轴心受力构件的强度和刚度

合集下载

钢结构原理-第4章轴心受力构件

钢结构原理-第4章轴心受力构件
柱子曲线: 由于各种缺陷同时
存在,且都是变量,再 加上材料的弹塑性,轴 压构件属于极值点失稳, 其极限承载力Nu很难用 解析法计算,只能借助 计算机采用数值法求解。
《钢结构原理》 第4章 轴心受力构件
缺陷通常只考虑影响最大的残余应力和初弯曲(l/1000)。 采用数值法可以计算出轴压构件在某个方向(绕 x 或 y 轴)的 柱子曲线,如下图,纵坐标为截面平均应力与屈服强度的比值, 横坐标为正则化长细比。
《钢结构原理》 第4章 轴心受力构件
4.1 概述
4.1.1 定义:构件只承受轴心力的作用。 承受轴心压力时称为轴心受压构件。 承受轴心拉力时称为轴心受拉构件。
N
N
N
N
《钢结构原理》 第4章 轴心受力构件
4.1.2 轴心受力构件的应用 平面及空间桁架(钢屋架、管桁架、塔桅、网架等); 工业及民用建筑结构中的一些柱; 支撑系统;等等。
(a) N
(b) N
Hale Waihona Puke (c) NNN
N
《钢结构原理》 第4章 轴心受力构件
4.4.3 理想轴心受压构件的弯曲屈曲 4.4.3.1 弹性弯曲屈曲
取隔离体,建立平衡微分方程
EyIN y0
用数学方法解得:N 的最 小值即分岔屈曲荷载 Ncr,又称 为欧拉荷载 NE 。
Ncr2EI/l2
对应的临界应力为:
《钢结构原理》 第4章 轴心受力构件
4.4 轴心受压构件的整体稳定
概念:在压力作用下,构件的外力必须和内力相平衡。 平衡有稳定、不稳定之分。当为不稳定平衡时,轻微的扰 动就会使构件产生很大的变形而最后丧失承载能力,这种 现象称为丧失稳定性,简称失稳,也称屈曲。 特点:与强度破坏不同,构件整体失稳时会导致完全 丧失承载能力,甚至整体结构倒塌。失稳属于承载能力极 限状态。与混凝土构件相比,钢构件截面尺寸小、构件细 长,稳定问题非常突出。只有受压才有稳定问题。

钢结构第五章_轴心受力构件详解

钢结构第五章_轴心受力构件详解

得欧拉临界力和临界应力:
Ncr
NE
2 EI l2
2 EA
2
cr
E
2E 2
(4 7) (4 8)
上式中,假定材料满足虎克定律,E为常量,因此当
截面应力超过钢材的比例极限 fp 后,欧拉临界力公式不 再适用。
第五章 钢柱与钢压杆
3、初始缺陷、加工条件和截面形式对压杆稳定都有影响

力学缺陷:残余应力、材料不均匀等
钢结构中理想的轴心受压构件的失稳,也叫发生屈 曲。理想的轴心受压构件有三种屈曲形式,即:弯曲屈 曲,扭转屈曲,弯扭屈曲。
第五章 钢柱与钢压杆
(1)弯曲屈曲——只发生弯曲变形,截面只绕一个 主轴旋转,杆纵轴由直线变为曲线,是双轴对称截面常 见的失稳形式。
图14
第五章 钢柱与钢压杆
图15整体弯曲屈曲实例
图1桁架
第五章 钢柱与钢压杆
图2 网架
图3 塔架
第五章 钢柱与钢压杆
图4 临时天桥
第五章 钢柱与钢压杆
图5 固定天桥
第五章 钢柱与钢压杆
图6 脚手架
第五章 钢柱与钢压杆
图7 桥
第五章 钢柱与钢压杆
5.1.2 轴心受力构件类型 轴心受力构件包括轴心受压杆和轴心受拉杆。 轴心受拉 :桁架、拉杆、网架、塔架(二力杆) 轴心受压 :桁架压杆、工作平台柱、各种结构柱
第五章 钢柱与钢压杆
5.1钢柱与钢压杆的应用和构造形式
本节目录
1. 轴心受力构件的应用 2. 轴心受力构件类型 3. 轴心受力构件的截面形式 4. 轴心受力构件的计算内容
基本要求
了解轴心受力构件的类型、应用。
掌握计算内容
第五章 钢柱与钢压杆
5.1.1 轴心受力构件的应用

