人教版九年级数学上册第23章旋转巩固提升练习(含答案)

合集下载

人教新版九年级数学上第23章旋转单元练习试题含详细答案

人教新版九年级数学上第23章旋转单元练习试题含详细答案

人教新版九年级数学上第23章旋转单元练习试题含详细答案一.选择题(共10小题)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是()A.36°B.60°C.72°D.90°3.如图,△ODC是由△OAB绕点O顺时针旋转50°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为130°,则∠C的度数是()A.25°B.30°C.35°D.40°4.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A.B.C.D.5.如图,将△ABC绕点A逆时针旋转110°,得到△ADE,若点D落在线段BC的延长线上,则∠B大小为()A.30°B.35°C.40°D.45°6.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以将图形进行以下的操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移7.如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n 的最小值为()A.45 B.60 C.72 D.1448.在平面直角坐标系中,点A的坐标是(1,3),将点A绕原点O顺时针旋转90°得到点A′,则点A′的坐标是()A.(﹣3,1)B.(3,﹣1)C.(﹣1,3)D.(1,﹣3)9.如图,在平面直角坐标系xOy中,点A从(3,4)出发,绕点O顺时针旋转一周,则点A不经过()A.点M B.点N C.点P D.点Q10.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′二.填空题(共9小题)11.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=度.12.如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小是.13.点A(﹣2,3)关于原点对称的点的坐标是.14.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为.15.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为.16.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M 是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是.17.在△ABC中,∠C=90°,AC=BC,将△ABC绕点A按顺时针方向旋转60°到△AB′C′的位置,连结C′B、BB′,则∠BB′C′=.18.在平面直角坐标系中,已知点A(3,0),B(0,4),将△BOA绕点A按顺时针方向旋转得△CDA,使点B在直线CD上,连接OD交AB于点M,直线CD的解析式为.19.如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是.三.解答题(共6小题)20.如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.21.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(﹣4,﹣2),请直接写出直线l的函数解析式.22.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.23.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2B2C2.24.将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.25.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.参考答案一.选择题(共10小题)1.解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.2.解:根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.3.解:∵∠AOC的度数为130°,∠AOD=∠BOC=50°,∴∠AOB=130°﹣50°=80°,∵△AOD中,AO=DO,∴∠A=(180°﹣50°)=65°,∴△ABO中,∠B=180°﹣80°﹣65°=35°,由旋转可得,∠C=∠B=35°,故选:C.4.解:A、B、C中只能由旋转得到,不能由平移得到,只有D可经过平移,又可经过旋转得到.故选:D.5.解:∵△ABC绕点A逆时针旋转110°,得到△ADE∴AB=AD,∠BAD=110°由三角形内角和∠B=故选:B.6.解:屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,可以先逆时针旋转90°,再向左平移.故选:A.7.解:该图形被平分成五部分,旋转72°的整数倍,就可以与自身重合,故n的最小值为72.故选:C.8.解:如图所示,由旋转可得:∠AOA'=∠BOC=90°,AO=A'O,∴∠AOB=∠A'OC,而∠ABO=∠A'CO=90°,∴△AOB≌△A'OC,∴A'C=AB=1,CO=BO=3,∴点A'的坐标为(3,﹣1),故选:B.9.解:由图形可得:OA=,OM=,ON=,OP=,OQ=5,所以点A从(3,4)出发,绕点O顺时针旋转一周,则点A不经过P点,故选:C.10.解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.二.填空题(共9小题)11.解:∵Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠B=∠CB′A′,∴△CAA′为等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=65°,∴∠B=65°.故答案为65.12.解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵△AEF是等边三角形,∴AE=AF,∠EAF=60°,分两种情况:①如图,当正△AEF在正方形ABCD内部时,在△ABE和△ADF中,∴△ABE≌△ADF(SSS),∴∠BAE=∠DAF=(90°﹣60°)=15°②如图,当正△AEF在正方形ABCD外部时,在△ABE和△ADF中,∴△ABE≌△ADF(SSS),∴∠BAE=∠DAF=(360°﹣90°+60°)=165°故答案为:15°或165°.13.解:根据两个点关于原点对称,∴点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3);故答案为(2,﹣3).14.解:∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.15.解:过点C作CE⊥x轴于点E,∵OB=2,AB⊥x轴,点A在直线y=x上,∴AB=2,OA==4,∴RT△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴∠D=∠AOB=∠OBD=60°,AO=CD=4,∴△OBD是等边三角形,∴DO=OB=2,∠DOB=∠COE=60°,∴CO=CD﹣DO=2,在RT△COE中,OE=CO•cos∠COE=2×=1,CE=CO•sin∠COE=2×=,∴点C的坐标为(﹣1,),故答案为:(﹣1,).16.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故答案为:3.17.解:∵∠C=90°,AC=BC,∴∠ABC=∠BAC=45°,∵将△ABC绕点A按顺时针方向旋转60°到△AB′C′的位置,∴∠AB′C′=∠ABC=45°,∠BAB′=60°,AB′=AB,∴AB′=B′B=BA,∴∠AB′B=60°,∴∠BB′C′=∠AB′B﹣∠AB′C′=60°﹣45°=15°,故答案为:15°.18.解:∵△BOA绕点A按顺时针方向旋转得△CDA,∴△BOA≌△CDA,∴AB=AC,OA=AD,∵B、D、C共线,AD⊥BC,∴BD=CD=OB,∵OA=AD,BO=CD=BD,∴OD⊥AB,设直线AB解析式为y=kx+b,把A与B坐标代入得:,解得:,∴直线AB解析式为y=﹣x+4,∴直线OD解析式为y=x,联立得:,解得:,即M(,),∵M为线段OD的中点,∴D(,),设直线CD解析式为y=mx+n,把B与D坐标代入得:,解得:m=﹣,n=4,则直线CD解析式为y=﹣x+4.故答案为:y=﹣.19.解:取线段AC的中点G,连接EG,如图所示.∵△ABC为等边三角形,且AD为△ABC的对称轴,∴CD=CG=AB=6,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG.在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.当EG∥BC时,EG最小,∵点G为AC的中点,∴此时EG=DF=CD=BC=3.故答案为3.三.解答题(共6小题)20.解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作21.解:(1)如图,△A1B1C1为所作,C1(﹣1,2);(2)如图,△A2B2C2为所作,C2(﹣3,﹣2);(3)因为A的坐标为(2,4),A3的坐标为(﹣4,﹣2),所以直线l的函数解析式为y=﹣x,22.解:(1)画出△ABC关于y轴对称的△A1B1C1,如图所示,此时A1的坐标为(﹣2,2);(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,如图所示,此时A2的坐标为(4,0);(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,如图所示,此时A3的坐标为(﹣4,0).23.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.24.解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.25.解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.人教版数学九年级上册第24章《圆》培优检测题(含祥细答案)一.选择题1.已知⊙O的半径OA长为,若OB=,则可以得到的正确图形可能是()A.B.C.D.2.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B的度数为()A.20°B.25°C.40°D.50°3.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A.πB.2πC.3πD.6π4.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为()A.1 B.C.D.25.如图:已知AB是⊙O的直径,点C在⊙O上,点D在半径OA上(不与点O,A重合).若∠COA=60°,∠CDO=70°,∠ACD的度数是()A.60°B.50°C.30°D.10°6.对于以下图形有下列结论,其中正确的是()A.如图①,AC是弦B.如图①,直径AB与组成半圆C.如图②,线段CD是△ABC边AB上的高D.如图②,线段AE是△ABC边AC上的高7.如图,BC为⊙O的直径,AB=OB.则∠C的度数为()A.30°B.45°C.60°D.90°8.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点且不与点A、B重合.若OP 的长为整数,则符合条件的点P有()A.2个B.3个C.4个D.5个9.如图,点P、M、N分别是边长为2的正六边形中不相邻三条边的中点,则△PMN的周长为()A.6 B.6C.6D.910.如图,△ABC是半径为1的⊙O的内接正三角形,则圆的内接矩形BCDE的面积为()A.3 B.C.D.11.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC的度数为()A.20°B.25°C.30°D.35°12.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A.3 B.C.D.413.在⊙O中,AC为直径,过点O作OD⊥AB于点E,交⊙O于点D,连接BC,若AB=,ED=,则BC=.14.如图,△ABC的周长为16,⊙O与BC相切于点D,与AC的延长线相切于点E,与AB的延长线相切于点F,则AF的长为.15.如图,矩形ABCD中,AB=3,BC=2,E为BC的中点,AF=1,以EF为直径的半圆与DE交于点G,则劣弧的长为.16.在正六边形ABCDEF中,若边长为3,则正六边形ABCDEF的边心距为.17.如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为.18.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.19.如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.20.如图,BC是半⊙O的直径,A是⊙O上一点,过点的切线交CB的延长线于点P,过点B 的切线交CA的延长线于点E,AP与BE相交于点F.(1)求证:BF=EF;(2)若AF=,半⊙O的半径为2,求PA的长度.21.如图,在⊙O中,B是⊙O上的一点,∠ABC=120°,弦AC=2,弦BM平分∠ABC交A C于点D,连接MA,MC.(1)求⊙O半径的长;(2)求证:AB+BC=BM.22.如图,AB是⊙O的直径,D是弦AC延长线上一点,且AB=BD,DB的延长线交⊙O于点E,过点C作CF⊥BD,垂足为点F.(1)CF与⊙O有怎样的位置关系?请说明理由;(2)若BF+CF=6,⊙O的半径为5,求BE的长度.23.如图,四边形ABCD是正方形,以边AB为直径作⊙O,点E在BC边上,连结AE交⊙O 于点F,连结BF并延长交CD于点G.(1)求证:△ABE≌△BCG;(2)若∠AEB=55°,OA=3,求劣弧的长.(结果保留π)24.如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD =AB,∠D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.25.如图所示,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O于点E,连接BE、CE,BE交AC于点F.(1)求证:CE=AE;(2)填空:①当∠ABC=时,四边形AOCE是菱形;②若AE=,AB=,则DE的长为.26.如图,已知AB为⊙O的直径,C为⊙O上异于A、B的一点,过C点的切线于BA的延长线交于D点,E为CD上一点,连EA并延长交⊙O于H,F为EH上一点,且EF=CE,CF 交延长线交⊙O于G.(1)求证:弧AG=弧GH;(2)若E为DC的中点,sim∠CDO=,AH=2,求⊙O的半径.参考答案一.选择题1.解:∵⊙O的半径OA长为,若OB=,∴OA<OB,∴点B在圆外,故选:A.2.解:连接OA,如图,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B=∠AOP=×50°=25°.故选:B.3.解:该扇形的弧长==3π.故选:C.4.解:边长为2的正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,所以原来的纸带宽度=×2=.故选:C.5.解:∵OA=OC,∠COA=60°,∴△ACO为等边三角形,∴∠CAD=60°,又∵∠CDO=70°,∴∠ACD=∠CDO﹣∠CAD=10°.故选:D.6.解:A、AC不是弦,故错误;B、半圆是弧,不包括弧所对的弦,故错误;C、线段CD是△ABC边AB上的高,正确;D、线段AE不是△ABC边AC上的高,故错误,故选:C.7.解:∵BC为⊙O的直径,∴∠BAC=90°,∵AB=OB,∴BC=2AB,∴sin C==,∴∠C=30°.故选:A.8.解:连接OA,作OC⊥AB于C,则AC=AB=4,由勾股定理得,OC==3,则3≤OP<5,OP=3有一种情况,OP=4有两种情况,则符合条件的点P有3个,故选:B.9.解:分别过正六边形的顶点A,B作AE⊥MN于E,BF⊥MN于F,则∠EAM=∠NBF=30°,EF=AB=2,∵AM=BN=2=1,∴EM=FN=1=,∴MN=++2=3,∴△PMN的周长3×3=9,故选:D.10.解:连接BD,如图所示:∵△ABC是等边三角形,∴∠BAC=60°,∴∠BDC=∠BAC=60°,∵四边形BCDE是矩形,∴∠BCD=90°,∴BD是⊙O的直径,∠CBD=90°﹣60°=30°,∴BD=2,CD=BD=1,∴BC==,∴矩形BCDE的面积=BC•CD=×1=;故选:C.11.【解答】解:∵四边形ABCD是菱形,∠D=80°,∴∠ACB=∠DCB=(180°﹣∠D)=50°,∵四边形AECD 是圆内接四边形,∴∠AEB =∠D =80°,∴∠EAC =∠AEB ﹣∠ACE =30°,故选:C .12.解:连接BP ,如图,当y =0时, x 2﹣4=0,解得x 1=4,x 2=﹣4,则A (﹣4,0),B (4,0), ∵Q 是线段PA 的中点,∴OQ 为△ABP 的中位线,∴OQ =BP ,当BP 最大时,OQ 最大,而BP 过圆心C 时,PB 最大,如图,点P 运动到P ′位置时,BP 最大,∵BC ==5,∴BP ′=5+2=7,∴线段OQ 的最大值是.故选:C .二.填空题(共6小题)13.解:∵OD ⊥AB ,∴AE =EB =AB =,设OA =OD =r ,在Rt △AOE 中,∵AO 2=OE 2+AE 2,∴r 2=()2+(r ﹣)2,∴r=,∴OE=﹣=,∵OA=OC,AE=EB,∴BC=2OE=,故答案为.14.解:∵AB、AC的延长线与圆分别相切于点F、E,∴AF=AE,∵圆O与BC相切于点D,∴CE=CD,BF=BD,∴BC=DC+BD=CE+BF,∵△AB C的周长等于16,∴AB+AC+BC=16,∴AB+AC+CE+BF=16,∴AF+AE=16,∴AF=8.故答案为:8.15.解:连接OG,DF,∵BC=2,E为BC的中点,∴BE=EC=1,∵AB=3,AF=1,∴BF=2,由勾股定理得,DF==,EF==,∴DF=EF,在Rt△DAF和Rt△FBE中,,∴Rt△DAF≌Rt△FBE(HL)∴∠ADF=∠BFE,∵∠ADF+∠AFD=90°,∴∠BFE+∠AFD=90°,即∠DFE=90°,∵FD=FE,∴∠FED=45°,∵OG=OE,∴∠GOE=90°,∴劣弧的长==π,故答案为:π.16.解:如图,设正六边形ABCDEF的中心为O,连接OA,OB,则△OAB是等边三角形,过O作OH⊥AB于H,∴∠AOH=30°,∴OH=AO=,故答案为:.17.解:连接BD,作OE⊥AD,连接OD,∵⊙O为四边形ABCD的外接圆,∠BCD=120°,∴∠BAD =60°.∵AD =AB =2,∴△ABD 是等边三角形.∴DE =AD =1,∠ODE =∠ADB =30°,∴OD ==.故答案为 18.解:连接OE ,∵∠CDF =15°,∠C =75°,∴∠OAE =30°=∠OEA ,∴∠AOE =120°,S △OAE =AE ×OE sin ∠OEA =×2×OE ×cos ∠OEA ×OE sin ∠OEA =,S 阴影部分=S 扇形OAE ﹣S △OAE =×π×32﹣=3π﹣.故答案3π﹣. 三.解答题(共8小题)19.(1)证明:连接OC ,∵D 为的中点,∴=,∴∠BOD =BOC ,∵∠BAC =BOC ,∴∠A =∠DOB ;(2)解:DE 与⊙O 相切,理由:∵∠A =∠DOB ,∴AE ∥OD ,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.20.(1)证明:连接OA,∵AF、BF为半⊙O的切线,∴AF=BF,∠FAO=∠EBC=90°,∴∠E+∠C=∠EAF+∠OAC=90°,∵OA=OC,∴∠C=∠OAC,∴∠E=∠EAF,∴AF=EF,∴BF=EF;(2)解:连接AB,∵AF、BF为半⊙O的切线,∴∠OAP=∠OBE=90°,且BF=AF=1.5,又∵tan∠P=,即,∴PB=,∵∠PAE+∠OAC=∠AEB+∠OCA=90°,且∠OAC=∠OCA,∴∠PAE=∠AEB,∠P=∠P,∴△APB∽△CPA,∴,即PA2=PB•PC,∴,解得PA=.21.解:(1)连接OA、OC,过O作OH⊥AC于点H,如图1,∵∠ABC=120°,∴∠AMC=180°﹣∠ABC=60°,∴∠AOC=2∠AMC=120°,∴∠AOH=∠AOC=60°,∵AH=AC=,∴OA=,故⊙O的半径为2.(2)证明:在BM上截取BE=BC,连接CE,如图2,∵∠MBC=60°,BE=BC,∴△EBC是等边三角形,∴CE=CB=BE,∠BCE=60°,∴∠BCD+∠DCE=60°,∵∠ACM=60°,∴∠ECM+∠DCE=60°,∴∠ECM=∠BCD,∵∠ABC=120°,BM平分∠ABC,∴∠ABM=∠CBM=60°,∴∠CAM=∠CBM=60°,∠ACM=∠ABM=60°,∴△ACM是等边三角形,∴AC=CM,∴△ACB≌△MCE,∴AB=ME,∵ME+EB=BM,∴AB+BC=BM.22.解:(1)CF与⊙O相切.连接BC,OC,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=BD,∴∠A=∠D,又∵OA=OB,∴OC是△ABD的中位线.∴OC∥BD,∴∠OCF=∠CFD=90°,即CF⊥OC.∴CF与⊙O相切;(2)过点O作OH⊥BE于点H,则∠OCF=∠CFH=∠OHB=90°,∴四边形OCFH是矩形,∴OC=FH,OH=CF,设BH=x,∵OC=5,BF+CF=6,∴BF=5﹣x,OH=CF=6﹣(5﹣x)=x+1,在Rt△BOH中,由勾股定理知:BH 2+OH 2=OB 2,即x 2+(x +1)2=52,解得x 1=3,x 2=﹣4(不合题意,舍去).∴BH =3,∵OH ⊥BE ,∴BH =EH =BE ,∴BE =2BH =2×3=6.23.(1)证明:∵四边形ABCD 是正方形,AB 为⊙O 的直径, ∴∠ABE =∠BCG =∠AFB =90°,∴∠BAF +∠ABF =90°,∠ABF +∠EBF =90°,∴∠EBF =∠BAF ,在△ABE 与△BCG 中,,∴△ABE ≌△BCG (ASA );(2)解:连接OF ,∵∠ABE =∠AFB =90°,∠AEB =55°,∴∠BAE =90°﹣55°=35°,∴∠BOF =2∠BAE =70°,∵OA =3,∴的长==.24.(1)证明:连接OA ,则∠COA =2∠B ,∴∠B =∠D =30°,∴∠COA =60°,∴∠OAD =180°﹣60°﹣30°=90°,∴OA ⊥AD ,即CD 是⊙O 的切线;(2)解:∵BC =4,∴OA =OC =2,在Rt △OAD 中,OA =2,∠D =30°,∴OD =2OA =4,AD =2,所以S △OAD =OA •AD =×2×2=2, 因为∠COA =60°,所以S 扇形COA ==π,所以S 阴影=S △OAD ﹣S 扇形COA =2﹣.25.证明(1)∵AB =AC ,AC =CD∴∠ABC =∠ACB ,∠CAD =∠D∵∠ACB =∠CAD +∠D =2∠CAD∴∠ABC =∠ACB =2∠CAD∵∠CAD =∠EBC ,且∠ABC =∠ABE +∠EBC∴∠ABE =∠EBC =∠CA D ,∵∠ABE =∠ACE∴∠CAD =∠ACE∴CE =AE(2)①当∠ABC =60°时,四边形AOCE 是菱形;如图,连接OE∵OA=OE,OE=OC,AE=CE∴△AOE≌△EOC(SSS)∴∠AOE=∠COE,∵∠ABC=60°∴∠AOC=120°∴∠AOE=∠COE=60°,且OA=OE=OC∴△AOE,△COE都是等边三角形∴AO=AE=OE=OC=CE,∴四边形AOCE是菱形故答案为:60°②如图,过点C作CN⊥AD于N,∵AE=,AB=,∴AC=CD=2,CE=AE=,且CN⊥AD ∴AN=DN在Rt△ACN中,AC2=AN2+CN2,①在Rt△ECN中,CE2=EN2+CN2,②∴①﹣②得:AC2﹣CE2=AN2﹣EN2,∴8﹣3=(+EN)2﹣EN2,∴EN=∴AN=AE+EN==DN∴DE=DN+EN=故答案为:26.(1)证明:如图,连接AC,BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B+∠CAO=90°,∵CD为⊙O的切线,∴∠ECA+∠ACO=90°,∵OC=OA,∴∠ACO=∠OAC,∴∠ECA=∠B,∵EF=CE,∴∠ECF=∠EFC,∵∠ECF=∠ECA+∠ACG,∠EFC=∠GAF+∠G,∵∠ECA=∠B=∠G,∴∠ACG=∠GAF=∠GCH,∴;(2)解:∵CH是⊙O的直径,∴∠CAH=90°,∵CD是⊙O的切线,∴∠EC O=90°,设CO=2x,∵sim∠CDO==,∴DO=6x,∴CD==4,∵E为DC的中点,∴CE==2,EH==2,∵∠ECH=∠CAH,∠CHA=∠EHC,∴△CAH∽△ECH,∴,∴CH2=AH•EH,∴AH=,∵AH=2,∴,∴x=3,∴⊙O的半径CO=2x=6.人教版九年级数学上册第23章旋转单元练习卷含答案一、单选题1.已知点与点关于坐标原点对称,则实数a、b的值是A. ,B. ,C. ,D. ,2.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A. B. C. D.3.将图绕中心按顺时针方向旋转60°后可得到的图形是()A. B. C. D.4.如图,四边形ABCD是正方形,△ADE绕着点A旋转90°后到达△ABF的位置,连接EF,则△AEF的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.如图,□ABCD绕点A逆时针旋转32°,得到□AB′C′D′,若点B′与点B是对应点,若点B′恰好落在BC边上,则∠C=()A. 106°B. 146°C. 148°D. 156°6.如图所示的图案绕旋转中心旋转一定角度后能够与自身重合,那么这个旋转角可能是( )A. B. C. D.7.如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()个.A. 1B. 2C. 3D. 48.已知点P1(a,3)与P2(﹣5,﹣3)关于原点对称,则a的值为()A. 5B. 3C. 4D. -5二、填空题9.在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出旋转后的点关于原点的对称点,这称为一次变换,已知点A的坐标为(﹣1,0),则点A经过连续2016次这样的变换得到的点A2016的坐标是________.10.我们知道,在平面内,如果一个图形绕着一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转的这个角称为这个图形的一个旋转角.例如,正方形绕着它的对角线的交点旋转90°后能与自身重合所以正方形是旋转对称图形,它有一个旋转角为90°.(1)判断下列说法是否正确(在相应横线里填上“对”或“错”)①正五边形是旋转对称图形,它有一个旋转角为144°.________②长方形是旋转对称图形,它有一个旋转角为180°.________(2)填空:下列图形中时旋转对称图形,且有一个旋转角为120°的是________ .(写出所有正确结论的序号)①正三角形②正方形③正六边形④正八边形11.在下列图案中可以用平移得到的是________(填代号).12.如图是奥迪汽车的车牌标志,右边的三个圆环可以看作是左边的圆环经过________得到的.13.将一个自然数旋转180°后,可以发现一个有趣的现象,有的自然数旋转后还是自然数.例如,808,旋转180°后仍是808.又如169旋转180°后是691.而有的旋转180°后就不是自然数了,如37.试写一个五位数,使旋转180°后仍等于本身的五位数________.(数字不得完全相同)14.如图,在平面直角坐标系中,是由绕着某点旋转得到的,则这点的坐标是________.15.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为________ .三、解答题16.如图,在直角坐标系中,已知△ABC各顶点坐标分别为A(0,1),B(3,﹣1),C(2,2),试作出与△ABC关于原点对称的图形△A1B1C1,并直接写出A1,B1,C1的坐标.17.找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.18.如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1).(1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O1A1B1(2)画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求出点A旋转到A2所经过的路径长(结果保留π)四、作图题19.如图,阴影部分是由4个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑一个小正方形,使涂黑后整个图形的阴影部分成为轴对称图,并画出其对称轴.答案一、单选题1.【答案】D【解析】【解答】点与点关于坐标原点对称,实数a、b的值是:,.故答案为:D【分析】根据关于原点对称点的坐标特点:横纵坐标都互为相反数,就可求出a、b的值。

