2018-2019学年度上学期期中调考九年级数学测试题

合集下载

2018--2019学年度第一学期期中考试九年级数学试卷

2018--2019学年度第一学期期中考试九年级数学试卷

2018--2019学年度第一学期期中考试九年级数学试卷一、选择题(每题3分,共30分) 1.下列方程,是一元二次方程的是( )①2032=+x x ②04322=+-xy x ③412=-xx④02=x ⑤0332=+-xxA.①②B.①②④⑤C.①③④D.①④⑤ 2.在下列图形中,既是轴对称图形,又是中心对称图形的是( )3.用配方法解方程2870x x ++=,则配方正确的是( )A.()249x -=B.()249x +=C.()2816x -=D.()2857x +=4. 函数2)1(2+-=x y 的图象的顶点坐标是( ) A. (1,-4) B.(-1,2) C. (1,2) D.(0,3)5、二次函数c bx ax y ++=2的图象如图所示, 则下列关系式中错误..的是( ) A .a <0 B .c >0 C .ac b 42->0 D .a-b+c <06.关于x 的一元二次方程02=-k x 有实数根,则( ) A .k <0 B .k >0 C .k ≥0 D .k ≤0 7、抛物线2(1)3y x =-+的对称轴是( )A .直线1x =B .直线3x =C .直线1x =-D .直线3x =-8. 抛物线y=x 2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是( )A.y=(x -3)2-2B.y=(x -3)2+2C.y=(x+3)2-2D.y=(x+3)2+29. 抛物线122+--=m mx x y 的图象过原点,则m 为( ) A .0B .1C .-1D .±110.在同一平面直角坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )A B C D 二、填空题(每题4分,共40分) 1. x 2= x 的解是______ 。

2.当m 时,函数2235y m x x (m 为常数)是关于x 的二次函数.3. 如图3所示,OA 是圆O 的半径,弦CD ⊥OA 于点P ,已知OC=5,OP=3,则弦CD=____________________。

2018-2019学年度上学期期中九年级数学试卷及答案

2018-2019学年度上学期期中九年级数学试卷及答案

2018-2019学年度上学期期中考试 九年级数学试题 (满分120分,时间120分钟)卷一(请将正确选项涂在答题卡上)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四1. 下列图形中,旋转60°后可以和原图形重合的是( ) A .正六边形 B .正五边形 C .正方形 D .正三角形 2.二次函数y =12x 2-4x +3的顶点坐标和对称轴分别是( )A .(1,2),x =1B .(-1,2), x =-1C .(-4,-5),x =-4D .(4,-5),x =43.抛物线y =x 2-2x +1与x 轴的交点个数是( ) A .0 B .1 C .2 D .34.将y =(2x -1)(x +2)+1化成y =a(x +m)2+n 的形式为( ) A .y =2(x +34)2-2516 B .y =2(x -34)2-178C .y =2(x +34)2-178D .y =2(x +34)2+1785.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位长度,再向上平移3个单位长度B .先向左平移2个单位长度,再向下平移3个单位长度C .先向右平移2个单位长度,再向下平移3个单位长度D .先向右平移2个单位长度,再向上平移3个单位长度6.设A(-4,y 1),B(-3,y 2),C(0,y 3)是抛物线y =(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 27.如图所示的桥拱是抛物线形,其函数的解析式为y =-14x 2,当水位线在AB 位置时,水面宽12 m ,这时水面离桥顶的高度为( )A .3 mB .2 6 mC .4 3 mD .9 m,(第8题图)),(第10题图))8.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c<0;②a -b +c>1;③abc>0;④4a -2b +c<0;⑤c -a>1.其中所有正确结论的序号是( ) A .①② B .①③④ C .①②③⑤ D .①②③④⑤9.下列方程采用配方法求解较简便的是( ) A .3x 2+x -1=0 B .4x 2-4x -8=0 C .x 2-7x =0 D.()x -32=4x 210.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长x ,y 应分别为( ) A .x =10,y =14 B .x =14,y =10 C .x =12,y =15 D .x =12,y =1211. 二次函数y =ax 2+bx +1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t =a +b +1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <112. 如图,O 是等边三角形的旋转中心,∠EOF =120°,∠EOF 绕点O 进行旋转,在旋转过程中,OE 与OF 与△ABC 的边构成的图形的面积( )A .等于△ABC 面积的13B .等于△ABC 面积的12 C .等于△ABC 面积的14 D .不能确定13. 点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =-x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是( )A.y 3>y 2>y 1B.y 3>y 1=y 2C.y 1>y 2>y 3D.y 1=y 2>y 314. 如图,△ABC 是等边三角形,四边形BDEF 是菱形,其中线段DF 的长与DB 相等,将菱形BDEF 绕点B 按顺时针方向旋转,甲、乙两位同学发现在此旋转过程中,有如下结论. 甲:线段AF 与线段CD 的长度总相等;乙:直线AF 和直线CD 所夹的锐角的度数不变. 那么,你认为( )A .甲、乙都对B .乙对甲不对C .甲对乙不对D .甲、乙都不对15. 如图,将△AOB 绕点O 逆时针旋转90°,得到△A ′OB ′.若点A 的坐标为(a ,b),则点A ′的坐标为( ).A . (-b ,a) B. (b ,a) C. (-b ,-a) D. (b ,-a)16. 平时我们在跳绳时,绳子甩到最高处的形状可近似看作抛物线,如图建立直角坐标系,抛物线的函数解析式为y =-16x 2+13x +32,绳子甩到最高处时刚好通过站在点(2,0)处跳绳的学生小明的头顶,则小明的身高为( )m .A.1.6B.1.5C.1.4 D1.314题图 15题图12题图2018-2019学年度上学期期中考试九年级数学试题卷二2分.把答案写在题中横线上)17.如图,把抛物线y=12x2平移得到抛物线m. 抛物线m经过点A(-6,0)和原点(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为.(第17题图) (第19题图)18.在二次函数y=2则m的值为.19.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为,∠APB=.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. (本题8分)(1)用公式法解方程x2-3x-7=0.(2)解方程:4x(2x-1)=3(2x-1)21. (本题7分)如图,已知△ABC的顶点A,B,C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).(1)作出△ABC关于原点O中心对称的图形△A’B’C’;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.22.(本题8分)如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋转后的对应点为点P′.(1)画出旋转后的三角形;(2)连接PP′,若∠BAP=20°,求∠PP′C的度数.23. (9分)如图,一个二次函数的图象经过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴的正半轴上,且AB=OC.(1)求点C的坐标;(2)求这个二次函数的解析式,并求出该函数的最大值.24. (10分)已知关于x的函数y=ax2+x+1(a为常数).(1)若函数的图象与x轴恰有一个交点,求a的值;(2)若函数的图象是抛物线,且顶点始终在x轴上方,求a的取值范围.25. (本题12分)感知:如图①,在△ABC 中,∠C =90°,AC =BC ,D 是边BC 上一点(点D 不与点B ,C 重合).连接AD ,将AD 绕着点D 逆时针旋转90°,得到DE ,连接BE ,过点D 作DF ∥AC 交AB 于点F ,可知△ADF ≌△EDB ,则∠ABE 的大小为________.并说明理由.探究:如图②,在△ABC 中,∠C =α(0°<α<90°),AC =BC ,D 是边BC 上一点(点D 不与点B ,C 重合),连接AD ,将AD 绕着点D 逆时针旋转α,得到DE ,连接BE ,求证:∠ABE =α. 应用:设图②中的α=60°,AC =2.当△ABE 是直角三角形时,AE =________.并说明理由.26. (本题12分)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y 1与投资成本x 成正比例关系,种植花卉的利润y 2与投资成本x 的平方成正比例关系,并得到了表格中的数据:(1)分别求出利润y 1与y 2关于投资量x 的函数关系式;(2)如果这位专业户计划用8万元资金投入种植花卉和树木,设他投入种植花卉金额m 万元,种植花卉和树木共获利润w 万元,求出w 与m 之间的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?(3)若该专业户想获利不低于22万元,在(2)的条件下,直接写出投资种植花卉的金额m 的范围.。

人教版2018-2019学年九年级数学第一学期期中检测卷及答案

人教版2018-2019学年九年级数学第一学期期中检测卷及答案

2018-2019学年九年级数学第一学期期中检测卷(120分钟150分)题号一二三四五六七八总分得分一、选择题(本大题共10小题,每小题4分,满分40分)题号12345678910答案1.下列标志中,是中心对称图形的是2.把方程x2-12x+33=0化成(x+m)2=n的形式,则m,n的值是A.6,3B.-6,-3C.-6,3D.6,-33.已知点A(x-2,3)与点B(x+4,y-5)关于原点对称,则y x的值是A.2B.C.4D.84.已知关于x的一元二次方程(m+3)x2+5x+m2-9=0有一个解是0,则m的值为A.-3B.3C.±3D.不确定5.一个三角形的两边长为3和8,第三边的长是方程x(x-9)-13(x-9)=0的根,则这个三角形的周长是A.20B.20或24C.9和13D.246.二次函数y=ax2+bc+c的图象如图所示,则下列判断中错误的是A.图象的对称轴是直线x=-1B.当x>-1时,y随x的增大而减小C.当-3<x<1时,y<0D.一元二次方程ax2+bx+c=0的两个根是-3,17.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是A.15°B.20°C.30°D.25°8.黄山市某塑料玩具生产公司,为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+14n-24,则企业停产的月份为A.2月和12月B.2月至12月C.1月D.1月、2月和12月9.已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是A.当k≠0时,方程总有两个不相等的实数解B.当k=0时,方程无解C.当k=-1时,方程有两个相等的实数解D.当k=1时,方程有一个实数解10.如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当-3<x<2时,ax2+kx<b,其中正确的结论是A.①②④B.①②⑤C.②③④D.③④⑤二、填空题(本大题共4小题,每小题5分,满分20分)11.如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k的最小整数值是.。

2018-2019学年度(上)九年级数学期中测试卷(含答案)

2018-2019学年度(上)九年级数学期中测试卷(含答案)

2018-2019学年度(上)九年级数学期中测试卷(含答案)2018-2019学年度(上)九年级数学期中测试卷(含答案)⼀、选择题(每⼩题3分,共30分)1.下列标志中,是中⼼对称图形的是A2.⼆次函数y=x2-2x+2的图象的顶点坐标是( A )A.(1,1) B.(2,2) C.(1,2) D.(1,3)3.正⽅形ABCD在直⾓坐标系中的位置如图所⽰,将正⽅形ABCD绕点A按顺时针⽅向旋转180°后,C点的坐标是( B )A.(2,0) B.(3,0) C.(2,-1) D.(2,1)第3题图4.已知关于x的⼀元⼆次⽅程(m+3)x2+5x+m2-9=0有⼀个解是0,则m的值为BA.-3B.3C.±3D.不确定5.(3分)如图,在⊙O中,相等的弦AB、AC互相垂直,OE⊥AC于E,OD⊥AB 于D,则四边形OEAD为( A )A.正⽅形B.菱形C.矩形D.平⾏四边形6.⼆次函数y=ax2+bc+c的图象如图所⽰,则下列判断中错误的是BA.图象的对称轴是直线x=-1B.当x>-1时,y随x的增⼤⽽减⼩D.⼀元⼆次⽅程ax2+bx+c=0的两个根是-3,17.若⼀次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(-2,0),则抛物线y=ax2+bx的对称轴为( C )A.直线x=1 B.直线x=-2C.直线x=-1 D.直线x=-48.黄⽯市某塑料玩具⽣产公司,为了减少空⽓污染,国家要求限制塑料玩具⽣产,这样有时企业会被迫停产,经过调研预测,它⼀年中每⽉获得的利润y(万元)和⽉份n之间满⾜函数关系式y=-n2+14n-24,则企业停产的⽉份为DA.2⽉和12⽉B.2⽉⾄12⽉C.1⽉D.1⽉、2⽉和12⽉9.关于x的⼀元⼆次⽅程(m-2)x2+(2m+1)x+m-2=0有两个不相等的正实数根,则m的取值范围是( D )A.m>34B.m>34且m≠2C.-12<m<2 D.34<m<210.如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点⼀定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增⼤⽽增⼤;③AB的长度可以等于5;④△OAB有可能成为等边三⾓形;⑤当-3C.②③④D.③④⑤⼀、填空题(共 6⼩题,每⼩题 3 分,共 18 分)11.有⼀个⾯积为的长⽅形,将它的⼀边剪短,另⼀边剪短,得到⼀个正⽅形.若设这个正⽅形的边长为,则根据题意可得⽅程__;(或)______.12.(3分)⼀元⼆次⽅程x2+3x=0的解是0 -3 .13.如图,⼀个拱形桥架可以近似看作是由等腰梯形ABD8D1和其上⽅的抛物线8组成.若建⽴如图所⽰的直⾓坐标系,跨度AB=44⽶,∠A=45°,AC1=4⽶,点D2的坐标为(-13,-1.69),则桥架的拱⾼OH= 7.24⽶.14.14.设m,n是⼀元⼆次⽅程x2+2x-7=0的两个根,则m2+3m+n=__5_____.[来源:Z+xx15.如图,是的直径,点在上,,若,则的长为____2____.16.在如图所⽰的平⾯直⾓坐标系中,△OA1B1是边长为2的等边三⾓形,作△B2A2B1与△OA1B1关于点B1成中⼼对称,再作△B2A3B3与△B2A2B1关于点B2成中⼼对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).三、解答题(共8⼩题,满分72分)17.按要求解⽅程.(8分)(1)x2+3x+1=0(公式法);解:x1=-,x2=--.(2)(x-3)2+4x(x-3)=0(因式分解法).解:x1=3,x2=.18.(9分)如图,为的直径,为弦,,,.求四边形;过点作,交于点,求∠的值.解:作于,连结,如图,∵,∴,∵直径,∴,在中,,;∴四边形∵,∴,∵,,∴四边形是等腰梯形.作于,则,,在中,由勾股定理得,,∴.∵,,∴四边形是平⾏四边形,∴,,∴.∵∠,∴∠,∴∠.19.(7分)已知关于x的⽅程x2﹣2(m+1)x+m2+2=0.(1)若⽅程总有两个实数根,求m的取值范围;(2)若两实数根x1、x2满⾜(x1+1)(x2+1)=8,求m的值.解:(1)∵关于x的⽅程x2﹣2(m+1)x+m2+2=0总有两个实数根,∴△=[﹣2(m+1)]2﹣4(m2+2)=8m﹣4≥0,解得:m≥.(2)∵x1、x2为⽅程x2﹣2(m+1)x+m2+2=0的两个根,[来∴x1+x2=2(m+1),x1x2=m2+2.∵(x1+1)(x2+1)=8,∴x1x2+(x1+x2)+1=8,∴m2+2+2(m+1)+1=8,整理,得:m2+2m﹣3=0,即(m+3)(m﹣1)=0,解得:m1=﹣3(不合题意,舍去),m2=1,∴m的值为1.20.(10分)设a,b,c是△ABC的三条边,关于x的⽅程x2+x+c-a=0有两个相等的实数根,⽅程3cx+2b=2a的根为x=0.(1)试判断△ABC的形状;(2)若a,b为⽅程x2+mx-3m=0的两个根,求m的值.解:(1)∵x2+x+c-a=0有两个相等的实数根,∴Δ=()2-4×-=0,整理得a+b-2c=0①,⼜∵3cx+2b=2a的根为x=0,∴a=b②,把②代⼊①得a=c,∴a=b=c,∴△ABC为等边三⾓形;(2)a,b是⽅程x2+mx-3m=0的两个根,∴⽅程x2+mx-3m=0有两个相等的实数根∴Δ=m2-4×(-3m)=0,即m2+12m=0,∴m1=0,m2=-12.当m=0时,原⽅程的解为x=0(不符合题意,舍去),∴m=-12.21.(8分)已知抛物线y=ax2-2ax+c与x轴交于A,B两点,与y轴正半轴交于点C,且A(-1,0).(1)⼀元⼆次⽅程ax2-2ax+c=0的解是-1,3;(2)⼀元⼆次不等式ax2-2ax+c>0的解集是-1<x<3;(3)若抛物线的顶点在直线y=2x上,求此抛物线的解析式..解:(1)-1,3(2分)(2)-1<x <3(4分)(3)∵抛物线经过点A (-1,0),∴a +2a +c =0,即c =-3a .∵-b 2a =--2a 2a =1,4ac -b 24a =c -a =-3a -a =-4a ,∴抛物线的顶点坐标是(1,-4a ).(6分)⼜∵顶点在直线y =2x 上,∴-4a =2×1=2,解得a =-12,∴c =-3a=-3×? ????-12=32,∴⼆次函数的解析式为y =-12x 2+x +32.(8分)22.(8分)某⽹店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该⽹店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x 元,每星期的销售量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最⼤,最⼤利润多少元?(3)若该⽹店每星期想要获得不低于6480元的利润,每星期⾄少要销售该款童装多少件?解:(1)y=300+30(60﹣x )=﹣30x+2100.(2)设每星期利润为W 元,W=(x ﹣40)(﹣30x+2100)=﹣30(x ﹣55)2+6750.∴x=55时,W 最⼤值=6750.∴每件售价定为55元时,每星期的销售利润最⼤,最⼤利润6750元.(3)由题意(x ﹣40)(﹣30x+2100)≥6480,解得52≤x ≤58,当x=52时,销售300+30×8=540,。

