倒立摆仿真报告

合集下载

倒立摆仿真实验报告(连续、离散)

倒立摆仿真实验报告(连续、离散)

倒立摆仿真实验报告倒立摆是一个非线性、不稳定的系统,是经常作为研究比较不同控制方法的典型例子。

有许多抽象的控制概念,如控制系统的稳定性、可控性、系统抗干扰能力等,都可以通过倒立摆系统直观地表现出来,倒立摆系统的高阶次,不稳定,多变量,非线性和强耦合等特性,使得许多现代控制理论的研究人员一直将它视为研究对象。

倒立摆系统具有3个特性,即:不确定性,耦合性,开环不稳定性。

直线型倒立摆系统,是由沿直线导轨运动的小车以及一端固定于小车上的匀质长杆组成的系统,小车可以通过传动装置由交流伺服电机驱动,小车导轨一般有固定的行程,因而小车的运动范围是受到限制的。

一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示M :小车质量;x :小车位置;m :摆杆质量J :摆杆惯量;F :加在小车上的力;l :摆杆转动轴心到杆质心的长度;θ:摆杆与垂直向上方向的夹角。

图1 倒立摆示意图倒立摆的数学模型为πθθπθθθθ180cos )3/4(]sin )180/([cos sin 22⨯-+-=l m ml l m f mg p p 我们可以实时量测角度θ(◦),并计算出角速度θ (◦/s ),控制的任务是产生合适的作用力f,以使倒立摆保持直立状态。

一 连续模糊控制器1、论域的正规化首先设定 15=m θ,s m/60 =θ,N F m 10=,将θ,θ ,f 的实际值分别除以m θ,mθ ,m F ,并加以1±限幅后,得到正规化的输入输出变量:其中]1,1[,,-∈z y x 2、定义模糊几何及其隶属函数对正规化的输入输出变量x,y,z 各定义五个模糊集合:NL ,NS ,Z ,PS ,PL ,分别用51~A A ,21~B B ,21~C C 来代表,x,y,z 三个变量的模糊集合的隶属函数均是对称,均匀分布,全交迭的三角形,如图2所示。

图2 变量的隶属函数 3、设计模糊控制规则集x 和y 各有五个模糊集合,所以最多有2552=条规则,根据经验只用11条规则即可,如表1所示。

合肥工业大学自动控制理论综合实验倒立摆实验报告

合肥工业大学自动控制理论综合实验倒立摆实验报告

合肥工业大学自动控制理论综合实验倒立摆实验报告————————————————————————————————作者: ————————————————————————————————日期:1、把上述参数代入,求解系统的实际模型;a)摆杆角度和小车位移之间的传递函数;M=1.096;m=0.109;b=0.1;l=0.25;I=0.0034;g=9.8;n1=[m*l 00];d1=[I+m*l^20-m*g*l];Phi1=tf(n1,d1)返回:Transfer function:0.02725 s^2--------------------0.01021 s^2- 0.2671b)摆杆角度和小车加速度之间的传递函数;继续输入:n2=[m*l];d2=d1; Phi2=tf(n2,d2)返回:Transfer function:0.02725--------------------0.01021 s^2 - 0.2671c)摆杆角度和小车所受外界作用力的传递函数;继续输入:q=(M+m)*(I+m*l^2)-(m*l)^2;n3=[m*l/q 0 0];d3=[1 b*(I+m*l^2)/q -(M+m)*m*g*l/q -b*m*g*l/q 0];Phi3=tf(n3,d3)返回:Transfer function:2.357 s^2---------------------------------------s^4+ 0.08832 s^3 - 27.83 s^2 - 2.309 sd)以外界作用力作为输入的系统状态方程;继续输入:q2=(I*(M+m)+M*m*l^2);A1=[0 1 0 0;0-(I+m*l^2)*b/q2m^2*g*l^2/q2 0;0 001;0 -m*l*b/q2m*g*l*(M+m)/q20];B1=[0;(I+m*l^2)/q2;0;m*l/q2];C1=[1 0 0 0;0 0 1 0];D1=[0;0];sys1=ss(A1,B1,C1,D1)返回:a =x1 x2 x3 x4x1 0 1 0 0x2 0-0.08832 0.6293 0x3 0 00 1x4 0-0.2357 27.830b=u1x1 0x2 0.8832x3 0x4 2.357c =x1 x2 x3 x4y1 1 0 0 0y2 0 0 1 0d =u1y1 0y2 0e)以小车加速度作为输入的系统状态方程;继续输入:A2=[0 1 0 0;0 0 00;0 0 0 1;0 0 3/(4*l)0];B2=[0;1;0;3/(4*l)];C2=C1;D2=D1;sys2=ss(A2,B2,C2,D2)返回:a=x1 x2x3 x4x10 100x2 00 0 0x300 0 1x400 3 0b =u1x1 0x2 1x3 0x43c=x1 x2 x3x4y110 00y200 1 0d=u1y10y2 02、根据倒立摆系统数学模型(以小车的加速度为输入的模型,即sys2),判断开环系统的稳定性、可控性和可观性;稳定性:继续输入:eig(A2)返回:ans =1.7321-1.7321有一个位于正实轴的根和两个位于原点的根,表明系统是不稳定的。

倒立摆实验报告(现代控制理论)

倒立摆实验报告(现代控制理论)

现代控制理论实验报告——倒立摆小组成员:指导老师:2013.5实验一建立一级倒立摆的数学模型一、实验目的学习建立一级倒立摆系统的数学模型,并进行Matlab仿真。

