因式分解周清题2
七年级因式分解刷题练习92题-答案版
第X 讲因式分解刷题练习(92题)-7上复习用【例题1】()()()()23222336x y x y y x y x x y -++---+【分析】 原式()()3221x y x =--【例题2】222944a b bc c -+-【分析】 原式()()()()22222944923232a b bc c a b c a b c a b c =--+=--=+--+【例题3】3223x x xy y y ----【分析】 原式()()221x xy y x y =++--【例题4】54323331x x x x x -+-+-【分析】 原式()()()223111x x x x x =-++-+【例题5】222595121824x y z xy yz zx --+-+【分析】 原式()()3553x y z x y z =++--【例题6】22121115x xy y --【分析】 原式()()4335x y x y =+-【例题7】2408124848x x --【分析】 原式()()204612x x =+-【例题8】633619216x x y y --【分析】 原式()()()()2222232439x y x y x xy y x xy y =+--+++【例题9】2222x yz axyz yz xy xz az ++---【分析】 原式()()xy z az xz y =-+-【例题10】222222444222a b b c c a a b c ++---原式()()()()b c a b c a c a b a b c =+++-+-+-【例题11】22015201420162015x x -⨯-【分析】 原式()()201512015x x =+-【例题12】()()()22592791a a a +---【分析】 原式()()()242728a a a a =-+--【例题13】()()()()26121311x x x x x ----+【分析】 原式()22661x x =-+【例题14】()()()()461413119x x x x x ----+【分析】 原式()22971x x =-+【例题15】343115x x -+【分析】 原式()()()21253x x x =--+【例题16】322772x x x -+-【分析】 原式()()()1221x x x =---【例题17】3331x y xy ++-【分析】 原式()()2211x y x y xy x y =+-++-++【例题18】432655x x x x ++++【分析】 原式()()2251x x x =+++【例题19】()()()()222222261561121x x x x x x ++++++++ 【分析】 原式()()229141x x x =+++【例题20】()()()322223a b c a a c b a b c abc +-+-++-【分析】 原式()()()a b a c a b c =+-+-【例题21】322222422x x z x y xyz xy y z --++-【分析】 原式()()22x z x y =--【例题22】()()()2122xy x y x y xy -++-+-【分析】 原式()()2211x y =--【例题23】32542071227x y x xy --【分析】 原式()()22223293293x x xy y x xy y =-++-+【例题24】43241x x x x +-++【分析】 原式()()22131x x x =-++【例题25】()()22222a a b b ab a -+--【分析】 原式()222a b b =-【例题26】43214599448x x x x -+-+【分析】 原式()()()()1238x x x x =----【例题27】432673676x x x x +--+【分析】 原式=()()()()221331x x x x -++-【例题28】()22223122331x x x x -+-+- 【分析】 原式()()()23323x x x x =--+【例题29】2244661124864x y x y x y -+-【分析】 原式()()331212xy xy =+-【例题30】()()()333222222x y z x y z ++--+ 【分析】 原式()()()()22223x y y z z x z x =-+++-【例题31】32221x ax ax a --+-【分析】 原式()()211x a x x a =--+-+【例题32】42201520142015x x x +++【分析】 原式()()2212015x x x x =++-+【例题33】22()()1ab a b a b +-++【分析】 原式22(1)(1)a ab b ab =+-+-【例题34】()()66x x y z y z y x +-+--【分析】 原式()()()()()2222x y z x y x y x xy y x xy y =+--+++-+【例题35】432227447x x x x ---+【例题36】()()()2222223241x x x x x x -+++-++ 【分析】 原式()()()2112x x x x =--++【例题37】323233332a a a b b b ++++++【分析】 原式()()222a b a b ab a b =+++-++【例题38】()322312b a a b a a -++--++【分析】 ()()212a b ab a b b =-+-+++【例题39】()()211ab ab ab a b a b +-+--+【分析】 原式()()()2111ab ab a b ab =+-+++(以1ab +为主元) ()()()()22111111a ab b ab a b a ab b =+-+-⎡⎤⎡⎤⎣⎦⎣⎦=+-+-【例题40】()()()333222x y z y z x z x y -+-+-【分析】 原式()()()()x y y z z x xy yz zx =---++【例题41】()()()()3311x a xy x y a b y b +---++【分析】 原式()()22x xy y ax x y by =-++++【例题42】22()()()()ax by ay bx ay ax by ay bx ay +++-+++-原式2222()()a ab b x xy y =++++【例题43】22222612523171319322312520a b c d ab ac ad bc bd cd a b c d ---+--+-+-+-+-【分析】 原式()()23423455a b c d a b c d =+-+--+-+【例题44】()()()()()()2222326232x y a b m n xy a b m n xy a b m n ++-+++++【分析】 原式()()()32421xy a b m n ax bx my ny =+++--+【例题45】22223273x xy y xz yz z ---+-【分析】 原式()()232x y z x y z =+--+【例题46】2299x x +-【分析】 原式()()119x x =+-【例题49】632827x x -+【分析】 原式()()()()2211339x x x x x x =-++-++【例题50】32374a a +-【分析】 原式()()()1322a a a =+-+【例题51】4464a b +【分析】 原式()()22224848a ab b a ab b =++-+【例题52】()()3211x y xy x y ++---【分析】 原式()()2211x y x y x y =+-++++【例题53】()()()2113212xy xy xy x y x y ⎛⎫+++-++-+- ⎪⎝⎭ 【分析】 原式()()()()1111x y x y =++--【例题54】22243x y x y ----【分析】 原式()()13x y x y =++--【例题55】2231032x xy y x y ---++【分析】 原式()()5221x y x y =--+-【例题56】32256x x x +--【分析】 原式()()()123x x x =+-+【例题57】4322111236x x x x --++【分析】 原式()()2223x x =+-【例题58】432262x x x x ---+【分析】 原式()()()22121x x x =--+【例题59】()()22213260x x x x -+-+ 【分析】 原式()()()()2165x x x x =-+-+【例题60】()()222248415x x x x x x ++++++ 【分析】 原式()()22264x x x =+++【例题62】()()()()11359x x x x -+++-【分析】 原式()()22246x x x =++-【例题63】()()()()245610123x x x x x ++++-【分析】 原式()()()22158235120x x x x =++++【例题64】()()42424413110x x x x x -++++【分析】 原式()()()()22221111x x x x x x =+-++-+【例题65】2222232a x acx bcx b x c ++--【分析】 原式()()2ax bx c ax bx c =-++-【例题66】()()()2222a b a b c a b ++-++ 【分析】 原式()()222a b c =++【例题67】()()()3332a b c a b b c ++-+-+【分析】 原式()()()32a b b c a b c =++++【例题68】()()ab bc ca a b c abc ++++-【分析】 原式()()()a b b c c a =+++【例题69】86421x x x x ++++【分析】 86421x x x x ++++()()()4322221x x x =+++()()()()551111x x x x +-=+-551111x x x x +-=⋅+- ()()43243211x x x x x x x x =-+-+++++【例题70】已知2220x y z --=,试将333x y z --分解成一次因式之积.【分析】 由已知,222z x y =-,222y x z =-,故()3333322x y z x y z x y --=---()()()()22x y x xy y x y x y z =-++--+()()22x y x xy y x y z ⎡⎤=-++-+⎣⎦()()222x y x xy z xz yz =-+---()()()()2x y x z x z y x z =--++-⎡⎤【例题71】证明:220162014201520172018+⨯⨯⨯是一个完全平方数【分析】 设2016x =,故原式()()()()22112x x x x x =+--++()()22222x x x x x =+--+-()222x =-()2220162=-,得证.【例题72】证明:20132014201520172018201936⨯⨯⨯⨯⨯+是一个完全平方数【分析】 设2016n =,则原式()()()()()()32112336n n n n n n =---++++()()()22214936n n n =---+()()42254936n n n =-+-+6421449n n n =-+()2227n n =-()227n n ⎡⎤=-⎣⎦ ()22201620167⎡⎤=⨯-⎣⎦,得证.【例题73】证明:22222016201620172017+⨯+是一个完全平方数【分析】 令2016n =,则2222(1)(1)a n n n n =++++()2432223211n n n n n n =++++=++, 故()22201620161a =++【例题74】证明:3320162016201620182016201720162015⨯-⨯是一个完全立方数【分析】 令20162016m =,则原数()()()()333323211812612140324033m m m m m m m m =+-+-=+++=+=【例题75】333333()()()a b b c c a a b c ++++++++【解析】 原式333333222[()][()][()]3()()a b c b c a c a b a b c a b c =++++++++=++++;【例题76】42222222()()x a b x a b -++-.【解析】 ()()()()()222242222222222222x a b x a b x a b a b a b ⎡⎤-++-=-+-++-⎣⎦ ()222224x a b a b =---()()22222222x a b ab x a b ab =--+---()()2222x a b x a b ⎡⎤⎡⎤=---+⎣⎦⎣⎦()()()()x a b x a b x a b x a b =+--+--++【例题77】()()()()()2222221ab x y a b xy a b x y ---+-++【解析】 原式2222[(1)()]()[()(1)]b xy x y ab x y a x y xy =+-++--+++2222(1)(1)()(1)(1)b x y ab x y a x y =--+--++[(1)(1)][(1)(1)]x b y a y b x a =--+-++【解析】 2227()()ab a b a ab b +++【例题79】33(1)()()(1)x a xy x y a b y b +---++ 【解析】33(1)()()(1)x a xy x y a b y b +---++33(1)()[(1)(1)](1)x a xy x y a b y b =+--+-+++ 322322(1)()(1)()a x x y xy b y x y xy =+-++++-2222(1)()(1)()x a x xy y b x xy y =+-+++-+ 22()()x xy y ax by x y =-++++【例题80】32()(32)(23)2()l m x l m n x l m n x m n +++-+---+【解析】 如果多项式的系数的和等于0,那么1一定是它的根;如果多项式的偶次项系数的和减去奇次项系数的和等于0,那么1-一定是它的根.现在正是这样:()(32)(23)2()0l n l m n l m n m n -+++-----+=所以1x +是原式的因式,并且32()(32)(23)2()l m x l m n x l m n x m n +++-+---+322[()()][(2)(2)][2()2()]l m x l m x l m n x l m n x m n x m n =+++++-++--+++ 2(1)[()(2)2()]x l m x l m n x m n =++++--+(1)(2)()x x lx mx m n =+++--【例题81】21(1)(3)2()(1)2xy xy xy x y x y +++-++-+- 【解析】 设xy u =,x y v +=,原式(1)(1)(1)(1)(1)(1)u v u v y x x y =+--+=++--【例题82】()()()()22222222ab cd a b c d ac bd a b c d +-+-+++--【分析】 原式()()()()()()()()22222222ab cd a d ab cd b c ac bd a d ac bd b c =+--+-++-++-()()()()()()()()()()()()()()()()()()()()222222ab cd ac bd a d ac bd ab cd b c a d b c a d a d b c d a b c b c a d b c a d b c a d b c a d b c a d b c =+++-++---=+++-+---+⎡⎤=-++--⎣⎦=-++-+++-【例题83】432234a b a b a b ab +--【分析】 ⑴原式432234332()()()()()()a b a b a b ab a b a b ab a b ab a b a b =+-+=+-+=-+【例题84】22(2)9x x -- 【分析】 原式222(23)(23)(23)(1)(3)x x x x x x x x =-+--=-++-【例题85】3139k +()1【分析】 原式2221(44)1(2)(12)(12)x xy y x y x y x y =--+=--=+--+【例题87】()()()333ax by by cz ax cz -+---【分析】 原式()()()333ax by bx cz cz ax =-+-+- ()()()3ax by bx cz cz ax =---【例题88】333()()()a b c bc b c ca c a ab a b ++++++++【分析】 原式222()()a b c a b c =++++【例题89】326116x x x +++【分析】 原式326126x x x x =-+++()()()21161x x x x =+-++()()()()22166156x x x x x x x =+-++=+++()()()()()21236123x x x x x x x =++++=+++【例题90】32254x x x +--【分析】 ()()()()232225515115x x x x x x x x x x =++--=+-+=++-【例题91】521171x x x +-+【分析】 设522321171(1)(1)x x x x ax x bx cx +-+=+-++-展开得5254321171()(1)(1)()1x x x x a b x ab c x ac b x a c x +-+=++++-+---++比较对应系数得0101117a b ab c ac b a c +=⎧⎪+-=⎪⎨--=⎪⎪+=⎩,解得225a b c =⎧⎪=-⎨⎪=⎩,∴原式232(21)(251)x x x x x =+--+-【例题92】54321x x x +-+【分析】 设()()5423232111x x x x ax x bx cx +-+=+++++展开得()()()()545432321111x x x x a b x ab c x b ac x a c x +-+=+++++++++++比较对应系数得31010a b ab c b ac +=⎧⎪++=⎪⎨++=⎪,解得12a b =⎧⎪=⎨⎪,∴原式()()2321231x x x x x =+++-+。
