太和县高中2018-2019学年高三上学期11月月考数学试卷含答案
太和区二中2018-2019学年高三上学期11月月考数学试卷含答案
太和区二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数f (x )=Asin (ωx+φ)(A >0,ω>0,)的部分图象如图所示,则函数y=f (x )对应的解析式为( )A. B. C. D.2. 如果a >b ,那么下列不等式中正确的是( ) A .B .|a|>|b|C .a 2>b 2D .a 3>b 33. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是( )A .2B .3C .7D .94. 函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 5. 已知函数y=2sinx 的定义域为[a ,b],值域为[﹣2,1],则b ﹣a 的值不可能是( ) A.B .πC .2πD.6. 函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )A. B. C.D.7. 已知角θ的终边经过点P (4,m ),且sin θ=,则m 等于( ) A .﹣3 B .3 C.D .±3班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 若定义在R 上的函数f (x )满足f (0)=﹣1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( ) A. B.C.D.9. 已知F 1、F 2分别是双曲线﹣=1(a >0,b >0)的左、右焦点,过点F 2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段F 1F 2为直径的圆外,则双曲线离心率的取值范围是( ) A .(1,)B.(,+∞) C.(,2)D .(2,+∞)10.在△ABC 中,关于x 的方程(1+x 2)sinA+2xsinB+(1﹣x 2)sinC=0有两个不等的实根,则A 为( ) A .锐角 B .直角 C .钝角 D .不存在11.对一切实数x ,不等式x 2+a|x|+1≥0恒成立,则实数a 的取值范围是( ) A .(﹣∞,﹣2) B . D .上是减函数,那么b+c ( )A.有最大值 B.有最大值﹣C.有最小值D.有最小值﹣12.已知椭圆,长轴在y 轴上,若焦距为4,则m 等于( ) A .4 B .5C .7D .8二、填空题13.已知实数x ,y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,若目标函数ay x z +=2仅在点)4,3(取得最小值,则a 的取值范围是 .14.已知()212811f x x x -=-+,则函数()f x 的解析式为_________.15.若不等式组表示的平面区域是一个锐角三角形,则k 的取值范围是 .16.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为 .17.已知点F是抛物线y2=4x的焦点,M,N是该抛物线上两点,|MF|+|NF|=6,M,N,F三点不共线,则△MNF 的重心到准线距离为.18.设x,y满足的约束条件,则z=x+2y的最大值为.三、解答题19.△ABC中,角A,B,C所对的边之长依次为a,b,c,且cosA=,5(a2+b2﹣c2)=3ab.(Ⅰ)求cos2C和角B的值;(Ⅱ)若a﹣c=﹣1,求△ABC的面积.20.2008年奥运会在中国举行,某商场预计2008年从1日起前x个月,顾客对某种奥运商品的需求总量p(x)件与月份x的近似关系是且x≤12),该商品的进价q(x)元与月份x的近似关系是q(x)=150+2x,(x∈N*且x≤12).(1)写出今年第x月的需求量f(x)件与月份x的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?21.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对问题的概率分别为.(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望;(Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.22.(本小题满分10分)选修4-1:几何证明选讲选修41-:几何证明选讲 如图,,,A B C 为O 上的三个点,AD 是BAC ∠的平分线,交O 于 点D ,过B 作O 的切线交AD 的延长线于点E .(Ⅰ)证明:BD 平分EBC ∠; (Ⅱ)证明:AE DC AB BE ⨯=⨯.23.设函数f (x )=lg (a x ﹣b x ),且f (1)=lg2,f (2)=lg12(1)求a ,b 的值.(2)当x ∈[1,2]时,求f (x )的最大值.(3)m 为何值时,函数g (x )=a x 的图象与h (x )=b x﹣m 的图象恒有两个交点.24.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC ′,证明:BC ′∥面EFG .太和区二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A【解析】解:由函数的图象可得A=1, =•=﹣,解得ω=2,再把点(,1)代入函数的解析式可得 sin (2×+φ)=1,结合,可得φ=,故有,故选:A .2. 【答案】D【解析】解:若a >0>b ,则,故A 错误;若a >0>b 且a ,b 互为相反数,则|a|=|b|,故B 错误; 若a >0>b 且a ,b 互为相反数,则a 2>b 2,故C 错误; 函数y=x 3在R 上为增函数,若a >b ,则a 3>b 3,故D 正确; 故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.3. 【答案】C【解析】解:∵函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f (x )=sin ωx+cos ωx=2sin (ωx+).再根据f ()=2sin (+)=﹣2,可得+=2k π+,k ∈Z ,∴ω=12k+7,∴k=0时,ω=7,则ω的可能值为7, 故选:C .【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.4. 【答案】D 【解析】因为1()f x x a x'=++,直线的03=-y x 的斜率为3,由题意知方程13x a x ++=(0x >)有解,因为12x x+?,所以1a £,故选D . 5. 【答案】C【解析】解:函数y=2sinx 在R 上有﹣2≤y ≤2 函数的周期T=2π值域[﹣2,1]含最小值不含最大值,故定义域[a,b]小于一个周期b﹣a<2π故选C【点评】本题考查了正弦函数的图象及利用图象求函数的值域,解题的关键是熟悉三角函数y=2sinx的值域[﹣2,2],而在区间[a,b]上的值域[﹣2,1],可得函数的定义域与周期的关系,从而可求结果.6.【答案】B【解析】解:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.7.【答案】B【解析】解:角θ的终边经过点P(4,m),且sinθ=,可得,(m>0)解得m=3.故选:B.【点评】本题考查任意角的三角函数的定义的应用,基本知识的考查.8.【答案】C【解析】解;∵f′(x)=f′(x)>k>1,∴>k>1,即>k>1,当x=时,f()+1>×k=,即f()﹣1=故f()>,所以f()<,一定出错,故选:C.9.【答案】D【解析】解:双曲线﹣=1的渐近线方程为y=±x,不妨设过点F2与双曲线的一条渐过线平行的直线方程为y=(x﹣c),与y=﹣x联立,可得交点M(,﹣),∵点M在以线段F1F2为直径的圆外,∴|OM|>|OF2|,即有>c2,∴b2>3a2,∴c2﹣a2>3a2,即c>2a.则e=>2.∴双曲线离心率的取值范围是(2,+∞).故选:D.【点评】本题考查的知识点是双曲线的简单性质,熟练掌握双曲线的渐近线、离心率的计算公式、点与圆的位置关系是解题的关键.10.【答案】A【解析】解:在△ABC中,关于x的方程(1+x2)sinA+2xsinB+(1﹣x2)sinC=0有两个不等的实根,即(sinA﹣sinC)x2+2sinB x+(sinA+sinC)=0 有两个不等的实根,∴△=4sin2B﹣4 (sin2A﹣sin2C)>0,由正弦定理可得b2+c2﹣a2>0,再由余弦定理可得cosA=>0,故A为锐角,故选A.11.【答案】B【解析】解:由f(x)在上是减函数,知f′(x)=3x2+2bx+c≤0,x∈,则⇒15+2b+2c ≤0⇒b+c ≤﹣.故选B .12.【答案】D【解析】解:将椭圆的方程转化为标准形式为,显然m ﹣2>10﹣m ,即m >6,,解得m=8故选D【点评】本题主要考查了椭圆的简单性质.要求学生对椭圆中对长轴和短轴即及焦距的关系要明了.二、填空题13.【答案】(,2)-∞-【解析】不等式组表示的平面区域的角点坐标分别为(1,0),(0,1),(3,4)A B C , ∴2A z =,B z a =,64C z a =+. ∴64264a a a+<⎧⎨+<⎩,解得2a <-.14.【答案】()2245f x x x =-+ 【解析】试题分析:由题意得,令1t x =-,则1x t =+,则()222(1)8(1)11245f t t t t t =+-++=-+,所以函数()f x 的解析式为()2245f x x x =-+.考点:函数的解析式.15.【答案】 (﹣1,0) .【解析】解:作出不等式组表示的平面区域,得到如图的△ABC 及其内部,其中A (0,5),B (2,7),C (2,2k+5) △ABC 的形状随着直线AC :y=kx+5斜率的变化而变化, 将直线AC 绕A 点旋转,可得当C 点与C 1(2,5)重合或与C 2(2,3)重合时,△ABC 是直角三角形, 当点C 位于B 、C 1之间,或在C 1C 2的延长线上时,△ABC 是钝角三角形, 当点C 位于C 1、C 2之间时,△ABC 是锐角三角形, 而点C 在其它的位置不能构成三角形综上所述,可得3<2k+5<5,解之得﹣1<k <0 即k 的取值范围是(﹣1,0)故答案为:(﹣1,0)【点评】本题给出二元一次不等式组,在表示的图形为锐角三角形的情况下,求参数k的取值范围,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.16.【答案】.【解析】解:如图,将AM平移到B1E,NC平移到B1F,则∠EB1F为直线AM与CN所成角设边长为1,则BE=B1F=,EF=1∴cos∠EB1F=,故答案为【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.17.【答案】.【解析】解:∵F是抛物线y2=4x的焦点,∴F(1,0),准线方程x=﹣1,设M(x1,y1),N(x2,y2),∴|MF|+|NF|=x1+1+x2+1=6,解得x1+x2=4,∴△MNF的重心的横坐标为,∴△MNF的重心到准线距离为.故答案为:.【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.18.【答案】7.【解析】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B时,直线y=﹣的截距最大,此时z最大.由,得,即B(3,2),此时z的最大值为z=1+2×3=1+6=7,故答案为:7.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.三、解答题19.【答案】【解析】解:(I)由∵cosA=,0<A<π,∴sinA==,∵5(a2+b2﹣c2)=3ab,∴cosC==,∵0<C<π,∴sinC==,∴cos2C=2cos2C﹣1=,∴cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC=﹣×+×=﹣∵0<B<π,∴B=.(II)∵=,∴a==c,∵a﹣c=﹣1,∴a=,c=1,∴S=acsinB=××1×=.【点评】本题主要考查了正弦定理和余弦定理的综合运用,两角和与差的正弦公式等知识.考查学生对基础知识的综合运用.20.【答案】【解析】解:(1)当x=1时,f(1)=p(1)=37.当2≤x≤12时,且x≤12)验证x=1符合f(x)=﹣3x2+40x,∴f(x)=﹣3x2+40x(x∈N*且x≤12).该商场预计销售该商品的月利润为g(x)=(﹣3x2+40x)(185﹣150﹣2x)=6x3﹣185x2+1400x,(x∈N*且x≤12),令h(x)=6x3﹣185x2+1400x(1≤x≤12),h'(x)=18x2﹣370x+1400,令h'(x)=0,解得(舍去).>0;当5<x≤12时,h'(x)<0.∴当x=5时,h(x)取最大值h(5)=3125.max=g(5)=3125(元).综上,5月份的月利润最大是3125元.【点评】本题考查利用函数知识解决应用题的有关知识.新高考中的重要的理念就是把数学知识运用到实际生活中,如何建模是解决这类问题的关键.同时要熟练地利用导数的知识解决函数的求最值问题.21.【答案】【解析】【知识点】随机变量的期望与方差随机变量的分布列【试题解析】(Ⅰ)的可能取值为.,,分布列为:(Ⅱ)设先回答问题,再回答问题得分为随机变量,则的可能取值为.,,,分布列为:.应先回答所得分的期望值较高. 22.【答案】【解析】【解析】(Ⅰ)因为BE 是⊙O 的切线,所以BAD EBD ∠=∠…………2分 又因为CAD BAD CAD CBD ∠=∠∠=∠,………………4分 所以CBD EBD ∠=∠,即BD 平分EBC ∠.………………5分 (Ⅱ)由⑴可知BAD EBD ∠=∠,且BED BED ∠=∠,BDE ∆∽ABE ∆,所以ABBDAE BE =,……………………7分 又因为DBC DBE BAE BCD ∠=∠=∠=∠,所以DBC BCD ∠=∠,CD BD =.……………………8分所以ABCDAB BD AE BE ==,……………………9分 所以BE AB DC AE ⋅=⋅.……………………10分23.【答案】【解析】解:(1)∵f (x )=lg (a x﹣b x),且f (1)=lg2,f (2)=lg12,∴a ﹣b=2,a 2﹣b 2=12,解得:a=4,b=2;(2)由(1)得:函数f (x )=lg (4x ﹣2x),当x ∈[1,2]时,4x﹣2x∈[2,12], 故当x=2时,函数f (x )取最大值lg12,(3)若函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.则4x﹣2x=m有两个解,令t=2x,则t>0,则t2﹣t=m有两个正解;则,解得:m∈(﹣,0)【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.24.【答案】【解析】解:(1)如图(2)它可以看成一个长方体截去一个小三棱锥,设长方体体积为V1,小三棱锥的体积为V2,则根据图中所给条件得:V1=6×4×4=96cm3,V2=••2•2•2=cm3,∴V=v1﹣v2=cm3(3)证明:如图,在长方体ABCD﹣A′B′C′D′中,连接AD′,则AD′∥BC′因为E,G分别为AA′,A′D′中点,所以AD′∥EG,从而EG∥BC′,又EG⊂平面EFG,所以BC′∥平面EFG;2016年4月26日。
太和县一中2018-2019学年高三上学期11月月考数学试卷含答案
1. 已知函数 f(x)的图象如图,则它的一个可能的解析式为( )
班级_______________ 座号______ 姓名_______________ 分数_______________ ___________________________________________________________________________________________________
)
A.a=3
B.a=﹣3
C.a=±3
D.a=5 或 a=±3
11.设 f(x)是定义在 R 上的恒不为零的函数,对任意实数 x,y∈R,都有 f(x)•f(y)=f(x+y),若 a1=
,an=f(n)(n∈N*),则数列{an}的前 n 项和 Sn 的取值范围是(
)
A.[ ,2) B.[ ,2] C.[ ,1) D.[ ,1]
C.[3,12]
D.(3,12)
4. 实数 a=0.2 ,b=log 0.2,c=
的大小关系正确的是( )
A.a<c<b
B.a<b<c
C.b<a<c
5. 设 0<a<b 且 a+b=1,则下列四数中最大的是( )
D.b<c<a
A.a2+b2 B.2ab C.a D.