二、实验内容写出系统传递函数和状态空间方程,用Matlab进行仿真。

三、Matlab源程序及程序运行的结果(1)Matlab源程序见附页(2)给出系统的传递函数和状态方程(a)传递函数gs为摆杆的角度:>> gsTransfer function:2.054 s-----------------------------------s^3 + 0.07391 s^2 - 29.23 s - 2.013(b)传递函数gspo为小车的位移传递函数:>> gspoTransfer function:0.7391 s^2 - 20.13---------------------------------------s^4 + 0.07391 s^3 - 29.23 s^2 - 2.013 s(c)状态矩阵A,B,C,D:>> sysa =x1 x2 x3 x4x1 0 1 0 0x2 0 -0.07391 0.7175 0x3 0 0 0 1x4 0 -0.2054 29.23 0b =u1x1 0x2 0.7391x3 0x4 2.054c =x1 x2 x3 x4y1 1 0 0 0y2 0 0 1 0d =u1y1 0y2 0Continuous-time model.(3)给出传递函数极点和系统状态矩阵A的特征值(a)传递函数gs的极点>> PP =5.4042-5.4093-0.0689(b)传递函数gspo的极点>> PoPo =5.4042-5.4093-0.0689(c)状态矩阵A的特征值>> EE =-0.06895.4042-5.4093(4)给出系统开环脉冲响应和阶跃响应的曲线(a)开环脉冲响应曲线(b)阶跃响应曲线四、思考题(1)由状态空间方程转化为传递函数,是否与直接计算传递函数相等?答:由状态空间方程转化为传递函数:>> gso=tf(sys)Transfer function from input to output...0.7391 s^2 - 6.565e-016 s - 20.13#1: ---------------------------------------s^4 + 0.07391 s^3 - 29.23 s^2 - 2.013 s2.054 s + 4.587e-016#2: -----------------------------------s^3 + 0.07391 s^2 - 29.23 s - 2.013#1为gspo传递函数,#2为gs的传递函数而直接得到的传递函数为:>> gspoTransfer function:0.7391 s^2 - 20.13---------------------------------------s^4 + 0.07391 s^3 - 29.23 s^2 - 2.013 s>> gsTransfer function:2.054 s-----------------------------------s^3 + 0.07391 s^2 - 29.23 s - 2.013通过比较可以看到,gspo由状态空间方程转化的传递函数比直接得到的传递函数多了s的一次项,而6.565e-016非常小几乎可以忽略不计,因此可以认为两种方法得到的传递函数式相同的,同理传递函数gs也可以认为是相同的。

(完整)倒立摆实验报告

(完整)倒立摆实验报告

专业实验报告摆杆受力和力矩分析θmg VH θX V X H图2 摆杆系统摆杆水平方向受力为:H 摆杆竖直方向受力为:V 由摆杆力矩平衡得方程:cos sin Hl Vl I φφθθπφθφ⎧-=⎪=-⎨⎪=-⎩(1) 代入V 、H ,得到摆杆运动方程。

当0φ→时,cos 1θ=,sin φθ=-,线性化运动方程:2()I ml mgl mlx θθ+-=1.2 传递函数模型以小车加速度为输入、摆杆角度为输出,令,进行拉普拉斯变换得到传递函数:22()()mlG s ml I s mgl=+- (2) 倒立摆系统参数值:M=1.096 % 小车质量 ,kg m=0.109 % 摆杆质量 ,kg0.1β= % 小车摩擦系数g=9.8 % 重力加速度,l=0.25 % 摆杆转动轴心到杆质心的长度,m I= 0.0034 % 摆杆转动惯量,以小车加速度为输入、摆杆角度为输出时,倒立摆系统的传递函数模型为:20.02725()0.01021250.26705G s s =- (3) 1.3 倒立摆系统状态空间模型以小车加速度为输入,摆杆角度、小车位移为输出,选取状态变量:(,,,)x x x θθ= (4)由2()I ml mgl mlx θθ+-=得出状态空间模型001001000000001330044x x x x x g g lμθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦(5) μθθθ'⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001 xx x y (6) 由倒立摆的参数计算出其状态空间模型表达式:(7)010000001000100029.403x x x x x μθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦(8)00x μθθ⎤⎥⎡⎤⎥'+⎢⎥⎥⎣⎦⎥⎥⎦作用)增大,系统响应快,对提高稳态精度有益,但过大易作用)对改善动态性能和抑制超调有利,但过强,即校正装Ax B Cx μ+= 1n x ⎥⎥⎥⎦,1n x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,1111n n nn a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ , 1n B b ⎥⎥⎥⎦,]n C c =。

一阶直线倒立摆双闭环PID控制仿真报告

一阶直线倒立摆双闭环PID控制仿真报告

目录摘要 (2)一、一阶倒立摆系统建模 (3)1、对象模型 (3)2、电动机、驱动器及机械传动装置的模型 (4)二、双闭环PID控制器设计 (5)1、仿真验证 (6)2、内环控制器的设计 (9)3、系统外环控制器设计 (12)三、仿真实验 (15)1、绘图子程序 (15)2、仿真结果 (16)四、结论 (18)摘要本报告旨在借助Matlab 仿真软件,设计基于双闭环PID 控制的一阶倒立摆控制系统。

在如图0.1所示的“一阶倒立摆控制系统”中,通过检测小车的位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC )完成。

图0.1 一阶倒立摆控制系统分析工作原理,可以得出一阶倒立摆系统原理方框图:图0.2 一阶倒立摆控制系统动态结构图本报告将借助于“Simulink 封装技术——子系统”,在模型验证的基础上,采用双闭环PID 控制方案,实现倒立摆位置伺服控制的数字仿真实验。

一、一阶倒立摆系统建模1、对象模型如图1.1所示,设小车的质量为m 0,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向的力为F ,O 1为摆角质心。

θxyOFF xF x F yF yllxO 1图1.1 一阶倒立摆的物理模型根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其中心的转动方程为θθθcos sin y l F l F J x-= (1-1) 2)摆杆重心的水平运动可描述为)sin (22x θl x dtd m F += (1-2)3)摆杆重心在垂直方向上的运动可描述为)cos (22y θl dtd m mg F =- (1-3)4)小车水平方向上的运动可描述为220dtxd m F F x =- (1-4)由式(1-2)和式(1-4)得F ml x m m =⋅-⋅++)sin (cos )(20θθθθ (1-5) 由式(1-1)、(式1-2)和式(1-3)得θθθsin g cos 2ml x ml ml J =⋅++ )( (1-6) 整理式(1-5)和式(1-6),得⎪⎪⎩⎪⎪⎨⎧++-+-⋅+⋅=-++-⋅+++=))((cos sin )(cos sin cos cos ))((cos sin sin )()(x 2022202222220222222m l J m m l m m l m m l m F m l l m m m m l J g l m m l J lm F m l J θθθθθθθθθθθθ(1-7) 以上式1-7为一阶倒立摆精确模型。