2018-2019学年度九年级上期中数学试题及答案

2018-2019学年度九年级上期中数学试题及答案

第一学期期中阶段性诊断九年级数学试题亲爱的同学:祝贺你完成了一个阶段的学习,现在是展示你的学习成果之时,你可以尽情地发挥,祝你成功!一、选择题:本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的代号填在下面的表格内。

1.一元二次方程2810x x --=配方后可变形为 A .2(4)17x +=B .2(4)15x +=C .2(4)17x -=D .2(4)15x -=2.如图是由6个同样大小的正方体摆成的几何体.将 正方体①移走后,所得几何体 A .主视图改变,左视图改变 B .俯视图不变,左视图不变 C .俯视图改变,左视图改变 D .主视图改变,左视图不变 3.已知四边形ABCD ,下列说法正确的是A .当AD=BC ,AB ∥DC 时,四边形ABCD 是平行四边形 B .当AD=BC ,AB=DC 时,四边形ABCD 是平行四边形 C .当AC=BD ,AC 平分BD 时,四边形ABCD 是矩形 D .当AC=BD ,AC ⊥BD 时,四边形ABCD 是正方形 4.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B 处,她在灯光照射下的影长l 与行走的路程S 之间的变化关系用图象刻画出来,大致图象是5.在平行四边形ABCD 中,AB=10,BC=14,E ,F 分别为边BC ,AD 上的点,若四边形AECF 为正方形,则AE 的长为A .6或8B .4或10C .5或9D .76.如图,已知直线a ∥b ∥c ,直线m ,n 与a ,b ,c 分别交于点A ,C ,E ,B ,D ,F ,若AC=4,CE=6,BD=3,则DF 的值是( ) A .6 B .5.5 C .5 D .4.5第2题图 第4题图 第9题图第8题图第6题图7.方程0413)2(2=+---x m x m 有两个实数根,则m 的取值范围 A .25>m B .25≤m 且2≠m C .3≥m D .3≤m 且2≠m 8.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD=60°,则花坛对角线AC 的长等于A .36米B .6米C .33米D .3米9.如图,以点O 为位似中心,将△ABC 放大得到△DEF .若AD=OA ,则△ABC 与△DEF 的面积之比为A .1:2B .1:4C .1:5D .1:610.将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n 个“龟图”中有245个“○”,则n=A .14B .15C .16D .17 11.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是A .94 B .31 C .61D .9112.如图,已知△ABC 的面积是12,BC=6,点E 、I 分别在边AB 、AC 上,在BC 边上依次作了n 个全等的小正方形DEFG ,GFMN ,…,KHIJ ,则每个小正方形的边长为 A .1112 B .3212+n C .512D .3212-n二、填空题:本题共6小题,每小题填对得4分,共24分。

2018-2019学年第一学期九年级数学期中检测试卷(附答案)

2018-2019学年第一学期九年级数学期中检测试卷(附答案)

学校 班级 姓名 考号 ………………………………………密……………………………………封……………………………………线………………………………………2018-2019学年第一学期期中检测试卷九年级 数学一、选择题(每小题3分,共30分)1.下面四个标志是中心对称图形的是( )2.在下列方程中,一元二次方程是( )A .x 2﹣2xy +y 2=0B .x (x +3)=x 2﹣1C .x 2﹣2x =3D .x +=0 3.方程02=+x x 的解是( ) A .x =±1B .x =0C .1x 0x 21-==,D .x =14.抛物线3)2(2+-=x y 的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3) 5. 把一元二次方程2x 2-3x +1=0转化为 (x +a )2=b 的形式,正确的是( )A . 23162x ⎛⎫-= ⎪⎝⎭ B .2312416x ⎛⎫-= ⎪⎝⎭ C . 231416x ⎛⎫-= ⎪⎝⎭ D .以上都不对 6.不解方程判断下列方程中无实数根的是( )A .-x 2=2x -1 B .4x 2+4x +54=0 C 20x -= D .(x +2)(x -3)=-57. 关于x 的方程ax 2-3x +3=0是一元二次方程,则a 的取值范围是( ) A .a>0 B .a ≠0 C .a =1 D .a ≥08.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每 月增长率为x,则由题意列方程应为( )A .200(1+x )2=1000B .200+200×2x =1000C .200+200×3x =1000D .200[1+(1+x )+(1+x )2]=1000 9.已知一个直角三角形的两条直角边的长恰好是方程07822=+-x x 的两个根,则这个直角三角形的斜边长是( )A B .3 C .6 D .910.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.把一元二次方(x -3)2 = 4化为一般形式是________________,其中二次项为______,一次项系数为______,常数项为_____.12.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后的抛物线解析式为 。

2018-2019学年人教版九年级数学上册 期中综合检测测试题(含答案)

2018-2019学年人教版九年级数学上册 期中综合检测测试题(含答案)

2018-2019学年人教版九年级数学上册期中综合检测测试题(含答案)(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列图案中,既是轴对称图形又是中心对称图形的是()2.若c(c≠0)为关于x的一元二次方程x2+bx+c=0的根,则c+b的值为()A.1B.-1C.2D.-23.一元二次方程2x2-2x-1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根4.方程(x+1)(x-3)=5的解是()A.x1=1,x2=-3B.x1=4,x2=-2C.x1=-1,x2=3D.x1=-4,x2=25.把二次函数y=-x2-x+3用配方法化成y=a(x-h)2+k的形式为()A.y=-(x-2)2+2B.y=(x-2)2+4C.y=-(x+2)2+4D.y=-+36.如图所示,在正方形ABCD中,E为DC边上的点,连接BE,将ΔBCE绕点C顺时针旋转90°得到ΔDCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A.10°B.15°C.20°D.25°7.利用墙的一边,再用13 m的铁丝网,围成一个面积为20 m2的长方形场地,求这个长方形场地的边长,设墙的对边长为x m,可列方程为()A.x(13-x)=20B.x·-=20C.x-=20D.x·-=208.在同一平面直角坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是图中()9.三角形两边的长分别是4和6,第三边的长是一元二次方程x2-16x+60=0的一个实数根,则该三角形的周长是()A.20B.20或16C.16D.18或2110.如果已知二次函数y=ax2+bx+c的图象如图所示,则下列7个代数式ab,ac,bc,b2-4ac,a+b+c,a-b+c,2a+b中,其值为正的式子的个数为()A.2个B.3个C.4个D.5个二、填空题(每小题4分,共24分)11.若关于x的一元二次方程(m-2)x2+3x+m2-4=0的常数项为0,则m的值等于.12.直线y=x+3上有一点P(m-5,2m),则P点关于原点的对称点P'为.13.二次函数y=x2-2x-2的图象向右平移2个单位长度后,再向上平移5个单位长度,平移后的图象对应的二次函数解析式为.14.如图所示,P是正方形ABCD内一点,将ΔABP绕点B按顺时针方向旋转能与ΔCBP'重合,若PB=3,则PP'= .15.已知抛物线y=x2-2013x+2014与x轴的交点为(m,0),(n,0),则(m2-2013m+2014)+(n2-2013n+2014)的值是.16.二次函数y=ax2+bx+c(a,b,c为常数:下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小;③3是方程ax2+(b-1)x+c=0的一个根;④当-1<x<3时,ax2+(b-1)x+c>0.其中正确的结论是.(填序号)三、解答题(共66分)17.(6分)解下列一元二次方程.(1)x2-5x+1=0; (2)3(x-2)2=x(x-2).18.(6分)如图所示,在10×10的正方形网格中,每个小正方形的边长均为1个单位长度.将ΔABC向下平移4个单位长度,得到ΔA'B'C',再把ΔA'B'C'绕点C'顺时针旋转90°,得到ΔA″B″C',请你画出ΔA'B'C'和ΔA″B″C'(不要求写画法).19.(8分)已知x1,x2是一元二次方程2x2-2x+m+1=0的两个实数根.(1)求实数m的取值范围;(2)如果x1,x2满足不等式7+4x1x2>,且m为整数,求m的值.20.(8分)已知二次函数y=x2+bx+c的图象经过A(-1,0)和B(3,0)两点,且交y轴于点C.(1)试确定b,c的值;(2)过点C作CD∥x轴交抛物线于点D,点M为此抛物线的顶点,试确定ΔMCD的形状.21.(8分)某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程,已知2018年投资1000万元,预计2020年投资1210万元.若这两年内平均每年投资增长的百分率相同.(1)求平均每年投资增长的百分率;(2)已知河道治污每平方米需投入400元,园林绿化每平方米需投入200元,若要求2020年河道治污及园林绿化总面积不少于35000平方米,且河道治污费用不少于园林绿化费用的4倍,那么园林绿化的费用应在什么范围内?22.(10分)如图(1)所示,点C为线段AB上一点,ΔACM和ΔCBN是等边三角形,直线AN,MC交于点E,直线BM,CN交于点F.(1)求证AN=MB;(2)求证ΔCEF为等边三角形;(3)将ΔACM绕点C按逆时针方向旋转90°,其他条件不变,在图(2)中画出符合要求的图形,并判断(1)题中的结论是否依然成立,并说明理由.23.(10分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%,经试销发现,销售量y(件)与销售单价x(元)的关系符合一次函数y=-x+140.(1)直接写出销售单价x的取值范围;(2)若销售该服装获得利润为W元,试写出利润W与销售单价x之间的关系式,销售单价为多少元时,可获得最大利润?最大利润是多少元?(3)若获得利润不低于1200元,试确定销售单价x的取值范围.24.(10分)已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当ΔPAC的周长最小时,求点P的坐标,并求出此时的周长;(3)在直线l上是否存在点M,使ΔMAC为等腰三角形?若存在,请写出所有符合条件的点M的坐标;若不存在,请说明理由.期中综合检测【答案与解析】1.B(解析:A中图形是轴对称图形,不是中心对称图形,所以A错误;B既是轴对称图形又是中心对称图形,所以B正确;C 是中心对称图形,不是轴对称图形,所以C错误;D是中心对称图形,不是轴对称图形,所以D错误.故选B.)2.B(解析:∵c(c≠0)为关于x的一元二次方程x2+bx+c=0的根,∴c2+bc+c=0,c(c+b+1)=0,∴c+b+1=0,∴c+b=-1.故选B.)3.B(解析:∵a=2,b=-2,c=-1,∴Δ=b2-4ac=(-2)2-4×2×(-1)=12>0,∴方程有两个不相等的实数根.故选B.)4.B(解析:(x+1)(x-3)=5,x2-2x-3=5,x2-2x=8,x2-2x+1=9,(x-1)2=9,x-1=±3,x1=4,x2=-2.故选B.)5.C(解析:y=-x2-x+3=-(x2+4x)+3=-(x+2)2+4,即y=-(x+2)2+4.故选C.)6.B(解析:∵ΔBCE绕点C顺时针旋转90°得到ΔDCF,∴CE=CF,∠DFC=∠BEC=60°,∴∠EFC=45°,∴∠EFD=60°-45°=15°.故选B.)7.B(解析:由题意可知长方形的另一边长为-m,则利用面积公式可得方程x·-=20.故选B.)8.C(解析:x=0时,两个函数的函数值都为b,所以两个函数图象与y轴相交于同一点,故B,D选项错误;由A,C选项可知,抛物线开口方向向上,所以a>0,所以一次函数y=ax+b的图象经过第一、三象限,所以A选项错误,C选项正确.故选C.)9.C(解析:∵x2-16x+60=0,∴(x-6)(x-10)=0,∴x1=6,x2=10,当x=6时,三角形的三边长分别为6,4和6,∴该三角形的周长是16;当x=10时,三角形的三边长分别为10,4和6,而4+6=10,∴三角形不存在.故三角形的周长为16.故选C.)10.B(解析:∵抛物线的开口向上,∴a>0,∵->0,∴b<0,∵抛物线与y轴交于正半轴,∴c>0,∴ab<0,ac>0,bc<0,∵抛物线与x轴有2个交点,∴b2-4ac>0,∵x=1时的函数值小于0,∴a+b+c<0,又∵x=-1时的函数值大于0,∴a-b+c>0,∵对称轴为直线x=1,∴-=1,即2a+b=0,所以一共有3个式子的值为正.故选B.)11.-2(解析:∵(m-2)x2+3x+m2-4=0的常数项为0,∴m2-4=0,∴m=±2,又m-2≠0,∴m=-2.故填-2.)12.(7,4)(解析:∵P(m-5,2m)在直线y=x+3上,∴2m=m-5+3,解得m=-2,∴P点坐标为(-7,-4),∴点P'的坐标为(7,4).故填(7,4).)13.y=(x-4)2+1(解析:y=x2-2x-2=(x-2)2-4,把其图象向右平移2个单位长度,再向上平移5个单位长度,得抛物线y=(x-2-2)2-4+5,即为y=(x-4)2+1.故填y=(x-4)2+1.)14.3(解析:根据题意将ΔABP绕点B按顺时针方向旋转能与ΔCBP'重合,结合旋转的性质可得BP=BP',∠PBP'=90°,根据勾股定理,可得PP'==3.故填3.)15.0(解析:∵抛物线y=x2-2013x+2014与x轴的交点为(m,0),(n,0),∴m2-2013m+2014=0,n2-2013n+2014=0,∴(m2-2013m+2014)+(n2-2013n+2014)=0.故填0.)16.①③④(解析:由表中数据可得二次函数y=ax2+bx+c的图象开口向下,a<0.当x=0时,y=3,所以c=3>0,所以ac<0,故①正确.由表知抛物线开口向下,且对称轴为直线x=1.5,∴当x>1.5时,y随x的增大而减小,故②错误.∵当x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b=0.∴3是方程ax2+(b-1)x+c=0的一个根,故③正确.∵x=-1时,ax2+bx+c=-1,∴ax2+(b-1)x+c=0,∵x=3时,ax2+bx+c=3,∴ax2+(b-1)x+c=0,且a<0,∴当-1<x<3时,ax2+(b-1)x+c>0,故④正确.),x2=-. (2)x1=2,x2=3.17.提示:(1)x18.解:如下图所示.19.解:(1)∵a=2,b=-2,c=m+1,∴Δ=(-2)2-4×2×(m+1)=-4-8m.当-4-8m≥0,即m≤-时,方程有两个实数根. (2)整理不等式7+4x1x2>,得(x1+x2)2-6x1x2-7<0.由一元二次方程根与系数的关系,得x1+x2=1,x1x2=.代入整理后的不等式得1-3(m+1)-7<0,解得m>-3.又∵m≤-,且m为整数,∴m的值为-2或-1.20.解:(1)将A,B两点坐标代入解析式,得-解得--.(2)在函数y=x2+bx+c中,a=1,b=-2,c=-3,因而-=1,-=-4,∴抛物线的顶点M(1,-4).在函数y=x2-2x-3中,令x=0,得y=-3,∴C点的坐标是(0,-3),把y=-3代入解析式y=x2-2x-3,解得x1=0,x2=2,则D点的坐标是(2,-3),CD=2,CM=--=,同理DM=.∴ΔCDM 是等腰直角三角形.21.解:(1)设平均每年投资增长的百分率是x.由题意得1000(1+x)2=1210,解得x1=0.1,x2=-2.1(不合题意,舍去).答:平均每年投资增长的百分率为10%. (2)设2020年河道治污面积为a平方米,园林绿化面积为-平方米,由题意得--∴24200≤a≤25500,∴968万≤400a≤1020万,∴190万≤1210万-400a≤242万.答:园林绿化的费用应在190万~242万的范围内.22.(1)证明:∵ΔACM和ΔCBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∴∠ACN=∠MCB=120°,∴ΔACN≌ΔMCB,∴AN=MB.(2)证明:如图(1)所示,由(1)知∠1=∠2,易证得ΔCEN≌ΔCFB,∴CE=CF,易知∠3=60°,∴ΔCEF是等边三角形.(3)解:成立.如图(2)所示,∵ΔACM和ΔCBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∵∠ACB=90°,∴∠ACN=∠MCB=150°,∴ΔACN≌ΔMCB,∴AN=MB.23.解:(1)60≤x≤90. (2)W=(x-60)(-x+140)=-x2+200x-8400=-(x-100)2+1600,抛物线的开口向下,当x<100时,W随x 的增大而增大,而60≤x≤90,当x=90时,W=-(90-100)2+1600=1500.∴当销售单价定为90元时,可获得最大利润,最大利润是1500元. (3)由W=1200得1200=-x2+200x-8400,整理得x2-200x+9600=0,解得x1=80,x2=120,要使获得利润不低于1200元,销售单价应在80元到120元之间,而60≤x≤90,所以销售单价x的取值范围是80≤x≤90.24.解:(1)将A(-1,0),B(3,0),C(0,3)代入抛物线解析式y=ax2+bx+c中,得-解得-∴抛物线的解析式为y=-x2+2x+3.(2)y=-x2+2x+3的对称轴为直线x=1,设点P为(1,p),因为对称轴垂直平分AB,所以PA=PB.ΔPAC的周长=AC+PC+PA=AC+PC+PB,其中AC=---=,当B,P和C三点共线时(如图所示),PC+PB存在最小值,PC+PB的最小值=BC=--=3,直线BC:y=-x+3,点P在直线BC上,p=-1+3=2,所以点P的坐标为(1,2),此时ΔPAC周长的最小值为+3.(3)抛物线的对称轴为直线x=-=1,设M(1,m),已知A(-1,0),C(0,3),则:MA2=m2+4,MC2=m2-6m+10,AC2=10.①若MA=MC,则MA2=MC2,得m2+4=m2-6m+10,解得m=1;②若MA=AC,则MA2=AC2,得m2+4=10,解得m=±;③若MC=AC,则MC2=AC2,得m2-6m+10=10,解得m=0或m=6,当m=6时,M,A,C三点共线,构不成三角形,不合题意,故舍去.综上,存在符合条件的M点,且坐标为(1,)或(1,-)或(1,1)或(1,0).。

