高一数学(人教版)必修四单元测试平面向量部分Word版含解析
(好题)高中数学必修四第二章《平面向量》测试题(含答案解析)(4)
一、选择题1.已知a 与b 的夹角为60,4a =,则a b λ-(R λ∈)的最小值为( )A .B .72C .103D 2.已知函数()sin (0)2f x x a a π⎛⎫=>⎪⎝⎭,点A ,B 分别为()f x 图象在y 轴右侧的第一个最高点和第一个最低点,O 为坐标原点,若OAB 为钝角三角形,则a 的取值范围为( )A .10,(2,)2⎛⎫+∞ ⎪⎝⎭ B .(1,)⎛⋃+∞ ⎝⎭C .3⎛⎫ ⎪ ⎪⎝⎭D .(1,)+∞3.在ABC ∆中,2AB =,3AC =,5cos 6A =,若O 为ABC ∆的外心(即三角形外接圆的圆心),且AO mAB nAC +=,则2n m -=( ) A .199B .4122-C .111-D .17114.已知向量()1,2a =,()2,3b =-,若向量c 满足()//c a b +,()c a b ⊥+,则c =( ) A .7793⎛⎫ ⎪⎝⎭,B .7739⎛⎫-- ⎪⎝⎭,C .7739⎛⎫ ⎪⎝⎭,D .7793⎛⎫-- ⎪⎝⎭,5.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .726.在ABC 中,D 为AB 的中点,60A ∠=︒且2AB AC AB CD ⋅=⋅,若ABC 的面积为AC 的长为( )A .BC .3D .7.已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值,最小值分别是( )A .0B .4,C .16,0D .4,08.在ABC ∆中,D 为BC 边上一点,且AD BC ⊥,向量AB AC +与向量AD 共线,若10AC =2BC =,0GA GB GC ++=,则AB CG=( )A.3 BC.2 D.29.已知等边ABC的边长为2,若3BC BE=,AD DC=,则BD AE⋅等于()A.103B.103-C.2 D.2-10.设非零向量a与b的夹角是23π,且a a b=+,则22a tbb+的最小值为()AB C.12D.111.在ABC中,2BACπ∠=,2AB AC==,P为ABC所在平面上任意一点,则()PA PB PC⋅+的最小值为()A.1 B.12-C .-1 D.-212.在ABC中,D是BC边上的一点,F是AD上的一点,且满足2AD AB AC=+和20FD FA+=,连接CF并延长交AB于E,若AE EBλ=,则λ的值为()A.12B.13C.14D.15二、填空题13.记集合{|X x b a xc==+且||||4}a b a b++-=中所有元素的绝对值之和为(,)S a c,其中平面向量a,b,c 不共线,且||||1a c==,则(,)S a c的取值范围是______________.14.已知平面向量a,b 夹角为30,若2=a,则12b a b+-的最小值为______.15.在ABC中,AB AC=,E,F 是边BC的三等分点,若3AB AC AB AC+=-,则cos EAF∠=_______________16.已知平面向量a,b ,c满足45a b⋅=,4a b-=,1c a-=,则c的取值范围为________.17.设1e,2e是单位向量,且1e,2e的夹角为23π,若12a e e=+,122b e e=-,则a 在b方向上的投影为___________.18.已知向量a、b满足1a b+=,2a b-=,则a b+的取值范围为___________.19.已知0a b c ++=,3a =,4b =,5c=,则a b b c c a ⋅+⋅+⋅=______; 20.已知a →,b →为单位向量,2c a b →→→=-,且,3a b π→→<>=,则,a c →→〈〉=________.三、解答题21.已知在直角坐标系中(O 为坐标原点),()2,5OA =,()3,1OB =,(),3OC x =. (1)若A ,B ,C 共线,求x 的值;(2)当6x =时,直线OC 上存在点M 使MA MB ⊥,求点M 的坐标.22.如图一,在平面直角坐标系xOy 中,O 为坐标原点,()11,A x y ,()22,B x y ,请根据以下信息,处理问题(1)和(2).信息一:O 为坐标原点,()22,OB x y =,若将OB 顺时针旋转90︒得到向量'OB ,则()22',OB y x =-,且'OB OB =;信息二:()22,OB x y =与()11,OA x y =的夹角记为θ,()22',OB y x =-与()11,OA x y =的夹角记为α,则sin cos θα=;信息三:1sin 2OAB S OA OB θ=⋅⋅△;信息四:11122122x y x y x y x y =-,叫二阶行列式.(1)求证:112212OABx y S x y =△,(外层“”表示取绝对值);(2)如图二,已知三点()2,1M ,()3,4N ,()1,6Q ,试用(1)中的结论求MNQ △的面积.23.已知||4,||2a b ==,且a 与b 夹角为120︒, 求:(1)||a b +; (2)a 与a b +的夹角.24.ABC 中,点()2,1A 、()1,3B 、()5,5C . (1)若D 为BC 中点,求直线AD 所在直线方程;(2)若D 在线段BC 上,且2ABDACDSS=,求AD .25.在平面直角坐标系xOy 中,已知向量(1,2)a =-,(1,)b k =. (1)若()a a b ⊥+,求实数k 的值;(2)若对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,求实数k 的取值范围.26.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足1cos cos sin sin 2b A C a B C b -=.(1)求B 的大小;(2)设1BA BC ⋅=-,D 为边AC 上的点,满足2AD DC =,求BD 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据向量的模的表示方法得22222a b a a b b λλλ-=-⋅+,再配方即可得答案. 【详解】解:根据向量模的计算公式得:()()222222216421212a b a a b b b bb λλλλλλ-=-⋅+=-+=-+≥,当且仅当2b λ=时等号成立;所以23a b λ-≥,当且仅当2b λ=时等号成立; 故选:A. 【点睛】方法点睛:向量模的计算公式:22a a a a =⋅=2.B解析:B 【分析】首先根据题的条件,将三角形三个顶点的坐标写出来,之后根据三角形是钝角三角形,利用向量夹角为钝角的条件,从而转化为向量的数量积0OA OB ⋅<或0AB AO ⋅<,找出a 所满足的条件,最后求得结果.【详解】 由题意得24,(0,0),(,1),(3,1)2T a O A a B a aππ==-,因为OAB 为钝角三角形,所以0OA OB ⋅<或0AB AO ⋅<,即2310a -<,或2220a -+<,从而0a <或1a >. 故选:B. 【点睛】该题考查的是有关利用钝角三角形求对应参数的取值范围,涉及到的知识点有正弦型函数图象上的特殊点的坐标,钝角三角形的等价转化,向量的数量积坐标公式,属于中档题.3.D解析:D 【分析】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,从而得到·0?0OD AB OE AC ==,,坐标化构建m ,n 的方程组,解之即可. 【详解】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,又OD AD AO =-,即11222m OD AB mAB nAC AB nAC -=--=-, 同理122nOE AE AO AC mAB -=-=-, 因为212·||?02mOD AB AB nAB AC -=-=, 所以124502m n -⨯-=,又212·||?02nOE AC AC mAB AC -=-=, 所以129502nm -⨯-=,联立方程组124502129502mn n m -⎧⨯-=⎪⎪⎨-⎪⨯-=⎪⎩,解得922811m n ⎧=-⎪⎪⎨⎪=⎪⎩,所以17211n m -=. 故选D 【点睛】本题考查了数量积运算性质、向量垂直与数量积的关系、三角形外心的性质、向量基本定理,考查了推理能力与计算能力,属于中档题.4.D解析:D 【分析】设出(,)c x y =,根据向量的共线与垂直的坐标运算,列出方程组,即可求解. 【详解】设(,)c x y =,向量()1,2a =,()2,3b =-,可得(1,2),(3,1)c a x y a b +=+++=-, 由()//c a b +,可得3(1)2(2)x y -⨯+=+,即3270x y ++=, 由()c a b ⊥+,可得30x y -=, 联立方程组327030x y x y ++=⎧⎨-=⎩,解得77,93x y =-=-,即77(,)93c =--.故选:D. 【点睛】本题主要考查了向量的坐标表示,以及向量的共线与垂直的坐标运算及应用,其中解答中熟记向量的共线和垂直的坐标运算时解答的关键,着重考查推理与运算能力.5.B解析:B 【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值. 【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||22PC CA PC =-=-≥-52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题.6.B解析:B 【分析】设,,AB c AC b ==先化简2AB AC AB CD ⋅=⋅得3c b =,由ABC 的面积为16bc =,即得AC 的长.【详解】设,,AB c AC b ==由题得2AB AC AB CD ⋅=⋅,所以2()AB AC AB AD AC AB AD AB AC ⋅=⋅-=⋅-⋅,所以3,3cos cos0,332cAB AC AB AD c b c c b π⋅=⋅∴⨯⨯⨯=⨯⨯∴=.因为ABC 的面积为1sin 1623b c bc π⨯⨯⨯=∴=.所以2316,b b =∴=所以3AC =. 故选:B 【点睛】本题主要考查平面向量的数量积运算,考查三角形的面积的应用,意在考查学生对这些知识的理解掌握水平.7.D解析:D 【分析】利用向量的坐标运算得到|2|a b -用θ的三角函数表示化简求最值. 【详解】解:向量()a cos sin θθ=,,向量()31b =-,,则2a b -=(2cosθ2sinθ+1),所以|2|a b -2=(2cosθ2+(2sinθ+1)2=8﹣cosθ+4sinθ=8﹣8sin (3πθ-),所以|2|a b -2的最大值,最小值分别是:16,0; 所以|2|a b -的最大值,最小值分别是4,0; 故选:D . 【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性.8.B解析:B 【解析】取BC 的中点E ,则2AB AC AE +=与向量AD 共线,所以A 、D 、E 三点共线,即ABC ∆中BC 边上的中线与高线重合,则10AB AC ==因为0GA GB GC ++=,所以G 为ABC ∆的重心,则2222() 2.32BC GA GE AC ==-=所以22101,112, 5.2AB CE CG CG==+=∴== 本题选择B 选项.9.D解析:D 【分析】 根据题意得出()12BD BA BC =+,13AE BC BA =-,运用数量积求解即可. 【详解】解:等边△ABC 的边长为2,3BC BE =,AD DC =, ∴()12BD BA BC =+,1313A AB BE AB B E BC A C B =+=+=-, ∴()221111223233BD AE BA BC BC BA BC BA BC BA ⎛⎫⎛⎫+-=--⋅ ⎪ ⎪⎝=⎭⎝⎭, 112144222332⎛⎫=⨯⨯--⨯⨯⨯ ⎪⎝⎭, 2=-.故选:D . 【点睛】本题考查了平面向量的运算,数量积的求解,关键是分解向量,属于中档题.10.B解析:B 【分析】利用向量a 与b 的夹角是23π,且a a b =+,得出a b a b ==+,进而将22a tb b+化成只含有t 为自变量的二次函数形态,然后利用二次函数的特性来求出最值. 【详解】对于a ,b 和a b +的关系,根据平行四边形法则,如图a BA CD ==,b BC =,a b BD +=,23ABC π∠=,3DCB π∴∠=,a ab =+,CD BD BC ∴==, a b a b ∴==+, 2222222==222a tb a tb a tb bbb+++,a b =,22222222244cos 223=224a t a b t b a tb a tb b b bπ++++=, 22222222244cos4231244a t a b t b a t aa t a t t baπ++-+==-+当且仅当1t =时,22a tb b+的最小值为2. 故选:B. 【点睛】本题考查平面向量的综合运用,解题的关键点在于把22a tb b+化成只含有t 为自变量的二次函数形态,进而求最值.11.C解析:C 【分析】以,AB AC 为,x y 建立平面直角坐标系,设(,)P x y ,把向量的数量积用坐标表示后可得最小值. 【详解】如图,以,AB AC 为,x y 建立平面直角坐标系,则(0,0),(2,0),(0,2)A B C ,设(,)P x y ,(,)PA x y =--,(2,)PB x y =--,(,2)PC x y =--,(22,22)PB PC x y +=--,∴()22(22)(22)2222PA PB PC x x y y x x y y⋅+=----=-+-22112()2()122x y =-+--,∴当11,22x y ==时,()PA PB PC ⋅+取得最小值1-.故选:C .【点睛】本题考查向量的数量积,解题方法是建立平面直角坐标系,把向量的数量积转化为坐标表示.12.C解析:C 【分析】首先过D 做//DG CE ,交AB 于G ,根据向量加法的几何意义得到D 为BC 的中点,从而得到G 为BE 的中点,再利用相似三角形的性质即可得到答案. 【详解】如图所示,过D 做//DG CE ,交AB 于G .因为2AD AB AC =+,所以D 为BC 的中点. 因为//DG CE ,所以G 为BE 的中点, 因为20FD FA +=,所以:1:2AF FD =.因为//DG CE ,所以::1:2AE EG AF FD ==,即12AE EG =. 又因为EG BG =,所以14AE EB =, 故14AE EB =. 故选:C 【点睛】本题主要考查了向量加法运行的几何意义,同时考查了相似三角形的性质,属于中档题.二、填空题13.【分析】由条件有两边平方可得当时当时可得答案【详解】解:因为所以所以两边平方得化简得设向量的夹角为则当时当时所以集合中所有元素的绝对值之和为因为所以所以所以所以的取值范围为【点睛】关键点点睛:此题考 解析:[3,4)【分析】由条件有|2||||2|||4a xc xc a xc x ++=++=,两边平方可得3xa c x ⋅=-,当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-,可得答案【详解】解:因为||||4a b a b ++-=,b a xc =+,||||1a c == 所以|2||||2|||4a xc xc a xc x ++=++=, 所以|2|4||a xc x +=-,两边平方得,2244168xa c x x x +⋅+=-+, 化简得,3xa c x ⋅=-,设向量,a c 的夹角为θ,(0,)θπ∈,则cos 32x x θ=-, 当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-,所以集合X 中所有元素的绝对值之和为233122cos 2cos 4cos θθθ+=+--,因为(0,)θπ∈,所以20cos 1θ≤<, 所以234cos 4θ<-≤,所以212344cos θ≤<-, 所以(,)S a c 的取值范围为[3,4)【点睛】关键点点睛:此题考查向量数量积的性质的运用,解题的关键是由已知条件得到3xa c x ⋅=-,然后设出向量,a c 的夹角为θ,则当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-,从而可得集合X 中所有元素的绝对值之和为233122cos 2cos 4cos θθθ+=+--,再利用三角函数的有界性可求得结果,考查数学转化思想14.【分析】首先设则结合向量夹角为利用对称关系求得其最小值也可以建系利用向量的坐标去求解【详解】解析1:(对称)设则过作于点由于向量夹角为则故所以最小值为到的距离为即的最小值为故答案为:解法2:(建系) 解析:3【分析】首先设a OA =,b OB =,则a bBA -=,结合向量a ,b 夹角为30,利用对称关系,求得其最小值,也可以建系,利用向量的坐标去求解. 【详解】 解析1:(对称)设a OA =,b OB =,则a b BA -=,过B 作BH OA ⊥于点H . 由于向量a ,b 夹角为30,则12BH OB =,故12b a b BH AB BH A B '+-=+=+, 所以最小值为A '到OA 的距离为3,即12b a b +-的最小值为3.3 解法2:(建系)设()2,0a =,则3,3b m ⎛⎫=⎪⎝⎭,不妨设0m >, 则()2221313424423333mb a b m m m m m +-=+-+=+-+ 令()2344433x f x x x =+-+ 则()242334443x f x x x -'=+-+()0f x '=,解得1x =,即当1x =时,()min 3f x = 所以12b a b +-的最小值为3 3【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量模的和的最小值的求解,在解题的过程中,可以利用图形,从对称角度去分析,也可以建系,将其坐标化求解,属于中档题目.15.【分析】以ABAC 为邻边作平行四边形ABCD 根据得到再根据得到平行四边形ABCD 是菱形则设利用勾股定理分别求得的长度在中利用余弦定理求解【详解】如图所示:以ABAC 为邻边作平行四边形ABCD 则因为所 解析:1314【分析】以AB ,AC 为邻边作平行四边形ABCD ,根据3AB AC AB AC +=-,得到3AD CB =, 再根据AB AC =,得到平行四边形ABCD 是菱形,则CB AD ⊥,设3CB =,利用勾股定理分别求得EF ,,AE AF 的长度,在AEF 中利用余弦定理求解. 【详解】 如图所示:以AB ,AC 为邻边作平行四边形ABCD ,则,AB AC AD AB AC CB +=-=, 因为3AB AC AB AC +=-,所以3AD CB =,设3CB =3AD =, 因为AB AC =,所以平行四边形ABCD 是菱形, 所以CB AD ⊥,所以223333,22AB AC EF ⎛⎫⎛⎫==+== ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以223321263AE AF ⎛⎫⎛⎫==+= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以2222121113cos 214AE AF EF EAF AE AF +-+-∠===⋅. 故答案为:1314【点睛】本题主要考查平面向量的平行四边形法则以及余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.16.【分析】结合已知条件画出图象由的几何意义求得的取值范围【详解】如图所示设设是线段的中点依题意可知由于所以即解得所以即所以根据向量模的几何意义可知点在以为圆心为半径的圆上所以所以即的取值范围为故答案为 解析:[]4,10【分析】结合已知条件画出图象,由c 的几何意义求得c 的取值范围. 【详解】如图所示,设,,OA a OB b OC c ===,设D 是线段AB 的中点. 依题意可知4,1,2AB AC AD BD ====, 由于45a b ⋅=所以45OA OB ⋅=,即()()()()222224544OA OB OA OB OD BA +---==222441644OD BAOD --==,解得7OD =.所以59OD AD OA OD AD =-≤≤+=, 即59OA ≤≤,所以418,6110OA OA ≤-≤≤+≤根据向量模的几何意义可知,点C 在以A 为圆心,1为半径的圆上, 所以()()minmax11OA OC OA -≤≤+,所以410OC ≤≤,即c 的取值范围为[]4,10. 故答案为:[]4,10【点睛】本小题主要考查向量数量积的运算,考查向量模的几何意义,属于中档题.17.【分析】根据平面向量数量积的定义求出与并计算出平面向量的模再利用公式即可求解【详解】由平面向量的数量积的定义可得即所以在方向上的投影为故答案为:【点睛】本题主要考查了平面向量的数量积的定义以及向量的 解析:714【分析】根据平面向量数量积的定义求出12e e ⋅与a b ⋅,并计算出平面向量b 的模b ,再利用公式,即可求解. 【详解】由平面向量的数量积的定义,可得1221211cos11()322e e e e π⋅=⋅=⨯⨯-=-, 222222111111()(2)22122a b e e e e e e e e ⋅=+-=+⋅-=--=,22221112221(2)4444()172e e e e e e b =-=-⋅+=-⨯-+=,即7b =,所以a 在b 方向上的投影为172147a b b⋅==.7. 【点睛】本题主要考查了平面向量的数量积的定义,以及向量的投影的应用,其中解答中熟记平面向量的数量积的计算公式,以及向量的投影的计算是解答本题的关键,着重考查了推理与运算能力,属于中档试题.18.【分析】易得结合可得又可得即可求解【详解】则则又故答案为:【点睛】本题考查向量模的取值范围的计算考查了向量模的三角不等式的应用考查计算能力属于中等题解析:⎡⎣【分析】 易得()2225a b+=,结合()()22225a ba b+≤+=,可得5a b +≤.又a b a b +≥±,可得2a b ±≥,即可求解.【详解】1a b +=,2a b -=,2221a a b b ∴+⋅+=,2224a a b b -⋅+=,()2225a b∴+=,则()()22225a ba b+≤+=,则5a b +≤.又a b a b +≥±,2a b ∴+≥,25a b ∴≤+≤.故答案为:⎡⎣.【点睛】本题考查向量模的取值范围的计算,考查了向量模的三角不等式的应用,考查计算能力,属于中等题.19.【分析】由已知得再两边平方求得代入可求得答案【详解】因为所以又因为所以即又所以所以所以故答案为:【点睛】本题考查向量的线性运算向量的数量积以及向量的模的计算属于中档题 解析:25-【分析】由已知得()c a b =-+,再两边平方22+2+25a a b b ⋅=,求得0a b ⋅=,代入可求得答案. 【详解】因为0a b c ++=,所以()c a b =-+,又因为5c =, 所以()225a b+=,即22+2+25a a b b ⋅=,又3a =,4b =,所以9+2+1625a b ⋅=,所以0a b ⋅=,所以()()20+25a b b c c a a b c b a c c c ⋅+⋅+⋅=⋅+⋅+=⋅-=-=-, 故答案为:25-. 【点睛】本题考查向量的线性运算,向量的数量积,以及向量的模的计算,属于中档题.20.【分析】根据向量的夹角公式及数量积的运算计算即可求解【详解】因为又所以故答案为:【点睛】本题主要考查了向量数量积的定义运算法则性质向量的夹角公式属于中档题解析:6π【分析】根据向量的夹角公式及数量积的运算计算即可求解.【详解】因为22cos(cos,2|||||2)2|aa c aa caba bcπ→→→→→→→→→→→→→→-⋅〈〉==--===⋅,又,0a cπ→→〈≤〉≤,所以,6a cπ→→〈〉=,故答案为:6π【点睛】本题主要考查了向量数量积的定义,运算法则,性质,向量的夹角公式,属于中档题.三、解答题21.(1)52x=;(2)()2,1或2211,55⎛⎫⎪⎝⎭.【分析】(1)利用//AB BC,结合向量共线的坐标表示列方程,解方程求得x的值.(2)设M点的坐标为()6,3λλ,利用MA MB⊥,结合向量垂直的坐标表示列方程,解方程求得λ的值,进而求得M点的坐标.【详解】(1)()1,4AB OB OA=-=-;()3,2BC OC OB x=-=-∵A、B、C共线,∴//AB BC∴()2430x+-=∴52x=.(2)∵M在直线OC上,∴设()6,3OM OCλλλ==∴()26,53MA OA OMλλ=-=--()36,13MB OB OMλλ=-=--∵MA MB⊥∴()()()()263653130λλλλ--+--= 即:24548110λλ-+= 解得:13λ=或1115λ=. ∴()2,1OM =或2211,55OM ⎛⎫=⎪⎝⎭. ∴点M 的坐标为()2,1或2211,55⎛⎫ ⎪⎝⎭. 【点睛】本小题主要考查向量共线、垂直的坐标表示,属于中档题. 22.(1)证明见解析;(2)4. 【分析】 (1)由1sin 2OAB S OA OB θ=⋅⋅△,再根据'OB OB =,sin cos θα=,转化OAB S =△1'2OA OB =⋅,利用平面向量的数量积运算结合行列式证明. (2)由(1)的结论,由MNQ OMN ONQ OMQ S S S S =+-△△△△求解. 【详解】 (1)如图所示. ∵1sin 2OAB S OA OB θ=⋅⋅△, 又因为'OB OB =,sin cos θα=, ∴1'cos 2OAB S OA OB α=⋅⋅△ 1'2OA OB =⋅ ()()11221,,2x y y x =⋅- ()121212x y y x =+- 122112x y x y =-, 又∵11122122x y x y x y x y =-, ∴112212OAB x y S x y =△.(2)∵MNQ OMN ONQ OMQ S S S S =+-△△△△∴213421111341616222MNQ S =+-△111(2431)(3614)(2611)222=⨯-⨯+⨯-⨯-⨯-⨯ 511722=+- 4=【点睛】本题主要考查平面向量的数量积运算,行列式以及面积公式的应用,还考查了运算求解的能力,属于中档题.23.(1)2)6π. 【分析】(1)由已知利用向量的数量积的 定义可求||||cos120a b a b =︒,然后由222||()2a b a b a a b b +=+=++可求(2)设a 与a b +的夹角θ,代入向量的夹角公式2()cos ||||423a a b a a a b θ+==+⨯可求θ【详解】 解:(1)||4a =,||2b =,且a 与b 夹角为120︒∴1||||cos12042()42a b a b =︒=⨯⨯-=-∴222||()2164a b a b a a b b +=+=++=+-(2)设a 与a b +的夹角θ则2()3cos ||||42383a ab a a a b θ+====+⨯0θπ∴6πθ=.【点睛】本题主要考查了向量的数量积的定义及向量的数量积的性质的简单应用,属于基础试题 24.(1)35y x =-;(2)55 AD = 【分析】(1)求出线段BC 中点D 的坐标,利用斜率公式求得直线AD 的斜率,然后利用点斜式可得出直线AD 所在直线的方程; (2)由2ABDACD SS=可得2BD DC =,可得23AD AB BC =+,可计算出平面向量AD 的坐标,进而可求得AD 的值.【详解】 (1)D 为BC 中点,()3,4D ∴,直线AD 的斜率14323k -==-, 所以直线AD 所在的直线方程为:()433y x -=-,即AD 直线方程为35y x =-; (2)因为2ABDACD SS=,所以2BD DC =,则23BD BC =, 又由()()225101,24,2,3333A B D D A AB B B C =+⎪⎛⎫==-+=+⎝⎭,所以5 33AD ⎛== ⎭⎝⎭. 【点睛】本题考查直线方程的求解,同时也考查了利用三角形面积的倍数关系求向量的模,考查计算能力,属于中等题.25.(1)2k =-;(2)2k ≠-. 【分析】(1)根据向量垂直,其数量积等于0,利用向量数量积公式得到对应的等量关系式,求得结果;(2)平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,其等价结果为向量(1,2)a =-和向量(1,)b k =是两个不共线向量,根据坐标关系得到结果. 【详解】(1)若()a a b ⊥+,则有()0a a b ⋅+=,即20a a b +⋅=, 又因为(1,2)a =-,(1,)b k =,所以222[(1)2](1)120a a b k +⋅=-++-⋅+=, 即5120k -+=,解得2k =-;(2)对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+, 所以向量(1,2)a =-和向量(1,)b k =是两个不共线向量, 所以121k -⋅≠⋅,即2k ≠-, 所以实数k 的取值范围是2k ≠-. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量垂直的坐标表示,平面向量基本定理,一组向量可以作为基底的条件,属于基础题目. 26.(1)23B π=;(2)23. 【分析】(1)由正弦定理化简已知等式,结合sin 0B ≠,可得1cos cos sin sin 2A C A C -=,利用两角差的余弦函数公式,诱导公式,三角形内角和定理可求1cos 2B =-,结合范围由()0,B π∈,可得B 的值;(2)利用平面向量数量积的运算可求2ac =,由题意利用平面向量的运算可得2133BD BA BC =+,两边平方利用基本不等式可求BD 的最小值. 【详解】 (1)由sin sin sin a b c A B C ==,得1sin cos cos sin sin sin sin 2B AC A B C B -=, 又∵在ABC ∆中,sin 0B ≠, ∴1cos cos sin sin 2A C A C -=,即1cos()2A C +=,而A B C π++= ∴1cos 2B =-, 故23B π=. (2)cos 1BA BC ac B ⋅=⋅=-,∴2ac =, ∴1121()3333BD BA AD BA AC BA BC BA BA BC =+=+=+-=+, ∴222414999BD BA BC BA BC =++⋅22414444999999c a ac =+-≥-=, ∴23BD ≥,当且仅当2a c =时取到. 故BD 的最小值为23. 【点睛】 本题主要考查了正弦定理,两角差的余弦函数公式,诱导公式,三角形内角和定理,平面向量的运算以及基本不等式的应用,考查了转化思想,属于中档题.。