人教版九年级数学第二十三章第1节《图形的旋转》解答题提高训练 (30)(含答案)

人教版九年级数学第二十三章第1节《图形的旋转》解答题提高训练 (30)(含答案)

第二十三章第1节《图形的旋转》解答题提高训练 (30)一、解答题1.阅读下面材料:如图()1,把ABC沿直线BC平行移动线段BC的长度,可以变到DEC的位置;如图()2,以BC为轴,把ABC翻折180,可以变到DBC的位置;如图()3,以点A为中心,把ABC旋转180,可以变到AED的位置.像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.回答下列问题:①在图()4中,可以通过平行移动、翻折、旋转中的哪一种方法怎样变化,使ABE变到ADF的位置;②指图中线段BE与DF之间的关系,为什么?2.如图,在方格网中已知格点△ABC(1)试在图中画出△ABC以A为旋转中心,沿顺时针旋转90∘后的图形△AB1C1;(2)请在方格网中标出使以点A、B、C、D为顶点的四边形是中心对称图形的点D(标出一个即可).3.正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)画出△ABC关于点O成中心对称的图形△A1B1C1;(2)将△A1B1C1沿y轴正方向平移5个单位得到△A2B2C2,画出△A2B2C2;(3)若△ABC与△A2B2C2 绕点P旋转重合,则点P的坐标为 .4.已知,点A(8,0)、B(6,0).将线段OB绕着原点O逆时针方向旋转角度α到OC,连接AC.将AC绕着点A顺时针方向旋转角度β至AD,连接OD(1)当α=30°,β=60°时,求OD的长(2)当α=60°,β=120°时,求OD的长(3)已知E (10,0),当β=90°时,改变α的大小,求ED 的最大值5.(1)如图1,四边形EFGH 中,FE EH =,180EFG EHG ∠+∠=,点,A B 分别在边,FG GH 上,且12AEB FEH ∠=∠,求证:AB AF BH =+.(2)如图2,四边形EFGH 中,FE EH =,点M 在边EH 上,连接FM ,EN 平分FEH ∠交FM 于点N ,ENM α∠=,1802FGH α∠=-,连接,GN HN .①找出图中与NH 相等的线段,并加以证明;②求NGH ∠的度数(用含α的式子表示).6.已知:ABC 和DEC 都是等腰直角三角形,90ACB DCE ∠=∠=︒,(1)如图①,点D 在ABC 内,求证:AD BE ⊥; (2)如图②,A ,D ,E 三点在同一条直线上,若132AB =10DE =,求ACD △的面积;(3)如图③,若9AB =,点D 在AB 上运动,求BDE 周长的最小值.7.如图,四边形ABCD 是正方形,E ,F 分别在线段BC 和CD 上,EAF ∠=︒45.连接EF 。

人教版九年级上册数学第二十三章《旋转》练习题(附答案)

人教版九年级上册数学第二十三章《旋转》练习题(附答案)

人教版九年级上册数学第二十三章《旋转》练习题一、单选题1.在下列四个图案中,不是中心对称图形的是()A. B. C. D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.下列图形中,只是中心对称图形而不是轴对称图形的是()A. B. C. D.5.如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图,在4×4正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是()A. ①B. ②C. ③D. ④7.下列标志既是轴对称图形又是中心对称图形的是()A. B. C. D.8.下列图案中,是中心对称图形的是()A. B. C. D.9.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转46°得到Rt△A′B′C,点A在边B′C 上,则∠ACB的大小为()A. 23°B. 44°C. 46°D. 54°10.下列图形,是中心对称图形的是( )A. B. C. D.11.将△ABC绕原点旋转180°得到△A′B′C′,设点A的坐标为(a,b),则点A′的坐标为()A. (−a,−b)B. (a,−b)C. (−a,b)D. (a,b)12.下列图形中,是中心对称图形,但不是轴对称图形的是()A. 平行四边形B. 线段C. 等边三角形D. 抛物线13.下列图形中,是中心对称图形的是()A. B. C. D.14.道路千万条,安全第一条,下列交通标志是中心对称图形的为()A. B. C. D.15.下列图形,既是中心对称图形又是轴对称图形的是()A. B. C. D.二、填空题16.如图,四边形ABCD中,AB=AD,AC=6,∠DAB=∠DCB=90°,则四边形ABCD的面积为________.17.如图,在△ABC中,∠ABC=90°,AB=BC=2.将△ABC绕点B逆时针旋转60°,得到△A1BC1,则AC边的中点D与其对应点D1的距离是________.18.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为________.19.已知点A(﹣2,3)与A1关于点P(0,2)成中心对称,A1的坐标是________ .20.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为________度.21.一个长方形绕它的一条边旋转一周形成的几何体为________,将一个直角三角形绕着一条直角边旋转一周得到的几何体为________.22.如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中̂,则图中阴影部分的面积为________.点C的运动路径为CC′23.如图,在Rt△ABC中,∠C=90°,∠B=30°,将△ABC绕着点C逆时针旋转后得到的△A′B′C的斜边A′B′经过点A,那么∠ACA'的度数是________ 度.24.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为________.25.如图,已知半⊙O的直径AB=8,将半⊙O绕A点逆时针旋转,使点B落在点B'处,AB'与半⊙O交于点C,若图中阴影部分的面积是8π,则弧BC的长为________.26.如图,在△ABC中,∠ACB=90°,且AC=BC.点D是△ABC内的一点,将△ACD以点C为中心顺时针旋转90°得到△BCE,若点A、D、E共线,则∠AEB的度数为________.27.如图,如果边长为1的等边△PQR沿着边长为1的正方形ABCD的外部的边如图位置开始顺时针连续滚动,当它滚动4次时,点P所经过的路程是________.28.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为________.29.点(﹣2,1)关于原点对称的点的坐标为________.30.如图,将△AOB绕点O按逆时针方向旋转45后,得到△COD,如果∠AOB=15,则∠AOD的度数是________.三、解答题31.在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.(1)若点B的坐标是(﹣4,0),请在图中画出△AEF,并写出点E、F的坐标.(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.∠ABC(0°<∠CBE<32.(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=121∠ABC),以点B为旋转中心,将△BEC按逆时针旋转,得到△BE′A(点C与点A重合,点E到点E′处)连接2DE′.求证:DE′=DE.∠ABC(0°<∠CBE (2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=12<∠45°).求证:DE2=AD2+EC2.33.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).①若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;②若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;③将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.34.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).①把△ABC向右平移2个单位得△A1B1C1,请画出△A1B1C1,并写出点A1的坐标;②把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.35.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.36.如图,按要求涂阴影:(1)将图形①平移到图形②;(2)将图形②沿图中虚线翻折到图形③;(3)将图形③绕其右下方的顶点旋转180°得到图形④.37.以给出的图形“○,○,△,△, =”(两个相同的圆、两个相同的等边三角形、两条线段)为构件,各设计一个构思独特且有意义的轴对称图形或中心对称图形.举例:如图,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的图形.38.在平面直角坐标系中,∆ABC的顶点坐标是A(-7,1)、B(1,1)、C(1,7),线段DE的端点坐标是D(7,-1)、E(-1,-7)(1)试说明如何平移线段AC,使其与线段ED重合将线段AC先向______(上,下)平移_______个单位,再向_______(左,右)平移_______个单位;(2)将∆ABC绕坐标原点逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的∆DEF,并和∆ABC 同时绕坐标原点O逆时针旋转90o,画出旋转后的图形.39.如图,已知反比例函数y=m(m是常数,m≠0),一次函数y=ax+b(a、b为常数,a≠0),其中一x次函数与x轴,y轴的交点分别是A(-4,0),B(0,2).(1)求一次函数的关系式;(2)反比例函数图象上有一点P满足:①PA⊥x轴;②PO=√17(O为坐标原点),求反比例函数的关系式;(3)求点P关于原点的对称点Q的坐标,判断点Q是否在该反比例函数的图象上.40.已知|2﹣m|+(n+3)2=0,点P1、P2分别是点P(m,n)关于y轴和原点的对称点,求点P1、P2的坐标.四、综合题41.在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.42.将□OABC放在平面直角坐标系中,O为原点,点C(-6,0),点A在第一象限,OA=2,∠A=60°,AB 与y轴交于点N.(1)如图①,求点A的坐标:(2)如图②,将平行四边形OABC绕点O逆时针旋转得到平行四边形OA'B'C',当点A的对应点A'落在y 轴正半轴上时,求旋转角及点B的对应点B'的坐标:(3)将平行四边形OABC绕点A旋转得到平行四边形DAEF,使点B的对应点E落在直线OA上,请在图③中画出旋转后的图形,并直接写出OE、AB、BC之间的关系.43.在数学课上,老师要求学生探究如下问题:(1)如图1,在等边三角形ABC内有一点P,PA=2,PB=√3,PC=1,试求∠BPC的度数.李明同学一时没有思路,当他认真分析题目信息后,发现以PA、PB、PC的长为边的三角形是直角三角形,他突然有了正确的思路:如图2,将△BPC绕点B逆时针旋转60°,得到△BP′A.连接PP',易得△P′PB 是正三角形,△P′PA是直角三角形,则得∠BPC=________;(2)如图3,在正方形ABCD内有一点P,PA=√5,PB=√2,PC=1,试求∠BPC的度数.(3)在图3中,若在正方形ABCD内有另一点Q,QA=a,QB=b,QC=c(a>b,a>c),试猜想当a,b,c满足什么条件时,∠BQC的度数与第(2)问中∠BPC的度数相等,请直接写出结论.44.如图1,四边形ABCD是边长为3√2的正方形,矩形AEFG中AE=4,∠AFE=30°。

人教版数学九年级数学上册-第二十三章-旋转-巩固练习(含答案)

人教版数学九年级数学上册-第二十三章-旋转-巩固练习(含答案)

人教版数学九年级上册-第二十三章-旋转-巩固练习一、单选题1.已知点与点关于坐标原点对称,则实数a、b的值是A. ,B. ,C. ,D. ,2.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A. B. C. D.3.将图绕中心按顺时针方向旋转60°后可得到的图形是()A. B. C. D.4.如图,四边形ABCD是正方形,△ADE绕着点A旋转90°后到达△ABF的位置,连接EF,则△AEF的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.如图,□ABCD绕点A逆时针旋转32°,得到□AB′C′D′,若点B′与点B是对应点,若点B′恰好落在BC边上,则∠C=()A. 106°B. 146°C. 148°D. 156°6.如图所示的图案绕旋转中心旋转一定角度后能够与自身重合,那么这个旋转角可能是( )A. B. C. D.7.如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()个.A. 1B. 2C. 3D. 48.已知点P1(a,3)与P2(﹣5,﹣3)关于原点对称,则a的值为()A. 5B. 3C. 4D. -5二、填空题9.在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出旋转后的点关于原点的对称点,这称为一次变换,已知点A的坐标为(﹣1,0),则点A经过连续2016次这样的变换得到的点A2016的坐标是________.10.我们知道,在平面内,如果一个图形绕着一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转的这个角称为这个图形的一个旋转角.例如,正方形绕着它的对角线的交点旋转90°后能与自身重合所以正方形是旋转对称图形,它有一个旋转角为90°.(1)判断下列说法是否正确(在相应横线里填上“对”或“错”)①正五边形是旋转对称图形,它有一个旋转角为144°.________②长方形是旋转对称图形,它有一个旋转角为180°.________(2)填空:下列图形中时旋转对称图形,且有一个旋转角为120°的是________ .(写出所有正确结论的序号)①正三角形②正方形③正六边形④正八边形11.在下列图案中可以用平移得到的是________(填代号).12.如图是奥迪汽车的车牌标志,右边的三个圆环可以看作是左边的圆环经过________得到的.13.将一个自然数旋转180°后,可以发现一个有趣的现象,有的自然数旋转后还是自然数.例如,808,旋转180°后仍是808.又如169旋转180°后是691.而有的旋转180°后就不是自然数了,如37.试写一个五位数,使旋转180°后仍等于本身的五位数________.(数字不得完全相同)14.如图,在平面直角坐标系中,是由绕着某点旋转得到的,则这点的坐标是________.15.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为________ .三、解答题16.如图,在直角坐标系中,已知△ABC各顶点坐标分别为A(0,1),B(3,﹣1),C(2,2),试作出与△ABC关于原点对称的图形△A1B1C1,并直接写出A1,B1,C1的坐标.17.找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.18.如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1).(1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O1A1B1(2)画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求出点A旋转到A2所经过的路径长(结果保留π)四、作图题19.如图,阴影部分是由4个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑一个小正方形,使涂黑后整个图形的阴影部分成为轴对称图,并画出其对称轴.答案一、单选题1.【答案】D【解析】【解答】点与点关于坐标原点对称,实数a、b的值是:,.故答案为:D【分析】根据关于原点对称点的坐标特点:横纵坐标都互为相反数,就可求出a、b的值。