倒立摆实验报告西工大版

倒立摆实验报告西工大版

计算机仿真与倒立摆实验报告⒈问题说明设有一个在平面上运动的安装在马达传动车上的单级倒立摆系统,如图1-1所示。

图1-1 单级倒立摆模型示意图图中z为小车相对参考系的线位移,θ为倒立摆偏离垂直位置的角位置,l为摆杆长度,m为摆质量,M为小车质量,u为施加给小车的控制力,G为摆的质量,G mg=。

为了简化问题并保留问题实质,忽略摆杆质量、小车马达的惯量、摆轴、车轮轴、车轮与接触面之间的摩擦、风力等因素。

⒉模型建立2.1运动方程的建立及线性化设小车的位移为z,则摆心位置为(sin)z lθ+。

小车及摆在控制力u作用下均产生加速度运动,根据牛顿第二运动定律,它们在水平直线运动方向的惯性力应与控制力平衡,于是有2222(sin )d z d Mmz l u dtdtθ++=即2()cos sin M m z m l m l u θθθθ++- = 摆绕摆轴旋转运动的惯性力矩应与重力矩平衡,于是有22[(sin )]cos sin d mz l l mgl dtθθθ+=即22cos cos sin cos sin z l l g θθθθθθθ+- = 以上两个方程都是非线性方程,除了可用数值方法求解以外,不能求得解析解,因此须作进一步简化。

由于控制目的在与保持倒立摆直立,只要施加的控制力合适,作出θ和.θ接近于零的假定将是正确的。

于是可认为:sin θθ≈,cos 1θ≈,且忽略.2θθ 项,于是有()M m z ml u z l g θθθ++= +=联立求解上述两个方程可得11()12d m g zu dt MMd M m g u dt M l M lθθθ=-++=- 第式第式由第1式求出θ,与第2式联立可得如下四阶标量微分方程: (4)()1M m gg zz uu M lMM l+-=-2.2 传递函数的建立在只控制摆杆的角度θ,而不控制滑块的位移z 的情况下,以控制力u 为输入量,摆杆的角度θ为输出量构成一个单输入—单输出系统。

直线一级倒立摆MATLAB仿真报告

直线一级倒立摆MATLAB仿真报告

1便携式倒立摆实验简介倒立摆装置被公认为是自动控制理论中的典型试验设备,是控制理论教学和科研中不可多得的典型物理模型。

本实验基于便携式直线一级倒立摆试验系统研究其稳摆控制原理。

1.1主要实验设备及仪器便携式直线一级倒立摆实验箱一套控制计算机一台便携式直线一级倒立摆实验软件一套1.2便携式倒立摆系统结构及工作原理便携式直线一级倒立摆试验系统总体结构如图1所示:图1 便携式一级倒立摆试验系统总体结构图主体结构包括摆杆、小车、便携支架、导轨、直流伺服电机等。

主体、驱动器、电源和数据采集卡都置于实验箱内,实验箱通过一条USB数据线与上位机进行数据交换,另有一条线接220v交流电源。

便携式直线一级倒立摆的工作原理如图2所示:图2 便携式一级倒立摆工作原理图数据采集卡采集到旋转编码器数据和电机尾部编码器数据,旋转编码器与摆杆同轴,电机与小车通过皮带连接,所以通过计算就可以得到摆杆的角位移以及小车位移,角位移差分得角速度,位移差分可得速度,然后根据自动控制中的各种理论转化的算法计算出控制量。

控制量由计算机通过USB数据线下发给伺服驱动器,由驱动器实现对电机控制,电机尾部编码器连接到驱动器形成闭环,从而可以实现摆杆直立不倒以及自摆起。

2便携式倒立摆控制原理方框图便携式倒立摆是具有反馈功能的闭环系统,其控制目标是实现在静态和动态下的稳摆。

当输入量为理想摆角,即∅∅=0时,偏差为0,控制器不工作;当输入量不为理想摆角时,偏差存在,控制器做出决策,驱动电机,使小车摆杆系统发生相应位移,输出的摆角通过角位移传感器作用于输出量,达到减小偏差的目的。

根据控制原理绘制出控制方框图如图3所示:图3 便携式一级倒立摆控制原理方框图3建立小车-摆杆数学模型便携式倒立摆系统主要由小车、摆杆等组成,它们之间自由连接。

小车可以在导轨上自由移动,摆杆可以在铅垂的平面内自由地摆动。

在忽略了空气阻力和各种摩擦之后,可将便携式倒立摆系统抽象成小车和匀质杆组成的刚体系统,在惯性坐标内应用经典力学理论建立系统的动力学方程,采用力学分析方法建立小车-摆杆的数学模型。

倒立摆实验报告

倒立摆实验报告
三、(固高)实物控制实验验证
本次实验使用的倒立摆系统是固高公司生产的直线一级倒立摆实验系统。厂商已经将实际倒立摆系统与MATLAB之间进行了链接,这使得我们可以在MATLAB环境中进行控制器参数的设定,然后将MATLAB程序下载到硬件实时内核中进行实时控制。因此,实验的主要工作是在MATLAB的SIMULINK环境下进行的。由于倒立摆实验系统中的计算机已经安装固高公司的MATLAB工具箱,因此倒立摆实验室计算机中的SIMULINK环境比一般SIMULINK环境多了一个工具箱“Googol Education Products”,如下图所示
本实验LQR控制的SIMULINK模型如下:
通过选取不同的Q、R阵可得出以下仿真波形图:
1) 时,K=[-70.7107 -37.8344 105.5295 20.9238],阶跃响应波形如下
2) 时,K=[-100.000 -51.4535 136.0814 27.0435],阶跃响应波形如下
3) 时,K =[-89.4427 -46.5479 128.4999 23.6271],阶跃响应波形如下
step(A, B ,C ,D)
单位阶跃响应下,小车位置和摆杆角度均发散,因此需要加入控制环节来改善系统特性。
二、控制器设计改善系统性能
1.PID控制器设计
PID控制是最早发展起来的线性控制策略之一,至今已有半个多世纪的历史,在工程实践领域运用十分广泛。PID控制由比例(Proportional)环节、积分(Integral)环节和微分(Differential)环节组成,其典型结构图下图所示:
1)传递函数阶跃响应曲线、开环波特图、零极点
num=[2.356550];
den=[10.0883167-27.9169-2.30942];