6. 过点 M (2, a) , N (a,4) 的直线的斜率为 1 ,则| MN | (
题号
1
2
3
4
5
6
7
8
9
10
答案
C
A
A
C
A
A
D
太和区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)
太和区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 方程表示的曲线是( )1x -=A .一个圆B . 两个半圆C .两个圆D .半圆2. 对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n=m+n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n=mn .则在此定义下,集合M={(a ,b )|a ※b=12,a ∈N *,b ∈N *}中的元素个数是()A .10个B .15个C .16个D .18个3. 已知a >b >0,那么下列不等式成立的是( )A .﹣a >﹣bB .a+c <b+cC .(﹣a )2>(﹣b )2D .4. 以的焦点为顶点,顶点为焦点的椭圆方程为()A .B .C .D .5. 设函数f (x )在x 0处可导,则等于( )A .f ′(x 0)B .f ′(﹣x 0)C .﹣f ′(x 0)D .﹣f (﹣x 0)6. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量(单位:毫克/升)与时间(单位:P t 小时)间的关系为(,均为正常数).如果前5个小时消除了的污染物,为了消除0e ktP P -=0P k 10%27.1%的污染物,则需要( )小时.A. B. C. D. 8101518【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.7. 已知三个数,,成等比数列,其倒数重新排列后为递增的等比数列的前三1a -1a +5a +{}n a 项,则能使不等式成立的自然数的最大值为( )1212111n na a a a a a +++≤+++L L A .9B .8 C.7D .58. 下列式子表示正确的是( )A 、B 、C 、D 、{}00,2,3⊆{}{}22,3∈{}1,2φ∈{}0φ⊆9. 已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是()A .∅B .{1,4}C .MD .{2,7}班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.若满足约束条件,则当取最大值时,的值为( )y x ,⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x 31++x y y x +A . B .C .D .1-3-311.如图,△ABC 所在平面上的点P n (n ∈N *)均满足△P n AB 与△Pn AC 的面积比为3;1, =﹣(2x n +1)(其中,{x n }是首项为1的正项数列),则x 5等于()A .65B .63C .33D .3112.一个几何体的三视图是一个正方形,一个矩形,一个半圈,尺寸大小如图所示,则该几何体的表面积是( )A .πB .3π+4C .π+4D .2π+4二、填空题13.某城市近10年居民的年收入x 与支出y 之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元.14.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 .15.,分别为双曲线(,)的左、右焦点,点在双曲线上,满足,1F 2F 22221x y a b-=a 0b >P 120PF PF ⋅=u u u r u u u u r 若,则该双曲线的离心率为______________.12PF F ∆【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.16.在复平面内,记复数+i 对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应的复数为 .17.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是 .18.二面角α﹣l ﹣β内一点P 到平面α,β和棱l 的距离之比为1::2,则这个二面角的平面角是 度.三、解答题19.已知曲线(,)在处的切线与直线21()f x e x ax=+0x ≠0a ≠1x =2(1)20160e x y --+=平行.(1)讨论的单调性;()y f x =(2)若在,上恒成立,求实数的取值范围.()ln kf s t t ≥(0,)s ∈+∞(1,]t e ∈20.平面直角坐标系xOy 中,圆C 1的参数方程为(φ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆C 2的极坐标方程为ρ=4sin θ.(1)写出圆C 1的普通方程及圆C 2的直角坐标方程;(2)圆C 1与圆C 2是否相交,若相交,请求出公共弦的长;若不相交请说明理由.21.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x (个)2345加工的时间y (小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程=x+,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:回归直线=bx+a ,其中b==,a=﹣b .22.已知f(x)=x2+ax+a(a≤2,x∈R),g(x)=e x,φ(x)=.(Ⅰ)当a=1时,求φ(x)的单调区间;(Ⅱ)求φ(x)在x∈[1,+∞)是递减的,求实数a的取值范围;(Ⅲ)是否存在实数a,使φ(x)的极大值为3?若存在,求a的值;若不存在,请说明理由. 23.已知等比数列中,。
太和县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
太和县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在复平面内,复数(﹣4+5i )i (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2. 若实数x ,y满足,则(x ﹣3)2+y 2的最小值是( )A.B .8C .20D .23. 某几何体的三视图如图所示,则该几何体的表面积为()A .8+2 B .8+8 C .12+4 D .16+44. 下列函数在其定义域内既是奇函数又是增函数的是( ) A . B . C . D .5. sin45°sin105°+sin45°sin15°=( )A .0B.C.D .16. 函数()f x 在定义域R 上的导函数是'()f x ,若()(2)f x f x =-,且当(,1)x ∈-∞时,'(1)()0x f x -<,设(0)a f =,b f =,2(log 8)c f =,则( )A .a b c <<B .a b c >>C .c a b <<D .a c b <<7. 已知函数f (x )=sin 2(ωx )﹣(ω>0)的周期为π,若将其图象沿x 轴向右平移a 个单位(a >0),所得图象关于原点对称,则实数a 的最小值为( ) A .πB.C.D.8. 已知函数()x e f x x=,关于x 的方程2()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的取值范围是( )A .21(,)21e e -+?-B .21(,)21e e --?-C .21(0,)21e e --D .2121e e 禳-镲睚-镲铪【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.9. (2016广东适应)已知双曲线的顶点为椭圆1222=+y x 长轴的端点,且双曲线的离心率与椭圆的离心率的乘积等于1,则双曲线的方程是( )A .122=-y xB .122=-x yC .222=-y xD .222=-x y班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.函数f(x)=Asin(ωx+θ)(A>0,ω>0)的部分图象如图所示,则f()的值为()A.B.0 C.D.11.设偶函数f(x)在(0,+∞)上为减函数,且f(2)=0,则不等式>0的解集为()A.(﹣2,0)∪(2,+∞)B.(﹣∞,﹣2)∪(0,2)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣2,0)∪(0,2)12.给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中正确命题的个数是()A.0 B.1 C.2 D.3 二、填空题13.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x1,x2,…,x90和y1,y2,…,y90,在90组数对(x i,y i)(1≤i≤90,i∈N*)中,经统计有25组数对满足,则以此估计的π值为.14.如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱AA′,CC′的中点,过直线EF的平面分别与棱BB′、DD′交于M、N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面BDD′B′;②当且仅当x=时,四边形MENF的面积最小;③四边形MENF周长l=f(x),x∈0,1]是单调函数;④四棱锥C′﹣MENF的体积v=h(x)为常函数;以上命题中真命题的序号为.15.已知()212811f x x x -=-+,则函数()f x 的解析式为_________.16.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 .17.定义:分子为1且分母为正整数的分数叫做单位分数.我们可以把1拆分为无穷多个不同的单位分数之和.例如:1=++,1=+++,1=++++,…依此方法可得:1=++++++++++++,其中m ,n ∈N *,则m+n= .18.已知椭圆中心在原点,一个焦点为F (﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .三、解答题19.(本题满分15分)正项数列}{n a 满足121223+++=+n n n n a a a a ,11=a .(1)证明:对任意的*N n ∈,12+≤n n a a ;(2)记数列}{n a 的前n 项和为n S ,证明:对任意的*N n ∈,32121<≤--n n S .【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.20.【泰州中学2018届高三10月月考】已知函数()(),,xf x eg x x m m R ==-∈.(1)若曲线()y f x =与直线()y g x =相切,求实数m 的值; (2)记()()()h x f x g x =⋅,求()h x 在[]0,1上的最大值; (3)当0m =时,试比较()2f x e -与()g x 的大小.21.(本小题满分12分)某市拟定2016年城市建设,,A B C三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对,,A B C三项重点工程竞标成功的概率分别为a,b,14()a b,已知三项工程都竞标成功的概率为124,至少有一项工程竞标成功的概率为34.(1)求a与b的值;(2)公司准备对该公司参加,,A B C三个项目的竞标团队进行奖励,A项目竞标成功奖励2万元,B项目竞标成功奖励4万元,C项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.22.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinA﹣sinC(cosB+sinB)=0.(1)求角C的大小;(2)若c=2,且△ABC的面积为,求a,b的值.23.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:(1率分布直方图.(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.24.(本小题满分12分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,1)cos 2cos a B b A c -=, (Ⅰ)求tan tan AB的值;(Ⅱ)若a =4B π=,求ABC ∆的面积.太和县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题13..14. ①②④ .15.()2245f x x x =-+ 16.12π 17. 33 .18. .三、解答题19.(1)详见解析;(2)详见解析.20.(1)1m =-;(2)当1e m e <-时,()()max 1h x m e =-;当1e m e ≥-时,()max h x m =-;(3)()()2f x eg x ->. 21. 22. 23. 24.。
和县高中2018-2019学年高三上学期11月月考数学试卷含答案
和县高中2018-2019学年高三上学期11月月考数学试卷含答案班级__________姓名__________ 分数__________一、选择题1. 下列关系正确的是( )A .1∉{0,1}B .1∈{0,1}C .1⊆{0,1}D .{1}∈{0,1}2. 设x ,y 满足线性约束条件,若z=ax ﹣y (a >0)取得最大值的最优解有数多个,则实数a 的值为( )A .2B .C .D .33. 已知一组函数f n (x )=sin n x+cos n x ,x ∈[0,],n ∈N *,则下列说法正确的个数是()①∀n ∈N *,f n (x )≤恒成立②若f n (x )为常数函数,则n=2③f 4(x )在[0,]上单调递减,在[,]上单调递增.A .0B .1C .2D .34. 已知集合,,则( ){2,1,0,1,2,3}A =--{|||3,}B y y x x A ==-∈A B = A .B .C .D .{2,1,0}--{1,0,1,2}-{2,1,0}--{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力.5. 已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin 2,则该数列的前10项和为( )A .89B .76C .77D .356. 已知双曲线﹣=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的渐近线方程为y=±x ,则该双曲线的方程为( )A .﹣=1B .﹣y 2=1C .x 2﹣=1D .﹣=17. 给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行;③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( )A .1个B .2个C .3个D .4个8. 已知函数f (x )=x 3+(1﹣b )x 2﹣a (b ﹣3)x+b ﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组所确定的平面区域在x 2+y 2=4内的面积为( )A .B .C .πD .2π9. 已知函数,其中,对任意的都成立,在122()32f x x ax a =+-(0,3]a ∈()0f x ≤[]1,1x ∈-和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为,则( )T T =A . B .C .D .201522015320152320152210.已知随机变量X 服从正态分布N (2,σ2),P (0<X <4)=0.8,则P (X >4)的值等于( )A .0.1B .0.2C .0.4D .0.611.已知抛物线的焦点为,,点是抛物线上的动点,则当的值最小时,24y x =F (1,0)A -P ||||PF PA PAF ∆的面积为( )B. C. D. 24【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.12.下列哪组中的两个函数是相等函数( )A .B .()()4f x x =g ()()24=,22x f x g x x x -=-+C .D .()()1,01,1,0x f x g x x >⎧==⎨<⎩()()=f x x x =,g 二、填空题13.要使关于的不等式恰好只有一个解,则_________.x 2064x ax ≤++≤a =【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.14.在中,,,为的中点,,则的长为_________.ABC ∆90C ∠=2BC =M BC 1sin 3BAM ∠=AC 15.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .14.已知集合,若3∈M ,5∉M ,则实数a 的取值范围是 .16.若直线x ﹣y=1与直线(m+3)x+my ﹣8=0平行,则m= .17.图中的三个直角三角形是一个体积为20的几何体的三视图,则__________.h =18.已知x、y之间的一组数据如下:x0123y8264则线性回归方程所表示的直线必经过点 .三、解答题19.已知椭圆,过其右焦点F且垂直于x轴的弦MN的长度为b.(Ⅰ)求该椭圆的离心率;(Ⅱ)已知点A的坐标为(0,b),椭圆上存在点P,Q,使得圆x2+y2=4内切于△APQ,求该椭圆的方程.20.已知向量=(x,y),=(1,0),且(+)•(﹣)=0.(1)求点Q(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,﹣1),当|AM|=|AN|时,求实数m的取值范围.21.设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈时,求f(x)取得最大值和最小值时的x的值.22.(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程.(2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程.23.某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图.(Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m、n,求事件“|m﹣n|>10”概率.24.已知圆的极坐标方程为ρ2﹣4ρcos(θ﹣)+6=0.(1)将极坐标方程化为普通方程;(2)若点P在该圆上,求线段OP的最大值和最小值.和县高中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:由于1∈{0,1},{1}⊆{0,1},故选:B【点评】本题考查的知识点是元素与集合关系的判断,其中正确理解集合元素与集合关系的实质,即元素满足集合中元素的性质,是解答本题的关键.2.【答案】B【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z=ax﹣y(a>0)得y=ax﹣z,∵a>0,∴目标函数的斜率k=a>0.平移直线y=ax﹣z,由图象可知当直线y=ax﹣z和直线2x﹣y+2=0平行时,当直线经过B时,此时目标函数取得最大值时最优解只有一个,不满足条件.当直线y=ax﹣z和直线x﹣3y+1=0平行时,此时目标函数取得最大值时最优解有无数多个,满足条件.此时a=.故选:B.3.【答案】D【解析】解:①∵x∈[0,],∴f n(x)=sin n x+cos n x≤sinx+cosx=≤,因此正确;②当n=1时,f1(x)=sinx+cosx,不是常数函数;当n=2时,f2(x)=sin2x+cos2x=1为常数函数,当n ≠2时,令sin 2x=t ∈[0,1],则f n (x )=+=g (t ),g ′(t )=﹣=,当t ∈时,g ′(t )<0,函数g (t )单调递减;当t ∈时,g ′(t )>0,函数g (t )单调递增加,因此函数f n (x )不是常数函数,因此②正确.③f 4(x )=sin 4x+cos 4x=(sin 2x+cos 2x )2﹣2sin 2xcos 2x=1﹣==+,当x ∈[0,],4x ∈[0,π],因此f 4(x )在[0,]上单调递减,当x ∈[,],4x ∈[π,2π],因此f 4(x )在[,]上单调递增,因此正确.综上可得:①②③都正确.故选:D .【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题. 4. 【答案】C【解析】当时,,所以,故选C .{2,1,0,1,2,3}x ∈--||3{3,2,1,0}y x =-∈---A B = {2,1,0}--5. 【答案】C【解析】解:因为a 1=1,a 2=2,所以a 3=(1+cos 2)a 1+sin 2=a 1+1=2,a 4=(1+cos 2π)a 2+sin 2π=2a 2=4.一般地,当n=2k ﹣1(k ∈N *)时,a 2k+1=[1+cos 2]a 2k ﹣1+sin 2=a 2k ﹣1+1,即a 2k+1﹣a 2k ﹣1=1.所以数列{a 2k ﹣1}是首项为1、公差为1的等差数列,因此a 2k ﹣1=k .当n=2k (k ∈N *)时,a 2k+2=(1+cos 2)a 2k +sin 2=2a 2k .所以数列{a 2k }是首项为2、公比为2的等比数列,因此a 2k =2k .该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77故选:C . 6. 【答案】B【解析】解:已知抛物线y 2=4x 的焦点和双曲线的焦点重合,则双曲线的焦点坐标为(,0),即c=,又因为双曲线的渐近线方程为y=±x ,则有a 2+b 2=c 2=10和=,解得a=3,b=1.所以双曲线的方程为:﹣y2=1.故选B.【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题.7.【答案】B【解析】考点:空间直线与平面的位置关系.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.8.【答案】B【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2.则f(x)=x3﹣x2+ax,函数的导数f′(x)=x2﹣2x+a,因为原点处的切线斜率是﹣3,即f′(0)=﹣3,所以f′(0)=a=﹣3,故a=﹣3,b=2,所以不等式组为则不等式组确定的平面区域在圆x2+y2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求.∵k OB=﹣,k OA=,∴tan ∠BOA==1,∴∠BOA=,∴扇形的圆心角为,扇形的面积是圆的面积的八分之一,∴圆x 2+y 2=4在区域D内的面积为×4×π=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a ,b 的是值,然后借助不等式区域求解面积是解决本题的关键. 9. 【答案】C 【解析】试题分析:因为函数,对任意的都成立,所以,解得22()32f x x ax a =+-()0f x ≤[]1,1x ∈-()()1010f f -≤⎧⎪⎨≤⎪⎩或,又因为,所以,在和两数间插入共个数,使之与,构成等3a ≥1a ≤-(0,3]a ∈3a =122015,...a a a 2015比数列,,,两式相乘,根据等比数列的性质得,T 122015...a a a =A 201521...T a a a =A ()()2015201521201513T a a ==⨯,故选C.T =201523考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用.10.