数学人教A版必修4单元检测:平面向量附答案 含解析 精
数学人教A 版必修4第二章平面向量单元检测(时间:90分钟 满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列等式成立的是( )A .MN =NMB .a ·0=0C .(a ·b )c =a (b ·c )D .|a +b |≤|a |+|b |2.如果a ,b 是两个单位向量,那么下列四个结论中正确的是( )A .a =bB .a·b =1C .a =-bD .|a|=|b| 3.已知A (1,2),B (3,-1),C (3,4),则AB ·AC 等于( )A .11B .5C .-1D .-2 4.设平面向量a =(1,2),b =(-1,m ),若a ∥b ,则实数m 的值为( ) A .-1 B .-2 C .1 D .25.已知向量a =(1,0)与向量b =(-1,则向量a 与b 的夹角是( ) A .π6B .π3C .2π3D .5π66.(2011·广东惠州一模)若平面向量a =(1,-2)与b 的夹角是180°,且|b |=,则b 等于( ) A .(-3,6)B .(3,-6)C .(6,-3)D .(-6,3)7.已知M 是平行四边形ABCD 对角线的交点,下列四式中不能..化简为AD 的是( ) A .(AB +CD )+BC B .(AD +MB )+(BC +CM ) C .OC -OA +CDD .MB +AD -BM8.设a ,b 是非零向量,若函数f (x )=(x a +b )·(a -x b )的图象是一条直线,则必有( ) A .a ∥b B .a ⊥b C .|a |=|b | D .a =b9.已知向量a =(1,-1),b =(1,2),向量c 满足(c +b )⊥a ,(c -a )∥b ,则c 等于( ) A .(2,1)B .(1,0)C .31,22⎛⎫⎪⎝⎭D .(0,-1)10.已知点A ,B ,C 是直线l 上不同的三个点,点O 不在l 上,则关于实数x 的方程2x OA +xOB +AC =0的解集为( )A .B .{-1}C .11{}22---D .{-1,0}二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.已知向量a 与b 的夹角为60°,且|a |=|b |=4,那么b ·(2a +b )的值为__________. 12.已知点A (1,2),B (3,4),C (-2,0),D (-3,3),则向量AB 在向量CD 上的投影为__________.13.如图,在等腰梯形ABCD 中,AD ,BC 是腰,AB =2CD ,若AB =a ,BC =b ,则AD =__________.14.设O ,A ,B ,C 为平面内四点,OA =a ,OB =b ,OC =c ,且a +b +c =0,a·b =b·c =c·a =-1,则|a|2+|b|2+|c|2=__________.15.如图,在平面斜坐标系xOy 中,∠xOy =60°,平面上任一点P 在斜坐标系中的斜坐标是这样定义的:若OP =x e 1+y e 2(其中e 1,e 2分别为与x 轴、y 轴正方向相同的单位向量),则点P 的斜坐标为(x ,y ).若点P 的斜坐标为(3,-4),则点P 到原点O 的距离|PO |=__________.三、解答题(本大题共2小题,共25分.解答时应写出文字说明、证明过程或演算步骤) 16.(10分)已知a =(1,2),b =(-3,2),当k 为何值时,k a +b 与a -3b 垂直? 17.(15分)在平面直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC =1233OA OB +. (1)求证:A ,B ,C 三点共线; (2)求||||AC CB 的值; (3)已知A (1,cos x ),B (1+cos x ,cos x ),x ∈π0,2⎡⎤⎢⎥⎣⎦,f (x )=22||3OA OC m AB ⎛⎫⋅-+ ⎪⎝⎭的最小值为32-,求实数m 的值.参考答案1.答案:D2.答案:D3. 答案:D4.答案:B5.答案:C6.答案:A7.答案:D8.答案:B9.答案:A10.答案:A11.答案:3212.答案:513.答案:12+ a b14.答案:615.16.解:k a+b=k(1,2)+(-3,2)=(k-3,2k+2),a-3b=(1,2)-3(-3,2)=(10,-4).∵k a+b与a-3b垂直,则10(k-3)+(2k+2)×(-4)=0,解得k=19,即当k=19时,k a+b与a-3b垂直.17. (1)证明:∵OC=1233OA OB+,∴OC-OA=2()3OB OA-,即AC=23AB.∴AC∥AB.又AC,AB有公共点A,∴A,B,C三点共线.(2)解:由(1)得AC=23AB=2()3AC CB+,∴13AC=23CB.∴AC=2CB.∴||||ACCB=2.(3)解:AB=(1+cos x,cos x)-(1,cos x)=(cos x,0),∵x∈π0,2⎡⎤⎢⎥⎣⎦,∴cos x∈[0,1].∴||AB=|cos x|=cos x.∵AC =2CB ,∴OC -OA =2()OB OC -.∴3OC =2OB OA +=2(1+cos x ,cos x )+(1,cos x )=(3+2cos x,3cos x ). ∴OC =21cos ,cos 3x x ⎛⎫+⎪⎝⎭. ∴f (x )=22||3OA OC m AB ⎛⎫⋅-+⎪⎝⎭=1+23cos x +cos 2x -22cos 3m x ⎛⎫+ ⎪⎝⎭ =(cos x -m )2+1-m 2,cos x ∈[0,1].当m <0时,当且仅当cos x =0时,f (x )取得最小值1,与已知最小值为32-相矛盾,即m <0不合题意;当0≤m ≤1时,当且仅当cos x =m 时,f (x )取得最小值1-m 2.由1-m 2=32-,得m =±2舍去); 当m >1时,当且仅当cos x =1时,f (x )取得最小值2-2m ,由2-2m =32-,得m =74>1.综上实数m 的值为74.。
人教版高一数学必修4第二章平面向量测试题(含答案)
必修4第二章平面向量检测一.选择题:1.以下说法错误的是( )A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等 C.平行向量方向相同 D.平行向量一定是共线向量 2.下列四式不能化简为AD 的是( )A .;)++(BC CD AB B .);+)+(+(CM BC M B ADC .;-+BM AD M B D .;+-CD OA OC3.已知=(3,4),b =(5,12),a 与b 则夹角的余弦为( ) A .6563B .65 C .513D .134. 已知a 、b 均为单位向量,它们的夹角为60°,那么|a + 3b | =( )A .7B .10C .13D .45.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( )(A ))(21→→-b a (B ) )(21→→-a b (C ) →a +→b 21 (D ) )(21→→+b a6.设→a ,→b 为不共线向量,−→−AB =→a +2→b ,−→−BC =-4→a -→b ,−→−CD =-5→a -3→b ,则下列关系式中正确的是 ( )(A )−→−AD =−→−BC (B )−→−AD =2−→−BC (C )−→−AD =-−→−BC (D )−→−AD =-2−→−BC 7.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是( )(A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数 8.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是( )(A )矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P 点的坐标为( )(A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4) 10.已知→a =(1,2),→b =(-2,3),且k →a +→b 与→a -k →b 垂直,则k =( )(A ) 21±-(B ) 12±(C ) 32±(D ) 23±11、若平面向量(1,)a x =和(23,)b x x =+-互相平行,其中x R ∈.则a b -=( )A. 2-或0;B. 25;C. 2或25;D. 2或10. 12、下面给出的关系式中正确的个数是( )① 00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤b a b a ⋅≤⋅ (A) 0 (B) 1 (C) 2 (D) 3 二. 填空题13.若),4,3(=AB A点的坐标为(-2,-1),则B点的坐标为 . 14.已知(3,4),(2,3)=-=a b ,则2||3-⋅=a a b .15、已知向量)2,1(,3==b a,且b a ⊥,则a 的坐标是_________________。
(word版)高一数学必修四第二章平面向量测试题及答案,文档
一、选择题:(本大题共10小题,每题4分,共40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.)1.设点P〔3,-6〕,Q〔-5,2〕,R的纵坐标为-9,且P、Q、R三点共线,那么R点的横坐标为〔〕。
A、-9B、-6C、9D、62.=(2,3),b=(-4,7),那么在b上的投影为〔〕。
A、B、C、D、3.设点A〔1,2〕,B〔3,5〕,将向量按向量=〔-1,-1〕平移后得向量为〔〕。
A、〔2,3〕B、〔1,2〕C、〔3,4〕D、〔4,7〕4.假设(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ABC是〔〕。
A、直角三角形B、等边三角形C、等腰三角形D、等腰直角三角形5.||=4,|b|=3,与b的夹角为60°,那么|+b|等于〔〕。
A、B、C、D、6.O、A、B为平面上三点,点C分有向线段所成的比为2,那么〔〕。
A、B、C、D、7.O 是ABC所在平面上一点,且满足条件,那么点O是ABC的〔〕。
A、重心B、垂心C、内心D、外心8.设、b、均为平面内任意非零向量且互不共线,那么以下4个命题:(1)(·b)2=2·b2(2)|+b|≥|-b|(3)|+b|2=(+b)2(4)(b)-(a)b与不一定垂直。
其中真命题的个数是〔〕。
A、1B、2C、3D、49.在ABC中,A=60°,b=1,,那么等于〔〕。
A、B、C、D、10.设、b不共线,那么关于x的方程x2+bx+=0的解的情况是〔〕。
A、至少有一个实数解C、至多有两个实数解二、填空题:〔本大题共4小题,每题B、至多只有一个实数解D、可能有无数个实数解4分,总分值16分.〕.11.在等腰直角三角形ABC中,斜边AC=22,那么ABCA=_________ 12.ABCDEF为正六边形,且AC=a,AD=b,那么用a,b表示AB为______. 13.有一两岸平行的河流,水速为1,速度为的小船要从河的一边驶向对岸,为使所行路程最短,小船应朝________方向行驶。
(完整版)高一数学必修4《平面向量》测试卷(含答案),推荐文档
A
B
《平面向量》答案解析
19.解:(1)由题意知则AB (3,5), AC (1,1),
一.选择题.(本大题共 12 小题,每小题 5 分,共 60 分)
AB AC (2, 6), AB AC (4, 4)
BDBAD BAADC AB
AB AC 2 10, AB AC 4 2
A. a b c d 0
B. a b c d 0
a b mq np .下列说法错误的是( )
C. a b c d 0
D. a b c d 0
A.若 a与b 共线,则 a b 0
B. a b b a
7.若 a (我2,3)去,b 人(4也,7) ,就则有b在a人方向!上为的投U影R为扼(腕入)站内信不存在向你偶同C.意R调, 都剖有 (沙a)龙b 课 (反a 倒b) 是龙卷风D.前(a 一b)2天 (a我b)2分 a页2 b符2 ZNBX吃噶十
16.已知正方形 ABCD 的边长为1,点 E 是 AB 边上的动点,则 DE CB 的值为
(3)若点 M 为直线 OD 上的一个动点,当 MA MB 取最小值时,求 OM 的坐标.
, DE DC 的最大值为
.
三.解答题.(本大题共 6 小题,其中 17 题 10 分,其余 5 个小题每题 12 分,共 70
AB AD
建议收藏下载本文,以便随时学习!
(2)设C则(由x, 得y), AD BC (3,3) (x 3, y 2)
x 0, y 5
C (0, 5)
(3)设M则(a,b), OM (a,b),OD (1, 4)
O, M , D三点共线
a b 1 4
b 4a
MA MB (2 a,1 b) (3 a, 2 b)
(完整word)高一数学必修四平面向量基础练习题及答案
(0, ),OQ i 。若用 来表示 OP 与 OQ 的夹角,则 等于 ( ) 2
A、
B、
C、
D、
2
2
8、设 0
2 ,已知两个向量 OP1 cos , sin , OP2 2 sin , 2 cos ,则向
量 P1P2 长度的最大值是(
)
A、 2
二、填空题
B、 3
C、 3 2
D、
9、已知点 A(2 ,0) ,B(4 ,0),动点 P 在抛物线 y2=- 4x 运动,则使 AP BP 取得最小值的点
()
3 10 10
A、e (
,)
B、 e
3 10 10 3 10
(
, )或 (
,
10 )
10 10
10 10
10 10
C、 e ( 6,2)
D、 e ( 6,2)或(6,2)
3、已知 a (1,2), b ( 3,2), ka b与a 3b垂直时 k 值为
A 、17 B 、 18 C、 19 D、20
( 2)当 k 2 时,求 | AP BP | 的最大值和最小值、
参考答案
一、选择题 1、 B; 2、 B; 3、 C; 4、 B; 5、D ; 6、 B; 7、 D ;8、 C 二、填空题 9、 (0, 0)
5 10、 m
6
11、 4 三、解答题
12、解:设 A/ (x,y),则有
3x 2 5y 2
| AP BP | 2 x2 y 2 2 5 4cos
∴当 cos 1时, | AP BP | 的最大值为 6 ,当 cos
1时,最小值为 2 。
()
4、已知向量 OP =(2 , 1), 是直线 OP 上的一点 (O 为坐标
(好题)高中数学必修四第二章《平面向量》测试(含答案解析)
一、选择题1.已知点G 是ABC 的重心,(),AG AB AC R λμλμ=+∈,若120,2,A AB AC ∠=︒⋅=-则AG 的最小值是( )A .3 B .2 C .12D .232.已知O 为坐标原点,点M 的坐标为(2,﹣1),点N 的坐标满足111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则OM ON ⋅的最大值为( )A .2B .1C .0D .-13.已知函数()sin (0)2f x x a a π⎛⎫=>⎪⎝⎭,点A ,B 分别为()f x 图象在y 轴右侧的第一个最高点和第一个最低点,O 为坐标原点,若OAB 为钝角三角形,则a 的取值范围为( )A .10,(2,)2⎛⎫+∞ ⎪⎝⎭ B .30,(1,)⎛⎫⋃+∞ ⎪⎝⎭C .3,1⎛⎫ ⎪ ⎪⎝⎭D .(1,)+∞4.已知向量()1,2a =,()2,3b =-,若向量c 满足()//c a b +,()c a b ⊥+,则c =( ) A .7793⎛⎫ ⎪⎝⎭,B .7739⎛⎫-- ⎪⎝⎭,C .7739⎛⎫ ⎪⎝⎭,D .7793⎛⎫-- ⎪⎝⎭,5.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .6.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6B .4C .3D .27.若2a b c ===,且0a b ⋅=,()()0a c b c -⋅-≤,则a b c +-的取值范围是( )A .[0,222]B .[0,2]C .[222,222]-+D .[222,2]-8.已知向量a ,b 满足||3,||2a b ==,且对任意的实数x ,不等式a xb a b +≥+恒成立,设a ,b 的夹角为θ,则tan θ的值为( )A B .2-C .D 9.已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值,最小值分别是( )A .0B .4,C .16,0D .4,010.在ABC ∆中,060BAC ∠=,5AB =,6AC =,D 是AB 上一点,且5AB CD ⋅=-,则BD 等于( )A .1B .2C .3D .411.在边长为2的菱形ABCD 中,60BAD ∠=︒,点E 是AB 边上的中点,点F 是BC 边上的动点,则DE DF ⋅的取值范围是( )A .⎡⎣B .2⎣C .⎤⎦D .[]0,312.已知平面上的非零..向量a ,b ,c ,下列说法中正确的是( ) ①若//a b ,//b c ,则//a c ; ②若2a b =,则2a b =±;③若23x y a b a b +=+,则2x =,3y =; ④若//a b ,则一定存在唯一的实数λ,使得a b λ=. A .①③B .①④C .②③D .②④二、填空题13.已知平面向量,,a b c 满足()()||2,||2||a c b c a b a b -⋅-=-==.则c 的最大值是________.14.已知向量(12,2)a t =-+,(2,44)b t =-+,(1,)c λ=(其中t ,)R λ∈.若(2)c a b ⊥+,则λ=__.15.向量,a b 满足(1,3),2,()(3)12a b a b a b ==+⋅-=,则a 在b 方向上的投影为__________.16.已知向量2a =,1b =,223a b -=,则向量a ,b 的夹角为_______. 17.如图,正方形ABCD 的边长为2,E 是以CD 为直径的半圆弧上一点,则AD AE ⋅的最大值为______.18.在△ABC 中,BD =2DC ,过点D 的直线与直线AB ,AC 分别交于点E ,F ,若AE =x AB ,AF =y AC (x >0,y >0),则x +y 的最小值为_____.19.已知O 为ABC 内一点,且满足305OA OB OC =++,延长AO 交BC 于点D .若BD DC λ=,则λ=_____.20.已知平面向量a ,b 满足3a b +=,3a b -=,则向量a 与b 夹角的取值范围是______.三、解答题21.在ABC 中,3AB =,6AC =,23BAC π∠=,D 为边BC 的中点,M 为中线AD 的中点.(1)求中线AD 的长;(2)求BM 与AD 的夹角θ的余弦值. 22.已知()3,0a =,(1,3)b =. (Ⅰ)求a b ⋅和b 的值;(Ⅱ)当()k k ∈R 为何值时,向量a 与k +a b 互相垂直? 23.已知123PP P 三个顶点的坐标分别为123(cos ,sin ),(cos ,sin ),(cos ,sin )P P P ααββγγ,且1230OP OP OP ++=(O 为坐标原点).(1)求12POP ∠的大小; (2)试判断123PP P 的形状.24.如图,在正方形ABCD 中,点E 是BC 边上中点,点F 在边CD 上.(1)若点F 是CD 上靠近C 的三等分点,设EF AB AD λμ=+,求λ+μ的值.(2)若AB =2,当AE BF ⋅=1时,求DF 的长.25.在ABCD 中,2AB =,23AC =AB 与AD 的夹角为3π. (Ⅰ)求AD ;(Ⅱ)求AC 和BD 夹角的余弦值. 26.已知向量a 、b 的夹角为3π,且||1a =,||3b =. (1)求||a b +的值; (2)求a 与a b +的夹角的余弦.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先根据重心得到()13AG AB AC =+,设0,0AB x AC y =>=>,利用数量积计算4xy =,再利用重要不等式求解()2219A AGB AC =+的最小值,即得结果.【详解】点G 是ABC 的重心,设D 为BC 边上的中点,则()2133AG AD AB AC ==+, 因为120,2,A AB AC ∠=︒⋅=-设0,0AB x AC y =>=>,则cos1202xy ︒=-,即4xy =,故()()()222211144249999AG x y x B ACy A =+-≥-=+=,即23AG ≥, 当且仅当2x y ==时等号成立,故AG 的最小值是23. 故选:D. 【点睛】 关键点点睛:本题的解题关键在于通过重心求得向量关系()13AG AB AC =+,利用数量积得到定值,才能利用重要不等式求最值,突破难点,要注意取条件的成立.2.A解析:A【分析】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y ,做出不等式组所表示的平面区域,做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移,结合图象可判断取得最大值时的位置. 【详解】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y做出不等式组所表示的平面区域,如图所示的△ABC 阴影部分:做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移, 到点A 时Z 最大,而由x+y=11x ⎧⎨=⎩ 可得A (1,0), 此时Z max =2. 故选:A . 【点睛】本题主要考查了利用线性规划求解最优解及目标函数的最大值,解题的关键是正确作出不等式组所表示的平面区域,并能判断出取得最大值时的最优解的位置.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。
【优质文档】必修四《平面向量》全章练习题(带测试含答案)
∵ |A→D |= 2,
∴ |E→G|= |B→H |= 2.
又
|B→C
|=
5,
∴
→ |HC
|=
3.
又 E、 F 分别为腰 AB、 DC 的三等分点.
∴ G 为 DH 的三等分点,
∴
G→F
∥
Hห้องสมุดไป่ตู้C
且|G→F
|=
1 3|
→ HC
|,
∴ |G→F |= 1,
∴
|E→F
|=
→ |EG
|+
→ |GF
|=
2+
2
鸡西市第十九中学高一数学组 3
鸡西市第十九中学高一数学组
答案
1. D 2.C 3.C 4.B 5.C 6.①③④ 7.菱形
8. 解 (1) 与 a 的模相等的向量有 23 个.
(2)与 a 的长度相等且方向相反的向量有
→ OD
,
B→C
,
A→O
,
F→E.
(3)与
a 共线的向量有
→ EF
,B→C
,O→D
1=
3.
11.解 (1) 向量 A→D, D→C,C→B ,A→B如图所示.
(2)由题意知 A→D= B→C,
∴ AD 綊 BC ,则四边形 ABCD 为平行四边形,
∴ A→B= D→C,则 B 地相对于 A 地的位置向量为 “北偏东 60°, 6 千米 ”. 12. 证明 (1) ∵AA→′= B→B′ ,
与 b 都是单位向量.其中能使 a∥ b 成立的是 ________. (填序号 )
7.