因式分解测试题
第12周周清:因式分解班级:姓名:分数:1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1(3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y27.因式分解:(1)x 2y ﹣2xy 2+y 3 (2)(x+2y )2﹣y 28.对下列代数式分解因式:(1)n 2(m ﹣2)﹣n (2﹣m ) (2)(x ﹣1)(x ﹣3)+1(3)a 2﹣4a+4﹣b 2 (4)a 2﹣b 2﹣2a+19.多项式))(())((x b x a ab b x x a a --+---的公因式是( )A 、-a 、B 、))((b x x a a ---C 、)(x a a -D 、)(a x a --10.下列名式:4422222222,)()(,,,y x y x y x y x y x --+---+--中能用平方差公式分解因式的有( )A 、1个B 、2个C 、3个D 、4个11.下列式子:(1)x 2+y 2(2)-2xy -x 2-y 2(3)a 2+ab+b 2(4)x 2-y 2(5)4x 2-4x -1中能用完全平方公式分解因式的有( )A 、1个B 、2个C 、3个D 、4个12.分解因式:(1)x 2+12x+36 (2)-2xy -x 2-y 2 (3)a 2+2a+1(4)ax 2+2a 2x+a 3 (5)-3x 2+6xy -3y 2 (6)811824+-x x13.(1)若x 2+x+m=(x-n)2,则m =___ _n =__ __(2)x 2+6x+( )=(x+3)2, x 2+( )+9=(x-3)2(3)若9x 2+k+y 2是完全平方式,则k=____ ___。
八年级数学下学期第一周每周一练分解因式试题
?分解因式?周末复习【根底知识导引】 一、因式分解的有关概念 1.因式几个整式相乘,每个整式叫做它们的积的因式.例如32)1)(3(2--=+-a a a a ,a-3和a+1都是322--a a 的因式.2.公因式多项式各项都含有的一样因式,叫做这个多项式各项的公因式. 3.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.二、多项式分解的几种常用方法 1.提公因式法一般地,假如多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2.公式法假如把乘法公式反过来,就可用来把某些多项式分解因式.要求纯熟运用于因式分解的方法是:(1)平方差公式_________________;(2)完全平方公式___________________________.三、因式分解的思路与解题步骤1.先看各项有没有公因式,假设有公因式,那么先提取公因式;2.再看能否使用公式法;3.因式分解的结果必须进展到每个因式在有理数范围内不能再分解为止. 稳固练习题 一、选择题1、以下各式从左到右的变形中,是因式分解的是( ) A 、()()2339a a a +-=- B 、()()22a b a b a b -=+-C 、()24545a a a a --=-- D 、23232m m m m m ⎛⎫--=--⎪⎝⎭2、以下各式的分解因式:①()()2210025105105p q q q -=+- ②()()22422m n m n m n --=-+-③()()2632x x x -=+- ④221142x x x ⎛⎫--+=-- ⎪⎝⎭其中正确的个数有( )A 、0B 、1C 、2D 、33、以下各式中,能用完全平方公式分解因式的是( )A 、()()4x y y x xy+-- B 、2224a ab b-+ C 、2144m m -+D 、()2221a b a b ---+4、当n 是整数时,()()222121n n +--是( )A 、2的倍数B 、4的倍数C 、6的倍数D 、8的倍数 5、设()()()()1112,1133M a a a N a a a =++=-+,那么M N -等于( )A 、2a a + B 、()()12a a ++ C 、21133a a +D 、()()1123a a ++ 6、正方形的面积是()22168x x cm -+(x >4cm),那么正方形的周长是( ) A 、()4x cm - B 、()4x cm - C 、()164x cm - D 、()416x cm - 7、假设多项式()281nx -能分解成()()()2492323x x x ++-,那么n=( )A 、2B 、4C 、6D 、8 8、4821-可以被60到70之间的某两个整数整除,那么这两个数分别是( )A 、61,62B 、61,63C 、63,9、如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的局部 剪拼成一个矩形(如图②),通过计算两个图 形(阴影局部)的面积,验证了一个等式,那么 这个等式是( )A 、()()2222a b a b a ab b +-=+- B 、()2222a b a ab b +=++C 、()2222a b a ab b -=-+ D 、()()22a b a b a b -=+-10、三角形的三边a 、b 、c 满足()2230ab c b c b -+-=,那么这个三角形的形状是( )A 、等腰三角形B 、等边三角形C 、直角三角形D 、等腰直角三角形二、填空题11、利用分解因式计算: (1)7716.87.63216⨯+⨯=___________;(2)221.229 1.334⨯-⨯=__________; (3)5×998+10=____________。
因式分解经典测试题及答案
因式分解经典测试题及答案一、选择题1.将川口-6⑼加2*分解因式,下面是四位同学分解的结果:2K(xa-3ab},2阳(*-3b+l),〃(*白-3。
匕+1),2*t-xa+3ab-l).其中,正确的是()A. B. C. D.【答案】C【解析】【分析】直接找出公因式进而提取得出答案.【详解】2x2a-6xab+2x=2x(xa-3ab+l).故选:C.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.2.下列各式从左到右的变形中,是因式分解的为().A.,x(£Z-Z?)=ax—bxB.x2-14-y2=(a-1)(jc+1)4-j2C.x1—1=(%+1)(^-1)D.ax+bx-\-c=x{a+b^c【答案】C【解析】【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【详解】解:A、是整式的乘法运算,故选项错误;叭右边不是积的形式,故选项错误;C、k2-1=(x+l)(x-l)7正确;D、等式不成立,故选项错误.故选:C.【点睛】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.3.相多项式4xql再加上一项,使它能分解因式成(a+b)之的形式,以下是四位学生所加的项,其中错误的是()A.2xB.-4nC.4X4D.4x【答案】A【解析】【分析】分别将四个选项中的式子与多项式4M+1结舍,然后判断是否为完全平方式即可得答案.【详解】A 、4炉+1+本,不是完全平方式,不能利用完全平方公式进行因式分解,故符合题意;B 、4M,1-取=僮肥1产,能利用完全平方公式进行因式分解,故不符合题意;C 、4e+lMd=(2x41)、能利用完全平方公式进行因式分解,故不符合题意:D.4x2+l+4x=(2x+l)21能利用完全平方公式进行因式分解,故不符合题意,故选A.【点睛】本题考杳了完全平方式.熟记完全平方式的结构特征是解题的关键.4.下列等式从左到右的变形是因式分解的是()A.2x (x+3)=及+6*B.24xy=我 8产L 1+2册/+1=(x+y)2+1D.x2-y=(x+y)Cx -y)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符舍题意:C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意:故选D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.卜列各式中,由等式的左边到右边的变形是因式分解的是(5.[x+3){x—3)=x2—9A.azb+ab2=ab(a +b}U 【答案】C【解折】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误:B 、没有把一个多项式转化成几个整式积的形式,故B 错误,B.x2+x-5=(x-2)(x+3)+l D.x2+l=x(x+—)工C.把一个多项式转化成了几个整式积的形式,故C正确:D、没有把一个多项式转化成凡个整式积的形式,故D错误;故选:Q【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式. 6.己知2"一y=;,呼=2,则2i4ys一炉了4的值为(}【答案】C【解析】【分析】利用因式分解以及积的乘方的逆用将变形为的产僮可),然后代入相关数值进行计算即可.【详解】丫2x—y=—yxy—2,3J2力-=x3y3(^x V)=(xy)3(2x-y)=2*」38=一,3故选C.【点睛】本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知次是解题的关键.7.若端形的三边长分别为『、8、C,满足标b—瓜%+,r—"=0,则这个三角形是()A.直角•:角形B.等边:角形C.锐角三角形D.等腰三角形【答案】D【解析】【分析】首先将原式变形为(》一e)(1一b)S+b)=O,可以得到8—0=0或o—b=0或4+b二0,进而得到6=c或以二b.从而得出aAB匚的形状.【详解】Y a^-^c+^c-b5=0*a2(b-c^b2(c—b^=O,.,.(6-t:m苏-⑹=0,即(%一力(.一6)(q+6)=0,;*b—c=0或q—b=0或以十6=0(舍去),*\b=c^a=b,...△ABC是等腰三角形.故选: D.【点睛】本题考查了因式分解一提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分解的步骤,分解要彻底.8.下列等式从左边到右边的变形,属于因式分解的是(}A.2ab(a-b)=2a%-2ab*B.x2+l=x{x+—)XC.x2-4x+3={x-2)2-lD.a2-b2={a+b)(a-b)【答案】D【解析】【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解{也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B,不是因式分解,等式左边的k是取任意实数,而等式右边的心0二不是因式分解,原式={,—3)(x—1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法,分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法..9.已知实数/b满足等式k=/+u+20,y=a(1b—u),则x、v的大小关系是()A.,工yB.x>yC.x<yD.x>y【答案】D【解析】【分析】判断x、y的大小关系,把N一,进行整理,判断结果的符号可得小v的大小关系.【详解】解:x-y=a~+b2+20-2ab+a~=(扭一6『+/+20,—b尸标≥0,20>0,二x-y>0,二元ay,故选:Q【点睛】本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大:反之减数大.10,若实数a、b满足日+b=5『a2b+ab2=-10,则ab的值是()A.-2B.2C.-50D.5。
因式分解50题(配完整解析)
因式分解50题(配完整解析)考点卡片一.因式分解-提公因式法1、提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2、具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“﹣”号,使括号内的第一项的系数成为正数.提出“﹣”号时,多项式的各项都要变号.3、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.4、提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.二.因式分解-运用公式法1、如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.22平方差公式:a ﹣b =(a +b )(a ﹣b );222完全平方公式:a ±2ab +b =(a ±b );2、概括整合:①能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.②能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.3、要注意公式的综合应用,分解到每一个因式都不能再分解为止.三.因式分解-分组分解法1、分组分解法一般是针对四项或四项以上多项式的因式分解,分组有两个目的,一是分组后能出现公因式,二是分组后能应用公式.2、对于常见的四项式,一般的分组分解有两种形式:①二二分法,②三一分法.例如:①ax +ay +bx +by =x (a +b )+y (a +b )=(a +b )(x +y )22②2xy ﹣x +1﹣y 22=﹣(x ﹣2xy +y )+12=1﹣(x ﹣y )=(1+x ﹣y )(1﹣x +y )四.因式分解-十字相乘法等借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.2①x +(p +q )x +pq 型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:x 2+(p +q )x +pq =(x +p )(x +q )2②ax +bx +c (a ≠0)型的式子的因式分解这种方法的关键是把二次项系数a 分解成两个因数a 1,a 2的积a 1•a 2,把常数项c 分解成两个因数c 1,c 2的积c 1•c 2,并使a 1c 2+a 2c 1正好是一2次项b ,那么可以直接写成结果:ax +bx +c =(a 1x +c 1)(a 2x +c 2).五.实数范围内分解因式实数范围内分解因式是指可以把因式分解到实数的范围(可用无理数的形式来表示),一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.例如:x ﹣2在有理数范围内不能分解,如果把数的范围扩大到实数范围则可分解2x 2﹣2=x 2﹣(2)2=(x+2)(x-2)一.填空题(共5小题)1.因式分解:-2x 2+2x =.2.因式分解:a 3+2a =.3.分解因式:8x 2-8xy +2y 2=.4.分解因式:ab 2+a 2b =.5.因式分解2x 2y -8y =.二.解答题(共45小题)6.分解因式(1)n 2(m -2)-n (2-m )(2)(a 2+4b 2)2-16a 2b 2.7.