【答案】A【解析】解:∵随机变量ξ服从正态分布N (2,o 2),∴正态曲线的对称轴是x=2P (0<X <4)=0.8,∴P (X >4)=(1﹣0.8)=0.1,故选A . 11.【答案】B【解析】设,则又设,则,,所以2(,)4y P y 2||||PF PA=214y t +=244y t =-1t …,当且仅当,即时,等号成立,此时点,||||PF PA ==2t =2y =±(1,2)P ±的面积为,故选B.PAF ∆11||||22222AF y ⋅=⨯⨯=12.【答案】D111]【解析】考点:相等函数的概念.二、填空题13.【答案】.±【解析】分析题意得,问题等价于只有一解,即只有一解,264x ax ++≤220x ax ++≤∴,故填:.280a a ∆=-=⇒=±±14.【解析】考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可,对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).15.【答案】 6 .【解析】解:f(x)=x3﹣2cx2+c2x,f′(x)=3x2﹣4cx+c2,f′(2)=0⇒c=2或c=6.若c=2,f′(x)=3x2﹣8x+4,令f′(x)>0⇒x<或x>2,f′(x)<0⇒<x<2,故函数在(﹣∝,)及(2,+∞)上单调递增,在(,2)上单调递减,∴x=2是极小值点.故c=2不合题意,c=6.故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式.16.【答案】 .【解析】解:直线x ﹣y=1的斜率为1,(m+3)x+my ﹣8=0斜率为两直线平行,则=1解得m=﹣.故应填﹣.17.【答案】【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱底面,且为直角三角形,且VA ⊥ABC ABC ∆,所以三棱锥的体积为,解得.5,,6AB VA h AC ===115652032V h h =⨯⨯⨯==4h =考点:几何体的三视图与体积.18.【答案】 (,5) .【解析】解:∵, =5∴线性回归方程y=a+bx 所表示的直线必经过点(1.5,5)故选C【点评】解决线性回归直线的方程,利用最小二乘法求出直线的截距和斜率,注意由公式判断出回归直线一定过样本中心点. 三、解答题19.【答案】【解析】解:(Ⅰ)设F (c ,0),M (c ,y 1),N (c ,y 2),则,得y1=﹣,y2=,MN=|y1﹣y2|==b,得a=2b,椭圆的离心率为:==.(Ⅱ)由条件,直线AP、AQ斜率必然存在,设过点A且与圆x2+y2=4相切的直线方程为y=kx+b,转化为一般方程kx﹣y+b=0,由于圆x2+y2=4内切于△APQ,所以r=2=,得k=±(b>2),即切线AP、AQ关于y轴对称,则直线PQ平行于x轴,∴y Q=y P=﹣2,不妨设点Q在y轴左侧,可得x Q=﹣x P=﹣2,则=,解得b=3,则a=6,∴椭圆方程为:.【点评】本题考查了椭圆的离心率公式,点到直线方程的距离公式,内切圆的性质.20.【答案】【解析】解:(1)由题意向量=(x,y),=(1,0),且(+)•(﹣)=0,∴,化简得,∴Q点的轨迹C的方程为.…(2)由得(3k2+1)x2+6mkx+3(m2﹣1)=0,由于直线与椭圆有两个不同的交点,∴△>0,即m2<3k2+1.①…(i)当k≠0时,设弦MN的中点为P(x P,y P),x M、x N分别为点M、N的横坐标,则,从而,,…又|AM|=|AN|,∴AP⊥MN.则,即2m=3k2+1,②将②代入①得2m>m2,解得0<m<2,由②得,解得,故所求的m的取值范围是(,2).…(ii)当k=0时,|AM|=|AN|,∴AP⊥MN,m2<3k2+1,解得﹣1<m<1.…综上,当k≠0时,m的取值范围是(,2),当k=0时,m的取值范围是(﹣1,1).…【点评】本题考查轨迹方程,考查直线与椭圆的位置关系,考查小时分析解决问题的能力,属于中档题.21.【答案】【解析】解:(Ⅰ)f(x)的定义域为(﹣∞,+∞),f′(x)=1+a﹣2x﹣3x2,由f′(x)=0,得x1=,x2=,x1<x2,∴由f′(x)<0得x<,x>;由f′(x)>0得<x<;故f(x)在(﹣∞,)和(,+∞)单调递减,在(,)上单调递增;(Ⅱ)∵a>0,∴x1<0,x2>0,∵x∈,当时,即a≥4①当a≥4时,x2≥1,由(Ⅰ)知,f(x)在上单调递增,∴f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1,由(Ⅰ)知,f(x)在单调递增,在上单调递减,因此f(x)在x=x2=处取得最大值,又f(0)=1,f(1)=a,∴当0<a<1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处取得最小值;当1<a<4时,f(x)在x=0处取得最小值.22.【答案】【解析】解:(1)由所求椭圆与椭圆有相同的焦点,设椭圆方程,由(4,3)在椭圆上得,则椭圆方程为;(2)由双曲线有相同的渐近线,设所求双曲线的方程为﹣=1(λ≠0),由题意可得c2=4|λ|+9|λ|=13,解得λ=±1.即有双曲线的方程为﹣=1或﹣=1.23.【答案】【解析】解:(I)由直方图知,成绩在[60,80)内的人数为:50×10×(0.18+0.040)=29.所以该班在这次数学测试中成绩合格的有29人.(II)由直方图知,成绩在[50,60)内的人数为:50×10×0.004=2,设成绩为x、y成绩在[90,100]的人数为50×10×0.006=3,设成绩为a、b、c,若m,n∈[50,60)时,只有xy一种情况,若m,n∈[90,100]时,有ab,bc,ac三种情况,若m,n分别在[50,60)和[90,100]内时,有a b cx xa xb xcy ya yb yc共有6种情况,所以基本事件总数为10种,事件“|m﹣n|>10”所包含的基本事件个数有6种∴.【点评】在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是,所以有:×组距=频率;即可把所求范围内的频率求出,进而求该范围的人数.24.【答案】【解析】解:(1)ρ2﹣4ρcos(θ﹣)+6=0,展开为:ρ2﹣4×ρ(cosθ+sinθ)+6=0.化为:x2+y2﹣4x﹣4y+6=0.(2)由x2+y2﹣4x﹣4y+6=0可得:(x﹣2)2+(y﹣2)2=2.圆心C(2,2),半径r=.|OP|==2.∴线段OP的最大值为2+=3.最小值为2﹣=.。
太和区民族中学2018-2019学年高三上学期11月月考数学试卷含答案
太和区民族中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 下列关系正确的是( )A .1∉{0,1}B .1∈{0,1}C .1⊆{0,1}D .{1}∈{0,1}2. 满足下列条件的函数中,为偶函数的是())(x f )(x f A.B.C. D.()||xf e x =2()x xf e e =2(ln )ln f x x =1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.3. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为()A .B .18C .D .4. 若动点分别在直线: 和:上移动,则中点所),(),(2211y x B y x A 、011=-+y x 2l 01=-+y x AB M 在直线方程为( )A .B .C .D .06=--y x 06=++y x 06=+-y x 06=-+y x 5. 已知定义域为的偶函数满足对任意的,有,且当R )(x f R x ∈)1()()2(f x f x f -=+时,.若函数在上至少有三个零点,则]3,2[∈x 18122)(2-+-=x x x f )1(log )(+-=x x f y a ),0(+∞实数的取值范围是( )111]A .B .C .D .22,0(33,0(55,0()66,0(6. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( )A .B .C .2D .47. 复数(为虚数单位),则的共轭复数为( )2(2)i z i-=i z A . B . C . D .43i -+43i +34i +34i-【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力.8. 在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A .B .C .D .9. 已知在平面直角坐标系中,点,().命题:若存在点在圆xOy ),0(n A -),0(n B 0>n p P 上,使得,则;命题:函数在区间1)1()3(22=-++y x 2π=∠APB 31≤≤n x xx f 3log 4)(-=班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________内没有零点.下列命题为真命题的是( ))4,3(A .B .C .D .)(q p ⌝∧q p ∧q p ∧⌝)(qp ∨⌝)(10.设是等差数列的前项和,若,则( )n S {}n a 5359a a =95SS =A .1B .2C .3D .411.已知空间四边形,、分别是、的中点,且,,则( )ABCD M N AB CD 4AC =6BD =A .B .C .D .15MN <<210MN <<15MN ≤≤25MN <<12.设复数z 满足(1﹣i )z=2i ,则z=( )A .﹣1+iB .﹣1﹣iC .1+iD .1﹣i二、填空题13.阅读右侧程序框图,输出的结果i 的值为 .14.已知满足,则的取值范围为____________.,x y 41y xx y x ≥⎧⎪+≤⎨⎪≥⎩22223y xy x x -+15.把函数y=sin2x 的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为 .16.函数y=1﹣(x ∈R )的最大值与最小值的和为 2 .17.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为 小时.18.设抛物线的焦点为,两点在抛物线上,且,,三点共线,过的中点作24y x =F ,A B A B F AB M y 轴的垂线与抛物线在第一象限内交于点,若,则点的横坐标为 .P 32PF =M 三、解答题19.(本小题满分10分)选修4-4:坐标系与参数方程已知椭圆的极坐标方程为,点为其左、右焦点,直线的参数方程为C 222123cos 4sin ρθθ=+12,F F(为参数,).2x y ⎧=⎪⎪⎨⎪=⎪⎩t R ∈(1)求直线和曲线的普通方程;C (2)求点到直线的距离之和.12,F F 20.已知函数f (x )=4x ﹣a •2x+1+a+1,a ∈R .(1)当a=1时,解方程f (x )﹣1=0;(2)当0<x <1时,f (x )<0恒成立,求a 的取值范围;(3)若函数f (x )有零点,求实数a 的取值范围. 21.(本小题满分10分)已知函数.()2f x x a x =++-(1)若求不等式的解集;4a =-()6f x ≥(2)若的解集包含,求实数的取值范围.()3f x x ≤-[]0,122.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<2π)一个周期内的一系列对应值如表:x0y10﹣1(1)求f(x)的解析式;(2)求函数g(x)=f(x)+sin2x的单调递增区间.23.十八届四中全会明确提出“以法治手段推进生态文明建设”,为响应号召,某市红星路小区的环保人士向该市政府部门提议“在全市范围内禁放烟花、炮竹”.为此,红星路小区的环保人士对该小区年龄在[15,75)的市民进行问卷调查,随机抽查了50人,并将调查情况进行整理后制成下表:年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)频数610121255赞成人数3610643(1)请估计红星路小区年龄在[15,75)的市民对“禁放烟花、炮竹”的赞成率和被调查者的年龄平均值;(2)若从年龄在[55,65)、[65,75)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“禁放烟花、炮竹”的人数为ξ,求随机变量ξ的分布列和数学期望.24.已知,且.(1)求sinα,cosα的值;(2)若,求sinβ的值.太和区民族中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:由于1∈{0,1},{1}⊆{0,1},故选:B【点评】本题考查的知识点是元素与集合关系的判断,其中正确理解集合元素与集合关系的实质,即元素满足集合中元素的性质,是解答本题的关键.2.【答案】D.【解析】3.【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:3×22+3×()+=,故选:D.4.【答案】D【解析】考点:直线方程5. 【答案】B 【解析】试题分析:,令,则,是定义在上的偶函数,()()1)2(f x f x f -=+、1-=x ()()()111f f f --=()x f 、R .则函数是定义在上的,周期为的偶函数,又∵当时,()01=∴f ()()2+=∴x f x f ()x f R []3,2∈x ,令,则与在的部分图象如下图,()181222-+-=x x x f ()()1log +=x x g a ()x f ()x g [)+∞,0在上至少有三个零点可化为与的图象在上至少有三个交点,()()1log +-=x x f y a ()+∞,0()x f ()x g ()+∞,0在上单调递减,则,解得:故选A .()x g ()+∞,0⎩⎨⎧-><<23log 10aa 330<<a 考点:根的存在性及根的个数判断.【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得是周期函数,其周期为,要使函数在上至少有三个零点,等价于函数的()x f ()()1log +-=x x f y a ()+∞,0()x f 图象与函数的图象在上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的()1log +=x y a ()+∞,0范围.6. 【答案】A【解析】解:分两类讨论,过程如下:①当a >1时,函数y=a x ﹣1 和y=log a x 在[1,2]上都是增函数,∴f (x )=a x ﹣1+log a x 在[1,2]上递增,∴f (x )max +f (x )min =f (2)+f (1)=a+log a 2+1=a ,∴log a 2=﹣1,得a=,舍去;②当0<a <1时,函数y=a x ﹣1 和y=log a x 在[1,2]上都是减函数,∴f (x )=a x ﹣1+log a x 在[1,2]上递减,∴f (x )max +f (x )min =f (2)+f (1)=a+log a 2+1=a ,∴log a 2=﹣1,得a=,符合题意;故选A . 7. 【答案】A【解析】根据复数的运算可知,可知的共轭复数为,故选A.43)2()2(22--=--=-=i i i ii z z 43z i =-+8. 【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O ,A ,B 三点能构成三角形,则O ,A ,B 三点不共线。
太和区高级中学2018-2019学年高三上学期11月月考数学试卷含答案
太和区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在12,z z y 12i z =-12z z ()A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力.2. 已知函数f (x )=x 3+(1﹣b )x 2﹣a (b ﹣3)x+b ﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组所确定的平面区域在x 2+y 2=4内的面积为( )A .B .C .πD .2π3. 设a ,b ,c ,∈R +,则“abc=1”是“”的()A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件4. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .565. 数列1,3,6,10,…的一个通项公式是( )A .B .C .D .21n a n n =-+(1)2n n n a -=(1)2n n n a +=21n a n =+6. 双曲线﹣=1(a >0,b >0)的一条渐近线被圆M :(x ﹣8)2+y 2=25截得的弦长为6,则双曲线的离心率为( )A .2B .C .4D .7. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积为、、,则( )1S 2S 3S A .B .C .D .123S S S <<123S S S >>213S S S <<213S S S >>8. 如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论中错误的是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A ﹣BEF 的体积为定值D .异面直线AE ,BF 所成的角为定值9. 连续抛掷两次骰子得到的点数分别为m 和n ,记向量=(m ,n ),向量=(1,﹣2),则⊥的概率是( )A .B .C .D .10.一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是()A .i ≤5?B .i ≤4?C .i ≥4?D .i ≥5?11.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V ≈L 2h 相当于将圆锥体积公式中的π近似取为()A .B .C .D .12.已知命题和命题,若为真命题,则下面结论正确的是( )p p q ∧A .是真命题B .是真命题C .是真命题D .是真命题p ⌝q ⌝p q ∨()()p q ⌝∨⌝二、填空题13.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是 .14.已知集合M={x||x|≤2,x ∈R},N={x ∈R|(x ﹣3)lnx 2=0},那么M ∩N= .15.在极坐标系中,点(2,)到直线ρ(cos θ+sin θ)=6的距离为 .16.已知一个空间几何体的三视图如图所示,其三视图均为边长为1的正方形,则这个几何体的表面积为 .17.(x ﹣)6的展开式的常数项是 (应用数字作答). 18.若函数y=ln (﹣2x )为奇函数,则a= .三、解答题19.已知函数f (x )=sinx ﹣2sin 2(1)求f (x )的最小正周期;(2)求f (x )在区间[0,]上的最小值. 20.(本小题满分12分)数列满足:,,且.{}n b 122n n b b +=+1n n n b a a +=-122,4a a ==(1)求数列的通项公式;{}n b (2)求数列的前项和.{}n a n S 21.(本题满分12分)在中,已知角所对的边分别是,边,且ABC ∆,,A B C ,,a b c 72c =,又的面积为,求的值.tan tan tan A B A B +=-g ABC ∆ABC S ∆=a b +22.已知数列{a n }是等比数列,首项a 1=1,公比q >0,且2a 1,a 1+a 2+2a 3,a 1+2a 2成等差数列.(Ⅰ)求数列{a n }的通项公式(Ⅱ)若数列{b n }满足a n+1=(),T n 为数列{b n }的前n 项和,求T n .23.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且.(1)当a =时,求不等式()0f x <的解集;(2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.24.(本小题满分12分)已知向量满足:,,.,a b r r ||1a =r ||6b =r ()2a b a ∙-=r r r(1)求向量与的夹角;(2)求.|2|a b -r r太和区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案B B ACCDADAB题号1112答案BC二、填空题13. [] .14. {1,﹣1} .15. 1 . 16. 3+ .17. ﹣160 18. 4 .三、解答题19.20.(1);(2).122n n b +=-222(4)n n S n n +=-++21..11222.23.(1)158⎛⎫-∞ ⎪⎝⎭,;(2)()11128a ⎫∈⎪⎪⎭U ,,.24.(1);(2).3π。
太和县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