在四边形
ABCD
中,
→ AB
=
D→C
高中数学必修四单元测试:平面向量word版含答案
平面向量单元测试1.(2015·全国卷Ⅰ)已知点A (0,1),B (3,2),向量AC =(-4,-3),则向量BC =( )A .(-7,-4)B .(7,4)C .(-1,4)D .(1,4)解析:选A 法一:设C (x ,y ),则AC ―→=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧ x =-4,y =-2,从而BC ―→=(-4,-2)-(3,2)=(-7,-4).故选A.法二:AB ―→=(3,2)-(0,1)=(3,1),BC ―→=AC ―→-AB ―→=(-4,-3)-(3,1)=(-7,-4).故选A.2.(2014·全国卷Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB ―→+FC ―→=() A .AD ―→ B .12AD ―→C .BC ―→D .12BC ―→解析:选A EB ―→+FC ―→=12(AB ―→+CB ―→)+12(AC ―→+BC ―→)=12(AB ―→+AC ―→)=AD ―→,故选A. 3.(2015·全国卷Ⅰ)设D 为△ABC 所在平面内一点,BC ―→=3CD ―→,则( )A .AD ―→=-13AB ―→+43AC ―→B .AD ―→=13AB ―→-43AC ―→C .AD ―→=43AB ―→+13AC ―→D .AD ―→=43AB ―→-13AC ―→解析:选A AD ―→=AC ―→+CD ―→=AC ―→+13BC ―→ =AC ―→+13(AC ―→-AB ―→)=43AC ―→-13AB ―→ =-13AB ―→+43AC ―→,故选A. 4.(2016·北京高考)设a ,b 是向量,则“|a|=|b|”是“|a +b|=|a -b|”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选D 若|a|=|b|成立,则以a ,b 为邻边的平行四边形为菱形.a +b ,a -b 表示的是该菱形的对角线,而菱形的两条对角线长度不一定相等,所以|a +b|=|a -b|不一定成立,从而充分条件不成立;反之,若|a +b|=|a -b|成立,则以a ,b 为邻边的平行四边形为矩形,而矩形的邻边长度不一定相等,所以|a|=|b|不一定成立,从而必要条件不成立.故“|a|=|b|”是“|a +b|=|a -b|”的既不充分也不必要条件.5.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP―→=λAB ―→+μAD ―→,则λ+μ的最大值为( )A .3B .2 2 C. 5 D .2解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为222+12=25, 所以圆C :(x -1)2+(y -2)2=45. 因为P 在圆C 上,所以P ⎝ ⎛⎭⎪⎫1+255cos θ,2+255sin θ. 又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ),所以⎩⎪⎨⎪⎧ 1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2), 当且仅当θ=π2+2 π-φ, ∈ 时,λ+μ取得最大值3.1.(2016·全国卷Ⅲ)已知向量BA ―→=⎝ ⎛⎭⎪⎫12,32,BC ―→=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( ) A .30° B .45° C .60° D .120° 解析:选A 因为BA ―→=⎝ ⎛⎭⎪⎫12,32,BC ―→=⎝ ⎛⎭⎪⎫32,12, 所以BA ―→·BC ―→=34+34=32. 又因为BA ―→·BC ―→=|BA ―→||BC ―→|cos ∠ABC =1×1×cos ∠ABC =32, 所以cos ∠ABC =32. 又0°≤∠ABC ≤180°,所以∠ABC =30°.2.(2017·浙江高考)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA ―→·OB ―→,I 2=OB ―→·OC ―→, I 3=OC ―→·OD ―→,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3<I 1<I 2D .I 2<I 1<I 3解析:选C 如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,∴∠AOB 与∠COD 为钝角, ∠AOD 与∠BOC 为锐角.根据题意,I 1-I 2=OA ―→·OB ―→-OB ―→·OC ―→=OB ―→·(OA ―→-OC ―→)=OB ―→·CA―→=|OB―→|·|CA ―→|cos ∠AOB <0,∴I 1<I 2,同理得,I 2>I 3,作AG ⊥BD 于G ,又AB =AD ,∴OB <BG =GD <OD ,而OA <AF =FC <OC ,∴|OA ―→|·|OB ―→|<|OC ―→|·|OD ―→|,而cos ∠AOB =cos ∠COD <0,∴OA ―→·OB ―→>OC ―→·OD ―→,即I 1>I 3,∴I 3<I 1<I 2.3.(2017·山东高考)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.解析:因为3e 1-e 2·e 1+λe 2|3e 1-e 2|·|e 1+λe 2|=3-λ21+λ2, 故 3-λ21+λ2=12,解得λ=33. 答案:33 4.(2017·浙江高考)已知向量a ,b 满足|a|=1,|b|=2,则|a +b|+|a -b|的最小值是________,最大值是________.解析:法一:由向量三角不等式得,|a +b|+|a -b|≥|(a +b)-(a -b)|=|2b|=4.又|a +b|+|a -b|2≤ (a +b)2+(a -b)22=a 2+b 2=5, ∴|a +b|+|a -b|的最大值为2 5. 法二:设a ,b 的夹角为θ.∵|a|=1,|b|=2, ∴|a +b|+|a -b|=a +b 2+a -b 2=5+4cos θ+5-4cos θ.令y =5+4cos θ+5-4cos θ,则y 2=10+225-16cos 2θ.∵θ∈[0,π],∴cos 2θ∈[0,1],∴y 2∈[16,20],∴y ∈[4 , 2 5 ],即|a +b|+|a -b|的最小值为4,最大值为2 5.答案:4 2 55.(2017·天津高考)在△ABC 中,∠A =60°,AB =3,AC =2.若BD ―→=2DC ―→,AE ―→=λAC ―→-AB ―→ (λ∈R),且AD ―→·AE ―→=-4,则λ的值为________.解析:法一:AD ―→=AB ―→+BD ―→=AB ―→+23BC ―→ =AB ―→+23(AC ―→-AB ―→)=13AB ―→+23AC ―→. 又AB ―→·AC ―→=3×2×12=3, 所以AD ―→·AE ―→=⎝ ⎛⎭⎪⎫13 AB ―→+23 AC ―→ ·(-AB ―→+λAC ―→) =-13AB ―→2+⎝ ⎛⎭⎪⎫13λ-23AB ―→·AC ―→+23λAC ―→2 =-3+3⎝ ⎛⎭⎪⎫13λ-23+23λ×4=113λ-5=-4, 解得λ=311. 法二:以点A 为坐标原点,AB ―→的方向为x 轴正方向,建立平面直角坐标系,不妨假设点C 在第一象限,则A (0,0),B (3,0),C (1,3).由BD ―→=2DC ―→,得D ⎝ ⎛⎭⎪⎫53,233, 由AE ―→=λAC ―→-AB ―→,得E (λ-3,3λ),则AD ―→·AE ―→=⎝ ⎛⎭⎪⎫53,233·(λ-3,3λ)=53(λ-3)+233×3λ=113λ-5=-4, 解得λ=311. 答案:3116.(2016·浙江高考)已知向量a ,b ,|a |=1,|b|=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.解析:由于e 是任意单位向量,可设e =a +b |a +b|, 则|a ·e |+|b ·e |=⎪⎪⎪⎪⎪⎪a ·a +b |a +b|+⎪⎪⎪⎪⎪⎪b ·a +b |a +b| ≥⎪⎪⎪⎪⎪⎪a ·a +b |a +b|+b ·a +b |a +b| =⎪⎪⎪⎪⎪⎪a +b ·a +b |a +b|=|a +b|. ∵|a ·e |+|b ·e |≤6,∴|a +b|≤6,∴(a +b)2≤6,∴|a|2+|b|2+2a ·b ≤6.∵|a|=1,|b|=2,∴1+4+2a ·b ≤6,∴a ·b ≤12,∴a ·b 的最大值为12. 答案:127.(2017·全国卷Ⅰ)已知向量a ,b 的夹角为60°,|a|=2,|b|=1,则|a +2b|=________.解析:法一:易知|a +2b|=|a |2+4a ·b +4|b |2=4+4×2×1×12+4=2 3. 法二:(数形结合法)由|a|=|2b|=2,知以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b|=|OC ―→|. 又∠AOB =60°,所以|a +2b|=2 3.答案:2 38.(2015·广东高考)在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2. (1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值. 解:(1)若m ⊥n ,则m ·n =0. 由向量数量积的坐标公式得22sin x -22cos x =0, ∴tan x =1.(2)∵m 与n 的夹角为π3,∴m ·n =|m ||n |cos π3, 即22sin x -22cos x =12,∴sin ⎝ ⎛⎭⎪⎫x -π4=12. 又∵x ∈⎝⎛⎭⎪⎫0,π2, ∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4,∴x -π4=π6,即x =5π12.。
(典型题)高中数学必修四第二章《平面向量》检测题(有答案解析)
一、选择题1.已知ABC 为等边三角形,2AB =,ABC 所在平面内的点P 满足1AP AB AC --=,AP 的最小值为( )A1B .221-C .231-D .712.己知平面向量,a b 满足1a a b =-=,则32a b a b -++的最大值为( ) A .4B .25C .325+D .63.已知向量()2,3a =,()4,2b =,那么向量a b -与a 的位置关系是( ) A .平行B .垂直C .夹角是锐角D .夹角是钝角4.已知O 为坐标原点,点M 的坐标为(2,﹣1),点N 的坐标满足111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则OM ON ⋅的最大值为()A .2B .1C .0D .-15.已知非零向量a →,b→夹角为45︒,且2a =,2a b -=,则b →等于( )A .B .2C D6.已知ABC 是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,与CE 交于点O ,则下列说法正确的是( )A .1AB CD ⋅=- B .1233BD BC BA =+ C .3OA OB OC++=D .ED 在BC 方向上的投影为767.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( ) A B .1C .2D .8.已知(),0A a ,()0,C c ,2AC=,1BC =,0AC BC ⋅=,O 为坐标原点,则OB的取值范围是( ) A .(1⎤⎦B .(1⎤⎦ C .1⎤⎦D .)1,+∞9.若2a b c ===,且0a b ⋅=,()()0a c b c -⋅-≤,则a b c +-的取值范围是( )A .[0,2]B .[0,2]C .2,222]+D .[222,2]-10.已知向量(6,4),(3,),(2,3)a b k c =-==-,若//a b ,则b 与c 的夹角的余弦值为( ) A .1213B .1213-C .45-D .4511.ABC 中,5AB =,10AC =,25AB AC =,点P 是ABC 内(包括边界)的一动点,且32()55AP AB AC R λλ=-∈,则||AP 的最大值是( )A .2BCD 12.设O 为ABC 所在平面内一点,满足2730OA OB OC ++=,则ABC 的面积与BOC 的面积的比值为( )A .6B .83C .127D .4二、填空题13.在ABC 中,AB AC =,E ,F 是边BC 的三等分点,若3AB AC AB AC +=-,则cos EAF ∠=_______________14.设1e ,2e 是单位向量,且1e ,2e 的夹角为23π,若12a e e =+,122b e e =-,则a 在b 方向上的投影为___________.15.在平面内,定点,,A B C 满足DA DB DC ==,2DA DB DB DC DC DA ⋅=⋅=⋅=-,动点,P M 满足1AP PM MC ==,则2BM 的最大值为________. 16.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 17.在△ABC 中,BD =2DC ,过点D 的直线与直线AB ,AC 分别交于点E ,F ,若AE =x AB ,AF =y AC (x >0,y >0),则x +y 的最小值为_____.18.在ABC 中,AB =AC =G 为ABC 的重心,则AG BC ⋅=________.19.已知平面向量a ,b 满足3a b +=,3a b -=,则向量a 与b 夹角的取值范围是______.20.在ABC △中,已知4CA =,CP =23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____.三、解答题21.在直角坐标系xoy 中,单位圆O 的圆周上两动点A B 、满足60AOB ∠=︒(如图),C 坐标为()1,0,记COA α∠=(1)求点A 与点B 纵坐标差A B y y -的取值范围; (2)求AO CB ⋅的取值范围; 22.设()2,0a →=,(3b →=.(1)若a b b λ→→→⎛⎫-⊥ ⎪⎝⎭,求实数λ的值;(2)若(),m x a y b x y R →→→=+∈,且23m =,m →与b →的夹角为6π,求x ,y 的值.23.已知,,a b c 是同一平面内的三个向量,其中()1,2a =. (1)若35b =,且//a b ,求b 的坐标;(2)若2c =,且()()2a c a c +⊥-,求a 与c 的夹角θ的余弦值. 24.已知△ABC 中,角A 、B 、C 的对边为a ,b ,c ,向量m (2cossin )2C C =-,, n =(cos2sin )2C C ,,且m n ⊥. (1)求角C ;(2)若22212a b c =+,试求sin()A B -的值 25.如图,在直角△ABC 中,点D 为斜边BC 的靠近点B 的三等分点,点E 为AD 的中点,3,6AB AC ==(1)用,AB AC 表示AD 和EB ; (2)求向量EB 与EC 夹角的余弦值.26.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=. (1)求32a b c +-;(2)求满足a mb nc =+的实数,m n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】计算出AB AC +的值,利用向量模的三角不等式可求得AP 的最小值. 【详解】2222222cos123AB AC AB AC AB AC AB AC AB AC π+=++⋅=++⋅=,所以,23AB AC += 由平面向量模的三角不等式可得()()231AP AP AB AC AB AC AP AB AC AB AC =--++≥---+=.当且仅当AP AB AC --与AB AC +方向相反时,等号成立. 因此,AP 的最小值为31. 故选:C. 【点睛】结论点睛:在求解向量模的最值时,可利用向量模的三角不等式来求解:a b a b a b -≤±≤+.2.B解析:B 【分析】利用1a a b =-=得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,利用平面向量的运算法则得到29832a b a b t -+-=+,再利用基本不等式即可求解. 【详解】因为1a a b =-=, 所以22222cos ,1a a ba ab a b b =-=-〈〉+=,则2cos ,b a b =〈〉, 令[]cos ,,1,1t a b t =〈〉∈-, 所以2b t =, 则()23232a b a b-=-22124a a b t b =-+== ()2222a b a b a a b t b +=+=++22418t t =+=+,所以29832a b a b t -+-=+,利用基本不等式知:2a b a b +≤+≤,≤=,=此时2t =±.则32a b a b -++的最大值为 故选:B. 【点睛】思路点睛:利用已知条件得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,把问题化为了单一变量的函数问题,再利用平面向量的运算法则得到22981382a b a b t t -+-+=++,最后利用基本不等式即可解决.3.D解析:D 【分析】首先根据题中所给的向量的坐标,结合向量数量积运算法则,求得其数量积为负数,从而得到其交集为钝角. 【详解】因为()2,3a =,()4,2b =,222()23(2432)131410a b a a a b -⋅=-⋅=+-⨯+⨯=-=-<,所以向量a b -与a 的位置关系是夹角为钝角, 故选:D. 【点睛】该题考查的是有挂向量的问题,涉及到的知识点有向量数量积的运算律,数量积坐标公式,根据数量积的符号判断其交集,属于简单题目.4.A解析:A 【分析】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y ,做出不等式组所表示的平面区域,做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移,结合图象可判断取得最大值时的位置. 【详解】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y做出不等式组所表示的平面区域,如图所示的△ABC 阴影部分:做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移, 到点A 时Z 最大,而由x+y=11x ⎧⎨=⎩可得A (1,0),此时Z max =2. 故选:A . 【点睛】本题主要考查了利用线性规划求解最优解及目标函数的最大值,解题的关键是正确作出不等式组所表示的平面区域,并能判断出取得最大值时的最优解的位置.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。
(好题)高中数学必修四第二章《平面向量》测试(有答案解析)(1)
一、选择题1.如图,在ABC 中,AD AB ⊥,2AD =,3DC BD =,则AC AD ⋅的值为( )A .3B .8C .12D .162.己知平面向量,a b 满足1a a b =-=,则32a b a b -++的最大值为( ) A .4B .5C .325+D .63.已知O 为正三角形ABC 内一点,且满足()10OA OB OC λλ+++=,若OAB 的面积与OAC 的面积之比为3,则λ=( ) A .12B .14C .34D .324.已知O 为坐标原点,点M 的坐标为(2,﹣1),点N 的坐标满足111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则OM ON ⋅的最大值为( )A .2B .1C .0D .-15.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( ) A 2B .1C .2D .226.如下图,四边形OABC 是边长为1的正方形,点D 在OA 的延长线上,且2OD =,点P 为BCD 内(含边界)的动点,设(,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于( )A .3B .2C .52D .327.已知,M N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则2PM PN -的最大值为( )A .53+B .53-C .523+D .58.已知向量()a 1,2=,()b x,2=-,且a b ⊥,则a b +等于( ). A 5B .5C .42D 319.已知a ,b 为单位向量,2a b a b +=-,则a 在a b +上的投影为( )A .13B .26C 6D 2210.已知ABC ∆为等边三角形,则cos ,AB BC =( ) A .3 B .12-C .12D 311.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,23AB =2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 12.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( ) A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定二、填空题13.已知向量(9,6),(3,)a b x ==,若//a b ,则()b a b ⋅-=___________. 14.已知向量(12,2)a t =-+,(2,44)b t =-+,(1,)c λ=(其中t ,)R λ∈.若(2)c a b ⊥+,则λ=__.15.不共线向量a ,b 满足||||a b =,且(2)a a b ⊥-,则a 与b 的夹角为________. 16.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.17.如图,直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8,若7CE DE =-,3BF FC =,则AF ·BE =_____.18.如图所示,已知OAB ,由射线OA 和射线OB 及线段AB 构成如图所示的阴影区(不含边界).已知下列四个向量:①12=+OM OA OB ; ②23143OM OA OB =+;③33145=+OM OA OB ;④44899=+OM OA OB .对于点1M ,2M ,3M ,4M 落在阴影区域内(不含边界)的点有________(把所有符合条件点都填上)19.已知向量a =(1,0),b =(12-3c 满足2c =,且(c a b --)•c =0,则a 与c 的夹角为_____.20.已知向量(1,3)a =,1(2,)2b =-,若单位向量c 与2a b -平行,则c =___________.三、解答题21.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,向量()()sin sin ,sin sin ,sin sin ,sin m B C A B n B C A =++=-,且m n ⊥.(1)求角C 的大小; (2)若3c =2a b +的取值范围.22.设()2,0a →=,()1,3b →=.(1)若a b b λ→→→⎛⎫-⊥ ⎪⎝⎭,求实数λ的值;(2)若(),m x a y b x y R →→→=+∈,且23m =,m →与b →的夹角为6π,求x ,y 的值.23.在ABCD 中,2AB =,23AC =AB 与AD 的夹角为3π. (Ⅰ)求AD ;(Ⅱ)求AC 和BD 夹角的余弦值. 24.已知向量n 与向量m 的夹角为3π,且1n =,3m =,()0n n m λ⋅-=. (1)求λ的值(2)记向量n 与向量3n m -的夹角为θ,求cos2θ. 25.已知向量()3,1a =-,()1,2b =-,()n a kb k R =-∈. (1)若n 与向量2a b -垂直,求实数k 的值;(2)若向量()1,1c =-,且n 与向量kb c +平行,求实数k 的值. 26.已知平面上三点A ,B ,C 的坐标依次为()1,2-,()3,2,(),1k . (1)若ABC ∆为直角三角形,且角A 为直角,求实数k 的值;(2)在(1)的条件下,设AE AB λ=,AD AC μ=,若//BC ED ,证明:λμ=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用AB 、AD 表示向量AC ,再利用平面向量数量积的运算性质可求得AC AD ⋅的值. 【详解】()3343AC AD DC AD BD AD AD AB AD AB =+=+=+-=-,AD AB ⊥,则0⋅=AD AB ,所以,()224344216AC AD AD AB AD AD ⋅=-⋅==⨯=. 故选:D. 【点睛】方法点睛:求两个向量的数量积有三种方法: (1)利用定义:(2)利用向量的坐标运算; (3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.2.B解析:B 【分析】利用1a a b =-=得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,利用平面向量的运算法则得到29832a b a b t -+-=+,再利用基本不等式即可求解. 【详解】因为1a a b =-=, 所以22222cos ,1a a ba ab a b b =-=-〈〉+=,则2cos ,b a b =〈〉, 令[]cos ,,1,1t a b t =〈〉∈-, 所以2b t =, 则()23232a b a b -=-22124a a b t b =-+== ()2222a b a b a a b t b +=+=++22418t t =+=+,所以29832a b a b t -+-=+,利用基本不等式知:2a b a b +≤+≤,≤=,=此时2t =±.则32a b a b -++的最大值为 故选:B. 【点睛】思路点睛:利用已知条件得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,把问题化为了单一变量的函数问题,再利用平面向量的运算法则得到22981382a b a b t t -+-+=++,最后利用基本不等式即可解决.3.A解析:A 【分析】分别取AC 、BC 的中点D 、E ,连接DE 、AE ,由平面向量的线性运算可得OD OE λ=-,进而可得13OAC AEC S S =△△,即可得解.【详解】分别取AC 、BC 的中点D 、E ,连接DE 、AE ,如图,所以DE 是ABC 的中位线,因为()10OA OB OC λλ+++=,所以()OA OC OB OC λ+=-+, 所以OD OE λ=-,所以D 、E 、O 三点共线, 所以111363OAC OAB ABC AEC S S S S ===△△△△,所以13OD ED =即12OD OE =-,所以12λ-=-即12λ=.故选:A. 【点睛】本题考查了平面向量共线、线性运算及基本定理的应用,考查了运算求解能力与转化化归思想,属于中档题.4.A解析:A 【分析】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y ,做出不等式组所表示的平面区域,做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移,结合图象可判断取得最大值时的位置. 【详解】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y做出不等式组所表示的平面区域,如图所示的△ABC 阴影部分:做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移, 到点A 时Z 最大,而由x+y=11x ⎧⎨=⎩可得A (1,0), 此时Z max =2. 故选:A . 【点睛】本题主要考查了利用线性规划求解最优解及目标函数的最大值,解题的关键是正确作出不等式组所表示的平面区域,并能判断出取得最大值时的最优解的位置.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。