因式分解(1)(2a +b )2-(a +2b )2(2)16x 4-8x 2y 2+y 48.已知m -2n =-2,求下列多项式的值:(1)5m -10n +10m 2(2)+n 2-mn -3.49.因式分解:(x 2-3)2+2(3-x 2)+1.10.因式分解:m 2(m -4)2+8m (m -4)+16.11.分解因式:4(a +2)2-9(a -1)2.12.(x 2+4)2-16x 2.13.因式分解:(x -6x )+18(x -6x )+81.14.分解因式:(1)x 4-2x 2+1;(2)a 4-8a 2b 2+16b 4;(3)(a 2+4)2-16a 2;(4)(m 2-4m )2+8(m 2-4m )+16.15.分解因式(1)x -4xy +4y (2)4a -12ab +9b (3)a b +2ab +1.16.(1)计算:(2x -y +z )(2x -y -z )(2)分解因式:25(a +b )2-16(a -b )217.分解因式:(x +3)2-(x -3)2.18.(x -5y )2-(x +5y )219.分解因式:(1)3ax 2-6axy +3ay 2;(2)(3m +2n )2-(2m +3n )2.20.分解因式:(1)(a -b )(x -y )-(b -a )(x +y )(2)5m (2x -y )2-5mn 221.分解因式:(1)-3x 2+6xy -3y 2;222222222(2)(a +b )(a -b )+4(b -1).22.因式分解(1)9a 2(x -y )+4b 2(y -x );(2)4a (b -a )-b 223.因式分解:(1)a 4-16;(2)ax 2-4axy +4ay 2.24.将下列各式分解因式:(1)-25ax 2+10ax -a (2)4x 2(a -b )+y 2(b -a )25.分解因式:(1)5x 2+10x +5(2)(a +4)(a -4)+3(a +2)26.因式分解(1)9m 2-25n 214(3)2x 2y -8xy +8y(2)m 2-mn +n 2(4)(y 2-1)2+6(1-y 2)+927.把下列各式因式分解:(1)12x 4-6x 3-168x 2(2)a 5(2-3a )+2a 3(3a -2)2+a (2-3a )3(3)abc (a 3+b 3+c 3+2abc )+(a 3b 3+b 3c 3+c 3a 3)28.分解因式(1)16-a 4(2)y 3-6xy 2+9x 2y(3)(m +n )2-4m (m +n )+4m 2(4)9-a 2+4ab -4b 229.因式分解(1)-a 2-a(2)(x +y )(5m +3n )2-(x +y )(m -n )2(3)(a 2+6a )2+18(a 2+6a )+81(4)x 2-4x -y 2+4.30.把下列各式分解因式:(1)(a 2+a +1)(a 2-6a +1)+12a 2;(2)(2a +5)(a 2-9)(2a -7)-91;124242(4)(x -4x +1)(x +3x +1)+10x 4;31.分解因式:(1)12abc -2bc 2(2)2a 3-12a 2+18a (3)9a (x -y )+3b (x -y )(4)(x +y )2+2(x +y )+1(3)xy (xy +1)+(xy +3)-2(x +y +)-(x +y -1)2;(5)2x 3-x 2z -4x 2y +2xyz +2xy 2-y 2z .(6)(a+b)(a-b)+4(b-1)32.将下列各式因式分解:(1)a4-16(2)16(a-b)2-9(a+b)2(3)x2-1+y2-2xy(4)(m+n)2-2(m2-n2)+(m-n)2.(5)x2-5x+6(6)x2-5x-6(7)x2+5x-6(8)x2+5x+6.33.分解因式(1)-3x3-6x2y-3xy2;(2)(a2+9)2-36a2(3)25m2-(4m-3n)2;(4)(x2-2x)2-2(x2-2x)-3.34.因式分解:(1)x2-5x-6(2)9a2(x-y)+4b2(y-x)(3)y2-x2+6x-9(4)(a2+4b2)2-16a2b235.把下列多项式分解因式:(1)27xy2-3x121x+xy+y22222(3)a-b-1+2b(4)x2+3x-436.因式分解:(1)x2-xy-12y2;(2)(2)a2-6a+9-b237.分解因式(1)8a3b2-12ab3c(2)-3ma3+6ma2-12ma(3)2(x-y)2-x(x-y)(4)3ax2-6axy+3ay2(5)p2-5p-36(6)x5-x3(7)(x-1)(x-2)-6(8)a2-2ab+b2-c238.把下列各式分解因式:(1)4x3-31x+15;(2)2a2b2+2a2c2+2b2c2-a4-b4-c4;(3)x5+x+1;(4)x3+5x2+3x-9;(5)2a4-a3-6a2-a+2.39.分解因式(2)1-9x 2(3)4x 2-12x +9(4)4x 2y 2-4xy +1(5)p 2-5p -36(6)y 2-7y +12(7)3-6x +3x 2(8)-a +2a 2-a 3(9)m 3-m 2-20m40.分解因式:(x 2+x +1)(x 2+x +2)-12.41.分解因式:(x 2+4x +8)2+3x (x 2+4x +8)+2x 2.42.分解因式:(1)2a (y -z )-3b (z -y );(2)-x 2+4xy -4y 2;(3)x 2-2(在实数范围内分解因式);(4)4-12(x -y )+9(x -y )2.43.阅读下面的问题,然后回答,分解因式:x 2+2x -3,解:原式=x 2+2x +1-1-3=(x 2+2x +1)-4=(x +1)2-4=(x +1+2)(x +1-2)=(x +3)(x -1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x 2-4x +3(2)4x 2+12x -7.44.下面是某同学对多项式(x -4x +2)(x -4x +6)+4进行因式分解的过程.解:设x -4x =y原式=(y +2)(y +6)+4(第一步)222=y 2+8y +16(第二步)=(y +4)2(第三步)=(x 2-4x +4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x -2x )(x -2x +2)+1进行因式分解.45.阅读并解决问题:对于形如x 2+2ax +a 2这样的二次三项式,可以用公式法将它分解成(x +a )2的形式,但对于二次三项式x 2+2ax -3a 2就不能直接运用公式了.此时,我们可以这样来处理:22x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-4a2=(x+a+2a)(x+a-2a)=(x+3a)(x-a)像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2-8a+15;(2)若a+b=6,ab=4,求:①a2+b2;②a4+b4的值;(3)已知x是实数,试比较x2-6x+11与-x2+6x-10的大小,说明理由.11146.小亮在对a4+分解因式时,步骤如下:a4+=a4+a2+-a2(添加a2与-a2,前444三项可利用完全平方公式)1=(a2+)2-a2(写成完全平方式与最后一项又符合平方差公式)211=(a2+a+)(a2-a+).22请你利用上述方法分解因式4x4+1.47.十字相乘法分解因式:(1)x2+3x+2(2)x2-3x+2(3)x2+2x-3(4)x2-2x-3(5)x2+5x+6(6)x2-5x-6(7)x2+x-6(8)x2-x-6(9)x2-5x-36(10)x2+3x-18(11)2x2-3x+1(12)6x2+5x-6.48.分解因式:(x+1)(x+3)(x+6)(x+8)+9.49.分解因式:(1)x4-7x2+6.(2)x4-5x2-36.(3)4x4-65x2y2+16y4.(4)a6-7a3b3-8b6(5)6a4-5a3-4a3.(6)4a6-37a4b2+9a2b4.50.因式分解:(1)(x+y)4+(x+y)2-20;(2)(x2-2x-2)(x2-2x-9)+6;(3)(x2+4x+3)(x2-12x+35)-105;(4)(x2-6)2-4x(x2-6)-5x2.因式分解50题(配完整解析)参考答案与试题解析一.填空题(共5小题)1.因式分解:-2x2+2x=-2x(x-1).【解答】解:-2x2+2x=-2x(x-1),故答案为:-2x(x-1).2.因式分解:a3+2a=a(a2+2).【解答】解:a3+2a=a(a2+2),故答案为a(a2+2).3.分解因式:8x2-8xy+2y2=2(2x-y)2.【解答】解:原式=2(4x2-4xy+y2)=2(2x-y)2.故答案为:2(2x-y)2.4.分解因式:ab2+a2b=ab(a+b).【解答】解:原式=ab(a+b).故答案是:ab(a+b).5.因式分解2x2y-8y=2y(x+2)(x-2).【解答】解:2x2y-8y=2y(x2-4)=2y(x+2)(x-2)故答案为:2y(x+2)(x-2).二.解答题(共45小题)6.分解因式(1)n2(m-2)-n(2-m)(2)(a2+4b2)2-16a2b2.【解答】解:(1)原式=n(m-2)(n+1);(2)原式=(a2+4b2+4ab)(a2+4b2-4ab)=(a+2b)2(a-2b)2.7.因式分解(1)(2a+b)2-(a+2b)2(2)16x4-8x2y2+y4【解答】解:(1)(2a+b)2-(a+2b)2=(2a+b-a-2b)(2a+b+a+2b)=3(a-b)(a+b);(2)16x4-8x2y2+y4=(4x2-y2)2=(2x+y)2(2x-y)2.8.已知m-2n=-2,求下列多项式的值:(1)5m-10n+10m2(2)+n2-mn-3.4【解答】解:(1)m-2n=-2,∴原式=5(m-2n)+10=-10+10=0;m-2n=-2,(2)11∴原式=(m2+4n2-4mn)=(m-2n)2-3=1-3=-2.449.因式分解:(x2-3)2+2(3-x2)+1.【解答】解:(x2-3)2+2(3-x2)+1=(x2-3)2-2(x2-3)+1=(x2-3-1)2=(x2-4)2=(x+2)2(x-2)2.10.因式分解:m2(m-4)2+8m(m-4)+16.【解答】解:原式=[m(m-4)]2+2⨯m(m-4)⨯4+42=[m(m-4)+4]2=(m2-4m+4)2=[(m-2)2]2=(m-4)4.11.分解因式:4(a+2)2-9(a-1)2.【解答】解:4(a+2)2-9(a-1)2=[2(a+2)-3(a-1)][2(a+2)+3(a-1)]=(7-a)(5a+1).12.(x2+4)2-16x2.【解答】解:(x2+4)2-16x2=(x2+4-4x)(x2+4+4x)=(x-2)2(x+2)2.13.因式分解:(x-6x)+18(x-6x)+81.222【解答】解:(x-6x)+18(x-6x)+81222=(x2-6x+9)2=(x-3)4.14.分解因式:(1)x4-2x2+1;(2)a4-8a2b2+16b4;(3)(a2+4)2-16a2;(4)(m2-4m)2+8(m2-4m)+16.【解答】解:(1)原式=(x2-1)2=[(x+1)(x-1)]2=(x+1)2(x-1)2;(2)原式=(a2-4b2)2=[(a+2b)(a-2b)]2=(a+2b)2(a-2b)2;(3)原式=(a2+4-4a)(a2+4+4a)=(a-2)2(a+2)2;(4)原式=(m2-4m+4)2=[(m -2)2]2=(m -2)4.15.分解因式(1)x -4xy +4y (2)4a -12ab +9b (3)a b +2ab +1.【解答】解:(1)x -4xy +4y =(x -2y );(2)4a -12ab +9b =(2a -3b );(3)a b +2ab +1=(ab +1).16.(1)计算:(2x -y +z )(2x -y -z )(2)分解因式:25(a +b )2-16(a -b )2【解答】解:(1)(2x -y +z )(2x -y -z )222222222222222=(2x -y )2-z 2=4x 2+y 2-4xy -z 2;(2)25(a +b )2-16(a -b )2=[5(a +b )-4(a -b )][5(a +b )+4(a -b )]=(a +9b )(9a +b ).17.分解因式:(x +3)2-(x -3)2.【解答】解:(x +3)2-(x -3)2=(x +3-x +3)(x +3+x -3)=12x .18.(x -5y )2-(x +5y )2【解答】解:(x -5y )2-(x +5y )2=(x -5y +x +5y )(x -5y -x -5y )=-20xy .19.分解因式:(1)3ax 2-6axy +3ay 2;(2)(3m +2n )2-(2m +3n )2.【解答】解:(1)3ax 2-6axy +3ay 2=3a (x 2-2xy +y 2)=3a (x -y )2;(2)(3m +2n )2-(2m +3n )2=[(3m +2n )-(2m +3n )][(3m +2n )+(2m +3n )]=(m -n )(5m +5n )=5(m -n )(m +n ).20.分解因式:(1)(a -b )(x -y )-(b -a )(x +y )(2)5m (2x -y )2-5mn 2【解答】解:(1)原式=(a -b )(x -y +x +y )=2x (a -b ).(2)原式=5m (2x -y +n )(2x -y -n ).21.分解因式:(1)-3x 2+6xy -3y 2;(2)(a +b )(a -b )+4(b -1).【解答】解:(1)-3x 2+6xy -3y 2=-3(x 2-2xy +y 2)=-3(x -y )2;(2)(a +b )(a -b )+4(b -1)=a 2-b 2+4b -4=a 2-(b -2)2=(a +b -2)(a -b +2).22.因式分解(1)9a 2(x -y )+4b 2(y -x );(2)4a (b -a )-b 2【解答】解:(1)原式=9a 2(x -y )-4b 2(x -y )=(x -y )(3a +2b )(3a -2b );(2)原式=-(4a 2-4ab +b 2)=-(2a -b )2.23.因式分解:(1)a 4-16;(2)ax 2-4axy +4ay 2.【解答】解:(1)a 4-16=(a 2+4)(a 2-4)=(a 2+4)(a +2)(a -2);(2)ax 2-4axy +4ay 2=a (x 2-4xy +4y )=a (x -2y )2.24.将下列各式分解因式:(1)-25ax 2+10ax -a (2)4x 2(a -b )+y 2(b -a )【解答】解:(1)原式=-a (25x 2-10x +1)=-a (5x -1)2;(2)原式=4x 2(a -b )-y 2(a -b )=(a -b )(2x +y )(2x -y ).25.分解因式:(1)5x 2+10x +5(2)(a +4)(a -4)+3(a +2)【解答】解:(1)原式=5(x 2+2x +1)=5(x +1)2;(2)原式=a 2-16+3a +6=a 2+3a -10=(a -2)(a +5).26.因式分解(1)9m 2-25n 214(3)2x 2y -8xy +8y(2)m 2-mn +n 2(4)(y 2-1)2+6(1-y 2)+9【解答】解:(1)9m 2-25n 2=(3m +5n )(3m -5n );(2)m 2-mn +n 2141=(m-n)2;2(3)2x2y-8xy+8y=2y(x2-4x+4)=2y(x-2)2;(4)(y2-1)2+6(1-y2)+9=[(1-y2)+3]2=(1-y2+3)2.=(4-y2)2=(2+y)2(2-y)2.27.把下列各式因式分解:(1)12x4-6x3-168x2(2)a5(2-3a)+2a3(3a-2)2+a(2-3a)3(3)abc(a3+b3+c3+2abc)+(a3b3+b3c3+c3a3)【解答】解:(1)原式=6x2(2x2-x-28)=6x2(2x+7)(x-4);(2)原式=a5(2-3a)+2a3(2-3a)2+a(2-3a)3=a(2-3a)[a4+2a2(2-3a)+(2-3a)2]=a(2-3a)(a2+2-3a)2=a(2-3a)(a-1)2(a-2)2;(3)原式=a4bc+a3(b3+c3)+2a2b2c2+abc(b3+c3)+b3c3=bc(a4+2a2bc+b2c2)+a(b3+c3)(a2+bc)=bc(a2+bc)2+a(b3+c3)(a2+bc)=(a2+bc)[bc(a2+bc)+a(b3+c3)]=(a2+bc)[(bca2+ab3)+(b2c2+ac3)]=(a2+bc)[ab(ca+b2)+c2(b2+ac)]=(a2+bc)(b2+ac)(c2+ab).28.