2018-2019学年九年级上期中考试数学试卷(含答案)

2018-2019学年九年级上期中考试数学试卷(含答案)

第4题图 第5题图 第6题图 第7题图O C A B · C A D B ' B ' 1 D' B C O D A 2018-2019学年上学期期中考试九年级数学试卷 本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题。

注意事项:1.答卷前将密封线左侧的项目填写清楚。

2.答案须用蓝色、黑色钢笔或圆珠笔书写。

卷I (选择题,共42分)一、选择题(本大题共16个小题,1~10题,每小题3分;11~16小题,每小题2分, 共42分,在每小题给出的四个选项中,只有一项符合题目要求的)1.用配方法解方程x 2-23x -1=0时,应将其变形为( ) A .(x -13)2=89 B .(x+13)2=109 C .(x -23)2=0 D .(x -13)2=109 2.窗棂即窗格(窗里面的横的或竖的格)是中国传统木构建筑的框架结构设计,窗棂上 雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构 的图案中,是中心对称图形但不是轴对称图形的是( ) A . B . C . D . 3.下列事件中,属于必然事件的是( ) A .三角形的外心到三边的距离相等 B .某射击运动员射击一次,命中靶心 C .任意画一个三角形,其内角和是180° D .抛一枚硬币,落地后正面朝上 4.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α< 90°).若∠1=112°,则∠α的大小是( ) A .68° B .20° C .28° D .22° 5.如图,BC 是⊙O 的弦,OA ⊥BC ,∠AOB=70°,则∠ADC 的度数是( ) A .70° B .35° C .45° D .60° 6.如图,在△ABC 中,∠C=90°,AB=4,以C 点为圆心,2为半径作⊙C ,则AB 的中 点O 与⊙C 的位置关系是( ) A .点O 在⊙C 外 B .点O 在⊙C 上 C .点O 在⊙C 内 D .不能确定 7.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B 点从开始 至结束所走过的路径长度为( )A .32πB .43πC .4D .2+32π第9题图第10题图第12题图ABC10203040506070 80 90100110120130140150160170180CDA BE ·第14题图第15题图第16题图8.定义运算“※”为:a※b=⎩⎨⎧)(-)(≤bab>bab22,如:1※(-2)=-1×(-2)2=-4.则函数y=2※x)9.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为88°、30°,则∠ACB的大小为()A.15°B.28°C.29°D.34°10.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为()A.8cm B.12cm C.16cm D.20cm11.已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为()A.30πcm2B.50πcm2C.60πcm2D.391πcm2 12.如图,衣橱中挂着3套不同颜色的服装,同一套服装的上衣与裤子的颜色相同.若从衣橱里各任取一件上衣和一条裤子,它们取自同一套的概率是()A.127B.19C.16D.1313.河北省某市2018年现有森林和人工绿化面积为20万亩,为了响应十九大的“绿水青山就是金山银山”,现计划在两年后将本市的绿化面积提高到24.2万亩,设每年平均增长率为x,则列方程为()A.20(1+x)×2=24.2 B.20(1+x)2=24.2×2C.20+20(1+x)+20(1+x)2=24.2 D.20(1+x)2=24.214.如图,边长为3的正五边形ABCDE,顶点A、B在半径为3的圆上,其他各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为()A.12°B.16°C.20°D.24°15.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>-1 时,y>0.其中正确结论的个数是()A.2个B.3个C.4个D.5个16.如图,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A′处,若AO=OB=2,则阴影部分面积为()A.23πB.23π-1 C.43π+1 D.43π第18题图卷II (非选择题,共78分)二、填空题(本大题共3个小题;共12分。

人教版2018-2019学年第一学期九年级数学上册期中试卷及答案

人教版2018-2019学年第一学期九年级数学上册期中试卷及答案

2018-2019学年度第一学期九年级期中质量调研
数学试卷
一、选择题(本大题共12 小题,每小题3分,共36 分)
1. 下列各点,在二次函数的图象上的是
A.(0,0)
B.(-1,-1)
C.(1,9)
D.(2,-2)
2. 下列图案中,可以看作是中心对称图形的有
A.1个
B.2个
C.3个
D.4个
3. 在平面直角坐标系中,点P(-3,2)绕原点O顺时针旋转180°,所得到的对应点P '的坐标为
A.(3,2)
B.(2,-3)
C.(-3,-2)
D.(3,-2)
4. 下列命题中不正确的是
A.圆是轴对称图形,任何一条直径所在直线都是圆的对称轴
B.圆是中心对称图形,圆心是它的对称中心
C.同弧或等弧所对的圆心角相等
D.平分弦的直径一定垂直于这条弦
5. 抛物线的顶点坐标为
A.(4,7)
B.(-4,7)
C.(4,-7)
D.(-4,-7)
6.抛物线向上平移3个单位,再向左平移两个单位,那么得到的抛物线解析式为()
7. 如图,以△ABC的边BC为直径的圆O分别交AB,AC于点D、E,连接OD、OE,若,则∠A的度数为。

2018-2019学年第一学期期中质量检测九年级数学试卷(含答案)

2018-2019学年第一学期期中质量检测九年级数学试卷(含答案)

2018-2019学年第一学期期中质量检测九年级数学试题(卷)一、选择题(每小题3分,共30分)1、在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( )A.15B.25C.35D.452、方程x 2-3x -6=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定3、矩形具有而菱形不具有的性质是( )A .两组对边分别平行且相等B .对角线相等C .相邻两角互补D .两组对角分别相等4、下列条件中能使平行四边形ABCD 为菱形的是( )①AC ⊥BD ;②∠BAD =90°;③AB =BC ;④AC =BD .A .①③B .②③C .③④D .①②③5、一元二次方程x 2-3x -1=0的两实数根是x 1,x 2,则x 1+x 2-x 1·x 2的值是( )A .4B .2C .-2D .-46、要从小强、小华和小林三人中随机选两人作为旗手,则小强和小林同时入选的概率是( )A.23B.13C.12D.167、某种商品的原价为36元/盒,经过连续两次降价后的售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是( )A .36(1-x )2=36-25B .36(1-2x )=25C .36(1-x )2=25D .36(1-x 2)=258、若实数x ,y 满足(x 2+y 2+1)(x 2+y 2-2)=0,则x 2+y 2的值是( )A .1B .2C .2或-1D .-2或-19、关于x 的一元二次方程kx 2+2x +1=0有两个实根,则实数k的取值范围是( )A .k ≤1B .k <1C .k ≤1且k ≠0D .k <1且k ≠10、如图,在菱形ABCD 中,点E 是AB 边上一点,且∠A =∠EDF =60°,有下列结论:①AE =BF ;②△DEF 是等边三角形;③△BEF 是等腰三角形;④∠ADE =∠BEF.其中结论正确的个数是( )A .3个B .4个.2个二、填空题(每小题3分,共18分)11、关于x 的方程x 2+mx -6=0有一根为2,则另一根是____,m=____.12、.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3个,白球n 个,若从袋中任取一个球,摸出白球的概率是45,则n =____. 13、如图,在矩形ABCD 中,AB =12AC ,BC =3,则OB =____. 14.如图,某小区规划在一个长30 m ,宽20 m 的长方形ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平第13题图第15题图 行,其余部分种花草.要使每一块花草的面积都为78 m 2,那么通道的宽应设计成多少m ?设通道的宽为x m ,由题意列得方程__ __.15.如图,是一个菱形衣挂的平面示意图,每个菱形的边长为16 cm ,当锐角∠CAD =60°时,把这个衣挂固定在墙上,两个钉子CE 之间的距离是____cm.(结果保留根号)16、在一个口袋中有4个完全相同的小球,把它们分别标号1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于4的概率是____.三、解答题(共72分)17、(10分)解方程:(1)-12x 2-3x +6=0;(2)x +5=x 2-25.18、(10分)如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.第14题图19、(10分)现有5个质地、大小完全相同的小球上分别标有数字-1,-2,1,2,3.先将标有数字-2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从这两个盒子里各随机取出一个小球.(1)请利用列表或画树状图的方法表示取出的两个小球上的数字之和所有可能的结果;(2)求取出两个小球上的数字之和等于0的概率.20、(10分)如图,四边形ABCD是矩形,把矩形沿AC折叠,点B 落在点E处,AE与DC的交点为O,连接DE.(1)求证:△ADE≌△CED;(2)求证:DE∥AC.21、(10分)在矩形ABCD中,AB=6 cm,BC=12 cm,点P从点A 开始沿AB边向点B以1 cm/s的速度运动,同时点Q从点B开始沿BC边向点C以2 cm/s的速度运动,P,Q两点分别到达B,C 两点后停止移动,那么几秒后△PBQ的面积是5 cm2?22、(10分)某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500 kg,销售单价每涨价1元,月销售量就减少10 kg.针对这种水产品的销售情况,请回答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和销售利润;(2)商店想在月销售成本不超过10 000元的情况下,使月销售利润达到8 000元,销售单价应定为多少?23、(12分)猜想与证明:如图①摆放矩形纸片ABCD与矩形纸片ECGF,使B,C,G三点在一条直线上,CE在边CD上,连接AF,若点M为AF的中点,连接DM,ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为____;(2)如图②摆放正方形纸片ABCD与正方形纸片ECGF,使点F 在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.参考答案一、1.C 2.A 3.B 4.A 5.A6.B7.C 8.B 9.C10. A二、11.-3_ 1 12.12_13.1_14._(30-2x)(20-x)=6×78_15..316三、17.x 1=-3+21,x 2=-3-21 x 1=-5,x 2=618.列表略.所有等可能的情况有9种,其中两数之积为偶数的情况有5种,两数之积为奇数的情况有4种,∴P(小明获胜)=59,P(小华获胜)=49.∵59>49,∴该游戏不公平 19.(1)树状图如图所示:(2)由树状图可知所有可能出现的结果共有6种,∴P(和为0)=26=1320.(1)∵ 四边形ABCD 是矩形,∴AD =BC ,AB =CD.又∵AC 是折痕,∴BC =CE =AD ,AB =AE =CD.又DE =ED ,∴△ADE ≌△CED (2)∵△ADE ≌△CED ,∴∠EDC =∠DEA.又∵△ACE 与△ACB 关于AC 所在直线对称,∴∠OAC =∠CAB.又∵∠OCA =∠CAB ,∴∠OAC =∠OCA.∵∠DOE =∠AOC ,∴2∠OAC =2∠DEA ,∴∠OAC =∠DEA ,∴DE ∥AC21.设x 秒后△PBQ 的面积为5 cm 2,则12(6-x)·2x =5,解得x 1=1,x 2=5.答:1秒或5秒后,△PBQ 的面积是5 cm 222.(1)450 kg 6 750元 (2)设销售单价为x 元,则(x -40)[500-10(x -50)]=8 000,解得x 1=60,x 2=80,当x =60时,月销售成本超过了10 000元,应舍去.因此,销售单价为每千克80元23.(1)_DM =ME(2)证明:如图①,延长EM 交AD 于点H ,∵四边形ABCD 和ECGF 是矩形,∴AD ∥EF ,∴∠EFM =∠HAM ,又∵∠FME =∠AMH ,FM =AM ,∴在△FME 和△AMH 中,⎩⎪⎨⎪⎧∠EFM =∠HAM ,FM =AM ,∠FME =∠AMH ,∴△FME ≌△AMH(ASA)∴HM =EM.在Rt △HDE 中,HM =EM ,∴DM =HM =ME ,∴DM =ME (1)DM =ME (2)如图②,连接AE ,∵四边形ABCD 和ECGF 是正方形,∴∠FCE =45°,∠FCA =45°,∴AE 和EC 在同一条直线上,在Rt △ADF 中,AM =MF ,∴DM =AM =MF ,在Rt △AEF 中,AM =MF ,∴AM =MF =ME ,∴DM =ME。

2018-2019学年度九年级上学期期中考试九数学试卷(解析版)

2018-2019学年度九年级上学期期中考试九数学试卷(解析版)

