倒立摆系统建模及MATLAB仿真

合集下载

倒立摆PID控制及MATLAB仿真

倒立摆PID控制及MATLAB仿真

摘要道理摆系统是一个典型的快速、多变量、非线性、不稳定系统,对倒立摆的控制研究无论在理论上和方法上都有深远的意义。

本论文以实验室原有的直线一级倒立摆实验装置为平台,重点研究其PID控制方法,设计出相应的PID控制器,并将控制过程在MATLAB上加以仿真。

本文主要研究内容是:首先概述自动控制的发展和倒立摆系统研究的现状;介绍倒立摆系统硬件组成,对单级倒立摆模型进行建模,并分析其稳定性;研究倒立摆系统的几种控制策略,分别设计了相应的控制器,以MATLAB为基础,做了大量的仿真研究,比较了各种控制方法的效果;借助固高科技MATLAB实时控制软件实验平台;利用设计的控制方法对单级倒立摆系统进行实时控制,通过在线调整参数和突加干扰等,研究其实时性和抗千扰等性能;对本论文进行总结,对下一步研究作一些展望。

关键词:一级倒立摆,PID,MATLAB仿真目录第1章自动控制概述 (1)1.1 自动控制概念 (1)1.1.1 开环控制 (1)1.1.2 闭环控制 (2)1.2 自动控制系统的分类 (2)1.2.1 恒值系统、随动系统和程序控制系统 (2)1.2.2 随机系统与自动调整系统 (3)1.2.3 线性系统和非线性系统 (3)1.2.4 连续系统与离散系统 (3)1.2.5 单输入单输出系统和多输入多输出系统 (3)1.2.6 集中参数系统和分布参数系统 (4)1.3 对控制系统的性能要求 (4)1.4 典型环节 (5)1.4.1 比例环节 (5)1.4.2 积分环节 (5)1.4.3 微分环节 (6)1.4.4 惯性环节 (6)1.4.5 时滞环节 (7)第2章 MATLAB仿真软件的应用 (9)2.1 MATLAB的基本介绍 (9)2.2 MATLAB的仿真 (9)2.3 控制系统的动态仿真 (10)2.4 小结 (12)第3章直线一级倒立摆系统及其数学模型 (13)3.1 系统组成 (13)3.1.1 倒立摆的组成 (14)3.1.2 电控箱 (14)3.1.3 其它部件图 (14)3.1.4 倒立摆特性 (15)3.2 模型的建立 (15)3.2.1 微分方程的推导 (16)3.2.2 传递函数 (17)3.2.3 状态空间结构方程 (18)3.2.4 实际系统模型 (20)3.2.5 采用MATLAB语句形式进行仿真 (21)第4章 PID控制理论 (23)4.1 PID控制概述 (23)4.2 PID的控制规律 (24)4.3 数字PID控制 (25)4.3.1 位置式PID控制算法 (26)4.3.2 增量式PID控制算法 (27)4.4 常用的PID控制系统 (27)4.4.1 串级PID控制 (27)4.4.2 纯滞后系统的大林控制算法 (28)4.4.3纯滞后系统的Smith控制算法 (29)4.4.4 PID控制原理的特点 (31)4.4.5 PID参数的调整 (31)4.4.6 PID控制回路的运行 (32)第5章直线一级倒立摆的PID控制器设计与调节 (34)5.1 PID控制器的设计 (34)5.2 PID控制器设计MATLAB仿真 (36)结论 (41)致谢...................................................................................................... 错误!未定义书签。

直线二级倒立摆建模与matlab仿真LQR

直线二级倒立摆建模与matlab仿真LQR

直线二级倒立摆建模与仿真1、直线二级倒立摆建模为进行性线控制器的设计,首先需要对被控制系统进行建模.二级倒立摆系统数学模型的建立基于以下假设:1)每一级摆杆都是刚体;2)在实验过程中同步带长保持不变;3)驱动力与放大器输入成正比,没有延迟直接拖加于小车;4)在实验过程中动摩擦、库仑摩擦等所有摩擦力足够小,可以忽略不计。