分解因式(1)16-a4(2)y3-6xy2+9x2y(3)(m+n)2-4m(m+n)+4m2(4)9-a2+4ab-4b2【解答】解:(1)原式=(4+a2)(4-a2)=(4+a2)(2+a2)(2-a2);(2)原式=y(y2-6xy+9x2)=y(y-3x)2;(3)原式=(m+n-2m)2=(n-m)2;(4)原式=9-(a-2b)2=(3-a+2b)(3+a-2b).29.因式分解(1)-a2-a(2)(x +y )(5m +3n )2-(x +y )(m -n )2(3)(a 2+6a )2+18(a 2+6a )+81(4)x 2-4x -y 2+4.【解答】解:(1)-a 2-a =-a (a +1)(2)(x +y )(5m +3n )2-(x +y )(m -n )2=(x +y )(5m +3n +m -n )(5m +3n -m +n )=(x +y )(6m +2n )(4m +4n )=8(x +y )(3m +n )(m +n )(3)(a 2+6a )2+18(a 2+6a )+81=(a 2+6a +9)2=(a +3)4(4)x 2-4x -y 2+4=(x -2)2-y 2=(x -2+y )(x -2-y )30.把下列各式分解因式:(1)(a 2+a +1)(a 2-6a +1)+12a 2;(2)(2a +5)(a 2-9)(2a -7)-91;12(4)(x 4-4x 2+1)(x 4+3x 2+1)+10x 4;【解答】解:(1)令a 2+1=b ,则原式=(b +a )(b -6a )+12a 2(3)xy (xy +1)+(xy +3)-2(x +y +)-(x +y -1)2;(5)2x 3-x 2z -4x 2y +2xyz +2xy 2-y 2z .=b 2-5ab -6a 2+12a 2=b 2-5ab +6a 2=(b -2a )(b -3a )=(a 2+1-2a )(a 2+1-3a )=(a -1)2(a 2-3a +1);(2)原式=[(2a +5)(a -3)][(a +3)(2a -7)]-91=(2a 2-a -15)(2a 2-a -21)-91=(2a 2-a )2-36(2a 2-a )+224=(2a 2-a -28)(2a 2-a -8)=(a -4)(2a +7)(2a 2-a -8);(3)设x +y =a ,xy =b ,则原式=b (b +1)+(b +3)-2(a +)-(a -1)212=(b 2+2b +1)-a 2=(b +1+a )(b +1-a )=(xy +1+x +y )(xy +1-x -y );(4)令x 4+1=a ,则原式=(a -4x 2)(a +3x 2)+10x 4=a 2-x 2a -2x 4=(a -2x 2)(a +x 2)=(x 4+1-2x 2)(x 4+1+x 2)=(x +1)2(x -1)2(x 2+x +1)(x 2-x +1);(5)原式=(2x3-x2z)+(-4x2y+2xyz)+(2xy2-y2z) =x2(2x-z)-2xy(2x-z)+y2(2x-z)=(2x-z)(x2-2xy+y2)=(2x-z)(x-y)2.31.分解因式:(1)12abc-2bc2(2)2a3-12a2+18a(3)9a(x-y)+3b(x-y)(4)(x+y)2+2(x+y)+1(5)x2-1+y2-2xy(6)(a+b)(a-b)+4(b-1)【解答】解:(1)12abc-2bc2=2bc(6a-c);(2)2a3-12a2+18a=2a(a2-6a+9)=2a(a-3)2;(3)9a(x-y)+3b(x-y)=3(x-y)(3a+b);(4)(x+y)2+2(x+y)+1=(x+y+1)2;(5)x2-1+y2-2xy=(x-y)2-1=(x-y+1)(x-y-1);(6)(a+b)(a-b)+4(b-1)=a2-b2+4b-4=a2-(b-2)2=(a-b+2)(a+b-2).32.将下列各式因式分解:(1)a4-16(2)16(a-b)2-9(a+b)2(3)x2-1+y2-2xy(4)(m+n)2-2(m2-n2)+(m-n)2.(5)x2-5x+6(6)x2-5x-6(7)x2+5x-6(8)x2+5x+6.【解答】解:(1)a4-16=(a2+4)(a2-4)=(a2+4)(a+2)(a-2);(2)16(a-b)2-9(a+b)2=[4(a-b)+3(a+b)][4(a-b)-3(a+b)]=(4a-4b+3a+3b)(4a-4b-3a-3b)=(7a-b)(a-7b);(3)x2-1+y2-2xy=(x-y)2-1=(x-y+1)(x-y-1);(4)(m+n)2-2(m2-n2)+(m-n)2=[(m+n)-(m-n)]2=(m+n-m+n)2=(2n)2=4n2;(5)x2-5x+6=(x-2)(x-3);(6)x2-5x-6=(x-6)(x+1);(7)x2+5x-6=(x+6)(x-1);(8)x2+5x+6=(x+2)(x+3).33.分解因式(1)-3x3-6x2y-3xy2;(2)(a2+9)2-36a2(3)25m2-(4m-3n)2;(4)(x2-2x)2-2(x2-2x)-3.【解答】解:(1)-3x3-6x2y-3xy2;=-3x(x2+2xy+y2)=-3x(x+y)2;(2)(a2+9)2-36a2=(a2+9+6a)(a2+9-6a)=(a+3)2(a-3)2;(3)25m2-(4m-3n)2=(5m)2-(4m-3n)2,=(5m+4m-3n)(5m-4m+3n)=3(3m-n)(m+3n);(4)(x2-2x)2-2(x2-2x)-3=(x2-2x-3)(x2-2x+1)=(x-3)(x+1)(x-1)2.34.因式分解:(1)x2-5x-6(2)9a2(x-y)+4b2(y-x)(3)y2-x2+6x-9(4)(a2+4b2)2-16a2b2【解答】解:(1)x2-5x-6=(x-3)(x+2);(2)9a2(x-y)+4b2(y-x)=(x-y)(9a2-4b2)=(x-y)(3a+2b)(3a-2b);=y2-(x2-6x+9)=y2-(x-3)2=(y+x-3)(y-x+3);(4)(a2+4b2)2-16a2b2=(a2+4b2+4ab)(a2+4b2-4ab) =(a+2b)2(a-2b)2.35.把下列多项式分解因式:(1)27xy2-3x(2)12x2+xy+12y2(3)a2-b2-1+2b(4)x2+3x-4【解答】解:(1)27xy2-3x =3x(9y2-1)=3x(3y+1)(3y-1);(2)12x2+xy+12y2=1(x2+2xy+y2 2)=1(x+y)22;(3)a2-b2-1+2b=a2-(b2-2b+1)=a2-(b-1)2=(a+b-1)(a-b+1);(4)x2+3x-4=(x+4)(x-1).36.因式分解:(1)x2-xy-12y2;(2)a2-6a+9-b2【解答】解:(1)x2-xy-12y2,=(x+3y)(x-4y);(2)a2-6a+9-b2,=(a-3)2-b2,=(a-3+b)(a-3-b).37.分解因式(1)8a3b2-12ab3c(2)-3ma3+6ma2-12ma(3)2(x-y)2-x(x-y)(4)3ax2-6axy+3ay2(6)x 5-x 3(7)(x -1)(x -2)-6(8)a 2-2ab +b 2-c 2【解答】解:(1)8a 3b 2-12ab 3c =4ab 2(2a 2-3bc );(2)-3ma 3+6ma 2-12ma =-3ma (a 2-2a +4)=-3ma (a -2)2;(3)2(x -y )2-x (x -y )=(x -y )(2x -2y -x )=(x -y )(x -2y );(4)3ax 2-6axy +3ay 2=3a (x 2-2xy +y 2)=3a (x -y )2;(5)p 2-5p -36=(p -9)(p +4);(6)x 5-x 3=x 3(x 2-1)=x 3(x +1)(x -1);(7)(x -1)(x -2)-6=x 2-3x +2-6=(x -4)(x +1);(8)a 2-2ab +b 2-c 2=(a -b )2-c 2=(a -b +c )(a -b -c ).38.把下列各式分解因式:(1)4x 3-31x +15;(2)2a 2b 2+2a 2c 2+2b 2c 2-a 4-b 4-c 4;(3)x 5+x +1;(4)x 3+5x 2+3x -9;(5)2a 4-a 3-6a 2-a +2.【解答;(;(5522232】解:(1)4x 3-31x +15=4x 3-x -30x +15=x (2x +1)(2x -1)-15(2x -1)=(2x -1)(2x 2+x -15)=(2x -1)(2x -5)(x +3)2)2a b +2a c +2b c -a -b -c =4a b -(a +b +c +2a b -2a c -2b c )=(2ab )-(a +b -c )=(2ab +a +b -c )(2ab -a -b +c )=(a +b +c )(a +b -c )(c +a -b )(c -a +b )32222)3x +x +1=x -x +x +x +1=x (x -1)+(x +x +1)=x (x -1)(x +x +1)+(x +x +1)=(x +x +1)(x -x 2+1);(;(4)x 3+5x 2+3x -9=(x 3-x 2)+(6x 2-6x )+(9x -9)=x 2(x -1)+6x (x -1)+9(x -1)=(x -1)(x +3)25)2a -a -6a -a +2=a (2a -1)-(2a -1)(3a +2)=(2a -1)(a -3a -2)=(2a -1)(a +a -a -a -2a -2)=(2a -1)[a (a +1)-a (a +1)-2(a +1)]=(2a -1)(a +1)(a 2-a -2)=(a +1)(a -2)(2a -1).39.分解因式(1)20a 3x -45ay 2x(2)1-9x 2(3)4x 2-12x +9(4)4x 2y 2-4xy +1(5)p 2-5p -36(6)y 2-7y +12(7)3-6x +3x 2(8)-a +2a 2-a 3(9)m 3-m 2-20m【解答】解:(1)原式=5ax (4a 2-9y 2)=5ax (2a +3y )(2a -3y );(2)原式=(1+3x )(1-3x );(3)原式=(2x )2-12x +9=(2x -3)2;(4)原式=(2xy-1)2;(5)原式=(p+4)(p-9);(6)原式=(y-3)(y-4);(7)原式=3(x2-2x+1)=3(x-1)2;(8)原式=-a(a2-2a+1)=-a(a-1)2;(9)原式=m(m2-m-20)=m(m+4)(m-5).40.分解因式:(x2+x+1)(x2+x+2)-12.【解答】解:设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如令x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.故答案为(x-1)(x+2)(x2+x+5)41.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.【解答】解:设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).42.分解因式:(1)2a(y-z)-3b(z-y);(2)-x2+4xy-4y2;(3)x2-2(在实数范围内分解因式);(4)4-12(x-y)+9(x-y)2.【解答】解:(1)原式=2a(y-z)+3b(y-z)=(y-z)(2a+3b);(2)原式=-(x2-4xy+4y2)=-(x-2y)2;(3)原式=(x+2)(x-2);(4)原式=[3(x-y)-2]2=(3x-3y-2)2.43.阅读下面的问题,然后回答,分解因式:x2+2x-3,解:原式=x2+2x+1-1-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2-4x+3(2)4x2+12x-7.【解答】解:(1)x2-4x+3=x2-4x+4-4+3=(x -2)2-1=(x -2+1)(x -2-1)=(x -1)(x -3)(2)4x 2+12x -7=4x 2+12x +9-9-7=(2x +3)2-16=(2x +3+4)(2x +3-4)=(2x +7)(2x -1)44.下面是某同学对多项式(x -4x +2)(x -4x +6)+4进行因式分解的过程.解:设x -4x =y原式=(y +2)(y +6)+4(第一步)222=y 2+8y +16(第二步)=(y +4)2(第三步)=(x 2-4x +4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?不彻底(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x -2x )(x -2x +2)+1进行因式分解.【解答】解:(1)(2)设x -2x =y原式=y (y +2)+1222(x 2-4x +4)2=(x -2)4,∴该同学因式分解的结果不彻底.=y 2+2y +1=(y +1)2=(x 2-2x +1)2=(x -1)4.故答案为:不彻底.45.阅读并解决问题:对于形如x 2+2ax +a 2这样的二次三项式,可以用公式法将它分解成(x +a )2的形式,但对于二次三项式x 2+2ax -3a 2就不能直接运用公式了.此时,我们可以这样来处理:x 2+2ax -3a 2=(x 2+2ax +a 2)-a 2-3a 2=(x +a )2-4a 2=(x +a +2a )(x +a -2a )=(x +3a )(x -a )像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a 2-8a +15;(2)若a +b =6,ab =4,求:①a 2+b 2;②a 4+b 4的值;(3)已知x 是实数,试比较x 2-6x +11与-x 2+6x -10的大小,说明理由.【解答】解:(1)a 2-8a +15=(a 2-8a +16)-1=(a -4)2-12=(a -3)(a -5);(2)a +b =6,ab =4,a2+b2=(a+b)2-2ab=36-8=28.a4+b4=(a2+b2)2-2a2b2=282-2⨯16=752.(3)x2-6x+11=(x-3)2+22,-x2+6x-10=-(x-3)2-1-1,∴x2-6x+11>-x2+6x-10.46.小亮在对a4+1114分解因式时,步骤如下:a4+4=a4+a2+4-a2三项可利用完全平方公式)=(a2+12)2-a2(写成完全平方式与最后一项又符合平方差公式)=(a2+a+12)(a2-a+12).请你利用上述方法分解因式4x4+1.【解答】解:4x4+1=4x4+4x2+1-4x2=(2x2+1)2-4x2=(2x2+2x+1)(2x2-2x+1).47.十字相乘法分解因式:(1)x2+3x+2(2)x2-3x+2(3)x2+2x-3(4)x2-2x-3(5)x2+5x+6(6)x2-5x-6(7)x2+x-6(8)x2-x-6(9)x2-5x-36(10)x2+3x-18(11)2x2-3x+1(12)6x2+5x-6.【解答】解:(1)x2+3x+2=(x+1)(x+2);(2)x2-3x+2=(x-1)(x-2);(3)x2+2x-3=(x+3)(x-1);(4)x2-2x-3=(x-3)(x+1);(5)x2+5x+6=(x+3)(x+2);(6)x2-5x-6=(x-6)(x+1);(7)x2+x-6=(x+3)(x-2);a2与-a2,前(添加(8)x2-x-6=(x-3)(x+2);(9)x2-5x-36=(x-9)(x+4);(10)x2+3x-18=(x+6)(x-3);(11)2x2-3x+1=(2x-1)(x-1);(12)6x2+5x-6=(2x+3)(3x-2).48.分解因式:(x+1)(x+3)(x+6)(x+8)+9.【解答】解:(x+1)(x+3)(x+6)(x+8)+9=[(x+1)(x+8)][(x+3)(x+6)]+9=(x2+9x+8)(x2+9x+18)+9=(x2+9x)2+26(x2+9x)+153=(x2+9x+9)(x2+9x+17).49.分解因式:(1)x4-7x2+6.(2)x4-5x2-36.(3)4x4-65x2y2+16y4.(4)a6-7a3b3-8b6(5)6a4-5a3-4a3.(6)4a6-37a4b2+9a2b4.【解答】解:(1)x4-7x2+6=(x2-1)(x2-6)=(x+1)(x-1)(x+6)(x-6);(2)x4-5x2-36=(x2-9)(x2+4)=(x+3)(x-3)(x2+4)(3)4x4-65x2y2+16y4=(2x2-4y2)2-49x2y2=(2x2-4y2+7xy)(2x2-4y2-7xy)=(2x-1)(2x+1)(1-4y)(1+4y);(4)a6-7a3b3-8b6=(a3-8b3)(a3+b3)=(a-2b)(a2+2ab+b2)(a+b)(a2-ab+b2)=(a-2b)(a+b)3(a2-ab+b2);(5)6a4-5a3-4a3=6a4-9a3=3a3(2a-3);(6)4a6-37a4b2+9a2b4=a2(4a4-37a2b2+9b4)=a2(4a4-12a2b2+9b4-25a2b2)=a2[(2a2-3b2)2-25a2b2]=a2(2a+1)(2a-1)(1-3b)(1+3b).50.因式分解:(1)(x+y)4+(x+y)2-20;(2)(x2-2x-2)(x2-2x-9)+6;(3)(x2+4x+3)(x2-12x+35)-105;(4)(x2-6)2-4x(x2-6)-5x2.【解答】解:(1)原式=[(x+y)2-4][(x+y)2+5]=(x+y+2)(x+y-2)(x2+y2+2xy+5);(2)原式=(x2-2x)2-11(x2-2x)+24=(x2-2x-3)(x2-2x-8)=(x-3)(x+1)(x-4)(x+2);(3)原式=(x+1)(x+3)(x-5)(x-7)-105=(x2-4x-5)(x2-4x-21)-105=(x2-4x)2-26(x2-4x)=(x2-4x)(x2-4x-26)=x(x-4)(x2-4x-26)(4)原式=(x2-6-5x)(x2-6+x)=(x-6)(x+1)(x-2)(x+3).第21页(共21页)。