2018-2019学年度九年级上学期期中考试九数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)把方程(x﹣)(x+)+(2x﹣1)2=0化为一元二次方程的一般形式是()A.5x2﹣2x﹣2=0 B.5x2﹣4x﹣2=0 C.5x2﹣2=0 D.3x2﹣4x﹣2=0 【专题】常规题型.【分析】根据化为一元二次方程的一般式即可求出答案.【解答】解:化为一般式为:x2-3+4x2-4x+1=0∴5x2-4x-2=0故选:B.【点评】本题考查一元二次方程的一般式,解题的关键是正确理解一元二次方程的一般式,本题属于基础题型.2.(3分)关于x的方程(a2﹣2a﹣3)x2+ax+b=0是一元二次方程的条件是()A.a≠0B.a≠﹣3且a≠1C.a≠3且a≠﹣1 D.a≠3或a≠﹣1【专题】常规题型.【分析】依据一元二次方程的二次项系数不为零列不等式求解即可.【解答】解:∵关于x的方程(a2-2a-3)x2+ax+b=0是一元二次方程,∴a2-2a-3≠0.∴a≠3且a≠-1.故选:C.【点评】本题主要考查的是一元二次方程的定义,熟练掌握一元二次方程的定义是解题的关键.3.(3分)已知二次函数y=ax2+4ax+c的图象与x轴的一个交点为(﹣1,0),则它与x轴的另一个交点的坐标是()A.(﹣3,0)B.(3,0)C.(1,0)D.(﹣2,0)【专题】常规题型;二次函数图象及其性质.【分析】先求出抛物线的对称轴,再根据轴对称性求出与x轴的另一个交点坐标.【解答】解:二次函数y=ax2+4ax+c的对称轴为:x=﹣=﹣2,∵二次函数y=ax2+4ax+c的图象与x轴的一个交点为(﹣1,0),∴它与x轴的另一个交点坐标是(﹣3,0).故选:A.【点评】本题主要考查抛物线与x轴的交点,解题的关键是熟练掌握抛物线的对称性.4.(3分)若二次函数y=mx2﹣4x+m有最大值﹣3,则m等于()A.m=4 B.m=﹣1 C.m=1 D.m=﹣4【专题】常规题型.【分析】根据二次函数的最值公式列式计算即可得解.【解答】解:∵二次函数有最大值,∴m<0且=﹣3,解得m=﹣4.故选:D.【点评】本题考查了二次函数的最值问题,熟记最大(小)值公式是解题的关键.5.(3分)在平面直角坐标系中,将点P(﹣3,2)绕点A(0,1)顺时针旋转90°,所得到的对应点P′的坐标为()A.(﹣1,﹣2)B.(3,﹣2)C.(1,3)D.(1,4)【专题】平移、旋转与对称.【分析】建立平面直角坐标系,作出图形,然后根据图形写出点P′的坐标即可.【解答】解:如图所示,建立平面直角坐标系,点P′的坐标为(1,4).故选:D.【点评】本题考查了坐标与图形变化-旋转,作出图形,利用数形结合的思想求解更形象直观.6.(3分)方程x2﹣2x+4=0和方程x2﹣4x+2=0中所有的实数根之积是()A.8 B.2 C.6 D.4【专题】常规题型.【分析】由方程根与系数的关系可分别求得每个方程的两根,再共积即可求得答案.【解答】解:∵方程x2-2x+4=0的判别式△=(-2)2-4×4=-12<0,∴方程x2-2x+4=0无实数根,∵方程x2-4x+2=0,∴两根之积为2,∴方程x2-2x+4=0和方程x2-4x+2=0中所有的实数根之积为2,故选:B.【点评】本题主要考查方程根与系数的关系,掌握方程根与系数的关系是解题的关键,注意根与系数的关系应用的前提是该方程有实数根.7.(3分)若一次函数y=kx+b的图象与x轴、y轴都交于正半轴,则二次函数y=kx2+bx ﹣kb的图象可能是()A.B.C.D.【专题】解题方法.【分析】根据一次函数y=kx+b的图象与x轴、y轴都交于正半轴,可得k<0,b>0,根据二次函数y=kx2+bx-kb的系数可知对称轴为- >0,-kb>0,可得答案.【解答】解:∵一次函数y=kx+b的图象与x轴、y轴都交于正半轴,∴k<0,b>0,∴二次函数y=kx2+bx-kb的图象开口向下,∵对称轴为->0,-kb>0,故C符合题意,故选:C.【点评】本题考查了二次函数图象和一次函数的图象,利用一次函数图象与x轴、y轴都交于正半轴,考查二次函数的系数特点是解题关键.8.(3分)如图,点P是等边△ABC的内部一点,PA=5,PB=13,PC=12,则△ABP与△ACP 的面积之和是()A.+30 B.72+30 C.60 D.+30【专题】常规题型;构造法;等腰三角形与直角三角形;平移、旋转与对称.【分析】把△APC绕点A顺时针旋转60°得到△ADB,可证得△ADP为等边三角形,△PBD 为直角三角形,利用S△ABP+S△ACP=S△ADP+S△PBD可求得答案.【解答】解:如图,把△APC绕点A顺时针旋转60°得到△ADB,连接PD,则△ADP为等边三角形,∴DP=PA=5,∵PB=13,PD=PC=12,∴BD2+PD2=PB2,∴△BPD为直角三角形,∴S△ABP+S△ACP=S△ADP+S△PBD=×5×12+×52=+30,故选:A.【点评】本题主要考查旋转的性质、等边三角形及旋转的性质,利用旋转的性质构造直角三角形和等边三角形是解题的关键,注意等边三角形面积公式的应用,即等边三角形的边长为a,则等边三角形的面积等于9.(3分)若关于x的方程(a﹣3)x2﹣4x﹣1=0有实数根,则a满足()A.a≥﹣1且a≠3B.a≠3C.a>﹣1且a≠3D.a≥﹣1【专题】常规题型.【分析】根据根的判别式即可求出答案.【解答】解:当a﹣3=0时,∴﹣4x﹣1=0,∴x=﹣当a﹣3≠0时,∴△=16+4(a﹣3)≥0,∴a≥﹣1,综上所述,a≥﹣1故选:D.【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.10.(3分)已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①9a﹣3b+c=0;②4a ﹣2b+c>0;③方程ax2+bx+c﹣4=0有两个相等的实数根;④方程a(x﹣1)2+b(x﹣1)+c=0的两根是x1=﹣2,x2=2.其中正确结论的个数是()A.1 B.2 C.3 D.4【专题】二次函数图象及其性质.【分析】①根据x=-3时,对应的y=0,代入可得结论;②根据x=-2时,对应的y>0,代入可得结论;③根据顶点坐标中y=4,可得方程ax2+bx+c-4=0有两个相等的实数根;④将x-1替换x,由方程ax2+bx+c=0的两根x1=-3,x2=1,可得结论.【解答】解:①由抛物线的对称性可知:与x轴交于另一点为(-3,0),∴9a-3b+c=0;故①正确;②由图象得:当x=-2时,y>0,∴4a-2b+c>0,故②正确;③∵抛物线的顶点(-1,4),∴方程ax2+bx+c=4有两个相等的实数根,即方程ax2+bx+c-4=0有两个相等的实数根;故③正确;④由题意得:方程ax2+bx+c=0的两根为:x1=-3,x2=1,∴方程a(x-1)2+b(x-1)+c=0的两根是:x-1=-3或x-1=1,∴x1=-2,x2=2,故④正确;综上得:正确结论为:①②③④,4个,故选:D.【点评】本题主要考查二次函数图象与系数的关系,与方程相联系,掌握二次函数y=ax2+bx+c 与方程的关系,利用数形结合的思想,确定代数式的值.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若关于x的一元二次方程x2+(k+3)x+k=0的一个根是﹣2,则另一个根是.【分析】把方程的一个根-2代入方程得到关于k的方程,解方程求出k的值.根据根与系数的关系,由两根之和可以求出方程的另一个根.【解答】解:把x=-2代入x2+(k+3)x+k=0得到:(-2)2+(k+3)×(-2)+k=0,解得k=-2.设方程的另一根为t,则-2t=-2,解得t=1.故答案是:1.【点评】本题考查的是一元二次方程的根与系数的关系;把方程的解代入方程求出字母系数k的值是解决问题的关键.12.(3分)将抛物线y=x2﹣4x+5向右平移1个单位长度,再向下平移2个单位长度,则平移后的抛物线的顶点坐标是.【专题】函数思想.【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【解答】解:∵y=x2-4x+5=(x-2)2+1,∴抛物线y=x2-4x+5的顶点坐标是(2,1),∴将抛物线y=x2-4x+5向右平移1个单位长度,再向下平移2个单位长度,则平移后的抛物线的顶点坐标是(3,-1).故答案是:(3,-1).【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.13.(3分)如图,▱ABCD中,AE⊥BC于E,以B为中心,取旋转角等于∠ABC,将△BAE 顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=70°,∠ADA′=50°,则∠DA′E′的度数为.【专题】多边形与平行四边形.【分析】根据平行四边形的性质得∠ABC=∠ADC=70°,AD∥BC,则根据平行线的性质可计算出∠DA′B=130°,接着利用互余计算出∠BAE=20°,然后根据旋转的性质得∠BA′E′=∠BAE=20°,于是可得∠DA′E′=150°.【解答】解:∵四边形ABCD为平行四边形,∴∠ABC=∠ADC=70°,AD∥BC,∴∠ADA′+∠DA′B=180°,∴∠DA′B=180°-50°=130°,∵AE⊥BE,∴∠BAE=20°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=20°,∴∠DA′E′=130°+20°=150°.故答案为:150°.【点评】本题考查了平行四边形的性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.14.(3分)已知函数y=的图象如图所示,观察图象,则当函数值y≥﹣6时,对应的自变量x的取值范围是.【专题】常规题型.【分析】根据图象以及不等式解法,分别解不等式,得出自变量的取值范围即可.【解答】解:∵y=,∴当函数值y≥﹣6时,分两种情况:①x≤2时,﹣x2+2≥﹣6,x2≤8,结合图象可以得出:﹣2≤x≤2,此时x≤2,所以﹣2≤x≤2,②x>2时,当函数值y≥﹣6时,﹣2x≥﹣6,解得:x≤3,此时x>2,所以2<x≤3.综上所述,y≥﹣6时,对应的自变量x的取值范围是:﹣2≤x≤3,故答案为﹣2≤x≤3.【点评】此题考查了二次函数的性质,函数的图象以及不等式的解法,根据图象得出不等式x2≤8的解集是解题关键.15.(3分)设m,n是一元二次方程x2﹣2018x+1=0的两个实数根,则代数式2017m2+2018n2﹣2018n﹣2017×20182的值是.【专题】计算题.【分析】根据根与系数的关系得出“m+n=2018,mn=1”,再将2017m2+2018n2-2018n-2017×20182变形为只含m+n与mn的代数式,代入数据即可得出结论.【解答】解:∵m、n是关于x的一元二次方程x2-2018x+1=0的两个实数根,∴m+n=2018,mn=1,n2-2018n+1=0,∴2017m2+2018n2-2018n-2017×20182=2017[(m+n)2-2mn]+n2-2018n-2017×20182=2017×(20182-2)-1-2017×20182=2017×20182-2017×2-1-2017×20182=-4035故答案为:-4035.【点评】本题考查了根与系数的关系,解题的关键是找出2017m2+2018n2-2018n-2017×20182=2017[(m+n)2-2mn]+n2-2018n-2017×20182.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积,再将代数式变形为只含两根之和与两根之积的形式是关键.16.(3分)如图,在△ABC中,∠ACB=90°,BC=2,AC=6,D为AC上一点,AD=4,将AD绕点A旋转至AD′,连接BD′,F为BD′的中点,则CF的最大值为.【专题】平移、旋转与对称.【分析】利用直角三角形斜边上的中线等于斜边的一半,可得CM的长,利用三角形中位线定理,可得MF的长,再根据当且仅当M、F、C三点共线且M在线段CF上时CF最大,即可得到结论.【解答】解:如图,取AB的中点M,连接MF和CM,∵将线段AD绕点A旋转至AD′,∴AD′=AD=4,∵∠ACB=90°,∵AC=6,BC=2,∴AB==2.∵M为AB中点,∴CM=,∵AD′=4.∵M为AB中点,F为BD′中点,∴FM=AD′=2.∵CM+FM≥CF,∴当且仅当M、F、C三点共线且M在线段CF上时,CF最大,此时CF=CM+FM=+2.故答案为:+2.【点评】本题考查了旋转的性质,解题的关键是掌握旋转的性质及直角三角形斜边上的中线等于斜边的一半,知道当且仅当M、F、C三点共线且M在线段CF上时CF最大是解题的关键.三、解答题(本大题共8小题,共72分)17.(9分)解下列方程:(1)x2﹣5x=6;(2)x2﹣x﹣1=0;(3)(x﹣2)2=2(x+3)(x﹣3).【专题】常规题型.【分析】根据一元二次方程的解法即可求出答案.【解答】解:(1)x2﹣5x﹣6=0(x﹣6)(x+1)=0x=6或x=﹣1(2)x2﹣x+=+1,(x﹣)2=x=(3)x2﹣4x+4=2x2﹣9x2+4x﹣13=0x2+4x+4=13+4(x+2)2=17x=﹣2±【点评】本题考查一元二次方程的解法,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.18.(8分)(1)在图1中画出△ABC关于O的中心对称图形△A′B′C′;(2)正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.在图2的正方形网格(每个小正方形的边长为1)中,画出格点△DEF,使DE=,DF=,EF=,并求出△DEF的面积.【专题】作图题.【分析】(1)画出A、B、C三点关于O的对称点,连接各对称点所得图形即为△ABC关于点O的中心对称图形.(2)找到直角边为1和3的直角三角形,其斜边为,直角边为1和2的直角三角形,其斜边为,直角边为2和3的直角三角形,其斜边为【解答】解:(1)如图(1):(2)如图(2):S△DEF═=3×3﹣3﹣1﹣1.5=3.5.【点评】本题考查了作图--旋转变换和勾股定理,充分利用格点是解题的关键一步.19.(8分)某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整:(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x …﹣3 ﹣﹣2 ﹣1 0 1 2 3 …y … 3 m ﹣1 0 ﹣1 0 3 …其中,m=.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;②方程x2﹣2|x|=有个实数根;③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是.【专题】常规题型;数形结合;二次函数图象及其性质.【分析】(1)根据当x=2或x=-2时函数值相等即可得;(2)将坐标系中y轴左侧的点按照从左到右的顺序用平滑的曲线依次连接可得;(3)①根据函数图象与x轴的交点个数与对应方程的解的个数间的关系可得;③关于x的方程x2-2|x|=a有4个实数根时,-1<a<0.【解答】解:(1)由函数解析式y=x2﹣2|x|知,当x=2或x=﹣2时函数值相等,∴当x=﹣2时,m=0,故答案为:0;(2)如图所示:(3)①由图象可知,函数图象与x轴有3个交点,所以对应的方程x2﹣2|x|=0有3个实数根;②由函数图象知,直线y=﹣与y=x2﹣2|x|的图象有4个交点,所以方程x2﹣2|x|=有4个实数根;③由函数图象知,关于x的方程x2﹣2|x|=a有4个实数根时,0<a<﹣1,故答案为:0<a<﹣1;故答案为:①3、3;②4;③0<a<﹣1.【点评】本题主要考查抛物线与x轴的交点,解题的关键是熟练掌握二次函数图象与x轴交点坐标和对应方程的解之间的关系.20.(9分)(1)如图1,正方形ABCD中,点E,F分别在BC,CD上,且∠EAF=45°,则有BE+DF=.若AB=2,则△CEF的周长为.(2)如图2,四边形ABCD中,∠BAD=∠C=90°,AB=AD,点E,F分别在BC,CD上,且∠EAF=45°,试判断BE,EF,DF之间的数量关系,并说明理由.【专题】几何图形.【分析】(1)延长EB至H,使BH=DF,连接AH,证△ADF≌△ABH,△FAE≌△HAE,根据全等三角形的性质得出EF=HE=BE+HB进而求出即可;(2)延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案.【解答】解:(1)延长EB至H,使BH=DF,连接AH,如图1,∵在正方形ABCD中,∴∠ADF=∠ABH,AD=AB,在△ADF和△ABH中,∵,∴△ADF≌△ABH(SAS),∴∠BAH=∠DAF,AF=AH,∴∠FAH=90°,∴∠EAF=∠EAH=45°,在△FAE和△HAE中,∵,∴△FAE≌△HAE(SAS),∴EF=HE=BE+HB,∴EF=BE+DF,∴△CEF的周长=EF+CE+CF=BE+CE+DF+CF=BC+CD=2AB=4.故答案为:EF;4.(2)延长CB至M,使BM=DF,连接AM,如图2,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=∠C=90°,∠EAF=45°,即∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.【点评】本题主要考查正方形的性质,全等三角形的判定以及勾股定理的综合应用.作出辅助线延长EB至H,使BH=DF,利用全等三角形性质与判定求出是解题关键.21.(8分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不等的实数根x1,x2.(1)求实数k的取值范围;(2)若该方程的两个实数根x1,x2满足|x1|+|x2|=x12+x22﹣10,求k的值.【专题】判别式法.【分析】(1)由△>0,列出不等式,解不等式即可;(2)由根与系数的关系表示两根和与两根积,再把所求的式子,化简后代入计算即可.【解答】解:(1)由题意,△>0,∴(2k+1)2﹣4(k2+1)>0,解得k>.(2)依题意得:x1+x2=2k+1,x1•x2=k2+1,由(1)得:k,∴x1+x2>0,x1x2>0,∴x1、x2同为正根,∴|x1|+|x2|=x12+x22﹣10,可化为:x1+x2=x12+x22﹣10,2k+1=(x1+x2)2﹣2x1x2﹣10,2k+1=(2k+1)2﹣2(k2+1)﹣10,k2+k﹣6=0,(k+3)(k﹣2)=0,k1=﹣3,k2=2,∵k>,∴k=2.【点评】本题考查了根与系数的关系以及一元二次方程的解,根的判别式等知识,22.(8分)如图,要建一个面积为130m2的矩形仓库,仓库的一边靠墙(墙长为am),并在与墙平行的一边开一道1m宽的门.现有能围成32m长的木板,求建仓库的方案.【专题】一元二次方程及应用.【分析】设与仓库与墙垂直的一边是x米,长是(32-2x+1),根据面积为130平方米可列方程求解,再分类讨论即可;【解答】解:设与仓库与墙垂直的一边是x米,(32-2x+1)x=130,x=10或x=6.5,①当0<a<13设,没有符合题意的方案.②当13≤a<20时,建仓库的方案:与仓库与墙垂直的一边是10米,另一边是13米;③当a≥20时,方案一:与仓库与墙垂直的一边是10米,另一边是13米;方案二:与仓库与墙垂直的一边是6.5米,另一边是20米;【点评】本题考查一元二次方程的应用、理解题意的能力,关键是设出长,表示出宽,以面积做为等量关系列方程求解.23.(10分)某宾馆有50个房间供游客居住.,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价为x元(x为整数).(1)直接写出每天游客居住的房间数量y与x的函数解析式.(2)设宾馆每天的利润为W元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?【专题】常规题型;二次函数的应用.【分析】(1)根据每天游客居住的房间数量等于50-减少的房间数即可解决问题;(2)构建二次函数,利用二次函数的性质解决问题.【解答】解:(1)y=50-x−12010=-110x+62;(2)w=(x-20)(-110x+62)=-110x2+64x-1240=-110(x-320)2+9000,∴当x=320时,w取得最大值,最大值为9000,答:当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是9000元.【点评】本题考查二次函数的应用、解题的关键是构建二次函数解决实际问题中的最值问题,属于中考常考题型.24.(12分)如图1,抛物线y=﹣x2+bx+c经过点A(2,0),B(0,2),与x轴交于另一点C.(1)求抛物线的解析式及点C的坐标;(2)点P是抛物线y=﹣x2+bx+c在第一象限上的点,过点P分别向x轴、y轴作垂线,垂足分别为D,E,求四边形ODPE的周长的最大值;(3)如图2,点P是抛物线y=﹣x2+bx+c在第一象限上的点,过点P作PN⊥x轴,垂足为N,交AB于M,连接PB,PA.设点P的横坐标为t,当△ABP的面积等于△ABC面积的时,求t的值.专题】解题方法.【分析】(1)将点A和点B的坐标代入抛物线的解析式可求得b、c的值,从而可得到抛物线的解析式,然后令y=0可得到关于x的方程可求得点C的坐标;(2)设点P的坐标为(t,-t2+t+2),用含t的式子表示出PE、PD的长度,然后可得到四边形ODPE的周长与t的函数关系式,最后利用配方法可求得点P的横坐标,以及四边形ODPE周长的最大值;(3)先求得直线AB的解析式,设P点的坐标为(t,-t2+t+2),则点M的坐标为(t,-t+2),由S△ABP=S△PMB+S△PMA可得到△ABP的面积与t的函数关系式,【解答】解:(1)将点A和点B的坐标代入y=﹣x2+bx+c得:,解得:b=1,c=2.∴抛物线的解析式为y=﹣x2+x+2.令y=0,则0=﹣x2+x+2,解得:x=2或x=﹣1.∴点C的坐标为(﹣1,0).(2)设点P的坐标为(t,﹣t2+t+2),则PE=t,PD=﹣t2+t+2,∴四边形ODPE的周长=2(﹣t2+t+2+t)=﹣2(t﹣1)2+6,∴当P点坐标为(1,2)时,∴四边形ODPE周长最大值为6.(3)∵A(2,0),B(0,2),∴AB的解析式为y=﹣x+2.∵P点的横坐标为t,∴P点纵坐标为﹣t2+t+2.又∵PN⊥x轴,∴M点的坐标为(t,﹣t+2),∴PM=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t.∴S△ABP=S△PMB+S△PMA=PM•ON+PM•AN=PM•OA=﹣t2+2t.又∵S△ABC=AC•OB=×3×2=3,∴﹣t2+2t=3×,解得:t1=t2=1.∴当t=1时,△ABP的面积等于△ABC的面积的.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了代入系数法求二次函数的解析式、二次函数的最值、三角形的面积公式、解一元二次方程,得到PM的长度与点M的横坐标之间的关系是解题的关键.。