图1 二级摆物理模型二级倒立摆的参数定义如下:M 小车质量m1摆杆1的质量m2摆杆2的质量m3质量块的质量l1摆杆1到转动中心的距离l2摆杆2到转动中心的距离θ1摆杆1到转动与竖直方向的夹角θ2摆杆2到转动与竖直方向的夹角F 作用在系统上的外力利用拉格朗日方程推导运动学方程拉格朗日方程为:其中L 为拉格朗日算子,q 为系统的广义坐标,T 为系统的动能,V 为系统的势能其中错误!未找到引用源。

,错误!未找到引用源。

为系统在第i 个广义坐标上的外力,在二级倒立摆系统中,系统有三个广义坐标,分别为x,θ1,θ2,θ3。

首先计算系统的动能:其中错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

分别为小车的动能,摆杆1的动能,摆杆2的动能和质量块的动能。

小车的动能:错误!未找到引用源。

,其中错误!未找到引用源。

,错误!未找到引用源。

分别为摆杆1的平动动能和转动动能。

错误!未找到引用源。

,其中错误!未找到引用源。

,错误!未找到引用源。

分别为摆杆2的平动动能和转动动能。

对于系统,设以下变量: xpend1摆杆1质心横坐标 xpend2摆杆2质心横坐标 yangle1摆杆1质心纵坐标 yangle2摆杆2质心纵坐标 xmass 质量块质心横坐标 ymass 质量块质心纵坐标 又有:(,)(,)(,)L q q T q q V q q =-则有:系统总动能:系统总势能:则有:求解状态方程:可解得:使用MATLAB对得到的系统进行阶跃响应分析,执行命令:A=[0 0 0 1 0 0;0 0 0 0 1 0;0 0 0 0 1 01;0 0 0 0 0 0;0 86.69 -21.62 0 0 0;0 -40.31 39.45 0 0 0];B=[0;0;0;1;6.64;-0.808];C=[1 0 0 0 0 0;0 1 0 0 0 0;0 0 1 0 0 0];D=[0;0;0];sys=ss(A,B,C,D);t=0:0.001:5;step(sys,t)求取系统的单位阶跃响应曲线:图2 二级摆阶跃响应曲线由图示可知系统小车位置、摆杆1角度和摆杆2角度均发散,需要设计控制器以满足期望要求。

基于Matlab的一级倒立摆模型的仿真

基于Matlab的一级倒立摆模型的仿真

基于Matlab的一级倒立摆模型的仿真一.倒立摆模型的研究意义倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想的实验平台。

对倒立摆系统的研究能有效的反应控制中的典型问题:如非线性问题、鲁莽性问题、镇定问题等。

通过对倒立摆的控制,用来检测新的控制方法是否有较强的处理非线性和不稳定性问题的能力。

二.倒立摆模型的数学建模质量为m的小球固结于长度为L的细杆上(细杆质量不计),细杆和质量为M的小车铰链相接分析过程如下:如图所示,设细杆摆沿顺时针方向转东伟正方向,水平向右为水平方向上的正方向。

当细杆白顺时针想要运动时水平方向施加的里应该是水平相应。

对方程组进行拉普拉斯变化,得到摆杆角度和小车位移的传递函数:摆杆角度和小车加速度之间的传递函数:摆杆角度和小车加速度之间的传递函数:位移X对外力F的传递函数:三.在Matlab中输入得到的反馈矩阵:采用MATLAB/Simulink构造单级倒立摆状态反馈控制系统的仿真模型,如下图所示。

首先,在M A T L A B的Command Window中输入各个矩阵的值,并且在模型中的积分器中设置非零初值(这里我们设置为[0 0 0.1 0]。

然后运行仿真程序。

得到的仿真曲线从仿真结果可以看出,可以将倒立摆的杆子与竖直方向的偏角控制在θ=0(即小球和杆子被控制保持在竖直倒立状态),另外说明下黄线代表位移,紫线代表角度。

四.总结由实验中可知,倒立摆系统是一个非线性的较复杂的不稳定系统,故要满足故要满足稳定性要求,就得对系统进行线性化近似和稳定控制。

当然我们调节出来的只是一个理想模型,在实际中会更加复杂,稳定性也会更难获得。

在这次实验中掌握了倒立摆仿真的整个过程,熟悉了MATLAB仿真软件Simulingk的使用,也对系统有了更好的理解。

直线二级倒立摆系统MATLAB模型的建立与仿真

直线二级倒立摆系统MATLAB模型的建立与仿真

直线二级倒立摆系统模型的建立与仿真1 引言倒立摆是一个高阶次、非线性、快速、多变量、强藕合、不稳定的系统。

在控制理论发展过程中,倒立摆常常被做为典型的被控对象来验证某一理论的正确性,以及在实际应用中的可行性,通过对倒立摆引入一个适当的控制方法使之成为一个稳定系统,来检验控制方法对不稳定性、非线性和快速性系统的处理能力。