(完整word版)人教版高一数学必修4第二章平面向量测试题(含答案),推荐文档
必修4第二章平面向量检测.选择题:5.已知ABCDE 是正六边形,且 AB = a ,7.设©与e 是不共线的非零向量,且k e 1 + e 2与6 + k e ?共线,则k 的值是()(A ) 1 (B ) — 1 (C ) 1 (D )任意不为零的实数8.在四边形ABCD 中 AB = DC ,且AC • BD = 0,则四边形ABCD ^()(A )矩形(B )菱形 (C )直角梯形(D )等腰梯形9. 已知M ( — 2, 7)、N (10,— 2),点P 是线段MN±的点,且PN 二一2PM ,则P 点的坐标为()(A )(— 14, 16)(B )(22,— 11) (C ) (6,1) (D ) (2, 4)10 .已知 a =( 1, 2), b =( 一 2, 3),且 k a + b 与 a — k b 垂直,则 k =()(A )1 2 (B )2 1 (C ) .23 (D ) 326. 设a , b 为不共线向量, AB = a +2b , BC = — 4a—b , CD = — 5a - -3b,则下列关系式中正确的是 ( )(A )AD = BC (B ) AD = 2BC(C ) AD =— BC (D ) AD =- -2BC(A )2(a b) (B )寺(b a) (C )(D )吕(a b)1 .以下说法错误的是( )A.零向量与任一非零向量平行 C.平行向量方向相同 D. 2.下列四式不能化简为AD 的是(A. (AB + CD ) + BC ;B.零向量与单位向量的模不相等平行向量一定是共线向量 )B. (AD + MB ) + ( BC + CM );C. MB + AD - BM ;D. 0C — OA + CD ;3.已知 a = (3, 4), b = (5, 12), a 与b 则夹角的余弦为(4. ..13 5A 63 65已知a 、b 均为单位向量,它们的夹角为60° ,那么|a+ 3b| = A. 、7 B. J0B. . 65 C .C. 、13D. ,13D. 4 AE = b ,贝U BC =(r r r11、若平面向量a (1,x)和b (2x 3, x)互相平行,其中x R.则a b ( )A. 2或0;B. 2 5 ;C. 2 或2.5 ;D. 2或10.12、下面给出的关系式中正确的个数是( )① Oa 0 ② a b b a ③ a2|a 2④(ab)c a(bc)⑤ a b a b(A) 0 (B) 1 (C) 2 (D) 3二.填空题13•若AB (3,4), A点的坐标为(一2,— 1),则E点的坐标为__________________ .14. 已知a (3, 4), b (2,3),则2|a| 3a b _________________ .15、已知向量|a 3,b (1,2),且a b,则a的坐标是________________________ 。
高中数学必修四第二章《平面向量》单元测试题(含答案)
高中数学必修四第二章单元测试题《平面向量》(时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ).A. 20B. 10C. 10-D. 20-2.已知向量31,22BA ⎛⎫=⎪ ⎪⎝⎭, ()0,1BC =,则向量BA 与BC 夹角的大小为( ) A. π6 B. π4 C. π3 D. 2π33.已知向量()11a =-,, ()12b =-,,则()2a b a +⋅=( )A. 1-B. 0C. 1D. 24.已知向量,若,则实数m 的值为 ( ) A. 0 B. 2 C. D. 2或 5.如上图,向量1e , 2e , a 的起点与终点均在正方形网格的格点上,则向量a 用基底1e , 2e 表示为( )A. 1e +2eB. 21e -2eC. -21e +2eD. 21e +2e6.若三点()1,2A --、()0,1B -、()5,C a 共线,则a 的值为( )A. 4B. 4-C. 2D. 2-7.已知平面向量,a b 的夹角为60°,()1,3a =, 1b =,则a b +=( )A. 2B. 37 D. 48.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ).A. 20B. 10C. 10-D. 20-9.已知向量()()()3,1,0,1,,3a b c k ==-=,若(2a b -)与c 互相垂直,则k 的值为 A. 1 B. 1- C. 3 D. 3-10.已知点()0,1A , ()1,2B , ()2,1C --, ()3,4D ,则向量AB 在CD 方向上的投影为( ) A. 322 B. 2 C. 322- D. 3152- 11.在矩形ABCD 中, 3AB =, 3BC =, 2BE EC =,点F 在边CD 上,若•3AB AF =,则•AE BF 的值为( )A. 0B. 833C. 4-D. 4 12.已知ABC ∆是边长为4的等边三角形, P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值为 ( )A. 3-B. 6-C. 2-D. 83-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设a 与b 是两个不共线向量,且向量a b λ+与2a b -共线,则λ=__________.14.已知单位向量a , b 满足()1•232a ab -=,则向量a 与b 的夹角为__________. 15.在平行四边形ABCD 中, AC 与BD 交于点O , E 是线段OD 的中点, AE 的延长线与CD 交于点F . 若AC a =, BD b =,则AF 等于_______(用a , b 表示).16.已知正方形ABCD 的边长为1,点E 在线段AB 边上运动(包含线段端点),则DE CB ⋅的值为__________; DE DB ⋅的取值范围为__________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题10分)已知四点A (-3,1),B (-1,-2),C (2,0),D (23,4m m +)(1)求证: AB BC ⊥;(2) //AD BC ,求实数m 的值.18.(本小题12分)已知向量()1,2a =,()3,4b =-.(1)求a b +与a b -的夹角;(2)若()a ab λ⊥+,求实数λ的值.19.(本小题12分)已知是夹角为的两个单位向量,,.(1)求;(2)求与的夹角.20.(本小题12分)如图,在平行四边形中,,是上一点,且. (1)求实数的值;(2)记,,试用表示向量,,.21.(本小题12分)已知向量a 与b 的夹角为120︒, 2,3a b ==, 32,2m a b n a kb =-=+. (I )若m n ⊥,求实数k 的值; (II )是否存在实数k ,使得//m n ?说明理由.22.(本小题12分)已知点(1,0),(0,1)A B -,点(,)P x y 为直线1y x =-上的一个动点.(1)求证:APB ∠恒为锐角;(2)若四边形ABPQ 为菱形,求BQ AQ ⋅的值.高中数学必修四第二章单元测试题《平面向量》参考答案(时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ).A. 20B. 10C. 10-D. 20- 【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭. 故选:C .2.【2017届北京房山高三上期末】已知向量31,22BA ⎛⎫=⎪ ⎪⎝⎭, ()0,1BC =,则向量BA 与BC 夹角的大小为( )A. π6B. π4C. π3D. 2π3【答案】C3.【2018届四川省成都市郫都区高三上期中】已知向量()11a =-,, ()12b =-,,则()2a b a +⋅=( ) A. 1- B. 0 C. 1 D. 2【答案】C【解析】()()()21,01,11a b a +⋅=-=,故选:C.4.已知向量,若,则实数m 的值为 ( ) A. 0 B. 2 C.D. 2或 【答案】C 【解析】∵向量,且 ∴, ∴.选C. 5.如上图,向量1e , 2e , a 的起点与终点均在正方形网格的格点上,则向量a 用基底1e , 2e 表示为( )A. 1e +2eB. 21e -2eC. -21e +2eD. 21e +2e【答案】C6.若三点()1,2A --、()0,1B -、()5,C a 共线,则a 的值为( )A. 4B. 4-C. 2D. 2-【答案】A【解析】()1,2A --, ()()0,1,5B C a -,三点共线ABAC λ∴→=→即()()1162a λ=+,,()16{ 12a λλ==+ 16λ∴=, 4a = 故答案选A .7.【2018届全国名校大联考高三第二次联考】已知平面向量,a b 的夹角为60°,()1,3a =, 1b =,则a b +=( ) A. 2 B. 23 C. 7 D. 4 【答案】C 8.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ).A. 20B. 10C. 10-D. 20-【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭. 故选:C .9.【2018届福建省福安市一中上学期高三期中】已知向量()()()3,1,0,1,,3a b c k ==-=,若(2a b -)与c 互相垂直,则k 的值为A. 1B. 1-C. 3D. 3-【答案】D【解析】()23,3a b -=,因为(2a b -)与c 互相垂直,则()233303a b c k k -⋅=+=⇒=-,选D. 10.【2018届河南省中原名校高三第三次考评】已知点()0,1A , ()1,2B , ()2,1C --, ()3,4D ,则向量AB 在CD 方向上的投影为( )A. 322B. 2C. 322-D. 3152-【答案】B【解析】()()1,1.5,5AB CD ==则向量AB 在CD 方向上的投影为10cos ,252AB CDAB AB CD AB AB CD ⋅=⋅==故选B.11.【2018届黑龙江省齐齐哈尔地区八校高三期中联考】在矩形ABCD 中, 3AB =,3BC =, 2BE EC =,点F 在边CD 上,若•3AB AF =,则•AE BF 的值为( )A. 0B. 833 C. 4- D. 4【答案】C【解析】12.【2018届河南省漯河市高级中学高三上期中】已知ABC ∆是边长为4的等边三角形, P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值为 ( )A. 3-B. 6-C. 2-D. 83-【答案】B【解析】如图建立坐标系, (()()0,23,2,0,2,0A B C -,设(),P x y ,则()()(),23,2,,2,PA x y PB x y PC x y =--=---=--,()()()22,232,22243PA PB PC x y x y x y ∴⋅+=-⋅--=+-(222366x y ⎡⎤=+--≥-⎢⎥⎣⎦,∴最小值为6-,故选B.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设a 与b 是两个不共线向量,且向量a b λ+与2a b -共线,则λ=__________.【答案】12-【解析】由题意得()11:2:12λλ=-∴=- .14.【2018届河北省邢台市高三上学期第二次月考】已知单位向量a , b 满足()1•232a ab -=,则向量a 与b 的夹角为__________. 【答案】60°(或3π) 【解析】因为()1232a a b ⋅-=,化简得: 2123232a a b a b -⋅=-⋅=,即12a b ⋅=,所以1cos ,2a b a b a b⋅==⋅,又0,a b π≤≤,所以,3a b π=,故填3π. 15.【2018届福建省三明市第一中学高三上学期期中】在平行四边形ABCD 中, AC 与BD 交于点O ,E 是线段OD 的中点, AE 的延长线与CD 交于点F . 若AC a =, BD b =,则AF 等于_______(用a ,b 表示).【答案】2133a b + 【解析】∵AC a =, BD b =,∴11112222AD AC BD a b =+=+. ∵E 是OD 的中点,∴=,∴DF=AB .∴111111332266DF AB AC BD a b ⎛⎫==-=- ⎪⎝⎭, ∴111121226633AF AD DF a b a b a b =+=++-=+. 16.已知正方形ABCD 的边长为1,点E 在线段AB 边上运动(包含线段端点),则DE CB ⋅的值为__________; DE DB ⋅的取值范围为__________. 【答案】 1 []1,2【解析】如图,以D 为坐标原点,以DC , DA 分别为x , y 轴,建立平面直角坐标系, ()0,0D , ()0,1DE x , ()1,1B , ()0,1CB ,()1,0C , ()1,1DB , ()0,1E x , []00,1x ∈,∴1DE CB ⋅=, 01DE DB x ⋅=+,∵001x ≤≤,0112x ≤+≤,∴DE DB ⋅的取值范围为[]1,2,故答案为1, []1,2.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题10分)已知四点A (-3,1),B (-1,-2),C (2,0),D (23,4m m +) (1)求证: AB BC ⊥; (2) //AD BC ,求实数m 的值. 【答案】(1)见解析(2) 12-或1 【解析】试题分析:(1)分别根据向量的坐标运算得出AB BC ,算出AB BC ⋅(2)由向量的平行进行坐标运算即可. 试题解析:(1)依题意得, ()()2,3,3,2AB BC =-= 所以()23320AB BC ⋅=⨯+-⨯= 所以AB BC ⊥.18.(本小题12分)已知向量()1,2a =,()3,4b =-. (1)求a b +与a b -的夹角; (2)若()a ab λ⊥+,求实数λ的值. 【答案】(1)34π;(2)1-. 【解析】(1)因为()1,2a =,()3,4b =-,所以()2,6a b +=-,()4,2a b -=- 所以()()2,64,2202cos ,240204020a b a b -⋅--+-===-⨯⨯,由[],0,a b a b π+-∈,则3,4a b a b π+-=; (2)当()a ab λ⊥+时,()0a a b λ⋅+=,又()13,24a b λλλ+=-+,所以13480λλ-++=,解得:1λ=-.19.(本小题12分)已知是夹角为的两个单位向量,,.(1)求; (2)求与的夹角. 【答案】(1);(2)与的夹角为.【解析】试题分析:(1)向量点积的运算规律可得到再展开根据向量点积公式得最终结果;(2)同第一问,由向量点积公式展开=0.∵是夹角为的两个单位向量,∴,(1)(2) ,,∴,∴与的夹角为.20.(本小题12分)如图,在平行四边形中,,是上一点,且. (1)求实数的值;(2)记,,试用表示向量,,.【答案】(1);(2),,.【解析】试题分析:(1)根据平面向量共线定理得到,由系数和等于1,得到即。
(好题)高中数学必修四第二章《平面向量》检测(包含答案解析)(1)
一、选择题1.已知点G 是ABC 的重心,(),AG AB AC R λμλμ=+∈,若120,2,A AB AC ∠=︒⋅=-则AG 的最小值是( )A .3 B .2 C .12D .232.ABC ∆中,AB AC ⊥,M 是BC 中点,O 是线段AM 上任意一点,且2AB AC ==,则OA OB OA OC +的最小值为( )A .-2B .2C .-1D .13.在ABC ∆中,2AB =,3AC =,5cos 6A =,若O 为ABC ∆的外心(即三角形外接圆的圆心),且AO mAB nAC +=,则2n m -=( ) A .199B .4122-C .111-D .17114.已知非零向量,a b 满足4,2a b ==,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b -等于( ) A .1B .25C .5D .35.如图,在平行四边形ABCD 中,点E F 、满足2,2BE EC CF FD ==,EF 与AC 交于点G ,设AG GC λ=,则λ=( )A .97B .74C .72D .926.在ABC 中,4A π=,3B π=,2BC =,AC 的垂直平分线交AB 于D ,则AC CD ⋅=( )A .1-B .2-C .3-D .37.已知20a b =≠,且关于x 的方程20x a x a b ++⋅=有实根,则a 与b 的夹角的取值范围是( ) A .06,π⎡⎤⎢⎥⎣⎦B .,3ππ⎡⎤⎢⎥⎣⎦C .2,33ππ⎡⎤⎢⎥⎣⎦D .,6ππ⎡⎤⎢⎥⎣⎦8.在ABC 中,D 为AB 的中点,60A ∠=︒且2AB AC AB CD ⋅=⋅,若ABC 的面积为43,则AC 的长为( ) A .43B .433C .3D .239.如图,已知点D 为ABC 的边BC 上一点,3BD DC =,*()∈n E n N 为AC 边的一列点,满足11(32)4n n n n n E A a E B a E D +=-+,其中实数列{}n a 中,10,1n a a >=,,则{}n a 的通项公式为( )A .1321n -⋅-B .21n -C .32n -D .1231n -⋅-10.已知向量(6,4),(3,),(2,3)a b k c =-==-,若//a b ,则b 与c 的夹角的余弦值为( ) A .1213B .1213-C .45-D .4511.已知ABC ∆为等边三角形,则cos ,AB BC =( ) A .3 B .12-C .12D .3212.已知等边ABC 的边长为2,若3BC BE =,AD DC =,则BD AE ⋅等于( ) A .103B .103-C .2D .2-二、填空题13.已知向量()3,2OA =,()2,1OB =,O 点为坐标原点,在x 轴上找一个点M ,使得AM BM ⋅取最小值,则M 点的坐标是___________.14.O 为坐标原点,已知向量()1,5OA =,()4,2OB =,()6,8OC =,,x y 为非负实数且01x y ≤+≤,CD xCA yCB =+,则OD 的最小值为_______________ 15.已知向量2a =,1b =,223a b -=,则向量a ,b 的夹角为_______. 16.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.17.如图,边长为2的菱形ABCD 的对角线相交于点O ,点P 在线段BD 上运动,若1AB AO ⋅=,则AP PD ⋅的最大值为______.18.如图,在△ABC 中,13AN NC =,P 是BN 上的一点,若AP =m 211AB AC +,则实数m 的值为_____.19.已知P 为圆22(4)2x y +-=上一动点,点()1,1Q ,O 为坐标原点,那么OP OQ ⋅的取值范围为________.20.设λ是正实数,三角形ABC 所在平面上的另三点1A 、1B 、1C 满足:()1AA AB AC λ=+,()1BB BC BA λ=+,()1CC CA CB λ=+,若三角形ABC 与三角形111A B C 的面积相等,则λ的值为_____.三、解答题21.已知在直角坐标系中(O 为坐标原点),()2,5OA =,()3,1OB =,(),3OC x =. (1)若A ,B ,C 共线,求x 的值;(2)当6x =时,直线OC 上存在点M 使MA MB ⊥,求点M 的坐标. 22.已知,,a b c 是同一平面内的三个向量,其中()1,2a =. (1)若35b =,且//a b ,求b 的坐标;(2)若2c =,且()()2a c a c +⊥-,求a 与c 的夹角θ的余弦值. 23.如图,在OAB 中,P 为线段AB 上一点,且OP xOA yOB =+.()1若AP PB =,求x ,y 的值;()2若3AP PB =,4OA =,2OB =,且OA 与OB 的夹角为60︒,求OP AB ⋅的值.24.(1)已知平面向量a 、b 的夹角为3π,且1a =,2b =,求2a b +与b 的夹角; (2)已知平面向量()1,2a =,()2,1b =-,()1,c λ=,若()a b c +⊥,求λ的值. 25.已知平面上三点A ,B ,C 的坐标依次为()1,2-,()3,2,(),1k . (1)若ABC ∆为直角三角形,且角A 为直角,求实数k 的值;(2)在(1)的条件下,设AE AB λ=,AD AC μ=,若//BC ED ,证明:λμ=. 26.在平面直角坐标系xOy 中,已知向量(1,2)a =-,(1,)b k =. (1)若()a a b ⊥+,求实数k 的值;(2)若对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先根据重心得到()13AG AB AC =+,设0,0AB x AC y =>=>,利用数量积计算4xy =,再利用重要不等式求解()2219A AGB AC =+的最小值,即得结果. 【详解】点G 是ABC 的重心,设D 为BC 边上的中点,则()2133AG AD AB AC ==+, 因为120,2,A AB AC ∠=︒⋅=-设0,0AB x AC y =>=>,则cos1202xy ︒=-,即4xy =,故()()()222211144249999AG x y x B AC y A =+-≥-=+=,即23AG ≥, 当且仅当2x y ==时等号成立,故AG 的最小值是23. 故选:D. 【点睛】 关键点点睛:本题的解题关键在于通过重心求得向量关系()13AG AB AC =+,利用数量积得到定值,才能利用重要不等式求最值,突破难点,要注意取条件的成立.2.C解析:C 【分析】根据向量求和的平行四边形法则可以得出2OA OB OA OC OA OM ⋅+⋅=⋅,再利用向量的数量积的运算可以得到22OA OM OA OM ⋅=-⋅,因为2OA OM +=,代入计算可求出最小值. 【详解】解:在直角三角形ABC 中,2AB AC ==,则BC =M 为BC 的中点,所以2AM =.设OA x =,(0x ≤≤()2OA OB OA OC OA OB OC OA OM ⋅+⋅=⋅+=⋅ )()2222OA OM xx x =-⋅=-=2212x ⎛=-- ⎝⎭所以当x =,即22OA =时,原式取得最小值为1-.故选:C. 【点睛】方法点睛:(1)向量求和经常利用平行四边形法则转化为中线的2倍; (2)利用向量三点共线,可以将向量的数量积转化为长度的乘积; (3)根据向量之间模的关系,二元换一元,转化为二次函数求最值即可.3.D解析:D 【分析】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,从而得到·0?0OD AB OE AC ==,,坐标化构建m ,n 的方程组,解之即可.【详解】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,又OD AD AO =-,即11222m OD AB mAB nAC AB nAC -=--=-, 同理122nOE AE AO AC mAB -=-=-, 因为212·||?02mOD AB AB nAB AC -=-=, 所以124502m n -⨯-=,又212·||?02nOE AC AC mAB AC -=-=, 所以129502nm -⨯-=,联立方程组124502129502mn n m -⎧⨯-=⎪⎪⎨-⎪⨯-=⎪⎩,解得922811m n ⎧=-⎪⎪⎨⎪=⎪⎩,所以17211n m -=. 故选D 【点睛】本题考查了数量积运算性质、向量垂直与数量积的关系、三角形外心的性质、向量基本定理,考查了推理能力与计算能力,属于中档题.4. B解析:B 【解析】因为a 在b 方向上的投影与b 在a 方向上的投影相等,设这两个向量的夹角为θ,则cos cos 4cos 2cos 2a b πθθθθθ===⇒=,又由2()a b a b -=-且4,2a b ==,所以222()225a b a b a a b b -=-=-⋅+=,故选B.5.C解析:C 【分析】设H 是BC 上除E 点外的令一个三等分点,判断出G 是三角形CFH 的重心,得出,CG CO 的比例,由此得出λ的值.【详解】设H是BC上除E点外的令一个三等分点,连接FH,连接BD交AC于O,则//BD FH.在三角形CFH中,,CG FG是两条中线的交点,故G是三角形CFH的重心,结合23CH CFBH DF==可知24.5CGCO=,由于O是AC中点,故224.529CGAC==⨯.所以72AGCG=,由此可知72λ=,故选C.【点睛】本小题主要考查平行线分线段成比例,考查三角形的重心,考查比例的计算,属于中档题. 6.C解析:C【分析】由AC的垂直平分线交AB于D,且4Aπ=可得ACD△为等腰直角三角形,且4A ACDπ∠=∠=,2ADC BDCπ∠=∠=;进而由2BC=可求出,,DB CD AC的长,从而求出AC CD⋅的值.【详解】解:因为AC的垂直平分线交AB于D、4Aπ=,所以ACD△为等腰直角三角形,4A ACDπ∠=∠=,2ADC BDCπ∠=∠=,在BDC中,3Bπ=,2BDCπ∠=,2BC=,所以1,3BD CD==,所以3AD CD==,26AC CD==,所以32cos63()34AC CD AC CDπ⋅=⋅=⨯⨯-=-.故选:C.【点睛】本题主要考查平面向量的数量积,考查运算求解能力,属于基础题型.7.B解析:B 【分析】根据方程有实根得到24cos 0a a b θ∆=-≥,利用向量模长关系可求得1cos 2θ≤,根据向量夹角所处的范围可求得结果. 