2018~2019学年度九年级数学期中调研测试卷人教版

2018~2019学年度九年级数学期中调研测试卷人教版

2018~2019学年度第一学期期中调研试卷九年级数学(时间:150分钟,总分:150分)一、选择题(每小题3分,共30分)1.下列电视台的台标,是中心对称图形的是().A B C D2.下列方程中是一元二次方程的是()A.xy+6=1 B.ax2+bx+c=0 C.x2=0 D.x3+x-9=0 3.二次函数y=(x-4)2+5的图象的开口方向、对称轴、顶点坐标分别是()A.向上,直线x=4,(4,5)B.向上,直线x=-4,(-4,5)C.向上,直线x=4,(4,-5)D.向下,直线x=-4,(-4,5)4.关于x的一元二次方程的一个根是0,则a的值是()A.-1 B.1 C.1或-1 D.-1或0 5.如图,点A,B,C是⊙O上的三点,已知∠AOB=120°,那么∠ACB的度数是()A.30° B.40°C.50° D.60°6.如图,已知⊙O的半径为5cm,弦AB=6cm,则圆心O到弦AB的距离是()A.1cm B.2cm C.3cm D.4cm第5题第6题第7题7.如图,将△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25° B.30° C.40° D.45°8.已知二次函数y=kx2﹣5x﹣5的图象与x轴有交点,则k的取值范围是()A. B.且k≠0 C. D.且k≠09.设一元二次方程x2-2x-4=0两个实根为x1和x2,则下列结论正确的是()A.x1+x2=2B.x1+x2=-4 C.x1·x2=-2 D.x1·x2=410.如图,点C 是以点O 为圆心,AB 为直径的半圆上的动点(点C 不与点A ,B 重合),AB =4.设弦AC 的长为x ,△ABC 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A B C D二、填空题(每小题3分,共24分)11.点(2,-2)关于原点对称的点的坐标是_________.12.函数()12112+--=+mx x m y m 的图象是抛物线,则m =________. 13.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AC .若∠CAB =22.5°,CD =6cm ,则⊙O 的半径为_________cm .第13题 第16题 第17题14.若抛物线y =x 2-x -2与x 轴的交点坐标为(m ,0),则代数式m 2-m +2017的值为________.15.已知二次函数y =3(x -1)2+k 的图像上有三点A (3,y 1),B (2,y 2),C (-3,y 3),则y 1,y 2,y 3的大小关系是__________.16.如图,AB 、CD 是半径为5的⊙0的两条弦,AB =8,CD =6,MN 是直径,AB ⊥MN 点E ,CD⊥MN 于点F ,P 为EF 上的任意一点,则PA +PC 的最小值是___________.17.如图,把抛物线y =x 2平移得到抛物线m .抛物线m 经过点A (-6,0)和原点O (0,0),它的顶点为P ,它的对称轴与抛物线y =x 2交于点Q .则图中阴影部分的面积为________.18.在直角坐标系xOy 中,O 是坐标原点,抛物线y =x 2-x -6与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .如图,如果点M在y 轴右侧的抛物线上,S △AMO =S △COB .那么点M 的坐标是________.三、解答题(共96分)19.(本小题10分)解方程:(1)x 2+4x -1=0; (2)(2x +1)2+4(2x +1)+4=0.17.(本小题8分)如图所示,已知△ABC的顶点A、B、C的坐标分别是A(-1,-1)、B(-4,-3)、C(-4,-1).(1)作出△ABC关于原点O中心对称的图形△A′B′C′;( 2)将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点的坐标.18.(本小题8分)如图,抛物线y=a(x-1)2+4与x轴交于点A,B,与y轴交于点C,过点C作CD∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(-1,0).(1)求抛物线的解析式.(2)求梯形COBD的面积.19.(本小题8分)如图在△ABC中,∠BAC=120°,以BC为边的外作等边三角形△BCD,把△ABD绕点D按顺时针方向旋转60°到△ECD的位置,若AB=3 cm,AC=2 cm.(1)求∠BAD的度数.(2)求AD的长.20.(本小题8分)随着人们节能意识的增强,节能产品的销售量逐年增加.某商场高效节能灯2015年的年销售量为5万只,预计2017年将达到7.2万只.求该商场2015年到2017年高效节能灯年销售量的平均增长率.21.(本小题8分)如图,AB、CD是⊙O的两条弦,延长AB、CD交于点P,连接AD、BC交于点E,∠P=30°,∠ABC=50°,求∠A的度数.22.(本小题8分)如图所示:在平面直角坐标系中,四边形OACB为矩形,C点坐标为(3,6),若点P从O点沿OA向A点以1cm/s的速度运动,点Q从A点沿AC以2cm/s的速度运动,如果P,Q 分别从O,A同时出发,问:(1)经过多长时间△PAQ的面积为2cm2?(2)△PAQ的面积能否达到3cm2?(3)从开始经过多少时间P,Q的距离为6cm?23.(本小题10分)抛物线y=-x2平移后的位置如图所示,点A,B坐标分别为(-1,0)、(3,0),设平移后的抛物线与y轴交于点C,其顶点为D.(1)求平移后的抛物线的解析式和点D的坐标;(2)∠ACB和∠ABD是否相等?请证明你的结论;24.(本小题13分)如图所示,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD-DC-CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?25.(本小题15分)一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明理由.。

2018—2019学年度第一学期期中测试初三数学试卷(含答案)

2018—2019学年度第一学期期中测试初三数学试卷(含答案)

2018~2019学年度初三年级数学第一学期期中检测(考试时间:120分钟 分值:150分)一、选择题(本大题共8小题.每小题3分,共24分.在每小题给出的四个选项中,只有一个是符合题目要求的,请将答案序号填在答题卡相应的位置上.................) 1. 方程x 2+x= 的解是 ( ) A .x=0 B .x=1 C . x 1=0,x 2=1 D . x 1=0,x 2=﹣1 2. 关于x 的一元二次方程(a −1)x 2−2x +3=0有实数根,则整数a 的最大值是( )A.2B.1C.0D.−1 3. 已知关于x 的方程x 2+mx +n =0有一个根是-n(n ≠0),则下列代数式的值恒为常数的是 ( ) A .n +m B .n / m C .n -m D .nm 4. 对甲、乙两同学100米短跑进行5次测试,他们的成绩通过计算得:甲x =乙x ,2甲S =0.026, 2乙S =0.025,下列说法正确的是 ( )A.甲短跑成绩比乙好B.乙短跑成绩比甲好C.甲比乙短跑成绩稳定D.乙比甲短跑成绩稳定 5.圆锥的底面半径为4cm ,高为3cm ,则它的表面积为 ( )A .24πcm 2B .36πcm 2C .48πcm 2D .72πcm 26. 如图,一个直角三角形ABC 的斜边AB 与量角器的零刻度线重合,点D 对应56°,则∠BCD 的度数为 ( )A .28°B .56°C .62°D .64°7. 如图,AB 是⊙O 的直径,⊙O 交BC 的中点于D,DE ⊥AC 于E,连接AD,则下列结论正确的个数是 ( )①AD ⊥BC ②∠EDA=∠B ③2OA=AC ④DE 是⊙O 的切线 A .1 个 B .2个 C .3 个 D .4个8. 如图,矩形ABCD 中,AB=2,BC=3,分别以A 、D 为圆心,1为半径画圆,E 、F 分别是⊙A 、⊙D 上的一动点,P 是BC 上的一动点,则PE+PF 的最小值是( )A .2B .3C .4D .5第6题图 第7题图 第8题图二、填空题(本大题共10小题.每小题4分,共40分.请将答案填在答题卡相应的位.............置上..)9. 如果一组数据-2,0,1,3,x的极差是7,那么x的值是.10. 已知关于x的方程x2−kx−6=0的一个根为x=3,则实数k的值为.11.设a、b是方程x2+x-2018=0的两个不等的实根,则a2+2a+b的值为.12.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是.13.如图,C是以AB为直径的⊙O上一点,已知AB=5,BC=3,则圆心O到弦BC的距离是.14.如图,⊙O的半径为1cm,弦AB、CD cm,1cm,则弦AC、BD所夹的锐角α=.15.如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=56°,则α=.第13题图第14题图第15题图16.如图,△ABC的内切圆O与边BC切于点D,若∠BOC=135°,BD=3,CD=2,则△ABC的面积为=.17.如图正方形ABCD的边长为3,点E是AB上的一点,将△BCE沿CE折叠至△FCE,若CF,CE恰好与以正方形ABCD的中心为圆心的⊙O相切,则折痕CE第16题图第17题图第18题图三、解答题(本大题共9大题,共86分.请将答案..........,解答时应....写在答题卡相应的位置上写出必要的计算过程,推演步骤或文字说明.作图时用铅笔)19. (本题满分8分) 解下列方程:(1)(x+1)2= 9 (2)x2﹣2x﹣2=020.(本题满分9分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为多少?求出图①中m的值;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.21.(本题满分9分)已知□ ABCD两邻边是关于x的方程x2﹣mx+m﹣1=0的两个实数根.(1)当m为何值时,四边形ABCD为菱形?求出这时菱形的边长.(2)若AB的长为2,那么□ ABCD的周长是多少?22.(本题满分9分)某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个,但售价不能超过70元.为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少元?23.(本题满分9分)在半径为17dm 的圆柱形油罐内装进一些油后,横截面如图. ①若油面宽AB=16dm ,求油的最大深度.②在①的条件下,若油面宽变为CD=30dm ,求油的最大深度上升了多少dm ?24.(本题满分9分) 如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧. (1)画出圆弧所在圆的圆心P ; (2)过点B 画一条直线,使它与该圆弧相切;(3)连结AC ,求线段AC 和弧AC 围成的图形的面积.25.(本题满分10分)如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,点D 是AB 延长线上的一点,AE ⊥DC 交DC 的延长线于点E ,AC 平分∠DAE .(1)DE 与⊙O 有何位置关系?请说明理由. (2)若AB=6,CD=4,求CE 的长.26.(本题满分10分)在一节数学实践活动课上,老师拿出三个边长都为2cm 的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)通过计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.27.(本题满分13分)如图,菱形OABC的顶点O在坐标原点,顶点B在x轴的正半轴上,OA 边在直线x y 33=上,AB 边在直线233+-=x y 上. (1)直接写出:线段OA= ,∠AOC= ;(2)在对角线OB 上有一动点P ,以O 为圆心,OP 为半径画弧MN ,分别交菱形的边OA 、OC 于点 M 、N ,作⊙Q 与边AB 、BC 、弧MN 都相切,⊙Q 分别与边AB 、BC 相切于点D 、E ,设⊙Q 的半径为r ,OP 的长为y ,求y 与r 之间的函数关系式,并写出自变量r 的取值范围;(3)若以O 为圆心、OA 长为半径作扇形OAC ,请问在菱形OABC 中,在除去扇形OAC 后的剩余部分内,是否可以截下一个圆,使得它与扇形OAC 刚好围成一个圆锥,若可以,求出这个圆的半径,若不可以,说明理由.2018-2019学年度第一学期第二次质量调研测试初三数学参考答案(考试时间:120分钟分值:150分)二、填空题(本大题共10题,每小题4分,共计40分).9. 5或-4, 10. 1, 11. 2017 12. 相离, 13. 2,14. 75°, 15. 52°, 16. 6, 17. 23, 18. 43π三、解答题(本大题共9大题,共86分.请将答案..........,解答时应....写在答题卡相应的位置上写出必要的计算过程,推演步骤或文字说明.作图时用铅笔)19.(1)x1=2,x2=﹣4 (4分)(2)x1=1+,x2=1﹣;(4分)20.(1)4÷10%=40(人),…………………2分m=100-27.5-25-7.5-10=30;答为40人,m=30.…………………4分(2)平均数=(13×4+14×10+15×11+16×12+17×3)÷40=15,…………………6分16出现12次,次数最多,众数为16;…………………7分按大小顺序排列,中间两个数都为15,(15+15)÷2=15,中位数为15.…………………9分21.(1)若四边形为菱形,则方程两实根相等.∴△=m2﹣4(m﹣1)=0 …………………1分∴m2﹣4m+4=0∴m1=m2=2 …………………3分∴方程化为x2﹣2x+1=0解得:x1=x2=1∴菱形边长为1.…………………5分(2)由AB=2知方程的一根为2,将x=2代入得,4﹣2m﹣1=0,解得:m=3 …………………6分此时方程化为:x2﹣3x+2=0,解得(x﹣1)(x﹣2)=0解得:x1=1,x2=2 …………………8分∴平行四边形ABCD的周长=2×(1+2)=6.…………………9分22.(本题满分9分)设售价定为x元[600−10(x−40)](x−30)=10000 ……………………3分整理,得x2−130x+4000=0解得:x1=50,x2=80…………………………7分∵x≤70∴x=50 ………………………… 8分答:台灯的售价应定为50元。