直线一级倒立摆MATLAB仿真报告

直线一级倒立摆MATLAB仿真报告

1便携式倒立摆实验简介倒立摆装置被公认为是自动控制理论中的典型试验设备,是控制理论教学和科研中不可多得的典型物理模型。

本实验基于便携式直线一级倒立摆试验系统研究其稳摆控制原理。

1.1主要实验设备及仪器便携式直线一级倒立摆实验箱一套控制计算机一台便携式直线一级倒立摆实验软件一套1.2便携式倒立摆系统结构及工作原理便携式直线一级倒立摆试验系统总体结构如图1所示:图1便携式一级倒立摆试验系统总体结构图主体结构包括摆杆、小车、便携支架、导轨、直流伺服电机等。

主体、驱动器、电源和数据采集卡都置于实验箱内,实验箱通过一条USB数据线与上位机进行数据交换,另有一条线接220v交流电源。

便携式直线一级倒立摆的工作原理如图2所示:图2 便携式一级倒立摆工作原理图数据采集卡采集到旋转编码器数据和电机尾部编码器数据,旋转编码器与摆杆同轴,电机与小车通过皮带连接,所以通过计算就可以得到摆杆的角位移以及小车位移,角位移差分得角速度,位移差分可得速度,然后根据自动控制中的各种理论转化的算法计算出控制量。

控制量由计算机通过USB数据线下发给伺服驱动器,由驱动器实现对电机控制,电机尾部编码器连接到驱动器形成闭环,从而可以实现摆杆直立不倒以及自摆起。

2便携式倒立摆控制原理方框图便携式倒立摆是具有反馈功能的闭环系统,其控制目标是实现在静态和动态下的稳摆。

∅g=0当输入量为理想摆角,即时,偏差为0,控制器不工作;当输入量不为理想摆角时,偏差存在,控制器做出决策,驱动电机,使小车摆杆系统发生相应位移,输出的摆角通过角位移传感器作用于输出量,达到减小偏差的目的。

根据控制原理绘制出控制方框图如图3所示:图3 便携式一级倒立摆控制原理方框图3建立小车-摆杆数学模型便携式倒立摆系统主要由小车、摆杆等组成,它们之间自由连接。

小车可以在导轨上自由移动,摆杆可以在铅垂的平面内自由地摆动。

在忽略了空气阻力和各种摩擦之后,可将便携式倒立摆系统抽象成小车和匀质杆组成的刚体系统,在惯性坐标内应用经典力学理论建立系统的动力学方程,采用力学分析方法建立小车-摆杆的数学模型。

倒立摆实验报告

倒立摆实验报告

一、实验内容1、完成Matlab Simulink 环境下的电机控制实验。

2、完成直线一级倒立摆的建模、仿真、分析。

3、理解并掌握PID控制的的原理和方法,并应用与直线一级倒立摆4、主要完成状态空间极点配置控制实验、LQR控制实验、LQR控制(能量自摆起)实验、直线二级倒立摆Simulink的实时控制实验。

二、实验设备1、计算机。

2、电控箱,包括交流伺服机驱动器、运动控制卡的接口板、直流电源等。

3、倒立摆本体,包括一级倒立摆,二级倒立摆。

三、倒立摆实验介绍倒立摆是一个典型的不稳定系统,同时又具有多变量、非线性、强耦合的特性,是自动控制理论中的典型被控对象。

它深刻揭示了自然界一种基本规律,即一个自然不稳定的被控对象,运用控制手段可使之具有一定的稳定性和良好的性能。

许多抽象的控制概念如控制系统的稳定性、可控性、系统收敛速度和系统抗干扰能力等,都可以通过倒立摆系统直观的表现出来。

(1)被控对象倒立摆的被控对象为摆杆和小车。

摆杆通过铰链连接在小车上,并可以围绕连接轴自由旋转。

通过给小车施加适当的力可以将摆杆直立起来并保持稳定的状态。

(2)传感器倒立摆系统中的传感器为光电编码盘。

旋转编码器是一种角位移传感器,它分为光电式、接触式和电磁感应式三种,本系统用到的就是光电式增量编码器。

(3)执行机构倒立摆系统的执行机构为松下伺服电机和与之连接的皮带轮。

电机的转矩和速度通过皮带轮传送到小车上,从而带动小车的运动。

电机的驱动由与其配套的伺服驱动器提供。

光电码盘1将小车的位移、速度信号反馈给伺服驱动器和运动控制卡,而光电码盘2 将摆杆的位置、速度信号反馈回控制卡。

计算机从运动控制卡中读取实时数据,确定控制决策(小车向哪个方向移动、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,带动小车运动,保持摆杆平衡。

图1 直线倒立摆系统总体结构图四、实验步骤4.1 状态空间极点配置控制实验极点配置法通过设计状态反馈控制器将多变量系统的闭环系统极点配置在期望的位置上,从而使系统满足瞬态和稳态性能指标。

(完整版)倒立摆实验报告

(完整版)倒立摆实验报告

机械综合设计与创新实验(实验项目一)二自由度平面机械臂三级倒立摆班级:姓名:学号:指导教师:时间:综述倒立摆装置是机器人技术、控制理论、计算机控制等多个领域、多种技术的有结合,被公认为自动控制理论中的典型实验设备,也是控制理论教学和科研中不可多得的典型物理模型。

倒立摆的典型性在于:作为实验装置,它本身具有成本低廉、结构简单、便于模拟、形象直观的特点;作为被控对象,它是一个高阶次、不稳定、多变量、非线性、强耦合的复杂被控系统,可以有效地反映出控制中的许多问题;作为检测模型,该系统的特点与机器人、飞行器、起重机稳钩装置等的控制有很大的相似性[1]。

倒立摆系统深刻揭示了自然界一种基本规律,即一个自然不稳定的被控对象,运用控制手段可使之具有良好的稳定性。

通过对倒立摆系统的研究,不仅可以解决控制中的理论问题,还能将控制理论所涉及的三个基础学科,即力学、数学和电学(含计算机)有机的结合起来,在倒立摆系统中进行综合应用。

在多种控制理论与方法的研究和应用中,特别是在工程实践中,也存在一种可行性的试验问题,将其理论和方法得到有效的经验,倒立摆为此提供一个从控制理论通往实践的桥梁[2]。