【详解】关于x 的方程20x a x a b ++⋅=有实根 240a a b ∴∆=-⋅≥设a 与b 的夹角为θ,则24cos 0a a b θ-≥ 又20a b =≠ 24cos 0b b θ∴-≥ 1cos 2θ∴≤ 又[]0,θπ∈ ,3πθπ⎡⎤∴∈⎢⎥⎣⎦本题正确选项:B 【点睛】本题考查向量夹角的求解问题,关键是能够利用方程有实根得到关于夹角余弦值的取值范围,从而根据向量夹角范围得到结果.8.B解析:B 【分析】设,,AB c AC b ==先化简2AB AC AB CD ⋅=⋅得3c b =,由ABC 的面积为16bc =,即得AC 的长. 【详解】设,,AB c AC b ==由题得2AB AC AB CD ⋅=⋅,所以2()AB AC AB AD AC AB AD AB AC ⋅=⋅-=⋅-⋅, 所以3,3cos cos0,332cAB AC AB AD c b c c b π⋅=⋅∴⨯⨯⨯=⨯⨯∴=.因为ABC 的面积为1sin 1623b c bc π⨯⨯⨯=∴=.所以2316,b b =∴=所以3AC =. 故选:B【点睛】本题主要考查平面向量的数量积运算,考查三角形的面积的应用,意在考查学生对这些知识的理解掌握水平.9.D解析:D 【分析】以BA 和BC 为基底,表示n BE ,根据n E ,A ,C 三点共线,可得1193331442+-++=++n n n a a a ,构造等比数列,即可求出通项公式. 【详解】113(32),44+=-+=-=-n n n n n n n n E A a E B a E D E D BD BE BC BE , 113(32)()44n n n n n E A a E B a BC BE +∴=-+-113(32)(32)44n n n n a a E B a BC +=---+ 又=-n n E A BA BE113(32)(32=)44+∴---+-n n n n n a a E B a BC BA BE113(33)(32)44+-∴++=++n n n n a a BE a BC BA因为n E ,A ,C 三点共线113(33)1(32)44+-++=++∴n n n a a a ,即1=32++n n a a ,即1+1=3(1)++n n a a ,所以数列{1}n a +是等比数列,首项为2,公比为3.1+1=23-∴⋅n n a ,即1=23-1-⋅n n a , 故选:D . 【点睛】本题考查了平面向量基本定理和等比数列的通项公式,考查了运算求解能力和逻辑推理能力,属于中档题.10.A解析:A 【分析】根据向量平行,由平面向量的坐标运算列方程求出k 的值,再利用平面向量夹角公式求解即可. 【详解】因为(6,4),(3,),a b k =-=且//a b ,所以61202k k +=⇒=-,(3,2),(2,3)b c =-=-,12cos ,13c b c b c b⋅==, 故选:A. 【点睛】本题主要考查向量平行的性质,考查了平面向量数量积的坐标表示以及向量夹角公式的应用,属于基础题.11.B解析:B 【分析】判断,AB BC 两向量夹角容易出错,是23π,而不是3π 【详解】由图发现,AB BC 的夹角不是B 而是其补角23π,21cos ,cos32AB BC π<>==- 【点睛】本题考查的是两向量夹角的定义,属于易错题,该类型题建议学生多画画图.12.D解析:D 【分析】 根据题意得出()12BD BA BC =+,13AE BC BA =-,运用数量积求解即可. 【详解】解:等边△ABC 的边长为2,3BC BE =,AD DC =, ∴()12BD BA BC =+,1313A AB BE AB B E BC A C B =+=+=-, ∴()221111223233BD AE BA BC BC BA BC BA BC BA ⎛⎫⎛⎫+-=--⋅ ⎪ ⎪⎝=⎭⎝⎭, 112144222332⎛⎫=⨯⨯--⨯⨯⨯ ⎪⎝⎭,2=-.故选:D . 【点睛】本题考查了平面向量的运算,数量积的求解,关键是分解向量,属于中档题.二、填空题13.【分析】设点的坐标是求出再利用配方法可得答案【详解】设点的坐标是即因为向量所以当时有最小值此时点的坐标是故答案为:【点睛】方法点睛:平面向量求最值有三种常见方法:1几何法;2三角函数有界法;3二次函解析:5,02⎛⎫⎪⎝⎭【分析】设M 点的坐标是(),0t ,求出AM BM ⋅,再利用配方法可得答案. 【详解】设M 点的坐标是(),0t ,即(),0OM t =, 因为向量()3,2OA =,()2,1OB =, 所以()3,2AM OM OA t =-=--,()2,1BM OM OB t =-=--, ()()()()3221AM BM t t ⋅=--+-⨯- 22575824t t t ⎛⎫=-+=-+ ⎪⎝⎭,当52t =时,AM BM ⋅有最小值74,此时M 点的坐标是5,02⎛⎫⎪⎝⎭, 故答案为:5,02⎛⎫ ⎪⎝⎭. 【点睛】方法点睛:平面向量求最值有三种常见方法:1、几何法;2、三角函数有界法;3、二次函数配方法.14.【分析】根据题意得表示的区域为及内部的点进而得当时取得最小值再计算即可得答案【详解】又为非负实数且所以表示的区域为及内部的点当时取得最小值因为所在的直线方程为即则取得最小值为故答案为:【点睛】本题考解析:【分析】根据题意得D 表示的区域为ABC 及内部的点,进而得当⊥OD AB 时,OD 取得最小值,再计算即可得答案. 【详解】()1,5OA =,()4,2OB =,()6,8OC =,又,x y 为非负实数且01x y ≤+≤,CD xCA yCB =+, 所以D 表示的区域为ABC 及内部的点, 当⊥OD AB 时,OD 取得最小值, 因为AB 所在的直线方程为()()5251114y x x --=-=---,即60x y +-=, 则OD 取得最小值为322=. 故答案为:32.【点睛】本题考查向量的模的求解与线性规划,解题的关键是根据题意明确D 表示的区域,是中档题.15.【分析】已知式平方后求得再由数量积的定义可得夹角【详解】由得∴∴∴故答案为:【点睛】本题考查求向量的夹角解题关键是掌握向量的模与数量积的关系由模求得数量积后可得 解析:23π 【分析】已知式223a b -=平方后求得a b ⋅,再由数量积的定义可得夹角. 【详解】由223a b -=得222(2)4444412a b a a b b a b -=-⋅+=-⋅+=,∴1a b ⋅=-, ∴cos ,2cos ,1a b a b a b <>=<>=-,1cos ,2a b <>=-,∴2,3a b π<>=.故答案为:23π. 【点睛】本题考查求向量的夹角,解题关键是掌握向量的模与数量积的关系,由模求得数量积后可得.16.【分析】延长BC 作圆M 的切线设切点为A1切线与BD 的交点D 结合数量积的几何意义可得点A 运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC 作圆M 的切线设切点为A1切 解析:2-【分析】延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,结合数量积的几何意义可得点A 运动到A 1时,CA 在CB 上的投影最小,设CP x =,将结果表示为关于x 的二次函数,求出最值即可. 【详解】 如图,延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,由数量积的几何意义,CA CB ⋅等于CA 在CB 上的投影与CB 之积,当点A 运动到A 1时,CA 在CB 上的投影最小; 设BC 中点P ,连MP ,MA 1,则四边形MPDA 1为矩形; 设CP =x ,则CD =2-x ,CB =2x ,CA CB ⋅=()()222224212x x x x x --⋅=-=--,[]02x ∈,, 所以当1x =时,CA CB ⋅最小,最小值为2-, 故答案为:2-. 【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.17.【分析】以为原点和分别为和轴建立的平面直角坐标系求得设得到即可求解【详解】以为原点和分别为和轴建立如图所示的平面直角坐标系设则因为可得联立方程组解答所以设则当时取得最大值最大值为故答案为:【点睛】本解析:34【分析】以O 为原点,OC 和OD 分别为x 和y 轴建立的平面直角坐标系,求得(1,0),(0,3)A D -,设(0,),[3,3]P t t ∈-,得到233()24AP PD t ⋅=--+,即可求解. 【详解】以O 为原点,OC 和OD 分别为x 和y 轴建立如图所示的平面直角坐标系, 设(,0),(0,),0,0A a B b a b -->>,则224a b +=, 因为1AB AO ⋅=,可得2(,)(,0)1a b a a -⋅==, 联立方程组,解答1,3a b ==,所以(1,0),(0,3)A D -,设(0,),[3,3]P t t ∈-,则22333(1,)(0,3)3()44AP PD t t t t t ⋅=⋅-=-+=--+≤, 当32t =时,AP PD ⋅取得最大值,最大值为34.故答案为:34.【点睛】本题主要考查了平面向量的数量积的运算及应用,此类问题通常采取建立直角坐标系,利用平面向量的坐标运算求解,着重考查转化思想,以及运算与求解能力,属于基础题.18.【解析】由得设=n 所以+n=+n()=(1-n)=m 由n=得m=1-n=解析:311【解析】由13AN NC =,得14AN AC =. 设BP =n BN ,所以AP AB BP AB =+=+n BN =AB +n (AN AB -)=(1-n )14AB nAC +=m 211AB AC +. 由14n=211,得m=1-n=311. 19.【分析】先将圆的方程化为参数方程设利用数量积运算结合三角函数的性质求解【详解】因为圆的方程所以其参数方程为:设所以因为所以故答案为:【点睛】本题主要考查圆的方程的应用以及平面向量的数量积运算和三角函 解析:[2,6]【分析】先将圆的方程化为参数方程,4x R y θθθ⎧=⎪∈⎨=+⎪⎩,设,4)P θθ+,利用数量积运算结合三角函数的性质求解. 【详解】因为圆的方程22(4)2x y +-=,所以其参数方程为:,4x R y θθθ⎧=⎪∈⎨=⎪⎩,设,4)P θθ,所以2cos (4)2sin()44πθθθ⋅=++=++OP OQ ,因为[]sin()1,14πθ+∈-,所以[2,6]⋅∈OP OQ . 故答案为:[2,6] 【点睛】本题主要考查圆的方程的应用以及平面向量的数量积运算和三角函数的性质,还考查了运算求解的能力,属于中档题.20.【分析】设的重心为点可知与关于点对称利用重心的向量性质可求得实数的值【详解】设的重心为点则由于和的面积相等则与关于点对称则解得故答案为:【点睛】本题考查了平面向量的数乘运算和线性运算涉及三角形重心向解析:23【分析】设ABC ∆的重心为点G ,可知ABC ∆与111A B C ∆关于点G 对称,利用重心的向量性质可求得实数λ的值. 【详解】设ABC ∆的重心为点G ,则3AB AC AG +=,()13AA AB AC AG λλ∴=+=, 由于ABC ∆和111A B C ∆的面积相等,则ABC ∆与111A B C ∆关于点G 对称, 则12AA AG =,32λ∴=,解得23λ=. 故答案为:23. 【点睛】本题考查了平面向量的数乘运算和线性运算,涉及三角形重心向量性质的应用,考查计算能力,属于中等题.三、解答题21.(1)52x =;(2)()2,1或2211,55⎛⎫⎪⎝⎭. 【分析】(1)利用//AB BC ,结合向量共线的坐标表示列方程,解方程求得x 的值.(2)设M 点的坐标为()6,3λλ,利用MA MB ⊥,结合向量垂直的坐标表示列方程,解方程求得λ的值,进而求得M 点的坐标. 【详解】(1)()1,4AB OB OA =-=-;()3,2BC OC OB x =-=- ∵A 、B 、C 共线,∴//AB BC ∴()2430x +-= ∴52x =. (2)∵M 在直线OC 上,∴设()6,3OM OC λλλ== ∴()26,53MA OA OM λλ=-=--()36,13MB OB OM λλ=-=--∵MA MB ⊥∴()()()()263653130λλλλ--+--= 即:24548110λλ-+=解得:13λ=或1115λ=. ∴()2,1OM =或2211,55OM ⎛⎫=⎪⎝⎭. ∴点M 的坐标为()2,1或2211,55⎛⎫⎪⎝⎭. 【点睛】本小题主要考查向量共线、垂直的坐标表示,属于中档题.22.(1)(3,6)b =或(3,6)b =--;(2). 【分析】(1)设(,)b x y =,由//a b ,和35b =,列出方程组,求得,x y 的值,即可求解; (2)由()()2a c a c +⊥-,求得3a c ⋅=-,结合夹角公式,即可求解. 【详解】(1)设(,)b x y =,因为//a b ,所以2y x =, ①又因为35b =,所以2245x y +=, ②由①②联立,解得(3,6)b =或(3,6)b =--.(2)由已知()()2a c a c +⊥-,可得()()22220a c a c a c a c +⋅-=--⋅=, 又由5a =,2c =,解得3a c ⋅=-,所以35cos a c a cθ⋅==-【点睛】本题主要考查了平面向量的坐标运算,以及平面向量的数量积的坐标运算的应用,意在考查运算与求解能力,属于基础题. 23.()112x y ==;()23-. 【分析】()1用OA ,OB 表示出OP ,根据平面向量的基本定理得出x ,y 的值; ()2用OA ,OB 表示出OP ,AB ,代入数量积公式计算即可.【详解】解:()1若AP PB =,则OP OA OB OP -=-, 即1122OP OA OB =+,故12x y ==. ()2若3AP PB =,则33OP OA OB OP -=-,即1344OP OA OB =+, 所以()221311344424OA OB OB OA O OP A OA O B B OB A ⎛⎫+⋅-=--⋅=⋅+⎪⎝⎭22221131113cos60442234244224OA OA OB OB -⋅⋅︒+=-⨯-⨯⨯⨯=-+⨯=-.【点睛】本题考查平面向量的基本定理,考查向量的数量积运算,属于中档题.24.(1)6π;(2)3λ=-. 【分析】(1)设2a b +与b 的夹角为θ,计算出()2a b b +⋅的值和2a b +的值,利用平面向量的数量积的运算求得cos θ,结合θ的取值范围可求得θ的值;(2)求得平面向量a b +的坐标,由()0a b c +⋅=,结合平面向量数量积的坐标运算可求得实数λ的值. 【详解】(1)设2a b +与b 的夹角为θ,由于1a =,2b =,且平面向量a 、b 的夹角为3π, ()22222cos63a b b a b b a b b π∴+⋅=⋅+=⋅+=,()22222224444cos233a b a ba ab b a a b b π+=+=+⋅+=+⋅+=,所以,()2cos 2232a b b a b bθ+⋅===⨯+⋅,0θπ≤≤,因此,6πθ=;(2)平面向量()1,2a =,()2,1b =-,()1,c λ=,()3,1a b ∴+=,()a b c +⊥,()30a b c λ∴+⋅=+=,解得3λ=-.【点睛】本题考查利用平面向量的数量积计算向量的夹角,同时也考查可利用向量垂直的坐标表示求参数,考查计算能力,属于中等题. 25.(1)5k =-(2)证明见解析 【分析】(1)根据ABC ∆为直角三角形,且角A 为直角,可知AB AC ⊥,即0AB AC ⋅=,解得k 值;(2)利用向量三角形法则得出BC 和DE ,由//BC ED 知//BC DE ,利用向量平行性质即可证明λμ=.【详解】解:(1)因为A ,B ,C 的坐标依次为()1,2-,()3,2,(),1k . 所以()2,4AB =,()1,3AC k =-, 因为ABC ∆为直角三角形,且角A 为直角, 所以AB AC ⊥,所以()()2,41,32100AB AC k k ⋅=⋅-=+=, 所以5k =-(2)()()()6,32,48,1BC AC AB =-=--=--DE AE AD AB AC λμ=-=-()()()2,46,326,43λλμμλμλμ=--=+-,因为//BC ED ,所以//BC DE , 所以()()84326λμλμ--=-+, 整理得λμ=. 【点睛】本题考查向量垂直的充要条件,向量坐标的加法和数乘,平行向量的坐标关系,属于基础题.26.(1)2k =-;(2)2k ≠-. 【分析】(1)根据向量垂直,其数量积等于0,利用向量数量积公式得到对应的等量关系式,求得结果;(2)平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,其等价结果为向量(1,2)a =-和向量(1,)b k =是两个不共线向量,根据坐标关系得到结果. 【详解】(1)若()a a b ⊥+,则有()0a a b ⋅+=,即20a a b +⋅=, 又因为(1,2)a =-,(1,)b k =,所以222[(1)2](1)120a a b k +⋅=-++-⋅+=, 即5120k -+=,解得2k =-;(2)对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+, 所以向量(1,2)a =-和向量(1,)b k =是两个不共线向量, 所以121k -⋅≠⋅,即2k ≠-, 所以实数k 的取值范围是2k ≠-. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量垂直的坐标表示,平面向量基本定理,一组向量可以作为基底的条件,属于基础题目.。
(好题)高中数学必修四第二章《平面向量》检测卷(答案解析)(2)
一、选择题1.已知ABC 中,2AB AC ==,120CAB ∠=,若P 是其内一点,则AP AB ⋅的取值范围是( )A .(4,2)--B .(2,0)-C .(2,4)-D .(0,2) 2.在ABC ∆中,2AB =,3AC =,5cos 6A =,若O 为ABC ∆的外心(即三角形外接圆的圆心),且AO mAB nAC +=,则2n m -=( ) A .199 B .4122- C .111- D .17113.ABC 中,AD DC =,点M 在BD 上,且满足37AM AB t AC =+,则实数t 的值为( )A .67B .47C .27D .59 4.已知,M N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则2PM PN -的最大值为( )A .53+B .53-C .523+D .55.已知20a b =≠,且关于x 的方程20x a x a b ++⋅=有实根,则a 与b 的夹角的取值范围是( )A .06,π⎡⎤⎢⎥⎣⎦B .,3ππ⎡⎤⎢⎥⎣⎦C .2,33ππ⎡⎤⎢⎥⎣⎦D .,6ππ⎡⎤⎢⎥⎣⎦ 6.ABC 是边长为1的等边三角形,CD 为边AB 的高,点P 在射线CD 上,则AP CP ⋅的最小值为( )A .18- B .116- C .316- D .07.如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.若有(7,16)λ∈,则在正方形的四条边上,使得PE PF λ=成立的点P 有( )个.A .2B .4C .6D .08.已知O 是三角形ABC 内部一点,且20OA OB OC ++=,则OAB ∆的面积与OAC ∆的面积之比为( )A .12B .1C .32D .29.已知向量(6,4),(3,),(2,3)a b k c =-==-,若//a b ,则b 与c 的夹角的余弦值为( )A .1213B .1213-C .45-D .45 10.已知等边ABC 的边长为2,若3BC BE =,AD DC =,则BD AE ⋅等于( ) A .103 B .103- C .2 D .2-11.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .2312.已知平面上的非零..向量a ,b ,c ,下列说法中正确的是( ) ①若//a b ,//b c ,则//a c ;②若2a b =,则2a b =±;③若23x y a b a b +=+,则2x =,3y =;④若//a b ,则一定存在唯一的实数λ,使得a b λ=.A .①③B .①④C .②③D .②④二、填空题13.设123,,e e e 为单位向量,且()312102e e ke k =+>,若以向量12,e e 为邻边的三角形的面积为12,则k 的值为__________. 14.在梯形ABCD 中,//AB CD ,1CD =,2AB BC ==,120BCD ∠=︒,动点P 和Q 分别在线段BC 和CD 上,且BP BC λ=,14DQ DC λ=,则AP BQ ⋅的最大值为______.15.已知3a =,2b =,()()2318a b a b +⋅-=-,则a 与b 的夹角为________. 16.已知O 为ABC 内一点,且满足305OA OB OC =++,延长AO 交BC 于点D .若BD DC λ=,则λ=_____. 17.下面六个句子中,错误的题号是________. ①周期函数必有最小正周期;②若0a b ⋅=则a ,b 至少有一个为0;③α为第三象限角,则()cos sin 0a <;④若向量a 与b 的夹角为锐角,则0a b ⋅>;⑤存在α,R β∈,使()sin sin sin a a ββ+=+成立;⑥在ABC 中,O 为ABC 内一点,且0OA OB OC ++=,则O 为ABC 的重心. 18.已知夹角为θ的两个单位向量,a b ,向量c 满足()()0a c b c -⋅-=,则c 的最大值为______.19.已知a →,b →为单位向量,2c a b →→→=-,且,3a b π→→<>=,则,a c →→〈〉=________. 20.若平面向量a ,b 为单位向量,12a b ⋅=,空间向量c 满足||8c =,4a c ⋅=,5b c ⋅=,则对任意的实数12,t t ,12c t a t b --的最小值是___________.三、解答题21.如图,在菱形ABCD 中,1,22BE BC CF FD ==.(1)若EF x AB y AD =+,求32x y +的值;(2)若||6,60AB BAD =∠=︒,求AC EF ⋅.22.三角形ABC 中,D 为BC 上一点,2BD DC =,设AD a =,AC b =,可以用a ,b 来表示出AD ,方法如下:方法一:23AD AB A D BC B B ==++,∵BC AC AB =-,∴21212()33333AD AB AC AB AB AC a b =+-=+=+. 方法二:13AC CD AC AD CB =+=+,∵CB AB AC =-,∴11212()33333AD AC AB AC AB AC a b =+-=+=+. 方法三:如图所示,过点D 作AC 的平行线,交AB 于点E ,过点D 作AB 的平行线,交AC 于点F ,则四边形AEDF 为平行四边形.∵//DF AB 且2BD DC =,∴13FD CD AB CB ==,13FD AE AB ==.∵//ED AC ,2BD DC =.∴23ED BD AC BC ==,得23ED AF AC ==.∴12123333AD AE ED AE AF AB AC a b =+=+=+=+. 请参照上述方法之一(用其他方法也可),解决下列问题: (1)三角形ABC 中,D 为BC 的中点,设AB a =,AC b =,试用a ,b 表示出AD ; (2)设D 为直线BC 上任意一点(除B 、C 两点),BD kDC =.点A 为直线BC 外任意一点,AB a =,AC b =,证明:存在唯一实数对λ,μ,使得:AD a b λμ=+,且1λμ+=.23.已知||4,||2a b ==,且a 与b 夹角为120︒,求:(1)||a b +;(2)a 与a b +的夹角.24.已知平面向量(6,19)a =-,(2,1)b =,(3,4)c =-.(1)求满足a mb nc =+的实数m ,n ;(2)若()(2)a kb c b +⊥-,求实数k 的值.25.如图,在梯形ABCD 中,E 为DC 的中点,//,,2AD BC BAD π∠=,3BDA BC BD π∠==.(1)求AE BD ⋅;(2)求AC 与BD 夹角的余弦值.26.已知△ABC 中,角A 、B 、C 的对边为a ,b ,c ,向量m (2cos sin )2C C =-,, n =(cos2sin )2C C ,,且m n ⊥. (1)求角C ; (2)若22212a b c =+,试求sin()A B -的值【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C【分析】以A 为坐标原点,以过点A 垂直于BC 的直线为y 轴,建立平面直角坐标系,求出()3,1B --,()3,1C -,设(),P x y ,因为点P 是其内一点,所以3x 3-<<,10y -<<,计算3AP AB x y ⋅=--得最值,即可求解.【详解】建立如图所示的空间直角坐标系:则()0,0A ,因为120CAB ∠=,所以30ABC ACB ∠=∠=,可得2cos303= ,2sin301,所以()3,1B -- ,()3,1C -,设(),P x y ,因为点P是其内一点,所以10x y <<-<<,()(),1AP AB x y y ⋅=⋅-=-,当x =1y =-时AP AB ⋅最大为((()14⨯--=,当1x y ==-时AP AB ⋅最小为(()12-=-, 所以AP AB ⋅的取值范围是(2,4)-,故选:C【点睛】关键点点睛:本题解题的关键点是建立直角坐标系,将数量积利用坐标表示,根据点(),P x y 是其内一点,可求出,x y 的范围,可求最值.2.D解析:D【分析】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,从而得到·0?0OD AB OE AC ==,,坐标化构建m ,n 的方程组,解之即可.【详解】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,又OD AD AO =-, 即11222m OD AB mAB nAC AB nAC -=--=-, 同理122n OE AE AO AC mAB -=-=-, 因为212·||?02m OD AB AB nAB AC -=-=, 所以124502m n -⨯-=,又212·||?02n OE AC AC mAB AC -=-=, 所以129502n m -⨯-=,联立方程组124502129502m n n m -⎧⨯-=⎪⎪⎨-⎪⨯-=⎪⎩, 解得922811m n ⎧=-⎪⎪⎨⎪=⎪⎩,所以17211n m -=. 故选D【点睛】本题考查了数量积运算性质、向量垂直与数量积的关系、三角形外心的性质、向量基本定理,考查了推理能力与计算能力,属于中档题.3.C解析:C【分析】由题意,可设DM k DB =,结合条件整理可得11(1)22AM AC DM k AC k AB=+=-+,得到关于k 与t 的方程组,解出t 即可. 