该控制方法在军工、航天、机器人等领域和一般工业过程中都有广泛应用。

本文主要讨论二级倒立摆系统模型的建立和仿真。

2二级倒立摆系统数学模型直线二级倒立摆系统是由直线运动模块和两级倒立摆组件组成。

主要包括导轨、小车和各级摆杆、编码器等元件。

由驱动电机给小车施加一个控制力,迫使小车在导轨上左右移动。

而小车的位移和各级摆杆角度由编码器测得。

倒立摆的控制目标是使倒立摆的摆杆能在有限长的导轨上快速的达到竖直向上的稳定状态,以实现系统的动态平衡,并且小车位移和摆杆角度的振荡幅度较小,系统具有一定的抗干扰能力。

系统简化后的直线二级倒立摆系统物理结构图如图2.1所示。

图1.二级倒立摆系统模型系统模型建立所用的各参数如下:应用Lagrange 方程建立的数学模型为012221221211121221222212212222cos (,)cos()cos cos()1121111121111m +m +m (m l +m L )cos m l H (m l +m L )cos J m l m L m l L m l m l L J m l θθθθθθθθθθ⎡⎤⎢⎥=++-⎢⎥⎢⎥-+⎣⎦.1011...1221212122.11222cos (,,,)0(0(112222222f m l +m L sin m l H f f m l L sin f m l L sin f f θθθθθθθθθθθθθ⎡⎤-•⎢⎥⎢⎥=--•+⎢⎥⎢⎥-•+-⎢⎥⎣⎦111()-)-) 312(,)h θθ= [0 11211()sin m l m L g θ+ 212sin m l g θ] T0h =[1 0 0]T()1121212121312022(,)(,,,),x x H H h h u θθθθθθθθθθθθ⎡⎤⎡⎤⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦3 倒立摆PID控制器系统PID控制是比例积分微分控制的简称。

二级倒立摆的建模与MATLAB仿真

二级倒立摆的建模与MATLAB仿真
假设系统中的每一根摆杆都是匀质刚体驱动力与放大器的输入成正比且无延迟地直接作用于小车上并且可以在忽略实验中的库仑摩擦和动摩擦的前提下设定摆杆竖直向上时下摆杆角位移摆杆角位移均为零摆杆顺时针旋转为正
二级倒立摆的建模与 MATLAB 仿真 刘文斌,等
二级倒立摆的建模与MATLAB仿真
刘文斌,干树川 (四川理工学院电子与信息工程系 四川自贡,643000)
取为最小值。设控制输入函数形式为: U(t)= -Kx(t) (11) 状态反馈矩阵: K = R -1B T P ( 12) 其中,P 可由 Riccati 微分方程: (13) 其中, 性能指标函数: (14)
[J].计算机测量与控制,2006,14(12):1641 - 1642 5 张 春,江 明,陈其工等.平行单级双倒立摆系统的建模与滑
模变结构控制[J].2008.1
23
图1 二级倒立摆模型
(1)
(2)
(3) 经过线性化如下: (4)
(上接第 7 页) 0; 0; 0; 0]; p=eig(A) [num,den]=ss2tf(A,B,C,D,1); printsys(num,den) Q=[1000 0 0 0 0 0; 0 0 0 0 0 0; 0 0 10 0 0 0; 0 0 0 0 0 0; 0 0 0 0 10 0; 0 0 0 0 0 0]; Tc=ctrb(A,B); rank(Tc) To=obsv(A,C); rank(To) R=1; K=lqr(A,B,Q,R); Ac=[(A-B*K)]; Bc=[B]; Cc=[C]; Dc=[D]; T=0:0.005:20; U=0.2*ones(size(T)); [Y,X]=lsim(Ac,Bc,Cc,Dc,U,T); plot(T,Y(:,1),':',T,Y(:,2),' -',T,Y(:,3),'

