倒立摆系统的建模及Matlab仿真

合集下载

(完整)倒立摆MATLAB建模

(完整)倒立摆MATLAB建模

Matlab程序设计上交作业要求:1)纸质文档:设计分析报告一份(包括系统建模、系统分析、系统设计思路、程序及其执行结果).2)Matlab程序:按班级统一上交后备查。

题目一:考虑如图所示的倒立摆系统.图中,倒立摆安装在一个小车上。

这里仅考虑倒立摆在图面内运动的二维问题.图倒立摆系统假定倒立摆系统的参数如下。

摆杆的质量:m=0.1g摆杆的长度:2l=1m小车的质量:M=1kg重力加速度:g=10/s2摆杆惯量:I=0.003kgm2摆杆的质量在摆杆的中心.设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量%≤10%,调节时间ts ≤4s ,使摆返回至垂直位置,并使小车返回至参考位置(x=0)。

要求:1、建立倒立摆系统的数学模型2、分析系统的性能指标—-能控性、能观性、稳定性3、设计状态反馈阵,使闭环极点能够达到期望的极点,这里所说的期望的极点确定是把系统设计成具有两个主导极点,两个非主导极点,这样就可以用二阶系统的分析方法进行参数的确定4、用MATLAB 进行程序设计,得到设计后系统的脉冲响应、阶跃响应,绘出相应状态变量的时间响应图。

题目二:根据自身的课题情况,任意选择一个被控对象,按照上题所示步骤进行分析和设计,并给出仿真程序及其执行结果。

题目一:考虑如图所示的倒立摆系统.图中,倒立摆安装在一个小车上。

这里仅考虑倒立摆在图面内运动的二维问题.图倒立摆系统假定倒立摆系统的参数如下。

摆杆的质量:m=0.1g摆杆的长度:2l=1m小车的质量:M=1kg重力加速度:g=10/s2摆杆惯量:I=0。

003kgm2摆杆的质量在摆杆的中心。

设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量%≤10%,调节时间ts ≤4s ,使摆返回至垂直位置,并使小车返回至参考位置(x=0)。

要求:1、建立倒立摆系统的数学模型2、分析系统的性能指标—-能控性、能观性、稳定性3、设计状态反馈阵,使闭环极点能够达到期望的极点,这里所说的期望的极点确定是把系统设计成具有两个主导极点,两个非主导极点,这样就可以用二阶系统的分析方法进行参数的确定4、用MATLAB 进行程序设计,得到设计后系统的脉冲响应、阶跃响应,绘出相应状态变量的时间响应图.设计分析报告1 系统建模在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统。

基于Matlab的一级倒立摆模型的仿真

基于Matlab的一级倒立摆模型的仿真

基于Matlab的一级倒立摆模型的仿真一.倒立摆模型的研究意义倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想的实验平台。

对倒立摆系统的研究能有效的反应控制中的典型问题:如非线性问题、鲁莽性问题、镇定问题等。

通过对倒立摆的控制,用来检测新的控制方法是否有较强的处理非线性和不稳定性问题的能力。

二.倒立摆模型的数学建模质量为m的小球固结于长度为L的细杆上(细杆质量不计),细杆和质量为M的小车铰链相接分析过程如下:如图所示,设细杆摆沿顺时针方向转东伟正方向,水平向右为水平方向上的正方向。

当细杆白顺时针想要运动时水平方向施加的里应该是水平相应。

对方程组进行拉普拉斯变化,得到摆杆角度和小车位移的传递函数:摆杆角度和小车加速度之间的传递函数:摆杆角度和小车加速度之间的传递函数:位移X对外力F的传递函数:三.在Matlab中输入得到的反馈矩阵:采用MATLAB/Simulink构造单级倒立摆状态反馈控制系统的仿真模型,如下图所示。

首先,在M A T L A B的Command Window中输入各个矩阵的值,并且在模型中的积分器中设置非零初值(这里我们设置为[0 0 0.1 0]。

然后运行仿真程序。

得到的仿真曲线从仿真结果可以看出,可以将倒立摆的杆子与竖直方向的偏角控制在θ=0(即小球和杆子被控制保持在竖直倒立状态),另外说明下黄线代表位移,紫线代表角度。

四.总结由实验中可知,倒立摆系统是一个非线性的较复杂的不稳定系统,故要满足故要满足稳定性要求,就得对系统进行线性化近似和稳定控制。

当然我们调节出来的只是一个理想模型,在实际中会更加复杂,稳定性也会更难获得。

在这次实验中掌握了倒立摆仿真的整个过程,熟悉了MATLAB仿真软件Simulingk的使用,也对系统有了更好的理解。

直线二级倒立摆系统MATLAB模型的建立与仿真

直线二级倒立摆系统MATLAB模型的建立与仿真

直线二级倒立摆系统模型的建立与仿真1 引言倒立摆是一个高阶次、非线性、快速、多变量、强藕合、不稳定的系统。

在控制理论发展过程中,倒立摆常常被做为典型的被控对象来验证某一理论的正确性,以及在实际应用中的可行性,通过对倒立摆引入一个适当的控制方法使之成为一个稳定系统,来检验控制方法对不稳定性、非线性和快速性系统的处理能力。

该控制方法在军工、航天、机器人等领域和一般工业过程中都有广泛应用。

本文主要讨论二级倒立摆系统模型的建立和仿真。

2二级倒立摆系统数学模型直线二级倒立摆系统是由直线运动模块和两级倒立摆组件组成。

主要包括导轨、小车和各级摆杆、编码器等元件。

由驱动电机给小车施加一个控制力,迫使小车在导轨上左右移动。

而小车的位移和各级摆杆角度由编码器测得。

倒立摆的控制目标是使倒立摆的摆杆能在有限长的导轨上快速的达到竖直向上的稳定状态,以实现系统的动态平衡,并且小车位移和摆杆角度的振荡幅度较小,系统具有一定的抗干扰能力。

