知识十六 主要蛋白质的理化性质、功能、临床意义.
蛋白质的理化特点是什么请结合其特点举出在检验工作上具有临床意义的例子
问:蛋白质的理化特点是什么?请结合其特点举出在检验工作上具有临床意义的例子?回答:1.维持组织的生长更新蛋白质是细胞的主要组成成分。
人体各组织细胞的蛋白质经常不断地更新,成年人也必须每日摄入足够量的蛋白质,才能维持其组织地更新。
在组织受创伤时,则须供给更多的蛋白质作为修补的原料。
为保证儿童的健康成长,对生长发育期的儿童、孕妇提供足够量优质的蛋白质尤为重要。
检测指标对临床的指导意义:例如人血白蛋白的半寿期约为20天,通过检测白蛋白的含量,临床大夫可以得知患者在最近一个月内的蛋白质水平。
前白蛋白的半衰期更短,只有2天左右。
当检验出前白蛋白时,就可以说明患者近2天蛋白质营养状况。
当然还有视黄醇结合蛋白、转铁蛋白等蛋白质都可以反应人营养状态。
临床大夫可以要求检验科通过尿液检测病人24小时尿素氮水平来对肾脏疾病进行诊断。
营养科大夫可以通过氮平衡实验检测生长发育期的孩子或是患者是否处于正氮平衡或负氮平衡,从而进行饮食指导。
2. 参与重要的生理功能体内重要的生理活动都是由蛋白质来完成的,例如,参与机体防御功能的抗体,催化代谢反应的酶;调节物质代谢和生理活动的某些激素和神经递质,有的是蛋白质或多肽类物质,有的是氨基酸转变的产物;此外,肌肉收缩、血液凝固、物质的运输等生理功能也是由蛋白质来实现的。
因此,蛋白质是生命活动的重要物质基础。
检测指标对临床的指导意义:例如免疫蛋白具有维持机体免疫功能的作用,抗体是活跃在血液中的一支“突击队”,具有保卫机体免受细菌和病毒的侵害、提高机体抵抗力的作用。
临床大夫可以通过检验乙肝五项看看病人是不是肝炎患者。
血红蛋白具有携带、运送氧气的功能,检测血红蛋白可以反应贫血程度。
酶是蛋白质,许多酶的检测如谷丙转氨酶、谷草转氨酶水平能反应肝脏功能。
天门冬氨酸氨基转移酶(AST)、乳酸脱氢酶(LDH)及同功酶、a一羟丁酸脱氢酶(a-HBDH)和肌酸激酶(CK)及同工酶(CKMB),这一组与心肌损伤相关的酶合称为心肌酶谱,对诊断心肌梗死有一定的价值。
医学检验--血浆蛋白质检查
血浆蛋白质检查主要血浆蛋白质的理化性质、功能和临床意义(一)血浆蛋白质的组成血浆蛋白质是血浆中含量最多、成分极为复杂、功能广泛的一类化合物。
目前已分离出近于纯品者就有200多种。
近年来有许多新技术用于研究蛋白质,这些资料提供了有价值的病理生理信息,有助于疾病的诊断、治疗。
参考值可随所用测定方法、年龄、性别而有所不同(二)功能和临床意义1.前白蛋白(PA)电泳位于清蛋白前面,由肝细胞合成,半寿期为2~5天。
功能(1)参与组织修补。
(2)运载蛋白:运输激素和维生素,如运输甲状腺激素和维生素A。
临床意义(1)营养不良敏感指标;(2)肝功不全指标:在肝炎发病早期血清前白蛋白浓度下降往往早于其他血清蛋白成分的改变;(3)急性炎症、恶性肿瘤、肾炎、创伤时其血清浓度降低。
2.视黄醇结合蛋白(RBP)由肝脏合成,是分子量21kD,半衰期为12小时。
RBP将视黄醇从肝脏转运到各种靶组织,保护其不被氧化损伤。
在血浆中RBP与TTR(甲状腺素转运蛋白)以1:1结合,可避免小分子RBP从肾小球滤过。
在靶细胞内,随TTR-RBP复合物的降解,视黄醇被摄入细胞。
3.白蛋白(Alb)Alb由肝细胞合成。
白蛋白是血浆中含量最多的蛋白质,占总蛋白的57%~68%。
功能(1)内源性氨基酸营养源;(2)维持血浆的胶体渗透压;(3)具有酸碱缓冲能力,维持血浆的正常pH;(4)运输和储存作用:是血浆中主要的非特异性载体。
可运输许多水溶性差的物质如胆红素、胆汁酸盐、前列腺素、类固醇激素、金属离子、多种药物等。
因分子量较小,它在血管外体液中的浓度可作为各种膜屏障完整性的良好指标。
临床意义(1)个体营养状态的评价指标。
(2)血浆蛋白质浓度明显下降时,可以影响一些内源性的代谢物、激素和外源性的药物在血液循环中的存在形式。
(3)血浆的清蛋白增高较少见,血液浓缩如严重脱水、休克、饮水不足等。
(4)浓度降低见于①白蛋白合成降低,如急、慢性肝病;②营养或吸收不良;③组织损伤或炎症引起的白蛋白分解代谢增加如大面积组织损伤;④消耗性疾病(恶性肿瘤,严重感染等);⑤白蛋白异常丢失,如肾病综合征、慢性肾炎等;⑥白蛋白分布异常,如有门静脉高压腹水时;⑦遗传性疾病等。
临床医学检验技师考试辅临床化学血浆蛋白质检查讲义
血浆蛋白质检查一、主要血浆蛋白质的理化性质、功能和临床意义(一)血浆蛋白质的组成包括前白蛋白、白蛋白、α1-抗胰蛋白酶、α1-酸性糖蛋白、结合珠蛋白、α2-巨球蛋白、铜蓝蛋白、转铁蛋白、β2-微球蛋白、C-反应蛋白。
(二)功能和临床意义1.前清蛋白(PA):又称前白蛋白。
由肝细胞合成,其半寿期很短,仅约2~5天。
(1)功能1)参与组织修补。
2)运载蛋白:运输激素和维生素,如运输甲状腺激素和维生素A。
(2)临床意义1)营养不良指标。
2)肝功不全指标:在肝炎发病早期血清前白蛋白浓度下降往往早于其他血清蛋白成分的改变。
3)急性炎症、恶性肿瘤、肾炎时其血清浓度降低。
2.清蛋白(Alb)由肝实质细胞合成,是血浆中含量最多的蛋白质,占血浆总蛋白的57%~68%。
(1)功能①内源性氨基酸营养源;②维持血液正常pH;③血浆中主要的非特异性载体,可运输许多水溶性差的物质如胆红素、胆汁酸盐、前列腺素、类固醇激素、金属离子、多种药物等;④维持血液胶体渗透压。
(2)临床意义1)个体营养状态的评价指标:医学认定水平:Alb>35g/L时正常(人卫教材有误,按此数值记忆);28~34g/L轻度缺乏;21~27g/L 中度缺乏;<21g/L严重缺乏。
当清蛋白浓度低于28g/L时,会出现水肿。
2)在血浆蛋白质浓度明显下降的情况下,可以影响许多配体在血循环中的存在形式,包括内源性的代谢物、激素和外源性的药物。
3)浓度升高:严重脱水、休克、饮水不足时。
4)浓度降低摄入不足(营养不良)合成障碍(慢性肝病)消耗增大(恶性肿瘤、甲亢、重症结核等)丢失增多(肾病综合征、严重烧伤、急性失血、组织炎症等)白蛋白分布异常(门静脉高压腹水)先天性白蛋白缺乏症(罕见)3.α1-酸性糖蛋白(AAG):又称血清类黏蛋白,包括等分子的己糖、己糖胺和唾液酸。
临床意义:主要作为急性时相反应的指标。
增高:风湿病、恶性肿瘤及心肌梗死患者常增高。
降低:在营养不良、严重肝损害等情况下。
知识十六主要蛋白质的理化性质、功能、临床意义.