2018-2019学年第一学期九年级上期中调研测试数学试题

2018-2019学年第一学期九年级上期中调研测试数学试题

2018-2019学年(上)九年级期中调研测试数学试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.下列函数中,y 是x 的二次函数的是A .y =2x -1B .y =1xC .y =x -x 2D .y =21x x + 2.抛物线2(1)2y x =-+的顶点坐标是A .(1,2)B .(-1,2)C .(2,1)D .(2,-1) 3.下列成语描述的事件为随机事件的是A .水涨船高B .守株待兔C .水中捞月D .刻舟求剑4.一只不透明的袋子中装有4个红球、3个黑球,这些球除颜色外都相同.搅匀后从中任意摸出1个球,则摸到黑球的概率为A .57B .47C .37D .17 5.抛物线y =3x ²-3向上平移3个单位长度,得到新抛物线的解析式为A. y =3x ²B. y =3x ²-6C. y =3(x +3)²-3D. y =3(x -3)²-3 6.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,AE =1,则弦CD 的长是A .7B .27C .6D .87.若将半径为12cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是 A .2cm B .3cm C .4cm D .6cm8.如图,△ABC 中,边BC =12cm ,高AD =6cm ,边长为x 的正方形PQMN 的一边在BC 上,其余两个顶点分别在AB 、AC 上,则正方形边长x 为( )A. 3cmB. 4cmC. 5cmD. 6cm9.若函数y =x 2-2x +c 的图象与坐标轴有三个交点,则实数c 的取值范围是A .c <1B .c >1 C. 0<c <1 D .c <1且c ≠0 10.如图,在△DEF 中,∠D =90°,DE =8,DF =6.AB 与EF ,DE 、DF 的延长线相切,切点分别为C ,P ,Q ,则AB 所在 圆的半径为A .8B .10 C.12D .14二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)E FDCP Q ABB11.抛物线 y =x 2-4x 的对称轴为直线 .12.一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5.若随机投掷一次小正方体,则朝上一面的数字是5的概率为 .13.四边形ABCD 内接于圆,若∠A =80°,则∠C = 度. 14.如图,Rt △AOB 的一条直角边OB 在x 轴上,双曲线(0)ky x x=>经过斜边OA 的中点C ,与另一直角边交于点D ,若OCD S △=3,则k 的值为_______.O 是△ABC 的外接圆,连接AO ,若∠B =40°,则∠OAC = ▲ 度.16.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中.通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球 ▲ 个.17.如图,⊙O 的半径为5,正五边形ABCDE 内接于⊙O ,则劣弧AB 的长度为 ▲ .18.已知二次函数y =ax 2+bx +c 的部分图象如图所示,则关于x 的方程ax 2+bx +c +2=0的两个根的和为 ▲ .10小题,共96分.请在答题卡指定区域.......内.作答,解答时应写出文字说明、证明过程或演算步骤)19.(本小题满分8分)已知二次函数y =x 2+bx +c 的图象经过(0,3),(1,0)两点,求这个二次函数的解析式.20.(本小题满分8分)如图,OA,OB,OC都是⊙O的半径,∠AOB=2∠BOC.(1)求证:∠ACB=2∠BAC;(2)若AC平分∠OAB,求∠OAC的度数.21.(本小题满分8分)车辆经过苏通大桥收费站时,4个收费通道A,B,C,D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是▲;(2)求两辆车经过此收费站时,选择不同通道通过的概率.22.(本小题满分8分)△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.23.(本小题满分8分)如图,△ABC中,AB=AC=5,以AB为直径作⊙O,交BC边于点D,交CA的延长线于点E,连接AD,DE.(1)求证:BD=CD;(2)若DE=4,求AD的长.24.(本小题满分10分)一条单车道的抛物线形隧道如图所示.隧道中公路的宽度AB =8 m ,隧道的最高点C 到公路的距离为6 m . (1)以直线AB 为x 轴,对称轴为y 轴,建立直角坐标系,求抛物线的解析式;(2)现有一辆货车的高度是4.4 m ,货车的宽度是2 m ,为了保证安全,车顶距离隧道顶部至少0.5 m ,通过计算说明这辆货车能否安全通过这条隧道.25.(本小题满分10分)如图,⊙O 的半径为1,菱形ABCD 的三个顶点A ,B ,D 在⊙O 上,且CD 与⊙O 相切. (1)求证:BC 是⊙O 的切线;(2)求图中阴影部分的面积.26.(本小题满分10分) 如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,CD ⊥AB 于点D .点P 从点D 出发,沿线段DC 向点C 运动,点Q 从点C 出发,沿线段CA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到C 时,两点都停止.设运动时间为t 秒.(1)求线段CD 的长;(2)当t 为何值时,△CPQ 与△ABC 相似? (3)当t 为何值时,△CPQ 为等腰三角形?27.(本小题满分13分)已知点P 不在⊙O 上,点Q 是⊙O 上任意一点,将线段PQ 长度的最小值称为点P 到 ⊙O 的距离.(1)若点P 到⊙O 的距离为2,PO =6,求⊙O 的半径长(直接写出结果);(2)如图1,点P 在⊙O 外,在⊙O 上确定一点Q ,使得PQ 最短,并简要说明理由;(3)如图2,四边形ABCD 中,ADCD =1,以D 为圆心,DC 为半径的圆与AB 相切于点H . 点E 在射线HB 上,且点E 到⊙D1,求AE 的长.28.(本小题满分13分)已知抛物线y =(m +x )(m +2-x ),其中m 为常数,且m ≠0. (1)若抛物线经过点(2,3),求该抛物线的解析式;(2)若直线y =mx +n 与抛物线相交于x 轴上同一点,试用含m 的式子表示n ;(3)若点A (x 1,y 1)和B (3,y 2)在抛物线上,且y 1>y 2,求代数式21114x x 的取值范围.。

2018-2019学年九年级上学期期中考试数学试题(含答案)

2018-2019学年九年级上学期期中考试数学试题(含答案)

2018~2019学年度第一学期期中质量调研九年级数学一、选择题(每小题3分,共30分)1.一元二次方程x 2-2x -1=0的根的情况为( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根2.一个长方形的面积为210 cm 2,宽比长少7 cm.设它的宽为x cm ,则可得方程( )A .2(x +7)+2x =210B .x +(x +7)=210C .x (x -7)=210D .x (x +7)=2103.有两个一元二次方程:①02=++c bx ax ,②02=++a bx cx ,其中a +c =0, 以下四个结论中,错误的是( ) A .如果方程①有两个相等的实数根,那么方程②也有两个相等的实数根; B .如果方程①和方程②有一个相同的实数根,那么这个根必定是x=1;C .如果4是方程①的一个根,那么14是方程②的一个根;D .方程①的两个根的符号相异,方程②的两个根的符号也相异;4.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表: x-7 -6 -5 -4 -3 -2 y-27-13-3353则当0=x 时,y 的值为( )A .5B .-3C .-13D .-275.二次函数c bx ax y ++=2的图象如图所示,反比例函数x ay =与正比例函数x c b y )(+=在同一坐标系中的大致图象可能是A B C D 6.如果将抛物线2y x =向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是( ). A .2(4)2y x =--B .2(4)2y x =-+C .2(4)2y x =+-D .2(4)2y x =++xxxxxyyyyy2018.107.若1(4,)A y -,1(3,)B y -,1(1,)C y 为二次函数242y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( ).A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.如图,Rt OAB △的顶点(2,4)A -在抛物线2y ax =上,将Rt OAB △绕点O 顺时针旋转90︒,得到OCD △,边CD 与该抛物线交于点P ,则点P 的坐标为( ). A .(2,2)B .(2,2)C .(2,2)D .(2,2)(第8题) (第9题) (第10题)9.如图,在Rt ABC △中,90C =︒∠,6cm AC =,2cm BC =,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动,若点P ,Q 均以1cm/s 的速度同时出发,且当一点移动终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( ). A .20cmB .18cmC .25cmD .32cm10.如图,正方形OABC 的边长为2,OA 与x 轴负半轴的夹角为15︒,点B 在抛物线2(0)y ax a =<的图象上,则a 的值为( ). A .12-B .26-C .2-D .23-二、填空题(每小题3分,共24分)11.将一元二次方程(2)(1)3x x -+=化成一般形式,且使得二次项系数为正数,则化成一般形式后的一元二次方程是 .12.已知关于x 的方程x 2+3x +a =0的一个根为-4,则另一个根为 .13.某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是 . 14.若抛物线y =x 2-k x +k -1的顶点在x 轴上,则k = .15.若抛物线2(2)3y x m x =-+-+的顶点在y 轴上,则m =__________.16.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.17.二次函数22y x ax a =-+在 03x ≤≤的最小值是-2,则a =__________18.如图,在平面直角坐标系中,抛物线y =x 2+mx 交x 轴的负半轴于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点A ′恰好落在抛物线上.过点A ′作x 轴的平行线交抛物线于另一点C .若点A ′的横坐标为1,则A ′C 的长为 .三、解答题(共76分)19.⑴ 2(3)5x -= ⑵ 01422=+-x x⑶ 03322=--x x⑷03)32=+--x x ( 20.(6分)已知关于x 的方程x 2+8x +12-a =0有两个不相等的实数根.⑴ 求a 的取值范围;⑵ 当a 取满足条件的最小整数时,求出方程的解.21.(6分)如图,△ABC 中,∠C =90°,BC =6,AC =4.点P 、Q 分别从点A 、出发,点P 沿A →C 的方向以每秒1个单位长的速度向点C 运动,点Q 沿B →向以每秒2个单位长的速度向点C 运动.当其中一个点先到达点C 时,点P 、运动.当四边形ABQP 的面积是△ABC 面积的一半时,求点P 运动的时间.Q BP22.(8分)某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率.(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?24.(本题满分10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:60(3060)y x x =-+≤≤.设这种双肩包每天的销售利润为w 元. (1)求w 与x 之间的函数解析式.(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?25.(本题满分10分)如图1,在平面直角坐标系中,二次函数2(0)y ax bx c a =++>的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB OC =,13OA OC =. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图2,若点(2,)G y 是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,APG △的面积最大?求出此时P 点的坐标和APG △的最大面积.26.已知关于x 的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根. (1)求m 的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n≥m )与变化后的图象有公共点时,求n2﹣4n 的最大值和最小值.27.(本题满分10分)已知二次函数22y ax bx =+-的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当2x =-和5x =时二次函数的函数值y 相等. (1)求实数a 、b 的值.(2)如图1,动点E 、F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 以每秒5个单位长度的速度沿射线AC 方向运动,当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将AEF △沿EF 翻折,使点A 落在点D处,得到DEF △.①是否存在某一时刻t ,使得DCF △为直角三角形?若存在,求出t 的值;若不存在,请说明理由.②设DEF △与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式.参考答案及评分意见一、选择题 1-5 BDBCB ;6.【答案】C ;【解析】22242(4)(4)2y x y x y x =−−−−→=+−−−−→=+-向左平移向下平移个单位个单位. 故选C . 7.【答案】B ;【解析】二次函数2242(2)6y x x x =+-=+-,∴对称轴2x =-, ∴当14x =-,23x =-,31x =时,213y y y <<.故选B .8.【答案】C ;【解析】将(2,4)A -代入2y ax =中得:1a =,∴2y x =, 由题意知,2OB =,4BA =,∴2OD =,将2y =代入2y x =得,2x =±, ∴(2,2)P .故选C .9.【答案】C ;【解析】由题意知,AP t =,CQ t =,6CP t =-,222222(6)21236PQ PC CQ t t t t =+=-+=-+22(3)18t =-+,又∵02t ≤≤,故2t =时,220PQ =最小, 此时25PQ =.故选C .10.【答案】B ;【解析】∵正方形OABC 的边长为2,∴22OB =,由题意知,15AOB =︒∠,∴30COB =︒∠,∴2BC =,6OC =,故(6,2)B --, 代入2y ax =中得:26a -=,26a =-.故选B .二、填空题11.012=+-x x ; 12.1; 13.25%; 14.K=2;15.【答案】2;【解析】由题意知:对称轴202m x -==,解得2m =. 16.【答案】2(2)9y x =--+;【解析】∵抛物线在x 轴上截得的线段长为6,且对称轴为2x =, ∴抛物线与x 轴的两交点为(1,0)-,(5,0),设2(2)9y a x =-+,将(5,0)代入得:1a =-, ∴2(2)9y x =--+.分分分分 分20. ⑴ 根据题意得:0)12482>--a (解得:4->a⑵ ∵ 4->a ∴ 最小的整数为﹣3 ------------------------------------------------------------ ∴ x 2+8x +12﹣(﹣3)=0 即:x 2+8x +15=0解得:x 1=-3,x 2=-521.设点P 运动了x 秒,则AP =x ,BQ =2x由AC =4,BC =6得:PC =4-x ,QC =6-2xP根据题意得:ABC ABQP S S △四边形21= ∴ ABC PQC S S △△21= ∵ ∠C =90 ∴642121)26)4(21⨯⨯⨯=⋅-⋅x x -( 解得:11=x ,62=x 经检验,x =6舍去答:点P 运动的时间是1秒.22.解:设降价x 元后销售这款工艺品每天能盈利3000元. 根据题意可得:3000)550)(4080(=+--x x解这个方程得:201021==x x ,(不合题意,舍去) 当x =10时,80-x =70>65;当x =20时,80-x =60<65(不符合题意,舍去)答:此时销售单价应定为75元.23.【解析】(1)设这两年该企业年利润平均增长率为x ,则:22(1) 2.88x +=, 解得10.220%x ==,2 2.2x =-(不合题意,舍去) 故这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业的年利润为 2.88(120%) 3.456+=,3.456 3.4>,故该企业2017年的利润能超过3.4亿元. 24.【解析】(1)(30)w x y =-⋅(60)(30)x x =-+-2901800x x =-+-,w 与x 之间的函数解析式:2901800w x x =-+-.(2)根据题意得:22901800(45)225w x x x =-+-=--+, ∵10-<,当45x =时,w 有最大值,最大值是225.(3)当200w =时,2901800200x x -+-=,解得140x =,250x =, ∵5048<,250x =不符题意,舍去,故销售单价应定为40元. 25.【解析】(1)由已知得:(0,3)C -,(1,0)A -,将A ,B ,C 三点的坐标代入,得09303a b c a b c C -+=⎧⎪++=⎨⎪=-⎩,∴223y x x =--.(2)存在.∵(1,4)D -,∴直线CD 的解析式为:3y x =--,∴E 点的坐标为(3,0)-, 由A 、C 、E 、F 四点的坐标得:2AE CF ==,AE CF ∥,∴以A 、C 、E 、F 为顶点,的四边形为平移四边形,∴存在点F ,坐标为(2,3)-. (3)过点P 作y 轴的平行线与AG 交于点Q ,易得(2,3)G -,直线AG 为1y x =--, 设2(,23)P x x x --,则(,1)Q x x -,22PQ x x =-++,21(22)32APG APQ GPQ S S S x x =+=-++⨯△△△,当12x=时,APGS△最大,此时115,24P⎛⎫-⎪⎝⎭,APGS△最大为278.26.解:(1)对于一元二次方程x2﹣(m+1)x+(m2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由消去y得到x2+6x+n+2=0,由题意△≥0,∴36﹣4n﹣8≥0,∴n≤7,∵n ≤m ,m =1, ∴1≤n ≤7,令y ′=n 2﹣4n =(n ﹣2)2﹣4,∴n =2时,y ′的值最小,最小值为﹣4, n =7时,y ′的值最大,最大值为21, ∴n 2﹣4n 的最大值为21,最小值为﹣4.27.【解析】(1)由题意得:164204222552a b a b a b +-=⎧⎨--=+-⎩,解得:12a =,32b =-.(2)①由(1)知213222y x x =--,∵(4,0)A ,∴(1,0)B -,(0,2)C ,∴4OA =,1OB =,2OC =,∴5AB =,25AC =,5BC =, ∴22225AC BC AB +==,∴ABC △为Rt △,且90ACB =︒∠,∵2AE t =,5AF t =,52AF AB AE AC ==,又∵EAF CAB =∠∠,∴AEF ACB △∽△, ∴90AEF ACB ==︒∠∠,∴翻折后,A 落在D 处,∴DE AE =,∴24AD AE t ==,12EF AE t ==, 若DCF △为Rt △,点F 在AC 上时,i )∴若C 为直角顶点,则D 与B 重合,∴1522AE AB ==,55224t =÷=,如图2 ii )若D 为直角顶点,∵90CDF =︒∠,∴90ODC EDF +=︒∠∠,∵EDF EAF =∠∠,∴90OBC EAF +=︒∠∠,∴ODC OBC =∠∠,∴BC DC =, ∵OC BD ⊥,∴1OD OB ==,∴3AD =,∴34AE =,∴34t =,如图3 当点F 在AC 延长线上时,90DFC >︒∠,DCF △为钝角三角形,综上所述,34t =或54.②i )当504t <≤时,重叠部分为DEF △,∴2122S t t t =⨯⨯=.ii )当524t <≤时,设DF 与BC 相交于点G ,则重叠部分为四边形BEFG ,如图4,过点G 作GH BE ⊥于H ,设GH x =,则2x BH =,2DH x =,∴32xDB =,∵45DB AD AB t =-=-,∴3452x t =-,∴2(45)3x t =-,∴1122(45)(45)223DEF DBG S S S t t t t ===⨯⨯--⨯-△△2134025533t t =-+-.iii )当522t <≤时,重叠部分为BEG △,如图5,∵2(45)52BE DE DB t t t =-=--=-,22(52)GE BE t ==-,∴21(52)2(52)420252S t t t t =⨯-⨯-=-+.。