系统简化后的直线二级倒立摆系统物理结构图如图2.1所示。

图1.二级倒立摆系统模型系统模型建立所用的各参数如下:应用Lagrange 方程建立的数学模型为012221221211121221222212212222cos (,)cos()cos cos()1121111121111m +m +m (m l +m L )cos m l H (m l +m L )cos J m l m L m l L m l m l L J m l θθθθθθθθθθ⎡⎤⎢⎥=++-⎢⎥⎢⎥-+⎣⎦.1011...1221212122.11222cos (,,,)0(0(112222222f m l +m L sin m l H f f m l L sin f m l L sin f f θθθθθθθθθθθθθ⎡⎤-•⎢⎥⎢⎥=--•+⎢⎥⎢⎥-•+-⎢⎥⎣⎦111()-)-) 312(,)h θθ= [0 11211()sin m l m L g θ+ 212sin m l g θ] T0h =[1 0 0]T()1121212121312022(,)(,,,),x x H H h h u θθθθθθθθθθθθ⎡⎤⎡⎤⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦3 倒立摆PID控制器系统PID控制是比例积分微分控制的简称。

二级倒立摆的建模与MATLAB仿真

二级倒立摆的建模与MATLAB仿真
假设系统中的每一根摆杆都是匀质刚体驱动力与放大器的输入成正比且无延迟地直接作用于小车上并且可以在忽略实验中的库仑摩擦和动摩擦的前提下设定摆杆竖直向上时下摆杆角位移摆杆角位移均为零摆杆顺时针旋转为正
二级倒立摆的建模与 MATLAB 仿真 刘文斌,等
二级倒立摆的建模与MATLAB仿真
刘文斌,干树川 (四川理工学院电子与信息工程系 四川自贡,643000)
取为最小值。设控制输入函数形式为: U(t)= -Kx(t) (11) 状态反馈矩阵: K = R -1B T P ( 12) 其中,P 可由 Riccati 微分方程: (13) 其中, 性能指标函数: (14)
[J].计算机测量与控制,2006,14(12):1641 - 1642 5 张 春,江 明,陈其工等.平行单级双倒立摆系统的建模与滑
模变结构控制[J].2008.1
23
图1 二级倒立摆模型
(1)
(2)
(3) 经过线性化如下: (4)
(上接第 7 页) 0; 0; 0; 0]; p=eig(A) [num,den]=ss2tf(A,B,C,D,1); printsys(num,den) Q=[1000 0 0 0 0 0; 0 0 0 0 0 0; 0 0 10 0 0 0; 0 0 0 0 0 0; 0 0 0 0 10 0; 0 0 0 0 0 0]; Tc=ctrb(A,B); rank(Tc) To=obsv(A,C); rank(To) R=1; K=lqr(A,B,Q,R); Ac=[(A-B*K)]; Bc=[B]; Cc=[C]; Dc=[D]; T=0:0.005:20; U=0.2*ones(size(T)); [Y,X]=lsim(Ac,Bc,Cc,Dc,U,T); plot(T,Y(:,1),':',T,Y(:,2),' -',T,Y(:,3),'

直线二级倒立摆建模与matlab仿真LQR

直线二级倒立摆建模与matlab仿真LQR

直线二级倒立摆建模与仿真1、直线二级倒立摆建模为进行性线控制器的设计,首先需要对被控制系统进行建模.二级倒立摆系统数学模型的建立基于以下假设:1)每一级摆杆都是刚体;2)在实验过程中同步带长保持不变;3)驱动力与放大器输入成正比,没有延迟直接拖加于小车;4)在实验过程中动摩擦、库仑摩擦等所有摩擦力足够小,可以忽略不计。

图1 二级摆物理模型二级倒立摆的参数定义如下:M 小车质量m1摆杆1的质量m2摆杆2的质量m3质量块的质量l1摆杆1到转动中心的距离l2摆杆2到转动中心的距离θ1摆杆1到转动与竖直方向的夹角θ2摆杆2到转动与竖直方向的夹角F 作用在系统上的外力利用拉格朗日方程推导运动学方程拉格朗日方程为:其中L 为拉格朗日算子,q 为系统的广义坐标,T 为系统的动能,V 为系统的势能其中错误!未找到引用源。

,错误!未找到引用源。

为系统在第i 个广义坐标上的外力,在二级倒立摆系统中,系统有三个广义坐标,分别为x,θ1,θ2,θ3。

首先计算系统的动能:其中错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

分别为小车的动能,摆杆1的动能,摆杆2的动能和质量块的动能。

小车的动能:错误!未找到引用源。

,其中错误!未找到引用源。

,错误!未找到引用源。

分别为摆杆1的平动动能和转动动能。

错误!未找到引用源。

,其中错误!未找到引用源。

,错误!未找到引用源。

分别为摆杆2的平动动能和转动动能。

对于系统,设以下变量: xpend1摆杆1质心横坐标 xpend2摆杆2质心横坐标 yangle1摆杆1质心纵坐标 yangle2摆杆2质心纵坐标 xmass 质量块质心横坐标 ymass 质量块质心纵坐标 又有:(,)(,)(,)L q q T q q V q q =-则有:系统总动能:系统总势能:则有:求解状态方程:可解得:使用MATLAB对得到的系统进行阶跃响应分析,执行命令:A=[0 0 0 1 0 0;0 0 0 0 1 0;0 0 0 0 1 01;0 0 0 0 0 0;0 86.69 -21.62 0 0 0;0 -40.31 39.45 0 0 0];B=[0;0;0;1;6.64;-0.808];C=[1 0 0 0 0 0;0 1 0 0 0 0;0 0 1 0 0 0];D=[0;0;0];sys=ss(A,B,C,D);t=0:0.001:5;step(sys,t)求取系统的单位阶跃响应曲线:图2 二级摆阶跃响应曲线由图示可知系统小车位置、摆杆1角度和摆杆2角度均发散,需要设计控制器以满足期望要求。

基于MATLAB的倒立摆系统控制系统设计与仿真【毕业作品】

基于MATLAB的倒立摆系统控制系统设计与仿真【毕业作品】

1 绪论1.1倒立摆系统简介倒立摆系统是一种很常见的又和人们的生活密切相关的系统,它深刻揭示了自然界一种基本规律,即自然不稳定的被控对象,通过控制手段可使之具有良好的稳定性。