知识⼗六主要蛋⽩质的理化性质、功能、临床意义.知识⼗六主要蛋⽩质的理化性质、功能、临床意义教学⽬的:1、熟悉⾎浆蛋⽩质的理化性质、功能与临床意义;2、掌握个别⾎浆蛋⽩质特别是⾎浆中的⽩蛋⽩、前⽩蛋⽩的临床意义;3、了解疾病时⾎浆蛋⽩质的变化等。
重点:个别⾎浆蛋⽩质特别是⾎浆中的⽩蛋⽩、前⽩蛋⽩的临床意义。
难点:⾎浆蛋⽩质测定的临床意义;疾病时⾎浆蛋⽩质的变化。
教学⽅法和⼿段:课堂讲授为主,多媒体教学为辅,课堂提问突出重点。
授课时数:1学时教学内容及组织:⼀、⾎浆蛋⽩质的组成及功能⾎浆蛋⽩质是⾎浆固体成份中含量最多、组成复杂、功能⼴泛的⼀类化合物。
占⾎浆固体成份90%左右,⽬前已经研究的⾎浆蛋⽩质有300多种,分离出的纯品约100来种,除免疫球蛋⽩外,主要由肝细胞合成,主要功能。
1. 维持⾎浆胶体渗透压;清蛋⽩。
2. 作为某些物质的载体,起运输作⽤;如清蛋⽩能与多种物质结合(FA、胆红素),某些球蛋⽩具特异地运输某些物质的功能,运铁蛋⽩、运⽪质醇蛋⽩。
3. 维持体液pH恒定;⾎浆蛋⽩pI⼀般都⼩于7.4是弱酸,⼀部分以弱酸盐形式存在,构成缓冲对。
4. 免疫功能;⾎浆中许多具有免疫功能的球蛋⽩,主要由浆细胞合成,电泳时位于γ区带,如IgG、IgA、IgM、IgD、IgE,此外,还有具有免疫作⽤的⾮特异球蛋⽩,如补体。
5. 凝⾎与纤溶作⽤;凝⾎与纤溶是⼀对⽭盾的统⼀、凝⾎因⼦与纤溶因⼦绝⼤部分是⾎浆蛋⽩质,它们促进⾎液凝固,防⽌⾎液流失和溶解⾎栓,防⽌重要脏器的动脉栓塞。
6. 营养作⽤;⾎浆蛋⽩质可分解成AA,⽤于合成组织蛋⽩或氧化供能。
7. 催化作⽤;⾎浆中有许多酶类,其中部分在⾎浆中发挥作⽤,称⾎浆功能性酶,如凝⾎酶原、纤溶酶原、铜蓝蛋⽩、LPL、LCAT、肾素等。
⼆、个别⾎浆蛋⽩质(⼀)前⽩蛋⽩(prealbumin,PA)分⼦量5.4万,由肝细胞合成,电泳时移动速度较⽩蛋⽩快,位于其前⽅⾯得名,半寿期短12h,PA是⼀类运载蛋⽩,⼀种能与甲状腺素结合,称为甲状腺结合蛋⽩,⼀种能与VitA结合,称为VitA 结合蛋⽩,常⽤测定⽅法是免疫学⽅法,正常参与范围0.2~0.4g /L,急性炎症,恶性肿瘤,肝硬化或肾炎时下降。
蛋白质的理化性质(一)
蛋白质的理化性质(一)引言:蛋白质是生物体内重要的有机化合物,不仅在构建细胞和组织结构中起关键作用,还参与许多生物化学过程。
了解蛋白质的理化性质对于深入理解其功能和应用具有重要意义。
本文将从五个方面介绍蛋白质的理化性质。
一、蛋白质的结构特点1. 蛋白质组成:蛋白质由氨基酸组成,氨基酸的序列决定了蛋白质的结构和功能。
2. 蛋白质的层次结构:蛋白质包括原始结构、二级结构、三级结构和四级结构,不同结构层次决定了蛋白质的功能。
3. 蛋白质的稳定性:蛋白质的稳定性受到氨基酸组成、离子强度和温度等因素的影响。
二、蛋白质的溶解性1. 水溶性蛋白质与脂溶性蛋白质:根据溶解性可将蛋白质分为水溶性和脂溶性两类。
2. 溶解度的影响因素:蛋白质的溶解度受到pH值、温度、离子强度和化学修饰等因素的影响。
3. 不溶性蛋白质的结构:某些蛋白质在特定条件下会失去溶解性,并形成聚集体或沉淀。
三、蛋白质的电荷性质1. 酸碱性: 蛋白质中的氨基酸残基可以具有酸性或碱性特性,决定了蛋白质的电荷性质。
2. 等电点:蛋白质在特定pH值下呈现电中性状态,该pH值被称为蛋白质的等电点。
3. 离子交换作用:蛋白质的电荷性质会影响其与其他离子或分子之间的交互作用。
四、蛋白质的热力学性质1. 热稳定性:蛋白质在不同温度下具有不同的热稳定性,可通过热力学参数如熔点和热容量等进行描述。
2. 热不变性:某些蛋白质在高温下具有一定的稳定性,可在热表面活性剂条件下进行研究。
3. 热变性:蛋白质在高温下会发生热变性,导致其结构和功能的改变。
五、蛋白质的光谱特性1. 紫外-可见吸收光谱:蛋白质在紫外-可见光谱范围内有特征吸收峰,可用于蛋白质的浓度测定和结构研究。
2. 红外光谱:蛋白质的红外光谱可以提供关于氨基酸残基吸收峰和蛋白质结构的信息。
3. 荧光光谱:蛋白质在特定荧光激发下会发出荧光信号,可用于蛋白质的检测和分析。
总结:蛋白质是生物体中重要的有机化合物,其理化性质在其功能和应用中起着重要作用。
简述蛋白质的理化性质
简述蛋白质的理化性质1、具有两性;2、可发生水解反应;3、溶水具有胶体的性质;4、加入电解质可产生盐析作用;5、蛋白质的变性;6、颜色反应,蛋白质可以跟许多试剂发生颜色反应;7、气味反应。
两性蛋白质是由α-氨基酸通过肽键构成的高分子化合物,在蛋白质分子中存在着氨基和羧基,因此跟氨基酸相似,蛋白质也是两性物质。
水解反应蛋白质在酸、碱或酶的作用下发生水解反应,经过多肽,最后得到多种α-氨基酸。
蛋白质水解时,应找准结构中键的“断裂点”,水解时肽键部分或全部断裂。
胶体性质有些蛋白质能够溶解在水里(例如鸡蛋白能溶解在水里)形成溶液。
蛋白质的分子直径达到了胶体微粒的大小(10-9~10-7m)时,所以蛋白质具有胶体的性质。
沉淀原因:加入高浓度的中性盐、加入有机溶剂、加入重金属、加入生物碱或酸类、热变性少量的盐(如硫酸铵、硫酸钠等)能促进蛋白质的溶解。