【详解】 如图,因为AD DC =,所以12AD AC =则12AM AD DM AC DM =+=+, 因为M 在BD 上,不妨设1()()2DM k DB k AB AD k AB AC ==-=-, 则1111()(1)2222AM AC DM AC k AB AC k AC k AB =+=+-=-+, 因为37AM AB t AC =+, 所以37{1(1)2k k t =-=,解得27t =, 故选:C【点睛】本题主要考查了平面向量的线性运算的应用及平面向量基本定理的应用,意在考查学生对这些知识的理解掌握水平.4.A解析:A【分析】根据条件可知22PM PN PO OM ON -=+-2PO OM ON ≤+-,即可求出最大值.【详解】由1MN =可知,OMN 为等边三角形,则1cos602OM ON OM ON ⋅=⋅⋅︒=,由PM PO OM =+,PN PO ON =+, 得22PM PN PO OM ON -=+-2PO OM ON ≤+-,()224413OM ON OM ON -=-⋅+=,又()3,4P ,则5PO =,因此当PO 与2OM ON -同向时,等号成立,此时2PM PN -的最大值为5+故选:A.【点睛】本题考查向量模的大小关系,属于中档题.5.B 解析:B 【分析】根据方程有实根得到24cos 0a a b θ∆=-≥,利用向量模长关系可求得1cos 2θ≤,根据向量夹角所处的范围可求得结果.【详解】 关于x 的方程20x a x a b ++⋅=有实根 240a a b ∴∆=-⋅≥ 设a 与b 的夹角为θ,则24cos 0a a b θ-≥又20a b =≠ 24cos 0b b θ∴-≥ 1cos 2θ∴≤又[]0,θπ∈ ,3πθπ⎡⎤∴∈⎢⎥⎣⎦ 本题正确选项:B【点睛】本题考查向量夹角的求解问题,关键是能够利用方程有实根得到关于夹角余弦值的取值范围,从而根据向量夹角范围得到结果. 6.C解析:C【分析】建立平面直角坐标系,()0,P t ,2t ≤,则 223(2416⋅=-=--AP CP t t ,进而可求最小值.【详解】以D 点为坐标原点,DC 所在直线为y 轴,DA 所在直线为x 轴建立直角坐标系,1(,0)2A ,1(,0)2B -,C ,设()0,P t ,其中t ≤1(,)2AP t =-,3(0,)CP t ==,22333()16⋅=-=--AP CP t t t ,当3t =时取最小值为316-,所以AP CP ⋅的最小值为316-. 故选:C【点睛】本题考查了平面向量的数量积运算,用坐标法求最值问题,考查了运算求解能力,属于一般题目. 7.B解析:B【分析】建立坐标系,逐段分析·PE PF 的取值范围及对应的解.【详解】以DC 为x 轴,以DA 为y 轴建立平面直角坐标系,如图,则()()0,4,6,4E F ,(1)若P 在CD 上,设(,0),06P x x ≤≤,(,4),(6,4)PE x PF x ∴=-=-,2616PE PF x x ∴⋅=-+,[0,6],716x PE PF ∈∴≤⋅≤,∴当=7λ时有一解,当716λ<≤时有两解;(2)若P 在AD 上,设(0,),06P y y <≤,(0,4),(6,4)PE y PF y ∴=-=-,22(4)816PE PF y y y ∴⋅=-=-+,06,016y PE PF <≤∴⋅<,∴当=0λ或4<<16λ时有一解,当716λ<≤时有两解;(3)若P 在AB 上,设(,6),06P x x <≤,(,2),(6,2)PE x PF x =--=--,264PE PF x x ∴⋅=-+,06,54x PE PF <≤∴-≤⋅≤,∴当5λ=-或4λ=时有一解,当54λ-<<时有两解;(4)若P 在BC 上,设(6,),06P y y <<,(6,4),(0,4)PE y PF y ∴=--=-,22(4)816PE PF y y y ∴⋅=-=-+,06y <<,016PE PF ∴⋅<,∴当0λ=或416λ≤<时有一解,当04λ<<时有两解,综上可知当(7,16)λ∈时,有且只有4个不同的点P 使得PE PF λ⋅=成立.故选:B.【点睛】本题主要考查平面向量数量积的运算,二次函数的根的个数判断,属于中档题. 8.A解析:A【解析】由题意,O 是'AB C ∆的重心,'2OB OB =,所以OAB ∆的面积与OAC ∆的面积之比为12.故选A . 点睛:本题考查平面向量的应用.由重心的结论:若0OA OB OC ++=,则O 是ABC ∆的重心,本题中构造'AB C ∆,O 是'AB C ∆的重心,根据重心的一些几何性质,求出面积比值.9.A解析:A【分析】根据向量平行,由平面向量的坐标运算列方程求出k 的值,再利用平面向量夹角公式求解即可.【详解】因为(6,4),(3,),a b k =-=且//a b ,所以61202k k +=⇒=-,(3,2),(2,3)b c =-=-,12cos ,13c b c b c b⋅==, 故选:A. 【点睛】本题主要考查向量平行的性质,考查了平面向量数量积的坐标表示以及向量夹角公式的应用,属于基础题.10.D解析:D 【分析】 根据题意得出()12BD BA BC =+,13AE BC BA =-,运用数量积求解即可. 【详解】解:等边△ABC 的边长为2,3BC BE =,AD DC =, ∴()12BD BA BC =+,1313A AB BE AB B E BC A C B =+=+=-, ∴()221111223233BD AE BA BC BC BA BC BA BC BA ⎛⎫⎛⎫+-=--⋅ ⎪ ⎪⎝=⎭⎝⎭, 112144222332⎛⎫=⨯⨯--⨯⨯⨯ ⎪⎝⎭, 2=-.故选:D . 【点睛】本题考查了平面向量的运算,数量积的求解,关键是分解向量,属于中档题.11.B解析:B 【分析】由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解. 【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=,故选:B .【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题.12.B解析:B 【分析】根据向量共线定理判断①④,由模长关系只能说明向量a ,b 的长度关系判断②,举反例判断③. 【详解】对于①,由向量共线定理可知,//a b ,则存在唯一的实数1λ,使得1λa b ,//b c ,则存在唯一的实数2λ,使得2λbc ,由此得出存在唯一的实数12λλ⋅,使得12a c λλ=⋅,即//a c ,则①正确;对于②,模长关系只能说明向量a ,b 的长度关系,与方向无关,则②错误; 对于③,当a b =时,由题意可得()5x y a a +=,则5x y +=,不能说明2x =,3y =,则③错误;由向量共线定理可知,④正确; 故选:B. 【点睛】本题主要考查了向量共线定理以及向量的定义,属于中档题.二、填空题13.【详解】两端平方得又得即夹角为所以即又所以【详解】 两端平方得222114k ke e =++⋅, 又121122S e e sin θ==, 得1sin θ=,即12,e e 夹角为90︒,所以120e e ⋅=, 即234k =,又 0k >,所以k =.14.【分析】由题可知据平面向量的混合运算法则可化简得到;设函数由对勾函数的性质推出在上的单调性求出最大值即可得解【详解】根据题意作出如下所示图形:∵∴又P 和Q 分别在线段和上∴解得设函数由对勾函数的性质可解析:54【分析】 由题可知114CQ DC λ⎛⎫=-⎪⎝⎭,1,14λ⎡⎤∈⎢⎥⎣⎦,据平面向量的混合运算法则可化简得到117524AP BQ λλ⋅=+-;设函数()117524f λλλ=+-,1,14λ⎡⎤∈⎢⎥⎣⎦,由对勾函数的性质推出()fλ在1,14λ⎡⎤∈⎢⎥⎣⎦上的单调性,求出最大值即可得解. 【详解】根据题意,作出如下所示图形:∵BP BC λ=,14DQ DC λ=,∴114CQ DQ DC DC λ⎛⎫=-=-⎪⎝⎭, 又P 和Q 分别在线段BC 和CD 上,∴011014λλ≤≤⎧⎪⎨≤≤⎪⎩,解得1,14λ⎡⎤∈⎢⎥⎣⎦. ()()()114AP BQ AB BP BC CQ AB BC BC DC λλ⎡⎤⎛⎫⋅=+⋅+=+⋅+- ⎪⎢⎥⎝⎭⎣⎦2111144AB BC AB DC BC BC DC λλλλ⎛⎫⎛⎫=⋅+-⋅++-⋅ ⎪ ⎪⎝⎭⎝⎭1111722cos120121cos 04121cos12054424λλλλλλ⎛⎫⎛⎫=⨯⨯︒+-⨯⨯⨯︒+⨯+-⨯⨯⨯︒=+-⎪ ⎪⎝⎭⎝⎭.设函数()117524fλλλ=+-,1,14λ⎡⎤∈⎢⎥⎣⎦, 由对勾函数的性质可知,()f λ在110,410⎡⎢⎣⎭上单调递减,在10,110⎛⎤⎥ ⎝⎦上单调递增, ∵114f ⎛⎫=-⎪⎝⎭,()514f =,∴()()max 514ff λ==,即AP BQ ⋅的最大值为54.故答案为:54. 【点睛】本题考查平面向量的应用,考查数量积的定义,考查函数的单调性与最值,属于中档题.15.【分析】本题先求再根据化简整理得最后求与的夹角为【详解】解:∵∴∵∴整理得:∴与的夹角为:故答案为:【点睛】本题考查运用数量积的定义与运算求向量的夹角是基础题 解析:3π【分析】本题先求29a =,24b =,6cos ,a b a b ⋅=,再根据()()2318a b a b +⋅-=-化简整理得1cos ,2a b =,最后求a 与b 的夹角为3π.【详解】解:∵ 3a =,2b =, ∴ 229a a ==,224b b==,cos ,6cos ,a b a b a b a b ⋅=⋅⋅<>=<>,∵ ()()2318a b a b +⋅-=-,∴ ()()2223696cos ,6418a b a b aa b b a b +⋅-=-⋅-=-<>-⨯=-整理得:1cos ,2a b <>=, ∴a 与b 的夹角为:3π. 故答案为:3π 【点睛】本题考查运用数量积的定义与运算求向量的夹角,是基础题.16.【分析】将已知条件转化为结合得到设列出关于的方程组由此求得【详解】由于所以所以即因为即化简得设所以解得故答案为:【点睛】本小题主要考查平面向量的基本定理考查平面向量的线性运算考查化归与转化的数学思想解析:53【分析】将已知条件转化为1539AO AB AC =+,结合BD DC λ=,得到111AD AB AC λλλ=+++,设AO k AD =,列出关于,k λ的方程组,由此求得λ. 【详解】 由于305OA OB OC =++,所以()()350OA AB AO AC AO +-+-=,所以935AO AB AC =+,即1539AO AB AC =+. 因为BD DC λ=,即()AD AB AC AD λ-=-, 化简得111AD AB AC λλλ=+++, 设11k k AO k AD AB AC λλλ==+++, 所以113519k k λλλ⎧=⎪⎪+⎨⎪=⎪+⎩,解得53λ=.故答案为:53【点睛】本小题主要考查平面向量的基本定理,考查平面向量的线性运算,考查化归与转化的数学思想方法,属于中档题.17.①②③【分析】①常函数没有最小正周期;②是非零向量时代表的是两向量垂直;③可采用赋值法令判断正误;④由数量积公式即可判断;⑤令即可判断;⑥结合平面向量加法法则和重心特征即可求解;【详解】①常函数没有解析:①②③ 【分析】①常函数没有最小正周期;②,a b 是非零向量时,0a b ⋅=代表的是两向量垂直;③可采用赋值法,令76πα=判断正误; ④由数量积公式即可判断; ⑤令0αβ==即可判断;⑥结合平面向量加法法则和重心特征即可求解; 【详解】①常函数没有最小正周期,故判断错误;②,a b 是非零向量时,0a b a b ⋅=⇔⊥,判断错误; ③令76πα=,则()1cos sin 0cos 02a ⎛⎫<⇔-< ⎪⎝⎭,即1cos 02<,显然错误; ④若向量a 与b 的夹角为锐角,则cos 0a b a b θ⋅=⋅>,判断正确; ⑤当0αβ==,()sin sin sin a a ββ+=+,判断正确; ⑥若OA OB OC O ++=,如图:设D 为AC 中点,则2OA OC OD OE +==,则20OD OB +=,所以,,D O B 三点共线,且2OD OD =,故O 为ABC 的重心,判断正确; 故答案为:①②③ 【点睛】本题主要考查平面向量和三角函数的基础知识,属于基础题18.【分析】建立平面直角坐标系设出向量的坐标得出向量的终点的轨迹方程再运用点与圆的位置关系可以得到的最大值【详解】由已知建立平面直角坐标系设又所以所以点在以为圆心以为半径的圆上所以的最大值为所以的最大值 解析:cossin22θθ+【分析】建立平面直角坐标系,设出向量a b c ,,的坐标,得出向量c 的终点C 的轨迹方程,再运用点与圆的位置关系可以得到||c 的最大值. 【详解】由已知建立平面直角坐标系,设()()()10cos ,sin ,,OA a OB b OC c x y θθ======,,,又()()0a c b c -⋅-=,所以()22+1+cos sin +cos 0x x y y θθθ-⋅-⋅=,所以点C 在以1+cos sin ,22P θθ⎛⎫⎪⎝⎭为圆心,以sin 2R θ=为半径的圆上, 所以c的最大值为+cos +sin 222OP R θθθ==, 所以c 的最大值为cos sin22θθ+,故答案为:cos sin22θθ+.【点睛】本题考查求向量的模的最值,建立平面直角坐标系,设出向量坐标,得出向量的终点的轨迹方程是解决本题的关键,属于中档题.19.【分析】根据向量的夹角公式及数量积的运算计算即可求解【详解】因为又所以故答案为:【点睛】本题主要考查了向量数量积的定义运算法则性质向量的夹角公式属于中档题 解析:6π【分析】根据向量的夹角公式及数量积的运算计算即可求解. 【详解】因为22cos (cos ,2|||||2)2|a a ca a c ab a bc π→→→→→→→→→→→→→→-⋅〈〉==--===⋅, 又,0a c π→→〈≤〉≤, 所以,6a c π→→〈〉=,故答案为:6π 【点睛】本题主要考查了向量数量积的定义,运算法则,性质,向量的夹角公式,属于中档题.20.6【分析】根据题意将其代入并且结合化简整理进而可求得最小值【详解】解:由题得将条件代入可得上式当且仅当取等号故的最小值是故答案为:【点睛】本题主要考查平面向量的数量积及其运算性质以及二次式的最值问题解析:6 【分析】根据题意,221a b ==,将其代入212|()|c t a t b -+,并且结合||8c =,4a c ⋅=,5b c ⋅=,化简整理2222121283|()|(4)363624t c t a t b t t -⎛⎫-+=++-+ ⎪⎝⎭,进而可求得最小值 【详解】解:22222212121212()222c t a t b c t a t b t c a t c b t t a b -+=++--+, 由题得221a b ==,||8c =,4a c ⋅=,5b c ⋅=,12a b ⋅=将条件代入可得上式22222212121212()222c t a t b c t a t b t c a t c b t t a b -+=++--+ 22121212164242522t t t t t t =++-⨯-⨯+⨯22222121212128364810(4)363624t t t t t t t t t -⎛⎫=++--+=++-+ ⎪⎝⎭, 当且仅当12t =,24t =取等号, 故12||c t a t b --的最小值是6, 故答案为:6 【点睛】本题主要考查平面向量的数量积及其运算性质以及二次式的最值问题,还考查了运算求解的能力.三、解答题21.(1)1-;(2)9-. 【分析】(1)利用平面向量基本定理,取AB AD 、为基底,利用向量加减法可解; (2)把所有的向量用基底AB AD 、表示后,计算AC EF ⋅. 【详解】解:(1)因为1,22BE BC CF FD ==, 所以12122323EF EC CF BC DC AD AB =+=-=-,所以21,32x y =-=, 故213232132x y ⎛⎫+=⨯-+⨯=- ⎪⎝⎭. (2)∵AC AB AD =+, ∴2212121()23236AC EF AB AD AD AB AD AB AB AD ⎛⎫⋅=+⋅-=--⋅⎪⎝⎭∵ABCD 为菱形∴||=||6AD AB =∴2211||||cos 66AC EF AB AB BAD ⋅=--∠. 11136369662=-⨯-⨯⨯=-,即9AC EF ⋅=-. 【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则; (2)树立“基底”意识,利用基向量进行线性运算. 22.(1)1122AD a b =+;(2)证明过程见详解. 【分析】(1)根据题干中所给的方法,结合向量的线性运算,可分别求解;(2)根据题干中所给的方法,由向量的线性运算,用a ,b 表示出AD ,即可得出结论成立. 【详解】(1)因为D 为BC 的中点, 方法一:12AD AB BD AB BC =+=+,∵BC AC AB =-,∴11221)22(221AD AB AC AB AB AC a b =+-=+=+; 方法二:21AC CD AC AD CB =+=+,∵CB AB AC =-,∴111221)2(221AD AC AB AC AB AC a b =+-=+=+; 方法三:如图所示,过点D 作AC 的平行线,交AB 于点E ,过点D 作AB 的平行线,交AC 于点F ,则四边形AEDF 为平行四边形.∵//DF AB 且BD DC =,∴21FD CD AB CB ==,21FD AE AB ==. ∵//ED AC ,BD DC =.∴12ED BD AC BC ==,得12ED AF AC ==.∴11212212AD AE ED AE AF AB AC a b =+=+=+=+; (2)因为D 为直线BC 上任意一点(除B 、C 两点),BD kDC =,显然1k ≠-; 所以1k BD BC k =+,11CB k CD =+, 方法一:1AD AB BD AB BC kk =+++=,∵BC AC AB =-, ∴1111111()k k k AD AB AC AB AB AC a b k k k k k +++++=+-=+=+; 即存在唯一实数对1k k λ=+,11k μ=+,使得:AD a b λμ=+,且1λμ+=; 方法二:11A AC CD AC CB D k =++=+,∵CB AB AC =-, ∴11111111()k k k k AD AC AB AC A k k B AC a b k ++=+-=+++=++; 即存在唯一实数对11k λ=+,1kk μ=+,使得:AD a b λμ=+,且1λμ+=; 方法三:若点D 位于点B 左侧,如图,过点D 作//DM AB ,过点A 作//AM BC ,交DM 于点M ,则AMDB 为平行四边形,1kAM BD BC k ==+,所以11()AD AB AM AB BC AB k k k k AC AB =++=-+++=111111k k AB AC a b k k k k ++++=+=+; 即存在唯一实数对1k k λ=+,11k μ=+,使得:AD a b λμ=+,且1λμ+=; 若点D 位于点C 右侧,如图,过点D 作//DN AC ,过点A 作//AN BC ,交DN 于点N ,则ANDC 为平行四边形, 11AN CD BC k ==+,因此11A AC AN AC CB D k =++=+111111(1)k k k AB AC AB AB AC a b k k k k k +++=+++-+=+=, 即存在唯一实数对1k k λ=+,11k μ=+,使得:AD a b λμ=+,且1λμ+=; 若点D 位于BC 之间,则0k >;如图所示,过点D 作AC 的平行线,交AB 于点P ,过点D 作AB 的平行线,交AC 于点Q ,则四边形APDQ 为平行四边形.∵//DQ AB 且BD DC =,∴11QD CD AB C k B =+=,11Q k D AP AB =+=, ∵//PD AC ,BD DC =.∴1PD BD AC BC k k =+=,得1k k PD AQ AC =+=. ∴111111AD AP AQ AB AC k k a b k k k k =+=++=++++; 即存在唯一实数对1k k λ=+,11k μ=+,使得:AD a b λμ=+,且1λμ+=; 综上,存在唯一实数对λ,μ,使得:AD a b λμ=+,且1λμ+=.【点睛】思路点睛:利用平面向量的一组基底表示向量时,只需根据向量的线性运算法则,结合平面向量基本定理,逐步求解即可.23.(1)232)6π. 【分析】(1)由已知利用向量的数量积的 定义可求||||cos120a b a b =︒,然后由222||()2a b a b a a b b +=+=++可求(2)设a 与a b +的夹角θ,代入向量的夹角公式2()cos ||||423a ab a a a b θ+==+⨯可求θ 【详解】解:(1)||4a =,||2b =,且a 与b 夹角为120︒ ∴1||||cos12042()42a b a b =︒=⨯⨯-=- ∴222||()2164a b a b a a b b +=+=++=+-(2)设a 与a b +的夹角θ 则2()3cos ||||42383a ab a a a b θ+====+⨯ 0θπ∴6πθ=.【点睛】本题主要考查了向量的数量积的定义及向量的数量积的性质的简单应用,属于基础试题 24.(1)3m =,4n =;(2)203k =. 【分析】(1)根据a mb nc =+可得关于,m n 的方程组,解方程组后可得实数m ,n 的值. (2)求出,2a kb c b +-的坐标后,利用向量垂直的坐标形式可求实数k 的值.【详解】 解:(1)由(2,)mb m m =,(3,4)nc n n =-得:(23,4)mb nc m n m n +=-+ 且(6,19)a mb nc =-=+ 所以236,419,m n m n -=-⎧⎨+=⎩得3m =,4n =.(2)因为(62,19)a kb k k +=-++,2(7,2)c b -=-,且()(2)a kb c b +⊥-, 所以7(62)2(19)0k k -⨯-++⨯+=,所以203k =. 【点睛】 如果()()1122,,,a x y b x y ==,那么:(1)若//a b ,则1221x y x y =;(2)若a b ⊥,则12120x x y y +=;25.(1)0;(2)14-. 【分析】 (1)由BCD △为等边三角形得出2BC AD =,由向量的加法和减法运算得出13,22AE AB AD BD AD AB =+=-,再由向量的数量积公式得出AE BD ⋅的值;(2)设AD a =,则3,2,AB BC BD a AC ====,由数量积公式得出AC BD ⋅,进而得出AC 与BD 夹角的余弦值.【详解】解:(1)因为//AD BC ,,,23BAD BDA BC BD ππ∠=∠==所以BCD △为等边三角形,2BC AB AD == 又E 为DC 的中点所以1113()(),2222AE AC AD AB BC AD AB AD BD AD AB =+=++=+=- 则221313()02222AE BD AB AD AD AB AB AB AD AD ⎛⎫⋅=+⋅-=--⋅+=⎪⎝⎭ (2)设AD a =,则3,2,7AB a BC BD a AC a ==== 222(2)()2AC BD AB AD AD AB AB AD AB AD a ⋅=+⋅-=--⋅+=-设AC 与BD 的夹角为θ,则2cos 142AC BDAC BD θ⋅===-. 【点睛】本题主要考查了利用定义求向量的数量积以及夹角,属于中档题.26.(1)60C =︒;(2. 【分析】(1)利用两个向量垂直的性质,两个向量数量积公式以及二倍角公式,求得cos C 的值,可得C 的值.(2)利用两角差的正弦公式,正弦定理和余弦定理化简,可得结果.【详解】(1)由题意知,0m n =,即222cos 2sin 02C C -=,21cos 2(1cos )0C C +--=, 22cos cos 10C C +-=,即cos 1C =-,或1cos 2C =, 因为0C π<<,所以60C =︒.(2)2222221122a b c a b c =+⇒-=, 222222sin()sin cos sin cos 2222a a c b b b c a A B A B B A R ac R bc+-+--=-=- ()222214442a b c c sinC cR cR R -=====. 【点睛】本题主要考查两个向量数量积公式,两角差的正弦公式,正弦定理和余弦定理的应用,属于中档题.。
(完整word)高中数学必修4平面向量测试试卷典型例题(含详细答案)