倒立摆系统是一个非线性,强耦合,多变量和自然不稳定的系统。

它是由沿导轨运动的小车和通过转轴固定在小车上的摆杆组成的。

在导轨一端装有用来测量小车位移的电位计,摆体与小车之间由轴承连接,并在连接处安置电位器用来测量摆的角度。

小车可沿一笔直的有界轨道向左或向右运动,同时摆可在垂直平面内自由运动。

直流电机通过传送带拖动小车的运动,从而使倒立摆稳定竖立在垂直位置。

图1.1一级倒立摆装置简图由图1.1中可以看到,倒立摆装置由沿导轨运动的小车和通过转轴固定在小车上的摆体组成。

导轨的一端固定有位置传感器,通过与之共轴的轮盘转动可以测量出沿导轨由图中可以看到,倒立摆装置由沿导轨运动的小车和通过转轴固定在小车上的摆运动的小车位移;小车通过轴承连接摆体,并在小车与摆体的连接处固定有共轴角度传感器,用以测量摆体的角度信号;并通过微分电路得到相应的速度和角速度信号;导轨的另一端固定有直流永磁力矩电机,直流电机通过传送带驱动小车沿导轨运动,在小车沿导轨左右运动的过程中将力传送到摆杆以实现整个系统的平衡。

倒立摆的种类很多,有悬挂式倒立摆、平行式倒立摆、和球平衡式倒立摆;倒立摆的级数可以是一级,二级,乃至更多级。

控制方法也是多种,可以通过模糊控制,智能控制,PID控制,LQR控制等来实现倒立摆的动态平衡,本文介绍的是状态反馈极点配置方法来实现一级倒立摆的控制。

1.2倒立摆的控制规律当前,倒立摆的控制规律可总结如下:(1)状态反馈H控制[1],通过对倒立摆物理模型的分析,建立倒立摆的动力学模型,然后使用状态空间理论推导出状态方程和输出方程,应用状态反馈和Kalnian滤波相结合的方法,实现对倒立摆的控制。

(2)利用云模型[2-3]实现对倒立摆的控制,用云模型构成语言值,用语言值构成规则,形成一种定性的推理机制。

倒立摆系统建模及MATLAB仿真

倒立摆系统建模及MATLAB仿真

倒立摆系统的建模及MATLAB仿真通过建立倒立摆系统的数学模型,应用状态反馈控制配置系统极点设计倒立摆系统的控制器,实现其状态反馈,从而使倒立摆系统稳定工作。

之后通过MA TLAB 软件中Simulink工具对倒立摆的运动进行计算机仿真,仿真结果表明,所设计方法可使系统稳定工作并具有良好的动静态性能。

倒立摆系统是1个经典的快速、多变量、非线性、绝对不稳定系统,是用来检验某种控制理论或方法的典型方案。

倒立摆控制理论产生的方法和技术在半导体及精密仪器加工、机器人技术、导弹拦截控制系统和航空器对接控制技术等方面具有广阔的开发利用前景。

因此研究倒立摆系统具有重要的实践意义,一直受到国内外学者的广泛关注。

本文就一级倒立摆系统进行分析和研究,建立倒立摆系统的数学模型,采用状态反馈极点配置的方法设计控制器,并应用MA TLAB 软件进行仿真。

1 一级倒立摆系统的建模1. 1 系统的物理模型如图1 所示,在惯性参考系下,设小车的质量为M ,摆杆的质量为m ,摆杆长度为l ,在某一瞬间时刻摆角(即摆杆与竖直线的夹角)为θ,作用在小车上的水平控制力为f 。

这样,整个倒立摆系统就受到重力,水平控制力和摩擦力的3 外力的共同作用。

图1 一级倒立摆物理模型1. 2 系统的数学模型在系统数学模型中,本文首先假设:(1) 摆杆为刚体。

(2)忽略摆杆与支点之间的摩擦。

(3)忽略小车与导轨之间的摩擦。

然后根据牛顿第二运动定律,求得系统的运动方程为:方程(1) , (2) 是非线性方程,由于控制的目的是保持倒立摆直立,在施加合适的外力条件下,假定θ很小,接近于零是合理的。

则sinθ≈θ,co sθ≈1 。

在以上假设条件下,对方程线性化处理后,得倒立摆系统的数学模型:1. 3 系统的状态方程以摆角θ,角速度θ',小车的位移x ,速度x'为状态变量,输出为y 。

即令:则一级倒立摆系统的状态方程为:2 控制器设计及MATLAB 仿真2. 1 极点配置状态反馈的基本原理图2 状态反馈闭环控制系统极点配置的方法就是通过一个适当的状态反馈增益矩阵的状态反馈方法,将闭环系统的极点配置到任意期望的位置。

基于MATLAB的一级倒立摆控制系统仿真与设计

基于MATLAB的一级倒立摆控制系统仿真与设计

《控制系统分析与综合》任务书题目:基于MATLAB的一级倒立摆控制系统仿真分析与设计要求:对给定直线倒立摆系统模型,首先利用matlab对系统进行根轨迹、bode 图或能控性分析,然后根据控制系统设计指标进行相应控制器设计,在matlab 仿真环境下得到控制器参数,再将其写入实际倒立摆控制系统中,观察实际控制效果,进行控制参数的适当调整。

任务:1、超前校正控制器设计设计指标:调整时间t s=0.5s (2%) ;最大超调量δp≤10%设计步骤:先对传递函数模型进行根轨迹分析,讨论原系统的稳定性等,然后利用sisotool设计超前校正控制器,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。

2、滞后超前校正控制器设计设计指标:系统的静态位置误差常数为10,相位裕量为500,增益裕量等于或大于10 分贝。

设计步骤:先对传递函数模型进行bode图分析,讨论原系统的稳定性等,然后利用sisotool设计滞后超前校正控制器,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。

3、PID控制设计指标:调整时间t s尽量小;最大超调量δp≤10%设计步骤:先在matlab/simulink下构建PID仿真控制系统,依照PID参数整定原则进行系统校正,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。

4、状态空间极点配置控制设计指标:要求系统具有较短的调整时间(约3秒)和合适的阻尼(阻尼比ζ= 0.5-0.7)。

设计步骤:先对系统进行能控性分析,然后根据设计要求选择期望极点(考虑主导极点),编程求出反馈矩阵K,进行系统仿真。

仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。

设计报告要求:报告提供如下内容1 封面2 目录3 正文(1)任务书(2)分别对四个设计任务按照系统分析、控制器仿真设计、实际系统运行分析形成报告4 收获、体会5 参考文献格式要求:题目小三,宋体加粗目录、正文、小标题均为小四宋体,其中标题加粗。