如果向蛋白质水溶液中加入浓的无机盐溶液,可使蛋白质的溶解度降低,而从溶液中析出,这种作用叫做盐析。
这样盐析出的蛋白质仍旧可以溶解在水中,而不影响原来蛋白质的性质,因此盐析是个可逆过程。
利用这个性质,采用分段盐析方法可以分离提纯蛋白质。
变性在热、酸、碱、重金属盐、紫外线等作用下,蛋白质会发生性质上的改变而凝结起来。
这种凝结是不可逆的,不能再使它们恢复成原来的蛋白质。
蛋白质的这种变化叫做变性,蛋白质变性之后,紫外吸收,化学活性以及粘度都会上升,变得容易水解,但溶解度会下降。
蛋白质变性后,就失去了原有的可溶性,也就失去了它们生理上的作用。
因此蛋白质的变性凝固是个不可逆过程。
造成蛋白质变性的原因物理因素包括:加热、加压、搅拌、振荡、紫外线照射、X射线、超声波等。
化学因素包括:强酸、强碱、重金属盐、三氯乙酸、乙醇、丙酮等。
颜色反应例如在鸡蛋白溶液中滴入浓硝酸,则鸡蛋白溶液呈黄色。
这是由于蛋白质(含苯环结构)与浓硝酸发生了颜色反应的缘故。
还可以用双缩脲试剂对其进行检验,该试剂遇蛋白质生成紫色络合物。
临床化学讲义血浆蛋白质检查重点总结
血浆蛋白质检查一、主要血浆蛋白质的理化性质、功能和临床意义(一)血浆蛋白质的组成包括前白蛋白、白蛋白、α1-抗胰蛋白酶、α1-酸性糖蛋白、结合珠蛋白、α2-巨球蛋白、铜蓝蛋白、转铁蛋白、β2-微球蛋白、C-反应蛋白。
(二)功能和临床意义1.前清蛋白(PA):又称前白蛋白。
由肝细胞合成,其半寿期很短,仅约12h。
(1)功能1)参与组织修补。
2)运载蛋白:运输激素和维生素,如运输甲状腺激素和维生素A。
(2)临床意义1)营养不良指标。
2)肝功不全指标:在肝炎发病早期血清前白蛋白浓度下降往往早于其他血清蛋白成分的改变。
3)急性炎症、恶性肿瘤、肾炎时其血清浓度降低。
2.清蛋白(Alb)由肝实质细胞合成,是血浆中含量最多的蛋白质,占血浆总蛋白的57%~68%。
(1)功能①内源性氨基酸营养源;②维持血液正常pH;③血浆中主要的非特异性载体,可运输许多水溶性差的物质如胆红素、胆汁酸盐、前列腺素、类固醇激素、金属离子、多种药物等;④维持血液胶体渗透压。
(2)临床意义1)个体营养状态的评价指标:医学认定水平:Alb>35g/L时正常;28~34g/L轻度缺乏;21~27g/L中度缺乏;<21g/L严重缺乏。
当清蛋白浓度低于28g/L时,会出现水肿。
2)在血浆蛋白质浓度明显下降的情况下,可以影响许多配体在血循环中的存在形式,包括内源性的代谢物、激素和外源性的药物。
3)浓度升高:严重脱水、休克、饮水不足时。
4)浓度降低摄入不足(营养不良)合成障碍(慢性肝病)消耗增大(恶性肿瘤、甲亢、重症结核等)丢失增多(肾病综合征、严重烧伤、急性失血、组织炎症等)白蛋白分布异常(门静脉高压腹水)先天性白蛋白缺乏症(罕见)3.α1-酸性糖蛋白(AAG):又称血清类黏蛋白,包括等分子的己糖、己糖胺和唾液酸。
临床意义:主要作为急性时相反应的指标。
增高:风湿病、恶性肿瘤及心肌梗死患者常增高。
降低:在营养不良、严重肝损害等情况下。
在急性时相反应或用类固醇皮质激素治疗时,由于α1-酸性糖蛋白含量升高,结合以上药物的能力增强而干扰药物的有效作用。
蛋白质的理化性质
蛋白质的理化性质【摘要】蛋白质是生物体内功能最为复杂的大分子,其理化性质直接影响着其功能和应用。
氨基酸的组成和序列决定了蛋白质的结构和功能,不同的氨基酸序列会导致蛋白质不同的理化性质。
分子量也会影响蛋白质的溶解性和折叠状态,从而影响其功能。
蛋白质的溶解性和聚集态受多种因素影响,包括pH、温度等。
而蛋白质的热稳定性和折叠状态直接关系到其功能的稳定性。
深入研究蛋白质的理化性质有助于了解其功能和应用,同时也为蛋白质工程和药物设计提供重要依据。
对蛋白质的理化性质进行细致研究,有助于揭示其内在机制,进而推动相关领域的发展和应用。
【关键词】蛋白质、理化性质、氨基酸、分子量、溶解性、聚集态、构象、热稳定性、折叠状态、结构、功能、应用。
1. 引言1.1 蛋白质的理化性质概述蛋白质是生物体内最重要的大分子有机化合物之一,具有多样的生物学功能。
蛋白质的理化性质涉及其组成、结构及行为特性等方面,对于揭示蛋白质在生物体内的功能和作用具有重要意义。
蛋白质的理化性质受到多种因素的影响,包括氨基酸组成和序列、分子量、溶解性、聚集态和构象以及热稳定性等。
氨基酸是构成蛋白质的基本单元,不同氨基酸的组成和排列方式决定了蛋白质的结构和功能。
蛋白质的氨基酸序列对其理化性质有重要影响,不同氨基酸的性质可以影响蛋白质的溶解性、稳定性等特性。
分子量是影响蛋白质理化性质的重要因素之一。
分子量较大的蛋白质通常具有较高的溶解性和稳定性,同时也可能对其聚集态和构象造成影响。
蛋白质的溶解性受到多种因素的影响,包括pH 值、离子强度、温度等。
溶解性的变化可能导致蛋白质结构的改变,从而影响其功能和生物学活性。
蛋白质的热稳定性与其折叠状态密切相关。
蛋白质在特定温度范围内保持特定的折叠状态,一旦超出该范围可能导致蛋白质失去功能。
研究蛋白质的热稳定性可以为其在生物学的应用提供重要参考。
蛋白质的理化性质是与其结构密切相关的,深入研究蛋白质的理化性质有助于了解其功能和应用,为生物学和药物研究提供重要参考。