《钢结构设计原理》苏州科技学院教材配套第5章轴心受力构件

《钢结构设计原理》苏州科技学院教材配套第5章轴心受力构件
对普通钢结构 ,通常只考虑两种缺陷: ①初弯曲(L/1000), ②残余应力。
最大强度准则:以有 初始缺陷的压杆为模型, 考虑截面的塑性发展, 以最终破坏的最大荷载 为其极限承载力。
第5章 轴心受力构件
1. 轴心受压构件的柱子曲线
Suzhou University of Science & Technology
y
t
h
x
x
kb b
t
第5章 轴心受力构件
Suzhou University of Science & Technology
对x x轴屈曲时:
crx
2E 2x
I ex Ix
2E 2x
2t ( kb)h2 2tbh2 4
4
2E 2x
k
对y y轴屈曲时:
cry
2E 2y
I ey Iy
2 E 2t(kb)3 12 2y 2tb3 12
λ l0 [ λ] i
l0 构件的计算长度; i I A 截面的回转半径;
[ λ] 构件的容许长细比
第5章 轴心受力构件
5.2 轴心受压构件的整体稳定
Suzhou University of Science & Technology
所谓的稳定是指结构或构件受载变形后,所处平 衡状态的属性。
使构件整体屈曲前其板件不发生局部屈曲,即局部屈曲 临界应力大于或等于整体临界应力,称作等稳定性准则。
σcr f y
第5章 轴心受力构件
板件宽厚比限值
Suzhou University of Science & Technology
工字形截面:
翼缘为三边简支、一边自由的均匀受压板 腹板为四边支承板

钢结构基本原理第4章

钢结构基本原理第4章


第4.1节 概述
本节目录
1. 轴心受力构件的应用 2. 轴心受力构件类型 3. 轴心受力构件的截面形式 4. 轴心受力构件的计算内容
基本要求
了解轴心受力构件的类型、应用及计算内容
4.1.1 轴心受力构件的应用
轴心受力构件是指承受通过截面形心轴线的轴向力 作用的构件。
图4.1.1 桁架
图4.1.2 网架
由于组合截面制作费时费工,其总的成本并 不一定很低,目前只在荷载较大或构件较高时使 用。
4.1.4 轴心受力构件的计算内容
件轴 心 受 力 构
强度 (承载能力极限状态) 轴心受拉构件 刚度 (正常使用极限状态)
强度 (承载能力极限状态) 轴心受压构件 稳定
刚度 (正常使用极限状态)
第4.2节 轴心受力构件的强度和刚度
②理想轴心压杆的弹塑性弯曲屈曲临界力和临界应力
对于长细比λ<λp的轴心压杆发生弯曲屈曲时,构件截 面应力已超过材料的比例极限,并很快进入弹塑性状态, 由于截面应力与应变的非线性关系,这时构件的临界力和 临界应力公式采用切线模量理论计算。
N cr

2Et I
l2
cr

2Et 2
Et ---切线摸量
A
N f
A
N ——轴心压力设计值;
A ——构件毛截面积;
f ——钢材抗压强度设计值;

——
cr
/
f
,称为轴心受压构件整体稳定系数,
y
根据截面分类和构件长细比,由柱子曲线或查表确定。
轴心受压构件的柱子曲线
压杆失稳时临界应力σcr与长细比λ之间的关系曲线 称为柱子曲线。
规范在制定轴心受压构件的柱子曲线时,根据不同 截面形状和尺寸、不同加工条件和相应的残余应力分布 和大小、不同的弯曲屈曲方向以及l/1000的最大初弯曲, 按照最大强度准则,对多种实腹式轴心受压构件弯曲失 稳算出了近200条柱子曲线。

钢结构设计原理4轴心受力构件

钢结构设计原理4轴心受力构件

轧制普通工字钢,腹板较薄,热轧后首先冷却;翼缘在
冷却收缩过程中受到腹板的约束,因此翼缘中产生纵向
残余拉应力,而腹板中部受到压缩作用产生纵向压应力
。轧制H型钢,由于翼缘较宽,其端部先冷却,因此具
有残余压应力,其值为=0.3
f
左右,残余应力在翼缘宽
y
度上的分布,常假设为抛物线或取为直线。翼缘是轧制
边或剪切边的焊接工字形截面,其残余应力分布情况与
Ncrx
2EIx 2
x
I ex Ix
2EIx 2
x
2t(kb)h2 / 4 2tbh2 / 4
2EIx 2
x
k
N cry
2EI y 2
y
I ey Iy
2EI y 2
y
2t(kb)3 /12 2tb3 /12
2EI y 2
y
k3
由于k<l.0,故知残余应力对弱轴的影响比对强轴的影 响要大得多 。
N f
An
采用高强度螺栓摩擦型连接的构件,验算净截面强度时 应考虑一部分剪力已由孔前接触面传递,验算最外列螺 栓处危险截面的强度时,应按下式计算
N' f
An
N ' N (1 0.5 n1 ) n
摩擦型连接的拉杆,除验算净截面强度外,还应验算毛 截面强度
N f
A
4.2.2轴心受力构件的刚度计算 为满足正常使用要求,构件应具有一定的刚度,保证构 件不会在运输和安装过程中产生弯曲或过大的变形,以 及使用期间因自重产生明显下挠,还有在动力荷载作用 下发生较大的振动。
GIt
1 i02
2E 2z
A
z
I
/ l2
Ai02 GIt