基于MATLAB的旋转倒立摆建模和控制仿真

基于MATLAB的旋转倒立摆建模和控制仿真

倒立摆系统作为一个被控对象具有非线性、强耦合、欠驱动、不稳定等典型特点,因此一直被研究者视为研究控制理论的理想平台,其作为控制实验平台具有简单、便于操作、实验效果直观等诸多优点。

倒立摆具有很多形式,如直线倒立摆、旋转倒立摆、轮式移动倒立摆等等。

其中,旋转倒立摆本体结构仅由旋臂和摆杆组成,具有结构简单、空间布置紧凑的优点,非常适合控制方案的研究,因此得到了研究者们广泛的关注[1-2]。

文献[3]介绍了直线一级倒立摆的建模过程,并基于MATLAB 进行了仿真分析;文献[4]通过建立倒立摆的数学模型,采用MATLAB 研究了倒立摆控制算法及仿真。

在倒立摆建模、仿真和研究中大多数研究者常用理论建模方法,也可以利用SimMechanics 搭建三维可视化模型仿真;文献[5]使用SimMechanics 工具箱建立旋转倒立摆物理模型,通过极点配置、PD 控制和基于线性二次型控制实现了倒立摆的平衡控制;文献[6]通过设计的全状态观反馈控制器来实现单极旋转倒立摆SimMechanics 模型控制,表明了SimMechanics 可用于不稳定的非线性系统;文献[7]通过单级倒立摆SimMechanics 仿真,研究了Bang-Bang 控制和LQR 控制对倒立摆的自起摆和平衡控制;文献[8]基于Sim⁃Mechanics 建立了直线六级倒立摆模型,并基于LRQ 设计状态反馈器进行了仿真控制分析。

本文首先采用Lagrange 方法建立了旋转倒立摆的动力学模型,在获得了旋转倒立摆动力学微分方程后建立了s-func⁃tion 仿真模型;然后,本文采用SimMechanics 建立了旋转的可视化动力学模型。

针对两种动力学模型,采用同一个PID 控制器进行了控制,从控制结果可以看出两种模型的响应曲线完全一致,这两种模型相互印证了各自的正确性。

1旋转倒立摆系统的动力学建模旋转倒立摆是由旋臂和摆杆构成的系统,如图1所示,旋臂绕固定中心旋转(角度记为θ)带动摆杆运动,摆杆可以绕旋臂自由转动,角度记为α。

单级移动倒立摆建模及控制器设计matlab

单级移动倒立摆建模及控制器设计matlab

单级移动倒立摆建模及控制器设计matlab 单级移动倒立摆是一种常见的控制系统模型,它在机器人控制、自动驾驶等领域有着广泛的应用。

本文将介绍如何使用MATLAB进行单级移动倒立摆的建模和控制器设计。

首先,我们需要了解单级移动倒立摆的基本原理。

单级移动倒立摆由一个垂直的杆和一个可以在水平方向上移动的小车组成。

小车上有一个可以旋转的杆,杆的一端连接着小车,另一端有一个质量块。

通过控制小车的位置和杆的角度,我们可以实现倒立摆的平衡。

接下来,我们开始建立单级移动倒立摆的数学模型。

首先,我们需要定义系统的状态变量。

在这个模型中,我们可以选择小车的位置x、小车的速度v、杆的角度θ和杆的角速度ω作为状态变量。

然后,我们可以根据物理原理建立系统的动力学方程。

根据牛顿第二定律和角动量守恒定律,我们可以得到如下的动力学方程:m*x'' = F - m*g*sin(θ) - m*l*θ'^2*cos(θ)m*l^2*θ'' = -m*g*l*sin(θ) + m*l*x''*cos(θ) - b*θ'其中,m是小车和质量块的总质量,l是杆的长度,F是施加在小车上的外力,g是重力加速度,b是杆的阻尼系数。

接下来,我们可以使用MATLAB进行模型的建立和仿真。

首先,我们需要定义系统的参数和初始条件。

然后,我们可以使用ode45函数来求解系统的动力学方程。

ode45函数是MATLAB中用于求解常微分方程的函数,它可以根据给定的初始条件和参数,计算出系统在一段时间内的状态变化。

在求解动力学方程之后,我们可以得到系统的状态变量随时间的变化。

通过绘制状态变量随时间的曲线,我们可以观察到系统的动态行为。

例如,我们可以绘制小车位置随时间的变化曲线,以及杆角度随时间的变化曲线。

最后,我们需要设计一个控制器来实现单级移动倒立摆的平衡。

常见的控制器设计方法包括PID控制器和模糊控制器。

倒立摆系统的建模及MATLAB仿真

倒立摆系统的建模及MATLAB仿真

(2)
方程 (1) , (2) 是非线性方程 ,由于控制的目的是 保持倒立摆直立 ,在施加合适的外力条件下 ,假定θ 很小 ,接近于零是合理的 。则 sinθ≈θ,co sθ≈1 。在 以上假设条件下 ,对方程线性化处理后 ,得倒立摆系 统的数学模型 :
( M + m) ¨x + mθl¨= f
(3)
Co nference , 1999 :230. [ 2 ] 王沉培 ,周艳红 ,周云飞. 复杂形状刀具磨削运动三维图 形仿真的研究. 中国机械工程 ,1998 ,10 (2) :1232126. [ 3 ] (美) 马尔金 1 S 著. 磨削技术理论与应用 [ M ]1 沈阳 :东 北大学出版社 ,20021
Key words inverted pendulum , model building , simulatio n under t he MA TL AB enviro nment
中图分类号 : TP273 文献标识码 :A
倒立摆系统是 1 个经典的快速 、多变量 、非线 性 、绝对不稳定系统 ,是用来检验某种控制理论或方 法的典型方案 。倒立摆控制理论产生的方法和技术 在半导体及精密仪器加工 、机器人技术 、导弹拦截控 制系统和航空器对接控制技术等方面具有广阔的开 发利用前景 。因此研究倒立摆系统具有重要的实践 意义 ,一直受到国内外学者的广泛关注 。
的稳态响应和瞬态响应特性由矩阵 A - B K 的特征
决定 。如果矩阵 K 选取适当 , 则可使矩阵 A - B K
构成 1 个渐近稳定矩阵 ,并且对所有的 x (0) ≠0 , 当
t 趋于无穷时 ,都可使 x ( t) 趋于 0 。称矩阵 A - B K
的特征值为调节器极点 。如果这些调节器极点均位