太和县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )有如下四个命题:①f (f (x ))=1;②函数f(x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数有( ) A .1个 B .2个 C .3个 D .4个2. 在△ABC 中,已知A=30°,C=45°,a=2,则△ABC 的面积等于( ) A.B.C.D.3.求值:=( )A .tan 38° B. C. D.﹣4. 定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是( ) A .1B .±2C.或3D .1或25. 某几何体的三视图如图所示,则它的表面积为( )A. B. C. D.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________6. 命题:“∀x >0,都有x 2﹣x ≥0”的否定是( ) A .∀x ≤0,都有x 2﹣x >0 B .∀x >0,都有x 2﹣x ≤0 C .∃x >0,使得x 2﹣x <0 D .∃x ≤0,使得x 2﹣x >07. 已知在△ABC 中,a=,b=,B=60°,那么角C 等于( )A .135°B .90°C .45°D .75°8. (理)已知tan α=2,则=( )A .B .C .D .9. 函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则下列结论成立的是( )A .a >0,b <0,c >0,d >0B .a >0,b <0,c <0,d >0C .a <0,b <0,c <0,d >0D .a >0,b >0,c >0,d <010.已知圆O 的半径为1,,PA PB 为该圆的两条切线,,A B 为两切点,那么PA PB ∙ 的最小值为A 、4-B 、3-+C 、4-+D 、3-+11.已知一个算法的程序框图如图所示,当输出的结果为21时,则输入的值为( )A .2B .1-C .1-或2D .1-或1012.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A .钱B .钱C .钱D .钱二、填空题13.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________.14.设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤ 恒成立,则实数的取值范围是 .15.已知函数f (x )=(2x+1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为 .16.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .17.已知曲线y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则a 的范围为 .18.已知f (x )=,则f (﹣)+f ()等于 .三、解答题19.已知函数f (x )=lnx 的反函数为g (x ).(Ⅰ)若直线l :y=k 1x 是函数y=f (﹣x )的图象的切线,直线m :y=k 2x 是函数y=g (x )图象的切线,求证:l ⊥m ;(Ⅱ)设a ,b ∈R ,且a ≠b ,P=g (),Q=,R=,试比较P ,Q ,R 的大小,并说明理由.20.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为.(Ⅰ)求甲队分别以4:2,4:3获胜的概率;(Ⅱ)设X 表示决出冠军时比赛的场数,求X 的分布列及数学期望.21.已知函数且f (1)=2.(1)求实数k 的值及函数的定义域;(2)判断函数在(1,+∞)上的单调性,并用定义加以证明.22.(本小题满分12分)两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中 放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设,,x y z 分别表示甲,乙,丙3个 盒中的球数.(1)求0x =,1y =,2z =的概率;(2)记x y ξ=+,求随机变量ξ的概率分布列和数学期望.【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力.23.已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7. (1)求()f x 的解析式;(2)求函数[()]f f x 的解析式并确定其定义域.24.(本小题满分12分)已知12,F F 分别是椭圆C :22221(0)x y a b a b+=>>的两个焦点,且12||2F F =,点)2在该椭圆上.(1)求椭圆C 的方程;(2)设直线l 与以原点为圆心,b 为半径的圆上相切于第一象限,切点为M ,且直线l 与椭圆交于P Q 、两点,问22F P F Q PQ ++是否为定值?如果是,求出定值,如不是,说明理由.太和县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:①∵当x为有理数时,f(x)=1;当x为无理数时,f(x)=0∴当x为有理数时,f(f(x))=f(1)=1;当x为无理数时,f(f(x))=f(0)=1即不管x是有理数还是无理数,均有f(f(x))=1,故①正确;②∵有理数的相反数还是有理数,无理数的相反数还是无理数,∴对任意x∈R,都有f(﹣x)=f(x),故②正确;③若x是有理数,则x+T也是有理数;若x是无理数,则x+T也是无理数∴根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立,故③正确;④取x1=﹣,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0∴A(,0),B(0,1),C(﹣,0),恰好△ABC为等边三角形,故④正确.故选:D.【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题.2.【答案】B【解析】解:因为△ABC中,已知A=30°,C=45°,所以B=180°﹣30°﹣45°=105°.因为a=2,也由正弦定理,c===2.所以△ABC的面积,S===2=2()=1+.故选:B.【点评】本题考查三角形中正弦定理的应用,三角形的面积的求法,两角和正弦函数的应用,考查计算能力.3.【答案】C【解析】解:=tan(49°+11°)=tan60°=,故选:C.【点评】本题主要考查两角和的正切公式的应用,属于基础题.4.【答案】D【解析】解:∵当2≤x≤4时,f(x)=1﹣|x﹣3|.当1≤x<2时,2≤2x<4,则f(x)=f(2x)=(1﹣|2x﹣3|),此时当x=时,函数取极大值;当2≤x≤4时,f(x)=1﹣|x﹣3|;此时当x=3时,函数取极大值1;当4<x≤8时,2<≤4,则f(x)=cf()=c(1﹣|﹣3|),此时当x=6时,函数取极大值c.∵函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,∴=,解得c=1或2.故选D.【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.5.【答案】A【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,∴母线长为,圆锥的表面积S=S底面+S侧面=×π×12+×2×2+×π×=2+.故选A.【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量.6.【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:∃x>0,使得x2﹣x<0,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.7. 【答案】D【解析】解:由正弦定理知=,∴sinA==×=,∵a <b , ∴A <B , ∴A=45°,∴C=180°﹣A ﹣B=75°, 故选:D .8. 【答案】D【解析】解:∵tan α=2,∴===.故选D .9. 【答案】A【解析】解:f (0)=d >0,排除D , 当x →+∞时,y →+∞,∴a >0,排除C ,函数的导数f ′(x )=3ax 2+2bx+c ,则f ′(x )=0有两个不同的正实根,则x 1+x 2=﹣>0且x 1x 2=>0,(a >0),∴b <0,c >0,方法2:f ′(x )=3ax 2+2bx+c ,由图象知当当x <x 1时函数递增,当x 1<x <x 2时函数递减,则f ′(x )对应的图象开口向上,则a >0,且x 1+x 2=﹣>0且x 1x 2=>0,(a >0),∴b <0,c >0, 故选:A10.【答案】D.【解析】设PO t =,向量PA 与PB 的夹角为θ,PA PB ==,1sin2t θ=,222cos 12sin 12t θθ=-=-,∴222cos (1)(1)(1)PA PB PA PB t t t θ==-->,2223(1)PA PB t t t∴=+->,依不等式PA PB ∴的最小值为3.11.【答案】D【解析】试题分析:程序是分段函数⎩⎨⎧=x y x lg 2 00>≤x x ,当0≤x 时,212=x,解得1-=x ,当0>x 时,21lg =x ,解得10=x ,所以输入的是1-或10,故选D.考点:1.分段函数;2.程序框图.11111] 12.【答案】B【解析】解:依题意设甲、乙、丙、丁、戊所得钱分别为a ﹣2d ,a ﹣d ,a ,a+d ,a+2d , 则由题意可知,a ﹣2d+a ﹣d=a+a+d+a+2d ,即a=﹣6d , 又a ﹣2d+a ﹣d+a+a+d+a+2d=5a=5,∴a=1,则a ﹣2d=a ﹣2×=.故选:B .二、填空题13.【答案】120 【解析】考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据sin :sin :sin 3:5:7A B C =,根据正弦定理,可设3,5,7a b ===,即可利用余弦定理求解最大角的余弦,熟记正弦、余弦定理的公式是解答的关键. 14.【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦【解析】试题分析:因为12()()0f x f x +≤,故得不等式()()()332212121210x x a x x a x x ++++++≤,即()()()()()221212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦,由于()()2'321f x x a x a =+++,令()'0f x =得方程()23210x a x a +++=,因()2410a a ∆=-+> , 故()12122133x x a a x x ⎧+=-+⎪⎪⎨⎪=⎪⎩,代入前面不等式,并化简得()1a +()22520a a -+≥,解不等式得1a ≤-或122a ≤≤,因此, 当1a ≤-或122a ≤≤时, 不等式()()120f x f x +≤成立,故答案为1(,1],22⎡⎤-∞-⎢⎥⎣⎦.考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数()f x 的到函数,令()'0f x =考虑判别式大于零,根据韦达定理求出1212,x x x x +的值,代入不等式12()()0f x f x +≤,得到关于的高次不等式,再利用“穿针引线”即可求得实数的取值范围.111]15.【答案】 3 .【解析】解:∵f (x )=(2x+1)e x,∴f ′(x )=2e x +(2x+1)e x, ∴f ′(0)=2e 0+(2×0+1)e 0=2+1=3.故答案为:3.16.【答案】 2 .【解析】解:整理函数解析式得f (x )﹣1=log a (x ﹣1),故可知函数f (x )的图象恒过(2,1)即A (2,1), 故2m+n=1.∴4m +2n≥2=2=2.当且仅当4m =2n,即2m=n ,即n=,m=时取等号.∴4m +2n的最小值为2.故答案为:217.【答案】.【解析】解:因为y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,即y'=0有解,即y'=在x >0时有解,所以3(a ﹣3)x 3+1=0,即a ﹣3<0,所以此时a <3.函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则f'(x )≤0恒成立,即f'(x )=3x 2﹣2ax ﹣3≤0恒成立,即,因为函数在[1,2]上单调递增,所以函数的最大值为,所以,所以.综上.故答案为:.【点评】本题主要考查导数的基本运算和导数的应用,要求熟练掌握利用导数在研究函数的基本应用.18.【答案】4.【解析】解:由分段函数可知f()=2×=.f(﹣)=f(﹣+1)=f(﹣)=f(﹣)=f()=2×=,∴f()+f(﹣)=+.故答案为:4.三、解答题19.【答案】【解析】解:(Ⅰ)∵函数f(x)=lnx的反函数为g(x).∴g(x)=e x.,f(﹣x)=ln(﹣x),则函数的导数g′(x)=e x,f′(x)=,(x<0),设直线m与g(x)相切与点(x1,),则切线斜率k2==,则x1=1,k2=e,设直线l与f(x)相切与点(x2,ln(﹣x2)),则切线斜率k1==,则x2=﹣e,k1=﹣,故k2k1=﹣×e=﹣1,则l⊥m.(Ⅱ)不妨设a>b,∵P﹣R=g()﹣=﹣=﹣<0,∴P<R,∵P﹣Q=g()﹣=﹣==,令φ(x)=2x﹣e x+e﹣x,则φ′(x)=2﹣e x﹣e﹣x<0,则φ(x)在(0,+∞)上为减函数,故φ(x)<φ(0)=0,取x=,则a﹣b﹣+<0,∴P<Q,⇔==1﹣令t(x)=﹣1+,则t′(x)=﹣=≥0,则t(x)在(0,+∞)上单调递增,故t(x)>t(0)=0,取x=a﹣b,则﹣1+>0,∴R>Q,综上,P<Q<R,【点评】本题主要考查导数的几何意义的应用以及利用作差法比较大小,考查学生的运算和推理能力,综合性较强,难度较大.20.【答案】【解析】解:(Ⅰ)设甲队以4:2,4:3获胜的事件分别为A,B,∵甲队第5,6场获胜的概率均为,第7场获胜的概率为,∴,,∴甲队以4:2,4:3获胜的概率分别为和.(Ⅱ)随机变量X的可能取值为5,6,7,∴,P(X=6)=,P(X=7)=,∴随机变量X的分布列为【点评】本题考查离散型随机变量的分布列,期望的求法,独立重复试验概率的乘法公式的应用,考查分析问题解决问题的能力.21.【答案】【解析】解:(1)f(1)=1+k=2;∴k=1,,定义域为{x∈R|x≠0};(2)为增函数;证明:设x1>x2>1,则:==;∵x 1>x 2>1;∴x 1﹣x 2>0,,; ∴f (x 1)>f (x 2);∴f (x )在(1,+∞)上为增函数.22.【答案】【解析】(1)由0x =,1y =,2z =知,甲、乙、丙3个盒中的球数分别为0,1,2, 此时的概率213111324P C ⎛⎫=⨯⨯= ⎪⎝⎭. (4分)23.【答案】(1)()5f x x =+,[]3,2x ∈-;(2)[]()10f f x x =+,{}3x ∈-.【解析】试题解析:(1)设()(0)f x kx b k =+>,111]由题意有:32,27,k b k b -+=⎧⎨+=⎩解得1,5,k b =⎧⎨=⎩ ∴()5f x x =+,[]3,2x ∈-.(2)(())(5)10f f x f x x =+=+,{}3x ∈-.考点:待定系数法.24.【答案】 【解析】【命题意图】本题考查椭圆方程与几何性质、直线与圆的位置关系等基础知识,意在考查逻辑思维能力、探索性能力、运算求解能力,以及方程思想、转化思想的应用.。
太和县二中2018-2019学年高三上学期11月月考数学试卷含答案
太和县二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y+4=0关于直线l 对称,则直线l 的方程为( ) A .x+y=0 B .x+y=2 C .x ﹣y=2 D .x ﹣y=﹣22. 如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A.= B.∥ C. D.3. 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( ) A .1372 B .2024 C .3136 D .44954. 已知一组函数f n (x )=sin n x+cos n x ,x ∈[0,],n ∈N *,则下列说法正确的个数是( )①∀n ∈N *,f n (x )≤恒成立②若f n (x )为常数函数,则n=2 ③f 4(x )在[0,]上单调递减,在[,]上单调递增.A .0B .1C .2D .35. 如图,在正四棱锥S ﹣ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论:①EP ∥BD ;②EP ⊥AC ;③EP ⊥面SAC ;④EP ∥面SBD 中恒成立的为( )A .②④B .③④C .①②D .①③6. 在复平面上,复数z=a+bi (a ,b ∈R )与复数i (i ﹣2)关于实轴对称,则a+b 的值为( )A .1B .﹣3C .3D .27. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .08. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.B.C.D.9.函数f(x)=有且只有一个零点时,a的取值范围是()A.a≤0 B.0<a<C.<a<1 D.a≤0或a>110.设集合A={x|x+2=0},集合B={x|x2﹣4=0},则A∩B=()A.{﹣2} B.{2} C.{﹣2,2} D.∅11.函数f(x)=e ln|x|+的大致图象为()A.B.C.D.12.已知函数f(x)=2x﹣+cosx,设x1,x2∈(0,π)(x1≠x2),且f(x1)=f(x2),若x1,x0,x2成等差数列,f′(x)是f(x)的导函数,则()A.f′(x0)<0 B.f′(x0)=0C.f′(x0)>0 D.f′(x0)的符号无法确定二、填空题13.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为.14.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是.15.设向量a=(1,-1),b=(0,t),若(2a+b)·a=2,则t=________.16.设复数z满足z(2﹣3i)=6+4i(i为虚数单位),则z的模为.17.若曲线f(x)=ae x+bsinx(a,b∈R)在x=0处与直线y=﹣1相切,则b﹣a=.18.已知椭圆+=1(a>b>0)上一点A关于原点的对称点为B,F为其左焦点,若AF⊥BF,设∠ABF=θ,且θ∈[,],则该椭圆离心率e的取值范围为.三、解答题19.已知椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.(Ⅰ)求椭圆C的方程;(Ⅱ)如图,若斜率为k(k≠0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且∠RF1F2=∠PF1Q,求证:直线l过定点,并求出斜率k的取值范围.20.已知命题p:x2﹣3x+2>0;命题q:0<x<a.若p是q的必要而不充分条件,求实数a的取值范围.21.已知函数f(x)=sin(ωx+φ)+1(ω>0,﹣<φ<)的最小正周期为π,图象过点P(0,1)(Ⅰ)求函数f(x)的解析式;(Ⅱ)设函数g(x)=f(x)+cos2x﹣1,将函数g(x)图象上所有的点向右平行移动个单位长度后,所得的图象在区间(0,m)内是单调函数,求实数m的最大值.22.已知△ABC 的顶点A (3,2),∠C 的平分线CD 所在直线方程为y ﹣1=0,AC 边上的高BH 所在直线方程为4x+2y ﹣9=0.(1)求顶点C 的坐标; (2)求△ABC 的面积.23.在平面直角坐标系中,已知M (﹣a ,0),N (a ,0),其中a ∈R ,若直线l 上有且只有一点P ,使得|PM|+|PN|=10,则称直线l 为“黄金直线”,点P 为“黄金点”.由此定义可判断以下说法中正确的是①当a=7时,坐标平面内不存在黄金直线; ②当a=5时,坐标平面内有无数条黄金直线;③当a=3时,黄金点的轨迹是个椭圆;④当a=0时,坐标平面内有且只有1条黄金直线.24.(本小题满分13分)如图,已知椭圆C :22221(0)x y a b a b +=>>C 的左顶点T 为圆心作圆T :222++=(0x y r(2)r>),设圆T与椭圆C交于点M、N.[_](1)求椭圆C的方程;⋅的最小值,并求此时圆T的方程;(2)求TM TN、(O为坐标(3)设点P是椭圆C上异于M、N的任意一点,且直线MP,NP分别与x轴交于点R S⋅为定值.原点),求证:OR OS【命题意图】本题考查椭圆的方程,直线与椭圆的位置关系,几何问题构建代数方法解决等基础知识,意在考查学生转化与化归能力,综合分析问题解决问题的能力,推理能力和运算能力.太和县二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】【分析】由题意可得圆心C1和圆心C2,设直线l方程为y=kx+b,由对称性可得k和b的方程组,解方程组可得.【解答】解:由题意可得圆C1圆心为(0,0),圆C2的圆心为(﹣2,2),∵圆C1:x2+y2=4和圆C2:x2+y2+4x﹣4y+4=0关于直线l对称,∴点(0,0)与(﹣2,2)关于直线l对称,设直线l方程为y=kx+b,∴•k=﹣1且=k•+b,解得k=1,b=2,故直线方程为x﹣y=﹣2,故选:D.2.【答案】D【解析】解:由图可知,,但不共线,故,故选D.【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题.3.【答案】C【解析】【专题】排列组合.【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.综上可知,可得不同三角形的个数为1372+1764=3136.故选:C.【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.4.【答案】D【解析】解:①∵x∈[0,],∴f(x)=sin n x+cos n x≤sinx+cosx=≤,因此正确;n②当n=1时,f1(x)=sinx+cosx,不是常数函数;当n=2时,f2(x)=sin2x+cos2x=1为常数函数,当n≠2时,令sin2x=t∈[0,1],则f n(x)=+=g(t),g′(t)=﹣=,当t∈时,g′(t)<0,函数g(t)单调递减;当t∈时,g′(t)>0,函数g(t)单调递增加,因此函数f n(x)不是常数函数,因此②正确.③f4(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=1﹣==+,当x∈[0,],4x∈[0,π],因此f4(x)在[0,]上单调递减,当x∈[,],4x∈[π,2π],因此f4(x)在[,]上单调递增,因此正确.综上可得:①②③都正确.故选:D.【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.5.【答案】A【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN.在①中:由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;在②中:由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=M,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.在③中:由①同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确.在④中:由②可知平面EMN∥平面SBD,∴EP∥平面SBD,因此正确.故选:A.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.6.【答案】A【解析】解:∵z=a+bi(a,b∈R)与复数i(i﹣2)=﹣1﹣2i关于实轴对称,∴,∴a+b=2﹣1=1,故选:A.【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.7.【答案】B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系.【专题】计算题;压轴题.【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D.分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)那么安全存放的不同方法种数为2A44=48.故选B.【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.8.【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故B不正确故A选项正确.故选:A.【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键.9.【答案】D【解析】解:∵f(1)=lg1=0,∴当x≤0时,函数f(x)没有零点,故﹣2x+a>0或﹣2x+a<0在(﹣∞,0]上恒成立,即a>2x,或a<2x在(﹣∞,0]上恒成立,故a>1或a≤0;故选D.【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题.10.【答案】A【解析】解:由A中的方程x+2=0,解得x=﹣2,即A={﹣2};由B中的方程x2﹣4=0,解得x=2或﹣2,即B={﹣2,2},则A∩B={﹣2}.故选A【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.11.【答案】C【解析】解:∵f(x)=e ln|x|+∴f(﹣x)=e ln|x|﹣f(﹣x)与f(x)即不恒等,也不恒反,故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,可排除A,D,当x→0+时,y→+∞,故排除B故选:C.12.【答案】A【解析】解:∵函数f(x)=2x﹣+cosx,设x1,x2∈(0,π)(x1≠x2),且f(x1)=f(x2),∴,∴存在x1<a<x2,f'(a)=0,∴,∴,解得a=,假设x1,x2在a的邻域内,即x2﹣x1≈0.∵,∴,∴f(x)的图象在a的邻域内的斜率不断减少小,斜率的导数为正,∴x0>a,又∵x>x0,又∵x>x0时,f''(x)递减,∴.故选:A.【点评】本题考查导数的性质的应用,是难题,解题时要认真审题,注意二阶导数和三阶导数的性质的合理运用.