轴心受力构件

轴心受力构件

轴心受力构件设计轴心受拉构件时需进行强度和刚度的验算,设计轴心受压构件时需进行强度、整体稳定、局部稳定和刚度的验算。

一、轴心受力构件的强度和刚度1.轴心受力构件的强度计算轴心受力构件的强度是以截面的平均应力达到钢材的屈服点为承载力极限状态f A N n ≤=σ (1) 式中 N ——构件的轴心拉力或压力设计值;n A ——构件的净截面面积;f ——钢材的抗拉强度设计值。

采用高强度螺栓摩擦型连接的构件,验算最外列螺栓处危险截面的强度时,按下式计算:f A N n≤='σ (2) 'N =)5.01(1n n N - (3)式中 n ——连接一侧的高强度螺栓总数;1n ——计算截面(最外列螺栓处)上的高强度螺栓数;0.5——孔前传力系数。

采用高强度螺栓摩擦型连接的拉杆,除按式(2)验算净截面强度外,还应按下式验算毛截面强度f A N ≤=σ (4)2.轴心受力构件的刚度计算轴心受力构件的刚度是以限制其长细比保证][λλ≤ (5) 式中 λ——构件的最大长细比;[λ]——构件的容许长细比。

二、 轴心受压构件的整体稳定1.理想轴心受压构件的屈曲形式理想轴心受压构件可能以三种屈曲形式丧失稳定:①弯曲屈曲 双轴对称截面构件最常见的屈曲形式。

②扭转屈曲 长度较小的十字形截面构件可能发生的扭转屈曲。

③弯扭屈曲 单轴对称截面杆件绕对称轴屈曲时发生弯扭屈曲。

2.理想轴心受压构件的弯曲屈曲临界力若只考虑弯曲变形,临界力公式即为著名的欧拉临界力公式,表达式为N E =22l EI π=22λπEA (6) 3.初始缺陷对轴心受压构件承载力的影响实际工程中的构件不可避免地存在初弯曲、荷载初偏心和残余应力等初始缺陷,这些缺陷会降低轴心受压构件的稳定承载力。

1)残余应力的影响当轴心受压构件截面的平均应力p f >σ时,杆件截面内将出现部分塑性区和部分弹性区。

由于截面塑性区应力不可能再增加,能够产生抵抗力矩的只是截面的弹性区,此时的临界力和临界应力应为:N cr =22l EI e π=22lEI π·I I e (7) cr σ=22λπE ·I I e (8) 式中 I e ——弹性区的截面惯性矩(或有效惯性矩);I ——全截面的惯性矩。

第5章 轴心受力构件

第5章 轴心受力构件

An1 b n1 d0 t
螺栓错列布置可能沿正交截面(I -I)破坏,也可能沿齿状截面 (Ⅱ- Ⅱ)破坏,取截面的较小面 积计算:
2 An 2c4 n2 1 c12 c2 n2 d 0 t
Steel Structure
对于高强螺栓的摩擦型连接,可以认为连接传力所依靠的摩擦力均匀分 N 布于螺孔四周,故在孔前接触面已传递一半的力。 N
试计算此拉杆所能承受的最大拉力及容许达到的最大计算长度。
Steel Structure
【解】 查型钢表附表13,2∟100×10角钢:ix= 3.05cm,iy=4.52cm。 f=215N/mm2,角钢的厚度为10mm,在确定危险截面之前先把它按中面展 开如图5.8 (b) 所示。 (1)容许承受的最大拉力 齿状净截面(I—I)的面积为:
缀条用斜杆组成或斜杆与横杆共同
组成,它们与分肢翼缘组成桁架体 系;缀板常用钢板,与分肢翼缘组
成刚架体系。
Steel Structure
5.2 轴心受压构件的强度和刚度
◆ 在进行轴心受力构件的设计时,应同时满足第一类极限状态和
第二类极限状态的要求。 ◆ 对于承载能力的极限状态,受拉构件一般以强度控制,而受压 构件需同时满足强度和稳定的要求。 ◆ 对于正常使用的极限状态,是通过保证构件的刚度-限制其长 细比来达到的。 ◆ 轴心受拉构件的设计需分别进行强度和刚度的计算; 而轴心受压构件的设计需分别进行强度、稳定和刚度的计算。
Steel Structure
『关键知识』 1.轴心受压构件的整体稳定计算; 2.轴心受压构件的局部稳定计算;
3.实腹式和格构式轴心受压构件的设计方法;
4.轴心受压柱铰接柱脚的设计。 『重点讲解』