高中数学平面向量组卷一.选择题(共 18 小题)1.已知向量与的夹角为θ,定义× 为与的“向量积”,且×是一个向量,它的长度 | × |=| || |sinθ,若=( 2, 0),﹣ =( 1,﹣),则 | ×( + )|=()A. 4 B .C.6D. 22.已知,为单位向量,其夹角为60°,则( 2﹣) ?=()A.﹣ 1 B . 0C.1D. 23.已知向量=( 1,), =( 3,m),若向量,的夹角为,则实数 m=()A. 2 B .C.0D.﹣4.向量,,且∥ ,则=()A. B .C.D.5.如图,在△ ABC 中, BD=2DC .若,,则=()A. B .C.D.6.若向量=(2cosα,﹣ 1), =(, tanα),且∥,则 sin α=()A. B .C.D.7.已知点 A ( 3, 0), B( 0,3),C(cosα, sinα),O( 0, 0),若,则的夹角为()A. B .C.D.8.设向量= , =不共线,且 |+ |=1,| ﹣|=3,则△ OAB 的形状是()A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形9.已知点 G 是△ABC的重心,若 A=, ?=3,则 ||的最小值为()10.如图,各棱长都为 2 的四周体ABCD 中,=,=2,则向量? =()A.﹣ B .C.﹣D.11.已知函数 f( x) =sin( 2πx+ φ)的部分图象如下图,点B, C 是该图象与 x 轴的交点,过点 C 的直线与该图象交于 D ,E 两点,则() ?的值为()A. B .C.1D. 212.已知 P 为三角形 ABC 内部任一点(不包含界限),且知足 (﹣) ?(+ ﹣ 2 ) =0,则△ABC 的形状一定为()A.等边三角形B.直角三角形C.钝三角形D.等腰三角形13.如下图,设 P 为△ABC 所在平面内的一点,而且=+,则△ABP与△ ABC的面积之比等于()A. B .C.D.14.在△ ABC 中, |AB|=3 , |AC|=2 , =,则直线 AD 经过△ ABC 的()A.垂心B.外心C.重心D.心里15.在△ ABC 中,∠ BAC=60 °,AB=2 , AC=1 , E,F 为边 BC 的三均分点,则=()A. B .C.D.16.已知空间向量知足,且的夹角为,O 为空间直角坐标系的原点,点A、B 知足,,则△ OAB 的面积为()A. B .C.D.17.已知点 P 为△ABC 内一点,且++3= ,则△APB ,△ APC,△ BPC 的面积之比等于()A.9:4:1B.1:4:9C.3: 2: 1D. 1: 2:318.在直角三角形ABC 中,点 D 是斜边 AB 的中点,点 P 为线段 CD 的中点,则=()A. 2 B . 4C.5D. 10二.解答题(共 6 小题)19.如图示,在△ ABC 中,若 A ,B 两点坐标分别为(2,0),(﹣ 3, 4)点 C 在 AB 上,且 OC 均分∠BOA .(1)求∠ AOB 的余弦值;(2)求点 C 的坐标.20.已知向量=( cosθ, sinθ)和.( 1)若∥,求角θ的会合;(2)若,且|﹣|=,求的值.21.如下图,若 D 是△ABC 内的一点,且AB 2﹣ AC 2=DB 2﹣DC 2.求证: AD ⊥ BC.22.已知向量,,此中A、B是△ ABC 的内角,.(1)求 tanA?tanB 的值;( 2)若 a、b、 c 分别是角 A 、 B 、C 的对边,当 C 最大时,求的值.23.已知向量且,函数f(x)=2( I)求函数f( x)的最小正周期及单一递加区间;( II )若,分别求tanx 及的值.24.已知,函数f(x)=.(1)求函数 f( x)的最小正周期;(2)求函数 f( x)的单一减区间;( 3)当时,求函数 f (x)的值域.高中数学平面向量组卷(2014 年 09 月 24 日)参照答案与试题分析一.选择题(共18 小题)1.已知向量与的夹角为θ,定义× 为与的“向量积”,且× 是一个向量,它的长度| × |=| || |sinθ,若=( 2, 0),﹣=( 1,﹣),则 | ×(+)|=()A. 4 B .C.6D. 2考点:平面向量数目积的运算.专题:平面向量及应用.剖析:=利用数目积运算和向量的夹角公式可得.再利用平方关系可得,利用新定义即可得出.解答:解:由题意,则,∴=6 ,==2,=2 .∴=== .即,得,由定义知,应选: D.评论:此题考察了数目积运算、向量的夹角公式、三角函数的平方关系、新定义,考察了计算能力,属于基础题.2.已知,为单位向量,其夹角为60°,则( 2﹣)?=()A.﹣ 1B.0C.1D.2考点:平面向量数目积的运算.专题:平面向量及应用.剖析:由条件利用两个向量的数目积的定义,求得、的值,可得(2﹣)?的值.解答:3.已知向量=( 1,),=( 3,m),若向量,的夹角为,则实数m=()A.2B.C.0D.﹣考点:数目积表示两个向量的夹角.专题:平面向量及应用.剖析:由条件利用两个向量的夹角公式、两个向量的数目积公式,求得m 的值.解答:解:由题意可得cos ===,解得m=,应选:B.评论:此题主要考察两个向量的夹角公式、两个向量的数目积公式的应用,属于基础题.4.向量,,且∥,则=()A.B.C.D.考点:平行向量与共线向量;同角三角函数间的基本关系;引诱公式的作用.专题:计算题;三角函数的求值.剖析:依据向量平行的条件成立对于α的等式,利用同角三角函数的基本关系与引诱公式,化简即可获得的值.解答:解:∵,,且∥ ,∴,即,得 sin α=,由此可得=﹣ sinα=.应选: B评论:此题给出向量含有三角函数的坐标式,在向量相互平行的状况下求的值.侧重考察了同角三角函数的基本关系、引诱公式和向量平行的条件等知识,属于基础题.5.如图,在△ ABC 中, BD=2DC .若,,则=()A.B.C.D.考点:向量的加法及其几何意义.专题:平面向量及应用.剖析:由题意可得=,而,,代入化简可得答案.解答:解:由题意可得=====应选C评论:此题考察平面向量的加法及其几何意义,波及向量的数乘,属基础题.6.若向量=(2cosα,﹣ 1), =(,tanα),且∥,则sinα=()A.B.C.D.考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.剖析:直接由向量共线的坐标表示列式计算.解答:解:∵向量=( 2cosα,﹣ 1), =(, tanα),且∥,则 2cosα?tanα﹣(﹣ 1)×=0,即 2sinα=.∴.应选: B .评论:共线问题是一个重要的知识点,在高考题中经常出现,常与向量的模、向量的坐标表示等联系在一同,要特别注意垂直与平行的差别.若=( a1,a2), =( b1,b2),则⊥? a1a2+b1b2 =0,∥? a1b2﹣ a2 b1=0.是基础题.7.已知点 A ( 3, 0), B( 0,3),C(cosα, sinα),O( 0, 0),若,则的夹角为()A.B.C.D.考点:平面向量数目积的坐标表示、模、夹角.专题:计算题.剖析:依据题意求出的坐标,再由它的模求出角α,从而求出点 C 的坐标,利用数目积的坐标表示求出和夹角的余弦值,再求出夹角的度数.∵, ∴ (3+cos α) 2+sin 2α=13 ,解得, cos α= ,则 α= ,即C (, ),∴ 和 夹角的余弦值是 = = ,∴ 和 的夹角是 .应选: D .评论: 此题考察向量线性运算的坐标运算,以及数目积坐标表示的应用,利用向量坐标形式进行运算求出对应向量的模,以及它们的夹角的余弦值,从而联合夹角的范围求出夹角的大小.8.设向量= ,= 不共线,且 | + |=1, | ﹣ |=3,则 △ OAB的形状是()A .等 边三角形B .直角三角形C . 锐角三角形D . 钝角三角形考点: 平面向量数目积的运算.专题: 计算题;平面向量及应用.剖析: 对| + |=1, | ﹣ |=3 分别平方并作差可得,由其符号可判断 ∠ AOB 为钝角,获得答案.解答:+ |=1,得=1 ,即① ,解:由 |由 | ﹣ |=3,得,即② ,① ﹣② 得,4=﹣8,解得<0, ∴ ∠ AOB 为钝角, △ OAB 为钝角三角形,应选:D .评论: 此题考察平面向量数目积运算,属基础题.9.已知点 G 是 △ABC 的重心,若 A= ,? =3,则 | |的最小值为()A .B .C .D . 2考点: 平面向量数目积的运算.专题: 不等式的解法及应用;平面向量及应用.剖析: 由 A=, ? =3 ,可求得=6,由点 G 是 △ ABC 的重心, 得 =,利用不等式则 ||2 == (+6)≥,代入数值可得.解答:解: ∵A=, ? =3,∴=3,即=6 ,∵ 点 G 是△ABC 的重心, ∴ =,∴| |2== ( +6)≥==2,∴ | |≥,当且仅当 =时取等号, ∴ | |的最小值为,应选 B .评论: 此题考察平面向量数目积的运算、不等式求最值,注意不等式求最值时合用的条件.A.﹣B.C.﹣D.考点:平面向量数目积的运算.专题:平面向量及应用.剖析:由向量的运算可得=(),=,由数目积的定义可得.解答:解:∵=,=2,∴=(),=,∴=====,∴? =()?()===应选:B评论:此题考察向量数目积的运算,用已知向量表示未知向量是解决问题的重点,属中档题.11.已知函数f( x) =sin( 2πx+ φ)的部分图象如下图,点B, C 是该图象与x 轴的交点,过点 C 的直线与该图象交于 D ,E 两点,则()?的值为()A.B.C.1D.2考点:平面向量数目积的运算;正弦函数的图象;正弦函数的定义域和值域.专题:平面向量及应用.剖析:依据三角函数的图象和性质,求出函数的周期,利用向量的基本运算和向量的数目积定义即可获得结论.解答:解:∵函数f(x)=sin(2πx+φ)的周期T=,则BC=,则C点是一个对称中心,则依据向量的平行四边形法例可知:=2 ?∴()?==2×=.评论:此题主要考察向量的数目积运算,利用三角函数的图象和性质是解决此题的重点.A.等边三角形 B .直角三角形C.钝三角形D.等腰三角形考点:平面向量数目积的运算.专题:平面向量及应用.剖析:利用向量的三角形法例和平行四边形法例、向量垂直于数目积的关系即可得出.解答:解:∵,=,(﹣)?(+﹣2)=0,∴=0.而必定经过边AB 的中点,∴垂直均分边AB ,即△ ABC 的形状必定为等腰三角形.评论:此题考察了向量的三角形法例和平行四边形法例、向量垂直于数目积的关系、等腰三角形的定义,考察了推理能力,属于难题.13.如下图,设P 为△ABC 所在平面内的一点,而且=+,则△ABP与△ ABC的面积之比等于()A.B.C.D.考点:向量在几何中的应用.专题:计算题;压轴题.剖析:此题考察的知识点是向量在几何中的应用,及三角形面积的性质,由△ABP 与△ ABC 为同底不等高的三角形,故高之比即为两个三角面积之间,连结CP 并延伸后,我们易获得CP 与 CD 长度的关系,进行获得△ ABP的面积与△ ABC 面积之比.解答:解:连结 CP 并延伸交 AB于 D,∵ P、C、D 三点共线,∴=λ+μ,且λ+μ=1设=k ,联合=+,得=+由平面向量基本定理解之,得λ=, k=3 且μ=,∴ =+,可得=,∵ △ ABP 的面积与△ ABC 有同样的底边AB高的比等于 | |与 | |之比∴ △ ABP的面积与△ ABC面积之比为,应选:C评论:三角形面积性质:同(等)底同(等)高的三角形面积相等;同(等)底三角形面积这比等于高之比;同(等)高三角形面积之比等于底之比.14.在△ ABC 中, |AB|=3 , |AC|=2 ,=,则直线AD 经过△ ABC 的()考点:向量在几何中的应用.专题:综合题;平面向量及应用.剖析:第一依据已知条件可知||=||=,又因为=,设=,=,由向量加法的平行四边形法例可知四边形AEDF 为菱形,从而可确立直线AD 经过△ ABC 的心里.解答:解:∵ |AB|=3,|AC|=2∴ ||=||=.设=,=,则||=| |,∴== +.由向量加法的平行四边形法例可知,四边形AEDF 为菱形.∴ AD 为菱形的对角线,∴AD 均分∠ EAF .∴直线 AD 经过△ABC 的心里.应选: D .评论:此题考察向量加法的平行四边形法例及其几何意义,属于中档题.15.在△ ABC 中,∠ BAC=60 °,AB=2 , AC=1 , E,F 为边 BC 的三均分点,则=()A.B.C.D.考点:向量在几何中的应用;平面向量数目积的运算.专题:计算题.剖析:先判断三角形形状,而后成立直角坐标系,分别求出,向量的坐标,代入向量数目积的运算公式,即可求出答案.解答:解:∵在△ ABC中,∠ BAC=60°,AB=2,AC=1,∴ 依据余弦定理可知BC=由 AB=2 ,AC=1 , BC= 知足勾股定理可知∠ BCA=90 °以 C 为坐标原点, CA 、 CB 方向为 x,y 轴正方向成立坐标系∵ AC=1 , BC=,则C(0,0),A(1,0),B(0,)又∵ E, F 分别是 Rt△ ABC 中 BC 上的两个三均分点,则E( 0,),F(0,)则=(﹣ 1,),=(﹣ 1,)∴=1+ =应选A.评论:此题考察的知识点是平面向量数目积的运算,此中成立坐标系,将向量数目积的运算坐标化能够简化此题的解答过程.16.已知空间向量知足,且的夹角为,O为空间直角坐标系的原点,点 A 、B 知足,,则△ OAB 的面积为()考点:平面向量数目积的运算;三角形的面积公式.专题:平面向量及应用.剖析:由向量的运算可得,,以及,代入夹角公式可得cos∠ BOA ,由平方关系可得sin∠ BOA ,代入三角形的面积公式S=,计算可得.解答:解:由题意可得====,同理可得====,而=() ?()==6×12﹣12= ,故 cos∠ BOA===,可得 sin∠ BOA==,所以△OAB 的面积 S===.应选 B评论:此题考察平面向量的数目积和三角形面积的求解,娴熟掌握公式是解决问题的重点,属中档题.17.已知点 P 为△ABC 内一点,且++3=,则△APB,△ APC,△ BPC的面积之比等于()A.9:4:1B.1:4:9C.3:2:1D.1: 2:3考点:向量在几何中的应用.专题:计算题;压轴题.剖析:先将已知向量式化为两个向量共线的形式,再利用平行四边形法例及向量数乘运算的几何意义,三角形面积公式确立面积之比解答:解:∵++3=,∴+ =﹣+),如图:∵,∴∴ F、 P、 G 三点共线,且PF=2PG, GF 为三角形ABC 的中位线∴====2而 S△APB= S△ABC∴△ APB ,△ APC ,△ BPC 的面积之比等于3: 2:1 应选C评论: 此题考察了向量式的化简,向量加法的平行四边形法例,向量数乘运算的几何意义等向量知识,充足利用向量共线是解决此题的重点18.在直角三角形 ABC 中,点 D 是斜边 AB 的中点,点P 为线段 CD 的中点,则 =( )A .2B .4C .5D .10考点: 向量在几何中的应用.专题: 计算题;综合题.剖析: 以 D 为原点, AB 所在直线为 x 轴,成立坐标系,由题意得以AB 为直径的圆必然经过 C 点,所以设 AB=2r ,∠ CDB= α,获得 A 、 B 、 C 和 P 各点的坐标,运用两点的距离公式求出|PA|2+|PB|2 和 |PC|2的值,即可求出的值.解答: 解:以 D 为原点, AB 所在直线为 x 轴,成立如图坐标系,∵ AB 是 Rt △ ABC 的斜边, ∴ 以 AB 为直径的圆必然经过C 点设 AB=2r , ∠CDB= α,则 A (﹣ r , 0), B ( r , 0), C (rcos α,rsin α) ∵ 点 P 为线段 CD 的中点, ∴ P ( rcos α, rsin α)∴ |PA|2=+ = +r 2cos α,|PB|2=+=﹣ r 2cos α,222又 ∵ 点 P 为线段 CD 的中点, CD=r可得 |PA| +|PB| = r∴ |PC|2== r 2所以:= =10 应选 D评论: 此题给出直角三角形ABC 斜边 AB 上中线 AD 的中点 P ,求 P 到 A 、B 距离的平方和与 PC 平方的比值,侧重考察了用分析法解决平面几何问题的知识点,属于中档题.二.解答题(共 6 小题)(1)求∠ AOB 的余弦值;(2)求点 C 的坐标.考点:向量在几何中的应用.专题:综合题.剖析:( 1)由题意可得,把已知代入可求( 2)设点 C( x,y),由 OC 均分∠BOA 可得 cos∠ AOC=cos ∠ BOC 即=;再由点C 在 AB 即共线,成立对于x,y 的关系,可求解答:解:(1)由题意可得,,∴==(2)设点 C(x, y),由 OC 均分∠ BOA 可得 cos∠ AOC=cos ∠ BOC∵,∴=∴,∴ y=2x①又点 C在 AB 即共线,∴ 4x+5y ﹣ 8=0②由①②解得,∴ 点C的坐标为评论:此题注意考察了向量的夹角公式的坐标表示的应用,向量共线的坐标表示在三角形中的应用,解题的重点是借助于已知图象中的条件,灵巧的应用向量的基本知识.20.已知向量=( cosθ, sinθ)和.(2)若,且|﹣|=,求的值.考点:平面向量的坐标运算.专题:计算题.剖析:(1)由题意和共线向量的等价条件,列出对于角θ的方程,求出θ的一个三角函数值,再依据三角函数求出角θ的会合.( 2)由题意先求出﹣的坐标,依据此向量的长度和向量长度的坐标表示,列出方程求出cos(θ﹣),由余弦的二倍角公式和θ的范围求出的值.解答:解:(1)由题意知∥,则cosθ×cosθ﹣sinθ×(﹣sinθ)=0,∴sinθ=1, sinθ=,∴角θ的会合 ={ θ|θ= +2kπ或θ=+2kπ, k∈Z} ;( 2)由题意得,﹣=( cosθ﹣+sinθ, sinθ﹣ cosθ),∴|﹣|===2=,即 cos(θ﹣)=,由余弦的二倍角公式得,=① ,∵,∴<<,∴<﹣<,即cos(﹣)<0,∴由①得 cos(﹣)=﹣.评论:此题考察了共线向量的坐标表示和向量长度的坐标表示,利用两角正弦(余弦)和差公式和二倍角公式进行变形求解,注意由已知条件求出所求角的范围,来确立所求三角函数值的符号.21.如下图,若 D 是△ABC 内的一点,且AB 2﹣ AC 2=DB 2﹣DC 2.求证: AD ⊥ BC.15考点:向量在几何中的应用.专题:计算题;证明题;平面向量及应用.剖析:设=,=,=,=,=,将=+、=+代入2﹣2的式子,化简整理2﹣22?=+2﹣ 2?﹣2,联合题意2﹣2=2﹣2化简,可得?(﹣)=0,再联合向量的加减法法例获得?=0,由此联合数目积的性质即可获得AD ⊥ BC.解答:解:设=, = ,= ,=,= ,则=+,=+.∴2﹣2=(+)2﹣(+)2=2+2?﹣2?﹣2.∵由已知 AB 2﹣ AC2=DB2﹣ DC2,得2﹣2=2﹣2,∴2+2?﹣ 2? ﹣2=2﹣2,即 ?(﹣)=0.∵=+=﹣,∴?=?(﹣) =0,所以,可得⊥,即 AD ⊥BC.评论:此题给出三角形 ABC 内知足平方关系的点 D ,求证 AD ⊥BC .侧重考察了平面向量的加减法例、向量的数目积及其运算性质等知识,属于中档题.22.已知向量,,此中A、B是△ ABC 的内角,.( 1)求 tanA?tanB 的值;( 2)若 a、b、 c 分别是角 A 、 B 、C 的对边,当 C 最大时,求的值.考点:平面向量的综合题.专题:计算题.剖析:( 1)依据推测出=0,利用向量的数目积运算联合二倍角公式求得tanA ?tanB;( 2)因为 tanA ?tanB=> 0,利用基本不等式得出当且仅当时, c 获得最大值,再利用同角公式求出 sinC, sinA ,最后由正弦定理求的值.解答:解:(Ⅰ)由题意得=0即,﹣5cos( A+B ) +4cos( A ﹣ B)=0 cosAcosB=9sinAsinB∴ tanA ?tanB=.(2)因为 tanA ?tanB= > 0,且 A 、 B 是△ABC 的内角,∴tanA >0, tanB> 0∴=﹣当且仅当取等号.∴ c 为最大边时,有,tanC=﹣,∴ sinC=,sinA=由正弦定理得:=.评论:此题是中档题,考察三角函数的化简与求值,正弦定理的应用,基本不等式的知识,是一道综合题,考察学生剖析问题解决问题的能力,公式的娴熟程度决定学生的能力的高低.23.已知向量且,函数f(x)=2( I)求函数f( x)的最小正周期及单一递加区间;( II )若,分别求tanx 及的值.考点:平面向量数目积的坐标表示、模、夹角;复合三角函数的单一性.专题:平面向量及应用.剖析:(I)化简函数f(x) =2=2sin ( 2x+),可得函数的周期,令2k π﹣≤2x+≤2kπ+,k∈z,求得 x 的范围,即可获得函数的单一递加区间.( II )由,求得tanx=,再由==,运算求得结果.解答:(I)解:函数f( x)=2=2sinxcosx+2cos 2x﹣ 1=sin2x+cos2x=2sin ( 2x+),故函数的周期为=π,令2kπ﹣≤2x+≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,故函数的单一递加区间为[k π﹣,kπ+], k∈z.( II )解:若,则sinx=cosx,即tanx=.∴====﹣.评论:此题主要考察两个向量的数目积的定义,三角函数的恒等变换及化简求值,正弦函数的增区间,三角函数的周期性和求法,属于中档题.24.已知,函数f(x)=.(1)求函数 f( x)的最小正周期;(2)求函数 f( x)的单一减区间;( 3)当时,求函数 f (x)的值域.考点:平面向量的综合题;三角函数中的恒等变换应用;三角函数的周期性及其求法;复合三角函数的单一性.专题:综合题.最小正周期;( 2)由 2kπ+≤2x+≤2kπ+得kπ+≤x≤kπ+,从而可得f( x)的单一减区间;( 3)由,可得,从而可求函数f( x)的值域.解答:解:(1)∵,,∴函数 f ( x) ==5sinxcosx+sin 2x+6cos2x===5sin ( 2x+)+∴ f(x)的最小正周期;( 2)由 2k π+≤2x+≤2kπ+得kπ+≤x≤kπ+,k∈Z∴ (f x)的单一减区间为[k π+,kπ+ ](k∈Z)( 3)∵∴∴∴ 1≤f(x)≤即 f( x)的值域为 [1,] .评论:此题考察向量知识的运用,考察三角函数的化简,考察函数的单一性与值域,化简函数是重点.。
(易错题)高中数学必修四第二章《平面向量》检测(有答案解析)
一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( )A .1B .3C .7D .32.已知两个单位向量a ,b ,其中向量a 在向量b 方向上的投影为12.若()()2a b a b λ+⊥-,则实数λ的值为( )A .14-B .12-C .0D .123.如图,在ABC 中,13AN NC =,P 是BN 上的一点,若2299AP m AB BC ⎛⎫=++ ⎪⎝⎭,则实数m 的值为( )A .19B .13C .1D .34.已知非零向量,a b 满足4,2a b ==,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b -等于( ) A .1B .25C .5D .35.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .726.已知,M N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则2PM PN -的最大值为( )A .53+B .53C .523+D .57.已知向量13,22AB ⎛⎫= ⎪ ⎪⎝⎭,5AC =,3AB BC ⋅=,则BC =( )A .3B .32C .4D .428.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则AE AF ⋅=( )A .52B .52-C .4D .4-9.在ABC ∆中,D 为BC 边上一点,且AD BC ⊥,向量AB AC +与向量AD 共线,若10AC =,2BC =,0GA GB GC ++=,则AB CG=( )A .3B .5C .2D .10 10.已知ABC 中,3AB AC ==,且||||AB AC AB AC +=-,点D ,E 是BC 边的两个三等分点,则AD AE ⋅=( ) A .3B .4C .5D .611.已知等边ABC 的边长为2,若3BC BE =,AD DC =,则BD AE ⋅等于( ) A .103B .103-C .2D .2-12.设O 是△ABC 的外接圆圆心、且720OA OB OC ++=,则∠BOC =( ) A .6π B .3π C .2π D .23π 二、填空题13.已知向量()3,2OA =,()2,1OB =,O 点为坐标原点,在x 轴上找一个点M ,使得AM BM ⋅取最小值,则M 点的坐标是___________.14.如图所示,已知AOB ,点C 是点B 关于点A 的对称点,2OD DB =,DC 和OA 交于点E ,若OE OA λ=,则实数λ的值为_______.15.已知ABC ,AB AC ⊥,2AB =,12AC =,如果P 点是ABC 所在平面内一点,且4AB AC AP ABAC=+,那么PB PC ⋅的值等于________.16.O 为坐标原点,已知向量()1,5OA =,()4,2OB =,()6,8OC =,,x y 为非负实数且01x y ≤+≤,CD xCA yCB =+,则OD 的最小值为_______________ 17.如图,边长为2的菱形ABCD 的对角线相交于点O ,点P 在线段BD 上运动,若1AB AO ⋅=,则AP PD ⋅的最大值为______.18.如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点5BA CA ⋅=,2BF CF ⋅=-,则BE CE ⋅的值是________.19.已知平面非零向量,,a b c ,满足a b ⊥且||1c =,已知22150,||||a a c a c b c -⋅-=-=-,则||a b +的取值范围是________20.在梯形ABCD 中,AB //CD ,90DAB ∠=,2AB =,1CD AD ==,若点M 在线段BD 上,则AM CM ⋅的最小值为______________.三、解答题21.已知向量a 与b 的夹角为3π,且1a =,2b =. (1)求a b +;(2)求向量a b +与向量a 的夹角的余弦值.22.已知平面直角坐标系中,点 O 为原点,()()3,1,1,2A B - .(I)求AB 的坐标及AB ;(Ⅱ)设 e 为单位向量,且 e OB ⊥,求e 的坐标 23.已知||4,||2a b ==,且a 与b 夹角为120︒, 求:(1)||a b +; (2)a 与a b +的夹角. 24.已知()()1,,3,2a m b ==-. (1)若()a b b +⊥,求m 的值;(2)若·1a b =-,求向量b 在向量a 方向上的投影.25.已知向量()cos ,sin m x x =-,()3,3n =,[]0,x π∈. (1)若m 与n 共线,求tan x 的值; (2)若m 与n 的夹角为3π,求x 的值. 26.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=. (1)求32a b c +-;(2)求满足a mb nc =+的实数,m n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题. 【详解】设a 、b 所成角为θ, 由||||2==a b ,2a b ,则1cos 2θ=,因为0θπ≤≤ 所以3πθ=,记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴,建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离, 由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点3,22Q ⎛ ⎝⎭两点间的距离, ∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为P 到,A Q 两点的距离和最小,()P x 在直线y =上,()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR ==故选:C 【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、32Q ⎛ ⎝⎭两点间的距离,考查了运算求解能力.2.C解析:C 【分析】记a 与b 的夹角为θ,则a 在b 上的投影为1cos 2a θ=,然后向量垂直转化为数量积为0【详解】记a 与b 的夹角为θ,则a 在b 上的投影为cos a θ,则1cos 2a θ=, ∵()()2a b a b λ+⊥-,∴()()()221322221(2)022a b a b a b a b λλλλλλ+⋅-=-+-⋅=-+-⋅==, 故0λ=, 故选:C . 【点睛】结论点睛:本题考查平面向量的数量积及其几何意义.向量垂直的数量积表示. (1)设,a b 向量的夹角为θ,则a 在b 方向上的投影是cos a b a bθ⋅=;(2)对两个非零向量,a b ,0a b a b ⊥⇔⋅=.3.A解析:A 【解析】因为2299AP m AB BC ⎛⎫=++ ⎪⎝⎭29mAB AC =+,设BP tBN =,而31()()(1)44AP AB BP AB t BC CN AB t BC AC t AB t AC =+=++=+-=-+,所以1m t =-且249t =,故811199m t =-=-=,应选答案A . 4.B解析:B 【解析】因为a 在b 方向上的投影与b 在a 方向上的投影相等,设这两个向量的夹角为θ,则cos cos 4cos 2cos 2a b πθθθθθ===⇒=,又由2()a b a b -=-且4,2a b ==,所以222()225a b a b a a b b -=-=-⋅+=,故选B.5.B解析:B 【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB⋅【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||22PC CA PC =-=-≥-52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题.6.A解析:A 【分析】根据条件可知22PM PN PO OM ON -=+-2PO OM ON ≤+-,即可求出最大值. 