二、填空题13.【答案】.【解析】解:不等式组的可行域为:由题意,A(1,1),∴区域的面积为=(x3)=,由,可得可行域的面积为:1=,∴坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为:=故答案为:.【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积.14.【答案】[].【解析】解:由题设知C41p(1﹣p)3≤C42p2(1﹣p)2,解得p,∵0≤p≤1,∴,故答案为:[].15.【答案】【解析】(2a+b)·a=(2,-2+t)·(1,-1)=2×1+(-2+t)·(-1)=4-t=2,∴t=2.答案:216.【答案】2.【解析】解:∵复数z满足z(2﹣3i)=6+4i(i为虚数单位),∴z=,∴|z|===2,故答案为:2.【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的模,属于基础题.17.【答案】2.【解析】解:f(x)=ae x+bsinx的导数为f′(x)=ae x+bcosx,可得曲线y=f(x)在x=0处的切线的斜率为k=ae0+bcos0=a+b,由x=0处与直线y=﹣1相切,可得a+b=0,且ae0+bsin0=a=﹣1,解得a=﹣1,b=1,则b﹣a=2.故答案为:2.18.【答案】[,﹣1].【解析】解:设点A(acosα,bsinα),则B(﹣acosα,﹣bsinα)(0≤α≤);F(﹣c,0);∵AF⊥BF,∴=0,即(﹣c﹣acosα,﹣bsinα)(﹣c+acosα,bsinα)=0,故c2﹣a2cos2α﹣b2sin2α=0,cos2α==2﹣,故cosα=,而|AF|=,|AB|==2c,而sinθ===,∵θ∈[,],∴sinθ∈[,],∴≤≤,∴≤+≤,∴,即,解得,≤e≤﹣1;故答案为:[,﹣1].【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用.三、解答题19.【答案】【解析】(Ⅰ)解:椭圆的左,右焦点分别为F1(﹣c,0),F2(c,0),椭圆的离心率为,即有=,即a=c,b==c,以原点为圆心,椭圆的短半轴长为半径的圆方程为x2+y2=b2,直线y=x+与圆相切,则有=1=b,即有a=,则椭圆C的方程为+y2=1;(Ⅱ)证明:设Q(x1,y1),R(x2,y2),F1(﹣1,0),由∠RF1F2=∠PF1Q,可得直线QF1和RF1关于x轴对称,即有+=0,即+=0,即有x1y2+y2+x2y1+y1=0,①设直线PQ:y=kx+t,代入椭圆方程,可得(1+2k2)x2+4ktx+2t2﹣2=0,判别式△=16k2t2﹣4(1+2k2)(2t2﹣2)>0,即为t2﹣2k2<1②x1+x2=,x1x2=,③y1=kx1+t,y2=kx2+t,代入①可得,(k+t)(x1+x2)+2t+2kx1x2=0,将③代入,化简可得t=2k,则直线l的方程为y=kx+2k,即y=k(x+2).即有直线l恒过定点(﹣2,0).将t=2k代入②,可得2k2<1,解得﹣<k<0或0<k<.则直线l的斜率k的取值范围是(﹣,0)∪(0,).【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题.20.【答案】【解析】解:对于命题p:x2﹣3x+2>0,解得:x>2或x<1,∴命题p:x>2或x<1,又∵命题q:0<x<a,且p是q的必要而不充分条件,当a≤0时,q:x∈∅,符合题意;当a>0时,要使p是q的必要而不充分条件,需{x|0<x<a}⊊{x|x>2或x<1},∴0<a≤1.综上,取并集可得a∈(﹣∞,1].【点评】本题考查必要条件、充分条件与充要条件的判断方法,考查了一元二次不等式的解法,是基础题.21.【答案】【解析】解:(Ⅰ)∵函数f(x)=sin(ωx+φ)+1(ω>0,﹣<φ<)的最小正周期为π,∴ω==2,又由函数f(x)的图象过点P(0,1),∴sinφ=0,∴φ=0,∴函数f(x)=sin2x+1;(Ⅱ)∵函数g(x)=f(x)+cos2x﹣1=sin2x+cos2x=sin(2x+),将函数g(x)图象上所有的点向右平行移动个单位长度后,所得函数的解析式是:h(x)=sin[2(x﹣)+]=sin(2x﹣),∵x∈(0,m),∴2x﹣∈(﹣,2m﹣),又由h(x)在区间(0,m)内是单调函数,∴2m﹣≤,即m≤,即实数m的最大值为.【点评】本题考查的知识点是正弦型函数的图象和性质,函数图象的平移变换,熟练掌握正弦型函数的图象和性质,是解答的关键.22.【答案】【解析】解:(1)由高BH所在直线方程为4x+2y﹣9=0,∴=﹣2.∵直线AC⊥BH,∴k AC k BH=﹣1.∴,直线AC 的方程为,联立∴点C 的坐标C (1,1).(2),∴直线BC 的方程为,联立,即.点B 到直线AC :x ﹣2y+1=0的距离为.又,∴.【点评】本题考查了相互垂直的直线斜率之间的关系、角平分线的性质、点到直线的距离公式、两点间的距离公式、三角形的面积计算公式,属于基础题.23.【答案】 ①②③【解析】解:①当a=7时,|PM|+|PN|≥|MN|=14>10,因此坐标平面内不存在黄金直线;②当a=5时,|PM|+|PN|=10=|MN|,因此线段MN 上的点都满足上式,因此坐标平面内有无数条黄金直线,正确;③当a=3时,|PM|+|PN|=10>6=|MN|,黄金点的轨迹是个椭圆,正确;④当a=0时,点M 与N 重合为(0,0),|PM|+|PN|=10=2|PM|,点P 在以原点为圆心、5为半径的圆上,因此坐标平面内有且无数条黄金直线.故答案为:①②③. 【点评】本题考查了新定义“黄金直线”、“黄金点”、椭圆的定义、圆的定义等基础知识,考查了推理能力与计算能力,属于中档题.24.【答案】【解析】(1)依题意,得2a =,c e a ==, 1,322=-==∴c a b c ;故椭圆C 的方程为2214x y += . (3分)(3)设),(00y x P 由题意知:01x x ≠,01y y ≠±.直线MP 的方程为),(010100x x x x y y y y ---=-令0=y 得101001y y y x y x x R --=,同理:101001y y y x y x x S ++=,∴212021202021y y y x y x x x S R --=⋅. (10分)又点P M ,在椭圆上,故)1(4),1(421212020y x y x -=-=,∴4)(4)1(4)1(421202120212021202021=--=----=y y y y y y y y y y x x S R ,4R S R S OR OS x x x x ∴⋅=⋅==,即OR OS ⋅为定值4.(13分)。
太和区高中2018-2019学年高三上学期11月月考数学试卷含答案
太和区高中2018-2019学年高三上学期11月月考数学试卷含答案班级__________姓名__________ 分数__________一、选择题1. 若函数是偶函数,则函数的图象的对称轴方程是( )])1(+=x f y )(x f y =A . B .C .D .1=x 1-=x 2=x 2-=x 2. 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形3. 有下列四个命题:①“若a 2+b 2=0,则a ,b 全为0”的逆否命题;②“全等三角形的面积相等”的否命题;③“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题.其中真命题为( )A .①②B .①③C .②③D .③④4. 圆C 1:(x+2)2+(y ﹣2)2=1与圆C 2:(x ﹣2)2+(y ﹣5)2=16的位置关系是( )A .外离B .相交C .内切D .外切5. 已知函数f (x )=2x ,则f ′(x )=( )A .2xB .2x ln2C .2x +ln2D .6. 函数g (x )是偶函数,函数f (x )=g (x ﹣m ),若存在φ∈(,),使f (sin φ)=f (cos φ),则实数m 的取值范围是( )A .()B .(,]C .()D .(]7. 若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( )A .m ≥0或m <﹣1B .m >0或m <﹣1C .m >1或m ≤0D .m >1或m <08. 已知函数f (x )=﹣log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)9. P 是双曲线=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2的内切圆圆心的横坐标为( )A .aB .bC .cD .a+b ﹣c10.在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( )A .120°B .60°C .45°D .30°11.“a >0”是“方程y 2=ax 表示的曲线为抛物线”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要12.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )A .80B .40C .60D .20二、填空题13.命题“若1x ≥,则2421x x -+≥-”的否命题为.14.如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是 . 15.如图,在三棱锥中,,,,为等边三角形,则P ABC -PA PB PC ==PA PB ⊥PA PC ⊥PBC △PC 与平面所成角的正弦值为______________.ABC【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.16.设向量a=(1,-1),b=(0,t),若(2a+b)·a=2,则t=________.17.函数y=sin2x﹣2sinx的值域是y∈ .18.某种产品的加工需要A,B,C,D,E五道工艺,其中A必须在D的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)三、解答题19.已知椭圆C1:+=1(a>b>0)的离心率为e=,直线l:y=x+2与以原点为圆心,以椭圆C1的短半轴长为半径的圆O相切.(1)求椭圆C1的方程;(2)抛物线C2:y2=2px(p>0)与椭圆C1有公共焦点,设C2与x轴交于点Q,不同的两点R,S在C2上(R,S与Q不重合),且满足•=0,求||的取值范围.20.(理)设函数f(x)=(x+1)ln(x+1).(1)求f(x)的单调区间;(2)若对所有的x≥0,均有f(x)≥ax成立,求实数a的取值范围.21.已知f(x)=x2﹣3ax+2a2.(1)若实数a=1时,求不等式f(x)≤0的解集;(2)求不等式f(x)<0的解集.22.如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,且AD=2CD=2,AA1=2,∠A1AD=.若O为AD的中点,且CD⊥A1O(Ⅰ)求证:A1O⊥平面ABCD;(Ⅱ)线段BC上是否存在一点P,使得二面角D﹣A1A﹣P为?若存在,求出BP的长;不存在,说明理由. 23.已知函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示;(1)求ω,φ;(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)的图象,若y=g(x)图象的一个对称点为(,0),求θ的最小值.(3)对任意的x∈[,]时,方程f(x)=m有两个不等根,求m的取值范围.24.在平面直角坐标系xOy中,点B与点A(﹣1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于﹣.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.太和区高中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A 【解析】试题分析:∵函数向右平移个单位得出的图象,又是偶函数,对称轴方程)1(+=x f y )(x f y =)1(+=x f y 为,的对称轴方程为.故选A .0=x ∴)(x f y =1=x 考点:函数的对称性.2. 【答案】D【解析】解:∵sinC+sin (B ﹣A )=sin2A ,∴sin (A+B )+sin (B ﹣A )=sin2A ,∴sinAcosB+cosAsinB+sinBcosA ﹣cosBsinA=sin2A ,∴2cosAsinB=sin2A=2sinAcosA ,∴2cosA (sinA ﹣sinB )=0,∴cosA=0,或sinA=sinB ,∴A=,或a=b ,∴△ABC 为等腰三角形或直角三角形故选:D .【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA 而导致漏解,属中档题和易错题. 3. 【答案】B【解析】解:①由于“若a 2+b 2=0,则a ,b 全为0”是真命题,因此其逆否命题是真命题;②“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;③若x 2+2x+q=0有实根,则△=4﹣4q ≥0,解得q ≤1,因此“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题是真命题;④“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题.综上可得:真命题为:①③.故选:B .【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题. 4. 【答案】D【解析】解:由圆C 1:(x+2)2+(y ﹣2)2=1与圆C 2:(x ﹣2)2+(y ﹣5)2=16得:圆C1:圆心坐标为(﹣2,2),半径r=1;圆C2:圆心坐标为(2,5),半径R=4.两个圆心之间的距离d==5,而d=R+r,所以两圆的位置关系是外切.故选D5.【答案】B【解析】解:f(x)=2x,则f'(x)=2x ln2,故选:B.【点评】本题考查了导数运算法则,属于基础题.6.【答案】A【解析】解:∵函数g(x)是偶函数,函数f(x)=g(x﹣m),∴函数f(x)关于x=m对称,若φ∈(,),则sinφ>cosφ,则由f(sinφ)=f(cosφ),则=m,即m==(sinφ×+cosαφ)=sin(φ+)当φ∈(,),则φ+∈(,),则<sin(φ+)<,则<m<,故选:A【点评】本题主要考查函数奇偶性和对称性之间的应用以及三角函数的图象和性质,利用辅助角公式是解决本题的关键.7.【答案】A【解析】解:∵函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,∴﹣m=3﹣|x﹣1|无解,∵﹣|x﹣1|≤0,∴0<3﹣|x﹣1|≤1,∴﹣m≤0或﹣m>1,解得m≥0或m>﹣1故选:A.8.【答案】C【解析】解:∵f(x)=﹣log2x,∴f(2)=2>0,f(4)=﹣<0,满足f(2)f(4)<0,∴f(x)在区间(2,4)内必有零点,故选:C9.【答案】A【解析】解:如图设切点分别为M,N,Q,则△PF1F2的内切圆的圆心的横坐标与Q横坐标相同.由双曲线的定义,PF1﹣PF2=2a.由圆的切线性质PF1﹣PF2=F I M﹣F2N=F1Q﹣F2Q=2a,∵F1Q+F2Q=F1F2=2c,∴F2Q=c﹣a,OQ=a,Q横坐标为a.故选A.【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义. 10.【答案】A【解析】解:根据余弦定理可知cosA=∵a2=b2+bc+c2,∴bc=﹣(b2+c2﹣a2)∴cosA=﹣∴A=120°故选A11.【答案】A【解析】解:若方程y2=ax表示的曲线为抛物线,则a≠0.∴“a>0”是“方程y2=ax表示的曲线为抛物线”的充分不必要条件.故选A.【点评】本题主要考查充分条件和必要条件的判断,利用抛物线的定义是解决本题的关键,比较基础.12.【答案】B【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,∴三年级要抽取的学生是×200=40,故选:B.【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.二、填空题x x-+<-13.【答案】若1x<,则2421【解析】试题分析:若1x<,则2421-+<-,否命题要求条件和结论都否定.x x考点:否命题.14.【答案】 .【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高由于此三角形的高为,故圆锥的高为此圆锥的体积为=故答案为【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.15.【解析】16.【答案】【解析】(2a+b)·a=(2,-2+t)·(1,-1)=2×1+(-2+t)·(-1)=4-t=2,∴t=2.答案:217.【答案】 [﹣1,3] .【解析】解:∵函数y=sin2x﹣2sinx=(sinx﹣1)2﹣1,﹣1≤sinx≤1,∴0≤(sinx﹣1)2≤4,∴﹣1≤(sinx﹣1)2﹣1≤3.∴函数y=sin2x﹣2sinx的值域是y∈[﹣1,3].故答案为[﹣1,3].【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键.18.【答案】 24 【解析】解:由题意,B与C必须相邻,利用捆绑法,可得=48种方法,因为A必须在D的前面完成,所以完成加工该产品的不同工艺的排列顺序有48÷2=24种,故答案为:24.【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础.三、解答题19.【答案】【解析】解:(1)由直线l:y=x+2与圆x2+y2=b2相切,∴=b,解得b=.联立解得a=,c=1.∴椭圆的方程是C1:.(2)由椭圆的右焦点(1,0),抛物线y2=2px的焦点,∵有公共的焦点,∴,解得p=2,故抛物线C2的方程为:y2=4x.易知Q(0,0),设R(,y1),S(,y2),∴=(,y1),=,由•=0,得,∵y1≠y2,∴,∴=64,当且仅当,即y1=±4时等号成立.又||===,当=64,即y2=±8时,||min=8,故||的取值范围是[8,+∞).【点评】本题考查了椭圆与抛物线的标准方程及其性质、向量的数量积运算和基本不等式的性质、点到直线的距离公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.20.【答案】【解析】解:(1)由f'(x)=ln(x+1)+1≥0得,∴f(x)的增区间为,减区间为.(2)令g(x)=(x+1)ln(x+1)﹣ax.“不等式f(x)≥ax在x≥0时恒成立”⇔“g(x)≥g(0)在x≥0时恒成立.”g'(x)=ln(x+1)+1﹣a=0⇒x=e a﹣1﹣1.当x∈(﹣1,e a﹣1﹣1)时,g'(x)<0,g(x)为减函数.当x∈(e a﹣1﹣1,+∞)时,g'(x)>0,g(x)为增函数.“g(x)≥0在x≥0时恒成立”⇔“e a﹣1﹣1≤0”,即e a﹣1≤e0,即a﹣1≤0,即a≤1.故a的取值范围是(﹣∞,1].21.【答案】【解析】解:(1)当a=1时,依题意得x2﹣3x+2≤0因式分解为:(x﹣2)(x﹣1)≤0,解得:x≥1或x≤2.∴1≤x≤2.不等式的解集为{x|1≤x≤2}.(2)依题意得x2﹣3ax+2a2<0∴(x﹣a)(x﹣2a)<0…对应方程(x﹣a)(x﹣2a)=0得x1=a,x2=2a当a=0时,x∈∅.当a>0时,a<2a,∴a<x<2a;当a<0时,a>2a,∴2a<x<a;综上所述,当a=0时,原不等式的解集为∅;当a>0时,原不等式的解集为{x|a<x<2a};当a<0时,原不等式的解集为{x|2a<x<a};22.【答案】【解析】满分(13分).(Ⅰ)证明:∵∠A1AD=,且AA1=2,AO=1,∴A1O==,…(2分)∴+AD2=AA12,∴A1O⊥AD.…(3分)又A1O⊥CD,且CD∩AD=D,∴A1O⊥平面ABCD.…(5分)(Ⅱ)解:过O作Ox∥AB,以O为原点,建立空间直角坐标系O﹣xyz(如图),则A(0,﹣1,0),A1(0,0,),…(6分)设P(1,m,0)m∈[﹣1,1],平面A1AP的法向量为=(x,y,z),∵=,=(1,m+1,0),且取z=1,得=.…(8分)又A1O⊥平面ABCD,A1O⊂平面A1ADD1∴平面A1ADD1⊥平面ABCD.又CD⊥AD,且平面A1ADD1∩平面ABCD=AD,∴CD⊥平面A1ADD1.不妨设平面A1ADD1的法向量为=(1,0,0).…(10分)由题意得==,…(12分)解得m=1或m=﹣3(舍去).∴当BP的长为2时,二面角D﹣A1A﹣P的值为.…(13分)【点评】本小题主要考查直线与平面的位置关系,二面角的大小等基础知识,考查空间想象能力、推理论证能力和运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想.23.【答案】【解析】解:(1)根据函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象,可得•=,求得ω=2.再根据五点法作图可得2•+φ=,求得φ=﹣,∴f(x)=2sin(2x﹣).(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)=2sin=2sin(2x+2θ﹣)的图象,∵y=g(x)图象的一个对称点为(,0),∴2•+2θ﹣=kπ,k∈Z,∴θ=﹣,故θ的最小正值为.(3)对任意的x∈[,]时,2x﹣∈[,],sin(2x﹣)∈,即f(x)∈,∵方程f(x)=m有两个不等根,结合函数f(x),x∈[,]时的图象可得,1≤m<2.24.【答案】【解析】解:(Ⅰ)因为点B与A(﹣1,1)关于原点O对称,所以点B得坐标为(1,﹣1).设点P的坐标为(x,y)化简得x2+3y2=4(x≠±1).故动点P轨迹方程为x2+3y2=4(x≠±1)(Ⅱ)解:若存在点P使得△PAB与△PMN的面积相等,设点P的坐标为(x0,y0)则.因为sin∠APB=sin∠MPN,所以所以=即(3﹣x0)2=|x02﹣1|,解得因为x02+3y02=4,所以故存在点P使得△PAB与△PMN的面积相等,此时点P的坐标为.【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题.。
太和县第三中学校2018-2019学年高三上学期11月月考数学试卷含答案