第23章 旋转 人教版九年级数学上册单元过关测试提升卷含答案

第23章 旋转 人教版九年级数学上册单元过关测试提升卷含答案

2022-2023学年人教版九年级数学上册单元测试第二十三章旋转(提升卷)时间:100分钟总分:120分一、选择题(每题3分,共24分)1.下列图形中,是中心对称图形的是()A.B.C.D.【解析】解:A、不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,故此选项不符合题意;B、不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,故此选项不符合题意;C、能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故此选项符合题意;D、不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,故此选项不符合题意;故选:C.【点睛】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.2.如图,点D为等边△ABC的边AB上一点,且AD AB,将△ACD绕点C逆时针旋转60°,得到△BCE,连接DE交BC于点F,则下列结论不成立的是()A.BE∥AC B.△CDE为等边三角形C.∠BFD=∠ADC D.DF=4EF【解析】解:∵△ABC是等边三角形,∴AB=BC,∠A=∠ABC=60°,由旋转的性质得:∠DCE=60°,△ACD≌△BCE,AC=BC,AD=BE,∠A=∠ABE=60°,∴△CDE是等边三角形,∠A+∠ABE=180°,∴BE∥AC,故A,B结论正确,但不符合题意;∵△ABC和△CDE是等边三角形,∴∠ABC=∠CDF=60°,∵∠BFD=∠CDF+∠DCF=60°+∠DCF,∠ADC=∠ABC+∠DCF=60°+∠DCF,∴∠BFD=∠ADC,故C结论正确,但不符合题意;故选:D.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定和性质,灵活运用这些性质解决问题是解题的关键.3.在平面直角坐标系中,点与点关于原点成中心对称,则的值为()A.B.C.1D.3【解析】解:∵点与点关于原点成中心对称,∴,,故选C.【点睛】本题考查了关于原点对称的两个点,横坐标、纵坐标分别互为相反数,代数式求值,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.4.如图,在平面直角坐标系中,线段AB的端点在方格线的格点上,将AB绕点P顺时针方向旋转90°,得到线段A′B′,则点P的坐标为()A.(1,2)B.(1,4)C.(0,4)D.(2,1)【解析】解:如图所示,作线段AA'和BB'的垂直平分线,交于点P,则点P即为旋转中心,由图可得,点P的坐标为(1,2),故选:A.【点睛】本题主要考查了坐标与图形变换,解决问题的关键是掌握旋转的性质.一般情况,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.5.如图,在Rt中,,将绕点顺时针旋转,得到,连接交于点,则与的周长之和为()A.44B.43C.42D.41【解析】解:∵△BDE由△BCA旋转得出,∴BD=BC=12.∵∠CBD=60°,∴△BCD为等边三角形,∴CD=BC=12.在Rt△ABC中,∠ACB=90°,AC=5,BC=12,∴,∴C△ACF+C△BDF=AC+CF+AF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42.故选:C.【点睛】本题考查了旋转的性质、等边三角形的判定与性质、勾股定理以及三角形的周长,利用三角形的周长公式结合边与边的关系,找出C△ACF+C△BDF=AC+AB+CD+BD是解题的关键.6.如图,,将平行四边行绕原点O逆时针旋转,则点B的对应点的坐标是()A.B.C.D.【解析】解:连接OB、AC交于点M,∵,∴M(,),即M(,2),∴B(5,4),将平行四边行绕原点O逆时针旋转,则点B的对应点,连接OB′,分别过点B′、B作y轴、x轴的垂线,垂足为E、F,则OF=5,BF=4,∠B′EO=∠OFB=90°,OB′=OB,∵∠B′OB=∠EOF=90°,∴∠B′OE=∠BOF,∴△B′OE≌△BOF(AAS),∴OE=OF=5,B′E=BF=4,∴,故选:B.【点睛】本题考查了坐标与图形,平行四边形的性质,旋转的性质,全等三角形的判定和性质等,求出点B的坐标是解答此题的关键.7.如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A 逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A.B.C.D.【解析】解:∵将△ABM绕点A逆时针旋转得到△ACN,∴△ABM≌△ACN,∴AB=AC,AM=AN,∴AB不一定等于AN,故选项A不符合题意;∵△ABM≌△ACN,∴∠ACN=∠B,而∠CAB不一定等于∠B,∴∠ACN不一定等于∠CAB,∴AB与CN不一定平行,故选项B不符合题意;∵△ABM≌△ACN,∴∠BAM=∠CAN,∠ACN=∠B,∴∠BAC=∠MAN,∵AM=AN,AB=AC,∴△ABC和△AMN都是等腰三角形,且顶角相等,∴∠B=∠AMN,∴∠AMN=∠ACN,故选项C符合题意;∵AM=AN,而AC不一定平分∠MAN,∴AC与MN不一定垂直,故选项D不符合题意;故选:C.【点睛】本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.8.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标是,顶点B 的坐标是,对角线AC,BD的交点为M.将正方形ABCD绕着原点O逆时针旋转,每次旋转45°,则第2022次旋转结束时,点M的坐标为()A.B.C.D.【解析】解:∵,,∴,.过点D作轴,垂足为N,如解图所示,则.∵四边形ABCD为正方形,∴,.∴.∴.∴,.∴点D的坐标为.∵点M为BD的中点,∴点M的坐标为.由题意,可知正方形ABCD绕着原点O逆时针旋转,每次旋转45°,点M也绕着原点O逆时针旋转,每次旋转45°,则点M旋转一周需要旋转(次).又∵,,∴第2022次旋转结束时和第6次旋转结束时,点M的坐标相同,且此时点M 的位置就是绕点O逆时针旋转270°(或顺时针旋转90°)的位置.∴第2022次旋转结束时,点M的坐标为,故选:D.【点睛】本题考查坐标与旋转规律,正方形性质,全等三角形的判定及性质,解题的关键是理解第2022次旋转结束时和第6次旋转结束时,点M的坐标相同,且此时点M的位置就是绕点O逆时针旋转270°(或顺时针旋转90°)的位置.二、填空题(每题3分,共24分)9.如图,将△ABC绕点A逆时针旋转60°得到△AB'C',若AC⊥B'C',则∠C=________度.【解析】解:∵将△ABC绕点A逆时针旋转60°得到△AB'C',∴∠CAC'=60°,∠C=∠C',∵AC⊥B'C',∴∠C'=90°-∠CAC'=30°=∠C,故答案为:30.【点睛】本题考查了旋转的性质,掌握旋转的性质是解题的关键.10.如图,在中,,将绕点逆时针旋转能与重合,若,则_________.【解析】解:∵CD∥AB,∴∠ACD=∠CAB=65°,∵△ABC绕点A旋转得到△AED,∴AC=AD,∴∠CDA=∠ACD =65°,∴∠CAD=180°-2∠ACD=180°-2×65°=50°,故答案为:.【点睛】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.11.将边长为3的正方形ABCD绕点C顺时针方向旋转45°到FECG的位置(如图),EF与AD相交于点H,则HD的长为___.(结果保留根号)【解析】解:∵四边形ABCD为正方形,∴CD=3,∠CDA=90°,∵边长为3的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D 落在对角线CF上,∴CF=3,∠CFE=45°,∴△DFH为等腰直角三角形,∴DH=DF=CF﹣CD=3﹣3.故答案为:3﹣3.【点睛】本题考查了旋转的性质,正方形的性质,熟练掌握旋转的性质是解题的关键.12.如图,在平面直角坐标系中,△ABC顶点的横、纵坐标都是整数,若将△ABC 以某点为旋转中心,顺时针旋转得到△DEF,其中A、B、C分别和D、E、F对应,则旋转中心的坐标是___.【解析】解:如图所示,分别作线段AD、BE的垂直平分线,交于点Q,Q即为旋转中心,由A(1,2),D(4,-1),E(4,2),B(-2,2)知,线段BE的垂直平分线为x=1,△ADE为等腰直角三角形,E在AD垂直平分线上,AD中点坐标为(2.5,0.5),设线段AD垂直平分线解析式为y=kx+b,则:,解得:,则线段AD的垂直平分线为y=x-2,∴Q(1,-1),故答案为:(1,-1).【点睛】本题考查了坐标与图形的旋转变化及求线段垂直平分线解析式的方法.解题关键是理解旋转中心是对应点连线垂直平分线的交点.13.如图,中,,P是边AB上一点,连接CP,将线段CP绕点P逆时针旋转90°得,连接.若AP=BC=4,BP =2,则线段______.【解析】解:如图,过点作,交的延长线于点,将线段CP绕点P逆时针旋转90°得,连接.,,,,,,,,,中,,,故答案为:.【点睛】本题考查了旋转的性质,全等三角形的性质与判定,勾股定理,掌握以上知识是解题的关键.14.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=_____度.【解析】解:∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′,∴AB=AB′,∠BAB′=30°,AB∥CD,∴∠B=∠AB′B=(180°﹣30°)÷2=75°,∠B+∠C=180°,∴∠C=180°﹣75°=105°.故答案为:105.【点睛】本题主要考查了图形的旋转,平行性四边形的性质,熟练掌握图形的旋转的性质,平行性四边形的性质是解题的关键.15.如图,△ABC中,∠C=90°,AC=BC=9cm,将△ABC绕点A顺时针旋转15°后得到△AB'C',则图中阴影部分面积等于_____cm2.【解析】解:等腰中,,,绕点顺时针旋转后得到△,,,,,在△中,,阴影部分的面积.故答案为:.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质.16.如图,正方形中,,点E为边上一动点,将点A绕点E顺时针旋转得到点F,则的最小值为__________.【解析】如图,上截取,过点作交的延长线于点,正方形中,,将点A绕点E顺时针旋转得到点F,是等腰直角三角形,在射线上运动,则是等腰直角三角形,与点重合时,取得最小值,等于即的最小值为故答案为:【点睛】本题考查了正方形的性质,全等三角形的性质,垂线段最短,求得的轨迹是解题的关键.三、解答题(每题8分,共72分)17.如图,方格纸中有三个格点,,,要求作一个多边形使这三个点在这个多边形的边(包括顶点)上,且多边形的顶点在方格的顶点上.(1)在图甲中作一个三角形是轴对称图形;(2)在图乙中作一个四边形是中心对称图形但不是轴对称图形;(3)在图丙中作一个四边形既是轴对称图形又是中心对称图形.(注:图甲、图乙、图丙在答题纸上)【解析】解:(1)如图甲中,△DEC即为所求作.(2)如图乙中,四边形ABCD即为所求作.(3)如图丙中,四边形AECD即为所求作.【点睛】本题考查作图-旋转变换,轴对称变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.18.如图,在中,,将绕点A旋转一定的角度得到,且点E恰好落在边上.(1)求证:平分;(2)连接,求证:.【解析】(1)证明:由旋转性质可知:平分(2)证明:如图所示:由旋转性质可知:即在中,即【点睛】本题考查了三角形的旋转变化,熟练掌握旋转前后图形的对应边相等,对应角相等以及合理利用三角形内角和定理是解决本题的关键.19.如图,在矩形ABCD中,对角线AC与BD相交于点O,∠AOB=60°,对角线AC所在的直线绕点O顺时针旋转角α(0°<α<120°),所得的直线l分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当旋转角α为多少度时,四边形AFCE为菱形?试说明理由.【解析】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AO=CO,∴∠AEO=∠CFO,在△AOE和△COF中,,∴△AOE≌△COF(AAS);(2)解:当α=90°时,四边形AFCE为菱形,理由:∵△AOE≌△COF,∴OE=OF,又∵AO=CO,∴四边形AFCE为平行四边形,又∵∠AOE=90°,∴四边形AFCE为菱形.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,菱形的判定,矩形的性质等知识,证明△AOE≌△COF是解题的关键.20.已知△ABC中,∠ACB=135°,将△ABC绕点A顺时针旋转90°,得到△AED,连接CD,CE.(1)求证:△ACD为等腰直角三角形;(2)若BC=1,AC=2,求四边形ACED的面积.【解析】(1)证明:∵△AED是△ABC旋转90°得到的,,∠CAD=90°,∴AC=AD,∴△ACD是等腰直角三角形;(2)解:∵△ACD是等腰直角三角形,∴∠ADC=∠ACD=45°,AC=AD=2,,由(1)知,∠ADE=∠ACB=135°,∴∠CDE=∠ADE-∠ADC=90°,∵DE=BC=1,∴.【点睛】本题考查了旋转的性质、全等三角形的性质、勾股定理、等腰直角三角形的判定和性质,解题的关键是先证明△ACD是等腰直角三角形,并证明△CDE是直角三角形.21.如图,正方形ABCD中,M是对角线BD上的一个动点(不与B、D重合),连接CM,将CM绕点C顺时针旋转90°到CN,连接MN,DN,求证:BM=DN.【解析】证明:四边形ABCD是正方形,,将CM绕点C顺时针旋转到CN,,,,在和中,,.【点睛】本题考查正方形中的旋转变换,解题的关键是掌握旋转的旋转,证明△CBM≌△CDN.22.如图,把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm,把三角板DCE绕点C顺时针旋转15°得到△D'CE'(如图乙).这时AB与CD'相交于点O,D'E'与AB相交于点F.求线段AD'的长.【解析】解:∵∠ACB=∠DEC=90°,∠A=45°,∠D=30°,∴∠DCE=60°,∠B=45°∵把三角板DCE绕点C顺时针旋转15°得到△D'CE',∴∠D'CE'=60°,∠BCE'=15°,∴∠OCB=45°,又∵∠B=45°,∴∠COB=90°,又∵△ACB是等腰直角三角形,∴AO=CO=BO=3cm,∴D'O=4cm,∴AD'===5cm.【点睛】本题考查了旋转的性质,直角三角形的性质,等腰直角三角形的性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键.23.将两块完全相同的且含角的直角三角板和按如图所示位置放置,现将绕A点按逆时针方向旋转.如图,与交于点M,与交于点N,与交于点P.(1)在旋转过程中,连接,求证:所在的直线是线段的垂直平分线.(2)在旋转过程中,是否能成为直角三角形?若能,直接写出旋转角的度数;若不能,说明理由.【解析】(1)证明:∵两块是完全相同的且含角的直角三角板和,∴AE=AC,∠AEF=∠ACB=30°,∠F=60°,∴∠AEC=∠ACE,∴∠AEC-∠AEF=∠ACE-∠ACB,∴∠PEC=∠PCE,∴PE=PC,又AE=AC,∴所在的直线是线段的垂直平分线.(2)解:在旋转过程中,能成为直角三角形,由旋转的性质得:∠FAC= ,当∠CNP=90°时,∠FNA=90°,又∠F=60°,∴=∠FAC=180°-∠FNA-∠F=180°-90°-60°=30°;当∠CPN=90°时,∵∠NCP=30°,∴∠PNC=180°-90°-30°=60°,即∠FNA=60°,∵∠F=60°,∴=∠FAC=180°-∠FNA-∠F=180°-60°-60°=60°,综上,旋转角的的度数为30°或60°.【点睛】本题考查直角三角板的度数、全等三角形的性质、等腰三角形的判定与性质、线段垂直平分线的判定、旋转性质、对顶角相等、三角形的内角和定理,熟练掌握相关知识的联系与运用是解答的关键.24.【模型建立】(1)如图1,在正方形中,点E是对角线上一点,连接,.求证:.【模型应用】(2)如图2,在正方形中,点E是对角线上一点,连接,.将绕点E逆时针旋转,交的延长线于点F,连接.当时,求的长.【模型迁移】(3)如图3,在菱形中,,点E是对角线上一点,连接,.将绕点E逆时针旋转,交的延长线于点F,连接,与交于点G.当时,判断线段与的数量关系,并说明理由.【解析】(1)证明:如图1中,∵四边形是正方形,∴,,在和中,,∴;(2)解:如图2中,设交于点J.由(1)知,,,∵EF是绕点E逆时针旋转得到,∴,在中,;(3)解:结论:.理由:如图3中,∵四边形是菱形,∴,,在和中,,∴),∴,是绕点E逆时针旋转得到的,∴,∴是等边三角形,∴.【点睛】本题考查了正方形的性质,等边三角形的判定和性质,图形的旋转变换,全等三角形的判定和性质,勾股定理,正确理解图形的相关性质是解本题的关键.25.(1)发现:如图1,点是线段上的一点,分别以,为边向外作等边三角形和等边三角形,连接,,相交于点.结论:①线段与的数量关系为:________;②的度数为________;(2)应用:如图2,若点,,不在一条直线上,(1)中的结论①还成立吗?请说明理由;(3)拓展:在四边形中,,,,若,,请直接写出,两点之间的距离.【解析】(1)解:∵△ABC和△BDE都是等边三角形,∴AB=CB,EB=ED=DB,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,∴△ABE≌△CBD(SAS),∴AE=CD,∠BAE=∠BCD,由三角形的外角性质,∠AOC=∠BAE+∠BDC=∠BCD+∠BDC,∠ABC=∠BCD+∠BDC,∴∠AOC=∠ABC=;故答案为;.(2)依然成立,理由如下:∵和均是等边三角形,∴,,,∴,即在和中,∵,,,∴∴.设与交于点∵,∴在和中,其内角和均为∵,∴(3)将绕点顺时针旋转得到,根据旋转的性质可得:,,【点睛】考查全等三角形的判定与性质,等边三角形的性质,旋转的性质、三角形的外角性质等,掌握全等三角形的判定定理与性质定理是解题的关键.。

人教版数学九年级上册 第23章旋转 巩固练习题含答案)

人教版数学九年级上册 第23章旋转  巩固练习题含答案)