倒立摆系统地建模及Matlab仿真

倒立摆系统地建模及Matlab仿真

倒立摆系统的建模及Matlab仿真1. 系统的物理模型考虑如图(i)所示的倒立摆系统。

图中,倒立摆安装在一个小车上。

这里仅考虑倒立摆在图面内运动的二维问题。

图(i)倒立摆系统假定倒立摆系统的参数如下。

摆杆的质量:m=0.1g摆杆的长度:l=1m小车的质量:M=1kg重力加速度:g=9.8m/ s2摆杆的质量在摆杆的中心。

设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量<10%,调节时间ts <4s,通过小车的水平运动使倒立摆保持在垂直位置。

2. 系统的数学模型2.1建立倒置摆的运动方程并将其线性化为简化问题,在数学模型中首先假设:1)摆杆为刚体;2 )忽略摆杆与支点之间的摩擦;3) 忽略小车与接触面间的摩擦。

设小车瞬时位置为乙摆心瞬时位置为(z lsin ),在u 作用下,小车及摆均产生加速远动,绕摆轴转动的惯性力矩与重力矩平衡,因而有项。

于是有(M m)z ml u z l g联立求解可得mg丄口Ml Ml根据牛顿第二定律,在水平直线远动方向的惯性力应与 平衡,于是有.2 , 2d z d / M —亏 m 2 (z dt 2 dt 2l sin即:2(M m)z ml cos ml sin即:zcosm — (z lsin ) I cos dt 22 2l cos l sin cosmglsingsin以上两个方程都是非线性方程, 为求得解析解,需作线性化处理。

由于控制的目的是保持倒立摆直 立,在试驾合适的外力条件下,假定B 很小,接近于零时合理的,则sin,cos 1,且可忽略22.2列写系统的状态空间表达式选取系统变量 X 1,X 2,X 3,X 4 , x X i ,X 2,X 3,T则X 1 X 2mg1X 2X 3UM MX 3 X 4(Mm)1X 4X 3. .. UMl Ml3. 设计控制器3.1判断系统的能控性和稳定性1,rank( QQ=4,故被控对象完全可控111 0 11 0I A 2( 2 11) 0解得特征值为0 , 0, ■ 11。

倒立摆系统建模及MATLAB仿真

倒立摆系统建模及MATLAB仿真

倒立摆系统的建模及MATLAB仿真通过建立倒立摆系统的数学模型,应用状态反馈控制配置系统极点设计倒立摆系统的控制器,实现其状态反馈,从而使倒立摆系统稳定工作。

之后通过MA TLAB 软件中Simulink工具对倒立摆的运动进行计算机仿真,仿真结果表明,所设计方法可使系统稳定工作并具有良好的动静态性能。

倒立摆系统是1个经典的快速、多变量、非线性、绝对不稳定系统,是用来检验某种控制理论或方法的典型方案。

倒立摆控制理论产生的方法和技术在半导体及精密仪器加工、机器人技术、导弹拦截控制系统和航空器对接控制技术等方面具有广阔的开发利用前景。

因此研究倒立摆系统具有重要的实践意义,一直受到国内外学者的广泛关注。

本文就一级倒立摆系统进行分析和研究,建立倒立摆系统的数学模型,采用状态反馈极点配置的方法设计控制器,并应用MA TLAB 软件进行仿真。

1 一级倒立摆系统的建模1. 1 系统的物理模型如图1 所示,在惯性参考系下,设小车的质量为M ,摆杆的质量为m ,摆杆长度为l ,在某一瞬间时刻摆角(即摆杆与竖直线的夹角)为θ,作用在小车上的水平控制力为f 。

这样,整个倒立摆系统就受到重力,水平控制力和摩擦力的3 外力的共同作用。

图1 一级倒立摆物理模型1. 2 系统的数学模型在系统数学模型中,本文首先假设:(1) 摆杆为刚体。

(2)忽略摆杆与支点之间的摩擦。

(3)忽略小车与导轨之间的摩擦。

然后根据牛顿第二运动定律,求得系统的运动方程为:方程(1) , (2) 是非线性方程,由于控制的目的是保持倒立摆直立,在施加合适的外力条件下,假定θ很小,接近于零是合理的。

则sinθ≈θ,co sθ≈1 。

在以上假设条件下,对方程线性化处理后,得倒立摆系统的数学模型:1. 3 系统的状态方程以摆角θ,角速度θ',小车的位移x ,速度x'为状态变量,输出为y 。

即令:则一级倒立摆系统的状态方程为:2 控制器设计及MATLAB 仿真2. 1 极点配置状态反馈的基本原理图2 状态反馈闭环控制系统极点配置的方法就是通过一个适当的状态反馈增益矩阵的状态反馈方法,将闭环系统的极点配置到任意期望的位置。

倒立摆系统的建模及MATLAB仿真

倒立摆系统的建模及MATLAB仿真

倒立摆系统的建模及MATLAB仿真
曾志新;邹海明;李伟光;周建辉
【期刊名称】《新技术新工艺》
【年(卷),期】2005(000)010
【摘要】通过建立倒立摆系统的数学模型,应用状态反馈控制配置系统极点设计倒立摆系统的控制器,实现其状态反馈,从而使倒立摆系统稳定工作.之后通过MATLAB软件中Simulink工具对倒立摆的运动进行计算机仿真,仿真结果表明,所设计方法可使系统稳定工作并具有良好的动静态性能.
【总页数】3页(P16-18)
【作者】曾志新;邹海明;李伟光;周建辉
【作者单位】华南理工大学机械工程学院,510640;华南理工大学机械工程学
院,510640;华南理工大学机械工程学院,510640;华南理工大学机械工程学
院,510640
【正文语种】中文
【中图分类】TP273
【相关文献】
1.虚拟现实技术——双闭环一阶倒立摆系统的建模与仿真 [J], 肖建波;郑卫刚;
2.基于全向移动平台的二自由度单级倒立摆系统建模与LQR控制算法研究 [J], 郭帅;戴维;荚启波;奚风丰
3.倒立摆系统的建模与控制研究 [J], 吴振远;郭艳颖
4.柔性倒立摆系统建模与控制效果 [J], 张国斌;张青斌;丰志伟;陈青全;高峰
5.一阶倒立摆系统建模与仿真研究 [J], 于蕾;方蒽;纪雯
因版权原因,仅展示原文概要,查看原文内容请购买。