太和县第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.为得到函数的图象,只需将函数y=sin2x 的图象( )A.向左平移个长度单位 B.向右平移个长度单位 C.向左平移个长度单位D.向右平移个长度单位2. 过点(﹣1,3)且平行于直线x ﹣2y+3=0的直线方程为( )A .x ﹣2y+7=0B .2x+y ﹣1=0C .x ﹣2y ﹣5=0D .2x+y ﹣5=03. 设n S 是等差数列{}n a 的前项和,若5359a a =,则95SS =( ) A .1 B .2 C .3 D .44. 已知实数a ,b ,c 满足不等式0<a <b <c <1,且M=2a ,N=5﹣b ,P=()c ,则M 、N 、P 的大小关系为( )A .M >N >PB .P <M <NC .N >P >M5. 执行如图所示的程序框图,若a=1,b=2,则输出的结果是( )A .9B .11C .13D .156. 定义在R 上的奇函数f (x ),满足,且在(0,+∞)上单调递减,则xf (x )>0的解集为( )A. B.C.D.7. 已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F 1、F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=10,椭圆与双曲线的离心率分别为e 1、e 2,则e 1•e 2+1的取值范围为( ) A .(1,+∞)B.(,+∞) C.(,+∞) D.(,+∞)班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )A .20,2B .24,4C .25,2D .25,4 9. 已知集合A={﹣1,0,1,2},集合B={0,2,4},则A ∪B 等于( )A .{﹣1,0,1,2,4}B .{﹣1,0,2,4}C .{0,2,4}D .{0,1,2,4}10.在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 11.设命题p :,则p 为( )A .B .C .D .12.若圆226260x y x y +--+=上有且仅有三个点到直线10(ax y a -+=是实数)的距离为,则a =( )A . 1±B . 4±C .D .±二、填空题13.如图,在平面直角坐标系xOy 中,将直线y=与直线x=1及x 轴所围成的图形旋转一周得到一个圆锥,圆锥的体积V 圆锥=π()2dx=x 3|=.据此类推:将曲线y=x 2与直线y=4所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V= .14.方程22x ﹣1=的解x= .15.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= .16.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )>0,则使得f (x )>0成立的x 的取值范围是 .17.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111]18.设函数f (x )=,则f (f (﹣2))的值为 .三、解答题19.(本小题满分12分)已知函数21()cos cos 2f x x x x =--. (1)求函数()y f x =在[0,]2π上的最大值和最小值; (2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足2c =,3a =,()0f B =,求sin A 的值.1111]20.已知函数f (x )=2cosx (sinx+cosx )﹣1(Ⅰ)求f (x )在区间[0,]上的最大值;(Ⅱ)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且f (B )=1,a+c=2,求b 的取值范围.21.在平面直角坐标系xOy 中.己知直线l 的参数方程为(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρ=4. (1)写出直线l 的普通方程与曲线C 的直角坐标系方程; (2)直线l 与曲线C 相交于A 、B 两点,求∠AOB 的值.22.【2017-2018学年度第一学期如皋市高三年级第一次联考】设函数()1ln 1f x a x x=+-. (1)当2a =时,求函数()f x 在点()()11f ,处的切线方程; (2)讨论函数()f x 的单调性;(3)当102a <<时,求证:对任意1+2x ⎛⎫∈∞ ⎪⎝⎭,,都有1e x aa x +⎛⎫+< ⎪⎝⎭.23.如图,椭圆C 1:的离心率为,x 轴被曲线C 2:y=x 2﹣b 截得的线段长等于椭圆C 1的短轴长.C 2与y 轴的交点为M ,过点M 的两条互相垂直的直线l 1,l 2分别交抛物线于A 、B 两点,交椭圆于D 、E 两点, (Ⅰ)求C 1、C 2的方程;(Ⅱ)记△MAB ,△MDE 的面积分别为S 1、S 2,若,求直线AB 的方程.24.(本小题满分10分)选修4-1:几何证明选讲如图所示,BC 是半圆O 的直径,AD BC ⊥,垂足为D ,AB AF =,BF 与AD 、AO 分别交于点E 、G . (1)证明:DAO FBC ∠=∠; (2)证明:AE BE =.EFG COAB太和县第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.2.【答案】A【解析】解:由题意可设所求的直线方程为x﹣2y+c=0∵过点(﹣1,3)代入可得﹣1﹣6+c=0 则c=7∴x﹣2y+7=0故选A.【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x﹣2y+c=0.3.【答案】A【解析】1111]试题分析:199515539()9215()52a aS aa aS a+===+.故选A.111]考点:等差数列的前项和.4.【答案】A【解析】解:∵0<a<b<c<1,∴1<2a<2,<5﹣b<1,<()c<1,5﹣b=()b>()c>()c,即M>N>P,故选:A【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键.5.【答案】C【解析】解:当a=1时,不满足退出循环的条件,故a=5,当a=5时,不满足退出循环的条件,故a=9,当a=9时,不满足退出循环的条件,故a=13,当a=13时,满足退出循环的条件,故输出的结果为13,故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.6.【答案】B【解析】解:∵函数f(x)是奇函数,在(0,+∞)上单调递减,且f ()=0,∴f (﹣)=0,且在区间(﹣∞,0)上单调递减,∵当x<0,当﹣<x<0时,f(x)<0,此时xf(x)>0当x>0,当0<x<时,f(x)>0,此时xf(x)>0综上xf(x)>0的解集为故选B7.【答案】B【解析】解:设椭圆和双曲线的半焦距为c,|PF1|=m,|PF2|=n,(m>n),由于△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,即有m=10,n=2c,由椭圆的定义可得m+n=2a1,由双曲线的定义可得m﹣n=2a2,即有a1=5+c,a2=5﹣c,(c<5),再由三角形的两边之和大于第三边,可得2c+2c=4c>10,则c>,即有<c<5.由离心率公式可得e1•e2===,由于1<<4,则有>.则e1•e2+1.∴e1•e2+1的取值范围为(,+∞).故选:B.【点评】本题考查椭圆和双曲线的定义和性质,考查离心率的求法,考查三角形的三边关系,考查运算能力,属于中档题.8.【答案】C【解析】考点:茎叶图,频率分布直方图.9. 【答案】A【解析】解:∵A={﹣1,0,1,2},B={0,2,4}, ∴A ∪B={﹣1,0,1,2}∪{0,2,4}={﹣1,0,1,2,4}. 故选:A .【点评】本题考查并集及其运算,是基础的会考题型.10.【答案】D 【解析】试题分析:在ABC ∆中,22tan sin tan sin A B B A =,化简得22sin sin sin sin cos cos A BB A A B=,解得 sin sin sin cos sin cos cos cos B AA AB B A B =⇒=,即si n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,故选D .考点:三角形形状的判定.【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2A B π+=是试题的一个难点,属于中档试题. 11.【答案】A【解析】【知识点】全称量词与存在性量词 【试题解析】因为特称命题的否定是全称命题,p 为:。
太和县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
太和县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 正方体的内切球与外接球的半径之比为( )A .B .C .D .2. 若关于x 的不等式07|2||1|>-+-++m x x 的解集为R ,则参数m 的取值范围为( )A .),4(+∞B .),4[+∞C .)4,(-∞D .]4,(-∞【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.3. 如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A 1CA.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.4. 若⎩⎨⎧≥<+=-)2(,2)2(),2()(x x x f x f x则)1(f 的值为( ) A .8 B .81 C .2 D .215. 若复数z=2﹣i ( i 为虚数单位),则=( )A .4+2iB .20+10iC .4﹣2iD .6. 执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .11?B .12?C .13?D .14?7. 已知向量=(2,﹣3,5)与向量=(3,λ,)平行,则λ=( )A .B .C .﹣D .﹣8. 图1是由哪个平面图形旋转得到的( )A .B .C .D .9. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sinB=2sinC ,a 2﹣c 2=3bc ,则A 等于( ) A .30° B .60° C .120° D .150°10.设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .011.已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为183O 的体积为( )A .81πB .128πC .144πD .288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.12.函数y=x+xlnx 的单调递增区间是( ) A .(0,e ﹣2)B .(e ﹣2,+∞)C .(﹣∞,e ﹣2)D .(e ﹣2,+∞)二、填空题13.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .14.设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤ 恒成立,则实数的取值范围是 .15.若tan θ+=4,则sin2θ= .16.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 .17. 设函数()x f x e =,()ln g x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <; ②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-; ③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.18.设函数,其中[x]表示不超过x 的最大整数.若方程f (x )=ax 有三个不同的实数根,则实数a 的取值范围是 .三、解答题19.已知函数.(Ⅰ)若函数f (x )在区间[1,+∞)内单调递增,求实数a 的取值范围; (Ⅱ)求函数f (x )在区间[1,e]上的最小值.20.已知f(x)=x3+3ax2+bx在x=﹣1时有极值为0.(1)求常数a,b的值;(2)求f(x)在[﹣2,﹣]的最值.21.已知二次函数f(x)=x2+bx+c,其中常数b,c∈R.(Ⅰ)若任意的x∈[﹣1,1],f(x)≥0,f(2+x)≤0,试求实数c的取值范围;(Ⅱ)若对任意的x1,x2∈[﹣1,1],有|f(x1)﹣f(x2)|≤4,试求实数b的取值范围.22.已知(+)n展开式中的所有二项式系数和为512,(1)求展开式中的常数项;(2)求展开式中所有项的系数之和.23.在平面直角坐标系xOy中,点P(x,y)满足=3,其中=(2x+3,y),=(2x﹣﹣3,3y).(1)求点P的轨迹方程;(2)过点F(0,1)的直线l交点P的轨迹于A,B两点,若|AB|=,求直线l的方程.24.(本小题满分12分)已知向量,a b 满足:||1a =,||6b =,()2a b a ∙-=. (1)求向量与的夹角; (2)求|2|a b -.太和县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长, 设正方体的棱长为:2a ,所以内切球的半径为:a ;外接球的直径为2a ,半径为:a ,所以,正方体的内切球与外接球的半径之比为:故选C2. 【答案】A3. 【答案】D.第Ⅱ卷(共110分)4. 【答案】B 【解析】试题分析:()()311328f f -===,故选B 。
太和县第一中学2018-2019学年高三上学期11月月考数学试卷含答案
太和县第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知椭圆(0<b <3),左右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为8,则b 的值是()A .B .C .D .2. 下列命题中正确的是()A .若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为真命题B .命题“若xy=0,则x=0”的否命题为:“若xy=0,则x ≠0”C .“”是“”的充分不必要条件D .命题“∀x ∈R ,2x >0”的否定是“”3. 已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为()A .{1}B .{1,2}C .{1,2,3}D .{0,1,2}4. 已知函数f (x )=若f (-6)+f (log 26)=9,则a 的值为( ){log 2(a -x ),x <12x ,x ≥1)A .4B .3C .2D .15. 设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( )A .m ∥α,n ∥β且α∥β,则m ∥nB .m ⊥α,n ⊥β且α⊥β,则m ⊥nC .m ⊥α,n ⊂β,m ⊥n ,则α⊥βD .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β6. 下列命题中正确的个数是( )①如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行.③若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点.④若直线l 上有无数个点不在平面α内,则l ∥α.A .0B .1C .2D .37. 已知x ,y 满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( )A .1B .C .D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是( )A .B .C .D .9. 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为()A .9.6B .7.68C .6.144D .4.915210.设是偶函数,且在上是增函数,又,则使的的取值范围是( )()f x (0,)+∞(5)0f =()0f x >A .或B .或C .D .或50x -<<5x >5x <-5x >55x -<<5x <-05x <<11.设复数z 满足z (1+i )=2(i 为虚数单位),则z=( )A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i12.如图所示,函数y=|2x ﹣2|的图象是()A .B .C .D .二、填空题13.过椭圆+=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为 .14.如图:直三棱柱ABC﹣A′B′C′的体积为V,点P、Q分别在侧棱AA′和CC′上,AP=C′Q,则四棱锥B﹣APQC的体积为 .15.设x,y 满足的约束条件,则z=x+2y的最大值为 .656516.一根铁丝长为米,铁丝上有个节点将铁丝等分,现从个节点中随机选一个将铁丝剪断,则所得的2两段铁丝长均不小于的概率为________.17.如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为 cm3.A18.在复平面内,记复数+i 对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应的复数为 .三、解答题19.已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.20.如图,在四棱锥P ﹣ABCD 中,底面ABCD 为等腰梯形,AD ∥BC ,PA=AB=BC=CD=2,PD=2,PA ⊥PD ,Q 为PD 的中点.(Ⅰ)证明:CQ ∥平面PAB ;(Ⅱ)若平面PAD ⊥底面ABCD ,求直线PD 与平面AQC 所成角的正弦值.21.设a >0,是R 上的偶函数.(Ⅰ)求a 的值;(Ⅱ)证明:f (x )在(0,+∞)上是增函数.22.已知矩阵A =,向量=.求向量,使得A 2=.23.(本小题满分12分)已知函数f (x )=x 2+x +a ,g (x )=e x .12(1)记曲线y =g (x )关于直线y =x 对称的曲线为y =h (x ),且曲线y =h (x )的一条切线方程为mx -y -1=0,求m 的值;(2)讨论函数φ(x )=f (x )-g (x )的零点个数,若零点在区间(0,1)上,求a 的取值范围.24.一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:转速x(转/秒)1614128每小时生产有缺陷的零件数y(件)11985(1)画出散点图;(2)如果y与x有线性相关的关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为10个,那么机器的转运速度应控制在什么范围内?参考公式:线性回归方程系数公式开始=,=﹣x.太和县第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:∵|AF1|+|AF2|=|BF1|+|BF2|=2a=6,|AF2|+|BF2|的最大值为8,∴|AB|的最小值为4,当AB⊥x轴时,|AB|取得最小值为4,∴=4,解得b2=6,b=.故选:D.【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.2.【答案】D【解析】解:若命题p为真命题,命题q为假命题,则命题“p∧q”为假命题,故A不正确;命题“若xy=0,则x=0”的否命题为:“若xy≠0,则x≠0”,故B不正确;“”⇒“+2kπ,或,k∈Z”,“”⇒“”,故“”是“”的必要不充分条件,故C不正确;命题“∀x∈R,2x>0”的否定是“”,故D正确.故选D.【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答.3.【答案】B【解析】解:图中阴影部分表示的集合中的元素是在集合A中,但不在集合B中.由韦恩图可知阴影部分表示的集合为(C U B)∩A,又A={1,2,3,4,5},B={x∈R|x≥3},∵C U B={x|x<3},∴(C U B)∩A={1,2}.则图中阴影部分表示的集合是:{1,2}.故选B.【点评】本小题主要考查Venn图表达集合的关系及运算、Venn图的应用等基础知识,考查数形结合思想.属于基础题.4.【答案】【解析】选C.由题意得log2(a+6)+2log26=9.即log2(a+6)=3,∴a+6=23=8,∴a=2,故选C.5.【答案】B【解析】解:对于A,若m∥α,n∥β且α∥β,说明m、n是分别在平行平面内的直线,它们的位置关系应该是平行或异面,故A错;对于B,由m⊥α,n⊥β且α⊥β,则m与n一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m 与n相交,且设m与n确定的平面为γ,则γ与α和β的交线所成的角即为α与β所成的角,因为α⊥β,所以m与n所成的角为90°,故命题B正确.对于C,根据面面垂直的性质,可知m⊥α,n⊂β,m⊥n,∴n∥α,∴α∥β也可能α∩β=l,也可能α⊥β,故C 不正确;对于D,若“m⊂α,n⊂α,m∥β,n∥β”,则“α∥β”也可能α∩β=l,所以D不成立.故选B.【点评】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力,基本知识的应用题目.6.【答案】B【解析】解:①如果两条平行直线中的一条与一个平面平行,那么另一条与这个平面平行或在这个平面内,故①错误.②若直线l与平面α平行,则l与平面α内的任意一条直线都平行或异面,故②错误.③若直线l与平面α平行,则l与平面α内的任意一条直线都平行或异面,故l与平面α内的任意一条直线都没有公共点,故③正确.④若直线l上有无数个点不在平面α内,则l∥α或l与平面相交,故④错误.故选:B.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.7.【答案】B【解析】解:由约束条件作出可行域如图,由图可知A(a,a),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=.故选:B.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.8.【答案】A【解析】【知识点】空间几何体的表面积与体积【试题解析】由题知:是直角三角形,又,所以。
太和区第一中学2018-2019学年高三上学期11月月考数学试卷含答案