23.1图形的旋转一.选择题1.如图,在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30o后得到△A1BC1,则图中阴影部分的面积为()A.3B.6C.9D.122.如图,正方形OABC绕着点O逆时针旋转30°得到正方形ODEF,连接AF,则∠OF A 的度数是()A.20°B.25°C.30°D.35°3.如图,已知正方形ABCD的边长为3,如果将线段BD绕着点B旋转后,点D落在CB 的延长线上的D′处,那么AD′为()A.6B.3C.18D.34.如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°5.如图,△ABC是等边三角形,D是AC边上的一点,连接BD,把△BCD绕着点B逆时针旋转60°,得到△BAE,连接DE,若BC=7,BD=5,则△ADE的周长是()A.16B.15C.13D.126.如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S=6+3.其四边形AOBO′中正确的结论有()A.1个B.2个C.3个D.4个7.如图,在矩形ABCD中,把矩形ABCD绕点C旋转,得到矩形FECG,且点E落在AD 上,连接BE,BG交CE于点H.连接FH.若FH平分∠EFG,则下列结论:①AE+CH=EH:②∠DEC=2∠ABE:③BH=HG;④CH=2AB.其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△EBD,若点C的对应点D落在AB边上,则旋转角为()A.140°B.80°C.70°D.40°9.如图,将三角形AOB绕点O按逆时针方向旋转45°后得到三角形A'OB',若∠AOB=21°,则∠AOB′的度数是()A.21°B.24°C.45°D.66°10.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为9,BF=1,则AE的长为()A.3B.4C.D.二.填空题11.如图,在△ABC中,∠ACB=90°,将△ABC绕点A顺时针旋转90°,得到△ADE,连接BD,若AC=3,DE=1,则线段BD的长为.12.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AC=4,则CD=.13.如图,正方形ABCD的边长为1,把这个正方形绕点A旋转,得到正方形AB'C′D';且点C′在直线AD上,那么△C′D′D的面积是.14.小明把一副三角板按如图所示叠放在一起,固定三角板ABC,将另一块三角板DEF绕公共顶点B顺时针旋转(旋转的度数不超过180°).若二块三角板有一边平行,则三角板DEF旋转的度数可能是.15.将菱形ABCD以点E为中心,按顺时针方向分别旋转90°,180°,270°后形成如图所示的图形,若∠BCD=120°,AB=2,则图中阴影部分的面积为.三.解答题16.如图,△ABC中,∠B=16°,∠ACB=24°,AB=6cm,△ABC按逆时针方向旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.(1)指出旋转中心,并求出旋转的度数;(2)求出∠BAE的度数和AE的长.17.如图所示,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.(1)求证:△AFC≌△AEB.(2)当四边形ACDE为菱形时,求BD的长.18.如图,在△ABC中,∠BAC=120°,以BC为边向外作等边△BCD.(Ⅰ)∠ABD+∠ACD=;(Ⅱ)∠BAD=;(Ⅲ)若AB=3,AC=2,求AD的长.19.如图1,在△ABC中,AB=AC,∠BAC=100°,D,E分别是AB,AC边的中点,将△ADE绕点A逆时针旋转α角(0°<α<100°),得到△AD′E′(如图2),连接D′B,E′C.(1)探究D′B与E′C的数量关系,并给予证明;(2)在旋转过程中,设D′E′与AC交于点P,当△AD′P是等腰三角形时,请直接出旋转角α的度数.参考答案与试题解析一.选择题1.【解答】解:∵在△ABC 中,AB =6,将△ABC 绕点B 按逆时针方向旋转30°后得到△A 1BC 1,∴△ABC ≌△A 1BC 1,∴A 1B =AB =6,∴△A 1BA 是等腰三角形,∠A 1BA =30°,∴S △A 1BA =×6×3=9,又∵S 阴影=S △A 1BA +S △A 1BC 1﹣S △ABC ,S △A 1BC 1=S △ABC ,∴S 阴影=S △A 1BA =9.故选:C .2.【解答】解:根据旋转的定义可知∠AOD =30°,OA =OF ,所以∠AOF =30°+90°=120°.所以∠OF A =(180°﹣120°)÷2=30°.故选:C .3.【解答】解:∵四边形ABCD是正方形,∴BC=CD=3,∠C=90°,∴BD===3,在Rt△ABD′中,BD′=BD=3,AB=3,∠ABD′=90°,∴AD′===3,故选:B.4.【解答】解:如图,∵DC∥AB,∴∠DCA=∠CAB=70°,∵将△ABC绕点A旋转到△AED的位置,∴AD=AC,∠DAC=∠EAB,∴∠ADC=∠DCA=70°∴∠DAC=∠EAB=40°故选:B.5.【解答】解:∵将△BCD绕点B逆时针旋转60°,得到△BAE,∴BD=BE,∠DBE=60°,∴△BDE是等边三角形,∴DE=BD=5,而△BCD绕点B逆时针旋转60°,得到△BAE,∴AE=CD,∴△AED的周长=AE+AD+DE=CD+AD+DE=AC+5=5+7=12.故选:D.6.【解答】解:如图,由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO ′A ≌△BOC ,∴O ′A =5.在△AOO ′中,三边长为3,4,5,这是一组勾股数,∴△AOO ′是直角三角形,∠AOO ′=90°,∴∠AOB =∠AOO ′+∠BOO ′=90°+60°=150°,故结论③正确;S 四边形AOBO ′=S △AOO ′+S △OBO ′═×3×4+×42=6+4,故选:C .7.【解答】解:如图,作BM ⊥EC 于M .∵CB =CE ,∴∠CBE =∠CEB ,∵AD ∥BC ,∴∠AEB =∠CBE ,∴∠AEB =∠MEB ,∵∠A =∠BME =90°,BE =BE ,∴△BEA ≌△BEM (AAS ),∴AE=EM,AB=BM.∵∠BMH=∠GCH=90°,∠BHM=∠GHC,BM=AB=CG,∴△BMH≌△GCH(AAS),∴MH=CH,BH=HG,∴EH=EM+MH=AE+CH,故①③正确,∵∠AEB+∠ABE=90°,∴2∠AEB+2∠ABE=180°,∵∠DEC+∠AEC=180°,∠AEC=2∠AEB,∴∠DEC+2∠AEB=180°,∴∠DEC=2∠ABE,故②正确,∵FH平分∠EFG,∴∠EFH=45°,∵∠FEH=90°,∴AB=EF=EH,∵EH>HM=CH,∴CH<AB,故④错误.故选:C.8.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=70°,∵将△ABC绕点B逆时针旋转得到△EBD,点C的对应点D落在AB边上,∴旋转角=∠ABC=70°,故选:C .9.【解答】解:∵将三角形AOB 绕点O 按逆时针方向旋转45°后得到三角形A 'OB ', ∴∠AOB =∠A 'OB '=21°,∠A 'OA =45°∴∠AOB '=∠A 'OA ﹣∠A 'OB '=24°故选:B .10.【解答】解:∵把△ADE 绕点A 顺时针旋转90°到△ABF 的位置∴BF =DE =1,S △AFB =S △ADE ,∴S 正方形ABCD =S 四边形AECF =9∴AD =3∴AE ==故选:D .二.填空题(共5小题)11.【解答】解:由旋转的性质可知:BC =DE =1,AB =AD ,∠BAD =90°, 在Rt △ABC 中,AC =3,BC =1,∠ACB =90°,由勾股定理得:AB =AD ===,在Rt △ADB 中,BD ===2,即:BD 的长为2,故答案为:2. 12.【解答】解:∵△ABC 绕点A 顺时针旋转60°得到△AED ,∴AC =AD ,∠CAD =60°,∴△ACD是等边三角形,∴AC=AD=CD=4,故答案为:4.13.【解答】解:如图,过点D'作D'E⊥AD,∵把这个正方形绕点A旋转,得到正方形AB'C′D';∴AD'=AD=CD=C'D'=1∴AC'==∴D'E==×(﹣1)×=当点C'在AD延长线上时,S△C'D'D=×(+1)×=当点C'在DA延长线上时,S△C'D'D故答案为:或14.【解答】解:设旋转的度数为α,若DE∥AB,则∠E=∠ABE=90°,∴α=90°﹣30°﹣45°=15°,若BE∥AC,则∠ABE=180°﹣∠A=120°,∴α=120°﹣30°﹣45°=45°,若BD∥AC,则∠ACB=∠CBD=90°,∴α=90°,当点C,点B,点E共线时,∵∠ACB=∠DEB=90°,∴AC∥DE,∴α=180°﹣45°=135°,故答案为:15°或45°或90°或135°.15.【解答】解:连接BD ,AC 交于点O ,BE ,DE∵四边形ABCD 是菱形,∠BCD =120°∴BO =DO ,AO =CO ,AC ⊥BD ,∠CAD =∠BCD =60°,且AB =AD =2 ∴AO =CO =1,DO =BO =AO =∴BD =2 ∵将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形 ∴∠BED =90°,BE =DE∴BE =DE =∵S 四边形DABE =S △DBE ﹣S △ABD∴S 四边形DABE =﹣×1=3﹣ ∴S 阴影部分=4(3﹣)=12﹣4故答案为:12﹣4三.解答题(共4小题)16.【解答】①∵△ABC逆时针旋转一定角度后与△ADE重合,A为顶点,∴旋转中心是点A,根据旋转的性质可知:∠CAE=∠BAD=180°﹣∠B﹣∠ACB=140°,∴旋转角度是140°;②由旋转可知:△ABC≌△ADE,∴AB=AD,AC=AE,∠BAC=∠EAD=140°,∴∠BAE=360°﹣140°×2=80°,∵C为AD中点,∴AC=AE=AB=×6=3(cm).17.【解答】(1)证明:∵△AEF是由△ABC绕点A按逆时针方向旋转得到的,∴AE=AF=AB=AC=1,∠EAF=∠BAC=45°,∴∠BAC+∠F AB=∠EAF+∠F AB,即∠BAE=∠CAF,在△ABE和△ACF中,∴△ABE≌△ACF(SAS);(2)解:∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴∠BAE=90°,∴BE===,∴BD=BE﹣DE=﹣1.18.【解答】解:(Ⅰ)因为四边形内角和360°,所以∠BAD+∠BDC+∠ABD+∠ACD=360°,∴∠ABD+∠ACD=360°﹣120°﹣60°=180°.故答案为180°;(Ⅱ)将△ACD绕点D逆时针旋转60°,得到△BED(如图所示),∵DC=BD,∠BDC=60°,∴旋转后的三角形DC与BD重合.又∠ABD+∠ACD=180°,所以∠ABD+∠EBD=180°,∴A、B、E三点共线.所以△ADE是等边三角形,∴∠BAD=60°.故答案为60°;(Ⅲ)根据(Ⅱ)可知BE=AC=2,则AE=AB+BE=3+2=5.所以AD=5.故答案为180°,60°.19.【解答】解:(1)D′B=E′C,证明:如图2,∵AB=AC,D、E分别是AB、AC的中点,∴AD=AE,∵∠BAC=∠D′AE′=100°,∴∠BAD′=∠CAE′=100°﹣∠D′AC,在△BAD′和△CAE′中,,∴△BAD′≌△CAE′(SAS),∴D′B=E′C;(2)解:①当AP=D′P时,∵∠AD′P=40°,∴∠D′AP=∠AD′P=40°,∴α=100°﹣40°=60°;②当AD′=AP时,此时P和E重合,即α=0°;③当AD′=D′P时,∵∠AD′P=40°,∴∠D′AP=∠D′P A=(180°﹣∠AD′P)=×(180°﹣40°)=70°,∴α=100°﹣70°=30°;综上所述,旋转角α的度数为60°或30°人教版九年级数学23.2 中心对称一、选择题1. 如图,如果甲、乙两图关于点O对称,那么乙图中不符合题意的一块是()2. 2018·达州下列图形中是中心对称图形的是()3. 如图,在△ABC中,AB=AC,△ABC与△FEC关于点C对称,连接AE,BF,当∠ACB=______时,四边形ABFE为矩形()A.90°B.60°C.45°D.30°4. 在线段、平行四边形、矩形、等腰三角形、圆这几个图形中,既是轴对称图形又是中心对称图形的个数是()A.2 B.3 C.4 D.55. 2019·长春德惠期末如图,△ABC与△A′B′C′关于点O中心对称,下列结论中不一定成立的是()A.∠ABC=∠A′C′B′ B.OA=OA′C.BC=B′C′ D.OC=OC′6. 2019·襄阳期末如图,在正方形网格中,格点三角形ABC绕某点顺时针旋转α度(0<α<180),得到格点三角形A1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点,则α的值为()A.50 B.60 C.90 D.1207. 把△ABC各点的横坐标都乘-1,纵坐标都乘-1,符合上述要求的图是()8. 2020·河北模拟如图所示,A1(1,3),A2(32,32),A3(2,3),A4(3,0).作折线OA1A2A3A4关于点A4中心对称的图形,得折线A8A7A6A5A4,再作折线A8A7A6A5A4关于点A8中心对称的图形……以此类推,得到一个大的折线.现有一动点P从原点O出发,沿着折线以每秒1个单位长度的速度运动,设运动时间为t秒.当t=2020时,点P的坐标为()A.(1010,3) B.(2020,3 2)C.(2016,0) D.(1010,3 2)二、填空题9. 王老师、杨老师两家所在的位置关于学校对称.如果王老师家距学校2千米,那么他们两家相距________千米.10. 点P(1,2)关于原点的对称点P′的坐标为__________.11. 如图所示,在平面直角坐标系中,若△ABC与△A1B1C1关于点E对称,则对称中心点E的坐标是__________.12. 如图所示,在△ABC中,已知∠ACB=90°,AC=BC=2.若以AC的中点O 为旋转中心,将这个三角形旋转180°,点B落在点B′处,则BB′=________.13. 如图,直线a,b垂直相交于点O,曲线C是以点O为对称中心的中心对称图形,点A 的对称点是点A′,AB⊥a于点B,A′D⊥b于点D.若OB=3,OD=2,则阴影部分的面积为________.14. 如图,点A,B,C的坐标分别为(2,4),(5,2),(3,-1).若以点A,B,C,D为顶点的四边形既是轴对称图形,又是中心对称图形,则点D的坐标为________.15. 2019·呼和浩特已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若点A的坐标为(2,3),则点B与点D的坐标分别为()A.(-2,3),(2,-3)B.(-3,2),(3,-2)C.(-3,2),(2,-3)D.(-72,212),(72,-212)16. 如图,在平面直角坐标系中,对点P(1,0)作如下变换:先向上平移(后一次平移比前一次多1个单位长度),再作关于原点的对称点,即向上平移1个单位长度得到点P1,作点P1关于原点的对称点P2,向上平移2个单位长度得到点P3,作点P3关于原点的对称点P4……那么点P2020的坐标为____________.三、作图题17. 如图所示,在7×6的正方形网格中,选取14个格点,以其中三个格点为顶点画出△ABC,请你以选取的格点为顶点再画出一个三角形,且分别满足下列条件:(1)图①中所画的三角形与△ABC组成的图形是轴对称图形;(2)图②中所画的三角形与△ABC组成的图形是中心对称图形;(3)图③中所画的三角形与△ABC的面积相等,但不全等.四、解答题18. 如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)试判断△BEC是不是等腰三角形,并说明理由;(2)在原图中画△FCE,使它与△BEC关于CE的中点O中心对称,此时四边形BCFE是什么特殊平行四边形?请说明理由.19. 2018·眉山在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(-4,-2),请直接写出直线l 的函数解析式.人教版九年级数学23.2 中心对称课时训练-答案一、选择题1. 【答案】C[解析] .2. 【答案】B3. 【答案】B[解析] ∵△ABC与△FEC关于点C对称,∴AC=FC,BC=EC,∴四边形ABFE是平行四边形.当AC=BC时,四边形ABFE是矩形,∴BC=AC=AB,∴∠ACB=60°.故选B.4. 【答案】B[解析] 线段、矩形、圆既是轴对称图形,又是中心对称图形,平行四边形是中心对称图形,不是轴对称图形,等腰三角形是轴对称图形,不是中心对称图形.故选B.5. 【答案】A6. 【答案】C7. 【答案】C8. 【答案】A二、填空题9. 【答案】4[解析] ∵王老师、杨老师两家所在的位置关于学校对称,∴王老师、杨老师两家到学校的距离相等.∵王老师家距学校2千米,∴他们两家相距4千米.故答案为4.10. 【答案】(-1,-2)11. 【答案】(3,-1)[解析] 连接各组对应点,其交点坐标即为对称中心点E的坐标.12. 【答案】2 5[解析] ∵△ABC绕AC的中点O旋转了180°,∴OB=OB′,∴BB′=2OB.又∵OC=OA=12AC=1,BC=2,∴在Rt△OBC中,OB=OC2+BC2=12+22=5,∴BB′=2OB=2 5.13. 【答案】6[解析] 如图,过点A′作A′B′⊥a,垂足为B′,由题意可知,①与②关于点O中心对称,所以阴影部分的面积可以看作四边形A′B′OD的面积.又A′D⊥b于点D,直线a,b互相垂直,可得四边形A′B′OD是矩形,所以其面积为3×2=6.14. 【答案】(0,1)15. 【答案】B16. 【答案】(1,-505)[解析] 根据题意可列出下面的表格:观察表格可知:这些点平均分布在四个象限中,序号除以4余1的点在第一象限,横坐标都是1,纵坐标为序号减1除以4的商加1;序号除以4余2的点是序号除以4余1的点关于原点的对称点;序号能被4整除的点在第四象限,横坐标为1,纵坐标为序号除以4的商的相反数;序号除以4余3的点在第二象限,是序号能被4整除的点关于原点的对称点.因为2020÷4=505,所以点P2020在第四象限,坐标为(1,-505).三、作图题17. 【答案】解:(1)答案不唯一,如图①~②.(2)如图③.(3)答案不唯一,如图④~⑥.四、解答题18. 【答案】解:(1)△BEC是等腰三角形.理由:∵在矩形ABCD中,AD∥BC,∴∠DEC=∠BCE.∵EC平分∠BED,∴∠DEC=∠BEC,∴∠BEC=∠BCE,∴BC=BE,∴△BEC是等腰三角形.(2)连接BO并延长至点F,使OF=OB,连接FE,FC,△FCE即为所求.四边形BCFE是菱形.理由:∵OB=OF,OE=OC,∴四边形BCFE是平行四边形.又∵BC=BE,∴▱BCFE是菱形.19. 【答案】解:(1)如图,△A1B1C1为所作,C1(-1,2).(2)如图,△A2B2C2为所作,C2(-3,-2).(3)因为点A的坐标为(2,4),点A3的坐标为(-4,-2),所以直线l的函数解析式为y=-x.23.3课时学习图案设计一.选择题1.如图是4×4的正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,与原来3个黑色方格组成的图形成为轴对称图形,则符合要求的白色小正方格有()A.1个B.2个C.3个D.4个2.下列是国内几所知名大学的图标,若不考虑图标上的文字、字母和数字,其中既可以通过翻折变换,又可以通过旋转变换得到的图形是()A.清华大学B.浙江大学C.北京大学D.中南大学3.一个图形无论经过平移变换,还是经过旋转变换,下列说法:a.对应线段平行,b.对应线段相等,c.图形的形状和大小都没有发生变化,d.对应角相等,其中正确的是()A.a.b.c.B.b.c.d.C.a.b.d.D.a.c.d.4.如图,点A,B在方格纸的格点位置上,若要再找一个格点C,使它们所构成的三角形为轴对称图形,则这样的格点C在图中共有()A.4个B.6个C.8个D.10个5.如图,在正方形方格中,阴影部分是涂黑7 个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有()A.4 种B.3 种C.2 种D.1 种6.“飞流直下三千尺”、“坐地日行八万里(只考虑地球自转)”如果只从数学角度看,它们分别蕴含的图形变换是()A.平移、对称B.对称、旋转C.平移、旋转D.旋转、对称7.将如图所示“你最棒”的微信图案通过平移后可以得到的图案是()A.B.C.D.8.如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()个.A.1B.2C.3D.49.一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A.B.C.D.10.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13B.14C.15D.16二.填空题11.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.12.图中能通过基本图形旋转得到的有(请填写序号)13.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要在其余13个白色小方格中选出一个也涂成黑色,使整个黑色的小方格图案成轴对称图形,这样的白色小方格有个,请在图中设计出一种方案.14.如图,这个图形是由“基本图案”ABCDE绕着点顺时针依次旋转次得到的,则每次旋转的角度为.15.如图,在网格图中,平移图A,使它与图B拼合成一个长方形,应将图A向(填“左”或“右”)平移格;再向(填“上”或“下”)平移格.三.解答题16.如图,△ABC的三个顶点在网格上(1)画出三角形关于原点O的中心对称图形△A1B1C1;(2)直接写出点A1的坐标为.17.如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB的顶点均在格点上,点O为原点,点AB的坐标分别是A(3,2),B(1,3).将△AOB绕点O逆时针旋转90°后得到△A2OB2,请在图中作出△A2OB2,并直接写出这时点A2的坐标.18.如图,图中每个小方格都是边长为1个单位长度的正方形,△ABC在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得A,B两点的坐标分别为A(2,﹣1),B(1,﹣4),并写出C点坐标;(2)在图中作出△ABC绕坐标原点旋转180°后的△A1B1C1,并写出A1,B1,C1的坐标:(3)在图中作出△ABC绕坐标原点顺时针旋转90°后的△A2B2C2,并写出A2,B2,C2的坐标.19.阅读下列材料,完成相应学习任务旋转对称把正n边形绕着它的中心旋转°的整数倍后所得的正n边形重合.我们说,正n边形关于其中心有°的旋转对称.一般地,如果一个图形绕着某点O旋转角α(0<α<360°)后所得到的图形与原图形重合,则称此图形关于点O有角α的旋转对称.图1就是具有旋转对称性质的一些图形.任务:(1)如图2,正六边形关于其中心O有的旋转对称,中心对称图形关于其对称中心有的旋转对称;(2)图3是利用旋转变换设计的具有旋转对称性的一个图形,将该图形绕其中心至少旋转与原图形重合;(3)请以图4为基本图案,在图5中利用平移、轴对称或旋转进行图案设计,使得设计出的图案是中心对称图形.参考答案与试题解析一.选择题1.【解答】解:如图所示:,共3个,故选:C.2.【解答】解:A、是既可以通过翻折变换,又可以通过旋转变换得到的图形,正确;B、可以通过翻折变换,但不可以通过旋转变换得到的图形,错误;C、可以通过翻折变换,但不可以通过旋转变换得到的图形,错误;D、不可以通过翻折变换,但可以通过旋转变换得到的图形,错误;故选:A.3.【解答】解:a、经过旋转变换对应线段不一定平行,b、无论经过平移变换,还是经过旋转变换,对应线段相等,c、无论经过平移变换,还是经过旋转变换,图形的形状和大小都没有发生变化,d、无论经过平移变换,还是经过旋转变换,对应角相等,综上所述,说法正确的是b、c、d.故选:B.4.【解答】解:如图所示,这样的格点C在图中共有10个,故选:D.5.【解答】解:在1,2,3处分别涂黑都可得一个轴对称图形.故选:B.6.【解答】解:根据平移和旋转定义可知:“飞流直下三千尺”是平移;“坐地日行八万里”是旋转.故选:C.7.【解答】解:将如图所示“你最棒”的微信图案通过平移后可以得到的图案是,故选:C.8.【解答】解:图形①可以分别旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形②可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形③可以旋转180°得到,不可以经过轴对称得到,故此选项错误;图形④可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合.故既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有3个.故选:C.9.【解答】解:先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是B,故选:B.10.【解答】解:如图1,连接AC,CF,则AF=3,∴两次变换相当于向右移动3格,向上移动3格,又∵MN=20,∴20÷3=,(不是整数)∴按A﹣C﹣F的方向连续变换10次后,相当于向右移动了10÷2×3=15格,向上移动了10÷2×3=15格,此时M位于如图所示的5×5的正方形网格的点G处,再按如图所示的方式变换4次即可到达点N处,∴从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是10+4=14次,故选:B.二.填空题(共5小题)11.【解答】解:如图,有三种方案,故答案为3.12.【解答】解:四幅图中,能通过基本图形旋转得到的有:(1)(2)(3)(4).故答案为:(1)(2)(3)(4).13.【解答】解:如图所示,有4个位置使之成为轴对称图形.故答案为:4.14.【解答】解:根据旋转的性质,可知:在点D处有6个角,故360°÷6=60°,所以它的旋转角为60°.即这个图形是由“基本图案”ABCDE绕着点D顺时针依次旋转5次得到的,则每次旋转的角度为60°.故答案为:D、5、60°.15.【解答】解:∵A图形在B图形的左边可知应先向右平移图形A,点C距点D4个格,∴应先向右平移4个格,此时点C与点D重合,∵点D距点E2个格,∴向上平移2格.故答案为:右,4,上,2.三.解答题(共4小题)16.【解答】解:(1)如图,△A1B1C1为所作;(2)点A1的坐标为(1,﹣3).故答案为(1,﹣3).17.【解答】解:如图所示:A2(﹣2,3);.18.【解答】解:(1)坐标系如图所示,C(3,﹣3);(2)△A1B1C1如图所示,A1(﹣2,1),B1(﹣1,4),C1(﹣3,3);(3)△A2B2C2如图所示,A(﹣1,﹣2),B(﹣4,﹣1),C2(﹣3,﹣3).19.【解答】解:(1)正六边形关于其中心O有60°的旋转对称,中心对称图形关于其对称中心有180°的旋转对称;故答案为:60°;180°;(2)∵360°÷5=72°。

