001)()(32C A C A C A CQ T T T g ,rank(g Q )=4,故被控对象完全可观 4.2确定观测器的反馈增益全维观测器的动态方程为GCx Bv x GC A x++-= )(;其特征多项式为 )11()11()11()(312021304g g g g g g GC A I --+--+-++=--λλλλλ ⑦取观测器的希望极点为:-45,-45,-3+3j ,-3-3j ;则希望特征多项式为3465013770258396)8.01)(8.01()15(2342++++=++-++λλλλλλλj j ⑧比较以上两式系数,解得观测器反馈矩阵[]TG 6498414826259496--=5.降维状态观测器的设计5.1建立倒置摆三维子系统动态方程设小车位移z 由输出传感器测量,因而无需估计,可以设计降维(三维)状态观测器,通过重新排列被控系统变量的次序,把需由降维状态观测器估计的状态变量与输出传感器测得的状态变量分离开。

将z 作为第四个状态变量,则被控系统的状态方程和输出方程变换为[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡z z y u z z z z dt d θθθθθθ 1000010100010011001000010 ⑨简记为:[]⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡211212122211211210x x I y y u b b x x A A A A x x式中[]T zx θθ =1,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=01110001011A ,[]T A 00012=,T b ]101[1-=y z x ==2,[]TA 00121=,21A =0,02=b ,11=I被控系统的n-q 维子系统动态方程的一般形式为v x A x+=1111 ,121x A z =' 式中u b u b y A v 1121=+=,z y u b y A yz ==--='222 z '为子系统输出量。

故倒置摆三维子系统动态方程为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡='⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡θθθθθθ zz u z z dt d 00110101101000105.2.判断子系统的可观测性A1=[0 -1 0;0 0 1;0 11 0];C1= [1 0 0];Qg1=obsv(A1,C1);r=rank(Qg1)运行Matlab 程序;结果为r=3,故该子系统可观测 降维状态观测器动态方程的一般形式为()()()[]y h xy A h A h A h A u b h b A h A +=-+-+-+-=ωωω122122*********式中h=[]Th h h 210。