单级倒立摆控制系统设计及MATLAB中的仿真

单级倒立摆控制系统设计及MATLAB中的仿真

单级倒立摆控制系统设计及simulink仿真摘要:倒立摆系统是一个典型的多变量、非线性、强藕合和快速运动的自然不稳定系统。

因此倒立摆在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果己经应用到航天科技和机器人学等诸多领域。

单级倒立摆系统是一种广泛应用的物理模型。

控制单级倒立摆载体的运动是保证倒立摆稳定性的关键因素。

为了避免常用的物理反馈分析方法和运动轨迹摄像制导控制方法的某些缺点,本文从力学的角度提出对倒立摆的运动进行纯角度制导分析,完成了对倒立摆载体的角度制导运动微分方程的数学建模,设计了该模型的模糊控制系统,并利用 Matlab\simulink软件工具对倒立摆的运动进行了计算机仿真。

实验表明,这种模糊控制配合代数解析方法的运算速度和计算机仿真的效果均较物理反馈制导控制方法有了一定的提高。

该方法可以有效地改善单级倒立摆控制系统的性能。

本论文的主要工作是研究了直线一级倒立摆系统的模糊控制问题,用Matlab和Simulink对一级倒立摆模糊控制系统进行了仿真,验证了设计的可行性。

本文论述了一级倒立摆数学建模方法,推导出他们的微分方程,以及线性化后的状态方程。

讨论了单级倒立摆系统的模糊控制方法和操作步骤。

用Simulink实现了单级倒立摆模糊控制仿真系统,分别给出一级倒立摆系统控制量的响应曲线。

通过仿真说明控制器的有效性和实现性。

关键词:单级倒立摆;仿真;模糊控制;运动;建模;SimulinkDesign of single stage inverted pendulum control systemand Simulink simulationAbstract: inverted pendulum system is unstable system with a typical multi variable, nonlinear, strong coupled and fast motion. So the research on the attitude adjustment of the double foot robot and the attitude adjustment of the rocket launching process and the helicopter flight control field have practical,significance. The related scientific research achievements have been applied to many fields such as aerospace science and robotics. Single inverted pendulum system is a widely used physical model. Controlling the movement of the single inverted pendulum is the key factor to guarantee the stability of the inverted pendulum. In order to avoid some shortcomings of common physical feedback analysis method and motion trajectory camera guidance control method, this paper presents a pure angle guidance analysis on the motionof the inverted pendulum, and designs the fuzzy control system of the model. Experimental results show that the operation speed and computer simulation of this kind of fuzzy control combined with algebraic analysis method are improved by the physical feedback control method. This method can effectively improve the performance of a single stage inverted pendulum control system. In this paper, the main work of this paper is to study the fuzzy control of a linear inverted pendulum system, and the Matlab and Simulink to simulate the fuzzy control system of a single inverted pendulum, verify the feasibility of the design. And a mathematical modeling method of an inverted pendulum is described, their differential equations are derived, and the equation of state is linearized. The fuzzy control method and operation steps of single stage inverted pendulum system are discussed. Using Simulink to realize the fuzzy control simulation system of a single inverted pendulum, the response curve of the control of an inverted pendulum system is given. The effectiveness and the implementation of the controller are illustrated by simulation.Keywords: Inverted pendulum; Simulation; Fuzzy control; Motion; modeling; Simulink 引言倒立摆系统是研究控制理论的一种典型实验装置,具有成本低廉,结构简单,物理参数和结构易于调整的优点,是一个具有高阶次、不稳定、多变量、非线性和强藕合特性的不稳定系统。

二级倒立摆的建模与MATLAB仿真毕业论文

二级倒立摆的建模与MATLAB仿真毕业论文

二级倒立摆的建模与MATLAB仿真摘要:本文根据牛顿力学原理,使用机理建模法对二级倒立摆系统进行了建模与仿真研究。

利用最优化控制理论,研究了线性二次型最优控制器对倒立摆系统进行了有效控制。

基于MATLAB程序的设计、仿真的运行,结果表明,二级倒立摆的数学建模法是切实可行的,而且十分可靠,同时利用LQR 控制器实现了对系统的控制,可以达到系统所需要的稳定性,鲁棒性。

关键词:二次型最优控制;二级倒立摆;MATLAB1 引言倒立摆系统是一个常用的、简单的、典型的可进行控制理论研究的实验平台,很多难以用常规实验研究的控制理论问题,都可以通过倒立摆系统来进行研究从而使这些抽象的控制理论问题,通过该系统可以直观的鲜明的显示出来。

所以倒立摆系统一直是控制领域的热点,并且在这些年来在不断的发展进步对控制理论的研究起到了重要作用。

倒立摆系统是一个典型的不稳定系统,具有多变量、强耦合、非线性等特点。

同时也是仿人类行走机器人和火箭发射飞行的过程调整和直升机飞行等实际运用控制对象的最简模型。

本文建立在牛顿力学定律的基础上,研究对象设置为二级倒立摆,对其进行数学建模,再使用二次型最优控制器(linear quadratic regulator,LQR)可以得到一个最优状态反馈的矩阵K,然后在通过对Q和R两个加权矩阵的严谨选取从而实现对二级倒立摆系统良好的自动控制。

2 二级倒立摆模型建立一个典型的二级倒立摆系统主要由机械部分和电气装置两部分组成。

机械装置的结构主要由小车、摆杆1、摆杆2及连接轴等组成,电气装置的主要结构是功率放大器、电动机、驱动电路、保护电路等。

其系统的结构如图1所示。

实验假设如下:(1)小车、摆杆1、摆杆2的材料性质都是刚体的。

(2)小车的驱动力和放大器的输出直接的,无滞后的作用于小车上。

(3)忽略实验中过程中出现的不可避免的各种摩擦力如库伦摩擦力等。

图1 二级倒立摆控制系统的结构二级倒立摆的参数设定如表1。

直线二级倒立摆系统MATLAB模型的建立与仿真

直线二级倒立摆系统MATLAB模型的建立与仿真

直线二级倒立摆系统模型的建立与仿真1 引言倒立摆是一个高阶次、非线性、快速、多变量、强藕合、不稳定的系统。

在控制理论发展过程中,倒立摆常常被做为典型的被控对象来验证某一理论的正确性,以及在实际应用中的可行性,通过对倒立摆引入一个适当的控制方法使之成为一个稳定系统,来检验控制方法对不稳定性、非线性和快速性系统的处理能力。