简述蛋白质的理化性质。
简述蛋白质的理化性质。
蛋白质是一种具有生物活性的有机物质,是生物体的重要组成部分,是构成活体机体大部分亚细胞组织的重要物质。
它由氨基酸构成,包括20种氨基酸,每一种氨基酸的个体比例不定,形成了特异的蛋白质分子结构。
蛋白质具有种种特殊理化性质,它不仅能反映生物活体的特性,而且能用于科学实验室对生物材料进行分析和定量。
一、理化性质1、蛋白质结构蛋白质具有独特的三级结构,它由氨基酸组成,可以根据氨基酸序列和链构象形成复杂的空间构象。
以水解机理和非水解机理为基础,蛋白质的结构和功能的作用是相互关联的,即已知功能的蛋白质结构,也可以通过其结构推断出其功能。
2、蛋白质的水溶性大多数蛋白质具有特定的极性,所以它们能与水发生双范本作用作用,能够以很好的m比例溶解。
一般来说,极性和表面活性有关,活性质和水溶性有关,因此,蛋白质的水溶性和其本身的理化性质和结构有关。
3、pH值和温度蛋白质具有调节体内环境的重要作用,体内环境的温度和pH值的变化可以影响蛋白质的结构和活性。
它的敏感性比较大,当温度发生变化时,它会发生一定程度的改变,当α结构因温度变化而稳定时,蛋白质相对沉淀可能会发生。
此外,在体外制备蛋白质时,其pH值也可能影响其活性和稳定性。
因此,在实验检测过程中,可以通过预先调整温度和pH值来维持生物体状态。
4、脱水或催化作用蛋白质在一定的条件下,它可能会透过脱水反应的作用,或者由酶的催化活性,被活化或改变活性,以达成较大的化学反应,影响生物体的正常运作。
此外,蛋白质的部分残基也参与激酶活性的转换,从而影响蛋白质的结构和功能。
二、结论蛋白质是一种独具特性的物质,它不仅是活体组成的重要物质,而且具有独特的理化性质,例如温度、pH值、蛋白质结构以及脱水作用等。
这些理化特性既能反映到生物体的本质特性,又能在实验室中用于分析和定量。
因此,研究植物蛋白质的理化性质具有重要的理论和应用价值。
蛋白质的理化性质
蛋白质的理化性质蛋白质是生物体中最为重要的大分子有机化合物之一,其具有多种理化性质,这些性质直接影响着蛋白质的功能和结构。
本文将着重介绍蛋白质的理化性质,包括分子质量、氨基酸组成、等电点、溶解性、热稳定性和光学性质等方面。
分子质量蛋白质的分子质量通常是指相对分子质量,用该蛋白质的分子质量与碳12的质量相对比得到。
蛋白质的分子质量因其组成氨基酸的种类、序列和数量而异。
一般来说,蛋白质的分子质量范围从数千到数十万不等。
氨基酸组成蛋白质是由氨基酸通过肽键连接而成的,不同蛋白质中的氨基酸组成各异。
氨基酸的类型和数量直接影响着蛋白质的结构和性质。
常见的氨基酸包括20种标准氨基酸,它们各自具有独特的化学结构和性质。
等电点蛋白质的等电点是指在该蛋白质溶液中,净电荷为零的pH值。
蛋白质的等电点与其氨基酸组成密切相关。
当蛋白质的溶液pH值低于等电点时,蛋白质带有正电荷,而当溶液pH值高于等电点时,则带有负电荷。
等电点对于蛋白质在电泳分离和纯化过程中具有重要的意义。
溶解性蛋白质的溶解性在很大程度上取决于其氨基酸组成和环境条件。
一些蛋白质在水中易溶解,而另一些可能需要特定的溶剂或特定的pH值才能溶解。
溶解性对于蛋白质的结构和功能具有重要影响,不溶解的蛋白质可能会失去其生物活性。
热稳定性蛋白质的热稳定性是指其在高温下是否能够保持其原有的结构和功能。
蛋白质的热稳定性受其组成氨基酸的性质和序列的影响。
一些蛋白质在高温下能够保持稳定,而另一些则易于发生变性和失活。
光学性质一些蛋白质具有旋光性,即其能够使得通过它们的光发生旋转现象。
这种旋光性取决于蛋白质分子中的手性氨基酸,如L-氨基酸和D-氨基酸。
光学性质对于鉴定和纯化蛋白质具有一定的重要性。
综上所述,蛋白质具有丰富的理化性质,包括分子质量、氨基酸组成、等电点、溶解性、热稳定性和光学性质等。
这些性质对于蛋白质的结构和功能具有重要的影响,也在蛋白质的研究和应用中发挥着重要的作用。
蛋白质的理化性质
14.2.3 蛋白质的理化性质 Physical and Chemical Properties of Proteins讨论蛋白质的性质,一定要理解蛋白质分子的结构.蛋白质分子是具有生物活 性的大分子化合物,分子量很大.蛋白质分子具有一、二、三、四级结构,一级结构是蛋白质分子结构的基础。
蛋白质分子除主链(肽链)外,还有各种不同的侧链。
在这些侧链中,既有各种烃基,也有活泼的羧基、氨基、巯基、醇羟基和酚羟基等。
这些侧链基团有些是亲水基团;有些是疏水基团;有些是酸性基团;有些是碱性基团;有些裸露在二、三级结构外面;有些是掩蔽在二、三级结构的内部。
蛋白质分子内除主键(肽键)外,还有很多副键维持它的空间结构。
蛋白质的性质主要有如下几个方面: (1)蛋白质的两性性质和等电点。
蛋白质多肽链的N ―端有氨基,C ―端有 羧基,其侧链上也常有碱性基团和酸性基团。
因此,蛋白质和氨基酸相似,也具有两性性质和等电点。
调节溶液到某一pH 值时,蛋白质分子所带的正、负电荷相等,分子可成为两性离子,此时溶液的pH 值称为该蛋白质的等电点(pI )。
如果溶液的pH 值在等电点的酸侧,溶液中的H +会抑制羧基电离,并有利于氨基与H +结合,因而蛋白质的净电荷为正。