因此对倒立摆的研究具有重要的工程背景和实际意义。

从驱动方式上看,倒立摆模型大致可分为直线倒立摆模型、旋转倒立摆模型和平面倒立摆模型。

对于每种模型,从摆杆的级数上又可细分为一级倒立摆、二级倒立摆和多级倒立摆[3]。

目前,国内针对倒立摆的研究主要集中在运用倒立摆系统进行控制方法的研究与验证,特别是针对利用倒立摆系统进行针对于非线性系统的控制方法及理论的研究。

而倒立摆系统与工程实践的结合主要体现在欠驱动机构控制方法的验证之中。

此外,倒立摆作为一个典型的非线性动力系统,也被用于研究各类非线性动力学问题。

在倒立摆系统中成功运用的控制方法主要有线性控制方法,预测控制方法及智能控制方法三大类。

其中,线性控制方法包括PID控制、状态反馈控和LQR 控制等;预测控制方法包括预测控制、分阶段起摆、变结构控制和自适应神经模糊推理系统等,也有文献将这些控制方法归类为非线性控制方法;智能控制方法主要包括神经网络控制、模糊控制、遗传算法、拟人智能控制、云模型控制和泛逻辑控制法等。

(完整版)倒立摆实验报告(PID控制)

(完整版)倒立摆实验报告(PID控制)

专业实验报告3. 实验装置直线单级倒立摆控制系统硬件结构框图如图1所示,包括计算机、I/O设备、伺服系统、倒立摆本体和光电码盘反馈测量元件等几大部分,组成了一个闭环系统。

图1 一级倒立摆实验硬件结构图对于倒立摆本体而言,可以根据光电码盘的反馈通过换算获得小车的位移,小车的速度信号可以通过差分法得到。

摆杆的角度由光电码盘检测并直接反馈到I/O设备,速度信号可以通过差分法得到。

计算机从I/O设备中实时读取数据,确定控制策略(实际上是电机的输出力矩),并发送给I/O设备,I/O设备产生相应的控制量,交与伺服驱动器处理,然后使电机转动,带动小车运动,保持摆杆平衡。

图2是一个典型的倒立摆装置。

铝制小车由6V的直流电机通过齿轮和齿条机构来驱动。

小车可以沿不锈钢导轨做往复运动。

小车位移通过一个额外的与电机齿轮啮合的齿轮测得。

小车上面通过轴关节安装一个摆杆,摆杆可以绕轴做旋转运动。

系统的参数可以改变以使用户能够研究运动特性变化的影响,同时结合系统详尽的参数说明和建模过程,我们能够方便地设计自己的控制系统。

图2 一级倒立摆实验装置图上面的倒立摆控制系统的主体包括摆杆、小车、便携支架、导轨、直流伺服电机等。

主图7 直线一级倒立摆PD控制仿真结果图从上图可以看出,系统在1.5秒后达到平衡,但是存在一定的稳态误差。

为消除稳态误差,我们增加积分参数Ki,令Kp=40,Ki=60,Kd=2,得到以下仿真结果:图8 直线一级倒立摆PID控制仿真结果图从上面仿真结果可以看出,系统可以较好的稳定,但由于积分因素的影响,稳定时间明显增大。

双击“Scope1”,得到小车的位置输出曲线为:图9 施加PID控制器后小车位置输出曲线图由于PID 控制器为单输入单输出系统,所以只能控制摆杆的角度,并不能控制小车的位置,所以小车会往一个方向运动,PID控制分析中的最后一段,若是想控制电机的位置,使得倒立摆系统稳定在固定位置附近,那么还需要设计位置PID闭环。