考虑被控对象参数,单倒置摆降维观测器动态方程的一般形式为y h h h x y h h h h h h h h u h h h ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+---+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=2101120210120210111010111001ωωω5.3确定三维状态观测器的反馈矩阵h三维状态观测器的特征多项式为()()()20120321111111h h h h A h A I --+--++=--λλλλ设希望的观测器闭环极点为-45,-3+3j ,-3-3j ,则希望特征多项式为()()()8102885133334523+++=-++++λλλλλλj j比较以上两式系数,解得h=[]1371-29951-故所求三维状态观测器的动态方程为y y x x y u ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=113712995100000100001000016663213878230210101113711029901511ωωω 6.Matlab 仿真分析6.1源程序通过Matlab 对用全维状态观测器实现状态反馈的倒置摆系统进行仿真分析,下面是文件名为Inversion_pendulum_system.m 的源程序 %倒立摆系统建模分析%a)判断系统能控性和能观性 clear all ; clcA=[0 1 0 0;0 0 -1 0;0 0 0 1;0 0 11 0]; B=[0;1;0;-1]; C=[1 0 0 0]; D=0;Uc=ctrb(A,B);rc=rank(Uc); n=size(A); if rc==ndisp('The system is controlled.') elseif rc<ndisp('The system is uncontrolled.') endVo=obsv(A,C); ro=rank(Vo); if ro==ndisp('The system is observable.')elseif ro~=ndisp('The system is no observable.')end%b)判断系统稳定性P=poly(A),v=roots(P)Re=real(v);if(length(find(Re>0))~=0)disp('The system is unstable and the ubstable poles are:')v(find(Re>0))elsedisp('The system is stable!');end% c)极点配置与控制器-全维状态观测器设计与仿真pc=[-1+0.8*j,-1-0.8*j,-15,-15];po=[-45 -45 -3+3*j -3-3*j];K=acker(A,B,pc),G=acker(A',C',po)'Gp=ss(A,B,C,D); %将受控过程创建为一个LTI对象disp('受控对象的传递函数模型:');H=tf(Gp)Af=A-B*K-G*C;disp('观测器——控制器模型:');Gc=ss(Af,-G,-K,0) %将观测器-控制器创建为一个LTI对象disp('观测器——控制器的极点:');f_poles=pole(Gc)GpGc=Gp*Gc; %控制器和对象串联disp('观测器——控制器与对象串联构成的闭环系统模型:'); Gcl=feedback(GpGc,1,-1) %闭环系统disp('闭环系统的极点和零点:');c_poles=pole(Gcl)c_zeros=tzero(Gcl)lfg=dcgain(Gcl) %低频增益N=1/lfg % 归一化常数T=N*Gcl; %将N与闭环系统传递函数串联x0=[100 10 30 10 0 0 0 0];%初始条件向量t=[0:0.01:1]'; %时间列向量r=0*t; %零参考输入[y t x]=lsim(T,r,t,x0); %初始条件仿真plot(t,x(:,1:4),'-.',t,x(:,5:8)) %由初始条件引起的状态响应title('\bf状态响应')legend('x1','x2','x3','x4','x1hat','x2hat','x3hat','x4hat')figure(2)step(T)title('\bf阶跃响应')figure(3)impulse(T)title('\bf脉冲响应')6.2 程序运行结果The system is controlled.The system is observable.P =1 0 -11 0 0v =3.3166-3.3166The system is unstable and the ubstable poles are:ans =3.3166K =-36.9000 -49.9200 -334.5400 -81.9200G =962594-14826-64984受控对象的传递函数模型Transfer function:s^2 - 1.776e-015 s - 10-----------------------s^4 - 11 s^2观测器——控制器模型:a =x1 x2 x3 x4 x1 -96 1 0 0 x2 -2557 49.92 333.5 81.92 x3 1.483e+004 0 0 1 x4 6.495e+004 -49.92 -323.5 -81.92b =u1x1 -96x2 -2594x3 1.483e+004x4 6.498e+004c =x1 x2 x3 x4y1 36.9 49.92 334.5 81.92d =u1y1 0Continuous-time model.观测器——控制器的极点:f_poles =1.0e+002 *-1.4948 + 1.8786i-1.4948 - 1.8786i1.7424-0.0328观测器——控制器与对象串联构成的闭环系统模型:a =x1 x2 x3 x4 x5 x1 0 1 0 0 0 x2 0 0 -1 0 36.9 x3 0 0 0 1 0 x4 0 0 11 0 -36.9 x5 96 0 0 0 -96 x6 2594 0 0 0 -2557 x7 -1.483e+004 0 0 0 1.483e+004 x8 -6.498e+004 0 0 0 6.495e+004 x6 x7 x8x1 0 0 0x2 49.92 334.5 81.92x3 0 0 0x4 -49.92 -334.5 -81.92x5 1 0 0x6 49.92 333.5 81.92x7 0 0 1x8 -49.92 -323.5 -81.92b =u1x1 0x2 0x3 0x4 0x5 -96x6 -2594x7 1.483e+004x8 6.498e+004c =x1 x2 x3 x4 x5 x6 x7 x8 y1 1 0 0 0 0 0 0 0 d =u1 y1 0Continuous-time model. 闭环系统的极点和零点: c_poles =-45.0000 -45.0000 -15.0001 -14.9999 -3.0000 + 3.0000i -3.0000 - 3.0000i -1.0000 + 0.8000i -1.0000 - 0.8000i c_zeros = 3.1623 0.2263 -0.1707 -3.4312 -3.1623 lfg =1.0000 N =1.0000由控制器——全维状态观测器实现的倒立摆系统在初始条件下引起的状态变量的响应、输出变量的阶跃响应和脉冲响应如下图图(2)状态响应()t x (虚线)和()t x(实线)第11 页共11 页图(3)阶跃响应()t y 图(4)脉冲响应()t y。

相关文档
最新文档