人教版九年级数学上册第二十三章《旋转》测试题(含答案)

人教版九年级数学上册第二十三章《旋转》测试题(含答案)

人教版九年级数学上册第二十三章《旋转》测试题(含答案)一.选择题1.下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.下列图形绕某点旋转90°后,不能与原来图形重合的是()A.B.C.D.3.已知点A的坐标为(2,3),O为坐标原点,连接OA,将线段OA绕点A按顺时针方向旋转90°得AB,则点B的坐标为()A.(5,1)B.(﹣3,2)C.(﹣1,5)D.(3,﹣2)4.下列说法中错误的是()A.成中心对称的两个图形全等B.成中心对称的两个图形中,对称点的连线被对称轴平分C.中心对称图形的对称中心是对称点连线的中心D.中心对称图形绕对称中心旋转180°后,都能与自身重合5.下列英语单词中,是中心对称图形的是()A.SOS B.CEO C.MBA D.SAR6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.在平面直角坐标系中,点M(3,﹣5)关于原点对称的点的坐标是()A.(﹣3,﹣5)B.(3,5)C.(5,﹣3)D.(﹣3,5)8.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部分图形,其中不是轴对称图形的是()A.B.C.D.9.将图绕中心按顺时针方向旋转60°后可得到的图形是()A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=15,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为()A.48B.50C.55D.60二.填空题11.与电子显示的四位数6925不相等,但为全等图形的四位数是.12.若数字串“000”和数字串“101”既是轴对称图形,又是中心对称图形,那么数字串“110”是图形(填写“轴对称”、“中心对称”).13.如图,在△ABC中,AB=4,AC=3,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为.14.如图,是4×4正方形网格,其中已有4个小方格涂成了黑色,现在要从其余12个白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有个.15.如图,△ABC与△DEF关于O点成中心对称.则AB DE,BC∥,AC=.16.在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是.17.时钟从上午9时到中午12时,时针沿顺时针方向旋转了度.18.时钟的时针在不停地转动,从上午6时到上午9时,时针旋转的旋转角为度,从上午9时到下午5时时针旋转的旋转角为度.19.如图,把这个“十字星”形图绕其中心点O旋转,当至少旋转度后,所得图形与原图形重合.20.如图,在平面直角坐标系中,点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,…,OP n(n为正整数),则点P2020的坐标是.三.解答题21.在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为;(3)求线段CC′的长.22.如图所示的图形是一个轴对称图形,且每个角都是直角,小明用n个这样的图形,按照如图(2)所示的方法玩拼图游戏,两两相扣,相互间不留空隙.(1)用含a、b的式子表示c;(2)当n=2时,求小明拼出来的图形总长度;(用含a、b的式子表示)(3)当a=4,b=3时,小明用n个这样的图形拼出来的图形总长度为28,求n的值.23.(1)计算:+﹣2﹣1;(2)一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是;在前16个图案中有个;第2008个图案是.24.在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图(1)指出旋转中心,并求出旋转角的度数.(2)求出∠BAE的度数和AE的长.25.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角.例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90度.(1)判断下列命题的真假(在相应的括号内填上“真”或“假”).①等腰梯形是旋转对称图形,它有一个旋转角为180度.()②矩形是旋转对称图形,它有一个旋转角为180°.()(2)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是(写出所有正确结论的序号):①正三角形;②正方形;③正六边形;④正八边形.(3)写出两个多边形,它们都是旋转对称图形,都有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形:;②既是轴对称图形,又是中心对称图形:.26.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A、O旋转后的对应点为A′、O′,记旋转角为a.(1)如图1,若a=90°,求AA′的长;(2)如图2,若a=120°,求点O′的坐标.参考答案一.选择题1.解:传送带传送货物的过程中没有发生旋转.故选:A.2.解:A、绕它的中心旋转90°能与原图形重合,故本选项不合题意;B、绕它的中心旋转90°能与原图形重合,故本选项不合题意;C、绕它的中心旋转90°能与原图形重合,故本选项不合题意;D、绕它的中心旋转120°才能与原图形重合,故本选项符合题意.故选:D.3.解:如图,过A作y轴的平行线,过B作x轴的平行线,交点为C,由∠C=∠ADO,∠BAC=∠AOD,AB=OA,可得△ABC≌△OAD,∴AC=OD=2,BC=AD=3,∴CD=5,点B离y轴的距离为:3﹣2=1,∴点B的坐标为(﹣1,5),故选:C.4.解:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称,中心对称图形的对称中心是对称点连线的交点,根据中心对称图形的定义和性质可知A、C、D正确,B错误.故选:B.5.解:是中心对称图形的是A,故选A.6.解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:B.7.解:点M(3,﹣5)关于原点对称的点的坐标是(﹣3,5),故选:D.8.解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.9.解:将图绕中心按顺时针方向旋转60°后得到的图形是.故选:A.10.解:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=15,∴△BCD为等边三角形,∴CD=BC=BD=15,∵AB===17,∴△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=8+15+15+17=55,故选:C.二.填空题11.答:5269.12.解:根据对称图形的概念,知110仅是轴对称图形,对称轴为正中水平直线.13.解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1=3,∠CAC1=60°,∴∠BAC1=90°,∴BC1===5,故答案为:5.14.解:如图所示:1,2,3位置即为符合题意的答案.故答案为:3.15.解:∵△ABC与△DEF关于O点成中心对称∴△ABC≌△DEFAB=DE,AC=DF又∵BO=OE,CO=OF,∠BOC=∠FOE∴△BOC≌△EOF∴∠BCO=∠OFEBC∥EF故填:=,EF,DF16.解:点(﹣3,4)关于原点对称的点的坐标是(3,﹣4).故答案为:(3,﹣4).17.解:从上午9时到中午12时,时针就从指向9,旋转到指向12,共顺时针转了3个“大格”,而每个“大格”相应的圆心角为30°,所以,30°×3=90°,故答案为:90.18.解:从上午6时到上午9时时针转过3个大格,所以,3×30°=90°,上午9时到下午5时时针转过8个大格,所以,8×30°=240°.故答案为:90;240.19.解:把这个“十字星”形图绕其中心点O旋转,当至少旋转360°÷4=90°后,所得图形与原图形重合,故答案为:90.20.解:∵点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;∴OP1=1,OP2=2,∴OP3=4,如此下去,得到线段OP4=23,OP5=24…,∴OP n=2n﹣1,由题意可得出线段每旋转8次旋转一周,∵2020÷8=252…4,∴点P2020的坐标与点P4的坐标在同一直线上,正好在y轴的负半轴上,∴点P2020的坐标是(0,﹣22019).故答案为:(0,﹣22019).三.解答题21.解:(1)△ABC与△A′B′C′成中心对称;(2)根据点C的坐标为(0,0),则点B′的坐标为:(7,﹣2);(3)线段CC′的长为:=2.22.解:(1)由图(1)可得,c=;(2)观察图形可知:当2个图(1)拼接时,总长度为:2a﹣2c=2a﹣2×=a+b;(3)结合(2)发现:用n个这样的图形拼出来的图形总长度为:a+(n﹣1)b,当a=4,b=3时,4+3(n﹣1)=28,解得:n=9.∴n的值为9.23.解:(1)原式==2;(2)根据分析,知应分别为,5,.24.解:(1)在△ABC中,∵∠B+∠ACB=30°,∴∠BAC=150°,当△ABC逆时针旋转一定角度后与△ADE重合,∴旋转中心为点A,∠BAD等于旋转角,即旋转角为150°;(2)∵△ABC绕点A逆时针旋转150°后与△ADE重合,∴∠DAE=∠BAC=150°,AB=AD=4,AC=AE,∴∠BAE=360°﹣150°﹣150°=60°,∵点C为AD中点,∴AC=AD=2,∴AE=2.25.解:(1)等腰梯形必须旋转360°才能与自身重合;矩形旋转180°可以与自身重合.①等腰梯形是旋转对称图形,它有一个旋转角为180度.(假)②矩形是旋转对称图形,它有一个旋转角为180°.(真)(2)①只要旋转120°的倍数即可;②只要旋转90°的倍数即可;③只要旋转60°的倍数即可;④只要旋转45°的倍数即可.故是旋转对称图形,且有一个旋转角为120°的是①、③.(3)360°÷72°=5.①是轴对称图形,但不是中心对称图形:如正五边形,正十五边形;②既是轴对称图形,又是中心对称图形:如正十边形,正二十边形.26.解:(1)∵点A(4,0),点B(0,3),∴OA=4,OB=3.在Rt△ABO中,由勾股定理得AB=5.根据题意,△A′BO′是△ABO绕点B逆时针旋转900得到的,由旋转是性质可得:∠A′BA=90°,A′B=AB=5,∴AA′=5.(2)如图,根据题意,由旋转是性质可得:∠O′BO=120°,O′B=OB=3过点O′作O′C⊥y轴,垂足为C,则∠O′CB=90°.在Rt△O′CB中,由∠O′BC=60°,∠BO′C=30°.∴BC=O′B=.由勾股定理O′C=,∴OC=OB+BC=.∴点O′的坐标为(,).。

人教版九年级数学上册 第23章 旋转 综合训练(含答案)

人教版九年级数学上册 第23章 旋转 综合训练(含答案)

人教版九年级数学上册第23章旋转综合训练一、选择题1. 如图所示的方格纸中,由左边图形到右边图形的变换是()A.向右平移7格B.以线段AB的垂直平分线为对称轴作轴对称,再以AB所在直线为对称轴作轴对称C.绕线段AB的中点旋转180°,再以AB所在直线为对称轴作轴对称D.以AB所在直线为对称轴作轴对称,再向右平移7格2. 由图中的三角形仅经过一次平移、旋转或轴对称变换,不能得到的图形是图中的()3. 2018·绵阳在平面直角坐标系中,以原点为旋转中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为()A.(4,-3) B.(-4,3)C.(-3,4) D.(-3,-4)4. 如图,四边形ABCD与四边形FGHE关于一个点中心对称,则这个点是()A.O1B.O2C.O3D.O45. 若点A(-3,2)关于原点的对称点是点B,点B关于x轴的对称点是点C,则点C的坐标是()A.(3,2) B.(-3,2)C.(3,-2) D.(-2,3)6. 如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AO B=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B′的坐标是()A.(-1,2+3) B.(-3,3)C.(-3,2+3) D.(-3,3)7. 把△ABC各点的横坐标都乘-1,纵坐标都乘-1,符合上述要求的图是()8. 若点P(-a,a-3)关于原点对称的点是第二象限内的点,则a满足() A.a>3 B.0<a≤3C.a<0 D.a<0或a>39. 2019·襄阳期末如图,在正方形网格中,格点三角形ABC绕某点顺时针旋转α度(0<α<180),得到格点三角形A1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点,则α的值为()A.50 B.60 C.90 D.12010. 2019·河南如图,在△OAB中,顶点O(0,0),A(-3,4),B(3,4),将△O AB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3) B.(-3,10) C.(10,-3) D.(3,-1 0)二、填空题11. 如图所示,在平面直角坐标系中,若△ABC与△A1B1C1关于点E对称,则对称中心点E的坐标是__________.12. 如图,直线a,b垂直相交于点O,曲线C是以点O为对称中心的中心对称图形,点A的对称点是点A′,AB⊥a于点B,A′D⊥b于点D.若OB=3,OD=2,则阴影部分的面积为________.13. 已知▱ABCD的顶点A在第三象限,对角线AC的中点在坐标原点,一边AB 与x轴平行且AB=2.若点A的坐标为(a,b),则点D的坐标为________________.14. 2019·呼和浩特已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若点A的坐标为(2,3),则点B与点D的坐标分别为() A.(-2,3),(2,-3)B.(-3,2),(3,-2)C .(-3,2),(2,-3)D .(-72,212),(72,-212)15. 如图,在平面直角坐标系中,对点P (1,0)作如下变换:先向上平移(后一次平移比前一次多1个单位长度),再作关于原点的对称点,即向上平移1个单位长度得到点P 1,作点P 1关于原点的对称点P 2,向上平移2个单位长度得到点P 3,作点P 3关于原点的对称点P 4……那么点P 2020的坐标为____________.16. 2018·陕西如图,点O 是平行四边形ABCD 的对称中心,AD >AB ,E ,F是AB 边上的点,且EF =12AB ;G ,H 是BC 边上的点,且GH =13BC.若S 1,S 2分别表示△EOF 和△GOH 的面积,则S 1与S 2之间的等量关系是S 1S 2=________.三、解答题17. 如图①是实验室中的一种摆动装置,BC在地面上,支架ABC 是底边为BC的等腰直角三角形,摆动臂AD 可绕点A 旋转,摆动臂DM 可绕点D 旋转,AD =30,DM =10. (1)在旋转过程中,①当A ,D ,M 三点在同一直线上时,求AM 的长;②当A ,D ,M 三点为同一直角三角形的顶点时,求AM 的长.(2)若摆动臂AD 顺时针旋转90°,点D 的位置由△ABC 外部的点D 1处转到其内部的点D 2处,连接D 1D 2,如图②,此时∠AD 2C =135°,CD 2=60,求BD 2的长.18. 已知:如图,△ABC和△ADE均为等边三角形,连接BE,CD,F,G,H 分别为DE,BE,CD的中点.(1)当△ADE绕点A旋转时,如图①,△FGH的形状为________,并说明理由.(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图②,若AB=3,AD =2,求线段FH的长.(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值?若存在,直接写出最大值和最小值;若不存在,说明理由.19. 2019·福建如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC 绕点C顺时针旋转一定的角度α得到△DEC,点A,B的对应点分别是D,E.(1)当点E恰好在AC上时,如图①,求∠ADE的度数;(2)若α=60°,F是边AC的中点,如图②,求证:四边形BEDF是平行四边形.20. 将一副三角尺按图①摆放,等腰直角三角尺的直角边DF恰好垂直平分AB,与AC相交于点G,BC=2 3.(1)求GC的长;(2)如图②,将△DEF绕点D顺时针旋转,使直角边DF经过点C,另一直角边DE与AC相交于点H,分别过点H,C作AB的垂线,垂足分别为M,N.通过观察,猜想MD与ND的数量关系,并验证你的猜想;(3)在(2)的条件下,将△DEF沿DB方向平移得到△D′E′F′,当D′E′恰好经过(1)中的点G时,请直接写出DD′的长度.人教版九年级数学上册第23章旋转综合训练-答案一、选择题1. 【答案】D2. 【答案】B[解析] A可以通过平移得到,B无法通过三种变换中的任何一种得到,C可以通过轴对称得到,D可以通过旋转得到.3. 【答案】B[解析] 如图所示,建立平面直角坐标系,点B的坐标为(-4,3).4. 【答案】A[解析] 如图,连接HC和DE交于点O1.5. 【答案】A6. 【答案】B7. 【答案】C8. 【答案】C[解析] 点P (-a ,a -3)关于原点对称的点的坐标为(a ,3-a ).∵点(a ,3-a )在第二象限内,∴⎩⎨⎧a <0,3-a >0,解得a <0.9. 【答案】C10. 【答案】D二、填空题11. 【答案】(3,-1) [解析] 连接各组对应点,其交点坐标即为对称中心点E 的坐标.12. 【答案】6[解析] 如图,过点A ′作A ′B ′⊥a ,垂足为B ′,由题意可知,①与②关于点O 中心对称,所以阴影部分的面积可以看作四边形A ′B ′OD 的面积.又A ′D ⊥b 于点D ,直线a ,b 互相垂直,可得四边形A ′B ′OD 是矩形,所以其面积为3×2=6.13. 【答案】(-2-a ,-b )或(2-a ,-b )[解析] 如图①,∵点A 的坐标为(a ,b ),AB 与x 轴平行,∴B (2+a ,b ). ∵点D 与点B 关于原点对称,∴D (-2-a ,-b ).如图②,∵B (a -2,b ),且点D 与点B 关于原点对称,∴D (2-a ,-b ).14. 【答案】B15. 【答案】(1,-505)[解析] 根据题意可列出下面的表格:观察表格可知:这些点平均分布在四个象限中,序号除以4余1的点在第一象限,横坐标都是1,纵坐标为序号减1除以4的商加1;序号除以4余2的点是序号除以4余1的点关于原点的对称点;序号能被4整除的点在第四象限,横坐标为1,纵坐标为序号除以4的商的相反数;序号除以4余3的点在第二象限,是序号能被4整除的点关于原点的对称点.因为2020÷4=505,所以点P 2020在第四象限,坐标为(1,-505).16. 【答案】32 [解析] ∵S 1S △AOB =EF AB =12,S 2S △BOC =GH BC =13,∴S 1=12S △AOB ,S 2=13S △BOC . ∵点O 是▱ABCD 的对称中心,∴S △AOB =S △BOC =14S 平行四边形ABCD ,∴S 1S 2=32.三、解答题17. 【答案】解:(1)①当A ,D ,M 三点在同一直线上时,AM =AD +DM =40或AM =AD-DM=20.②当A,D,M三点为同一直角三角形的顶点时,显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2-DM2=302-102=800,∵AM>0,∴AM=20 2.当∠ADM=90°时,AM2=AD2+DM2=302+102=1000,∵AM>0,∴AM=10 10.综上所述,满足条件的AM的长为20 2或10 10.(2)如图,连接CD1,由题意得,∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=30 2.∵∠AD2C=135°,∴∠CD2D1=∠AD2C-∠AD2D1=90°,∴CD1=(30 2)2+602=30 6.∵∠BAC=∠D1AD2=90°,∴∠BAC-∠CAD2=∠D1AD2-∠CAD2,∴∠BAD2=∠CAD1.又∵AB=AC,AD2=AD1,∴△BAD2≌△CAD1(SAS),∴BD2=CD1=30 6.18. 【答案】解:(1)△FGH是等边三角形.理由如下:如图①,连接BD,CE,延长BD交CE于点M,设BM交FH于点O.∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC.∵EG=GB,EF=FD,∴FG=12BD,FG∥BD.∵DF=EF,DH=HC,∴FH=12CE,FH∥CE,∴FG=FH.∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DME+∠DAE=180°.∵∠DAE=60°.∴∠DME=120°,∴∠BMC=60°,∴∠GFH=∠BOH=∠BMC=60°,∴△FGH是等边三角形.(2)如图②,连接AF,EC.易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF=22-12= 3.在Rt△ABF中,BF=AB2-AF2= 6.同(1)可得FH=12CE,BD=CE,∴CE=BD=BF-DF=6-1,∴FH=12CE=6-12.(3)存在.由(1)可知,△FGH是等边三角形,GF=12BD,∴△FGH的周长=3GF=32BD.∵AB=a,AD=b,AB-AD≤BD≤AB+AD,∴BD的最小值为a-b,最大值为a+b,∴△FGH的周长的最大值为32(a+b),最小值为32(a-b).19. 【答案】解:(1)∵△ABC绕点C顺时针旋转角α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°.∵CA=CD,∴∠CAD=∠CDA=12(180°-30°)=75°,∴∠ADE=90°-75°=15°.(2)证明:连接AD.∵F是边AC的中点,∠ABC=90°,∴BF=12AC.∵∠ACB=30°,∴AB=12AC,∴BF=AB.∵△ABC绕点C顺时针旋转60°得到△DEC,∴∠BCE=∠ACD=60°,BC=CE,CD=CA,DE=AB,∴DE=BF,△ACD和△BCE均为等边三角形,∴BE=CB.∵F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE.又∵BF=DE,∴四边形BEDF是平行四边形.20. 【答案】13解:(1)在Rt△ABC中,∵∠B=60°,BC=2 3,∴AB=43,AC=6.∵DF垂直平分AB,∴AD=2 3.又∵∠DAG=30°,∴DG=2,AG=4,∴GC=AC-AG=6-4=2.(2)MD=ND.证明:∵D是AB的中点,∠ACB=90°,∴CD=DB=AD.又∵∠B=60°,∴△CDB是等边三角形,∴∠CDB=60°.∵CN⊥DB,∴ND=12DB.∵∠EDF=90°,∴∠EDA=180°-∠EDF-∠CDB=30°. 又∵∠A=30°,∴∠A=∠EDA,∴HA=HD.∵HM⊥AD,∴MD=12AD.又∵AD=DB,∴MD=ND.(3)连接DG,则DG⊥AD′.由(2)知∠A=∠EDA,由平移知∠E′D′A=∠EDA,∴∠A=∠E′D′A.∵D′E′恰好经过(1)中的点G(此时点D′与点B重合),∴D′G=AG,∴DD′=AD=2 3.。