倒立摆PID控制及MATLAB仿真

倒立摆PID控制及MATLAB仿真

摘要倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,对倒立摆的控制研究无论在理论上和方法上都有深远的意义。

本论文以实验室原有的直线一级倒立摆实验装置为平台,重点研究其PID控制方法,设计出相应的PID控制器,并将控制过程在MATLAB上加以仿真。

本文主要研究内容是:首先概述自动控制的发展和倒立摆系统研究的现状;介绍倒立摆系统硬件组成,对单级倒立摆模型进行建模,并分析其稳定性;研究倒立摆系统的几种控制策略,分别设计了相应的控制器,以MATLAB为基础,做了大量的仿真研究,比较了各种控制方法的效果;借助固高科技MATLAB实时控制软件实验平台;利用设计的控制方法对单级倒立摆系统进行实时控制,通过在线调整参数和突加干扰等,研究其实时性和抗千扰等性能;对本论文进行总结,对下一步研究作一些展望。

关键词:一级倒立摆,PID,MATLAB仿真目录第1章自动控制概述 (1)1.1 自动控制概念 (1)1.1.1 开环控制 (1)1.1.2 闭环控制 (2)1.2 自动控制系统的分类 (2)1.2.1 恒值系统、随动系统和程序控制系统 (2)1.2.2 随机系统与自动调整系统 (3)1.2.3 线性系统和非线性系统 (3)1.2.4 连续系统与离散系统 (3)1.2.5 单输入单输出系统和多输入多输出系统 (3)1.2.6 集中参数系统和分布参数系统 (4)1.3 对控制系统的性能要求 (4)1.4 典型环节 (5)1.4.1 比例环节 (5)1.4.2 积分环节 (5)1.4.3 微分环节 (6)1.4.4 惯性环节 (6)1.4.5 时滞环节 (7)第2章 MATLAB仿真软件的应用 (9)2.1 MATLAB的基本介绍 (9)2.2 MATLAB的仿真 (9)2.3 控制系统的动态仿真 (10)2.4 小结 (12)第3章直线一级倒立摆系统及其数学模型 (13)3.1 系统组成 (13)3.1.1 倒立摆的组成 (14)3.1.2 电控箱 (14)3.1.3 其它部件图 (14)3.1.4 倒立摆特性 (15)3.2 模型的建立 (15)3.2.1 微分方程的推导 (16)3.2.2 传递函数 (17)3.2.3 状态空间结构方程 (18)3.2.4 实际系统模型 (20)3.2.5 采用MATLAB语句形式进行仿真 (21)第4章 PID控制理论 (23)4.1 PID控制概述 (23)4.2 PID的控制规律 (24)4.3 数字PID控制 (25)4.3.1 位置式PID控制算法 (26)4.3.2 增量式PID控制算法 (27)4.4 常用的PID控制系统 (27)4.4.1 串级PID控制 (27)4.4.2 纯滞后系统的大林控制算法 (28)4.4.3纯滞后系统的Smith控制算法 (29)4.4.4 PID控制原理的特点 (30)4.4.5 PID参数的调整 (31)4.4.6 PID控制回路的运行 (32)第5章直线一级倒立摆的PID控制器设计与调节 (33)5.1 PID控制器的设计 (33)5.2 PID控制器设计MATLAB仿真 (35)结论 (40)致谢.......................................................................................................................错误!未定义书签。

基于MATLAB的倒立摆系统控制系统设计与仿真【毕业作品】

基于MATLAB的倒立摆系统控制系统设计与仿真【毕业作品】

1 绪论1.1倒立摆系统简介倒立摆系统是一种很常见的又和人们的生活密切相关的系统,它深刻揭示了自然界一种基本规律,即自然不稳定的被控对象,通过控制手段可使之具有良好的稳定性。