初中数学因式分解(分组分解法)练习100题及答案
初中数学因式分解(分组分解法)练习100题及答案(1) 1027014ax ay bx by +--(2) 224981981848x y x y --++ (3) 22285132535a b ab bc ca --+-(4) 222712272015x y xy yz zx --+- (5) 60106010mn m n +--(6) 801006480xy x y -+-+(7) 22872124x y xy yz zx -++-(8) 22283251520a b ab bc ca +-+-(9) 20282535xy x y ----(10) 222141939x y xy yz zx ++--(11) 1070428xy x y -++-(12) 221510313521x y xy yz zx +--+(13) 2220358103a c ab bc ca -+-+(14) 60501815xy x y ----(15) 22365452511a c ab bc ca ---+(16) 226123417x z xy yz zx +-+-(17) 754935ab a b -+-(18) 16884xy x y -++-(19) 945945mx my nx ny --+(20) 22201839a c ca ++(21) 22672824a b ab bc ca -+--(22) 2235121220a b ab bc ca --+-(23) 9327ax ay bx by +--(24) 8016204mx my nx ny +++(25) 2231024x z xy yz zx ---+(26) 15502480xy x y ----(27) 221535464935x y xy yz zx ++++(28) 222035154928a b ab bc ca --+-(29) 632412mx my nx ny +--(30) 49214218xy x y +++(31) 4085ax ay bx by +--(32) 16364090xy x y -++-(33) 2220619624x y xy yz zx -+-+(34) 368368mn m n --+(35) 45633549ax ay bx by -+-(36) 2244363217a b a b --++ (37) 25304554mn m n -+-(38) 104156xy x y +++(39) 2221126432x z xy yz zx ++--(40) 24286070ab a b --+(41) 2249281840a b a b -+++(42) 223625652016a b ab bc ca +-+-(43) 226464489m n m ---(44) 223664369m n m ---(45) 224936568433a b a b -++-(46) 22331039a b ab bc ca +-+-(47) 226513510a b ab bc ca +-+-(48) 2294937x z xy yz zx ++--(49) 754935mn m n -+-(50) 2291018447a c ab bc ca +--+(51) 227221272129x z xy yz zx ---+(52) 530636mx my nx ny +--(53) 2249241827a b a b -+-+(54) 312624xy x y --++(55) 225625529x z xy yz zx -++-(56) 242065xy x y +++(57) 2282836x y xy yz zx ++--(58) 2216202548a c ab bc ca ++++(59) 22925204x y y ---(60) 2230736637a c ab bc ca --++(61) 221412461035x y xy yz zx +-+-(62) 2245425733x z xy yz zx -+--(63) 486486mn m n +++(64) 2210530627a c ab bc ca +-+-(65) 205164xy x y --++(66) 2272524331x z xy yz zx ----(67) 2293021353a c ab bc ca -++-(68) 848040ab a b +++(69) 81451810ab a b -+-(70) 223014354952x z xy yz zx +-+-(71)22123574a b ab bc ca-+--(72)222020mx my nx ny-+-(73)153357ab a b-+-(74)18126342mn m n+--(75)99010ax ay bx by+--(76)24241616mn m n-+-(77)16144035xy x y-+-(78)728455mx my nx ny-+-(79)5401080mx my nx ny+++(80)2254221212x y xy yz zx++++ (81)20503280xy x y--+(82)552020ax ay bx by+--(83)22124236x y xy yz zx----(84)18244864mn m n-+-(85)9020276ax ay bx by+--(86)222418391232a b ab bc ca----(87)2292142866x z xy yz zx+-+-(88)222581101a b a---(89) 24361624ax ay bx by --+(90) 20104020mn m n -+-(91) 229961x y y ---(92) 226416647265x y x y ----(93) 229424209m n m n ----(94) 2245220813a c ab bc ca --+- (95) 22449325648m n m n --++(96) 22481412648x y x y -++-(97) 22634276103x z xy yz zx +--+(98) 223030202461x z xy yz zx ++--(99) 221012352126a c ab bc ca +--+(100) 24275663ax ay bx by --+初中数学因式分解(分组分解法)练习100题答案(1)2(7)(5)a b x y-+(2)(798)(796)x y x y+---(3)(75)(45)a b a b c-+-(4)(935)(34)x y z x y+--(5)10(1)(61)m n-+(6)4(54)(45)x y-+-(7)(87)(3)x y x y z-+-(8)(75)(43)a b c a b---(9)(45)(57)x y-++(10)(3)(743)x y x y z++-(11)2(52)(7)x y---(12)(527)(35)x y z x y-+-(13)(45)(527)a c ab c-++ (14)(103)(65)x y-++(15)(95)(45)a c ab c+--(16)(34)(23)x z x y z---(17)(7)(75)a b+-(18)4(21)(21)x y---(19)9()(5)m n x y--(20)(56)(43)a c a c++(21)(4)(67)a b c a b--+(22)(53)(744)a b a b c-+-(23)(3)(9)a b x y-+(24)4(4)(5)m n x y++(25)(325)(2)x y z x z--+ (26)(58)(310)x y-++(27)(357)(57)x y z x y+++(28)(557)(47)a b c a b+--(29)3(4)(2)m n x y-+(30)(76)(73)x y++(31)(8)(5)a b x y-+(32)2(25)(49)x y---(33)(4)(566)x y x y z-++ (34)4(1)(92)m n--(35)(97)(57)a b x y+-(36)(2217)(221)a b a b+---(37)(59)(56)m n+-(38)(23)(52)x y++(39)(32)(726)x z x y z-+-(40)2(25)(67)a b--(41)(234)(2310)a b a b++-+(42)(45)(954)a b a b c---(43)(883)(883)m n m n+---(44)(683)(683)m n m n+---(45)(763)(7611)a b a b+--+(46)(3)(33)a b a b c---(47)(355)(2)a b c a b---(48)(9)(4)x z x y z-+-(49)(7)(75)m n+-(50)(92)(25)a c ab c+-+ (51)(97)(833)x z x y z+--(52)(56)(6)m n x y-+(53)(239)(233)a b a b++-+ (54)3(2)(4)x y--+(55)(5)(56)x z x y z++-(56)(41)(65)x y++(57)(423)(2)x y z x y+-+(58)(84)(25)a b c a c+++ (59)(352)(352)x y x y++--(60)(6)(567)a c ab c--+ (61)(72)(265)x y x y z---(62)(57)(96)x z x y z-++ (63)6(1)(81)m n++(64)(265)(5)a b c a c---(65)(54)(41)x y--+ (66)(935)(8)x y z x z--+(67)(35)(376)a c ab c++-(68)4(10)(21)a b++(69)(92)(95)a b+-(70)(672)(57)x y z x z---(71)(35)(47)a b c a b--+ (72)2(10)()m n x y+-(73)(37)(51)a b+-(74)3(27)(32)m n-+(75)(10)(9)a b x y-+ (76)8(32)(1)m n+-(77)(25)(87)x y+-(78)(85)(9)m n x y+-(79)5(2)(8)m n x y++(80)(922)(6)x y z x y+++ (81)2(58)(25)x y--(82)5(4)()a b x y-+(83)(643)(2)x y z x y--+ (84)2(38)(34)m n+-(85)(103)(92)a b x y-+(86)(83)(364)a b a b c+--(87)(7)(943)x z x y z---(88)(591)(591)a b a b+---(89)4(32)(23)a b x y--(90)10(2)(21)m n+-(91)(331)(331)x y x y++--(92)(845)(8413)x y x y++--(93)(321)(329)m n m n++--(94)(94)(52)a b c a c-+-(95)(2712)(274)m n m n+---(96)(296)(298)x y x y+--+ (97)(76)(97)x z x y z+-+(98)(645)(56)x y z x z+--(99)(53)(274)a c ab c+-+ (100)(37)(89)a b x y--。
因式分解100题试题附答案
100题搞定因式分解计算因式分解100题(试题版)日期:________时间:________姓名:________成绩:________一、解答题(共100小题)1.因式分解:4a2b﹣b.2.因式分解:a2(a﹣b)+25(b﹣a).3.因式分解:x3+3x2y﹣4x﹣12y.4.因式分解:9(x+y)2﹣(x﹣y)2.5.因式分解:2a2b﹣12ab+18b.6.因式分解:﹣x3y+4x2y2﹣4xy3.7.因式分解:a2(x﹣y)+4b2(y﹣x).8.因式分解:4a3b+4a2b2+ab3.9.因式分解:(a+b)2﹣4a2.10.因式分解:3ax2﹣6axy+3ay2.11.因式分解:6x4﹣5x3﹣4x2.12.因式分解:(x﹣3y)(x﹣y)﹣(﹣x﹣y)213.因式分解:2m(a﹣b)﹣3n(b﹣a)14.因式分解:m2﹣(2m+3)2.16.因式分解:x2﹣4xy+4y2﹣117.因式分解:(9x+y)(2y﹣x)﹣(3x+2y)(x﹣2y)18.因式分解:a2﹣4﹣3(a+2)19.因式分解:(x﹣1)2+2(x﹣5).20.因式分解:4x3﹣8x2+4x.21.因式分解:x3﹣2x2﹣3x22.因式分解:2x2﹣4xy+3x﹣6y24.因式分解:9x2﹣6x+1.25.因式分解:4ma2﹣mb2.26.因式分解:x2﹣2xy﹣8y2.27.因式分解:a2+4a(b+c)+4(b+c)2.28.因式分解:x2﹣4y2+4﹣4x29.因式分解:xy2﹣4xy+4x.30.因式分解:x4﹣5x2﹣36.31.因式分解:x3﹣2x2y+xy2.32.在实数范围内因式分解:x2﹣4xy﹣3y2.33.因式分解:9a2(x﹣y)+4b2(y﹣x)34.因式分解:x4﹣10x2+9.35.因式分解:x2﹣y2﹣2x+1.36.因式分解:(2x﹣y)(x+3y)﹣(x+y)(y﹣2x).37.因式分解:6(x+y)2﹣2(x﹣y)(x+y).38.因式分解:2m4n﹣12m3n2+18m2n3.39.因式分解:a2(x﹣y)+4(y﹣x).40.在实数范围内因式分解:﹣2a2b2+ab+2.41.因式分解:x2﹣9+3x(x﹣3)42.因式分解:4xy2+4x2y+y3.43.因式分解:(x2+4x)2﹣2(x2+4x)﹣15.44.因式分解:6xy2+9x2y+y3.45.因式分解:x3﹣3x2+2x.46.因式分解:x(a﹣b)+y(b﹣a)﹣3(b﹣a).47.因式分解:3ax﹣18by+6bx﹣9ay48.因式分解:(2a﹣b)(3a﹣2)+b(2﹣3a)49.因式分解:(a﹣3)2+(3﹣a)50.因式分解:(a+b)﹣2a(a+b)+a2(a+b)51.因式分解:12x4﹣6x3﹣168x252.因式分解:(2m+3n)(2m﹣n)﹣n(2m﹣n)53.因式分解:3x2(x﹣2y)﹣18x(x﹣2y)﹣27(2y﹣x)54.因式分解:(x﹣1)(x+1)(x﹣2)﹣(x﹣2)(x2+2x+4)55.因式分解:8x2y2﹣10xy﹣1256.因式分解:6(x+y)2﹣2(x+y)(x﹣y)57.因式分解:9(a﹣b)(a+b)﹣3(a﹣b)258.因式分解:4xy(x+y)2﹣6x2y(x+y)59.因式分解:﹣24m2x﹣16n2x.60.因式分解:4a(x﹣y)﹣2b(y﹣x)61.因式分解:ax4﹣14ax2﹣32a.62.因式分解:x3+5x2y﹣24xy2.63.因式分解:(1﹣3a)2﹣3(1﹣3a)64.因式分解:x(x﹣y)3+2x2(y﹣x)2﹣2xy(x﹣y)2.65.因式分解:x5﹣2x3﹣8x.366.因式分解:x2-y2+2x+y+467.因式分解:2(x+y)2﹣20(x+y)+50.68.因式分解:1+a+a(1+a)+a(1+a)2+a(1+a)3.69.因式分解:x2y﹣x2z+xy﹣xz.70.因式分解:(x2﹣x)2﹣8x2+8x+12.71.因式分解:x4﹣(3x﹣2)2.72.因式分解:(3m﹣1)2﹣(2m﹣3)2.73.因式分解:(2x+5)2﹣(2x﹣5)2.74.因式分解:(﹣2x﹣1)2(2x﹣1)2﹣(4x2﹣2x﹣1)275.因式分解:(m+1)(m﹣9)+8m.76.因式分解:9(a﹣b)2+36(b2﹣ab)+36b277.因式分解:(a2+4)2﹣16a2.78.因式分解:9(m+n)2﹣(m﹣n)279.因式分解:x4﹣8x2y2+16y4.80.因式分解:25x2﹣9(x﹣2y)281.