如果溶液的pH 值在等电点的碱侧,OH - 有利于羧基的电离,不利于氨基与H +结合,故蛋白质的净电荷为负。
因此,蛋白质和α―氨基酸溶液相似,也存在下列平衡关系。
如用H 2N ―Pr ―COOH 表示蛋白质分子,羧基代表分子中所有的酸性基团,氨基代表所有的碱性基团,Pr 代表其它部分,则: H2N Pr COO −H 3N COO -H 3N COOH ++pH>pI 等电点(pI )pH<pI 阴离子两性离子阳离子++ 不同的蛋白质具有不同的等电点,多数蛋白质的等电点小于7。
在动植物组织液中,pH 值一般在7―7.4之间,蛋白质大都以阴离子形式存在,并与两性离子达成平衡。
蛋白质的理化性质
三级结构是指整条肽链的折叠 和盘绕方式,形成具有特定空 间构象的完整蛋白质分子。
蛋白质的高级结构决定了其生 物学活性和功能,是蛋白质发
挥生物学功能的基础。
Байду номын сангаас2
蛋白质的理化性质
溶解性
蛋白质的溶解性主要取决于其氨基酸组成和分子结构。一些氨基酸如极性氨基酸可以增加蛋白质的水溶性,而疏水性氨基酸 则会使蛋白质更难溶于水。此外,蛋白质的溶解度还受到pH值、离子强度和温度等因素的影响。
蛋白质的溶解度对其功能性质有重要影响,如形成凝胶、乳化和稳定性等。在食品加工过程中,蛋白质的溶解度决定了其在 不同条件下的行为和功能表现。
黏度
蛋白质的黏度主要取决于其分子大小、形状和浓度。蛋白质 分子在溶液中会形成网状结构,从而产生黏度。此外,蛋白 质的黏度还受到温度、pH值和离子强度等因素的影响。
03
蛋白质的分类
按功能分类
结构蛋白
主要参与细胞和组织的结构组 成,如胶原蛋白和角蛋白。
酶蛋白
具有催化生物化学反应的功能 ,如羧基酶和脱氢酶。
运输蛋白
负责运输分子和离子,如血红 蛋白和转运蛋白。
免疫蛋白
参与免疫应答,如抗体和免疫 球蛋白。
按分子量分类
低分子量蛋白质
相对分子质量较小,通常在 10,000-50,000之间,如肌红蛋 白和细胞色素C。
酶的活性受温度、pH值、激活 剂和抑制剂等多种因素影响,需 要在适宜的条件下才能发挥最佳
效果。
酶在生物体内发挥着广泛的作用, 如消化、代谢、免疫等,对于生 物的生长、发育和繁殖至关重要。
激素活性
激素活性是指蛋白质在生物体 内作为激素的能力,能够调节 生物体的代谢、生长和发育等
蛋白质理化性质
蛋白质理化性质
蛋白质是基本生物大分子,是构成生命活动的重要组成部分。
它无论在机构、作用和性质上,都具有非常特殊的作用。
蛋白质的分子量较大,其分子量在1000-40000左右,大多为离子性,在生理状态下可以被水溶性蛋白质和脂溶性蛋白质共同组成。
它们一般是二聚体,又链又丝地聚合而成,具有极高的耐热性、耐磨性和耐腐蚀性。
化学上,蛋白质是一类氨基酸的复合物,也可以说是含氨基酸及其形成二聚体及三聚体的物质。
它们含有非常多的氨基酸,比如谷氨酸、甘氨酸、酪氨酸、精氨酸等,有些蛋白质还含有糖类或有机酸。
它们拥有丰富的原子团,使得其全新而独特的性质比其他结构复杂的染料或化合剂更强大。
蛋白质也有不同的物理性质,比如粉末形态的蛋白质具有高可溶性,在酸性条件下容易变性;而膨胀的蛋白质具有高的热稳定性。
不同的蛋白质有着不同的生理作用,如CAT蛋白可以穿透细胞膜,激活其合成;Insulin 可以调节血糖水平,维持血液中葡萄糖的正常水平;DNA蛋白可以催化DNA手性结合,以及其他许多复杂的代谢过程。
总之,蛋白质通常具有十分特殊的化学及物理性质,是生物机理和维持正常生理功能的重要组成部分。
蛋白质的理化性质
蛋白质的理化性质蛋白质是一类高分子生物大分子化合物,由氨基酸分子结合而成。
下面将从化学、物理、生化等方面来介绍蛋白质的理化性质。
1. 氨基酸的性质氨基酸是蛋白质的基本组成单位,其分子结构具有酸性和碱性两部分,分别是羧基和氨基。
氨基酸的酸性和碱性反应性决定蛋白质的异性和电性。
氨基酸的酸性基团和碱性基团在不同的环境下会存在不同的离子形式,从而影响蛋白质的电性质。
2. 构象的性质蛋白质的构象是指氨基酸之间的立体构型,决定了蛋白质的特殊结构和功能。
蛋白质的构象主要由五种不同层次的结构组成,包括原生构象、二级构象、三级构象、四级构象和超级结构。
每一层次的构象都有一定的稳定性和特殊结构,是蛋白质功能和特性的决定因素。
3. 溶解和凝固的性质蛋白质在水中具有一定的溶解性,但可能会因为温度、pH值、离子强度等因素的改变而发生凝固。
这种溶解或凝固的性质取决于蛋白质的特殊结构以及其所处环境。
当蛋白质分子与水分子之间的相互作用受到破坏或受到特定溶剂或离子的作用时,蛋白质分子会转化为凝胶态或沉淀态。
4. 热力学性质蛋白质分子的热力学性质涉及其结构及其所处溶液环境的物理化学性质,可用于研究蛋白质折叠和复性过程。
蛋白质的热力学性质包括热容量、热稳定性、相转化、热解离等。
这些性质的变化与蛋白质结构的稳定性和功能密切相关。
蛋白质的光学性质主要表现为它们具有的吸收、发射光线的光学行为。
蛋白质的吸收和发射光束涉及其分子内的色团,这些分子内的色团主要由氨基酸的芳香族侧链所构成。
蛋白质的光学性质可以利用光谱分析来研究蛋白质的结构和功能。