【详解】由1MN =可知,OMN 为等边三角形,则1cos602OM ON OM ON ⋅=⋅⋅︒=, 由PM PO OM =+,PN PO ON =+,得22PM PN PO OM ON -=+-2PO OM ON ≤+-,()224413OM ONOM ON -=-⋅+=,又()3,4P ,则5PO =,因此当PO 与2OM ON -同向时,等号成立,此时2PM PN -的最大值为5+故选:A. 【点睛】本题考查向量模的大小关系,属于中档题.7.B解析:B 【分析】首先设出点A (0,0)、C (x ,y )的坐标,由已知条件5AC =,3AB BC ⋅=列出关于x 、y 的方程组,然后根据向量的差的计算性质表示出向量BC 的坐标形式,并表示出向量BC 的模,将以上列出的关于x 、y 的式子整体带入即可求得BC .【详解】 设(0,0)A ,(),C x yBC AC AB =-()1,,22x y ⎛⎫⎝- =⎪⎪⎭1,2x y ⎛- ⎝⎭= 3AB BC ⋅=11,32222x y ⎛⎫⎛∴⋅--= ⎪ ⎪ ⎝⎭⎝⎭即38x y += (1)5AC =又2225x y ∴+= (2)(C x B ==将(1)(2)代入上式解得:25BC ==故选B 【点睛】本题考查了向量的坐标运算以及向量模的计算,其中考查了整体代换的思想方法,属于中档题目,计算中选择合适的解题方法,尽量要避免通过解方程求解点C 的坐标然后再求解向量BC 的模,否则就会大大的增加计算量,甚至出现解题错误.8.C解析:C 【分析】建立直角坐标系,利用向量的坐标运算求解即可. 【详解】以点A 为坐标原点,建立如下图所示的直角坐标系(0,0),(2,1),(1,2)A E F(2,1),(1,2)AE AF ∴==21124AE AF ∴⋅=⨯+⨯= 故选:C【点睛】本题主要考查了求平面向量的数量积,属于中档题.9.B解析:B 【解析】取BC 的中点E ,则2AB AC AE +=与向量AD 共线,所以A 、D 、E 三点共线,即ABC ∆中BC 边上的中线与高线重合,则10AB AC ==因为0GA GB GC ++=,所以G 为ABC ∆的重心,则2222() 2.32BC GA GE AC ==-=所以22101,112, 5.2AB CE CG CG==+=∴== 本题选择B 选项.10.B解析:B 【分析】由||||AB AC AB AC +=-知,0AB AC ⋅=,根据平面向量的线性运算可推出2133AD AB AC =+,1233AE AB AC =+,故21123333AD AE AB AC AB AC ⎛⎫⎛⎫⋅=+⋅+ ⎪ ⎪⎝⎭⎝⎭,展开后代入数据进行运算即可.【详解】解:∵||||AB AC AB AC +=-,∴0AB AC ⋅=, ∵点D 是BC 边的三等分点, ∴11()33AD AB BD AB BC AB AC AB =+=+=+-2133AB AC =+.同理可得,1233AE AB AC =+,∴()2221122(3339)3AD AE AB AC AB AC AB AC ⎛⎫⋅=+⋅+=+ ⎪⎝⎭2(99)49=⨯+=.故选:B. 【点睛】本题考查平面向量数量积运算、模的运算、平面向量基本定理,考查转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意基底的选择.11.D解析:D 【分析】 根据题意得出()12BD BA BC =+,13AE BC BA =-,运用数量积求解即可. 【详解】解:等边△ABC 的边长为2,3BC BE =,AD DC =, ∴()12BD BA BC =+,1313A AB BE AB B E BC A C B =+=+=-, ∴()221111223233BD AE BA BC BC BA BC BA BC BA ⎛⎫⎛⎫+-=--⋅ ⎪ ⎪⎝=⎭⎝⎭, 112144222332⎛⎫=⨯⨯--⨯⨯⨯ ⎪⎝⎭, 2=-.故选:D . 【点睛】本题考查了平面向量的运算,数量积的求解,关键是分解向量,属于中档题.12.B解析:B 【分析】不妨设ABC 的外接圆的半径为1,作2=OF OB ,以,OC OF 为邻边作平行四边形COFE ,可得1,2,===OC OF OE ,再利用两角和余弦公式可得3BOC π∠=【详解】不妨设ABC 的外接圆的半径为1,作2=OF OB ,以,OC OF 为邻边作平行四边形COFE ,+=OC OF OE ,所以1,2,7===OC OF OE 2221723cos sin 21777+-∠==∠=⨯⨯EOC EOC , 2273cos sin 2272727∠==∠=⨯⨯EOF EOF 3331cos cos()2727727∠=∠+∠==BOC COE EOF 3π∴∠=BOC故选:B 【点睛】本题考查了平面几何和向量的综合,考查了运算求解能力和逻辑推理能力,属于中档题目.二、填空题13.【分析】设点的坐标是求出再利用配方法可得答案【详解】设点的坐标是即因为向量所以当时有最小值此时点的坐标是故答案为:【点睛】方法点睛:平面向量求最值有三种常见方法:1几何法;2三角函数有界法;3二次函解析:5,02⎛⎫⎪⎝⎭【分析】设M 点的坐标是(),0t ,求出AM BM ⋅,再利用配方法可得答案. 【详解】设M 点的坐标是(),0t ,即(),0OM t =, 因为向量()3,2OA =,()2,1OB =, 所以()3,2AM OM OA t =-=--,()2,1BM OM OB t =-=--, ()()()()3221AM BM t t ⋅=--+-⨯- 22575824t t t ⎛⎫=-+=-+ ⎪⎝⎭,当52t =时,AM BM ⋅有最小值74,此时M 点的坐标是5,02⎛⎫⎪⎝⎭, 故答案为:5,02⎛⎫ ⎪⎝⎭. 【点睛】方法点睛:平面向量求最值有三种常见方法:1、几何法;2、三角函数有界法;3、二次函数配方法.14.【分析】设可得又因为即可求解【详解】如图所示:设由于所以由于点是点关于点的对称点则为中点所以得所以由于又因为得故答案为:【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法解析:45【分析】设,OA a OB b ==,可得523DC a b =-,()2EC a b λ=--,又因为//EC DC ,即可求解λ. 【详解】 如图所示:设,OA a OB b ==,由于2OD DB =,所以23OD b =, 由于点C 是点B 关于点A 的对称点,则A 为BC 中点, 所以()12OA OB OC =+,得2OC a b =- 所以523DC OC OD a b =-=-由于()2EC OC OE a b λ=-=-- ,又因为//EC DC21523λ-=得45λ= . 故答案为:45【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.13【分析】由条件可得可得由可得出答案【详解】又故答案为:13【点睛】本题主要考查了平面向量线性运算和数量积的运算性质的应用属于中档题解析:13 【分析】由条件可得0AB AC ⋅=,182AP AB AC =+,可得217AP =,由()()PB PC PA AB PA AC ⋅=+⋅+,可得出答案.【详解】AB AC ⊥,2AB =,12AC =,4AB AC AP AB AC =+, 0AB AC ∴⋅=,182AP AB AC =+, 2222118641724AP AB AC AB AC ⎛⎫=+=+= ⎪⎝⎭,PB PA AB =+,PC PA AC =+,()()2PB PC PA AB PA AC PA PA AC PA AB ∴⋅=+⋅+=+⋅+⋅又42PA AC AC ⋅=-=-,2PA AB AB ⋅=-=-172213PB PC ∴⋅=--=.故答案为:13. 【点睛】本题主要考查了平面向量线性运算和数量积的运算性质的应用,属于中档题.16.【分析】根据题意得表示的区域为及内部的点进而得当时取得最小值再计算即可得答案【详解】又为非负实数且所以表示的区域为及内部的点当时取得最小值因为所在的直线方程为即则取得最小值为故答案为:【点睛】本题考 解析:根据题意得D 表示的区域为ABC 及内部的点,进而得当⊥OD AB 时,OD 取得最小值,再计算即可得答案. 【详解】()1,5OA =,()4,2OB =,()6,8OC =,又,x y 为非负实数且01x y ≤+≤,CD xCA yCB =+, 所以D 表示的区域为ABC 及内部的点, 当⊥OD AB 时,OD 取得最小值, 因为AB 所在的直线方程为()()5251114y x x --=-=---,即60x y +-=, 则OD 取得最小值为322=. 故答案为:32.【点睛】本题考查向量的模的求解与线性规划,解题的关键是根据题意明确D 表示的区域,是中档题.17.【分析】以为原点和分别为和轴建立的平面直角坐标系求得设得到即可求解【详解】以为原点和分别为和轴建立如图所示的平面直角坐标系设则因为可得联立方程组解答所以设则当时取得最大值最大值为故答案为:【点睛】本解析:34【分析】以O 为原点,OC 和OD 分别为x 和y 轴建立的平面直角坐标系,求得(1,0),3)A D -,设(0,),[3,3]P t t ∈,得到233(24AP PD t ⋅=--+,即可求解.以O 为原点,OC 和OD 分别为x 和y 轴建立如图所示的平面直角坐标系, 设(,0),(0,),0,0A a B b a b -->>,则224a b +=, 因为1AB AO ⋅=,可得2(,)(,0)1a b a a -⋅==, 联立方程组,解答1,3a b ==,所以(1,0),(0,3)A D -,设(0,),[3,3]P t t ∈-,则22333(1,)(0,3)3()244AP PD t t t t t ⋅=⋅-=-+=--+≤, 当3t =时,AP PD ⋅取得最大值,最大值为34.故答案为:34.【点睛】本题主要考查了平面向量的数量积的运算及应用,此类问题通常采取建立直角坐标系,利用平面向量的坐标运算求解,着重考查转化思想,以及运算与求解能力,属于基础题.18.【分析】将均用表示出来进而将表示成与相关可以求出同时可用表示即可求出结果【详解】因为因此故答案为:【点睛】研究向量的数量积一般有两个思路一是建立平面直角坐标系利用坐标研究向量的数量积;二是利用一组基解析:58【分析】将,,,BA CA BF CF 均用,BC AD 表示出来,进而将BA CA ⋅,BF CF ⋅表示成与,FD BC相关,可以求出 2223,827FD BC ==,同时BE CE ⋅可用,FD BC 表示,即可求出结果.【详解】因为222211436=52244AD BC FD BC BA CA BC AD BC AD ()()--⋅=-⋅--==,2211114223234FD BCBF CF BC AD BC AD ()()-⋅=-⋅--==-,因此2223,827FD BC ==,222211416.224458ED BC FD BC BE CE BC ED BC ED ()()--⋅=-⋅--===故答案为:58. 【点睛】研究向量的数量积,一般有两个思路,一是建立平面直角坐标系,利用坐标研究向量的数量积;二是利用一组基底表示所有向量,两种思路实质相同,但坐标法更易理解和化简. 对于涉及中线的向量问题,一般利用向量加、减法的平行四边形法则进行求解.19.【分析】设设则由得到再利用得到再设得到根据可解得结果【详解】因为所以可设设则由得所以由得化简得所以所以由得所以设则所以所以由得解得所以所以所以故答案为:【点睛】本题考查了向量的数量积的坐标运算考查了解析:1]【分析】设00(,0)(0)a x x =≠,00(0,)(0)b y y =≠,设(,)c x y =,则221x y +=,由22150,||||a a c a c b c -⋅-=-=-,得到00152x x x =-,00152y y y =-,再利用221x y +=,得到222200002200225()604x y x y x y +++-=,再设2200x y t +=,得到2220225()2464t t t x t -=--,根据22250464t tt-≥-,可解得结果.【详解】因为a b ⊥,所以可设00(,0)(0)a x x =≠,00(0,)(0)b y y =≠,设(,)c x y =,则221x y +=,由22150a a c -⋅-=,得200215x x x -=,所以00152x x x =-, 由||||a c b c -=-=200215y y y -=,所以00152y y y =-,所以由221x y +=,得2200001515()()4x y x y -+-=,所以22220002200225()604x y x y x y +++-=, 设220x y t +=(0)t >,则220022564()t t x t x +=-,所以4200225064t x tx t-+=-, 所以2220225()2464t t tx t-=--,由22250464t t t-≥-,得2649000t t -+≤,解得3223132231t -≤≤+, 所以22(311)(311)t -≤≤+, 所以311311t -≤≤+, 所以220000|||(,)|311,311a b x y x y t ⎡⎤+==+=∈-+⎣⎦,故答案为:[311,311]-+. 【点睛】本题考查了向量的数量积的坐标运算,考查了向量的模长公式,属于中档题.20.【分析】根据建立平面直角坐标系设得到再求得的坐标利用数量积的坐标运算求解【详解】建立如图所示平面直角坐标系:因为所以设所以所以所以所以当时的最小值为故答案为:【点睛】本题主要考查平面向量的数量积运算 解析:920-【分析】根据AB //CD ,90DAB ∠=,2AB =,1CD AD ==,建立平面直角坐标系,设,01λλ=≤≤BM BD ,得到()22,λλ-M ,再求得,AM CM 的坐标,利用数量积的坐标运算求解. 【详解】建立如图所示平面直角坐标系:因为AB //CD ,90DAB ∠=,2AB =,1CD AD ==, 所以()2,0B ,()0,1D ,()1,1C ,设,01BM BD λλ=≤≤, 所以()()2,2,1λ-=-x y 所以()22,λλ-M ,所以()()22,,12,1λλλλ---==AM CM , 所以()()22,12,1λλλλ⋅=-⋅--AM CM ,227957251020λλλ⎛⎫=-+=-- ⎪⎝⎭,当710λ=时,AM CM ⋅的最小值为920-. 故答案为:920- 【点睛】本题主要考查平面向量的数量积运算,还考查了运算求解的能力,属于中档题.三、解答题21.(1;(2. 【分析】(1)由已知利用平面向量数量积公式可得1a b ⋅=,平方后根据向量数量积的运算可求||a b +的值.(2)结合(1),根据已知条件,由向量夹角的余弦公式即可求解. 【详解】 (1)向量a 与b 的夹角为3π,且||1a =,||2b =, ∴||||cos a b a b a ⋅=<,112cos12132b π>=⨯⨯=⨯⨯=.222||()2142a b a b a b a b ∴+=+=++⋅=++=. (2)设向量a b +与向量a 的夹角θ,22()||27cos ||||||||||||71a b a a a b a a b a b a a b a a b a θ+⋅+⋅+⋅∴=====+⋅+⋅+⋅⨯.【点睛】本题主要考查了向量数量积的运算及计算公式,向量夹角的余弦公式,属于中档题.22.(1)()4,1=-AB ,17;=AB (2)25,⎛=⎝⎭e ,或25.⎛=- ⎝⎭e【详解】试题分析:(I )利用向量的坐标运算直接求AB 的坐标及AB ; (II )利用向量的垂直,数量积为0,结合单位向量求解即可. 试题(I )()()AB 13,214,1=---=-,(AB =-=(Ⅱ)设单位向量(),e x y =, 所以221x y +=,即221x y += 又(),1,2⊥=-e OB OB , 所以20x y -+=即2x y =由2221x y x y =⎧⎨+=⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩或者x y ⎧=⎪⎪⎨⎪=⎪⎩所以25,⎛=⎝⎭e ,或25.⎛=- ⎝⎭e 23.(1)2)6π. 【分析】(1)由已知利用向量的数量积的 定义可求||||cos120a b a b =︒,然后由222||()2a b a b a a b b +=+=++可求(2)设a 与a b +的夹角θ,代入向量的夹角公式2()cos ||||423a ab a a a b θ+==+⨯可求θ【详解】 解:(1)||4a =,||2b =,且a 与b 夹角为120︒∴1||||cos12042()42a b a b =︒=⨯⨯-=-∴222||()2164a b a b a a b b +=+=++=+-(2)设a 与a b +的夹角θ则2()3cos ||||42383a ab a a a b θ+====+⨯0θπ∴6πθ=.【点睛】本题主要考查了向量的数量积的定义及向量的数量积的性质的简单应用,属于基础试题24.(1)8m =(2)5-【分析】(1)先得到()4,2a b m +=-,根据()a b b +⊥可得()0a b b +⋅=,即可求出m ; (2)根据·1a b =-求出m=2,再根据cos ,a b b a b b a b⋅=⋅求b 在向量a 方向上的投影.【详解】()()14,2a b m +=-;()a b b +⊥;()34220m ∴⋅--=;8m ∴=;()2321a b m ⋅=-=-;2m ∴=;()1,2a ∴=;b ∴在向量a 方向上的投影为cos ,5a b b a b b a b⋅=⋅==【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.25.(1)2)6π【分析】(13sin =-x x ,进而可得结果.(2)由平面向量的数量积可得3cos -x x ,进而可得结果. 【详解】(1)由//m n 3sin tan =-⇒=x x x(2)13cos 3sin cos 132π⋅=-=⋅⋅=⨯m n x x m n 可得1sin()32x π-=-,因为2[0,],[,]333ππππ∈-∈-x x 所以366πππ-=-⇒=x x【点睛】本题考查了平面向量共线的坐标表示、平面向量数量积运算的坐标表示和三角恒等变换,考查了运算求解能力和逻辑推理能力,属于中档题目.26.(1)()0,6(2)5,98.9m n ⎧=⎪⎪⎨⎪=⎪⎩【分析】(1)根据向量(3,2),(1,2),(4,1)a b c ==-=,利用平面向量的加法和减法运算求解. (2)根据a mb nc =+,有()()()()3,21,24,14,2.m n m n m n =-+=-++再利用平面向量相等求解.【详解】(1)()()()3233,21,224,1a b c +-=+--,()()()()9,61,28,20,6=+--=,(2) a mb nc =+,()()()()3,21,24,14,2.m n m n m n ∴=-+=-++4322m n m n -+=⎧∴⎨+=⎩, 解之得5989m n ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】本题主要考查平面向量的坐标运算,还考查了运算求解的能力,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学(人教版)必修四单元测试平面向量部分
姓名
学号 成绩
一.选择题(每小题5分,共35分)
1.1
21cos 1cos 4
a b a b θθθ→
→
→→=
--=+-=设(,),(,),且∥,则锐角 ( )
(A )
4
π
(B)
6
π (C)
3
π
(D)
3
6
π
π
或
2.→
→
→
→
→
→
→
→
b a 4a b 3b a b a 的模与,则方向的投影为在,方向的投影为在都是非零向量,若与设 的模之比值为 ( ) (A )
4
3 (B)
3
4 (C)
7
3
(D)
7
4 3.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+3
1,则 = ( )
(A)
32
(B)
3
1
(C) -31 (D) -3
2 4.已知向量(4,6),(3,5),OA OB == 且,//,OC OA AC OB ⊥
则向量OC 等于 ( )
(A )⎪⎭⎫ ⎝⎛-72,73 (B )⎪⎭⎫ ⎝⎛-214,72 (C )⎪⎭⎫ ⎝⎛-72,73 (D )⎪⎭
⎫ ⎝⎛-214,72
5.在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是 ( )
(A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅
(C )2AB AC CD =⋅
(D ) 22
()()AC AB BA BC CD AB
⋅⨯⋅=
6.在直角坐标系xOy 中,,i j 分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC 中,2AB i j =+
,
3AC i k j =+
,则k 的可能值有 ( )
(A )1个 (B)2个 (C)3个 (D)4个 7.在四边形ABCD 中,||||||4,0,AB BD DC AB BD BD DC →
→
→
→
→
→
→
++=⋅=⋅=
→→→→=⋅+⋅4||||||||DC BD BD AB ,则→
→→⋅+AC DC AB )(的值为 ( )
(A )2 (B) 22 (C)4 (D)24
B A
C
D
二.填空题(每小题5分,共40分)
8.已知向量2411a b ()() ,,,==.若向量()b a b λ⊥
+,则实数λ的值是
.
9.若向量a b ,的夹角为 60,1a b == ,则()
a a
b -= .
10.已知a =(1,2),b =(1,1),且a 与a +λb
的夹角为锐角,则实数λ的取值范围是________.
11.已知O 为原点,点A 、B 的坐标分别为A (a,0)、B (0,a ), 其中常数a >0,点P 在线段AB 上,且有AP →=tAB →
(0≤t ≤1),则 OA →
·OP →
的最大值为____________.
12.如右图,在ABC △中,点O 是BC 的中点,过点O 的直线
分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =
,
AC nAN =
,则m n +的值为
.
13.已知|→
a |=2|→
b |≠0,且关于x 的方程x 2
+|→
a |x +→
a ·→
b =0有实根,则→
a 与→
b 的夹角θ的取值范围是______________.
14. 如图,在ABC ∆中,120,2,1,BAC AB AC D ∠=︒==
是边BC 上一点,2,DC BD =则AD BC =
__________.
215.||4,||2,,,21,|________.3
OA OB AOB OC xOA yOB x y OC π==∠==++=
若则|的最小值为
三.解答题(25分)
16.设12121211222,32,其中且 1.a e e b e e e e e e e e →
→→→→→→→→→→→
=
+=-+⊥⋅=⋅=
(1)计算||的值;a b →
→
+
(2)当为何值时与3互相垂直?k k a b a b →
→
→
→
+-
17.已知A(2,0),B(0,2),C(cos α,sin α),(0<α
<π)。
(1)若||OA OC += O 为坐标原点),求OB 与OC
的夹角;
(2)若AC BC ⊥
,求tan α的值。
高一数学(人教版)必修四单元测试平面向量部分答案
一.选择题(每小题5分,共35分)
1.A 2.A 3.A 4.D 5.C 6. B
7. C 2
()()()(||||).AB DC AC AB DC AB BD DC AB DC →
→
→
→
→
+⋅=+⋅++=+
||||||4,
|||| 2.||(||||)4,
AB BD DC AB DC BD AB DC →
→→
→
→→
⎧++=⎪⇒+=⎨⎪+=⎩ () 4.AB DC AC →
→
→
∴+⋅=
二.填空题(每小题5分,共30分)
8.-3. 9.
2
1
10.λ>-5
3
且λ≠0
提示: ∵a 与a +λb 均不是零向量,夹角为锐角,∴a ·(a +λb )>0,∴5+3λ>0,∴λ>-5
3
.
当a 与a +λb 共线时,a +λb =m a
,即(1+λ,2+λ)=(m,2m ).
∴⎩
⎪⎨
⎪⎧
1+λ=m 2+λ=2m ,得λ=0,即当λ=0时,a 与a +λb
共线,∴λ≠0.
即λ>-5
3
且λ≠0.
11.a 2
12. 2
13.由条件得:Δ=|a |2-4a ·b ≥0,即cos θ=||||a b a b ⋅⋅
≤2
||
4||||a a b ⋅ =12
,所以a 与b 的夹角θ的取值范围是[π
3
,π].故选C .
14.8
3
- 根据向量的加减法法则有:BC AC AB =-
112()333AD AB BD AB AC AB AC AB =+=+-=+
,此时 2212122()()33333
AD BC AC AB AC AB AC AC AB AB =+-=+- ··
18183333
=--=-.
15.
7
三.解答题(35分)
A
B
D
C
16.
.
19k 0133k 31k 50b 3a b a k 1
43e 2e 3e 2e b a 13
e 2e 3b 5
e 2e a
b
3b a k 31a
k b 3a b a k 2.
5220|b a |20
|b a |.
1|e ||e |.0e e .1e e e e e e e 16e e 16e 4e 4e 2|b a |1212122122
212
2
22
21212221212
2
212
12
212
==⨯--+=-⋅+∴=+-=+-⋅+=⋅=+-==+=-⋅-+=-⋅+==+∴=+∴===⋅∴=⋅=⋅⊥+⋅-=+-=+→
→
→
→
→
→
→
→→
→→
→
→
→
→→
→
→
→→→
→
→
→
→
→
→
→
→
→
→→→→→
→→
→
→
→→→
→
→→
→得)(即)()由()()()()(又)()()()(,又)()(
17.已知A(2,0),B(0,2),C(cos α,sin α),(0<α<π)。
(1
)若||OA OC += O 为坐标原点),求OB 与OC
的夹角;
(2)若AC BC ⊥
,求tan α的值。
18.(本小题满分12分)
解:⑴∵)sin ,cos 2(αα+=+,7||=+, ∴7sin
)cos 2(2
2
=++αα,∴2
1
cos =
α. 又),0(πα∈,∴3
π
α=,即3
π
=
∠AOC ,
又2
π
=
∠AOB ,∴与的夹角为
6
π. ⑵)sin ,2(cos αα-=,)2sin ,(cos -=ααBC , 由⊥,∴0=⋅, 可得2
1
sin cos =+αα, ① ∴41)sin (cos 2
=
+αα,∴4
3cos sin 2-=αα, ∵),0(πα∈,∴),2
(
ππ
α∈,
又由4
7
cos sin 21)sin (cos 2
=
-=-αααα,ααsin cos -<0,
∴ααsin cos -=-
2
7
, ②
由①、②得471cos -=α,47
1sin +=α,从而3
74tan +-=α.。