轴心受压构件的整体稳定性

轴心受压构件的整体稳定性
在杆的两端的最大剪力: 规范规定:
2、缀条设计 内力: V1:分配到一个缀材面的剪力。当每根柱子都有两个缀材面时,此时V1为V/2; n 承受剪力V1的斜缀条数,单缀条体系,n =1;双缀条超静定体系,通常简单地认为每根缀条负担剪力V2之半,取n =2; 缀条夹角,在30~60之间采用。 斜缀条常采用单角钢。由于角钢只有一个边和构件的肢件连接,考虑到受力时的偏心作用,计算时可将材料强度设计值乘以折减系数r =0.85。
第三节 实腹式轴心受压构件的局部屈曲
组合截面板件的局部屈曲现象:宽厚比太大
一、均匀受压板件的弹性屈曲应力(x单方向受压) 在弹性状态屈曲时,单位宽度板的力平衡方程是: 式中 w 板件屈曲以后任一点的挠度; Nx 单位宽度板所承受的压力; D 板的抗弯刚度,D=Et3/12(12),其中t是板的厚度, 是钢材的泊松比。
二、工字形组合截面板件的局部屈曲
对于局部屈曲问题,通常有两种考虑方法: 方法1:不允许板件屈曲先于构件整体屈曲,目前一般钢结构就是不允许局部屈曲先于整体屈曲来限制板件宽厚比。 方法2:允许板件先于整体屈曲,采用有效截面的概念来考虑局部屈曲对构件承载力的不利影响,冷弯薄壁型钢结构,轻型门式刚架结构的腹板就是这样考虑的。
二、刚度计算: 保证构件在运输、安装、使用时不产生过大变形
1、受拉构件。
2、受压构件。
1)双轴对称截面
2)单轴对称截面 绕非对称轴: 绕对称轴:采用换算长细比,对于单角钢和双角钢截面可采用简化公式。
第二节 实腹式轴心受压构件的弯曲屈曲
强度破坏:应力超过设计强度;应力针对某个截面
稳定问题:达到某荷载值时变形将急剧增加,过渡到不稳定的状态;变形针对整个结构。 提高稳定性措施:增大截面惯性距,增强约束,减小计算长度; 轴压构件三种屈曲形态:

钢结构第四章

钢结构第四章

14.1轴心受力构件的截面形式4.2轴心受力构件的强度和刚度计算4.2.1 轴心受力构件的强度计算4.2.2 轴心受力构件的刚度计算4.3 轴心受压构件的整体稳定4.3.1 轴心受压构件的弹性弯曲屈曲4.3.2 轴心受压构件的弹塑性弯曲屈曲4.3.3初始缺陷对压杆稳定承载力的影响4.3.4 轴心受压构件的整体稳定计算24.4 实腹式轴心受压构件的局部稳定4.4.1 薄板屈曲(1) 薄板的弹性屈曲(2) 薄板的弹塑性屈曲4.4.2 受压构件局部稳定计算4.4.2.1 确定板件宽厚比(高厚比)限值的准则4.4.2.2 板件宽厚比(高厚比)限值4.4.2.3受压构件的腹板不满足高厚比限值时的处理例题-格构柱例题-轴压柱,截面削弱34.5.2 格构式轴压构件的整体稳定计算(1) 格构式构件绕实轴的整体稳定计算(2) 格构式构件绕虚轴的整体稳定计算①换算长细比②格构式构件绕虚轴的整体稳定计算4.5.3 格构式轴心受压构件分肢的稳定(1) 缀条柱(2) 缀板柱4.5.1 格构式轴心受压构件的截面形式与组成4.5 格构式轴压构件44.5.4 格构式轴心受压构件缀材计算(1) 缀材面承担的剪力①单缀条强度设计值的调整②斜缀条承受的轴向力(2) 缀条设计(3) 缀板设计③斜缀条整体稳定计算④缀条与分肢连接焊缝计算⑤缀条与分肢连接形式(4) 横隔设置①缀板受力②缀板与分肢连接③缀板线刚度54.6 轴心受压构件截面设计4.6.1 实腹式轴心受压构件截面设计4.6.2 格构式轴心受压构件截面设计(3) 截面验算(1) 确定截面所需的面积、回转半径、截面高度、截面宽度等(2) 确定型钢号或组合截面各板件尺寸(1) 根据绕实轴的稳定性确定分肢截面尺寸(2) 根据虚轴和实轴的等稳性确定分肢的间距(3) 截面验算(4)缀材设计7轴心受力构件:承受通过构件截面形心轴线的轴向力作用的构件。

(轴心受拉构件和轴心受压构件)截面形式型钢截面组合截面热轧型钢截面冷弯薄壁型钢截面实腹式组合截面格构式组合截面4.1轴心受力构件的截面形式应用:屋架、托架、塔架和网架、工作平台和其它结构的支柱等8实腹式构件:格构式构件:优点:构造简单、制造方便,整体受力和抗剪性能好缺点:截面尺寸大时钢材用量较多。