倒立摆实验报告建筑起重机械稳定性分析

倒立摆实验报告建筑起重机械稳定性分析

建筑起重机械稳定性分析——倒立摆实验报告一、引言随着我国经济的快速发展,建筑行业取得了举世瞩目的成就。

在高层建筑、大型基础设施等项目中,起重机械发挥着举足轻重的作用。

然而,起重机械在施工现场的安全事故时有发生,其中稳定性问题尤为突出。

为了提高起重机械的稳定性,降低事故风险,本文以倒立摆实验为研究对象,分析建筑起重机械的稳定性问题,并提出相应的改进措施。

二、实验原理与方法1.实验原理倒立摆实验是一种研究物体在重力作用下保持稳定的实验方法。

在本实验中,将起重机械简化为倒立摆模型,通过改变摆长、摆重等参数,研究起重机械在受到外部扰动时的稳定性。

2.实验方法(1)搭建实验装置:采用一根细杆作为摆杆,一端固定,另一端悬挂重物,模拟起重机械的吊臂和吊重。

(2)测量摆长:通过测量摆杆长度,确定摆长参数。

(3)施加外部扰动:在摆杆上施加不同大小的横向力,模拟施工现场的外部扰动。

(4)观察摆动情况:记录摆杆在受到外部扰动时的摆动幅度和摆动周期,分析稳定性变化。

三、实验结果与分析1.摆长对稳定性的影响实验结果显示,摆长越长,起重机械的稳定性越差。

这是因为摆长越长,摆动周期越长,抵抗外部扰动的能力减弱。

因此,在设计起重机械时,应合理选择吊臂长度,以提高稳定性。

2.摆重对稳定性的影响实验结果显示,摆重越大,起重机械的稳定性越好。

这是因为摆重越大,摆杆受到的外部扰动产生的摆动幅度越小。

因此,在施工现场,应合理配置吊重,提高起重机械的稳定性。

3.外部扰动对稳定性的影响实验结果显示,外部扰动越大,起重机械的稳定性越差。

这是因为外部扰动会破坏起重机械的平衡状态,导致摆动幅度增大。

因此,在施工现场,应尽量减少外部扰动,确保起重机械的稳定性。

四、改进措施与建议1.优化设计参数根据实验结果,合理选择吊臂长度和吊重,以提高起重机械的稳定性。

在设计过程中,可以采用现代设计方法,如有限元分析、优化算法等,寻找最佳设计参数。

2.提高制造质量加强起重机械制造过程的质量控制,确保零部件的精度和强度。

倒立摆仿真及实验报告

倒立摆仿真及实验报告

最优控制实验报告二零一五年一月目录第1章一级倒立摆实验 (3)1.1 一级倒立摆动力学建模 (3)1.1.1 一级倒立摆非线性模型建立 (3)1.1.2 一级倒立摆线性模型建立 (5)1.2 一级倒立摆t∞状态调节器仿真 (5)1.3 一级倒立摆t∞状态调节器实验 (10)1.4 一级倒立摆t∞输出调节器仿真 (12)1.5 一级倒立摆t∞输出调节器实验 (14)1.6 一级倒立摆非零给定调节器仿真 (16)1.7 一级倒立摆非零给定调节器实验 (17)第2章二级倒立摆实验 (18)2.1 二级倒立摆动力学模型 (18)2.1.1 二级倒立摆非线性模型建立 (18)2.1.2 二级倒立摆线性模型建立 (19)2.2 二级倒立摆t∞状态调节器仿真 (20)2.3 二级倒立摆t∞状态调节器实验 (23)2.4 二级倒立摆t∞输出调节器仿真 (24)2.5 二级倒立摆t∞输出调节器实验 (24)2.6 二级倒立摆非零给定调节器仿真 (25)2.7 二级倒立摆非零给定调节器实验 (26)第1章一级倒立摆实验1.1一级倒立摆动力学建模在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图所示图1-1 直线一级倒立摆模型M小车质量1.096 kg;m 摆杆质量0.109 kg;b 小车摩擦系数0 .1N/m/sec;l 摆杆转动轴心到杆质心的长度0.25m;I 摆杆惯量0.0034 kg·m2;φ摆杆与垂直向上方向的夹角,规定角度逆时针方向为正;x 小车运动位移,规定向右为正。

1.1.1一级倒立摆非线性模型建立采用拉格朗日方法,系统的拉格朗日方程为:()()()&&&(1.1)=-L q q T q q V q q,,,其中,L 为拉格朗日算子,q 为系统的广义坐标,T 为系统的动能,V 为系统的势能。

拉格朗日方程由广义坐标i q 和L 表示为:i i id L Lf dt q q ∂∂-=∂∂& (1.2)i f 为系统沿该广义坐标方向上的外力,在本系统中,系统的两个广义坐标分别为φ和x 。

倒立摆实验报告

倒立摆实验报告

《线性系统理论》课程——倒立摆实验报告基本情况实验完成了基本要求,通过pid、极点配置、根轨迹、和ldr方法调试运行一级倒立摆,设计新的pid参数,调试运行状态,逐渐使一级倒立摆稳定,完成了实验的基本要求。

在对一级倒立摆完成实验的基础上,进一步对二级倒立摆进行了分析研究。

这其中的工作主要包括针对LDR方法运行demo,观察系统稳定性,快速性,调整系统参数,查看有什么问题,并且针对问题提出修改意见。

在多次试验后,对系统有了进一步的了解,便开始着手二级倒立摆极点配置方法的实现问题。

这部分继续学习了极点配置的方法,通过编写m文件,计算K,仿真运行系统,查看系统图像,查看调节时间,超调量等。

逐渐调试参数,使系统指标顺利达到。

最后是进行试验,进一步调整系统参数。

在这一个过程中,经验很重要,同时偶然因素也起到了重要的作用。

所以调试一个系统真的不容易。

这一部分的内容在第六节中进行了较为详细的介绍收获对倒立摆的系统原理有了更深层次的了解掌握了pid、极点配置、根轨迹、ldr方法设计系统学会了一些调试运行系统的经验加强了和同学之间的交流,锻炼了软件实现编程能力改进意见这里我有一个小小的建议,这是我在做实验的时候遇到了问题总结。

系统参数含义还不是很清楚。

在这个方面尤其是参数对应着系统的具体实际含义不明确,只能在尝试凑参数,有时出现了一个问题,不知道是哪个参数引起的,所以影响了效率,结果也不是很明显。

改进意见:共有四次实验,第一次实验安排不变但是试验后,负责人要收集问题,主要是要老师来解决的,在第二次实验前针对上一次的问题进行集体讲解一下,尤其是与物理的联系,不要仅仅是自己做实验吧,第三次和第一次相同,第四次与第二次相同。

在这个完成后,如果课堂有时间,可以进行了一个小小的试验心得介绍,和大家交流心得体会。

或者是老师统一解决一下这个总体过程中的问题,我觉得这样结果会更好一点。

下面是具体的详细报告一、倒立摆系统介绍倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。

倒立摆实验报告

倒立摆实验报告

一、实验内容1、完成Matlab Simulink 环境下的电机控制实验。

2、完成直线一级倒立摆的建模、仿真、分析。

3、理解并掌握PID控制的的原理和方法,并应用与直线一级倒立摆4、主要完成状态空间极点配置控制实验、LQR控制实验、LQR控制(能量自摆起)实验、直线二级倒立摆Simulink的实时控制实验。

二、实验设备1、计算机。

2、电控箱,包括交流伺服机驱动器、运动控制卡的接口板、直流电源等。

3、倒立摆本体,包括一级倒立摆,二级倒立摆。

三、倒立摆实验介绍倒立摆是一个典型的不稳定系统,同时又具有多变量、非线性、强耦合的特性,是自动控制理论中的典型被控对象。

它深刻揭示了自然界一种基本规律,即一个自然不稳定的被控对象,运用控制手段可使之具有一定的稳定性和良好的性能。

许多抽象的控制概念如控制系统的稳定性、可控性、系统收敛速度和系统抗干扰能力等,都可以通过倒立摆系统直观的表现出来。

(1)被控对象倒立摆的被控对象为摆杆和小车。

摆杆通过铰链连接在小车上,并可以围绕连接轴自由旋转。

通过给小车施加适当的力可以将摆杆直立起来并保持稳定的状态。

(2)传感器倒立摆系统中的传感器为光电编码盘。

旋转编码器是一种角位移传感器,它分为光电式、接触式和电磁感应式三种,本系统用到的就是光电式增量编码器。

(3)执行机构倒立摆系统的执行机构为松下伺服电机和与之连接的皮带轮。

电机的转矩和速度通过皮带轮传送到小车上,从而带动小车的运动。

电机的驱动由与其配套的伺服驱动器提供。

光电码盘1将小车的位移、速度信号反馈给伺服驱动器和运动控制卡,而光电码盘2 将摆杆的位置、速度信号反馈回控制卡。

计算机从运动控制卡中读取实时数据,确定控制决策(小车向哪个方向移动、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,带动小车运动,保持摆杆平衡。