该控制方法在军工、航天、机器人等领域和一般工业过程中都有广泛应用。

本文主要讨论二级倒立摆系统模型的建立和仿真。

2二级倒立摆系统数学模型直线二级倒立摆系统是由直线运动模块和两级倒立摆组件组成。

主要包括导轨、小车和各级摆杆、编码器等元件。

由驱动电机给小车施加一个控制力,迫使小车在导轨上左右移动。

而小车的位移和各级摆杆角度由编码器测得。

倒立摆的控制目标是使倒立摆的摆杆能在有限长的导轨上快速的达到竖直向上的稳定状态,以实现系统的动态平衡,并且小车位移和摆杆角度的振荡幅度较小,系统具有一定的抗干扰能力。

系统简化后的直线二级倒立摆系统物理结构图如图2.1所示。

图1.二级倒立摆系统模型系统模型建立所用的各参数如下:应用Lagrange 方程建立的数学模型为012221221211121221222212212222cos (,)cos()cos cos()1121111121111m +m +m (m l +m L )cos m l H (m l +m L )cos J m l m L m l L m l m l L J m l θθθθθθθθθθ⎡⎤⎢⎥=++-⎢⎥⎢⎥-+⎣⎦.1011...1221212122.11222cos (,,,)0(0(112222222f m l +m L sin m l H f f m l L sin f m l L sin f f θθθθθθθθθθθθθ⎡⎤-•⎢⎥⎢⎥=--•+⎢⎥⎢⎥-•+-⎢⎥⎣⎦111()-)-) 312(,)h θθ= [0 11211()sin m l m L g θ+ 212sin m l g θ] T0h =[1 0 0]T()1121212121312022(,)(,,,),x x H H h h u θθθθθθθθθθθθ⎡⎤⎡⎤⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦3 倒立摆PID控制器系统PID控制是比例积分微分控制的简称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

倒立摆系统的建模及Matlab 仿真1.系统的物理模型考虑如图(1)所示的倒立摆系统。

图中,倒立摆安装在一个小车上。

这里仅考虑倒立摆在图面内运动的二维问题。

图(1)倒立摆系统假定倒立摆系统的参数如下。

摆杆的质量:m=摆杆的长度:l =1m 小车的质量: M=1kg 重力加速度:g=9.8m/2s 摆杆的质量在摆杆的中心。

设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量≤10%,调节时间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。

2.系统的数学模型建立倒置摆的运动方程并将其线性化。

为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。

设小车瞬时位置为z,摆心瞬时位置为(θsin l z +),在u 作用下,小车及摆均产生加速远动,根据牛顿第二定律,在水平直线远动方向的惯性力应与u 平衡,于是有u l z dtd m dt z d M =++)sin (2222θ 即: u ml ml z m M =-++θθθθsin cos )(2① 绕摆轴转动的惯性力矩与重力矩平衡,因而有θθθsin cos )sin (22mgl l l z dt d m =⋅⎥⎦⎤⎢⎣⎡+ 即: θθθθθθθsin cos sin cos cos 22g l l z =-+② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。

由于控制的目的是保持倒立摆直立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,则1cos ,sin ≈≈θθθ,且可忽略θθ2 项。

于是有 u ml z m M =++θ)( ③ θθg l z =+④ 联立求解可得u Ml Ml m M u MM mg z1)(1-+=+-=θθθ列写系统的状态空间表达式。

选取系统变量4321,,,x x x x , []Tx x x x x 4321,,,=则u Mlx Ml m M xx x u Mx M mg x x x 1)(134433221-+==+-==即[]Cxx x y Bu Ax u Ml M x Ml g m M Mmgz z dt d x ===+=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000110100)(0010000000011θθ 代入数据计算得到:[][]0,0001,1010,0110010000100001==-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=D C B A T3.设计控制器判断系统的能控性和稳定性[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==01101110100101101032B A BA AB BQ k ,rank(k Q )=4,故被控对象完全可控 由特征方程 0)11(22=-=-λλλA I 解得特征值为 0,0,11±。

出现大于零的特征值,故被控对象不稳定确定希望的极点希望的极点n=4,选其中一对为主导极点1s 和2s ,另一对为远极点,认为系统性能主要由主导极点决定,远极点只有微小影响。

根据二阶系统的关系式,先确定主导极点1.021≤=--ςπξσe p 可得59.0≥ξ,于是取6.0=ξ;取误差带02.0=∆有ns t ξω4=,则 1.67=n ω,闭环主导极点为22,11ξξω-±-=j s n =±,远极点选择使它和原点的距离大于主导极点与原点距离的5倍,取154,3-=s采用状态反馈方法使系统稳定并配置极点状态反馈的控制规律为kx u -=,[]321k k k k k =;状态反馈系统的状态方程为Bv x BK A x+-=)( ,其特征多项式为 0122033141010)11()()(k k k k k k BK A I ----+-+=--λλλλλ ⑤希望特征多项式为3692.49964.28632)8.01)(8.01()15(2342++++=++-++λλλλλλλj j ⑥比较以上两式系数,解得状态反馈矩阵[]92.8154.33492.499.36----=k4.设计全维观测器判断系统的能观性[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--==100001000010001)()(32C A C A C A CQ T T T g ,rank(g Q )=4,故被控对象完全可观 确定观测器的反馈增益全维观测器的动态方程为GCx Bv x GC A x++-= )(;其特征多项式为 )11()11()11()(312021304g g g g g g GC A I --+--+-++=--λλλλλ ⑦取观测器的希望极点为:-45,-45,-3+3j ,-3-3j ;则希望特征多项式为3465013770258396)8.01)(8.01()15(2342++++=++-++λλλλλλλj j ⑧比较以上两式系数,解得观测器反馈矩阵[]TG 6498414826259496--=5.降维状态观测器的设计建立倒置摆三维子系统动态方程设小车位移z 由输出传感器测量,因而无需估计,可以设计降维(三维)状态观测器,通过重新排列被控系统变量的次序,把需由降维状态观测器估计的状态变量与输出传感器测得的状态变量分离开。