建筑结构第17章

建筑结构第17章

第17章 轴心受力构件
图17-3柱曲线
第17章 轴心受力构件 表17-5 轴心受压构件的截面分类(板厚t≥40 mm)
第17章 轴心受力构件
第17章 轴心受力构件
二、实腹式轴心受压构件的局部稳定
钢结构构件通常由一些板件组成,轴心受压构件截面设计时常选用 肢宽壁薄的截面,以提高其整体稳定性,但如果这些板件的宽厚比很小, 即板较薄时,在板平面内压力作用下,将可能发生平面的凹凸变形,从 而丧失局部稳定。 实腹式轴心受压构件因主要承受轴心压力作用,故应按均匀受压板 计算其板件的局部稳定。板件失稳时的应力称为板件的临界应力或屈曲 应力。 对于轴心受压构件,主要应限制板件的宽厚比不能过大,以保证在 构件丧失整体稳定之前,不会发生局部失稳。即根据板的屈曲应力σcr和 构件的整体稳定极限承载应力σu相等的等稳定准则,计算板件的宽厚比 限值。
第17章 轴心受力构件
2.对虚轴的整体稳定性
轴心受压构件整体弯曲后,杆内将出现弯矩和剪力,对于实腹式受压杆, 可以忽略剪力产生的附加变形对整体稳定承载力的影响。但对于格构式 轴心受压杆绕虚轴发生弯曲失稳时,其影响不能忽略。按照结构稳定理 论,两端铰接的双肢缀条格构式构件在弹性阶段对虚轴的临界应力为
容许长细比 150
2
支撑(吊车梁或吊车桁架以下的柱间支撑除外)
用以减少受压构件长细比的杆件
200
注:①桁架(包括空间桁架)的受压腹杆,当其内力等于或小于承
载能力的50%时,容许长细比可取200。 ②单角钢受压构件长细比的计算方法与表17-1注②相同。
③跨度等于或大于60 m的桁架,其受压弦杆和端压杆的容许长细比
第17章 轴心受力构件
(3)截面上的残余应力及其影响 ①残余应力的成因及分布规律 ②残余应力对临界力的影响

钢结构设计原理-轴心受力构件

钢结构设计原理-轴心受力构件
第四章
轴心受力构件 主要内容
§4.1 概述 §4.2 轴心受力构件的强度和刚度计算 §4.3 轴心受力构件的整体稳定计算 §4.4 轴心受力构件的局部稳定计算 §4.5 实腹式轴压构件的截面设计计算 §4.6 格构式轴压构件的设计计算 §4.7 柱头、柱脚(轴心受压铰接柱脚设计)设计
第四章 轴心受力构件
单个型钢实腹型截面
(b) 类为多型钢实腹型截面,改善了单型钢截面的稳定 各向异性特征,受力较好,连接也较方便。
(c) 类为格构式截面,其回转半径大且各向均匀,用于 较长、受力较大的轴心受力构件,特别是压杆。但其 制作复杂,辅助材料用量多。
设计计算轴力构件应满足两种极限状态的要求: 1、承载能力极限状态 2、正常使用极限状态
0.5 n1 ) n
? ? N ?? f
An
毛截面面积验算: ? ? N ? f
A
二、刚度计算 按正常使用极限状态的要求,轴力构件应具备必要的刚度, 当刚度不足,在制造、运输和安装的过程中,容易弯曲,在 自重作用下,构件本身会产生较大的挠度,在承受动力荷载 时,还会引起较大的晃动。 根据长期的工程实践经验,轴力构件的刚度是以长细比来衡量的
§4.1概述
应用
轴心受力构件包括轴心受压杆和轴心受拉杆。轴心受 力构件广泛应用于各种钢结构之中,如网架与桁架的杆 件、钢塔的主体结构构件、双跨轻钢厂房的铰接中柱、 带支撑体系的钢平台柱等等。
实际上,纯粹的轴心受力构件是很少的,大部分轴心 受力构件在不同程度上也受偏心力的作用,如网架弦杆 受自重作用、塔架杆件受局部风力作用等。但只要这些 偏心力作用非常小(一般认为偏心力作用产生的应力仅 占总体应力的3%以下。)就可以将其认为轴心受力构件。
荷载开始作用时,构件就发生弯曲(如有荷载初偏心、初弯曲的杆

基本计算轴心受力构件的强度和刚度计算

基本计算轴心受力构件的强度和刚度计算

轴心受力构件的强度和刚度计算1.轴心受力构件的强度计算轴心受力构件的强度是以截面的平均应力达到钢材的屈服应力为承载力极限状态。

轴心受力构件的强度计算公式为f A Nn≤=σ (4-1) 式中: N ——构件的轴心拉力或压力设计值;n A ——构件的净截面面积;f ——钢材的抗拉强度设计值。