倒立摆系统是一个非线性,强耦合,多变量和自然不稳定的系统。

它是由沿导轨运动的小车和通过转轴固定在小车上的摆杆组成的。

在导轨一端装有用来测量小车位移的电位计,摆体与小车之间由轴承连接,并在连接处安置电位器用来测量摆的角度。

小车可沿一笔直的有界轨道向左或向右运动,同时摆可在垂直平面内自由运动。

直流电机通过传送带拖动小车的运动,从而使倒立摆稳定竖立在垂直位置。

图1.1一级倒立摆装置简图由图1.1中可以看到,倒立摆装置由沿导轨运动的小车和通过转轴固定在小车上的摆体组成。

导轨的一端固定有位置传感器,通过与之共轴的轮盘转动可以测量出沿导轨由图中可以看到,倒立摆装置由沿导轨运动的小车和通过转轴固定在小车上的摆运动的小车位移;小车通过轴承连接摆体,并在小车与摆体的连接处固定有共轴角度传感器,用以测量摆体的角度信号;并通过微分电路得到相应的速度和角速度信号;导轨的另一端固定有直流永磁力矩电机,直流电机通过传送带驱动小车沿导轨运动,在小车沿导轨左右运动的过程中将力传送到摆杆以实现整个系统的平衡。

倒立摆的种类很多,有悬挂式倒立摆、平行式倒立摆、和球平衡式倒立摆;倒立摆的级数可以是一级,二级,乃至更多级。

控制方法也是多种,可以通过模糊控制,智能控制,PID控制,LQR控制等来实现倒立摆的动态平衡,本文介绍的是状态反馈极点配置方法来实现一级倒立摆的控制。

1.2倒立摆的控制规律当前,倒立摆的控制规律可总结如下:(1)状态反馈H控制[1],通过对倒立摆物理模型的分析,建立倒立摆的动力学模型,然后使用状态空间理论推导出状态方程和输出方程,应用状态反馈和Kalnian滤波相结合的方法,实现对倒立摆的控制。

(2)利用云模型[2-3]实现对倒立摆的控制,用云模型构成语言值,用语言值构成规则,形成一种定性的推理机制。

基于MATLAB的一级倒立摆控制系统仿真与设计

基于MATLAB的一级倒立摆控制系统仿真与设计

《控制系统分析与综合》任务书题目:基于MATLAB的一级倒立摆控制系统仿真分析与设计要求:对给定直线倒立摆系统模型,首先利用matlab对系统进行根轨迹、bode 图或能控性分析,然后根据控制系统设计指标进行相应控制器设计,在matlab 仿真环境下得到控制器参数,再将其写入实际倒立摆控制系统中,观察实际控制效果,进行控制参数的适当调整。

任务:1、超前校正控制器设计设计指标:调整时间t s=0.5s (2%) ;最大超调量δp≤10%设计步骤:先对传递函数模型进行根轨迹分析,讨论原系统的稳定性等,然后利用sisotool设计超前校正控制器,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。

2、滞后超前校正控制器设计设计指标:系统的静态位置误差常数为10,相位裕量为500,增益裕量等于或大于10 分贝。

设计步骤:先对传递函数模型进行bode图分析,讨论原系统的稳定性等,然后利用sisotool设计滞后超前校正控制器,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。

3、PID控制设计指标:调整时间t s尽量小;最大超调量δp≤10%设计步骤:先在matlab/simulink下构建PID仿真控制系统,依照PID参数整定原则进行系统校正,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。

4、状态空间极点配置控制设计指标:要求系统具有较短的调整时间(约3秒)和合适的阻尼(阻尼比ζ= 0.5-0.7)。

设计步骤:先对系统进行能控性分析,然后根据设计要求选择期望极点(考虑主导极点),编程求出反馈矩阵K,进行系统仿真。

仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。

设计报告要求:报告提供如下内容1 封面2 目录3 正文(1)任务书(2)分别对四个设计任务按照系统分析、控制器仿真设计、实际系统运行分析形成报告4 收获、体会5 参考文献格式要求:题目小三,宋体加粗目录、正文、小标题均为小四宋体,其中标题加粗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