因式分解:4x2y2﹣(x2+y2)2.82.因式分解:x(x﹣12)+4(3x﹣1).83.因式分解:(x2﹣3)2+2(3﹣x2)+1.84.因式分解:(x+2)(x﹣6)+16.85.因式分解:2m(2m﹣3)+6m﹣1.86.因式分解:x4﹣16y4.87.因式分解:(a2+1)2﹣4a2.88.因式分解:(2x+y)2﹣(x+2y)2.89.因式分解:(x2﹣6)2﹣6(x2﹣6)+990.因式分解:(x2+x)2﹣(x+1)2.91.因式分解:8(x2﹣2y2)﹣x(7x+y)+xy.92.因式分解:x4﹣10x2y2+9y4.93.因式分解:(x2+x﹣5)(x2+x﹣3)﹣394.因式分解:(m2+2m)2﹣7(m2+2m)﹣895.因式分解:(x2+2x)2﹣2(x2+2x)﹣396.因式分解:2x2+6x﹣3.5.97.因式分解:3x2﹣12x+998.因式分解:(x﹣4)(x+7)+18.99.因式分解:5a2b2+23ab﹣10.100.因式分解:(x+y)2﹣(4x+4y)﹣32.因式分解100题参考答案部分可能有误仅供参考一、解答题(共100小题)1.【解答】解:4a2b﹣b=b(4a2﹣1)=b(2a+1)(2a﹣1).2.【解答】解:a2(a﹣b)+25(b﹣a)=a2(a﹣b)﹣25(a﹣b)=(a﹣b)(a2﹣52)=(a﹣b)(a+5)(a﹣5).3.【解答】解:x3+3x2y﹣4x﹣12y=(x3+3x2y)﹣(4x+12y)=x2(x+3y)﹣4(x+3y)=(x+3y)(x2﹣4)=(x+3y)(x+2)(x﹣2).4.【解答】解:9(x+y)2﹣(x﹣y)2=[3(x+y)﹣(x﹣y)][3(x+y)+(x﹣y)]=(2x+4y)(4x+2y)=4(x+2y)(2x+y).5.【解答】解:原式=2b(a2﹣6a+9)=2b(a﹣3)2.6.【解答】解:原式=﹣xy(x2﹣4xy+4y2)=﹣xy(x﹣2y)2.7.【解答】解:原式=(x﹣y)(a2﹣4b2)=(x﹣y)(a+2b)(a﹣2b).故答案为:(x﹣y)(a+2b)(a﹣2b).8.【解答】解:原式=ab(4a2+4ab+b2)=ab(2a+b)2.9.【解答】解:原式=(a+b+2a)(a+b﹣2a)=(3a+b)(b﹣a).10.【解答】解:原式=3a(x2﹣2xy+y2)=3a(x﹣y)2.11.【解答】解:6x4﹣5x3﹣4x2=x2(6x2﹣5x﹣4)=x2(2x+1)(3x﹣4).12.【解答】解:原式=x2﹣xy﹣3xy+y2﹣(x2+xy+y2),=x2﹣xy﹣3xy+y2﹣x2﹣xy﹣y2,=﹣xy+y2,=﹣y(x﹣y).13.【解答】解:2m(a﹣b)﹣3n(b﹣a)=(a﹣b)(2m+3n).14.【解答】解:原式=(m+2m+3)(m﹣2m﹣3)=(3m+3)(﹣m﹣3)=﹣3(m+1)(m+3).15.【解答】解:原式=[3(x﹣y)+2]2=(3x﹣3y+2)2.16.【解答】解:x2﹣4xy+4y2﹣1=(x2﹣4xy+4y2)﹣1=(x﹣2y)2﹣1=(x﹣2y+1)(x﹣2y﹣1).17.【解答】解:(9x+y)(2y﹣x)﹣(3x+2y)(x﹣2y)=(2y﹣x)(9x+y+3x+2y)=3(2y﹣x)(4x+y).18.【解答】解:原式=(a+2)(a﹣2)﹣3(a+2)=(a+2)(a﹣5).19.【解答】解:原式=x2﹣2x+1+2x﹣10=x2﹣9=(x+3)(x﹣3).20.【解答】解:原式=4x(x2﹣2x+1)=4x(x﹣1)2.21.【解答】解:x3﹣2x2﹣3x=x(x2﹣2x﹣3)=x(x﹣3)(x+1).22.【解答】解:原式=2x(x﹣2y)+3(x﹣2y)=(x﹣2y)(2x+3).23.【解答】解:(x﹣2y)(x+3y)﹣(x﹣2y)2=(x﹣2y)(x+3y﹣x+2y)=5y(x﹣2y).24.【解答】解:原式=(3x﹣1)2.25.【解答】解:4ma2﹣mb2,=m(4a2﹣b2),=m(2a+b)(2a﹣b).26.【解答】解:x2﹣2xy﹣8y2=(x﹣4y)(x+2y).27.【解答】解:原式=[a+2(b+c)]2=(a+2b+2c)2.28.【解答】解:x2﹣4y2+4﹣4x=(x2﹣4x+4)﹣4y2=(x﹣2)2﹣4y2=(x+2y﹣2)(x﹣2y﹣2).29.【解答】解:xy2﹣4xy+4x=x(y2﹣4y+4)=x(y﹣2)2.30.【解答】解:原式=(x2﹣9)(x2+4)=(x+3)(x﹣3)(x2+4).31.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.32.【解答】解:x2﹣4xy﹣3y2=x2﹣4xy+4y2﹣7y2=(x﹣2y)2﹣7y2=(x﹣2y+y)(x﹣2y﹣y).33.【解答】解:9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).34.【解答】解:原式=(x2﹣1)(x2﹣9)=(x+1)(x﹣1)(x+3)(x﹣3).35.【解答】解:原式=(x2﹣2x+1)﹣y2=(x﹣1)2﹣y236.【解答】解:原式=(2x﹣y)(x+3y)+(x+y)(2x﹣y)=(2x﹣y)(x+3y+x+y)=(2x﹣y)(2x+4y)=2(2x﹣y)(x+2y).37.【解答】解:6(x+y)2﹣2(x﹣y)(x+y)=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y)38.【解答】解:2m4n﹣12m3n2+18m2n3=2m2n(m2﹣6mn+9n2)=2m2n(m﹣3n)2.39.【解答】原式=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2).40.【解答】解:令﹣2a2b2+ab+2=0,则ab=,所以﹣2a2b2+ab+2=﹣2(ab﹣)(ab﹣).41.【解答】解:x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).42.【解答】解:4xy2+4x2y+y3=y(4xy+4x2+y2)=y(y+2x)2.43.【解答】解:原式=(x2+4x﹣5)(x2+4x+3)=(x+5)(x﹣1)(x+3)(x+1).44.【解答】解:原式=y(6xy+9x2+y2)=y(3x+y)2.45.【解答】解:x3﹣3x2+2x=x(x2﹣3x+2)=x(x﹣1)(x﹣2)46.【解答】解:原式=x(a﹣b)﹣y(a﹣b)+3(a﹣b)=(a﹣b)(x﹣y+3).47.【解答】解:原式=(3ax﹣9ay)+(6bx﹣18by)=3a(x﹣y)+6b(x﹣y)=3(x﹣y)(a+2b).48.【解答】解:(2a﹣b)(3a﹣2)+b(2﹣3a)=(2a﹣b)(3a﹣2)﹣b(3a﹣2)=(3a﹣2)(2a﹣b﹣b)=2(3a﹣2)(a﹣b).49.【解答】解:原式=(3﹣a)2+(3﹣a)=(3﹣a)(3﹣a+1)=(3﹣a)(4﹣a).50.【解答】解:原式=(a+b)(1﹣2a+a2)=(a+b)(1﹣a)251.【解答】解:12x4﹣6x3﹣168x2=6x2(2x2﹣x﹣28)52.【解答】解:原式=(2m ﹣n )(2m +3n ﹣n )=(2m ﹣n )(2m +2n )=2(2m ﹣n )(m +n ).53.【解答】解:3x 2(x ﹣2y )﹣18x (x ﹣2y )﹣27(2y ﹣x )=3x 2(x ﹣2y )﹣18x (x ﹣2y )+27(x ﹣2y )=3(x ﹣2y )(x 2﹣6x +9)=3(x ﹣2y )(x ﹣3)2.54.【解答】解:原式=(x ﹣2)(x 2﹣1﹣x 2﹣2x ﹣4)=(x ﹣2)(﹣2x ﹣5)=﹣2x 2﹣x +10.55.【解答】解:原式=2(4x 2y 2﹣5xy ﹣6)=2(4xy +3)(xy ﹣2).56.【解答】解:6(x +y )2﹣2(x +y )(x ﹣y )=2(x +y )[3(x +y )﹣(x ﹣y )]=2(x +y )(2x +4y )=4(x +y )(x +2y ).57.【解答】解:原式=3(a ﹣b )[3(a +b )﹣(a ﹣b )]=6(a ﹣b )(a +2b ).58.【解答】解:原式=2xy (x +y )•2(x +y )﹣2xy (x +y )•3x =2xy (x +y )•[2(x +y )﹣3x ]=2xy (x +y )(2y ﹣x ).59.【解答】解:原式=﹣8x (3m 2+2n 2).60.【解答】解:4a (x ﹣y )﹣2b (y ﹣x )=4a (x ﹣y )+2b (x ﹣y )=2(x ﹣y )(2a +b ).61.【解答】解:ax 4﹣14ax 2﹣32a =a (x 4﹣14x 2﹣32)=a (x 2+2)(x 2﹣16)=a (x 2+2)(x +4)(x ﹣4).62.【解答】解:原式=x (x 2+5xy ﹣24y 2)=x (x +8y )(x ﹣3y ).63.【解答】解:(1﹣3a )2﹣3(1﹣3a )=(1﹣3a )(1﹣3a ﹣3)=(1﹣3a )(﹣3a ﹣2)=﹣(1﹣3a )(3a +2)=﹣3a ﹣2+9a 2+6a =9a 2+3a ﹣2.64.【解答】解:x (x ﹣y )3+2x 2(y ﹣x )2﹣2xy (x ﹣y )2=x (x ﹣y )2[(x ﹣y )+2x ﹣2y ]=3x (x ﹣y )3.65.【解答】解:原式=x (x 4﹣2x 2﹣8)=x (x 2﹣4)(x 2+2)=x (x +2)(x ﹣2)(x 2+2).66.【解答】解:原式=x 2+2x +1-y 2+y +43=(x +1)2-(y ﹣)2⎫⎛⎫⎛31y x y x ()()322122167.【解答】解:2(x+y)2﹣20(x+y)+50.=2[(x+y)2﹣10(x+y)+25].=2(x+y﹣5)2.68.【解答】解:1+a+a(1+a)+a(1+a)2+a(1+a)3=(1+a)[1+a+a(1+a)+a(1+a)2]=(1+a)2[1+a+a(1+a)]=(1+a)4.69.【解答】解:x2y﹣x2z+xy﹣xz.=(x2y﹣x2z)+(xy﹣xz).=x2(y﹣z)+x(y﹣z).=x(x+1)(y﹣z).70.【解答】解:原式=(x2﹣x)2﹣8(x2﹣x)+12=(x2﹣x﹣2)(x2﹣x﹣6)=(x+1)(x﹣2)(x+2)(x﹣3)71.【解答】解:原式=(x2)2﹣(3x﹣2)2=(x2+3x﹣2)(x2﹣3x+2)=(x2+3x﹣2)(x﹣1)(x﹣2).72.【解答】解:原式=[(3m﹣1)+(2m﹣3)][(3m﹣1)﹣(2m﹣3)]=(5m﹣4)(m+2).73.【解答】解:原式=[(2x+5)+(2x﹣5)][(2x+5)﹣(2x﹣5)]=4x•10=40x.74.【解答】解:原式=[(﹣2x﹣1)(2x﹣1)+4x2﹣2x﹣1][(﹣2x﹣1)(2x﹣1)﹣4x2+2x+1]=﹣4x(﹣4x2+x+1).75.【解答】解:原式=m2﹣8m﹣9+8m=m2﹣9=(m+3)(m﹣3).76.【解答】解:原式=9[(a﹣b)2+4b(a﹣b)+4b2]=9(a﹣b+2b)2=9(a+b)2.77.【解答】解:原式=(a2+4)2﹣(4a)2,=(a2+4+4a)(a2+4﹣4a),=(a+2)2(a﹣2)2.78.【解答】解:原式=[3(m+n)]2﹣(m﹣n)2=(3m+3n+m﹣n)(3m+3n﹣m+n)=4(2m+n)(m+2n).79.【解答】解:原式=(x2﹣4y2)2=(x+2y)2(x﹣2y)2.80.【解答】解:原式=[5x﹣3(x﹣2y)][5x+3(x﹣2y)]=(2x﹣6y)(8x﹣6y)=4(x+3y)(4x﹣3y).81.【解答】解:4x2y2﹣(x2+y2)2=﹣[(x2+y2)2﹣(2xy)2]=﹣(x2+y2+2xy)(x2+y2﹣2xy)=﹣(x+y)2(x﹣y)2.82.【解答】解:原式=x2﹣12x+12x﹣4=x2﹣4=(x+2)(x﹣2).83.【解答】解:(x2﹣3)2+2(3﹣x2)+1=(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣4)2=(x+2)2(x﹣2)2.84.【解答】解:原式=x2﹣4x+4=(x﹣2)2.85.【解答】解:原式=4m2﹣6m+6m﹣1=4m2﹣1=(2m+1)(2m﹣1).86.【解答】解:x4﹣16y4=(x2+4y2)(x2﹣4y2)=(x2+4y2)(x+2y)(x﹣2y).87.【解答】解:原式=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.88.【解答】解:(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).89.【解答】解:原式=(x2﹣6﹣3)2=(x2﹣9)2=(x+3)2(x﹣3)2.90.【解答】解:原式=(x2+x+x+1)(x2+x﹣x﹣1)=(x2+2x+1)(x2﹣1)=(x+1)2(x+1)(x﹣1)=(x+1)3(x﹣1).91.【解答】解:原式=8x2﹣16y2﹣7x2﹣xy+xy=x2﹣16y2=(x+4y)(x﹣4y).92.【解答】解:原式=(x2﹣9y2)(x2﹣y2)=(x﹣3y)(x+3y)(x﹣y)(x+y).93.【解答】解:原式=(x2+x)2﹣8(x2+x)+12=(x2+x﹣2)(x2+x﹣6)=(x﹣1)(x+2)(x﹣2)(x+3).94.【解答】解:(m2+2m)2﹣7(m2+2m)﹣8,=(m2+2m﹣8)(m2+2m+1),=(m+4)(m﹣2)(m+1)2.95.【解答】解:原式=(x2+2x﹣3)(x2+2x+1),=(x+3)(x﹣1)(x+1)2;96.【解答】解:原式=(2x﹣1)(x+).97.【解答】解:3x2﹣12x+9=3(x2﹣4x+3)=3(x﹣3)(x﹣1).98.【解答】解:(x﹣4)(x+7)+18=x2+3x﹣10=(x﹣2)(x+5).99.【解答】解:原式=(5ab﹣2)(ab+5).100.【解答】解:(x+y)2﹣(4x+4y)﹣32=(x+y)2﹣4(x+y)﹣32=(x+y+4)(x+y﹣8).。
初二因式分解经典题35题
初二因式分解经典题35题一、提取公因式法相关(10题)1. 分解因式:6ab + 3ac- 你看这里面每一项都有个3a呢。
就像大家都有个共同的小秘密一样。
那我们就把3a提出来呀,提出来之后就变成3a(2b + c)啦。
2. 分解因式:15x^2y−5xy^2- 哟,这里面5xy是公共的部分哦。
把5xy提出来,就剩下5xy(3x - y)啦,是不是很简单呢?3. 分解因式:4m^3n - 16m^2n^2+8mn^3- 仔细瞧瞧,8mn是都能提出来的。
提出来后就变成8mn(m^2 - 2mn + n^2)啦。
4. 分解因式:−3x^2y+6xy^2−9xy- 这里面−3xy是公因式哦。
把它提出来,就得到−3xy(x - 2y+3)啦。
5. 分解因式:2a(x - y)-3b(x - y)- 看呀,(x - y)是公共的部分呢。
提出来就变成(x - y)(2a - 3b)啦。
6. 分解因式:a(x - y)^2 - b(y - x)^2- 注意哦,(y - x)^2=(x - y)^2。
那这里面(x - y)^2是公因式,提出来就得到(x - y)^2(a - b)啦。
7. 分解因式:x(x - y)+y(y - x)- 先把y(y - x)变成-y(x - y),这样公因式就是(x - y)啦,提出来就是(x - y)(x - y)=(x - y)^2。
8. 分解因式:3a(a - b)+b(b - a)- 把b(b - a)变成-b(a - b),公因式(a - b)提出来,就得到(a - b)(3a - b)啦。
9. 分解因式:2x(x + y)-3(x + y)^2- 公因式是(x + y),提出来就变成(x + y)[2x-3(x + y)]=(x + y)(2x - 3x - 3y)=(x + y)(-x - 3y)=-(x + y)(x + 3y)。
10. 分解因式:5(x - y)^3+10(y - x)^2- 把(y - x)^2变成(x - y)^2,公因式5(x - y)^2提出来,得到5(x - y)^2[(x -y)+2]=5(x - y)^2(x - y + 2)。
七年级数学上学期第二次周清试题(含解析) 新人教版-新人教版初中七年级全册数学试题