将z 作为第四个状态变量,则被控系统的状态方程和输出方程变换为[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡z z y u z z z z dt d θθθθθθ 1000010100010011001000010 ⑨简记为:[]⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡211212122211211210x x I y y u b b x x A A A A x x式中[]T zx θθ =1,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=01110001011A ,[]T A 00012=,T b ]101[1-=y z x ==2,[]TA 00121=,21A =0,02=b ,11=I被控系统的n-q 维子系统动态方程的一般形式为v x A x+=1111 ,121x A z =' 式中u b u b y A v 1121=+=,z y u b y A yz ==--='222 z '为子系统输出量。

故倒置摆三维子系统动态方程为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡='⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡θθθθθθ zz u z zdt d 0011010110100010.判断子系统的可观测性A1=[0 -1 0;0 0 1;0 11 0];C1= [1 0 0];Qg1=obsv(A1,C1);r=rank(Qg1)运行Matlab 程序;结果为r=3,故该子系统可观测 降维状态观测器动态方程的一般形式为()()()[]y h xy A h A h A h A u b h b A h A +=-+-+-+-=ωωω122122*********式中h=[]Th h h 210。

考虑被控对象参数,单倒置摆降维观测器动态方程的一般形式为y h h h x y h h h h h h h h u h h h ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+---+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=2101120210120210111010111001ωωω确定三维状态观测器的反馈矩阵h三维状态观测器的特征多项式为()()()20120321111111h h h h A h A I --+--++=--λλλλ设希望的观测器闭环极点为-45,-3+3j ,-3-3j ,则希望特征多项式为()()()8102885133334523+++=-++++λλλλλλj j比较以上两式系数,解得h=[]1371-29951-故所求三维状态观测器的动态方程为y y x x y u ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=113712995100000100001000016663213878230210101113711029901511ωωω 仿真分析源程序通过Matlab 对用全维状态观测器实现状态反馈的倒置摆系统进行仿真分析,下面是文件名为的源程序%倒立摆系统建模分析%a)判断系统能控性和能观性 clear all ; clcA=[0 1 0 0;0 0 -1 0;0 0 0 1;0 0 11 0]; B=[0;1;0;-1]; C=[1 0 0 0]; D=0;Uc=ctrb(A,B);rc=rank(Uc);n=size(A); if rc==ndisp('The system is controlled.') elseif rc<ndisp('The system is uncontrolled.') endVo=obsv(A,C); ro=rank(Vo); if ro==ndisp('The system is observable.') elseif ro~=ndisp('The system is no observable.')end%b)判断系统稳定性P=poly(A),v=roots(P)Re=real(v);if(length(find(Re>0))~=0)disp('The system is unstable and the ubstable poles are:') v(find(Re>0))elsedisp('The system is stable!');end% c)极点配置与控制器-全维状态观测器设计与仿真pc=[-1+*j,*j,-15,-15];po=[-45 -45 -3+3*j -3-3*j];K=acker(A,B,pc),G=acker(A',C',po)'Gp=ss(A,B,C,D); %将受控过程创建为一个LTI对象disp('受控对象的传递函数模型:');H=tf(Gp)Af=A-B*K-G*C;disp('观测器——控制器模型:');Gc=ss(Af,-G,-K,0) %将观测器-控制器创建为一个LTI对象disp('观测器——控制器的极点:');f_poles=pole(Gc)GpGc=Gp*Gc; %控制器和对象串联disp('观测器——控制器与对象串联构成的闭环系统模型:');Gcl=feedback(GpGc,1,-1) %闭环系统disp('闭环系统的极点和零点:');c_poles=pole(Gcl)c_zeros=tzero(Gcl)lfg=dcgain(Gcl) %低频增益N=1/lfg % 归一化常数T=N*Gcl; %将N与闭环系统传递函数串联x0=[100 10 30 10 0 0 0 0];%初始条件向量t=[0::1]'; %时间列向量r=0*t; %零参考输入[y t x]=lsim(T,r,t,x0); %初始条件仿真plot(t,x(:,1:4),'-.',t,x(:,5:8)) %由初始条件引起的状态响应title('\bf状态响应')legend('x1','x2','x3','x4','x1hat','x2hat','x3hat','x4hat') figure(2)step(T)title('\bf阶跃响应')figure(3)impulse(T)title('\bf脉冲响应')程序运行结果The system is controlled.The system is observable.P =1 0 -11 0 0v =The system is unstable and the ubstable poles are: ans =K =G =962594-14826-64984受控对象的传递函数模型Transfer function:s^2 - s - 10-----------------------s^4 - 11 s^2观测器——控制器模型:a =x1 x2 x3 x4 x1 -96 1 0 0 x2 -2557x3 +004 0 0 1x4 +004b =u1x1 -96x2 -2594x3 +004x4 +004c =x1 x2 x3 x4y1d =u1y1 0Continuous-time model.观测器——控制器的极点:f_poles =+002 *+-观测器——控制器与对象串联构成的闭环系统模型:a =x1 x2 x3 x4 x5 x1 0 1 0 0 0 x2 0 0 -1 0x3 0 0 0 1 0 x4 0 0 11 0x5 96 0 0 0 -96 x6 2594 0 0 0 -2557 x7 +004 0 0 0 +004x8 +004 0 0 0 +004x6 x7 x8x1 0 0 0x2x3 0 0 0x4x5 1 0 0x6x7 0 0 1x8b =u1x1 0x2 0x3 0x4 0x5 -96x6 -2594x7 +004x8 +004c =x1 x2 x3 x4 x5 x6 x7 x8y1 1 0 0 0 0 0 0 0d =u1y1 0Continuous-time model.闭环系统的极点和零点: c_poles = + - + - c_zeros = lfg = N =由控制器——全维状态观测器实现的倒立摆系统在初始条件下引起的状态变量的响应、输出变量的阶跃响应和脉冲响应如下图图(2)状态响应()t x (虚线)和()t x(实线)。

相关文档
最新文档