综上所述,蛋白质的理化性质是多方面的,包括氨基酸的性质、构象的性质、溶解和凝固的性质、热力学性质以及光学性质等,这些性质的变化都会导致蛋白质的性质和功能的变化。
因此,对蛋白质的理化性质进行研究对于理解蛋白质的结构、功能与机制具有重要意义。
蛋白质的理化性质(二)
蛋白质的理化性质(二)引言:蛋白质是生物体内最重要的有机物之一,它具有多种复杂的理化性质。
在本文中,我们将详细介绍蛋白质的理化性质,包括其酸碱性、溶解性、热稳定性、氧化还原性和聚合性等方面。
正文:1. 酸碱性:- 蛋白质的酸碱性来源于其氨基酸残基中的氨基和羧酸基,并受到溶液pH的影响。
- 在酸性条件下,蛋白质带正电荷,容易与带负电荷的物质相互作用。
- 在碱性条件下,蛋白质带负电荷,容易与带正电荷的物质相互作用。
2. 溶解性:- 蛋白质的溶解性受到其成分和物理条件的影响,如溶液离子强度、温度和pH等。
- 水是蛋白质最常见的溶剂,但特定条件下,蛋白质也可以溶解于有机溶剂中。
- 蛋白质的溶解性对其功能和应用具有重要意义。
3. 热稳定性:- 蛋白质在高温下容易发生变性,失去原有的结构和功能。
- 高温可以引起蛋白质内部的氢键和疏水作用的破坏。
- 不同蛋白质对温度的敏感性不同,有些蛋白质可以在高温下保持一定的稳定性。
4. 氧化还原性:- 蛋白质中的部分氨基酸残基可以参与氧化还原反应,如半胱氨酸(Cys)和甲硫醇(Met)等。
- 氧化还原反应可以改变蛋白质的构象和功能。
- 氧化还原平衡在细胞代谢和疾病发展中起着重要的调节作用。
5. 聚合性:- 蛋白质具有聚合的能力,可以通过非共价相互作用形成多聚体结构。
- 蛋白质的聚合对于其功能和稳定性至关重要。
- 一些蛋白质可以通过聚合来形成纤维或胶状物质。
总结:蛋白质具有复杂的理化性质,包括酸碱性、溶解性、热稳定性、氧化还原性和聚合性。
深入理解蛋白质的理化性质对于揭示其结构、功能和应用具有重要意义。
此外,这些性质也与蛋白质在细胞内的代谢过程和疾病发展中起着关键的调节作用。
蛋白质的理化性质
202X
劳动节卡通风模板
蛋白质分子除两端的氨基和羧基可解离外,氨基酸残基侧链中某些基团,在一定的溶液pH条件下都可解离成带负电荷或正电荷的基团。
01
蛋白质的等电点( isoelectric point, pI) 当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。
蛋白质凝固
蛋白质盐析沉淀
磁力搅拌器
待超滤的蛋白质溶液
加压的氮气
超滤膜
超滤(ultrafiltration):
蛋白质的变性和凝固
蛋白质的变性(denaturation) 在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。
01
临床医学上,变性因素常ห้องสมุดไป่ตู้应用来消毒及灭菌。
02
蛋白质的两性电离
磁力搅拌器
透析前
透析后
4
5
通过透析,小分子通透透析袋,散布于透析液中,大分子量的蛋白质不能通透透析袋,留在透析袋内。从而,蛋白质溶液中的小分子物质通过透析被分离除去。
透析袋
透析(dialysis):
在一定的压力下,使蛋白质溶液在通过一定孔径的超滤膜时,小分子量物质滤过,而大分子量的蛋白质被截留,从而达到分离纯化的目的。这种方法既可以纯化蛋白质,又可达到浓缩蛋白质溶液的目的。
此外, 防止蛋白质变性也是有效保存蛋白质制剂(如疫苗等)的必要条件。
02
应用举例
若蛋白质变性程度较轻,去除变性因素后,蛋白质仍可恢复或部分恢复其原有的构象和功能,称为可逆变性。
蛋白质的凝固作用(protein coagulation)
蛋白质的性质及应用领域
蛋白质的性质及应用领域蛋白质是生命体内一类非常重要的有机物质,具有多种功能和作用。
在生物体内,蛋白质参与了许多生命活动,包括细胞结构的支持、代谢反应的催化、信号传导、免疫反应等。
蛋白质的性质可以根据其组成和结构来描述,下面将详细介绍蛋白质的性质及其应用领域。
首先,蛋白质的性质包括结构性、功能性、生物活性、溶解性等。
蛋白质的结构性表现在其由氨基酸组成,通过肽键连接成多肽链,然后进一步折叠成特定的三维结构。
蛋白质的功能性主要体现在其特定的结构给予了其特定的功能,例如,酶类蛋白质能够催化各种生物反应,抗体能够识别并结合外源性抗原,传输蛋白可以帮助物质在生物体内运输等。
生物活性是指蛋白质在生物体内能够表现出的生物学活性,如细胞因子可以调节免疫反应,激素可以调节代谢等。
溶解性是指蛋白质可以在水中溶解,这使得蛋白质能够在生物体内进行自由的运输和反应。
蛋白质在生物体内有着广泛的应用领域。
首先,作为生物体内最基本的结构组成物质,蛋白质在细胞和组织的结构中起着支持和稳定的作用。
肌肉中的肌动蛋白和骨骼中的胶原蛋白都是蛋白质的重要组成部分。
其次,蛋白质作为酶的应用也非常广泛,生物体内的代谢反应大部分都是通过酶来催化完成的,而工业上的环境净化、食品加工、医药生产等领域也需要酶来加速反应速率。
此外,蛋白质在医学和生物技术领域也有很多应用,例如抗体可以用来诊断疾病、激素可以用来调节代谢和治疗疾病,重组蛋白可以用来生产生物药品和工业酶等。