太和区第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 下列函数中哪个与函数y=x 相等( )A .y=()2B .y= C .y=D .y=2. 拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( ) A .4 B .6 C .8 D .103. 曲线y=在点(1,﹣1)处的切线方程为( )A .y=x ﹣2B .y=﹣3x+2C .y=2x ﹣3D .y=﹣2x+14. 在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a 为无理数,则在过点P (a,﹣)的所有直线中( )A .有无穷多条直线,每条直线上至少存在两个有理点B .恰有n (n ≥2)条直线,每条直线上至少存在两个有理点C .有且仅有一条直线至少过两个有理点D .每条直线至多过一个有理点5. 如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为( )A. B . C. D. 6. 已知函数f (x )=ax 3﹣3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( ) A .(1,+∞) B .(2,+∞)C .(﹣∞,﹣1)D .(﹣∞,﹣2)7. 已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .128. 抛物线y=﹣8x 2的准线方程是( ) A .y=B .y=2C .x=D .y=﹣2班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( ) A .725B .725- C. 725± D .242510.已知直线a ,b 都与平面α相交,则a ,b 的位置关系是( ) A .平行 B .相交 C .异面 D .以上都有可能11.已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A .B .ln (x 2+1)>ln (y 2+1)C .x 3>y 3D .sinx >siny12.定义运算,例如.若已知,则=( )A .B .C .D .二、填空题13.设a 抛掷一枚骰子得到的点数,则方程x 2+ax+a=0有两个不等实数根的概率为 .14.设全集______. 15.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题: A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等1617.-233+log 6-log 42()= . 18.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.三、解答题19.已知集合A={x|x <﹣1,或x >2},B={x|2p ﹣1≤x ≤p+3}.(1)若p=,求A ∩B ;(2)若A∩B=B,求实数p的取值范围.20.如图,F1,F2是椭圆C:+y2=1的左、右焦点,A,B是椭圆C上的两个动点,且线段AB的中点M在直线l:x=﹣上.(1)若B的坐标为(0,1),求点M的坐标;(2)求•的取值范围.21.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点.(1)证明:EF∥平面PAC;(2)证明:AF⊥EF.22.(本小题满分12分)一直线被两直线12:460,:3560l x y l x y ++=--=截得线段的中点是P 点, 当P 点为()0,0时, 求此直线方程.23.已知函数f (x )=a x (a >0且a ≠1)的图象经过点(2,). (1)求a 的值;(2)比较f (2)与f (b 2+2)的大小;(3)求函数f (x )=a (x ≥0)的值域.24.已知等边三角形PAB 的边长为2,四边形ABCD 为矩形,AD=4,平面PAB ⊥平面ABCD ,E ,F ,G 分别是线段AB ,CD ,PD 上的点.(1)如图1,若G 为线段PD 的中点,BE=DF=,证明:PB ∥平面EFG ;(2)如图2,若E ,F 分别是线段AB ,CD 的中点,DG=2GP ,试问:矩形ABCD 内(包括边界)能否找到点H ,使之同时满足下面两个条件,并说明理由.①点H到点F的距离与点H到直线AB的距离之差大于4;②GH⊥PD.太和区第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】B【解析】解:A .函数的定义域为{x|x ≥0},两个函数的定义域不同. B .函数的定义域为R ,两个函数的定义域和对应关系相同,是同一函数.C .函数的定义域为R ,y=|x|,对应关系不一致.D .函数的定义域为{x|x ≠0},两个函数的定义域不同.故选B .【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数.2. 【答案】【解析】解析:选D.双曲线C 的方程为x 22-y 22=1,其焦点为(±2,0),由题意得p2=2,∴p =4,即拋物线方程为y 2=8x , 双曲线C 的渐近线方程为y =±x ,由⎩⎪⎨⎪⎧y 2=8x y =±x ,解得 x =0(舍去)或x =8,则P 到E 的准线的距离为8+2=10,故选D.3. 【答案】D【解析】解:y ′=()′=,∴k=y ′|x=1=﹣2.l :y+1=﹣2(x ﹣1),则y=﹣2x+1. 故选:D4. 【答案】C【解析】解:设一条直线上存在两个有理点A (x 1,y 1),B (x 2,y 2),由于也在此直线上,所以,当x 1=x 2时,有x 1=x 2=a 为无理数,与假设矛盾,此时该直线不存在有理点;当x 1≠x 2时,直线的斜率存在,且有,又x 2﹣a 为无理数,而为有理数,所以只能是,且y 2﹣y 1=0,即;所以满足条件的直线只有一条,且直线方程是;所以,正确的选项为C . 故选:C .【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目.5. 【答案】C 【解析】考点:平面图形的直观图.6. 【答案】D【解析】解:∵f (x )=ax 3﹣3x 2+1,∴f ′(x )=3ax 2﹣6x=3x (ax ﹣2),f (0)=1;①当a=0时,f (x )=﹣3x 2+1有两个零点,不成立;②当a >0时,f (x )=ax 3﹣3x 2+1在(﹣∞,0)上有零点,故不成立; ③当a <0时,f (x )=ax 3﹣3x 2+1在(0,+∞)上有且只有一个零点;故f (x )=ax 3﹣3x 2+1在(﹣∞,0)上没有零点;而当x=时,f (x )=ax 3﹣3x 2+1在(﹣∞,0)上取得最小值;故f ()=﹣3•+1>0;故a <﹣2; 综上所述,实数a 的取值范围是(﹣∞,﹣2); 故选:D .7. 【答案】D 【解析】试题分析:∵在等比数列}{a n 中,41,2a 52==a ,21,81q 253=∴==∴q a a . 考点:等比数列的性质. 8. 【答案】A【解析】解:整理抛物线方程得x 2=﹣y ,∴p=∵抛物线方程开口向下,∴准线方程是y=,故选:A .【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.9. 【答案】A 【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理R CcB b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化. 10.【答案】D【解析】解:如图,在正方体ABCD ﹣A 1B 1C 1D 1中, AA 1∩平面ABCD=A ,BB 1∩平面ABCD=B ,AA 1∥BB 1; AA 1∩平面ABCD=A ,AB 1∩平面ABCD=A ,AA 1与AB 1相交; AA 1∩平面ABCD=A ,CD 1∩平面ABCD=C ,AA 1与CD 1异面.∴直线a ,b 都与平面α相交,则a ,b 的位置关系是相交、平行或异面. 故选:D .11.【答案】C【解析】解:∵实数x 、y 满足a x <a y(1>a >0),∴y <x .对于A.取x=1,y=0,不成立,因此不正确;对于B.取y=﹣2,x=﹣1,ln(x2+1)>ln(y2+1)不成立;对于C.利用y=x3在R上单调递增,可得x3>y3,正确;对于D.取y=﹣π,x=,但是sinx=,siny=,sinx>siny不成立,不正确.故选:C.【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力,属于基础题.12.【答案】D【解析】解:由新定义可得,====.故选:D.【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.二、填空题13.【答案】.【解析】解:∵a是甲抛掷一枚骰子得到的点数,∴试验发生包含的事件数6,∵方程x2+ax+a=0 有两个不等实根,∴a2﹣4a>0,解得a>4,∵a是正整数,∴a=5,6,即满足条件的事件有2种结果,∴所求的概率是=,故答案为:【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键.14.【答案】{7,9}【解析】∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁U A)={4,6,7,9 },∴(∁U A)∩B={7,9},故答案为:{7,9}。
太和县实验中学2018-2019学年高三上学期11月月考数学试卷含答案
太和县实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( ) A.B.C.D.2. 已知函数f (x )=Asin (ωx﹣)(A >0,ω>0)的部分图象如图所示,△EFG 是边长为2 的等边三角形,为了得到g (x )=Asin ωx 的图象,只需将f (x )的图象( )A.向左平移个长度单位 B.向右平移个长度单位 C.向左平移个长度单位 D.向右平移个长度单位3. 如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是( )A .B .C .D .4. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( ) A .8B .1C .5D .﹣15. 命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )A .∀x ≤0,都有x 2﹣x >0B .∀x >0,都有x 2﹣x ≤0C .∃x >0,使得x 2﹣x <0D .∃x ≤0,使得x 2﹣x >06. 集合U=R ,A={x|x 2﹣x ﹣2<0},B={x|y=ln (1﹣x )},则图中阴影部分表示的集合是( )A .{x|x ≥1}B .{x|1≤x <2}C .{x|0<x ≤1}D .{x|x ≤1}7. 已知函数f (x )=a x (a >0且a ≠1)在(0,2)内的值域是(1,a 2),则函数y=f (x )的图象大致是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.B.C.D.8.一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为()A.4πB.C. 5πD. 2π+【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.9.在△ABC中,若a=2bcosC,则△ABC一定是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形10.单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则()A.该几何体体积为B.该几何体体积可能为C.该几何体表面积应为+D.该几何体唯一11.459和357的最大公约数()A.3 B.9 C.17 D.5112.设函数y=的定义域为M,集合N={y|y=x2,x∈R},则M∩N=()A.∅B.N C.[1,+∞)D.M二、填空题13.抛物线y2=4x的焦点为F,过F且倾斜角等于的直线与抛物线在x轴上方的曲线交于点A,则AF的长为.14.设曲线y=x n+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为x n,令a n=lgx n,则a1+a2+…+a99的值为.15.若“x<a”是“x2﹣2x﹣3≥0”的充分不必要条件,则a的取值范围为.16.设p :f (x )=e x +lnx+2x 2+mx+1在(0,+∞)上单调递增,q :m ≥﹣5,则p 是q 的 条件.17.【2017-2018第一学期东台安丰中学高三第一次月考】函数()2ln f x x x =-的单调递增区间为__________.18.已知函数f (x )=sinx ﹣cosx ,则= .三、解答题19.设函数f (x )=lnx+a (1﹣x ). (Ⅰ)讨论:f (x )的单调性;(Ⅱ)当f (x )有最大值,且最大值大于2a ﹣2时,求a 的取值范围.20.(本小题满分12分)如图,在四棱锥ABCD S -中,底面ABCD 为菱形,Q P E 、、分别是棱AB SC AD 、、的中点,且⊥SE 平面ABCD .(1)求证://PQ 平面SAD ; (2)求证:平面⊥SAC 平面SEQ .21.已知函数f (x )=xlnx+ax (a ∈R ). (Ⅰ)若a=﹣2,求函数f (x )的单调区间;(Ⅱ)若对任意x ∈(1,+∞),f (x )>k (x ﹣1)+ax ﹣x 恒成立,求正整数k 的值.(参考数据:ln2=0.6931,ln3=1.0986)22.在平面直角坐标系xOy 中,点B 与点A (﹣1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于﹣.(Ⅰ)求动点P 的轨迹方程;(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M ,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.23.设点P 的坐标为(x ﹣3,y ﹣2).(1)在一个盒子中,放有标号为1,2,3的三张卡片,现在从盒子中随机取出一张卡片,记下标号后把卡片放回盒中,再从盒子中随机取出一张卡片记下标号,记先后两次抽取卡片的标号分别为x 、y ,求点P 在第二象限的概率;(2)若利用计算机随机在区间上先后取两个数分别记为x 、y ,求点P 在第三象限的概率.24.(本小题满分12分)已知函数21()cos cos 2f x x x x =--. (1)求函数()y f x =在[0,]2π上的最大值和最小值; (2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足2c =,3a =,()0f B =,求sin A 的值.1111]太和县实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=.故选:A.【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.2.【答案】A【解析】解:∵△EFG是边长为2的正三角形,∴三角形的高为,即A=,函数的周期T=2FG=4,即T==4,解得ω==,即f(x)=Asinωx=sin(x﹣),g(x)=sin x,由于f(x)=sin(x﹣)=sin[(x﹣)],故为了得到g(x)=Asinωx的图象,只需将f(x)的图象向左平移个长度单位.故选:A.【点评】本题主要考查三角函数的图象和性质,利用函数的图象确定函数的解析式是解决本题的关键,属于中档题.3.【答案】A【解析】【知识点】空间几何体的表面积与体积【试题解析】由题知:是直角三角形,又,所以。
太和县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
太和县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( ) A .S 18=72 B .S 19=76 C .S 20=80D .S 21=842. 在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a 为无理数,则在过点P (a,﹣)的所有直线中( )A .有无穷多条直线,每条直线上至少存在两个有理点B .恰有n (n ≥2)条直线,每条直线上至少存在两个有理点C .有且仅有一条直线至少过两个有理点D .每条直线至多过一个有理点3. 已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x ,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C .2D .14. 函数y=的图象大致为( )A. B. C. D.5. 设关于x 的不等式:x 2﹣ax ﹣2>0解集为M ,若2∈M,∉M ,则实数a 的取值范围是( ) A .(﹣∞,)∪(1,+∞)B .(﹣∞,)C .[,1)D.(,1)6. 如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A 1CA.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 某班有50名学生,一次数学考试的成绩ξ服从正态分布N (105,102),已知P (95≤ξ≤105)=0.32,估计该班学生数学成绩在115分以上的人数为( )A .10B .9C .8D .78. 如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )A .11B .11.5C .12D .12.59. 把函数y=cos (2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f (x )的图象关于直线x=对称,则φ的值为( )A .﹣B .﹣C .D .10.在ABC ∆中,3b =,3c =,30B =,则等于( )A .3B .123C .3或23D .2 11.已知U=R ,函数y=ln (1﹣x )的定义域为M ,集合N={x|x 2﹣x <0}.则下列结论正确的是( ) A .M ∩N=N B .M ∩(∁U N )=∅ C .M ∪N=U D .M ⊆(∁U N )12.设全集U={1,3,5,7,9},集合A={1,|a ﹣5|,9},∁U A={5,7},则实数a 的值是( )A .2B .8C .﹣2或8D .2或8二、填空题13.如图:直三棱柱ABC ﹣A ′B ′C ′的体积为V ,点P 、Q 分别在侧棱AA ′和CC ′上,AP=C ′Q ,则四棱锥B ﹣APQC 的体积为 .14.若全集,集合,则。
太和县第三中学2018-2019学年高三上学期11月月考数学试卷含答案
太和县第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知||=||=1,与夹角是90°,=2+3, =k ﹣4,与垂直,k 的值为( )A .﹣6B .6C .3D .﹣32. 如果集合 ,同时满足,就称有序集对,A B {}{}{}{}1,2,3,41,1,1A B B A B =≠≠U I ,A =为“ 好集对”. 这里有序集对是指当时,和是不同的集对, 那么(),A B (),A B A B ≠(),A B (),B A “好集对” 一共有( )个A .个B .个C .个D .个3. 已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A .B .C .D .4. 一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是()A .i ≤5?B .i ≤4?C .i ≥4?D .i ≥5?5. 设函数是定义在上的可导函数,其导函数为,且有,则不等式)(x f )0,(-∞)('x f 2')()(2x x xf x f >+的解集为0)2(4)2014()2014(2>--++f x f x A 、 B 、 C 、 D 、)2012,(--∞)0,2012(-)2016,(--∞)0,2016(-6. 等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( )A .3B .C .±D .以上皆非7. 自主招生联盟成行于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟.在调查某高中学校高三学生自主招生报考的情况,得到如下结果: ①报考“北约”联盟的学生,都没报考“华约”联盟②报考“华约”联盟的学生,也报考了“京派”联盟③报考“卓越”联盟的学生,都没报考“京派”联盟④不报考“卓越”联盟的学生,就报考“华约”联盟根据上述调查结果,下列结论错误的是()A .没有同时报考“华约” 和“卓越”联盟的学生班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________B .报考“华约”和“京派”联盟的考生一样多C .报考“北约” 联盟的考生也报考了“卓越”联盟D .报考“京派” 联盟的考生也报考了“北约”联盟8. 已知函数,函数满足以下三点条件:①定义域为;②对任意,有⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f )(x g R R x ∈;③当时,.则函数在区间上零1()(2)2g x g x =+]1,1[-∈x ()g x )()(x g x f y -=]4,4[-点的个数为( )A .7B .6C .5D .4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.9. 已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( )A .B .C .D .610.设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,下面的不等式在R 内恒成立的是()A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x11.已知x ,y ∈R ,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面积为( )A .4﹣B .4﹣C .D . + 12.在空间中,下列命题正确的是()A .如果直线m ∥平面α,直线n ⊂α内,那么m ∥nB .如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC .如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m ⊥αD .如果平面α⊥平面β,任取直线m ⊂α,那么必有m ⊥β二、填空题13.已知(ax+1)5的展开式中x 2的系数与的展开式中x 3的系数相等,则a= .14.若函数f (x )=3sinx ﹣4cosx ,则f ′()= . 15.曲线在点(3,3)处的切线与轴x 的交点的坐标为 .16.在空间直角坐标系中,设,,且,则 .)1,3(,m A )1,1,1(-B 22||=AB =m 17.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .18.函数y=a x +1(a >0且a ≠1)的图象必经过点 (填点的坐标) 三、解答题19.平面直角坐标系xOy 中,过椭圆C :(a >b >0)右焦点的直线l :y=kx ﹣k 交C 于A ,B 两点,P 为AB 的中点,当k=1时OP 的斜率为.(Ⅰ) 求C 的方程;(Ⅱ) x 轴上是否存在点Q ,使得k 变化时总有∠AQO=∠BQO ,若存在请求出点Q 的坐标,若不存在,请说明理由.20.本小题满分12分已知椭圆2.C Ⅰ求椭圆的长轴长;C Ⅱ过椭圆中心O 的直线与椭圆交于A 、B 两点A 、B 不是椭圆的顶点,点M 在长轴所在直线上,且C C C ,直线BM 与椭圆交于点D ,求证:AD AB 。
太和区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
1500 50 ,故选 D. 30
第 5 页,共 14 页
再在这条边上任取两点有 21 种方法,然后在其余的 21 个分点中任取一点作为第三个顶点.这类三角形共有 4×21×21=1764 个. 综上可知,可得不同三角形的个数为 1372+1764=3136. 故选:C. 【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题. 6. 【答案】D 【解析】
何意义等. 7. 【答案】C 【解析】解:由 2×2 列联表得到 a=45,b=10,c=30,d=15. 则 a+b=55,c+d=45,a+c=75,b+d=25,ad=675,bc=300,n=100. 代入 K2= 得 k2 的观测值 k= 因为 2.706<3.030<3.841. 所以有 90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”. 即在犯错误的概率不超过 10%的前提下,认为“该校学生能否做到‘光盘’与性别有关” 故选 C. 【点评】本题是一个独立性检验,我们可以利用临界值的大小来决定是否拒绝原来的统计假设,若值较大就拒 绝假设,即拒绝两个事件无关,此题是基础题. 8. 【答案】C 【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点 F(0,1), 又 P 为 C 上一点,|PF|=4, . ,
太和区第一高级中学 2018-2019 学年高三上学期 11 月月考数学试卷含答案 一、选择题
1. 已知直线 l1 经过 A(﹣3,4),B(﹣8,﹣1)两点,直线 l2 的倾斜角为 135°,那么 l1 与 l2( A.垂直 B.平行 C.重合 D.相交但不垂直 2. 某校为了了解 1500 名学生对学校食堂的意见,从中抽取 1 个容量为 50 的样本,采用系统抽样法,则分段 班级_______________ 座号______ 姓名_______________ 分数_______________ ___________________________________________________________________________________________________ 间隔为( A. 10 )1111] B. 15 C. 20 D. 30 ) )
太和区实验中学2018-2019学年高三上学期11月月考数学试卷含答案
S7 ( a4
)
7 4
﹣
B.