对于采用高强度螺栓摩擦型连接的构件,验算净截面强度时一部分剪力已由孔前接触面传递。

因此,验算最外列螺栓处危险截面的强度时,应按下式计算:f A N n≤='σ (4-2)'N =)5.01(1nn N - (4-3)式中: n ——连接一侧的高强度螺栓总数;1n ——计算截面(最外列螺栓处)上的高强度螺栓数;0.5——孔前传力系数。

采用高强度螺栓摩擦型连接的拉杆,除按式(4-2)验算净截面强度外,还应按下式验算毛截面强度f AN≤=σ (4-4)式中: A ——构件的毛截面面积。

2.轴心受力构件的刚度计算为满足结构的正常使用要求,轴心受力构件应具有一定的刚度,以保证构件不会在运输和安装过程中产生弯曲或过大的变形,以及使用期间因自重产生明显下挠,还有在动力荷载作用下发生较大的振动。

轴心受力构件的刚度是以限制其长细比来保证的,即][λλ≤ (4-5)式中: λ——构件的最大长细比;[λ]——构件的容许长细比。

3. 轴心受压构件的整体稳定计算《规范》对轴心受压构件的整体稳定计算采用下列形式:f AN≤ϕ (4-25)式中:ϕ——轴心受压构件的整体稳定系数,ycrf σϕ=。

整体稳定系数ϕ值应根据构件的截面分类和构件的长细比查表得到。

构件长细比λ应按照下列规定确定: (1)截面为双轴对称或极对称的构件⎭⎬⎫==y y y x x x i l i l //00λλ(4-26)式中:x l 0,y l 0——构件对主轴x 和y 的计算长度;x i ,y i ——构件截面对主轴x 和y 的回转半径。

双轴对称十字形截面构件,x λ或y λ取值不得小于5.07b/t (其中b/t 为悬伸板件宽厚比)。

轴心受力构件

轴心受力构件

只发生弯曲变形,截面只绕一个主轴旋转,杆纵轴 由直线变为曲线,是双轴对称截面常见的失稳形式;
(2)扭转失稳失稳时除杆件的支撑端外,各截面均绕 纵轴扭转,是某些双轴对称截面可能发生的失稳形式;
(3)弯扭失稳单轴对称截面绕对称轴屈曲时,杆件发 生弯曲变形的同时必然伴随着扭转。
二、理想轴心受压构件的屈曲
假定: A、达到临界力Ncr时杆件挺直; B、杆微弯时,轴心力增加△N,其产生的平均压应力 与弯曲拉应力相等。
临界力和临界应力:
Ncr
2Et I
l2 0
cr
2Et 2
初始缺陷对压杆稳定的影响
如前所述,如果将钢材视为理想的弹塑性材料, 则压杆的临界力与长细比的关系曲线(柱子曲线)应为:
初 始
轴心受压构件的承载能力大多由其稳定条件 决定,截面强度计算一般不起控制作用。若构件截 面没有孔洞削弱,可不必计算其截面强度。当有孔 洞削弱时,若孔洞压实(实孔,如螺栓孔或铆钉孔),截 面无削弱,则可仅按毛截面式(5.2.1)计算;若孔洞为 没有紧固件的虚孔,则还应对孔心所在截面按净截 面式(5.2.2)计算。
长而细的轴心受压构件主要是失去整体 稳定性而破坏。
§6.3 轴心受压构件的整体稳定
6.3.1 轴心受压构件的整体失稳现象
(1)弯曲失稳
N较小,直线平衡状态。 N渐增,有干扰力使构件微弯,当干扰力移 去后,构件仍保持微弯状态而不能恢复到原来直 线平衡状态 N再稍微增加,弯曲变形迅速增大构件丧失 承载能力,称为构件弯曲屈曲或弯曲失稳。
EIy N( y0 y) 0
2)最大弯矩
中点挠度
v v0 v1
v0
Nv0 NE N
NEv0 NE N
v0 1 N NE

钢结构强度计算

钢结构强度计算
-100×20
惯性矩:各板块自身惯性矩再加上各板块面积乘 以板块中心至中和轴距离的平方。
y
图3.6 截面特性计算
Ix
1 1 2 20 23 20 2 15.042 1 363 36 1 20 16.04 12 12 1 2 10 23 10 2 40 16.04 1 12 13.33 9048 .06 3888 564.54 6.67 10543 .23 24064 cm4
(a)弹性状态应力
图3.5 截面削弱处的应力分布
构件以净截面的平均应力达到屈服强度为强度极限状态。 设计时应满足
N σ f An
(3-1)
An—— 构件的净截面面积
钢结构设计原理 Design Principles of Steel Structure
构件截面强度 第三章 强