图1 直线倒立摆系统总体结构图四、倒立摆数学模型的建立被控对象模型的建立是控制器设计的基础。

倒立摆实验报告范文

倒立摆实验报告范文

倒立摆实验报告范文实验名称:倒立摆实验报告实验目的:1.通过倒立摆实验,了解和研究摆的运动规律和控制原理;2.学习应用微分方程进行物理实验的建模和分析;3.探究倒立摆在不同参数条件下的动态行为,并进行比较和分析。

实验装置与原理:实验装置主要包括倒立摆、支架和数据采集系统。

倒立摆由一个可旋转的杆和一个可转动的摆球组成。

支架提供了稳定的支撑和调整参数的功能。

数据采集系统能够实时采集倒立摆的角度和角速度数据。

倒立摆的运动规律由以下微分方程描述:$$I\ddot{\theta} = mgl\sin{\theta} - b\dot{\theta} + u$$其中,$I$为倒立摆的转动惯量,$\theta$为杆的偏角,$m$为摆球的质量,$g$为重力加速度,$l$为摆杆的长度,$b$为转动摩擦系数,$u$为控制输入,即外力或力矩。

实验步骤:1.将倒立摆安装在支架上,并将数据采集系统连接到计算机上;2.打开数据采集软件,对倒立摆进行初始校准;3.设置不同参数条件下的控制输入,如输入恒定力、步进函数或正弦函数;4.开始数据采集,记录倒立摆的角度和角速度随时间的变化;5.结束数据采集后,通过数据分析软件绘制角度-时间和角速度-时间曲线;6.对曲线进行分析,研究不同参数条件下的倒立摆运动特性。

实验结果与分析:通过实验数据分析,我们发现倒立摆的运动特性与其参数条件密切相关。

在无外力作用下,倒立摆会出现减振和自激振动现象。

当控制输入为恒定力时,可使倒立摆保持平衡,但对初始条件要求较高。

在输入为步进函数时,倒立摆会出现短暂的摆动后回到平衡位置。

当输入为正弦函数时,倒立摆会产生周期性的摆动现象。

同时,通过改变倒立摆的参数条件,如转动惯量、摆球质量和摆杆长度等,我们可以观察到倒立摆运动规律的变化。

较大的转动惯量和摆球质量将导致倒立摆摆动的稳定性降低,需要更大的控制力或稳定控制算法来保持平衡。

而较长的摆杆长度将使得倒立摆的周期变长,对控制力的要求较低。

倒立摆仿真及实验报告

倒立摆仿真及实验报告

倒立摆仿真及实验报告倒立摆是一种经典的机械系统,它具有丰富的动力学特性,在控制理论和工程应用中得到广泛研究和应用。

本文将对倒立摆的仿真及实验进行详细介绍,并给出相关结果和分析。

1.倒立摆的仿真模型倒立摆的运动可以用以下动力学方程表示:ml^2θ'' + mgl sin(θ) = u - cθ' - Iθ'其中,m是摆杆的质量,l是摆杆的长度,θ是摆杆与垂直方向的夹角,u是外力输入,c是摩擦系数,I是摆杆的转动惯量,g是重力加速度。

为了实现对倒立摆的仿真,我们借助MATLAB/Simulink软件,建立了倒立摆的仿真模型。

模型包括两个部分:倒立摆的动力学模型和控制器。

倒立摆的动力学模型采用上述动力学方程进行描述。

控制器采用经典的PID控制器,其中比例系数Kp、积分系数Ki和微分系数Kd分别用于角度误差的比例、积分和微分控制。

2.倒立摆的仿真结果采用上述模型进行仿真,我们可以得到倒立摆的运动轨迹和角度响应等结果。

根据参数的不同取值,我们可以观察倒立摆的不同运动特性。

首先,我们观察了倒立摆的自由运动。

设置初始条件为摆杆静止且在平衡位置上方一个小角度的偏离。

在没有外力输入的情况下,倒立摆经过一段时间的摆动后最终回到平衡位置,这个过程中摆杆的角度和角速度都发生了变化。

接下来,我们考虑了加入PID控制器后的倒立摆。

设置初始条件为摆杆位于平衡位置上方,并施加一个恒定的外力。

通过调节PID控制器的参数,我们可以使倒立摆保持在平衡位置上方,实现倒立的稳定控制。

当外力发生变化时,控制器能够及时响应并调整摆杆的角度,使其再次回到平衡位置。

3.倒立摆的实验研究为了验证倒立摆的仿真结果,我们进行了实验研究。

实验中,我们采用了具有传感器的倒立摆装置,并连接到PC上进行实时数据采集和控制。

首先,我们对倒立摆进行了辨识。

通过在实验中施加一系列不同的外力输入,我们得到了倒立摆的自由运动数据。

通过对数据进行处理和分析,我们获得了倒立摆的动力学参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机控制系统课题报告1.倒立摆基本背景:倒立摆,Inverted Pendulum ,是典型的多变量、高阶次,非线性、强耦合、自然不稳定系统。

倒立摆系统的稳定控制是控制理论中的典型问题,在倒立摆的控制过程中能有效反映控制理论中的许多关键问题,如非线性问题、鲁棒性问题、随动问题、镇定、跟踪问题等。

因此倒立摆系统作为控制理论教学与科研中典型的物理模型,常被用来检验新的控制理论和算法的正确性及其在实际应用中的有效性。

从 20 世纪 60 年代开始,各国的专家学者对倒立摆系统进行了不懈的研究和探索。

倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自由连接(即无电动机或其他驱动设备)。

由中国的大连理工大学李洪兴教授领导的“模糊系统与模糊信息研究中心”暨复杂系统智能控制实验室采用变论域自适应模糊控制成功地实现了四级倒立摆。

因此,中国是世界上第一个成功完成四级倒立摆实验的国家。

倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。

当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。

2.倒立摆模型分析倒立摆系统的输入为小车的位移(即位置)和摆杆的倾斜角度期望值,计算机在每一个采样周期中采集来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。