部编数学九年级上册23.3图形的旋转(巩固篇)(人教版)含答案

部编数学九年级上册23.3图形的旋转(巩固篇)(人教版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!专题23.3 图形的旋转(巩固篇)(专项练习)一、单选题1.4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()A.第一张、第二张B.第二张、第三张C.第三张、第四张D.第四张、第一张2.如图,四边形ABCD是正方形,点E,F分别在边CD,BC上,点G在CB的延长线上,DE=CF=BG.下列说法:①将△DCF沿某一直线平移可以得到△ABG;②将△ABG 沿某一直线对称可以得到△ADE;③将△ADE绕某一点旋转可以得到△DCF.其中正确的是( )A.①②B.②③C.①③D.①②③3.如图,△ABC按顺时针旋转到△ADE的位置,以下关于旋转中心和对应点的说法正确的是()A.点A是旋转中心,点B和点E是对应点B.点C是旋转中心,点B和点D是对应点C.点A是旋转中心,点C和点E是对应点D.点D是旋转中心,点A和点D是对应点4.如图,已知OBC V 是等边三角形,边长为4,将OBC V 绕点O 逆时针旋转90°后点C 的对应点的坐标是( )A .()2B .(2,C .()2--D .(2,-5.如图,Rt ABC V 中,90C Ð=°,3BC =,4AC =,将ABC V 绕点B 逆时针旋转得A BC ¢¢△,若点C ¢在AB 上,连接CC ¢,则CC ¢的长为( )A B C D 6.如图,点A ,B 的坐标分别为(1,1)、(3,2),将△ABC 绕点A 按逆时针方向旋转90°,得到△A'B'C',则B'点的坐标为( )A .(﹣1,3)B .(-1,2)C .(0,2)D .(0,3)7.如图C 是线段BD 上一点,分别以BC 、CD 为边在BD 同侧作等边△ABC 和等边△CDE,AD 交CE 于F ,BE 交AC 于G ,则图中可通过旋转而相互得到的三角形对数有( )A .1对B .2对C .3对D .4对8.如图在平面直角坐标系中,直线y =43x +4与x 轴、y 轴分别交于A 、B 两点,把V AOB 绕点B 逆时针旋转90°后得到V A 1O 1B ,则点A 1的坐标是( )A .(5,3)B .(3,4)C .(4,2)D .(4,1)9.如图,四边形ABCD 是菱形,AB =60ABC ABE Ð=Ð=°,G 为对角线BD (不含B 点)上任意一点,将ABG V 绕点B 逆时针旋转60°得到EBF △,当AG BG CG ++取最小值时EF 的长( )A B .3C .1D .210.如图,等边ABC V 边长为ABC Ð和ACB Ð的角平分线相交于点O ,将OBC V 绕点O 逆时针旋转30°得到11OB C V ,11B C 交BC 于点D ,11B C 交AC 于点E ,则DE =( )A .2B .6-C 1D .3二、填空题11.如图,在直角坐标系中,△ABC 的顶点坐标分别为A (1,2),B (-2,2),C (-1,0).将△ABC 绕某点顺时针旋转90°得到△DEF ,则旋转中心的坐标是_____________.12.如图,将边长为1的正三角形AOP 沿x 轴正方向作无滑动的连续反转,点P 依次落在点1P ,2P ,32020P P ×××的位置,则点2020P 的坐标为______.13.如图,菱形OABC ,60AOC Ð=°,边OC 在y 轴上,若将菱形OABC 绕点O 逆时针旋转75°,得到菱形OA B C ¢¢¢,则点B 的对应点B ¢的坐标为______.14.如图,将ABC V 绕点A 逆时针旋转角()0180a a °<<°得到ADE V ,点B 的对应点D 恰好落在BC 边上,若,25DE AC CAD ^Ð=°,则旋转角a 的度数是______.15.如图,将□ABCD 绕点A 顺时针旋转,其中点B ,C ,D 分别落在点E ,F ,G 处,且点B ,E ,D ,F 在同一直线上.若∠CBA =115°,则∠CBD 的度数为______.16.一个等边三角形至少要旋转___________度的角才能和原三角形重合;若等边三角形的边长为10cm ,则它的面积是__________.17.如图,将线段AB 绕点O 顺时针旋转90°得到线段''A B ,那么()2,5A -的对应点'A 的坐标是__________.18.如图,△AOB 为等腰三角形,顶点A 的坐标为(3,4),底边OB 在x 轴正半轴上.将△AOB 绕点O 按逆时针方向旋转一定角度后得△A 'OB ',点A 的对应点A '在x 轴负半轴上,则点B 的对应点B '的坐标为_______.19.如图,在坐标系中放置一菱形OABC ,已知60ABC Ð=°,点B 在y 轴上,1OA =,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转12次,点B 的落点依次为1B ,2B ,3B ,¼,则12B 的横坐标为______.20.如图,在Rt △ABC 中,∠BAC =90°,AB =AC =4,点D 在线段BC 上,BD =将线段AD 绕点A 逆时针旋转90°得到线段AE ,EF ⊥AC ,垂足为点F .则AF 的长为________.三、解答题21.在平面直角坐标系xOy 中,ABC V 的顶点坐标分别是()2,2A -,()3,2B --,()1,0C -.(1) 按要求画出图形:① 将ABC V 向右平移6个单位得到111A B C △;② 再将111A B C △绕点1A 顺时针旋转90°得到22A B C 1△;(2) 如果将(1)中得到的22A B C 1△看成是由ABC V 经过以某一点M 为旋转中心旋转一次得到的,请写出M 的坐标.22.在Rt ABC V 中,90ABC Ð=°,30ACB Ð=°,将ABC V 绕点C 顺时针旋转一定的角度a 得到DEC V ,点A 、B 的对应点分别是D 、E .(1) 当点E 恰好在AC 上时,如图1,求ADE Ð的大小;(2) 若60a =°时,点F 是边AC 中点,如图2,求证:四边形BEDF 是平行四边形(请用两组对边分别相等的四边形是平行四边形)23.如图,四边形OABC 是矩形,点A 、C 在坐标轴上,△ODE 是△OCB 绕点O 顺时针旋转90度得到的,点D 在x 轴上,直线BD 交y 轴于点F ,交OE 于点H ,线段BC 、OC的长是方程的2314456x y x y +=ìí-=î的解,且OC >BC .(1) 求直线BD 的解析式;(2) 求△OFH 的面积;24.如图,点M是∠ABC的边BA上的动点,BC=6,连接MC,并将线段MC绕点M逆时针旋转90°得到线段MN.(1)作MH⊥BC,垂足H在线段BC上,当∠CMH=∠B时,判断点N是否在直线AB上,并说明理由;(2)若∠ABC=30°,NC∥AB,求以MC、MN为邻边的正方形的面积S.25.定义:将图形M绕点P顺时针旋转90°得到图形N,则图形N称为图形M关于点P 的“垂直图形”.例如:在下图中,点D为点C关于点P的“垂直图形”.(1)点A 关于原点O 的“垂直图形”为点B .①若点A 的坐标为(0,2),直接写出点B 的坐标;②若点B 的坐标为(2,1),直接写出点A 的坐标;(2)E (-3,3),F (-2,3),G (a ,0).线段EF 关于点G 的“垂直图形”记为E ′F ′,点E 的对应点为E ′,点F 的对应点为F ′.①求点E ′的坐标;②当点G 运动时,求FF ¢的最小值.26.如图,等腰Rt ABC V 中,90,BAC AB AC Ð=°=,点P 为射线BC 上一动点(不与点B 、C 重合),以点P 为中心,将线段PC 逆时针旋转a 角,得到线段PQ ,连接AP BQ 、、M 为线段BQ 的中点.(1)若点P 在线段BC 上,且M 恰好也为AP 的中点,①依题意在图1中补全图形:②求出此时a 的值和BP PC的值;(2)写出一个a 的值,使得对于任意线段BC 延长线上的点P ,总有AP PM的值为定值,并证明;27.如图,△AOB 中,OA =OB =6,将△AOB 绕点O 逆时针旋转得到△COD .OC 与AB 交于点G ,CD 分别交OB 、AB 于点E 、F .(1) ∠A 与∠D 的数量关系是:∠A ______∠D ;(2) 求证:△AOG ≌△DOE ;(3) 当A ,O ,D 三点共线时,恰好OB ⊥CD ,求此时CD 的长.28.如图1,直线DE 上有一点O ,过点O 在直线DE 上方作射线OC .将一直角三角板()30AOB OAB Ð=°的直角顶点放在点O 处,一条直角边OA 在射线OD 上,另一边OB 在直线DE 上方.将直角三角板绕着点O 按每秒20°的速度逆时针旋转一周,设旋转时间为t 秒.(1)当直角三角板旋转到如图2的位置时,OA 恰好平分COD Ð,此时,BOC Ð与ÐBOE 之间有何数量关系?并说明理由;(2)在旋转的过程中,若射线OC 的位置保持不变,且140COE Ð=°.①当边AB 与射线OE 相交时(如图3),则AOC BOE Ð-Ð的值为_______;②当边AB 所在的直线与OC 平行时,求t 的值.参考答案1.A解:观察两个图中可以发现,所有图形都没有变化,所以旋转的扑克是成中心对称的第一张和第二张.故选A .【点拨】中心对称图形.2.C【分析】由正方形的性质和已知条件可以得到△ADE ≌△DCF 、△ADE ≌△ABG 、△ABG ≌△DCF ,然后根据图形变换的知识可以对各选项的正误作出判断.解:∵四边形ABCD 是正方形,∴AB =AD =CD ,∠ABC =∠ADE =∠DCB =90°,又∵DE =CF ,∴△ADE ≌△DCF (SAS ),同理可得:△ADE ≌△ABG ,△ABG ≌△DCF ,∴将△DCF 沿某一直线平移可以得到△ABG ,故①正确;将△ABG 绕点A 旋转可以得到△ADE ,故②错误;将△ADE 绕线段AD ,CD 的垂直平分线的交点旋转可以得到△DCF ,故③正确;故选:C .【点拨】本题考查正方形性质和图形变换的综合应用,根据全等三角形的性质和图形变换的知识解题是关键所在.3.C【分析】由ABC V 按顺时针旋转到ADE V 的位置,可得点A 是旋转中心,点B 和点D 是对应点,点C 和点E 是对应点.继而求得答案,注意排除法在解选择题中的应用.解:∵如图,ABC V 按顺时针旋转到ADE V 的位置,∴点A 是旋转中心,点B 和点D 是对应点,点C 和点E 是对应点.故A ,B ,D 三项错误,C 正确.故选:C .【点拨】此题考查了旋转的性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意掌握旋转三要素:①旋转中心; ②旋转方向; ③旋转角度.4.B【分析】过点C 作CH OB ^于点.H 过点'C 作'C R y ^轴于点.R 求出点C 的坐标,再利用全等三角形的性质求解.解:过点C 作CH OB ^于点H ,过点'C 作'C R y ^轴于点R .Q V OBC 是等边三角形,4OB BC OC \===,CH OB ^Q ,2OH BH \==,CH \===2C \-(),''90C RO CHO COC Ð=Ð=Ð=°Q ,'90C OR COH \Ð+Ð=°,90COH OCH Ð+Ð=°,'C OR OCH \Ð=Ð,在'ORC V 和CHO V 中,'''C RO CHO C OR OCH OC CO Ð=ÐìïÐ=Ðíï=î,'ORC \V ≌CHO AAS V (),'2C R OH \==,OR CH =='2,C \(,故选:B .【点拨】本题主要考查了等边三角形的判定与性质,旋转的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.5.C【分析】作CD AB ^,根据等面积法1122ABC S AC BC AB CD D =×=×,可求CD ,再由勾股定理即可求解CC ¢.解:如图,作CD AB ^,90CD AB ACB ^Ð=°∵,∴AB 5=∵1122ABC S AC BC AB CD D =×=×435CD´=∴125CD \=95BD ==∴3BC BC ¢==∵96355C D BC BD ¢¢=-=-=∴CC ¢===故选:C【点拨】本题主要考查图形的旋转、勾股定理,正确画出辅助线是解题的关键.6.D【分析】根据题意画出图形,然后结合直角坐标系即可得出B'的坐标.解:如图,根据图形可得:点B′坐标为(0,3),故选:D .【点拨】本题考查了旋转作图的知识及旋转后坐标的变化,解答本题的关键是根据题意所述的旋转三要素画出图形,然后结合直角坐标系解答.7.C【分析】分别证明△ACD ≌△BCE 、△ACF ≌△BCG 、△GEC ≌△FDC ,即可解决问题.解:∵△ABC 和△CDE 均为等边三角形,∴∠ACB=∠ECD=60∘,AC=BC ,CE=CD ,∴∠BCE=∠ACD,∠ACE=180°-120°=60°;在△ACD 与△BCE 中,AC BC ACD BCECD CE =ìïÐ=Ðíï=î∴△ACD ≌△BCE(SAS),∴∠CAF=∠CBG ,∠CEG=∠CDF ;在△ACF 与△BCG 中,CAF CBG AC BCACF BCG Ð=Ðìï=íïÐ=Ðî∴△ACF ≌△BCG(ASA),同理可证△GEC ≌△FDC ,∴以点C 为旋转中心,可通过旋转而相互得到的三角形有:△ACD 与△BCE 、△ACF 与△BCG 、△GEC 与△FDC ,共三对.故选C.【点拨】本题考查了旋转的性质, 等边三角形的性质,掌握三角形全等的判定是解题的关键.8.D【分析】先根据函数图像分别求出OA 、OB 的长度,再通过旋转之后对应边相等可求出点A 1的坐标.解:由函数图像得B 点的坐标为(0,4),将y =0代入443y x =+,可得x =﹣3,故A 点的坐标为(﹣3,0),∴OA =3,OB =4,∴BO 1=OB =4,故A 1的横坐标为4,又∵A 1O 1=OA =3,故A1的纵坐标为1,∴点A1的坐标是(4,1).故选:D.【点拨】本题主要考查一次函数与几何图形结合在一起的应用,旋转前后对应边长度不变是解题的关键.9.D【分析】根据“两点之间线段最短”,当E,F,G,C共线时,AG+BG+CG的值最小,即等于EC的长.解:如图:∵将ΔABG绕点B逆时针旋转60°得到ΔEBF,∴BE=AB=BC,BF=BG,EF=AG,∴ΔBFG是等边三角形,∴BF=BG=FG,∴AG+BG+CG=EF+FG+CG,根据“两点之间线段最短”,∴当E,F,G,C共线时,AG+BG+CG的值最小,即等于EC的长,过E点作EH⊥BC交CB的延长线于H,如上图所示:∴∠EBH=60°,∵BE AB==,∴BH=,EH=3,∴EC=2EH=6,∵∠CBE=120°,∴∠BEF=30°,∵∠EBF=∠ABG=30°,∴123EF CE ==,故选:D .【点拨】本题考查了旋转的性质,菱形的性质,等边三角形的性质,轴对称最短路线问题,正确的作出辅助线是解题的关键.10.B【分析】过O 点作OH ⊥BC 于H ,OB 1与BC 交于点M ,过M 作MF ⊥BO 于F ,求出BO =4,证明△BOM 和△DMB 1均为等腰三角形,求出BM 和MD 的值,进而求出DC 的长,最后证明△DEC 为30°、60°、90°直角三角形,利用DE 即可求解.解:过O 点作OH ⊥BC 于H ,OB 1与BC 交于点M ,过M 作MF ⊥BO 于F ,如下图所示:∵△ABC 为等边三角形,且OB 、OC 分别为∠ABC 、∠ACB 的角平分线,∴∠1=12∠ABC =30°,∠3=12∠ACB=30°,∴△OBC 为等腰三角形,由“三线合一”可知:BC =∴BO 4,∵OBC V 绕点O 逆时针旋转30°得到11OB C V ,∴∠2=30°=∠1,∴△OBM 为等腰三角形,由“三线合一”可知:BF =12BO =2,∴MO =BM∴MB 1=OB 1-OM =OB-OM =4-又由旋转可知∠B =∠B 1=30°,且对顶角∠BMO =∠DMB 1=120°,∴∠MDB 1=180°-∠B 1-∠DMB 1=180°-30°-120°=30°,∴△MB 1D∴MD =MB 1=4-∴CD=BC-MD-BM =(44-=-,∵对顶角∠EDC =∠MDB 1=30°,且∠ACB =60°,∴∠DEC =180°-∠EDC -∠ACB =90°,∴△CDE 为、90°直角三角形,∴DE 4)6=-故选:B .【点拨】本题考查了等边三角形的性质、等腰三角形的判定及性质、直角三角形的性质及判定等,熟练掌握特殊三角形的性质及判定是解决本题的关键.11.(1,-1)【分析】由旋转的性质可得A 的对应点为D ,B 的对应点为E ,C 的对应点为F ,同时旋转中心在AD 和BE 的垂直平分线上,进而求出旋转中心坐标.解:由旋转的性质,得A 的对应点为D ,B 的对应点为E ,C 的对应点为F作BE 和AD 的垂直平分线,交点为P∴点P 的坐标为(1,-1)故答案为:(1,-1)【点拨】本题考查坐标与图形变化—旋转,图形的旋转需结合旋转角求旋转后的坐标,常见的旋转角有30°,45°,60°,90°,180°.12.(2020,0)【分析】根据图形的翻转,分别得出1P 、2P 、3P¼的横坐标,再根据规律即可得出各个点的横坐标,进一步得出答案即可.解:由题意可知1P 、2P 的横坐标是1,3P 的横坐标是2.5,4P 、5P 的横坐标是4,6P 的横坐标是5.5¼依此类推下去,2017P 、2018P 的横坐标是2017,2019P 的横坐标是2018.5,2020P 的横坐标是2020,2020P \的坐标是(2020,0),故答案为(2020,0).【点拨】本题考查翻折变换,等边三角形的性质及坐标与图形性质,根据题意得出1P 、2P 、3P ¼的横坐标,得出规律是解答此题的关键.13.()3,3-【分析】根据菱形的性质可得出∠AOC =60°,则三角形OAC 为等边三角形,即AC ,根据菱形对角线的性质可得出∠AOE =30°,根据勾股定理可得OE , OB ,再根据旋转的性质可得OB =OB 1,∠B 1OF =45°,根据勾股定理即可得出OF 与B 1F 的长度,即可得出答案.解:如图,连接AC 与OB 相交于点E ,过点B 1作B 1F ⊥x 轴,垂足为F ,∵四边形OABC 为菱形,60AOC Ð=°,OA =OC ,∴△AOC 是等边三角形,OC =OA =AC ,∵AC ⊥OB ,在Rt △OAE 中,OA ,AE =12AC∴OE∴OB =∵∠COB =12∠AOC =30°,∠BOB 1=75°,∴∠B 1OF =180°-60°-∠BOB 1=180°-60°-75°=45°,在Rt △B 1OF 中,OB 1=OB =OF =B 1F ,∴OF 2+B 1F 2=OB 12,可得OF =B 1F =3,∵点B 1在第二象限,∴点B 1的坐标为()3,3-.