另外,蛋白质在食品加工中也有着重要的应用,比如大豆蛋白可以用来作为饮食营养的补充,鱼胶原蛋白可以用来增加食品的弹性和口感等。
总的来说,蛋白质是生物体内非常重要的有机物质,其特定的结构赋予了其多种功能和作用。
在生物体内,蛋白质参与了许多生命活动,包括细胞结构的支持、代谢反应的催化、信号传导、免疫反应等。
在工业和生物技术领域,蛋白质也有着广泛的应用,包括酶的应用、生物药品的生产、食品加工等。
因此,研究和应用蛋白质的性质对于生命科学和工程技术都具有着重要的意义。
生物化学丨蛋白质的结构与功能(蛋白质的理化性质)
生物化学丨蛋白质的结构与功能(蛋白质的理化性质)
医学联络官
Medical Liaison officer Club
蛋白质的理化性质
使蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零时溶液的pH称为蛋白质的等电点。
变性:在某些物理和化学因素作用下,蛋白质特定的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失的现象称为蛋白质的变性。
蛋白质变性后溶解度降低、黏度增加、结晶能力消失、生物活性丧失,易被蛋白酶水解.由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在280nm波长处有特征性吸收峰.茚三酮反应:蛋白质与茚三酮反应可生成兰紫色化合物。
双缩脲反应:蛋白质和多肽分子中的肽键在稀碱溶液中与硫酸铜共热,可呈现紫色或红色,称为双缩脲反应。
蛋白质的原理及应用知识点
蛋白质的原理及应用知识点1. 蛋白质的基本概念蛋白质是生物体内一类重要的有机化合物,由氨基酸组成。
它在生物体内具有多种功能,包括结构支持、酶催化、运输和调节等。
蛋白质的结构决定了它的特性和功能。
2. 蛋白质的结构蛋白质的结构可以分为四级:一级结构、二级结构、三级结构和四级结构。
2.1 一级结构蛋白质的一级结构是指其氨基酸序列。
氨基酸是蛋白质的基本组成单元,蛋白质的功能和性质受一级结构的序列决定。
2.2 二级结构蛋白质的二级结构是指蛋白质中氨基酸的局部空间排列方式。
主要有α-螺旋和β-折叠两种二级结构。
2.3 三级结构蛋白质的三级结构是指蛋白质分子中各个氨基酸残基的整体三维空间结构。
蛋白质的三级结构决定了其功能和稳定性。
2.4 四级结构蛋白质的四级结构是指由多个多肽链相互组合而成的复合蛋白质的空间结构。
这些多肽链可以是相同的,也可以是不同的。
3. 蛋白质的合成蛋白质合成是指生物体内通过蛋白质的合成路线来产生新的蛋白质分子。
蛋白质的合成是由RNA转录为mRNA,然后被翻译为蛋白质。
4. 蛋白质的功能蛋白质在生物体内具有多种功能。
4.1 结构支持蛋白质可以提供生物体内部和外部的结构支持,例如肌肉蛋白可以使肌肉收缩,胶原蛋白可以维持组织的弹性和紧实性。
4.2 酶催化许多酶都是蛋白质,它们可以加速化学反应的速度,从而促进生物体内的代谢过程。
4.3 运输和调节蛋白质可以通过运输分子来维持生物体内的正常运作。
例如,血红蛋白可以运输氧气,激素可以通过结合蛋白质来调节身体的代谢过程。
5. 蛋白质的应用蛋白质在许多领域都有广泛的应用。
5.1 生物医学研究蛋白质在生物医学研究中起着至关重要的作用。
例如,研究特定蛋白质的功能可以帮助科学家们了解疾病的机制,从而发展新的治疗方法。
5.2 药物研发蛋白质可以作为药物的靶点或药物载体。
研究不同蛋白质相互作用的药物可以为新药的设计提供参考。
5.3 农业生产蛋白质可以用于改良植物,提高其产量和抗病性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识十六主要蛋白质的理化性质、功能、临床意义
教学目的:
1、熟悉血浆蛋白质的理化性质、功能与临床意义;
2、掌握个别血浆蛋白质特别是血浆中的白蛋白、前白蛋白的临床意义;
3、了解疾病时血浆蛋白质的变化等。
重点:个别血浆蛋白质特别是血浆中的白蛋白、前白蛋白的临床意义。
难点:血浆蛋白质测定的临床意义;疾病时血浆蛋白质的变化。
教学方法和手段:课堂讲授为主,多媒体教学为辅,课堂提问突出重点。
授课时数:1学时
教学内容及组织:
一、血浆蛋白质的组成及功能
血浆蛋白质是血浆固体成份中含量最多、组成复杂、功能广泛的一类化合物。
占血浆固体成份90%左右,目前已经研究的血浆蛋白质有300多种,分离出的纯品约100来种,除免疫球蛋白外,主要由肝细胞合成,主要功能。
1. 维持血浆胶体渗透压;清蛋白。
2. 作为某些物质的载体,起运输作用;如清蛋白能与多种物质结合(FA、胆红素),某些球蛋白具特异地运输某些物质的功能,运铁蛋白、运皮质醇蛋白。
3. 维持体液pH恒定;血浆蛋白pI一般都小于7.4是弱酸,一部分以弱酸盐形式存在,构成缓冲对。
4. 免疫功能;血浆中许多具有免疫功能的球蛋白,主要由浆细胞合成,电泳时位于γ区带,如IgG、IgA、IgM、IgD、IgE,此外,还有具有免疫作用的非特异球蛋白,如补体。
5. 凝血与纤溶作用;凝血与纤溶是一对矛盾的统一、凝血因子与纤溶因子绝大部分是血浆蛋白质,它们促进血液凝固,防止血液流失和溶解血栓,防止重要脏器的动脉栓塞。