1.1.3 轴心受力构件的刚度计算(正常使用极限状态)P185
截面积:上、下翼缘及腹板截面积之和
y
-200×20 80

A 20 2 10 2 361 96cm
2
b
y1
400
中和轴(形心)位置:按全截面对某轴的面积 矩等于各块板分别对该轴的面积矩之和求得。
x
10
x
y1
20 2 1 36 1 20 10 2 39 16.04cm 96
Sbx 20 2 15.04 6 1 16.04 2 3 668cm3
图1.6 截面特性计算
如按b点以下面积矩计算,中和轴以上部分取负值,以下部分取正值
Sbx 10 2 22.96 21.96110.98 8.041 4.02 668cm3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解 :由于AB柱两方向的几何长度不等,强轴顺x轴方
向 柱在强轴方向按下端固定、上端铰接
查表得 u=0.8,故计算长度
l0x=0.8×700=560cm。 柱在弱轴方向按均应按铰接 计算,其计算长度取支承点 之间的距离,即l0y=350cm。
一、 工字钢
(一) 试选截面
查表(16 Mn, a) : x 0.487
腹板: 1-200×6 面积: 12cm2
A=64cm2
三、焊接工字形截面 (二) 验算截面 截面几何特性:
1 I x 12 0.6 20 3 2 26 1.0 10.52 6133 cm4
1 I y 2 12 1.0 26 3 2929 cm4
ix
N A f n
毛截面强度 N
A
f
二 、轴心受拉构件和轴心受压构件的刚度
刚度计算公式:λ ≤ [λ]
λ-构件最不利方向的长细比, 为两主轴方向长细比的最大值 l 0-相应方向的构件计算长度; i-相应方向的截面回转半径,

l0
i
i I (截面惯性矩) A
[λ]-受拉构件或受压构件的容许长细比。
4.局部稳定:因工字钢的翼缘和腹板均较厚,可不验算。
三、焊接工字形截面
(一)试选截面
查表(b) : x 0.734
假定=60
i
查表(c) : x 0.625
Areq N
min
1400 10 3 71 .1cm2 f 0.625 315 10 2
3.整体稳定:由λmax =λy=63.5,查表得φ=0.708。
350 y 63 .5 [ ] 150 (满足) iy 5.51
l0 y
N 1400 103 2 2 307.5 N / mm f 315N / mm (满足) 2 A 0.708 64.3 10
(二)宽肢薄壁──在满足板件宽厚比限值的条 件下使截面面积分布尽量远离形心轴,以增大截 面惯性矩和回转半径,提高杆件的整体稳定承载 力和刚度,达到用料合理。
(三)制造省工——应充分利用现代化的制 造能力和减少制造工作量。尽量采用型钢和 采用便于自动焊的截面(工字型截面)。
(四)连接简便──杆件应便于与其他构件连接。 以开敞式截面为宜。
9.3 21 .6cm 1 0.43 ixreq
i yreq
i yreq 350 5.8 5.8cm breq 24 .2cm 60 2 0.24
l 065 mc3.9 x0 06
qerx
hreq
l0 y
选用如图所示尺寸,即: 翼缘: 2-260×10 面积: 52cm2
4.局部稳定:因工字钢的翼缘和腹板均较厚,可不验算。
二、 H型钢
(一) 试选截面 由于H型钢截面宽度较大,因此假定长细比可减小。
查表b : 0.734
Areq 假定=60 l0 x 560 ixreq 60 9.3cm l 350
N 1400 10 3 60.55cm2 f 0.734 315 10 2
4、 局部稳定: 虽然整体稳定性按弱轴λy计算,但λy比λx小不太多, 故取长细比的较大值λx计算。
翼缘:b1
127 12.7 t 10 235 (10 0.1 ) fy (10 0.1 57.2) 235 12.97 (满足) 345
腹板:
h0 200 235 33.3 (25 0.5 ) tw 6 fy 235 (25 0.5 57.2) 44.2(满足) 345
Ix 6133 9.79cm A 64
iy
Iy
2929 6.77 cm A 64
1.强度:因截面无削弱,可不验算。
2.刚度:
l0 x 560 x 57.2 [ ] 150 (满足) ix 9.79
350 y 51 .7 [ ] 150 (满足) iy 6.77
二、 设计方法:
(一) 试选截面 1、先假定杆的长细比: ① 当荷载≤1500KN,计算长度l0为5~6 m的压杆,可假定 λ=80~100;
②当荷载≥3000KN,计算长度l0为4~5m 的压杆,可假定 λ=60~70;
2、 确定截面需要的面积A 、回转半径ix , iy, 以 及高度h、宽度b :
3、 整体稳定: 查表(b、c) 得φx=0.775,φy=0.691 (虽然λx <λy,但对y轴属c类截面,反而φy<φx)。取 φmin=0.691计算,得
l0 y
N 1400 103 316.6 N / m m2 f 315N / m m2 (满足) A 0.691 64 102
第九章
钢轴心受力构件
第一节 轴心受力构件的强度和刚度
第二节 轴心受压构件整体稳定计算 第三节 实腹式轴心受压构件的局部稳定计算 第四节 实腹式轴心压杆的截面设计
第五节 格构式轴心受压构件的截面设计
第一节 轴心受力构件的强度和刚度
一 、 轴心受拉构件和轴心受压构件的强度
强度计算公式:
N fy f R An
第二节 轴心受压构件整体稳定计算 一、 确定轴心受压构件整体稳定承载力的方法: 传统方法和现代方法 (一) 传统方法: 基本假定: (1) 杆件为等截面理想直杆 (2) 压力作用线和杆件与杆件形心轴重合 (3)材料为均质、各向同性、且无限弹性, 符合虎克定律
屈曲变形分:弯曲变形:双轴对称(工字形)
N 1400 10 3 Areq f 0.431 315 10 2 min 假定=100 l0 x 560 ixreq 100 5.6cm
i yreq l0 y
查表(16 Mn, b) : x 0.431
103 .11cm2
fy fy
b1
T形截面
t 235 (10 0.1 ) h0 fy t
[例1] 下图所示为某炼钢厂工作平台的部分结 构。其中支柱AB 承受心压力N=1400kN,柱下端固定, 上端铰接。试选择该柱截面: 1、用工字钢; 2、用H型钢; 3、用焊接工字形截面,翼缘为剪切边。材料均为 16Mn钢,截面无削弱。 4、材料改为Q235,以上选择出的截面是否还可以 安全承载?
i yreq
0y