2018-2019学年九 年级上期中数学试卷含答案解析

2018-2019学年九 年级上期中数学试卷含答案解析

2018—2019学年九年级(上)期中数学试卷一、选择题1.(3分)顺次连接菱形各边中点所得的四边形一定是()A.等腰梯形B.正方形C.平行四边形D.矩形2.(3分)若x=2关于x的一元二次方程x2﹣ax+2=0的一个根,则a的值为()A.3 B.﹣3 C.1 D.﹣13.(3分)用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是()A.种植10棵幼树,结果一定是“有9棵幼树成活”B.种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C.种植10n棵幼树,恰好有“n棵幼树不成活”D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.94.(3分)如图,在△ABC中,E、F分别是AB、AC上的点,EF∥BC,且=,若△AEF 的面积为2,则四边形EBCF的面积为()A.4 B.6 C.16 D.185.(3分)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.6.(3分)某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为()A.5.3米B.4.8米C.4.0米D.2.7米7.(3分)若双曲线位于第二、四象限,则k的取值范围是()A.k<1 B.k≥1 C.k>1 D.k≠18.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.9.(3分)李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n人参加聚会,根据题意可列出方程为()A.=20 B.n(n﹣1)=20 C.=20 D.n(n+1)=2010.(3分)如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD 上的任意一点,则PK+QK的最小值为()A.1 B.C.2 D.+1二、填空题11.(3分)已知关于x的方程kx2﹣4x+2=0有两个实数根,则k的取值范围是.12.(3分)若==,则=.13.(3分)如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是.14.(3分)如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3米,则地面上阴影部分的面积为㎡.15.(3分)如图,反比例函数y=的图象与直线y=kx(k>0)相交于A、B两点,AC∥y轴,BC∥x轴,则△ABC的面积等于个面积单位.三、解答题16.画几何体的三种视图(注意符合三视图原则)17.解方程:(1)x2﹣4x﹣5=0(2)x2﹣5x+1=0.18.如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.19.“泥兴陶,是钦州的一张文化名片.钦州市某妮兴陶公司以每只60元的价格销售一种成本价为40元的文化纪念杯,每星期可售出100只.后来经过市场调查发现,每只杯子的售价每降低1元,则平均何星期可多买出10只.若该公司销售这种文化纪念杯要想平均每星期获利2240元,请回答:(1)每只杯应降价多少元?(2)在平均每星期获利不变的情况下,为尽可能让利于顾客,赢得市场,该公司应该按原售价的几折出售?20.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.21.如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.22.如图,梯形ABCD中,AD∥BC,点E是边AD的中点,连结BE并延长交CD的延长线于点F,交AC于点G.(1)若FD=2,,求线段DC的长;(2)求证:EF•GB=BF•G E.23.如图,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=15cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒(1)当t=4时,求线段PQ的长度(2)当t为何值时,△PCQ是等腰三角形?(4)当t为何值时,△PCQ的面积等于16cm2?(4)当t为何值时,△PCQ∽△ACB.参考答案与试题解析一、选择题1.(3分)顺次连接菱形各边中点所得的四边形一定是()A.等腰梯形B.正方形C.平行四边形D.矩形【解答】解:如图:菱形ABCD中,E、F、G、H分别是AB、BC、CD、AD的中点,∴EH∥FG∥BD,EH=FG=BD;EF∥HG∥AC,EF=HG=AC,故四边形EFGH是平行四边形,又∵AC⊥BD,∴EH⊥EF,∠HEF=90°∴边形EFGH是矩形.故选:D.2.(3分)若x=2关于x的一元二次方程x2﹣ax+2=0的一个根,则a的值为()A.3 B.﹣3 C.1 D.﹣1【解答】解:把x=2代入x2﹣ax+2=0,得22﹣2a+2=0,解得a=3.故选:A.3.(3分)用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是()A.种植10棵幼树,结果一定是“有9棵幼树成活”B.种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C.种植10n棵幼树,恰好有“n棵幼树不成活”D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.9【解答】解:用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,是在大量重复实验中得到的概率的近似值,故A、B、C错误,D正确,故选:D.4.(3分)如图,在△ABC中,E、F分别是AB、AC上的点,EF∥BC,且=,若△AEF 的面积为2,则四边形EBCF的面积为()A.4B.6 C.16 D.18【解答】解:∵=,∴=,∵EF∥BC,∴△AEF∽△ABC,∴=()2=()2=,∵△AEF的面积为2,∴S△ABC=18,则S四边形EBCF=S△ABC﹣S△AEF=18﹣2=16.故选:C.5.(3分)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.【解答】解:由几何体所示,可得主视图和俯视图分别为:和.故选:B.6.(3分)某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为()A.5.3米B.4.8米C.4.0米D.2.7米【解答】解:设这棵树的高度为x.∵在同一时刻同一地点任何物体的高与其影子长比值是相同的.∴∴x==4.8∴这棵树的高度为4.8米.故选:B.7.(3分)若双曲线位于第二、四象限,则k的取值范围是()A.k<1 B.k≥1 C.k>1 D.k≠1【解答】解:∵双曲线位于第二、四象限,∴k﹣1<0,∴k<1.故选:A.8.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.【解答】解:∵AH=2,HB=1,∴AB=3,∵l1∥l2∥l3,∴==,故选:D.9.(3分)李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n人参加聚会,根据题意可列出方程为()A.=20 B.n(n﹣1)=20 C.=20 D.n(n+1)=20【解答】解:设有n人参加聚会,则每人送出(n﹣1)件礼物,由题意得,n(n﹣1)=20.故选:B.10.(3分)如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD 上的任意一点,则PK+QK的最小值为()A.1 B.C.2 D.+1【解答】解:∵四边形ABCD是菱形,∴AD∥BC,∵∠A=120°,∴∠B=180°﹣∠A=180°﹣120°=60°,作点P关于直线BD的对称点P′,连接P′Q,P′C,则P′Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP′⊥AB时PK+QK的值最小,在Rt△BCP′中,∵BC=AB=2,∠B=60°,∴P′Q=CP′=BC•sinB=2×=.故选:B.二、填空题11.(3分)已知关于x的方程kx2﹣4x+2=0有两个实数根,则k的取值范围是k≤2且k ≠0..【解答】解:∵关于x的方程kx2﹣4x+2=0有两个实数根,∴,解得:k≤2且k≠0.故答案为:k≤2且k≠0..12.(3分)若==,则=.【解答】解:设===k,∴x=3k,y=4k,z=6k,∴==,故答案为.[来源:学+科+网]13.(3分)如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是 4.8.【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD==10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故答案为:4.8.14.(3分)如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3米,则地面上阴影部分的面积为0.81π㎡.【解答】解:如图设C,D分别是桌面和其地面影子的圆心,CB∥AD,∴△OBC∽△OAD∴,∵OD=3米,CD=1米,∴OC=OD﹣CD=3﹣1=2(米),BC=×1.2=0.6(米),∴,∴AD=0.9 S⊙D=π×0.92=0.81πm2,这样地面上阴影部分的面积为0.81πm2.故答案为:0.81π.15.(3分)如图,反比例函数y=的图象与直线y=kx(k>0)相交于A、B两点,AC∥y轴,BC∥x轴,则△ABC的面积等于4个面积单位.【解答】解:设A的坐标是:(a,b),则ab=2,B的坐标是:(﹣a,﹣b),∴AC=2b,BC=2a,则△ABC的面积是:AC•BC=×2a•2b=2ab=2×2=4.故答案为4三、解答题16.画几何体的三种视图(注意符合三视图原则)【解答】解:.17.解方程:(1)x2﹣4x﹣5=0(2)x2﹣5x+1=0.【解答】解:(1)(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=﹣1;(2)△=(﹣5)2﹣4×1=21,x=,所以x1=,x2=.18.如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵两个数字的积为奇数的4种情况,∴两个数字的积为奇数的概率为:=.19.“泥兴陶,是钦州的一张文化名片.钦州市某妮兴陶公司以每只60元的价格销售一种成本价为40元的文化纪念杯,每星期可售出100只.后来经过市场调查发现,每只杯子的售价每降低1元,则平均何星期可多买出10只.若该公司销售这种文化纪念杯要想平均每星期获利2240元,请回答:(1)每只杯应降价多少元?(2)在平均每星期获利不变的情况下,为尽可能让利于顾客,赢得市场,该公司应该按原售价的几折出售?【解答】解(1)设每只杯子降价x元,根据题意,可列方程:(100+10x)(20﹣x)=2240,整理得到:x2﹣10x+24=0,解得x1=4,x2=6.所以每只杯子应降价4元或6元.(2)因为要保持每星期获利不变,且尽可能利于顾客,因为该公司应使价格尽量低,因此应降价6元.所以有,所以应按原价的九折出售.20.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.【解答】(1)证明:∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.(2)解:如图设AD与EH交于点M.∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM是矩形,∴EF=DM,设正方形EFGH的边长为x,∵△AEH∽△ABC,∴=,∴=,∴x=,∴正方形EFGH的边长为cm,面积为cm2.21.如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.【解答】解:(1)∵已知反比例函数经过点A(1,﹣k+4),∴,即﹣k+4=k,∴k=2,∴A(1,2),∵一次函数y=x+b的图象经过点A(1,2),∴2=1+b,∴b=1,∴反比例函数的表达式为.一次函数的表达式为y=x+1.(2)由,消去y,得x2+x﹣2=0.即(x+2)(x﹣1)=0,∴x=﹣2或x=1.∴y=﹣1或y=2.∴或.∵点B在第三象限,∴点B的坐标为(﹣2,﹣1),由图象可知,当反比例函数的值大于一次函数的值时,x的取值范围是x<﹣2或0<x<1.22.如图,梯形ABCD中,AD∥BC,点E是边AD的中点,连结BE并延长交CD的延长线于点F,交AC于点G.(1)若FD=2,,求线段DC的长;(2)求证:EF•GB=BF•GE.【解答】解:(1)∵AD∥BC,∴△DEF∽△CBF,∴==,∴FC=3FD=6,∴DC=FC﹣FD=4;(2)证明:∵AD∥BC,∴△DEF∽△CBF,△AEG∽△CBG,∴=,=,∵点E是边AD的中点,∴AE=DE,∴=,∴EF•GB=BF•GE.23.如图,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=15cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒(1)当t=4时,求线段PQ的长度(2)当t为何值时,△PCQ是等腰三角形?(4)当t为何值时,△PCQ的面积等于16cm2?(4)当t为何值时,△PCQ∽△ACB.【解答】解:(1)当t=4时,由运动知,AP=4cm,PC=AC﹣AP=6cm、CQ=2×4=8cm,∴PQ==10cm;(2)由运动知,AP=t,PC=AC﹣AP=10﹣t、CQ=2t,∵△PCQ是等腰三角形,∴PC=CQ,∴10﹣2t=2t,∴t=2.5(3)由运动知,AP=t,PC=AC﹣AP=10﹣t、CQ=2t,∴S△PQC=PC×CQ=t(10﹣t)=16,∴t1=2,t2=8,当t=8时,CQ=2t=16>15,∴舍去,∴当t=2时,△PQC的面积等于16cm2;(4)由运动知,AP=t,PC=AC﹣AP=10﹣t、CQ=2t,∵△PCQ∽△ACB,∴,∵AC=10,B C=15,∴,∴t=.。