6. 营养作用;血浆蛋白质可分解成AA,用于合成组织蛋白或氧化供能。
7. 催化作用;血浆中有许多酶类,其中部分在血浆中发挥作用,称血浆功能性酶,如凝血酶原、纤溶酶原、铜蓝蛋白、LPL、LCAT、肾素等。
二、个别血浆蛋白质
(一)前白蛋白(prealbumin,PA)分子量5.4万,由肝细胞合成,电泳时移动速度较白蛋白快,位于其前方面得名,半寿期短12h,PA是一类运载蛋白,一种能与甲状腺素结合,称为甲状腺结合蛋白,一种能与VitA结合,称为VitA 结合蛋白,常用测定方法是免疫学方法,正常参与范围0.2~0.4g /L,急性炎症,
恶性肿瘤,肝硬化或肾炎时下降。
(二)白蛋白(albumin,Alb)分子量66458,由肝实质细胞合成,半寿期15~19天,是血浆中含量最多的蛋白质,占40%~60%,主要功能,维持血浆胶体渗透性,缓冲作用,运输作用,营养作用,调节某些激素或药物活性。
白蛋白可微量地通过肾小球,约0.04%,但大部分被血小管重吸收。
白蛋白的测定方法目前主要是溴甲酚绿(BCG)法,正常参考范围35~55g/L,血浆白蛋白增高临床少见,主要见于严重失水引起血液浓缩,血浆白蛋白降低临床常见。
①合成障碍急;慢性肝炎。
②丢失过多;肾病综合症、慢性肾小球、肾炎、糖尿病、系统性斑狼疮等。
③分解过多;营养不良,慢性胃肠道疾病。
(三)甲胎蛋白(α1-fetoprotein,AFP)分子量6.5~7万,pI4.75含糖量4%,主要由胎儿肝合成,妊娠13~15周血清AFP含量最高,以后逐渐下降,出生时仅为高峰期的1%~0.1%,周岁时接近成人水平,仅10~30μg /L,功能不详。
AFP作为肿瘤标志物,对原发性肝Ca的诊断很有价值,80%以上原发性肝Ca患者血清AFP上升,但无特异性,肺Ca、胰腺Ca,肝硬化患者血清AFP亦升高,此外,羊水AFP含量测定可用于胎儿产前监测,AFP↑提示胎儿畸形(神经管缺损、脊柱裂、无脑儿),死胎。
(四)α2-巨球蛋白(α2-macroglobulin,α2MG或AMG)是血浆中分子量最大的蛋白质,分子量为62.5~80万,含糖量8%。
AMG最突出的特性能与多种分子和离子结合,特别是它能与不少蛋白水解酶结合而影响这些酶的活性,有选择地保护某些蛋白酶活性的作用。
AMG由肝细胞与单核吞噬细胞系统合成,半寿期5天。
AMG测定方法,免疫化学法,正常参考范围1.25~4.10g /L,在低Alb血症,AMG上升,妊娠、服用避孕药时AMG上升。
(五)铜蓝蛋白(ceruloplasmin,CER)含铜的糖蛋白,分子量约12~16万,含糖量约10%,因含铜而呈蓝色,故名铜蓝蛋白。
CER具有氧化酶活性,使血液中Fe2+氧化成Fe3+,故又称亚铁氧化酶。
CER 还起着抗氧化剂的作用。
防止组织中脂质过氧化物和自由基的生成,CER属于急性时相反应蛋白,血浆CER在感染、创伤、肿瘤上升,Wilson病(肝点状核变性)CER下降。
CER测定方法,根据其氧化酶活性或免疫化学法,成人正常参考范围0.2~0.5g/L。
(六)β2-微球蛋白(β2-microglobulin,BMG)分子量11800,存在于所有有核细胞的表面,特别是淋巴细胞和肿瘤细胞并由此释放入血,半寿期107mim。
作为人类淋巴细胞抗原β链交部分。
BMG测定方法,由于含量很低,常采用放免法,正常参考范围1.0~2.5mg/L。
主要用于监测肾小管功能,特别是肾移植后,如有排斥反应,BMG在尿中排出量上升,肾功能衰竭,炎症、肿瘤血浆BMG上升。
(七)C-反应蛋白(C-reactive protein,CRP),是一种能结合肺炎双球菌细胞壁C-多糖的蛋白质,分子量11.5~14万,五条肽链组成,肝细胞合成。
CRP能激活补体,促进粒细胞巨噬细胞的运动和吞噬,具有调理素样作用。
CRP测定方法,免疫扩散法,火箭免疫电泳法,ELISA法,放免法,正常参考范围:成人0.42~5.2mg/L。
作为急性时相反应的一个极灵敏指标,急性心肌梗死,创伤、感染、炎症、外科手术、肿瘤浸润迅速上升。
三、疾病时的血浆蛋白质
(一)炎症、创伤在炎症、创伤、感染、心肌梗塞、肿瘤等情况下其血浆浓度会发生明显改变的蛋白质称为急性时相反应蛋白(acute phcse reactante,APR),主要包括AAG、AAT、Hp、CER、C3、C4、纤维蛋白原、CRP↑;PA、Alb、TRF↓。
(二)肝脏疾病血浆蛋白质大多数是由肝细胞合成,因此肝脏疾病会导致多种血浆蛋白质发生变化。
如乙肝活动期AAT、IgM↑;而Hp、PA、Alb↓。
肝硬化时AAT、IgA、AMG↑↑;IgG↑;CER、CRP轻度↑;而AAG、Hp、C3↓;PA、Alb、TRF↓↓。
(三)肾脏疾病肾脏疾病早期可因蛋白尿而导致血浆蛋白质丢失,丢失的蛋白质与其分子量有关,小分子蛋白质丢失明显,而大分子量蛋白质因肝细胞代偿性合成增加。
主要表现是Alb↓↓,PA、AAG、AAT、TRF↓;而AMG、Hp、β-LP↑。
课堂提问:
1、简述血浆蛋白质的功能?
2、简述白蛋白的功能、临床意义?
3、简述肝脏疾病时,血浆蛋白质的变化?。