直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。

作用力F平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。

当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。

为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。

我们的分析对象是一阶倒立摆。

很多国内实验都说可以合理的假设空气阻力为0,但查阅了更多的文献和真正仿真做出模型并在网络上开源的一些实验后,我认为这是不正确的。

空气阻力或许可以忽略,但是对于运动过程中的所有阻碍都忽略那就太为理想。

也就是说,我们需要自己假设一个阻碍模型,即收到的所有阻力等效成一个包含速度,位姿等的广义函数。

当然,我们的时间精力和所学知识都还有限,却也不想太过简单。

我选取了一个阻力和速度成正比的函数关系,来在以后的建模和仿真过程中来模拟倒立摆所受的一切阻碍。

3.1 倒立摆物理建模:基于经典牛顿力学受力分析如上图。

那我们在本实验中定义如下变量:M 小车质量m 摆杆质量b 小车摩擦系数l 摆杆转动轴心到杆质心的长度(0.3 m)I 摆杆惯量 (0.006 kg*m*m ) F 加在小车上的力 x 小车位置φ 摆杆与垂直向上方向的夹角θ 摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)下面我们对这个系统作一下受力分析。

下图是系统中小车和摆杆的受力分析图。

其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。

注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图,图示方向为矢量正方向。

分析小车水平方向所受的合力,可以得到等式: 应用Newton 方法来建立系统的动力学方程过程如下: 分析小车水平方向所受的合力,可以得到以下方程:N x b F x M --=&&&由摆杆水平方向的受力进行分析可以得到下面等式:)sin (22θl x dtd mN +=即 θθθθsin cos 2&&&&&ml ml x m N -+=把这个等式代入上式中,就得到系统的第一个运动方程:F ml ml x b x m M =-+++θθθθsin cos )(2&&&&&& (1)为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:θθθθθcos sin )cos (222&&&ml ml mg P l dtd m mg P --=-=-即:力矩平衡方程如下:θθθ&&I Nl Pl =--cos sin 注意:此方程中力矩的方向,由于θφθφφπθsin sin ,cos cos ,-=-=+=,故等式前面有负号。

合并这两个方程,约去P 和N ,由231ml I =得到第二个运动方程: θθθcos sin 234x ml mgl ml &&&&-=+ (2)设φπθ+=(φ是摆杆与垂直向上方向之间的夹角),假设φ与1(单位是弧度)相比很小,即φ《1,则可以进行近似处理:1cos -=θ,φθ-=sin ,0)(2=dtd θ。

用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:⎪⎩⎪⎨⎧=-++=-u ml x b x m M x g l φφφ&&&&&&&&&)(34 (3)3.2倒立摆物理建模:基于达朗贝尔法首先定义物理量如下,由于之后使用该方法经行下一步的仿真和系统搭建,为了使物理量名称与simulink 中保持一致便于编程和区分重新命名。

但为使公式简洁,公式中使用括号内字母表示:mCart(M):小车质量mPend(m):为摆杆质量X:小车位置Xd(ẋ):小车速度Xdd(ẍ):小车加速度theta:摆杆与垂直向上方向的夹角,方向如图所示thetad (θ):角度的一阶导thetadd (θ):角度的二阶导L:摆杆转动轴心到杆质心的长度Kd:摩擦阻力系数,认为阻力与速度成正比,忽略其他摩擦力。

F:加在小车上的力 Df:作用在摆杆质心上的干扰力使用达朗贝尔法对摆杆进行受力分析,给摆杆增加两个惯性力,如下图:其中:=mθ2L (1)F向心惯性力Fx,Fy为小车给摆杆的水平与竖直方向上的力将其沿虚线方向以及水平方向分解得:θLm=df cosθ+ẍm cosθ+mg sinθ (2)Fx=df+mẍ−mLθcosθ+Fsinθ (3)向心惯性力对小车用达朗贝尔法建立微分方程有:F=MX+F X+Kdẋ (4)联立(1)(2)(3)(4)并化简有:ẍ(m sin2θ+M)=F−df−ẋK b−θs inθmL+mgsinθcosθ+df cos2θ (5)4.matlab-simulink下倒立摆模型搭建由3.2的(2)(5)式进行拉普拉斯变换后可以直接在matlab建模,搭建如下:位移积分环节:角度积分环节:总体截图如下:将其保存为子系统模块使系统主界面简介方便以后调试,在主界面搭建干扰信号,观察模块等如下:(暂且不输入控制量F,观察物理建模的仿真结果)构造两个干扰信号如下图:设定各初值如下:在干扰1下输出如下:在干扰2下输出如下:可见其角度与位置在一定干扰下都会很快失稳。

这是可想而知的,在没有控制的情况下系统会很快失稳。

至此对于倒立摆的数学物理建模分析,以及在simulink上的物理模型搭建基本完成。

5. matlab-simulink下的pid控制仿真:Simulink中直接提供了pid控制器模块,对于我们的仿真有很大帮助。

由于需要的角度值为0,直接将角度值的负值输入pid模块,进行调试三个kp,ki,kd的值。

仅观察位置与角度。

搭建模型如下:经过多次实验,在[kp ki kd]=[100 40 10]时效果较好。

设置模块如下:在干扰1下输出如下:在干扰2下输出如下:可见pid可以控制角度一直保持在0左右,最大范围约在0.06,但是pid控制无法对位置量x进行调控。

当然,调整参数是一个比较麻烦的事情,这几个数字是实验很多次以后的结果。

下附一些参数没有设置好的实例。

为避免重复,仅展现在干扰1 下的输出结果。

Kp过大:出现震荡。

Kp过小:无法稳定Ki过大:出现往复震荡Ki过小:存在稳态误差Kd过大:出现尖峰且往复震荡。

Kd过小:出现震荡。

6,matlab-simulink对控制器的鲁棒性测试:当小车的物理量并不是我们所设置的初始值时,控制器能有还有较好的发挥呢?即在正真应用的时候,各个物理参数都是实验测量的,肯定和真实值有一些出入,真正好的控制器应该有较好的鲁棒性,在输入的初始值和真实值基本相似的情况下仍有较好发挥。

故而调整初始值的mPend观察pid控制的鲁棒性。

由于图片结果大多类似,(仅展示在干扰1下的输出)mPend=0.4mPend=0.6mPend=0.8MCart=2 :角度摆动幅度有明显增加,但仍在一个较小值,波形基本一致MCart=3:基本同上L=0.5L=1上面几个图片波形基本一样,这应该是基本参数一致仿真的结果。

具体数字有一定区别,但都在很小范围为内变动。

在文档中的显示基本看不出区别。

可见pid控制具有相当的鲁棒性。

其的性能还是可以信赖的。

7.引用和参考文献:[1] “倒立摆”词条,百度百科。

[Z][2] “现代控制—倒立摆系统与仿真”。

相关文档
最新文档