某某省某某市藁城市尚西中学2015-2016学年七年级数学上学期第二次周清试题1.若a﹣1=3,则1﹣a的倒数为.2.若|x|=3,|y|=5,且x>y,则x+y=.3.与的差的相反数是,比小的数的绝对值是.4.267﹣=276;(2)﹣(﹣)=2.5.规定一种新运算“*”,两数a、b通过“*”运算得﹣(a﹣5)﹣b+|b|,则(﹣3)*(﹣2)得.6.两个整数的积为10,它们的和等于.7.一个数除以﹣2的商等于,这个数是.8.已知|x|=2013,|y|=1,则xy的值是.9.如果ab<0,那么下列判断正确的是()A.a<0,b<0 B.a>0,b>0C.a≥0,b≤0D.a<0,b>0或a>0,b<010.若三个不等的有理数的代数和为0,则下面结论正确的是()A.3个加数全为0 B.最少有2个加数是负数C.至少有1个加数是负数 D.最少有2个加数是正数11.如果有理数m,n满足|m|﹣n=0,那么m,n的关系是()A.互为相反数B.m=±n且n≥0C.相等且都不小于0 D.m是n的绝对值12.﹣5的绝对值与5的相反数的差是()A.O B.1O C.﹣10 D.2013.﹣2﹣3+5读法正确的是()A.负2,负3,正5的和B.负2,减3,正5的和C.负2,3,正5的和D.以上都不对14.甲、已、丙三地的海拔高度分别为20米,﹣15米和﹣10米,那么最高的地方比最低的地方高()A.10米B.15米C.35米D.5米15.某市2015年元旦的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A.﹣10℃B.﹣6℃C.6℃D.10℃16.一个有理数与其相反数的积()A.符号必定为正 B.符号必定为负 C.一定不大于零 D.一定不小于零17.若一个数的倒数等于它本身,这样的数有()A.3个B.2个C.1个D.0个18.在a,b,c,d,e中有3个负数,则abcde的积()A.大于0 B.小于0 C.大于或等于0 D.小于或等于019.已知abc<0,a+b+c>0,那么a,b,c中的负数个数是()A.0 B.l C.2 D.321.如果a+b>0,ab<0那么()A.a,b异号,且|a|>|b|B.a,b异号,且a>bC.a,b异号,其中正数的绝对值大D.a>0>b或a<0<b22.若x=(﹣2)×3,则x的倒数是()A.﹣B.C.﹣D.23.计算(﹣1)×(﹣5)×(﹣)的结果是()A.﹣1 B.1 C.﹣D.﹣2524.计算:(1)(﹣)﹣(﹣)(2)(﹣1)﹣(+1)(3)(4)(﹣10)×(﹣)×(﹣0.1)×6(5).四、综合应用25.已知m是8的相反数,n比m的相反数小2,求n比m大多少?26.某冷冻厂一个冷库的室温是2℃,现在一批食品需在﹣12℃冷藏,如果每小时降温2℃,你知道几个小时能降到所要求的温度吗?2015-2016学年某某省某某市藁城市尚西中学七年级(上)第二次周清数学试卷参考答案与试题解析1.若a﹣1=3,则1﹣a的倒数为﹣.【考点】倒数.【分析】直接利用互为倒数的定义求出即可.【解答】解:∵a﹣1=3,∴1﹣a=﹣3,∴1﹣a的倒数为:﹣.故答案为:﹣.【点评】此题主要考查了倒数的定义,正确把握倒数的定义是解题关键.2.若|x|=3,|y|=5,且x>y,则x+y= ﹣2或﹣8 .【考点】有理数的加法;绝对值.【专题】计算题.【分析】根据题意,利用绝对值的代数意义化简求出x与y的值,即可求出x+y的值.【解答】解:∵|x|=3,|y|=5,且x>y,∴x=3,y=﹣5;x=﹣3,y=﹣5,则x+y=﹣2或﹣8,故答案为:﹣2或﹣8【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.3.与的差的相反数是,比小的数的绝对值是.【考点】绝对值;相反数;有理数的减法.【分析】根据题意表示出与的差,进而得出相反数,首先得出比小的数,进而得出其绝对值.【解答】解:与的差的相反数是:﹣(﹣)=,比小的数的绝对值是:﹣[﹣+(﹣)]=.【点评】此题主要考查了相反数和绝对值,正确把握定义是解题关键.4.267﹣(﹣9)=276;(2)1﹣(﹣)=2.【考点】有理数的减法.【分析】(1)根据减数等于被减数减去差,列出算式计算即可;(2)根据被减数等于差加减数,列出算式计算即可.【解答】解:(1)根据题意得:267﹣276=﹣9;故答案为:﹣9;(2)根据题意得:2+(﹣)=1.故答案为:1.【点评】此题考查了有理数的减法,掌握被减数、减数、差之间的关系是本题的关键.5.规定一种新运算“*”,两数a、b通过“*”运算得﹣(a﹣5)﹣b+|b|,则(﹣3)*(﹣2)得12 .【考点】有理数的加减混合运算.【专题】新定义.【分析】根据所得公式把a=﹣3,b=﹣2代入﹣(a﹣5)﹣b+|b|进行计算即可.【解答】解:(﹣3)*(﹣2)=﹣(﹣3﹣5)﹣(﹣2)+|﹣2|=8+2+2=12.故答案为:12.【点评】此题主要考查了有理数的加减混合运算,关键是掌握有理数加减混合运算的方法:有理数加减法统一成加法,再根据加法法则进行计算.【考点】有理数的乘法;有理数的加法.【专题】计算题.【分析】根据两个整数之积为10,确定出两个整数,求出之和即可.【解答】解:两个整数的积为10,即两个整数为1,10;﹣1,﹣10;2,5;﹣2,﹣5,则它们的和为11,﹣11,7,﹣7,故答案为:11,﹣11,7,﹣7【点评】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.7.一个数除以﹣2的商等于,这个数是﹣.【考点】有理数的除法.【分析】根据被除数等于除数乘以商,列出算式再进行计算即可.【解答】解:根据题意得:2×(﹣2)=﹣.故答案为:﹣.【点评】此题考查了有理数的除法,关键是掌握被除数、除数、商之间的关系.8.已知|x|=2013,|y|=1,则xy的值是±2013.【考点】有理数的乘法;绝对值.【分析】首先根据绝对值得性质可得x、y的值,再根据有理数的乘法法则可得答案.【解答】解:∵|x|=2013,|y|=1,∴x=±2013,y=±1,∴①当x=2013,y=1时,xy=2013,②当x=﹣2013,y=﹣1时,xy=2013,③当x=2013,y=﹣1时,xy=﹣2013,④当x=﹣2013,y=1时,xy=﹣2013,故答案为:±2013.【点评】此题主要考查了有理数的乘法,以及绝对值,关键是掌握两数相乘,同号得正,异号得负,并把9.如果ab<0,那么下列判断正确的是()A.a<0,b<0 B.a>0,b>0C.a≥0,b≤0D.a<0,b>0或a>0,b<0【考点】有理数的乘法.【分析】根据有理数的乘法符号法则作答.【解答】解:∵ab<0,∴a与b异号,∴a<0,b>0或a>0,b<0.故选D.【点评】本题主要考查了有理数的乘法符号法则:两数相乘,同号得正,异号得负.10.若三个不等的有理数的代数和为0,则下面结论正确的是()A.3个加数全为0 B.最少有2个加数是负数C.至少有1个加数是负数 D.最少有2个加数是正数【考点】有理数的加法.【分析】要使三个不等的有理数的代数和为0,必须保证这三个加数中既有正数也有负数;这三个加数中可能是一个负数和两个正数,也可能是一个正数和两个负数.【解答】解:要使三个不等的有理数的代数和为0,至少有1个加数是负数.故选C.【点评】本题考查的是对有理数加法法则的理解.注意认真审题,找出规律,是解决此类问题的关键所在.11.如果有理数m,n满足|m|﹣n=0,那么m,n的关系是()A.互为相反数B.m=±n且n≥0C.相等且都不小于0 D.m是n的绝对值【考点】有理数的减法.【专题】计算题.【解答】解:根据题意得:|m|=n,则m=±n且n≥0.故选B【点评】此题考查了有理数的减法,以及绝对值的代数意义,熟练掌握绝对值的代数意义是解本题的关键.12.﹣5的绝对值与5的相反数的差是()A.O B.1O C.﹣10 D.20【考点】有理数的减法;相反数;绝对值.【分析】根据有理数的加减运算法则首先去括号,进而计算得出即可.【解答】解:|﹣5|﹣(﹣5)=5+5=10.故选:B.【点评】此题主要考查了有理数的加减运算法则应用,熟练去括号是解题关键.13.﹣2﹣3+5读法正确的是()A.负2,负3,正5的和B.负2,减3,正5的和C.负2,3,正5的和D.以上都不对【考点】有理数的加减混合运算.【专题】计算题.【分析】原式利用运算法则变形,即可得到结果.【解答】解:﹣2﹣3+5=(﹣2)+(﹣3)+5,读作:负2,负3,正5的和.故选A【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.14.甲、已、丙三地的海拔高度分别为20米,﹣15米和﹣10米,那么最高的地方比最低的地方高()A.10米B.15米C.35米D.5米【考点】有理数的减法.【分析】根据正、负数的意义列出算式,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:20﹣(﹣15)=20+15=35.【点评】本题考查了有理数的减法,正、负数的意义,熟记运算法则是解题的关键.15.某市2015年元旦的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A.﹣10℃B.﹣6℃C.6℃D.10℃【考点】有理数的减法.【分析】用最高气温减去最低气温,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8),=2+8,=10℃.故选D.【点评】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.16.一个有理数与其相反数的积()A.符号必定为正 B.符号必定为负 C.一定不大于零 D.一定不小于零【考点】相反数;有理数的乘法.【分析】根据相反数的定义及有理数的乘法法则解答.【解答】解:一个正数的相反数是负数,它们的积为负数;0的相反数是0,它们的积是0;一个负数的相反数是正数,它们的积为负数.故选C.【点评】解答此题要明确:正数的相反数是负数,负数的相反数是正数,0的相反数是0.两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同零相乘,都得0.17.若一个数的倒数等于它本身,这样的数有()A.3个B.2个C.1个D.0个【考点】倒数.【分析】直接利用倒数的定义得出符合题意的答案.【解答】解:若一个数的倒数等于它本身,这样的数有:﹣1,1,故共有2个.【点评】此题主要考查了倒数,正确把握倒数的定义是解题关键.18.在a,b,c,d,e中有3个负数,则abcde的积()A.大于0 B.小于0 C.大于或等于0 D.小于或等于0【考点】有理数的乘法.【分析】根据有理数的乘法法则:如果a,b,c,d,e中有一个数为0则积为零,没有零,有3个负数则积为负.【解答】解:∵a,b,c,d,e中有3个负数,∴abcde的积小于或等于0,故选:D.【点评】此题主要考查了有理数的乘法,关键是掌握多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0.19.已知abc<0,a+b+c>0,那么a,b,c中的负数个数是()A.0 B.l C.2 D.3【考点】有理数的乘法;有理数的加法.【分析】先根据abc<0,结合有理数乘法法则,易知a、b、c中有1个负数或3个负数,而a+b+c>0,于是可得a、b、c中必有1个负数.【解答】解:∵abc<0,∴a、b、c中有1个负数或3个负数,∵a+b+c>0,故a、b、c中必有1个负数.故选:B.【点评】此题考查了有理数的乘法、有理数的加法法则.解题的关键是分情况讨论问题.21.如果a+b>0,ab<0那么()A.a,b异号,且|a|>|b|C.a,b异号,其中正数的绝对值大D.a>0>b或a<0<b【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法与乘法法则,由a+b>0,ab<0可判断出正确答案.【解答】解:∵ab<0,∴a、b异号,又∵a+b>0,∴正数的绝对值大.故选C.【点评】本题考查有理数的加法与乘法法则.注意两数积小于零说明这两个数异号.22.若x=(﹣2)×3,则x的倒数是()A.﹣B.C.﹣D.【考点】倒数;有理数的乘法.【分析】直接利用有理数乘法得出x的值,再利用倒数的定义得出答案.【解答】解:∵x=(﹣2)×3=﹣6,∴x的倒数是:﹣.故选:A.【点评】此题主要考查了倒数以及有理数乘法的定义,正确把握定义是解题关键.23.计算(﹣1)×(﹣5)×(﹣)的结果是()A.﹣1 B.1 C.﹣D.﹣25【考点】有理数的乘法.【专题】计算题.【分析】先根据负因数个数有3个,得到结果为负,再利用乘法法则计算即可得到结果.【解答】姐:原式=﹣1×5×=﹣1.故选A【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.24.计算:(1)(﹣)﹣(﹣)(2)(﹣1)﹣(+1)(3)(4)(﹣10)×(﹣)×(﹣0.1)×6(5).【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式先计算乘法运算,再计算加减运算即可得到结果;(4)原式利用乘法法则计算即可得到结果;(5)原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:(1)原式=﹣+=;(2)原式=﹣1﹣1=﹣2;(3)原式=24﹣2=22;(4)原式=﹣2;(5)原式=8﹣6=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、综合应用25.已知m是8的相反数,n比m的相反数小2,求n比m大多少?【考点】有理数的减法;相反数.【分析】首先根据相反数定义可得m的值,然后再根据题意确定n的值,进而可得n﹣m.【解答】解:∵m是8的相反数,∴m=﹣8,∵n比m的相反数小2,∴n=﹣8﹣2=﹣10,∴n﹣m=﹣10﹣(﹣8)=﹣2,故n比m大﹣2.【点评】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数;只有符号不同的两个数叫做互为相反数.26.某冷冻厂一个冷库的室温是2℃,现在一批食品需在﹣12℃冷藏,如果每小时降温2℃,你知道几个小时能降到所要求的温度吗?【考点】有理数的混合运算.【专题】应用题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:[2﹣(﹣12)]÷2=14÷2=7(小时),则7个小时能降到所要求的温度.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。
2019-2020年八年级数学下册第四章-因式分解周周清试题
2019-2020年八年级数学下册第四章-因式分解周周清试题,一、选择题1.把多项式(a﹣2)+m(2﹣a)分解因式等于().A.(a﹣2)(+m), B.(a﹣2)(﹣m)C.m(a﹣2)(m﹣1), D.m(a﹣2)(m+1)2.下列四个等式从左到右的变形,是多项式因式分解的是().A.B.C.D.3.如果二次三项式可分解为,那么a+b的值为( )A.-2, B.-1, C.1, D.24.若、、为的三边长,且满足,,则的形状是()A.直角三角形, B.等腰三角形C.等腰直角三角形, D.等边三角形5.下列多项式中能用平方差公式分解因式的是().A., B.﹣20mnC., D.+96.把多项式分解因式,结果正确的是()A., B.C., D.7.多项式可以因式分解成A., B.C., D.8.多项式(3a+2b)2-(a-b)2分解因式的结果是( )[A.(4a+b) (2a+b), B.(4a+b) (2a+3b)C.(2a+3b)2 , D.(2a+b)29.多项式8x m y n-1-12x3m y n的公因式是()A.x m y n , B.x m y n-1 , C.4x m y n , D.4x m y n-110.把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9), B.x(x﹣3)2, C.x(x+3)2, D.x(x+3)(x﹣3)11.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美, B.宜晶游, C.爱我宜昌, D.美我宜昌12.因式分解4+a2﹣4a正确的是()A.4(1﹣a)+a2, B.(2﹣a)2, C.(2+a)(2﹣a), D.(2+a)213.分解因式结果正确的是()A., B., C., D.14.若x2﹣3y﹣5=0,则6y﹣2x2﹣6的值为()A.4, B.﹣4, C.16, D.﹣1615.多项式5mx3+25mx2-10mxy各项的公因式是()A.5mx2, B.5mxy, C.mx, D.5mx16.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x3﹣xy2,取x=20,y=10,用上述方法产生的密码不可能是()A.201010, B.203010, C.301020, D.20103017.三角形的三边长分别为a、b、c,且满足等式:(a+b)2﹣c2=2ab,则此三角形是()A.锐角三角形, B.直角三角形, C.钝角三角形, D.等腰三角形18.已知a+13=b+9=c+3,则a2+b2+c2﹣ab﹣cb﹣ac=()A.259, B.179.5, C.76, D.15219.对于任何整数,多项式都能()A.被8整除B.被整除C.被-1整除D.被(2-1)整除20.如果可运用完全平方公式进行因式分解,则k的值是()A.8, B.16, C.32, D.64, 二、填空题21.因式分解:-2x2y+12xy-16y=__________________.22.若a2+b2﹣2a+4b+5=0,则2a+b=______.23.阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1).(2).试用上述方法分解因式 .24.已知58-1能被20--30之间的两个整数整除,则这两个整数是。