故答案为:()3,3-.【点拨】本题主要考查了菱形及旋转的性质,熟练应用相关性质进行计算是解决本题的关键.14.50°【分析】先求出65ADE Ð=°,由旋转的性质,得到65Ð=Ð=°B ADE ,AB AD =,则65ADB Ð=°,即可求出旋转角a 的度数.解:根据题意,∵,25DE AC CAD ^Ð=°,∴902565ADE Ð=°-°=°,由旋转的性质,则65Ð=Ð=°B ADE ,AB AD =,∴65ADB B Ð=Ð=°,∴180665550BAD °-Ð=°=°-°;∴旋转角a 的度数是50°;故答案为:50°.【点拨】本题考查了旋转的性质,三角形的内角和定理,解题的关键是熟练掌握旋转的性质进行计算.15.50°【分析】由旋转的性质得AB AE =,115AEF CBA Ð=Ð=°,由等腰三角形的性质得出65AEB ABE Ð=Ð=°,则CBD CBA ABE Ð=Ð-Ð.解:∵□ABCD 绕点A 顺时针旋转到□AEFG 的位置,∴AB AE =,115AEF CBA Ð=Ð=°,∴18065AEB ABE AEF Ð=Ð=°-Ð=°,∴1156550CBD CBA ABE Ð=Ð-Ð=°-°=°,故答案为:50°.【点拨】本题考查旋转的性质,平行四边形的性质,等腰三角形的性质等,找出旋转前后的对应线段、对应角是解题的关键.16. 120 【分析】等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,求旋转角即可;首先由勾股定理求得等边三角形的高,再利用三角形的面积公式可得结果.解:∵等边△ABC 的中心角为360÷3=120°,∴旋转120°后即可与原图形重合.故答案为:120.如图,作AD ⊥BC ,∵△ABC 为等边三角形,∴BD=CD=12BC=5,∴==∴S △ABC =12×BC×AD=1102´´=(cm 2),故答案为:2.【点拨】本题主要考查了等边三角形的性质,利用等边三角形的性质“三线合一”是解答此题的关键.还考查了旋转对称图形,把正多边形旋转它的一个中心角度数之后,可与原来的图形重合.17.()5,2【分析】过点A 作AC y ^轴,垂足为C ,过点'A 作''A C x ^轴,垂足为'C ,证明()AOC A OC AAS ¢¢V V ≌,所以,AC A C OC OC ¢¢¢==,根据()2,5A -得到2,5AC OC ==,所以2,5A C OC ¢¢¢==,写出对应点'A 的坐标即可.解:如图,过点A 作AC y ^轴,垂足为C ,过点'A 作''A C x ^轴,垂足为'C ,∵AC y ^轴,''A C x ^轴,∴''90ACO A C O Ð=Ð=°,∵将线段AB 绕点O 顺时针旋转90°得到线段''A B ,∴'AO A O =,90AOA ¢Ð=°∵'90AOA AOC A OC ¢Ð=Ð+Ð=°,'90COC A OC A OC ¢¢¢Ð=Ð+Ð=°,∴AOC A OC ¢¢Ð=Ð,∴()AOC A OC AAS ¢¢V V ≌,∴,AC A C OC OC ¢¢¢==,∵()2,5A -,∴2,5AC OC ==,∴2,5A C OC ¢¢¢==,∴()5,2A ¢,故答案为:()5,2.【点拨】本题考查旋转的性质,证明AOC A OC ¢¢V V ≌是解答本题的关键.18.(﹣185,245)【分析】作AG ⊥OB 于G ,作B 'H ⊥A 'O 于H ,利用面积法即可得到B 'H =245,根据勾股定理可得Rt △B 'HO 中,HO =185,进而得出点B '的坐标为(﹣185,245).解:如图,作AG ⊥OB 于G ,作B 'H ⊥A 'O 于H ,∵△AOB 为等腰三角形,顶点A 的坐标为(3,4),∴AG =4,OG =3,AO =5,OB =6,∴由旋转可得A 'O =5,OB '=6,∵12OB ×AG =12A 'O ×B 'H ,∴B 'H =245,∴Rt △B 'HO 中,HO =185,∴点B '的坐标为(﹣185,245),故答案为:(﹣185,245).【点拨】本题考查了坐标与图形变化﹣旋转,主要利用了勾股定理,等腰三角形的性质,解直角三角形,熟记性质并作辅助线构造出直角三角形是解题的关键.19.【分析】连接AC ,根据条件可以求出AC ,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4,由于1226=´,因此点B 向右平移8即可到达点12B ,根据点B 的坐标就可求出点12B 的坐标.解:连接AC ,如图所示,∵四边形OABC 是菱形,∴OA AB BC OC ===,∵60ABC Ð=°,∴ABC V 是等边三角形,∴AC AB =,∴AC OA =,∵1OA =,∴1AC =,画出第5次、第6次、第7次翻转后的图形,如图所示,由图可知:每翻转6次,图形向右平移4,∵1226=´,∴点B 向右平移2×4=8个单位到点12B ,∵B点的坐标为(,∴12B的坐标为(8,故答案为:.【点拨】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.20.1【分析】根据勾股定理先求出BC 边长,再求出DC 长,过点D 作DM 垂直AC ,可证ADM EAF △≌△,即AF =DM ,在等腰直角△DMC 中可求DM ,即可直接求解.解:在Rt △ABC 中,∠BAC =90°,AB =AC =4,根据勾股定理得,AB 2+AC 2=BC 2,∴BC =又∵BD,∴DC =BC −BD过点D 作DM ⊥AC 于点M ,由旋转的性质得∠DAE =90°,AD =AE ,∴∠DAC +∠EAF =90°.又∵∠DAC +∠ADM =90°,∴∠ADM =∠EAF .在Rt △ADM 和Rt △EAF 中,AD AE AMD EFA ADM EAF ìïÐÐíïÐÐî===.∴ADM EAF △≌△(AAS ),∴AF =DM .在等腰Rt △DMC 中,由勾股定理得,DM 2+MC 2=DC 2,∴DM =1,∴AF =DM =1.故答案为:1.【点拨】本题主要考查等腰直角三角形,旋转的性质以及全等三角形的判定与性质,证明△ADM ≌△EAF 是解答本题的关键.21.(1)①见分析;②见分析;(2)M (1,-1)【分析】(1)①根据平移的性质得出1A 、1B 、1C 的位置,顺次连接即可;②根据旋转的性质得出2B 、2C 的位置,顺次连接即可;(2)连接CC 2,AA 1,线段CC 2,AA 1的垂直平分线的交点即为M 点的位置,作出M 点写出坐标即可.(1)解:①如图,111A B C △即为所求;②如图,22A B C 1△即为所求;(2)解:连接CC 2,AA 1,线段CC 2,AA 1的垂直平分线的交点即为M 点的位置,由图可知,M 的坐标为(1,-1).【点拨】本题考查了作图—平移和旋转,熟练掌握平移和旋转的性质找出对应点的位置是解题的关键.22.(1)15ADE Ð=°(2)见分析【分析】(1)根据旋转的性质可得CA =CD ,∠ECD =∠BCA =30°,∠DEC =∠ABC =90°,根据等边对等角即可求出∠CAD =∠CDA =75°,再根据直角三角形的两个锐角互余即可得出结论;(2)根据直角三角形斜边上的中线等于斜边的一半可得BF =12AC ,然后根据30°所对的直角边是斜边的一半即可求出AB =12AC ,从而得出 BF =AB ,然后证出△ACD 和△BCE 为等边三角形,再利用HL 证出△CFD ≌△ABC ,证出DF =BE ,即可证出结论.(1)解:∵△ABC 绕点C 顺时针旋转α得到△DEC ,点E 恰好在AC 上,∴CA =CD ,∠ECD =∠BCA =30°,∠DEC =∠ABC =90°,∴∠CAD =∠CDA =12(180°﹣30°)=75°,∴∠ADE =90°﹣∠CAD =15°.(2)证明:如图2,连接AD ,∵点F 是边AC 中点,∴BF =AF =CF =12AC ,∵∠ACB =30°,∴AB =12AC ,∴BF =CF =AB ,∵△ABC 绕点C 顺时针旋转60°得到△DEC ,∴∠BCE =∠ACD =60°,CB =CE ,DE =AB ,DC=AC ,∴DE =BF ,△ACD 和△BCE 为等边三角形,∴BE =CB ,∵点F 为△ACD 的边AC 的中点,∴DF ⊥AC ,在Rt △CFD 和Rt △ABC 中CF ABíî=,∴Rt △CFD ≌Rt △ABC ,∴DF =BC ,∴DF =BE ,而BF =DE ,∴四边形BEDF 是平行四边形.【点拨】本题主要考查的是旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等三角形的判定及性质和平行四边形的判定,掌握旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等三角形的判定及性质和平行四边形的判定是解决此题的关键.23.(1)2833y x =-+(2)6421【分析】(1)解二元一次方程组可得B (-2,4),再由△ODE ≌△OCB ,可知D (4,0),用待定系数法求直线BD 的解析式即可;(2)求出F (0,83),直线OE 的解析式为y =12x ,进而求出H 的坐标,即可求△OFH 的面积;(1)解:2314456x y x y +=ìí-=î解得4,2x y =ìí=î∵OC >BC ,∴CO =4,BC =2,∴B (-2,4),∵△ODE 是△OCB 绕点O 顺时针旋转90度得到,∴△ODE ≌△OCB ,∴OD =OC ,DE =BC ,∴D (4,0),E (4,2),设直线BD 的解析式为y =kx +b ,将点B 与D 代入可得40k b í+=î,解得2383k b ì=-ïïíï=ïî,∴BD 的解析式为2833y x =-+;(2)由2833y x =-+,令0x =,得83y =8(0,)3F \设直线OE 的解析式为y =k 1x ,将点E 代入可得k 1=12,12y x \=,122833y x y x ì=ïïíï=-+ïî,解得16787x y ì=ïïíï=ïî,168(,)77H \,\△OFH 的面积181********=´´=.【点拨】本题考查一次函数的综合,掌握待定系数法求函数解析式,旋转的性质,解二元一次方程组,求一次函数与坐标轴的交点问题,两直线与坐标轴围成的三角形面积,数形结合是解题的关键.24.(1)点N 在直线AB 上,理由见分析(2)以MC 、MN 为邻边的正方形面积为S =18【分析】(1)根据∠CMH =∠B ,∠CMH +∠C =90°,则∠B +∠C =90°,故∠BMC =90°,即可判断;(2)作CD ⊥AB 于点D ,在△BCM 中,已知两角一边,可通过解三角形求出MC 的长度,进而求正方形的面积.(1)解:点N 在直线AB 上,理由如下:∵∠CMH=∠B,∠CMH+∠C=90°,∴∠B+∠C=90°,∴∠BMC=90°,即CM⊥AB,∴线段CM逆时针旋转90°落在直线BA上,即点N在直线AB上(2)解:作CD⊥AB于点D,∵MC=MN,∠CMN=90°,∴∠MCN=45°,∵NC∥AB,∴∠BMC=45°,∵BC=6,∠B=30°,∴CD=3,MC==∴S=MC2=18,即以MC、MN为邻边的正方形面积为S=18.【点拨】本题主要考查了旋转的性质,等腰直角三角形的性质,正方形的性质,解三角形等知识,作辅助线,构造两个特殊的直角三角形是解题的关键.25.(1)①B(2,0);②A(-1,2);(2)①E′(3+a,3+a);②FF′的最小值为【分析】(1)①②根据“垂直图形”的定义解决问题即可;(2)①构造全等三角形,利用全等三角形的性质求解即可;②△FGF′是等腰直角三角形,当FG⊥x轴时,FG取得最小值,即FF′有最小值,据此求解即可解决问题.(1)解:①如图中,观察图象可知B(2,0);②如图,∵∠AOB=∠ACO=∠ODB=90°,∴∠A+∠AOC=90°,∠AOC+∠BOD=90°,∴∠A=∠BOD,∵AO=OB,∴△AOC≌△OBD(AAS),∴OC=BD=1,AC=OD=2,∴A(-1,2);(2)解:①如图,过点E作EP⊥x轴于P,过点E′作E′H⊥x轴于H.∵∠EPG=∠EGE′=∠GHE′=90°,∴∠E+∠PGE=90°,∠PGE+∠E′GH=90°,∴∠E=∠E′GH,∵EG=GE′,∴△EPG≌△GHE′(AAS),∴EP=GH=3,PG=E′H=a+3,∴OH=3+a,∴E′(3+a,3+a);②∵∠FGF′=90°,FG=GF′,∴△FGF′是等腰直角三角形,∴FF,当FG⊥x轴时,FG取得最小值,即FF′有最小值,∴FF′的最小值为【点拨】本题考查几何变换综合题,考查了旋转变换,全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是理解题意,学会添加常用辅助线,构造全等三角形解决问题.a°,理由见分析26.(1)①见分析;1(2)=90【分析】(1)①由题意,画出图形即可;②连接AQ ,证四边形ABPQ 是平行四边形,得AB =PC ,再根据ABC V 是等腰三角形即可求解.(2)令=90a °,延长PM 至N ,使得MN =PM ,连接BN 、AN 、QN ,证四边形BNQP 是矩形,根据SAS 证ACP ABN @V V ,得出ANP V 为等腰直角三角形,即可求解.(1)①如图所示,即为所求,②连接AQ ,如图所示,∵M 为AP 、BQ 的中点,∴AM =PM ,BM =QM ,∴四边形ABPQ 是平行四边形,∴AB =PQ ,AB //PQ ,∴45QPC ABC a =Ð=Ð=°,∵PC =PQ ,∴AB =PC ,ABC Q V 为等腰直角三角形,\AB :1BP PC \==.(2)=90a °,延长PM 至N ,使得MN =PM ,连接BN 、AN 、QN ,如图所示:Q M 为线段BQ 的中点,∴BM =QM ,又∵MN =PM ,∴四边形BNQP 是平行四边形,又∵∠CPQ =90°,∴四边形BNQP 是矩形,//BN PQ \,=BN PQ ,18090NBP a \Ð=°-=°,ABC Q V 为等腰直角三角形,4590135ABN \Ð=°+°=°,=180-45=135ACP а°°,即=ACP ABN ÐÐ,又AB =AC ,()ACP ABN SAS \@V V ,AN AP \=,CAP BAN Ð=Ð,CAP CAN BAN CAN \Ð+Ð=Ð+Ð,即90NAP BAC Ð=Ð=°,即ANP V 为等腰直角三角形,AP PN \=又12PM PN =Q ,AP PM\=即AP PM的值为定值,当=90a °时,AP PM 的值为定值.【点拨】本题是几何变换综合题,考查了等腰直角三角形、平行四边形的判定及性质、旋转的性质以及全等三角形的判定及性质,熟练利用辅助线构造平行四边形是解题的关键.27.(1)=(2)证明见分析(3)【分析】(1)根据旋转性质及等腰三角形性质即可得答案;(2)由旋转性质知∠AOB=∠DOC,可证得∠AOG=∠DOE,结合OA=OB及(1)中结论,得证;(3)分两种情况讨论,设∠A=x°,先利用三角形内角和求出x的值,再借助勾股定理求出CD的长度即可.(1)解:由旋转知,∠A=∠C,∠B=∠D,∵OA=OB,∴OC=OD,∠A=∠B=∠C=∠D∴∠A=∠D,故答案为:=.(2)证明:由旋转知,OA=OC,OB=OD,∠AOB=∠COD,∴∠AOB-∠BOC=∠COD-∠BOC,即∠AOG=∠DOE,∵OA=OB,∴OA=OB=OC=OD,又∵∠A=∠D,∴△AOG≌△DOE.(3)解:分两种情况讨论,①如图所示,设∠A =∠B =∠C =∠D =x°,则∠DOB =2x°,∵OB ⊥CD ,∴∠OED =90°,∴x +2x =90°,解得:x =30,即∠D =30°,在Rt △ODE 中,OE =3,由勾股定理得:DE =∵OC =OD ,OE ⊥CD ,∴CD =2DE =②当D 与A 重合时,如图所示,同理,得:CD =综上所述,当A ,O ,D 三点共线时,OB ⊥CD ,此时CD 的长为【点拨】本题考查了旋转的性质、等腰三角形性质、全等三角形的判定、勾股定理等知识点,解题关键是利用旋转性质得到边、角的关系.28.(1)BOC BOE Ð=Ð,理由见分析(2)①50°;② 3.5t =或12.5t =【分析】(1)由90AOB Ð=°,可知90BOC AOC Ð+Ð=°,90AOD BOE Ð+Ð=°,由OA 平分COD Ð,可知AOD AOC Ð=Ð,进而可证BOC BOE Ð=Ð;(2)由140COE Ð=°,18040COD COE Ð=°-Ð=°,可知140AOC COE AOE AOE Ð=Ð-Ð=°-Ð,90BOE AOE Ð=°-Ð,进而得()()1409050AOC BOE AOE AOE Ð-Ð=°-Ð-°-Ð=°,由此可求出结果;②由140COE Ð=°以及18040COD COE Ð=°-Ð=°,结合题意可分两种情况:当AB 在直线DE 上方时,或当AB 在直线DE 下方时,将两种情况分别进行讨论求解即可.解:(1)BOC BOE Ð=Ð,理由如下:∵90AOB Ð=°,∴90BOC AOC Ð+Ð=°,90AOD BOE Ð+Ð=°,∵OA 平分COD Ð,∴AOD AOC Ð=Ð,∴BOC BOE Ð=Ð;(2)①50°;∵140COE Ð=°,∴18040COD COE Ð=°-Ð=°,∵140AOC COE AOE AOE Ð=Ð-Ð=°-Ð,90BOE AOE Ð=°-Ð,∴()()1409050AOC BOE AOE AOE Ð-Ð=°-Ð-°-Ð=°,∴AOC BOE Ð-Ð的值为50°.②∵140COE Ð=°,∴18040COD COE Ð=°-Ð=°,(I )如图3-1,当AB 在直线DE 上方时,∵AB OC ∥,∴30AOC A Ð=Ð=°,∴70AOD AOC COD Ð=Ð+Ð=°,∵直角三角板绕点O 按每秒20°的速度旋转,∴7020 3.5t =°¸°=;(II )解法一:如图3-2,当AB 在直线DE 下方时,∵AB OC ∥,∴60COB B Ð=Ð=°,∴20BOD BOC COD Ð=Ð-Ð=°,9020110AOD Ð=°+°=°,∴直角三角板AOB 绕点O 旋转的角度为360250AOD °-Ð=°,∵直角三角板AOB 绕点O 按每秒20°的速度逆时针旋转,∴()3601102012.5t =°-°¸°=,解法二:如图3-3,在②(Ⅰ)的基础上,继续将直角三角板11A OB 绕点O 按每秒20°的速度逆时针旋转180°,得到直角三角板AOB ,此时,AB OC ∥,∴直角三角板AOB 绕点O 旋转的角度为18070250°+°=°,∵直角三角板AOB 绕点O 按每秒20°的速度逆时针旋转,∴2502012.5t =°¸°=,综合(Ⅰ)(Ⅱ)得: 3.5t =或12.5t =.【点拨】本题考查旋转问题,角平分线的性质,以及角的互相转换,能够掌握数形结合思想是解决本题的关键.。