60
5.8cm
试选HK220a, 其A=64.3cm3、ix=9.2cm、iy=5.51、b/h=220/210=1.05>0.8。
(二)
验算截面
1. 强度:因截面无削弱,可不验算。 2. 刚度: l0 x 560 x 60.9 [ ] 150 (满足) ix 9.2
y
l0 y iy

350 110 .1 [ ] 150 (满足) 3.18
3.整体稳定: 由λx 、λy查表得 φx=0.961、φy=0.372。取φmin=0.372计算,得
N 1400 103 277.9 N / mm2 f 315N / mm2 (满足) A 0.372 135.44 102
三、圆管的径厚比
D
t
100 或 23500
fy
D 管径, t 壁厚, f y 屈服强度
第四节 实腹式轴心压杆的截面设计
一、设计原则: 截面形式为双轴对称的型钢截面和实腹式组合截面。 为取得合理而经济的效果,设计时可按以下原则:
(一)等稳定性──使杆件在两个主轴方向的稳定承 载力相同,以充分发挥其承载能力。尽可能使两方向 的稳定系数或长细比相等,即 x≈ x 或 λx≈λy。
式中: N-轴心拉力或轴心压力 An-构件的净截面面积
f-钢材的抗拉或抗压强度设计值 fy f R
γR —抗力分项系数
第一节 轴心受力构件的强度和刚度
一 、 轴心受拉构件和轴心受压构件的强度 对摩擦型高强度螺栓连接的构件,其强度计算公式为:
净截面强度 N
'
1 0.5 n1 An n
四、原截面改用Q235钢材
(一)工字钢 由λy=110.1查附表得φy=0.492,故
N 1400 103 210.1N / m m2 f 215N / m m2 (满足) A 0.492 135.44 102
卸载区应力应变遵循弹性模量E的变化规律, 2) 切线模量理论:(弹塑性屈曲力的下限) 弯曲时整个截面都处在加载过程中,应力应变关 系遵循同一个侧向模量Et,以Et 代表E代入上式 切线模量,求屈曲应力和屈曲力 。
(二) 现代方法: 将轴心压杆按具有残余应力,初弯曲和初偏心等缺 陷的小偏心压杆,考虑杆端约束条件。 计算公式
确定方法:采用有限元概念,根据内外力平衡条件, 用数值分析方法模拟计算列表给出。
第三节 实腹式轴心受压构件的局部稳定计算
一、翼缘自由外伸宽厚比的限值
轴心压杆一般在弹塑性阶段工作,按等稳准则得
n k E 2 12 1
2


t f y b 1
t 10 0.1 235 fy
350 3.5cm 100
由附表中不可能选择出同时满足Areq 、ixreq 、iyreq 三值的工字钢,可只在Areq和iyreq两值之间选择适 当型号。现试选156a A=135.44cm2,ix=22.0cm,iy=3.18cm, b/h=166/560=0.29<0.8。
(二) 验算截面 1.强度:因截面无削弱,可不验算。 2.刚度: l0 x 560 x 25.5 [ ] 150 (满足) ix 22.0
fy cr cr N f A R fy R
相关文档
最新文档