14 5
C.7
D.14
【命题意图】本题考查等差数列的通项公式及其前 n 项和,意在考查运算求解能力. 9. 已知双曲线 =1(a>0,b>0)的左右焦点分别为 F1,F2,若双曲线右支上存在一点 P,使得 F2 关 )
于直线 PF1 的对称点恰在 y 轴上,则该双曲线的离心率 e 的取值范围为( A.1<e< B.e> C.e> D.1<e<
10.在等比数列 {an } 中, a1 an 82 , a3 an 2 81 ,且数列 {an } 的前 n 项和 S n 121 ,则此数列的项数 n 等于( A.4 ) B.5 C.6 D.7
【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一 定要求,难度中等. 11.若 f(x)=﹣x2+2ax 与 g(x)= A.(﹣∞,1] 在区间[1,2]上都是减函数,则 a 的取值范围是( B.[0,1] )
S7 a4
7 a1
76 d 14d 2 7 ,故选 C. a1 3d 2d
9. 【答案】B 【解析】解:设点 F2(c,0), 由于 F2 关于直线 PF1 的对称点恰在 y 轴上,不妨设 M 在正半轴上, 由对称性可得,MF1=F1F2=2c, 则 MO= 设直线 PF1:y= = c,∠MF1F2=60°,∠PF1F2=30°,
故选:D. 【点评】本题考查抽象函数以及函数值的求法,诱导公式的应用,是基础题,解题时要认真审题,注意函数性 质的合理运用. 5. 【答案】B 【 解 析 】
考点:三角恒等变换. 6. 【答案】C 【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题. 当 a 0 (如图 1)、 a 0 (如图 2)时,不等式不可能恒成立;当 a 0 时,如图 3,直线 y 2( x 2) 与
太和区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
太和区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设0<a <b 且a+b=1,则下列四数中最大的是( ) A .a 2+b 2 B .2ab C .aD.2. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数3. 已知平面向量(12)=,a ,(32)=-,b ,若k +a b 与a 垂直,则实数k 值为( ) A .15- B .119 C .11D .19【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力. 4. 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A .1:2:3B .2:3:4C .3:2:4D .3:1:2 5. 满足条件{0,1}∪A={0,1}的所有集合A 的个数是( )A .1个B .2个C .3个D .4个 6. 过点P (﹣2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有()A .3条B .2条C .1条 D.0条7. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( ) A .akmB .akmC .2akmD .akm8. 已知a ,b 是实数,则“a 2b >ab 2”是“<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件9. 若a ,b ,c 成等比数列,m 是a ,b 的等差中项,n 是b ,c 的等差中项,则=( )A .4B .3C .2D .110.在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,含2x 项的系数为( )(A )10 ( B ) 30 (C ) 45 (D ) 12011.设等比数列{a n }的公比q=2,前n 项和为S n ,则=( )A .2B .4C .D .12.设函数f (x )=,f (﹣2)+f (log 210)=( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .11B .8C .5D .2二、填空题13.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .1310 B .3 C .4 D .2110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想. 14.已知点E 、F 分别在正方体 的棱上,且, ,则面AEF 与面ABC 所成的二面角的正切值等于 .15.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= . 16.已知随机变量ξ﹣N (2,σ2),若P (ξ>4)=0.4,则P (ξ>0)= .17.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g(x )(a >0且a ≠1),+=.若数列{}的前n 项和大于62,则n 的最小值为 .18.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .三、解答题19.已知双曲线C :与点P (1,2).(1)求过点P (1,2)且与曲线C 只有一个交点的直线方程;(2)是否存在过点P 的弦AB ,使AB 的中点为P ,若存在,求出弦AB 所在的直线方程,若不存在,请说明理由.20.由四个不同的数字1,2,4,x 组成无重复数字的三位数. (1)若x=5,其中能被5整除的共有多少个? (2)若x=9,其中能被3整除的共有多少个? (3)若x=0,其中的偶数共有多少个?(4)若所有这些三位数的各位数字之和是252,求x .21.(本小题满分12分)已知函数2()(21)ln f x x a x a x =-++(a R ∈).(I )若12a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.22.如图,在底面是矩形的四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=2,BC=2,E 是PD 的中点. (1)求证:平面PDC ⊥平面PAD ;(2)求二面角E ﹣AC ﹣D 所成平面角的余弦值.23.如图,已知AC ,BD 为圆O 的任意两条直径,直线AE ,CF 是圆O 所在平面的两条垂线,且线段AE=CF=,AC=2.(Ⅰ)证明AD ⊥BE ;(Ⅱ)求多面体EF ﹣ABCD 体积的最大值.24.平面直角坐标系xOy中,过椭圆C:(a>b>0)右焦点的直线l:y=kx﹣k交C于A,B两点,P为AB的中点,当k=1时OP的斜率为.(Ⅰ)求C的方程;(Ⅱ)x轴上是否存在点Q,使得k变化时总有∠AQO=∠BQO,若存在请求出点Q的坐标,若不存在,请说明理由.太和区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:∵0<a<b且a+b=1∴∴2b>1∴2ab﹣a=a(2b﹣1)>0,即2ab>a又a2+b2﹣2ab=(a﹣b)2>0∴a2+b2>2ab∴最大的一个数为a2+b2故选A2.【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a∈R,函数y=π”是增函数的否定是:“∃a∈R,函数y=π”不是增函数.故选:C.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.3.【答案】A4.【答案】D【解析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,则球的体积V球=圆柱的体积V圆柱=2πR3圆锥的体积V圆锥=故圆柱、圆锥、球的体积的比为2πR3::=3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.5.【答案】D【解析】解:由{0,1}∪A={0,1}易知:集合A⊆{0,1}而集合{0,1}的子集个数为22=4故选D【点评】本题考查两个集合并集时的包含关系,以及求n个元素的集合的子集个数为2n个这个知识点,为基础题.6.【答案】C【解析】解:假设存在过点P(﹣2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,设直线l的方程为:,则.即2a﹣2b=ab直线l与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8,即ab=﹣16,联立,解得:a=﹣4,b=4.∴直线l的方程为:,即x﹣y+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题.7.【答案】D【解析】解:根据题意,△ABC中,∠ACB=180°﹣20°﹣40°=120°,∵AC=BC=akm,∴由余弦定理,得cos120°=,解之得AB=akm,即灯塔A与灯塔B的距离为akm,故选:D.【点评】本题给出实际应用问题,求海洋上灯塔A 与灯塔B 的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.8. 【答案】C【解析】解:由a 2b >ab 2得ab (a ﹣b )>0, 若a ﹣b >0,即a >b ,则ab >0,则<成立,若a ﹣b <0,即a <b ,则ab <0,则a <0,b >0,则<成立, 若<则,即ab (a ﹣b )>0,即a 2b >ab 2成立,即“a 2b >ab 2”是“<”的充要条件, 故选:C【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.9. 【答案】C【解析】解:由题意可知,,∴===.故选C .【点评】本题考查数列的性质应用,难度不大,解题时要多一份细心.10.【答案】C【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为2210C x ,系数为21045.C =故选C . 11.【答案】C【解析】解:由于q=2,∴∴;故选:C .12.【答案】B 【解析】解:∵f (x )=,∴f (﹣2)=1+log 24=1+2=3,=5,∴f(﹣2)+f(log210)=3+5=8.故选:B.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.二、填空题13.【答案】D【解析】14.【答案】【解析】延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太和县高中2018-2019学年高三上学期11月月考数学试卷含答案班级__________ 姓名__________ 分数__________一、选择题1.已知△ABC是锐角三角形,则点P(cosC﹣sinA,sinA﹣cosB)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样3.执行如图所示的一个程序框图,若f(x)在[﹣1,a]上的值域为[0,2],则实数a的取值范围是()A.(0,1] B.[1,] C.[1,2] D.[,2]4.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是()A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.恰有一个白球;一个白球一个黑球D.至少有一个白球;红、黑球各一个5.函数f(x)=3x+x﹣3的零点所在的区间是()A.(0,1) B.(1,2) C.(2.3)D.(3,4)6.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0 B.2 C.3 D.67.已知三棱锥A﹣BCO,OA、OB、OC两两垂直且长度均为6,长为2的线段MN的一个端点M在棱OA 上运动,另一个端点N在△BCO内运动(含边界),则MN的中点P的轨迹与三棱锥的面所围成的几何体的体积为()A.B.或36+C.36﹣D.或36﹣8.函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则实数a的取值范围是()A.R B.[1,+∞)C.(﹣∞,1] D.[2,+∞)9.已知直线ax+by+c=0与圆O:x2+y2=1相交于A,B两点,且,则的值是()A.B.C. D.010.有下列关于三角函数的命题P1:∀x∈R,x≠kπ+(k∈Z),若tanx>0,则sin2x>0;P2:函数y=sin(x﹣)与函数y=cosx的图象相同;P3:∃x0∈R,2cosx0=3;P4:函数y=|cosx|(x∈R)的最小正周期为2π,其中真命题是()A.P1,P4B.P2,P4C.P2,P3D.P1,P211.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织()尺布.A.B.C.D.12.已知函数f(x)=x3+(1﹣b)x2﹣a(b﹣3)x+b﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组所确定的平面区域在x2+y2=4内的面积为()A.B.C.πD.2π二、填空题13.如图,在矩形ABCD 中,AB = 3BC =, E 在AC 上,若BE AC ⊥, 则ED 的长=____________14.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为( )A .1B .±1CD .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.15.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .16.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 .17.已知函数为定义在区间[﹣2a ,3a ﹣1]上的奇函数,则a+b= .18.多面体的三视图如图所示,则该多面体体积为(单位cm ) .三、解答题19.已知函数f (x )=xlnx+ax (a ∈R ). (Ⅰ)若a=﹣2,求函数f (x )的单调区间;(Ⅱ)若对任意x ∈(1,+∞),f (x )>k (x ﹣1)+ax ﹣x 恒成立,求正整数k 的值.(参考数据:ln2=0.6931,ln3=1.0986)20.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x af x b+-+=+.(1)当1a b ==时,求满足()3xf x =的x 的取值;(2)若函数()f x 是定义在R 上的奇函数①存在t R ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围;②若函数()g x 满足()()()12333xx f x g x -⎡⎤⋅+=-⎣⎦,若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值. 21.19.已知函数f (x )=ln .22.已知双曲线C :与点P (1,2). (1)求过点P (1,2)且与曲线C 只有一个交点的直线方程;(2)是否存在过点P 的弦AB ,使AB 的中点为P ,若存在,求出弦AB 所在的直线方程,若不存在,请说明理由.23.(本小题满分10分)选修4-1:几何证明选讲.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于E,过E的切线与AC交于D. (1)求证:CD=DA;(2)若CE=1,AB=2,求DE的长.24.设函数,若对于任意x∈[﹣1,2]都有f(x)<m成立,求实数m的取值范围.太和县高中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:∵△ABC是锐角三角形,∴A+B>,∴A>﹣B,∴sinA>sin(﹣B)=cosB,∴sinA﹣cosB>0,同理可得sinA﹣cosC>0,∴点P在第二象限.故选:B2.【答案】A【解析】解;观察所给的四组数据,①个体没有差异且总数不多可用随机抽样法,简单随机抽样,②将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号,系统抽样,③个体有了明显了差异,所以选用分层抽样法,分层抽样,故选A.3.【答案】B【解析】解:由程序框图知:算法的功能是求f(x)=的值,当a<0时,y=log2(1﹣x)+1在[﹣1,a]上为减函数,f(﹣1)=2,f(a)=0⇒1﹣a=,a=,不符合题意;当a≥0时,f′(x)=3x2﹣3>⇒x>1或x<﹣1,∴函数在[0,1]上单调递减,又f(1)=0,∴a≥1;又函数在[1,a]上单调递增,∴f(a)=a3﹣3a+2≤2⇒a≤.故实数a的取值范围是[1,].故选:B.【点评】本题考查了选择结构的程序框图,考查了导数的应用及分段函数值域的求法,综合性强,体现了分类讨论思想,解题的关键是利用导数法求函数在不定区间上的最值.4.【答案】D【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥;至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D【点评】本题考查了互斥事件和对立事件,是基础的概念题.5.【答案】A【解析】解:∵f(0)=﹣2<0,f(1)=1>0,∴由零点存在性定理可知函数f(x)=3x+x﹣3的零点所在的区间是(0,1).故选A【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题.6.【答案】D【解析】解:根据题意,设A={1,2},B={0,2},则集合A*B中的元素可能为:0、2、0、4,又有集合元素的互异性,则A*B={0,2,4},其所有元素之和为6;故选D.【点评】解题时,注意结合集合元素的互异性,对所得集合的元素的分析,对其进行取舍.7.【答案】D【解析】【分析】由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.【解答】解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或.故选D8.【答案】C【解析】解:由于f(x)=x2﹣2ax的对称轴是直线x=a,图象开口向上,故函数在区间(﹣∞,a]为减函数,在区间[a,+∞)上为增函数,又由函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则a≤1.故答案为:C9.【答案】A【解析】解:取AB的中点C,连接OC,,则AC=,OA=1∴sin =sin∠AOC==所以:∠AOB=120°则•=1×1×cos120°=.故选A.10.【答案】D【解析】解:对于P1,∀x∈R,x≠kπ+(k∈Z),若tanx>0,则sin2x=2sinxcosx==>0,则P1为真命题;对于P2,函数y=sin(x﹣)=sin(2π+x﹣)=sin(x+)=cosx,则P2为真命题;对于P3,由于cosx∈[﹣1,1],∉[﹣1,1],则P3为假命题;对于P4,函数y=|cosx|(x∈R),f(x+π)=|cos(x+π)|=|﹣cosx|=|cosx|=f(x),则f(x)的最小正周期为π,则P4为假命题.故选D.【点评】本题考查全称性命题和存在性命题的真假,以及三角函数的图象和周期,运用二倍角公式和诱导公式以及周期函数的定义是解题的关键,属于基础题和易错题.11.【答案】D【解析】解:设从第2天起每天比前一天多织d尺布m则由题意知,解得d=.故选:D.【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解.12.【答案】B【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2.则f(x)=x3﹣x2+ax,函数的导数f′(x)=x2﹣2x+a,因为原点处的切线斜率是﹣3,即f′(0)=﹣3,所以f′(0)=a=﹣3,故a=﹣3,b=2,所以不等式组为则不等式组确定的平面区域在圆x2+y2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求.∵k OB=﹣,k OA=,∴tan ∠BOA==1,∴∠BOA=,∴扇形的圆心角为,扇形的面积是圆的面积的八分之一,∴圆x 2+y 2=4在区域D 内的面积为×4×π=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a ,b 的是值,然后借助不等式区域求解面积是解决本题的关键.二、填空题13.【答案】212【解析】在Rt △ABC 中,BC =3,AB =3,所以∠BAC =60°.因为BE ⊥AC ,AB =3,所以AE =32,在△EAD 中,∠EAD =30°,AD =3,由余弦定理知,ED 2=AE 2+AD 2-2AE ·AD ·cos ∠EAD =34+9-2×32×3×32=214,故ED =212.14.【答案】A 【解析】15.【答案】 240 .【解析】解:a=(cosx ﹣sinx )dx=(sinx+cosx )=﹣1﹣1=﹣2,则二项式(x2﹣)6=(x2+)6展开始的通项公式为T r+1=•2r•x12﹣3r,令12﹣3r=0,求得r=4,可得二项式(x2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.16.【答案】(﹣1,﹣1).【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f(﹣1)=2﹣3=﹣1,即函数f(x)的图象经过的定点坐标是(﹣1,﹣1),故答案为:(﹣1,﹣1).17.【答案】2.【解析】解:∵f(x)是定义在[﹣2a,3a﹣1]上奇函数,∴定义域关于原点对称,即﹣2a+3a﹣1=0,∴a=1,∵函数为奇函数,∴f(﹣x)==﹣,即b•2x﹣1=﹣b+2x,∴b=1.即a+b=2,故答案为:2.18.【答案】cm3.【解析】解:如图所示,由三视图可知:该几何体为三棱锥P﹣ABC.该几何体可以看成是两个底面均为△PCD,高分别为AD和BD的棱锥形成的组合体,由几何体的俯视图可得:△PCD的面积S=×4×4=8cm2,由几何体的正视图可得:AD+BD=AB=4cm,故几何体的体积V=×8×4=cm3,故答案为:cm3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.三、解答题19.【答案】【解析】解:(I)a=﹣2时,f(x)=xlnx﹣2x,则f′(x)=lnx﹣1.令f′(x)=0得x=e,当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,∴f(x)的单调递减区间是(0,e),单调递增区间为(e,+∞).(II)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,则xlnx+ax>k(x﹣1)+ax﹣x恒成立,即k(x﹣1)<xlnx+ax﹣ax+x恒成立,又x ﹣1>0,则k <对任意x ∈(1,+∞)恒成立,设h (x )=,则h ′(x )=.设m (x )=x ﹣lnx ﹣2,则m ′(x )=1﹣,∵x ∈(1,+∞),∴m ′(x )>0,则m (x )在(1,+∞)上是增函数.∵m (1)=﹣1<0,m (2)=﹣ln2<0,m (3)=1﹣ln3<0,m (4)=2﹣ln4>0, ∴存在x 0∈(3,4),使得m (x 0)=0, 当x ∈(1,x 0)时,m (x )<0,即h ′(x )<0, 当x ∈(x 0,+∞)时,m (x )>0,h ′(x )>0,∴h (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增,∴h (x )的最小值h min (x )=h (x 0)=.∵m (x 0)=x 0﹣lnx 0﹣2=0,∴lnx 0=x 0﹣2.∴h (x 0)==x 0.∴k <h min (x )=x 0. ∵3<x 0<4, ∴k ≤3.∴k 的值为1,2,3.【点评】本题考查了利用导数研究函数的单调性,函数的最值,函数恒成立问题,构造函数求出h (x )的最小值是解题关键,属于难题.20.【答案】(1)1x =-(2)①()1,-+∞,②6【解析】试题解析:(1)由题意,131331x xx +-+=+,化简得()2332310x x ⋅+⋅-= 解得()13133x x=-=舍或,所以1x =-(2)因为()f x 是奇函数,所以()()0f x f x -+=,所以1133033x x x x a ab b-++-+-++=++ 化简并变形得:()()333260x xa b ab --++-=要使上式对任意的x 成立,则30260a b ab -=-=且 解得:11{{ 33a a b b ==-==-或,因为()f x 的定义域是R ,所以1{ 3a b =-=-舍去 所以1,3a b ==,所以()13133x x f x +-+=+①()131********x x x f x +-+⎛⎫==-+ ⎪++⎝⎭对任意1212,,x x R x x ∈<有:()()()()211212121222333313133131x x x x x x f x f x ⎛⎫-⎛⎫⎪-=-= ⎪ ⎪++++⎝⎭⎝⎭因为12x x <,所以21330x x->,所以()()12f x f x >,因此()f x 在R 上递减.因为()()2222f t t f t k -<-,所以2222t t t k ->-,即220t t k +-<在时有解所以440t ∆=+>,解得:1t >-, 所以的取值范围为()1,-+∞②因为()()()12333x xf xg x -⎡⎤⋅+=-⎣⎦,所以()()3323x x g x f x --=-即()33xxg x -=+所以()()222233332x x x xg x --=+=+-不等式()()211g x m g x ≥⋅-恒成立, 即()()23323311x xx x m --+-≥⋅+-,即:93333x xx xm --≤+++恒成立令33,2x x t t -=+≥,则9m t t≤+在2t ≥时恒成立 令()9h t t t =+,()29'1h t t=-, ()2,3t ∈时,()'0h t <,所以()h t 在()2,3上单调递减()3,t ∈+∞时,()'0h t >,所以()h t 在()3,+∞上单调递增所以()()min 36h t h ==,所以6m ≤ 所以,实数m 的最大值为6考点:利用函数性质解不等式,不等式恒成立问题【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。