八年级数学下册第四章因式分解周周清(检测内容41-43)(新版)北师大版
得分________ 卷后分________ 评价________一、选择题(每小题4分,共32分)1.下列等式从左到右的变形,属于因式分解的是(D)A .a (x -y )=ax -ayB .x 2+2x +1=x (x +2)+1C .(x +1)(x +3)=x 2+4x +3D .x 3-x =x (x +1)(x -1)2.多项式-6x 2y +18x 2y 3m +24xy 2m 的公因式是(D)A .2xyB .-6x 2yC .-6xy 2D .-6xy3.下列多项式可以用平方差公式分解的是(C)A .x 2-yB .-x 2-y 2C .(-m )2-(-n )2D .9y 2-4y4.下列多项式可以用完全平方公式分解的是(D)①x 2+4x +4;②4x 2-4x -1;③m 2+m +14;④1+16a 2. A .①② B .①②③C .①②④D .①③5.下列因式分解正确的是(B)A .x 2-xy +x =x (x -y )B .a 3-2a 2b +ab 2=a (a -b )2C .x 3-2x +4=(x -1)2+3D .ax 2-9=a (x +3)(x -3)6.将y 4-81因式分解,正确的结果是(C)A .(y -3)4B .(y 2+9)(y 2-9)C .(y 2+9)(y +3)(y -3)D .(y +3)2(y -3)27.若a 2+b 2+2a -6b +10=0,则a +b 的值为(C)A .4B .-2C .2D .-48.不论x ,y 为何有理数,多项式x 2+y 2-4x -2y +8的值总是(A)A .正数B .零C .负数D .非负数二、填空题(每小题4分,共16分)9.把多项式x 3-25x 分解因式的结果是__x (x +5)(x -5)__.10.在一个边长为12.75 cm 的正方形纸板内,割去一个边长为7.25 cm 的正方形,剩下部分的面积等于__110__cm 2.11.要使多项式4x 4+1加上一个单项式后,成为一个整式的平方,则添加的多项式可以是__±4x 2或4x 8__.12.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为__a 2-b 2=(a +b )(a -b )__.三、解答题(共52分)13.(12分)因式分解:(1)-3x 2+6xy -3y 2;解:原式=-3(x -y )2(2)xy 2-2xy +2y -4;解:原式=(y -2)(xy +2)(3)(m 2n 2+4)2-16m 2n 2;解:原式=(mn +2)2(mn -2)2(4)a 2+2bc -b 2-c 2.解:原式=(a +b -c )(a -b +c )14.(8分)已知x -2y =3,x 2-2xy +4y 2=11,求x 2y -2xy 2的值.解:由题意可得x -2y =3,xy =1,则原式=xy (x -2y )=315.(10分)已知a ,b ,c 是△ABC 的三边,试确定多项式(a 2+b 2-c 2)2-4a 2b 2的符号.解:原式=(a 2+b 2-c 2+2ab )(a 2+b 2-c 2-2ab )=[(a +b )2-c 2][(a -b )2-c 2]=(a +b+c )(a +b -c )(a -b +c )(a -b -c ),∵a ,b ,c 是△ABC 的三边,∴a +b +c >0,a +b -c >0,a -b +c >0,a -b -c <0,∴(a 2+b 2-c 2)2-4a 2b 2<016.(10分)数学知识奥妙无穷,小明观察下面的算式:72-12=48=12×4;82-22=60=12×5;92-32=72=12×6;102-42=84=12×7;……从中惊奇地发现:这些算式均为12的倍数,但却不知其中的原因,他非常纳闷,请你利用所学的知识给小明一个圆满的解释.解:由规律可设第n 个式子的左边可表示为(n +6)2-n 2=(n +6+n )(n +6-n )=2(n +3)·6=12(n +3),∵n 为整数,∴(n +6)2-n 2是12的倍数17.(12分)对于多项式x 3-5x 2+x +10,我们把x =2代入此多项式,发现x =2能使该多项式的值为0,由此可以断定多项式x 3-5x 2+x +10中有因式x -2,于是我们可以得到x 3-5x 2+x +10=(x -2)(x 2+mx +n ),分别求出m ,n 后再代入x 3-5x 2+x +10=(x -2)(x 2+mx +n ),就可以把多项式x 3-5x 2+x +10因式分解.以上这种因式分解的方法叫“试根法”.(1)求式子中m ,n 的值;(2)用“试根法”分解多项式x 3+5x 2+8x +4.解:(1)分别将x =0,x =1代入x 3-5x 2+x +10=(x -2)(x 2+mx +n ),得⎩⎪⎨⎪⎧10=-2n ,7=-(1+m +n ),解得⎩⎪⎨⎪⎧m =-3,n =-5 (2)把x =-1代入x 3+5x 2+8x +4,得其值为0,则多项式可分解为(x +1)(x 2+ax +b )的形式.分别将x =0,x =1代入x 3+5x 2+8x +4=(x +1)(x 2+ax +b ),得⎩⎪⎨⎪⎧4=b ,18=2(1+a +b ),解得⎩⎪⎨⎪⎧a =4,b =4,∴x3+5x2+8x+4=(x+1)(x2+4x+4)=(x+1)(x+2)2。
北师大八年级数学下册第四章:因式分解周周清试题(无答案) (2)
初中数学试卷八年级数学下册第四章:因式分解周周清试题(无答案),一、选择题1.把多项式(a﹣2)+m(2﹣a)分解因式等于().A.(a﹣2)(+m), B.(a﹣2)(﹣m)C.m(a﹣2)(m﹣1), D.m(a﹣2)(m+1)2.下列四个等式从左到右的变形,是多项式因式分解的是().A.B.C.D.3.如果二次三项式可分解为,那么a+b的值为( ) A.-2, B.-1, C.1, D.24.若、、为的三边长,且满足,,则的形状是()A.直角三角形, B.等腰三角形C.等腰直角三角形, D.等边三角形5.下列多项式中能用平方差公式分解因式的是().A., B.﹣20mnC., D.+96.把多项式分解因式,结果正确的是()A., B.C., D.7.多项式可以因式分解成A., B.C., D.8.多项式 (3a+2b)2-(a-b)2分解因式的结果是( )[A.(4a+b) (2a+b), B.(4a+b) (2a+3b)C.(2a+3b)2 , D.(2a+b)29.多项式8x m y n-1-12x3m y n的公因式是()A.x m y n , B.x m y n-1 , C.4x m y n , D.4x m y n-110.把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9), B.x(x﹣3)2, C.x(x+3)2, D.x(x+3)(x﹣3)11.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美, B.宜晶游, C.爱我宜昌, D.美我宜昌12.因式分解4+a2﹣4a正确的是()A.4(1﹣a)+a2, B.(2﹣a)2, C.(2+a)(2﹣a), D.(2+a)213.分解因式结果正确的是()A., B., C., D.14.若x2﹣3y﹣5=0,则6y﹣2x2﹣6的值为()A.4, B.﹣4, C.16, D.﹣1615.多项式5mx3+25mx2-10mxy各项的公因式是()A.5mx2, B.5mxy, C.mx, D.5mx16.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x3﹣xy2,取x=20,y=10,用上述方法产生的密码不可能是()A.201010, B.203010, C.301020, D.20103017.三角形的三边长分别为a、b、c,且满足等式:(a+b)2﹣c2=2ab,则此三角形是()A.锐角三角形, B.直角三角形, C.钝角三角形, D.等腰三角形18.已知a+13=b+9=c+3,则a2+b2+c2﹣ab﹣cb﹣ac=()A.259, B.179.5, C.76, D.15219.对于任何整数,多项式都能()A.被8整除B.被整除C.被-1整除D.被(2-1)整除20.如果可运用完全平方公式进行因式分解,则k的值是()A.8, B.16, C.32, D.64, 二、填空题21.因式分解:-2x2y+12xy-16y=__________________.22.若a2+b2﹣2a+4b+5=0,则2a+b=______.23.阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1).(2).试用上述方法分解因式.24.已知58-1能被20--30之间的两个整数整除,则这两个整数是。
北师大八年级数学下册第四章:因式分解周周清试题(无答案)
初中数学试卷八年级数学下册第四章:因式分解周周清试题(无答案)知识点因式分解1.(2015·深圳)下列各式从左到右的变形为因式分解的是( )A.m2-m-6=(m+2)(m-3)B.(m+2)(m-3)=m2-m-6C.x2+8x-9=(x+3)(x-3)+8xD.18x3y2=3x3y2·62.下列各式因式分解的结果为(a-2)(b+3)的是( ) A.-6+2b-3a+ab B.-6-2b+3a+abC.ab-3b+2a-6 D.ab-2a+3b-63.已知(2x+1)(3x-2)=6x2-x-2,则分解因式6x2-x-2的结果为_____________________.4.观察填空:各块图形之和为a2+3ab+2b2,因式分解a2+3ab+2b2=____________________.5.下列各式从左到右的变形为因式分解的是________.①(1-2x)(1+2x)=1-4x2;②9-6x+x2=(x-3)2;③2x2-6xy+2=2x(x-3y)+2;④ax-ay+bx+by=a(x-y)+b(x+y);⑤-x2y-xy-xy2=-xy(x+1+y).6.如图1,边长为a的大正方形中有一个边长为b的小正方形,若将图1中的阴影部分拼成一个长方形,如图2,比较图1和图2中的阴影部分的面积,则你能得到的一个多项式的因式分解应为7.设x2+3x+a=(x+1)(x+2),则a的值为( )A.1 B.2 C.3 D.48.一个多项式因式分解的结果是(b3+2)(2-b3),那么这个多项式是( )A.b6-4 B.4-b6C.b6+4 D.-b6-49.通过计算说明:(1)1993-199能被198整除;(2)32016-4×32015+10×32014能被7整除.10.先仔细阅读下面的例题,再解答问题.例题:已知二次三项式x 2-4x +m 有一个因式是x +3,求另一个因式以及m 的值.解:设另一个因式为x +n ,得x 2-4x +m =(x +3)(x +n), 则x 2-4x +m =x 2+(n +3)x +3n.∴⎩⎨⎧n +3=-4,m =3n ,解得⎩⎨⎧n =-7,m =-21.∴另一个因式为x -7,m 的值为-21.仿照以上方法解答下面的问题:已知二次三项式2x 2+3x -k 有一个因式是2x -5,求另一个因式以及k 的值.知识点❶公因式1.6a2b与8ab2的公因式是( )A.a2b2B.6ab C.2ab D.24a2b22.下列各个多项式的各项中,有公因式的是( ) A.x2-9y2B.x2-3x+5C.a3+b3D.a3b-ab2+ab3.多项式8x2y2-14x2y+4xy3各项的公因式是( ) A.8xy B.2xy C.4xy D.2y4.多项式9x3y-36xy3+3xy提取公因式____ 后,另一个因式是_____________________________.知识点❷提公因式法5.(2016·宁波)分解因式:x2-xy=______________.6.(2016·广州)分解因式:2a2+ab=_____________.7.下列多项式中,能用提取公因式法分解因式的是( ) A.x2-y2B.x2+2xC.x2+y2D.x2-xy+y28.若多项式-6mn+18mnx+24mny的一个因式是-6mn,那么另一个因式是( )A.-1-3x-4y B.1-3x-4yC.-1-3x+4y D.1+3x-4y 9.下列各式中因式分解错误的是( ) A.8xyz-6x2y2=2xy(4z-3xy)B.a2b2-14=14ab2(4a-b)C.-ab2-a2b+abc=-ab(b+a-c)D.3x2-6xy+x=x(3x-6y+1)10.下列多项式的各项中,公因式是5a2b的是( ) A.15a2b-20a2b2B.30a2b3-15ab4-10a3b2C.10a2b2-20a2b3+50a4b5D.5a2b4-10a3b3+15a4b211.(2015·崇州)下列因式分解正确的是( )A.2a2-3ab+a=a(2a-3b)B.2πR-2πr=π(2R-2r)C.-x2-2x=-x(x-2)D.5x4+25x2=5x2(x2+5)12.下列各式添括号正确的是( )A.-x+y=-(y-x) B.x-y=-(x+y)C.10-m=5(2-m) D.3-2a=-(2a-3) 13.(2016·自贡)把多项式a2-4a分解因式,结果正确的是( )A.a(a-4) B.(a+2)(a-2)C.a(a+2)(a-2) D.(a-2)2-414.计算(-2)2015+(-2)2016的结果是( ) A.22015B.22016C.(-2)2015D.-215.如果多项式-15abc+15ab2-a2bc的一个因式是-15ab,那么另一个因式是________________.16.如果边长为a,b的长方形,它的周长为14,面积为10,则a2b+ab2的值为____.17.把下列各式因式分解.(1)3a2b3c3+6ab2c2-9a2b2;(2)-6x2y2+12x2y3+6x3y2;(3)6x2y-15y2x+30x2y2;(4)-3x2+6x y-3x.18.利用因式分解进行计算:(1)πR12+πR22+πR32,其中R1=6,R2=8,R3=10,π=3.14;(2)ab-ac,其中a=513,b=21.9,c=47.9.19.利用因式分解证明817-279-913必能被45整除.。
八年级数学下册第四章因式分解周周清试题
因式分解〔A B 〕制卷人:打自企; 成别使; 而都那。
审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。
姓名班级 得分(5) 2ax 2+4axy+2a=___________ . (6) b ab b a 952+-_________________.(7) a(a+b)-b(a+b)=_________________.(8) x x x 64223-+-=__________________. 二.以下由左边到有右边的变形,___________________是分解因式〔填序号〕。
〔此题5分〕 (1)(a+3)(a-3)=a 2-9; (2) m 2-4=(m+2)(m-2); (3) a 2–b 2+1=(a+b)(a-b)+1 (4) 10x 2-5x=5x(2x-1); (5) y 2-4xy+4=(y-2); (6) t 2-16+3t=(t+4)(t-4)+3t三、〔如图〕,根据两个图形中阴影局部的面积相等,可以验证〔 〕〔此题5分〕 A 、222()2a b a ab b +=++ B 、222()2a b a ab b -=-+C 、22()()a b a b a b -=+- D 、22(2)()2a b a b a ab b +-=+-四、将以下各式分解因式:〔每一小题10分〕〔1〕5y 3+20y (2)a(x -y) -b(y -x) +c(y -x) 〔6〕ac ab a -+2-(4) 22)()(x y y y x x --- 2)()(m n m n m mn ---aa图2图1八年级周周清因式分解〔A B 〕姓名 班级 得分一.直接写出以下各式分解因式的结果〔每一小题5分〕〔1〕ma+mb-mc=______________. (2) 3x 2-3x=________________________. (3) 2mR+2mr =________________. (4) ax+ay=_____________.(5) 2ax 2+4axy+2a=___________ . (6) b ab b a 952+-_________________. (7) a(a+b)-b(a+b)=_________________.(8) x x x 64223-+-=__________________. 二.以下由左边到有右边的变形,___________________是分解因式〔填序号〕。