倒立摆系统的建模及MATLAB仿真
通过建立倒立摆系统的数学模型,应用状态反馈控制配置系统极点设计倒立摆系统的控制器,实现其状态反馈,从而使倒立摆系统稳定工作。

之后通过MA TLAB 软件中Simulink工具对倒立摆的运动进行计算机仿真,仿真结果表明,所设计方法可使系统稳定工作并具有良好的动静态性能。

倒立摆系统是1个经典的快速、多变量、非线性、绝对不稳定系统,是用来检验某种控制理论或方法的典型方案。

倒立摆控制理论产生的方法和技术在半导体及精密仪器加工、机器人技术、导弹拦截控制系统和航空器对接控制技术等方面具有广阔的开发利用前景。

因此研究倒立摆系统具有重要的实践意义,一直受到国内外学者的广泛关注。

本文就一级倒立摆系统进行分析和研究,建立倒立摆系统的数学模型,采用状态反馈极点配置的方法设计控制器,并应用MA TLAB 软件进行仿真。

1 一级倒立摆系统的建模
1. 1 系统的物理模型
如图1 所示,在惯性参考系下,设小车的质量为M ,摆杆的质量为m ,摆杆长度为l ,在某一瞬间时刻摆角(即摆杆与竖直线的夹角)为θ,作用在小车上的水平控制力为f 。

这样,整个倒立摆系统就受到重力,水平控制力和摩擦力的3 外力的共同作用。

图1 一级倒立摆物理模型
1. 2 系统的数学模型
在系统数学模型中,本文首先假设:
(1) 摆杆为刚体。

(2)忽略摆杆与支点之间的摩擦。

(3)忽略小车与导轨之间的摩擦。

然后根据牛顿第二运动定律,求得系统的运动方程为:
方程(1) , (2) 是非线性方程,由于控制的目的是保持倒立摆直立,在施加合适的外力条件下,假定θ很小,接近于零是合理的。

则sinθ≈θ,co sθ≈1 。

在以上假设条件下,对方程线性化处理后,得倒立摆系统的数学模型:
1. 3 系统的状态方程
以摆角θ,角速度θ',小车的位移x ,速度x'为状态变量,输出为y 。

即令:
则一级倒立摆系统的状态方程为:
2 控制器设计及MATLAB 仿真
2. 1 极点配置状态反馈的基本原理
图2 状态反馈闭环控制系统
极点配置的方法就是通过一个适当的状态反馈增益矩阵的状态反馈方法,将闭环系统的极点配置到任意期望的位置。

考虑控制系统:x'= A x + B u (5) 其中x 是状态向量( n 维向量) , u 是控制信号(纯量) ,选取控制信号为:u = - Kx (6)
这样控制信号是由瞬时状态确定,此方法称为极点配置状态反馈法。

图2为具有u = - Kx 的闭环控制系统。

将式(6) 代入式(5) 得:Ûx ( t) = ( A - B K) x ( t) ,该方程的解为:
x ( t) = e( A - B K) t x (0)
式中x (0) 是外部干扰引起的初始状态。