2018-2019九年级上学期期中考试数学试题

2018-2019九年级上学期期中考试数学试题

2018—2019学年度上学期期中学业水平质量调研试题九年级数学 2017.11(时间:120分钟总分120分)注意事项:1.答题前,请先将自己的姓名、考号、座号在答题纸的相应位置填写清楚;2.选择题答案用2B铅笔涂在答题纸的答题卡上,非选择题用0.5mm黑色中性笔直接写在答题纸相应题号上.一、选择题(本大题共14小题,每小题3分,共42分)1.下面图形中,既是轴对称图形又是中心对称图形的是()2.抛物线2234y x=-+()顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)3.已知m是方程220x x--=的一个根,则2m m-的值是( )A. 0B. 1C. 2D. 2-4.抛物线223y x=+()-可以由抛物线2y x=平移得到,则下列平移过程正确的()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位5.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A.3B.3A DCBC .23D .46.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同, 每次降价的百分率为x ,根据题意列方程得( )A .168(1+x )2=128B .168(1﹣x )2=128C .168(1﹣2x )=128D .168(1﹣x 2)=1287.若(2,5),(4,5)是抛物线y =ax 2+bx +c 上的两个点,则抛物线的对称轴是( )A .x =1B .x =2C .x =3D .x =48.已知⊙O 的半径是6cm ,点O 到同一平面内直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是( )A .相交B .相切C .相离D .无法判断9.若关于x 的一元二次方程2210kx x =--有两个不相等的实数根,则实数k 的取值范围是( ) A .k >﹣1 B .k <1且k ≠ 0 C .k ≥﹣1且k ≠ 0 D .k >﹣1且k ≠ 010.边长为a 的正六边形的内切圆的半径为( )A .2aB .aC .32a D .12a 11.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为( )A .215B .8C .210D .21312. 如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠AOD 等于( )A . 120°B . 140°C . 150°D . 160°13.如图,在△ABC 中,∠ACB =90°,∠ABC =30°,AC =1,将△ABC 绕点C 逆时针旋转至△EFC ,使点E 恰巧落在AB 上,连接BF ,则BF 的长度为( )A .3B .2C .1D .214. 如图,已知顶点为(-3,-6)的抛物线2y ax bx c =++经过点(-1,-4),下列结论:①b 2>4ac ;②ax 2+bx +c ≥-6;③若点(-2,m ),(-5,n )在抛物线上,则m >n ;④关于x 的一元二次方程24ax bx c ++=-的两根为﹣5和﹣1,其中正确的有( )A .1个B .2个C .3个D .4个二、填空题(本大题共5小题,每小题3分,共15分)15.(1)点A (-2,3)与点B (a ,b )关于坐标原点对称,则a b 的值为 .(2)已知⊙O 的半径为5cm ,弦AB ∥CD ,AB =8cm ,CD =6cm ,则AB 和CD 的距离为 .(3)二次函数210y ax bx a =+≠-()的图象经过点(1,1),则代数式1a b --的值 为 .(4)将二次函数2y x =的图象先向下平移1个单位,再向右平移3个单位,得到的图象 与一次函数2y x b =+的图象有公共点,则实数b 的取值范围 .(5)如图,⊙O 的半径为2,C 1是函数22y x =的图象,C 2是函数22y x =-的图象,则 图中阴影部分的面积为 .三、简答题(本大题共6小题,共63分)16.(本题10分)用适当的方法解下列方程①2430x x =--; ②2323x x +=+()-()17.(本题9分)第12题图 第11题图 第13题图 第14题图 第15(5)题图如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB 的顶点均在格点上,点O 为原点,点A 、B 的坐标分别是A (3,2)、B (1,3).(1)将△AOB 向下平移3个单位后得到△A 1O 1B 1,则点B 1的坐标为 ;(2)将△AOB 绕点O 逆时针旋转90°后得到△A 2OB 2,请在图中作出△A 2OB 2,并求出这时点A 2的坐标为 ;(3)在(2)中的旋转过程中,线段OA 扫过的图形的面积为 .18.(本题9分)已知:如图,△ABC 中,AC =BC ,以BC 为直径的⊙O 交AB 于点D ,过点D 作DE ⊥AC 于点E ,交BC 的延长线于点F .求证:(1)AD =BD ;(2)DF 是⊙O 的切线.19. (本题10分)某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现;当销售单价为25元/件时,每天的销售量是250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w (元)与销售单价x (元)之间的 函数关系式;(2)当销售单价为多少时,该文具每天的销售利润最大?最大利润是多少?第17题图第18题图20.(本题12分)边长为6的等边△ABC中,点D、E分别在AC、BC边上,DE∥AB,EC=23(1)如图20-1,将△DEC沿射线BC方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N,当CC′多大时,四边形MCND′为菱形?并说明理由.(2)如图20-2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D′E′C,连接AD′、BE′.边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;②连接AP,当AP最大时,求AD′的值.(结果保留根号)第20-1图第20-2图21. (本题13分)如图,已知抛物线经过点A(-1,0),B(3,0),C(0,3)三点。

人教版2018-2019年九年级上期中数学试题(含答案)

人教版2018-2019年九年级上期中数学试题(含答案)

九年级上册期中调研测试数 学 试 题一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入括号内.1.下面计算正确的是( )A .B .C .D .236=÷ 2.与 是同类二次根式的是( )A .B .C .D .313.方程 的解是 ( )A .B .C . ,D . , 4.化简:3131-++的结果为 ( ) A .B .C .D .5.已知△ABC ∽△DEF ,且相似比为1∶2,则△ABC 与△DEF 的面积比为 ( )A .1∶4B .4∶1C . ∶2D .2∶1 6.一元二次方程 的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根7.如图,AB ∥CD ∥EF , 与 相交于点 ,且 , ,,那么CEBC的值等于 ( )A .21 B .53 C .52 D .518.某旅游景点 月份共接待游客 万人次, 月份共接待游客 万人次.设每月的平均增长率为 ,则可列方程为( )A .B .C .D .9.若△ABC 的每条边长增加各自的 得△ABC ,则 的度数与其对应角 的度数相比 ( )A .增加了B .减少了C .增加了D .没有改变10.若x=-2是关于x 的一元二次方程x 2+23ax -a 2=0的一个根,则a 的值为 ( ) A .-1或4B .-1或-4C .1或-4D .1或4二、填空题(每小题3分,共15分)11.计算:28-= .12.若代数式 的值与代数式 的值相等,则 的值为 . 13.若23=n m ,则mnm -= .14.如图,在Rt△ABC中,,,,点是中点,过点作交于点,则的长度是.15.对于实数,,我们可以用符号表示,两数中较小的-;若,则x的值数.如,3为.三、解答题(8+9+9+9+9+10+10+11=75分)16.(8分)计算()()()2132-+-3-32217.(9分)解方程:18.(9分)先化简,再求值:144)113(2+++÷+-+x x x x x ,其中x =2-2.19.(9分)大家知道在用配方法解一般形式的一元二次方程时,都要先把二次项系数化为 ,再进行配方.现请你先阅读如下方程( )的解答过程,并按照此方法解方程( ).方程( ) .解:032222=--x x ,13122)2(2+=+-x x ,4)12(2=-x ,212±=-x ,221-=x ,2232=x . 方程( )26232=-x x .20.(9分)关于 的一元二次方程()0243222=+++-m m x m x .(1)试说明方程根的情况;(2)选取一个合适的m 的值,使该方程有两个不相等的实数根,并求出这两个根.21.(10分)某市政府于2017年初投资了112万元,建成40个公共自行车站点、配置720辆公共自行车正式启用公共自行车租赁系统;今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2019年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.依据以上信息请完成下列问题:(1)每个站点的造价和公共自行车的单价分别是多少万元?(2)若2017年到2019年市政府配置公共自行车数量的年平均增长率相同.请你求出2018年市政府配置公共自行车的数量22.(10分)(1)探究:如图①,在矩形 中, , ,点 是对角线 上的一点,Rt △PEF 的两条直角边 , 分别交 , 于点 , ,若PE//AB ,PF//AD ,求PNPM的值.(2)应用:如图②,在矩形 中, , ,点 是对角线 上的一点,Rt △PEF 的两条直角边 , 分别交 , 于点 , ,则PN PM= .23.(11分)如图,在平面直角坐标系中,矩形 的顶点 在 轴正半轴上,边 , ( )的长分别是方程 的两个根, 是边 上的一动点(不与A 、B重合).(1)填空:AB= ,OA= . (2)若动点D 满足△BOC 与△AOD 相似,求直线 的解析式.(3)若动点D 满足53DB DA ,且点 为射线 上的一个动点,当△PAD是等腰三角形时,直接写出点的坐标.数学试题参考答案及评分标准一、选择题(每小题3分,共30分)1—5 ADCDA 6—10 BBADC 二、填空题(每小题3分,共15分)11.2; 12. 31±; 13.31; 14. 42515. 2或-1 三、解答题(8+9+9+9+9+10+10+11=75分)16.原式=()()13412432+--- ………4分=()34131--- ………6分 3414+-= …………8分 22248164241,4,2.172±=-±=-±-==-==a acb b xc b a 解: ……………5分,……………9分18.原式=[1)1)(1(13+-+-+x x x x ]•2)2(1++x x …………2分 =1)2)(2(+-+-x x x •2)2(1++x x ……………4分 =22+-x x , ………………6分 当x=2-2时,原式=122224222222-=-=+-+-. …………9分 19.解:()()()2222222323+=+⨯⨯-x x ………2分 ()4232=-x ……………4分 223±=-x …………6分33261+=x 33261-=x ……………9分 20.解:(1)ac b 42-=∆()[]()m m m +⨯⨯-+-=2222443 916+=m ……3分当时即169m ,0->>∆该方程有两个不相等的实数根. 时即169m ,0-==∆该方程有两个相等的实数根. 时即169m ,0-<<∆该方程没有实数根. …………5分 (2)取值正确,求解正确 …………9分21解:(1)设每个站点造价x 万元,自行车单价为y 万元.根据题意可得: ⎩⎨⎧=+=+5.340220512011272040y x y x 解得:⎩⎨⎧==1.01y x 答:每个站点造价为1万元,自行车单价为0.1万元.……………5分(2)设2017年到2019年市政府配置公共自行车数量的年平均增长率为a . 根据题意可得:720(1+a )2=2205 ……………7分解此方程:(1+a )2=144441, 即:%75431==a ,12332-=a (不符合题意,舍去) ()1260%751720=+⨯答:2018年市政府配置公共自行车的数量的为1260辆. …………………10分22.解:(1)PE//AB ,AC CP AB PM = ………2分PF//ADAC CP AD PN = …………4分所以AD PN AB PM = 又AB=3,AD=4 即43==AD AB PN PM ……………7分(2)43…………10分23.(1)8;3 ……………2分(2)若△BOC ∽△DOA. 则OADA OC BC = 即383DA = 所以89=AD 若△BOC ∽△ODA ,可得AD=8(与题意不符,舍去) 设直线 解析式为 ,则k 893-=, 即38-=k , 直线 的解析式为x y 38-=.………7分(3)当△PAD是等腰三角形时,点的坐标为,,,…………………………11分因为,,△是等腰直角三角形,,,根据△PAD是等腰三角形,分种情况讨论:①如图所示,当时,点的坐标为;②如图所示,当时,过作轴的垂线,垂足为,则,△OEP2是等腰直角三角形,,点的坐标为;③如图所示,当时,,∴△ADP3是等腰直角三角形,,,过作轴的垂线,垂足为,则△OP3F是等腰直角三角形,,点的坐标为;④如图所示,当时,,过作轴的垂线,垂足为,则△是等腰直角三角形,,点的坐标为;综上所述,当△PAD是等腰三角形时,点的坐标为,,,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017~2018 学年度上学期期中调研考试
一、选择题(共10 小题)
九年级数学试卷
1.将一元二次方程2x2+7=9x 化成一般式后,二次项系数和一次项系数分别为()A.2,9 B.2,7 C.2,-9 D.2x2,-9x
2.已知x1,x2 是一元二次方程2x2+6x-5=0 的两个实数根,则x1+x2 等于()
A.-3B. 5
2
C.-6D.3
3.如图,当宽为3cm 的刻度尺的一边与圆相切时,另一边与圆的两个交点处读数如图所示,那么该圆的半径长为()
A.5 B.3 C.25
3
D.
25
6
4.将二次函数y=-3(x-1)2-2 的图象先向右平移1 个单位,再向上平移1 个单位后顶
点坐标为()
A.(1,3)B.(2,-1)C.(0,-1)D.(0,1)
5.如图,将△ABC 绕点P 顺时针旋转90°得到△A′B′C′,则点P 的坐标为()A.(0,0)B.(1,1)C.(1,2)D.(1,0)
6.某学校加强教育信息化的建设的投入,今年投入了50 万元,计划明年、后年两年共投入120 万元,设明年、后年两年平均每年增长率为x,根据题意,可列出方程为()
A.50(1+x)2=60 B.50(1+x)2=120
C.50+50(1+x)+50(1+x)2=120 D.50(1+x)+50(1+x)2=120 7.若点A(4,y1),B(-3,y2),C(-1,y3)三点在抛物线y=x2-4x-m 的图象上,则y1、y2、y3 的大小关系是()
A.y2>y3>y1 B.y1>y2>y3 C.y2>y1>y3 D.y3>y1>y2
8.在△ABC 中,若∠A=120°,BC=12,则其外接圆的半径为()
A.
B.
C.4 D.
9.在平面直角坐标系中,直线 y = x + 1 分别与 x 轴、y 轴交于 B 、C 点,点 A 沿着某 条路径运动,以点 A 为旋转中心,将点 C 逆时针方向旋转 90°后,刚好落在线段 OB 上,则 点 A 的运动路径长为( )
A B . 6 C π D . 10.当-2≤x≤1 时,关于 x 的二次函数 y =-(x -m )2+m 2+1 有最大值 4,则实数 m 的 值为( )
A .2
B .2 或
C .2 或 或-
74 D .2 或 -74
二、填空题(共 6 小题)
11.已知点 P 的坐标是(-2,-3),那么点 P 关于原点的对称点 P 1 的坐标是 .
12.如图是一个长 18cm ,宽 15cm 的矩形图案,其中有两条宽度相等,互相垂直的彩条, 彩条所占面积是图案面积的三分之一.设彩条的宽度为 xcm ,则根据题意列方程为 (化成一般式).
13.如图,在△ABC 中,∠CAB =65°,将△ABC 在平面内绕点 A 旋转到△AB ′C ′的位置, 使 CC ′∥AB ,则旋转角的度数为 .
14.已知抛物线 y =ax 2-2ax +c 经过点(-2,-5),且顶点为 P 在直线 y =3x +1 上.则 抛物线上点(2,b )在图像上的对称点的坐标是 .
15.已知一个三角形的三边长分别为 10,14,16.则其内切圆的半径为 .
16.已知关于 x 的二次函数 y =ax 2+(a 2-1)x -a 的图象与 x 轴的一个交点的坐标为(m , 0),若 2<m <3,则 a 的取值范围是

三、解答题(共 8 小题)
17.解方程:x 2-4x +2=0. 18.如图,△ABC 的顶点的坐标分别为 A (2,2),B (1,0),C (3,1).
(1)画出△ABC 关于 x 轴对称的△A 1BC 1,写出点 C 1 的坐标为 ;
(2)画出△ABC 绕原点 O 逆时针旋转 90°的△A 2B 1C 2,写出点 C 2 的坐标为 ;
(3)在(1)、(2)的基础上,图中的△A 1BC 1、△A 2B 1C 2 关于点 中心对称;
(4)若以点 D 、A 、C 、B 为顶点的四边形为菱形,直接写出点D 的坐标为 .
19.如图,OA、OB、OC 都是⊙O 的半径,∠AOB=2∠BOC.
(1)求证:∠ACB=2∠BAC.
(2)若AC平分∠OAB,求∠AOC的度数.
20.如图,四边形ABCD 中,AC、BD 是对角线,△ABC 是等边三角形,∠ADC=30°,
AD=3,BD=5,
(1)画出△BCD 绕点C 顺时针旋转60°的图形:
(2)根据(1)中旋转后的图形求出CD 的长.
21.某电子厂商投产一种新型电子产品,每件制造成本为18 元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本)
(1)求出每月的利润z(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月获得的利润为440 万元?
(3)根据相关部门规定,这种电子产品的销售单价在35≤x≤40 元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?
22.如图,已知直线PA 交⊙O 于A、B 两点,AE 是⊙O 的直径,点C 为⊙O 上一点,且
AC 平分∠PAE,过C 作CD⊥PA,垂足为D.
(1)求证:CD 为⊙O 的切线;
(2)若DC+DA=6,⊙O 的直径为10,求AB 的长度.
23.如图,已知:抛物线l1:y=-x2+bx+3 的图象与x 轴交于A、B 两点(点A 在点B 的左边),交y 轴于点C,其对称轴为x=1,抛物线l2 经过点A,与x 轴交于另一点E(5,
0),交y 轴于点D(0, 5
2),
(1)直接写出抛物线l2 的解析式;
(2)点M 为抛物线l2 上一动点.作MN∥y 轴,交抛物线l1 于点N,求点M 自点A 运动至点E 的过程中,线段MN 的最大值.
24.抛物线y=ax2+bx+c 与x 轴的交点为A(m-4,0)和B(m,0),与直线y=-x+p 相交于点A 和点C(2m-4,m-6).
(1)写出抛物线的解析式;
(2)若点P 在x 轴上方的抛物线上,点Q 是平面内的点,且以PA、AC 为边的平行四边形APQC 的面积为12,求点P,Q 的坐标;
(3)在(2)条件下,若点M 是x 轴下方抛物线上的动点,当△PQM 的面积最大时,请求出点M 的坐标及△PQM 的最大面积.。

相关文档
最新文档