系统的稳态响应和瞬态响应特性由矩阵A - B K 的特征决定。

如果矩阵K 选取适当, 则可使矩阵A - B K构成1 个渐近稳定矩阵,并且对所有的x (0) ≠0 ,当t 趋于无穷时,都可使x ( t) 趋于0 。

称矩阵A - B K的特征值为调节器极点。

如果这些调节器极点均位于s 的左半平面内,则当t 趋于无穷时, x ( t) 趋于0 。

将闭环极点配置到所期望的位置, 称为极点配置问题。

因而极点配置状态反馈控制器的设计最主要就是K 值的计算。

2. 2 极点配置状态反馈控制器的设计
一级倒立摆系统是一个不稳定的系统。

控制器的目的是使倒立摆系统动态稳定,即保持倒立摆在垂直的位置,使小车在外力作用下其位移以较小的误差跟随输入的变化。

由于系统的动态响应主要是由他的极点位置决定的,同时容易证明一级倒立摆系统是一个能控而且能观的系统。

因此本文通过极点配置状态反馈控制器来使系统保持稳定。

状态反馈控制方程为: f = - Kx =- [ K1 K2 K3 K4 ] x
闭环系统的方程为:x '= A x + B f = ( A - B K) x
选取所期望的闭环极点位置:μ1 ,μ2 ,μ3 ,μ4
根据如下MA TLAB 程序可求得状态反馈增益K(假设小车的质量为3 kg ,摆杆的质量为0. 1 kg ,摆杆的长度为0. 5 m) ,程序如下:
M = 3 ; m = 0. 1 ; l = 0. 5 ; g = 9. 81 ;
A21 = (M + m) / M/ l 3 g ;
A41 = - m/ M3 g ;
B21 = - 1/ M/ l ;
B41 = 1/ M;
A = [0 1 0 0 ;A21 0 0 0 ;0 0 0 1 ;A41 0 0 0 ] ;
B = [0 ;B21 ;0 ;B41 ] ;
C = [1 0 0 0 ;0 1 0 0 ;0 0 1 0 ;0 0 0 1 ] ;
D = 0 ;
M = [B A 3 B A^2 3 B A^3 3 B] ;
J = [μ1 0 0 0 ;0 μ2 0 0 ;0 0 μ3 0 ;0 0 0 μ4 ] ;
jj = poly(J ) ;
Phi = polyvalm(poly (J ) ,A) ;
K= [0 0 0 1 ] 3 (inv(M) ) 3 Phi ;
求得:
A = [0 1 0 0 ;20. 4048 0 0 0 ;0 0 0 1 ; - 0. 3924 0 0 0 ] ,B
= [0 ; - 0. 6667 ;0 ;0. 3333 ] ,C = [ 1 0 0 0 ;0 1 0 0 ;0 0 1
0 ;0 0 0 1 ] ,D = 0
2. 3 MA TLAB 仿真
MATLAB 软件是目前国际上最流行、应用最广泛的科学与工程计算软件,具有高级的数学分析和运算能力,可以如上编写MATLAB 程序计算倒立摆系统的状态反馈增益K;同时还具有强大的动态系统的分析和仿真能力[2 ] 。

以下是用MATLAB 软件中Simulink 工具箱来设计仿真一级倒立摆系统。

应用MA TLAB 中的Simulink 设计用极点配置控制的一级倒立摆系统的仿真模型如图3 所示。

图中State - Space 模块填入了上面程序计算所得的A , B , C, D 值。

然后用1 个Bus Selector 输出转角、角速度、位移和速度4 个量,之后用4 个Gain(分别输出参数K (1) K (2) K (3) K (4) ) 和1 个Sum 构成状态反馈,同时用示波器输出转角、角速度、位移和速度4 个量。

输出结果如图4 所示。

图3 用极点配置控制的一级倒立摆系统的仿真模型
上述状态反馈可以使处于任意初始状态的系统稳定在平衡状态,即所有的状态变量都可以稳定在零状态。

这就意味着即使在初始状态或因存在外界干扰时,摆杆稍有倾斜或小车偏离基准位置导轨中心,依靠该状态反馈控制也可以使摆杆垂直竖立,并使小车保持在基准位置。

相对平衡状态的偏移,得到迅速修正的程度要依赖于指定的特征根的位置。

一般来说,将指定的特征根配置在原点的左侧,离原点越远,控制动作就越迅速,但相应地需要更大的控制力和快速的灵敏度。


4a、图4b 分别是配置极点为: u1 = - 2 - j23 , u2 = - 2 + j2 3 , u3 = - 10 , u4 = - 10 和u1 = - 1- j 3 , u2 = - 1 + j 3 , u3 = - 10 , v4 = - 10 (其中u1 ,u2 是主导闭环极点) 一级倒立摆系统的仿真结果图:
图4 用极点配置控制的一级倒立摆系统的仿真结果
从图4a 和图4b 比较可知,配置极点离原点越远,虽然需要相对大的控制力,但是系统达到稳定的时间越短,即控制动作就越迅速,灵敏度高。

比较两图可知,配置极点为: u1 = - 2 - j2 3 ,u2 = - 2 + j2 3 , u3 = - 10 , u4 = - 10 的仿真图,倒立摆系统的动静态性能较好。

系统大约在2 s 内即可达到稳定,过渡过程时间较短,超调量也不大,各控制量的大小都比较合理。

3 结语
本文以倒立摆为研究对象,讨论了将极点配置在期望的区域内的状态反馈控制方法。

从仿真结果可以看出,该方法可以保证系统具有一定的动态和稳态性能,不仅满足闭环系统的内部动态特性要求, 也兼顾了抑制外部扰动对系统的影响。

由此可知, 极点配置控制方法可以实现摆杆的倒立平衡控制。

从本文的研究结果还可看出,倒立摆系统是研究各种控制理论的一个理想实验装置。

[参考文献]
[ l ] (美) Kat suhio Ogata 著1 现代控制工程. 卢伯英等译. 北京:电子工
业出版社,2000 .
[ 2 ] 唐新宇. 倒摆问题的研究及控制器设计. 微计算机信息, 2003 ,l9 .。

相关文档
最新文档