人教版九年级上册数学第二十三章 旋转含答案(精品)

人教版九年级上册数学第二十三章 旋转含答案(精品)

人教版九年级上册数学第二十三章旋转含答案一、单选题(共15题,共计45分)1、下面图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2、在下列图案中,中心对称图形的个数是().A.1 个B.2个C.3 个D.4个3、下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个4、四边形ABCD的对角线相交于点O,且AO=BO=CO=DO,则这个四边形()A.仅是轴对称图形B.仅是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形,又不是中心对称图形5、如图.在△ABC中,∠CAB=80°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.20B.35C.40D.456、下列既是轴对称又是中心对称图形的是A. B. C. D.7、下列图形中,既是轴对称图形也是中心对称图形的是()A. B. C. D.8、如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.30°B.40°C.50°D.65°9、如图,在△ABC中,AB=AC,∠BAC=45°,将△ABC绕点A逆时针方向旋转得△AEF,其中,E,F是点B,C旋转后的对应点,BE,CF相交于点D.若四边形ABDF为菱形,则∠CAE的大小是()A.45°B.60°C.75°D.90°10、下列汽车标志中,既是轴对称图形又是中心对称图形的是()A. B. C. D.11、从图中的四张图案中任取一张,取出图案是中心对称图形的概率是()A. B. C. D.112、如图,△ABC是⊙O的内接三角形,∠A=30°,BC=,把△ABC绕点O 按逆时针方向旋转90°得到△BED,则对应点C、D之间的距离为()A.1B.C.D.213、如图,在△ABC中,AB=2.2,BC=3.6,∠B=60°,将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在BC边上时,则CD的长为()A.1.5B.1.4C.1.3D.1.214、民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是A. B. C. D.15、如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,则点B在两次旋转过程中经过的路径的长是()A. B.13π C.25π D.25二、填空题(共10题,共计30分)16、如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是________.17、如图,把△ABC绕着点C顺时针旋转35°,得到△A′B′C,A′B′交AC 于D点.若∠A′DC=90°,则∠A=________度.18、如图,四边形ABCD中,AB=AD,AC=6,∠DAB=∠DCB=90°,则四边形ABCD的面积为________.19、如图,⊙O与直线l1相离,圆心O到直线l1的距离OB=2 ,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC=________.20、如图所示,图案绕中心至少旋转________ 可以和原来图形互相重合.21、如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点F旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了________cm.22、如图4×5的方格纸中,在除阴影之外的方格中任意选择一个涂黑,与图中阴影部分构成轴对称图形的涂法有________ 种.23、如图,在平面直角坐标系xOy中,将线段OA绕点O顺时针旋转得到线段,其中,则的坐标是________.24、如图,△ABC顶点的坐标分别为A(1,﹣1),B(4,﹣1),C(3,﹣4).将△ABC绕点A逆时针旋转90°后,得到△AB1C1.在所给的直角坐标系中画出旋转后的△AB1C1,并直接写出点B1的坐标:B1(________,________);C1(________,________).25、如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,直角∠MON的顶点O在AB上,OM、ON分别交CA、CB于点P、Q,∠MON绕点O意旋转.当时.的值为________.三、解答题(共5题,共计25分)26、如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.27、如图,在平面直角坐标系中,每个小正方形的边长为1cm,△ABC各顶点都在格点上,点A,C的坐标分别为(﹣1,2)、(0,-1),结合所给的平面直角坐标系解答下列问题:(1)AC的长等于多少?的坐(2)画出△ABC向右平移2个单位得到的△,求A点的对应点A1标。

(人教版)福州九年级数学上册第二十三章《旋转》提高练习(答案解析)

(人教版)福州九年级数学上册第二十三章《旋转》提高练习(答案解析)

一、选择题1.下列图形中,不是中心对称图形的是( ) A .B .C .D .2.如图,OAB 绕点O 逆时针旋转80°到OCD 的位置,已知45AOB ∠=︒,则AOD ∠等于( )A .45°B .35°C .25°D .15°3.如图,将△ABC 绕点C(0,1)旋转180°得到△A′B′C′,设点A 的坐标为(,)a b ,则点A′的坐标为( )A .(,)a b --B .2(),a b --+C .(),1a b --+D .(,1)a b --- 4.下列图形中,是中心对称但不是轴对称的图形是( ) A .平行四边形B .矩形C .菱形D .等边三角形5.如图,在Rt ABC 中,90ACB ∠=︒,60B ∠=︒,1BC =,A B C ''由ABC 绕点C 顺时针旋转得到,其中点A '与点A 、点B '与点B 是对应点,连接AB ',且点A 、B '、A '在同一条直线上,则AA '的长为( )A .3B .23C .4D .456.下列图形中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .7.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60︒得到线段BO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60︒得到;②点O 与O '的距离为4;③150AOB ︒∠=;④633AOBO S '=+四边形.其中正确的结论有( ).A .1个B .2个C .3个D .4个8.已知Rt ABC ∆中,两条直角边4AC =,3BC =,将ABC ∆绕斜边中点O 旋转,使直角顶点与点B 重合,得到与ABC ∆全等的EDB ∆,BE 边和AC 相交于点F ,则EF 的值是( )A .78B .1C .45D .239.若点P(-m ,m -3)关于原点对称的点是第二象限内的点,则m 满足( ) A .m >3B .0<m≤3C .m <0D .m <0或m >310.在一个无盖的正方体玻璃容器内装了一些水,把容器按不同方式倾斜一点,容器内的水面的形状可能是( ) A .B .C .D .11.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形111OA B C ,依此方式,绕点O 连续旋转2020次得到正方形202020202020OA B C ,如果点A 的坐标为(1,0),那么点2020B 的坐标为( )A .(﹣1,1)B .(2,C .(﹣1,﹣1)D .(02)-,12.如图,将△ABC 绕点C (0,-1)旋转180°得到△A′B′C ,设点A 的坐标为(-3,-4)则点A′的坐标为A.(3,2)B.(3,3)C.(3,4)D.(3,1)13.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A.(﹣4,﹣2﹣3)B.(﹣4,﹣2+3) C.(﹣2,﹣2+3)D.(﹣2,﹣2﹣3)14.如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有()A.4种B.5种C.6种D.7种15.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.3 B.-3 C.-1 D.1二、填空题16.如图,四边形ABCD是菱形,点O是两条对角线的交点,过点O的三条直线将菱形分成阴影和空白部分,当菱形的两条对角线长分别为12和16时,则阴影部分面积为_________.17.如图,在ABC 中,AB AC =,30B ∠=︒,将ABC 绕点A 沿顺时针方向旋转一周,当BC 边的对应边与AC 平行时,旋转角为______度.18.如图,已知ABC ∆中,AB AC =,90BAC ∠=︒,直角EPF ∠的顶点P 是BC 中点,两边PE .PF 分别交AB .AC 于点E .F ,给出下列四个结论:①AE CF =;②EPF ∆是等腰直角三角形;③EF AB =;④四边形AEPF 的面积随着点E .F 的位置不同发生变化,当EPF ∠在ABC ∆内绕顶点P 旋转时(点E 不与A .B 重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).19.如图,在ABC 中,108BAC ∠=︒,将ABC 绕点A 按逆时针方向旋转得到AB C ''△.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为_______.20.如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转得到△A′OB′,若∠A′=40°,则∠B′= °,∠AOB= .21.将边长为1的正方形ABCD 绕点C 按顺时针方向旋转到FECG 的位置(如图),使得点D 落在对角线CF 上,EF 与AD 相交于点H ,则HD =_________.(结果保留根号)22.如图,在平面直角坐标系中,四边形OBCD 是菱形,OB =OD =2,∠BOD =60°,将菱形OBCD 绕点O 旋转任意角度,得到菱形OB 1C 1D 1,则点C 1的纵坐标的最小值为_____.23.如图,把ABC ∆绕顶点C 按顺时针方向旋转得到△A B C '',当A B AC ''⊥,47A ∠=︒,128A CB ∠='︒时,B CA '∠的度数为_____.24.如图,O 是正△ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ',下列结论正确有______.(请填序号) ①点O 与O '的距离为4;②150AOB ∠=︒;③633AOBO S '=+四边形;④9634AOC AOB S S +=+△△.25.若点()3,5B n +与点()4,A m 关于原点O 中心对称,则m n +=______________. 26.如图,在正方形ABCD 内部有一点P ,PB =1,PC =2,135BPC ∠=︒,则PA = ____.三、解答题27.有这样一个问题:探究函数的图象()()2)3(1y x x x =---与性质.小东对函数()()23()1y x x x =---的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数()()23()1y x x x =---的自变量x 的取值范围是全体实数;(2)下表是y 与x 的几组对应值.x… -2 -1 0 1 2 3 4 5 6 … y…m-24-662460…①m =②若()(),720,11,720M n N -为该函数图象上的两点,则n =(3)在平面直角坐标系xOy 中,如图所示,点()11,A x y 是该函数在23x ≤≤范围的图象上的最低点.①直线1y y =-与该函数图象的交点个数是②根据图象,直接写出不等式()()12()30x x x --->的解集.28.如图,在一个1010⨯的正方形网格中有一个,ABC ABC ∆∆的顶点都在格点上.(1)在网格中画出ABC ∆向下平移4个单位,再向右平移6个单位得到的111A B C ∆. (2)在网格中画出ABC ∆关于点P 成中心对称得到的222A B C ∆.(3)若可将111A B C ∆绕点О旋转得到222A B C ∆,请在正方形网格中标出点O ,连接12A A 和12B B ,请直接写出四边形2211A B A B 的面积.29.如图,ABC ∆三个顶点的坐标分别是()1,1A ,()4,2B ,()3,4C .(1)请画出ABC ∆向左平移5个单位长度后得到的111A B C ∆;并写出1A 、1B 、1C 的坐标;(2)请画出ABC ∆关于原点对称的222A B C ∆;并写出2A 、2B 、2C 的坐标.30.如图1,AC ⊥CH 于点C ,点B 是射线CH 上一动点,将△ABC 绕点A 逆时针旋转60°得到△ADE (点D 对应点C ).(1)延长ED 交CH 于点F ,求证:FA 平分∠CFE ;(2)如图2,当∠CAB >60°时,点M 为AB 的中点,连接DM ,请判断DM 与DA 、DE 的数量关系,并证明.。

2021最新人教版 九年级数学上册 第23章 旋转 综合巩固训练(含答案)

2021最新人教版 九年级数学上册  第23章 旋转 综合巩固训练(含答案)

人教版 九年级数学 第23章 旋转 综合巩固训练一、选择题(本大题共10道小题)1. 将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是( )A .平行四边形B .矩形C .菱形D .正方形2. 如图所示,在4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心是 ( )A .点AB .点BC .点CD .点D3. 点(-1,2)关于原点的对称点坐标是()A .(-1,-2)B .(1,-2)C .(1,2)D .(2,-1)4. 2018·绵阳在平面直角坐标系中,以原点为旋转中心,把点A (3,4)逆时针旋转90°,得到点B ,则点B 的坐标为( ) A .(4,-3) B .(-4,3) C .(-3,4)D .(-3,-4)5. 如图,四边形ABCD 与四边形FGHE 关于一个点中心对称,则这个点是( )A.O1B.O2C.O3D.O46. 若点P(-a,a-3)关于原点对称的点是第二象限内的点,则a满足( ) A.a>3 B.0<a≤3C.a<0 D.a<0或a>37. 2018·潍坊在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取一定点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP 的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP 的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,-300°)或P(3,420°)等,则与点P关于点O对称的点Q的极坐标表示不正确的是( )A.Q(3,240°) B.Q(3,-120°)C.Q(3,600°) D.Q(3,-500°)8. 2019·河南如图,在△OAB中,顶点O(0,0),A(-3,4),B(3,4),将△O AB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为( )A.(10,3) B.(-3,10) C.(10,-3) D.(3,-1 0)9. 如图示,在Rt△ABC中,∠ACB=90°.P是半圆AC的中点,连接BP交AC 于点D.若半圆所在圆的圆心为O,点D,E关于圆心O对称,则图两个阴影部分的面积S1,S2之间的关系是( )A.S1<S2B.S1>S2C.S1=S2D.不确定10. 2018·桂林如图,在正方形ABCD中,AB=3,点M在边CD上,且DM=1,△AEM与△ADM关于AM所在的直线对称,将△ADM绕点A按顺时针方向旋转90°得到△ABF,连接EF,则线段EF的长为( )A.3 B.2 3 C.13 D.15二、填空题(本大题共8道小题)11. 开放题翔宇教育集团的标志图案(图①)由“翔宇”拼音首写字母“X,Y”构成.“X”的造型是4只伸向四方的箭头,体现“培育走向世界的现代中国人”的办学宗旨,象征集团培养的学子鸾翔宇内,志在四方;“教”字中红色的“人”字突出集团全力育“人”,增加了图案的美感.(1)图②“中国印·舞动的北京”是北京奥运会会徽,以中国印为主体表现形式,借中国书法之灵感,一个向前奔跑、舞动着迎接胜利的运动人的造型形似现代“________”字的神韵,在挥毫间体现“新奥运”的理念.(2)图③是北京奥运会志愿者标志,仔细观察,请你简要说出其中的一个含义:_____________________________________________________________________ ___.(3)请你在图④中以圆为背景,为母校设计一个校徽,并简述其中所蕴含的两个含义:①______________________________;②______________________________.12. 如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=________°.13. 如图,点A,B,C的坐标分别为(2,4),(5,2),(3,-1).若以点A,B,C,D为顶点的四边形既是轴对称图形,又是中心对称图形,则点D的坐标为________.14. 2019·呼和浩特已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若点A的坐标为(2,3),则点B与点D的坐标分别为( )A.(-2,3),(2,-3) B.(-3,2),(3,-2) C.(-3,2),(2,-3)D.(-72,212),(72,-212)15. 如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为________.16. 如图,两块完全相同的含30°角的三角尺ABC和A′B′C′重合在一起,将三角尺A′B′C′绕其顶点C′逆时针旋转角α(0°<α≤90°),有以下三个结论:①当α=30°时,A′C与AB的交点恰好为AB的中点;②当α=60°时,A′B′恰好经过点B;③在旋转过程中,始终存在AA′⊥BB′.其中正确结论的序号是__________.17. 如图,AB⊥y轴,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=-33x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=-33x上,依次进行下去……若点B的坐标是(0,1),则点O12的纵坐标为________.18. 如果将点P绕定点M旋转180°后与点Q重合,那么点P与点Q关于点M 对称,定点M叫做对称中心,此时,M是线段PQ的中点.如图3,在平面直角坐标系中,△ABO的顶点A,B,O的坐标分别为(1,0),(0,1),(0,0),点P1,P,P3,…中的相邻两点都关于△ABO的一个顶点对称,点P1与点P2关于点A 2对称,点P2与点P3关于点B对称,点P3与点P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O对称……且这些对称中心依次循环.已知点P1的坐标是(1,1),则点P2020的坐标为________.三、解答题(本大题共4道小题)19. 如图,在△ABC中,∠BAC=90°,AB=AC,D,E是BC边上的点,将△ABD绕点A逆时针旋转得到△ACD′.(1)求∠DAD′的度数;(2)当∠DAE=45°时,求证:DE=D′E.20. 如图,P为正方形ABCD内一点,若PA=a,PB=2a,PC=3a(a>0).(1)求∠APB的度数;(2)求正方形ABCD的面积.21. 如图,在等腰直角三角形ABC中,∠ACB=90°,点D,E在边AB上,且∠DCE=45°,BE=2,AD=3.将△BCE绕点C逆时针旋转90°,画出旋转后的图形,并求DE的长.22. 已知:如图,在四边形ABCD中,∠ADC=60°,∠ABC=30°,AD=CD. 求证:BD2=AB2+BC2.人教版九年级数学第23章旋转综合巩固训练-答案一、选择题(本大题共10道小题)1. 【答案】D [解析] 平行四边形绕其对角线的交点旋转能够与原来的图形重合的最小旋转角度数是180°,故A 错误;矩形绕其对角线的交点旋转,能够与原来的图形重合的最小旋转角度数是180°,故B 错误;菱形绕其对角线的交点旋转,能够与原来的图形重合的最小旋转角度数是180°,故C 错误;正方形绕其对角线的交点旋转,能够与原来的图形重合的最小旋转角度数是90°.故选D.2. 【答案】B[解析] 旋转中心到对应点的距离相等.3. 【答案】B4. 【答案】B[解析] 如图所示,建立平面直角坐标系,点B 的坐标为(-4,3).5. 【答案】A[解析] 如图,连接HC 和DE 交于点O 1.6. 【答案】C[解析] 点P (-a ,a -3)关于原点对称的点的坐标为(a ,3-a ).∵点(a ,3-a )在第二象限内,∴⎩⎪⎨⎪⎧a <0,3-a >0,解得a <0.7. 【答案】D[解析] ∵P (3,60°)或P (3,-300°)或P (3,420°),由点Q 与点P 关于点O 中心对称可得,点Q 的极坐标为(3,240°)或(3,-120°)或(3,600°)等.8. 【答案】D9. 【答案】C [解析] ∵P是半圆AC的中点,∴半圆关于直线OP对称,且点D,E关于圆心O对称,因而S,S2在直径AC上面的部分面积相等.∵OD=OE,1∴CD=AE.∵△CDB的底边CD与△AEB的底边AE相等,高相同,∴它们的面积相等,∴S1=S2.10. 【答案】C [解析] 如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM绕点A按顺时针方向旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD,∴∠FAB=∠MAE,∴∠FAB+∠BAE=∠BAE+∠MAE,即∠FAE=∠MAB,∴△FAE≌△MAB(SAS),∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=3.∵DM=1,∴CM=2.∵在Rt△BCM中,BM=22+32=13,∴EF=13.二、填空题(本大题共8道小题)11. 【答案】(1)京(2)心心相扣的心形,象征志愿者与运动员及奥林匹克大家庭和所有宾客心连着心,用心服务、奉献爱心,为奥林匹克运动增添光彩(答案不唯一,合理即可) (3)略12. 【答案】20 [解析] ∵AB=AB′,∠BAB′=40°,∴∠ABB′=70°.∵B′C′⊥AB,∴∠BB′C′=20°.13. 【答案】(0,1)14. 【答案】B15. 【答案】18 [解析] 如图.∵∠BAD=∠BCD=90°,∴∠B+∠ADC=180°.又∵AB=AD,∴将△ABC绕点A逆时针旋转90°后点B与点D重合,点C的对应点E落在CD的延长线上,∴AE=AC=6,∠CAE=90°,∴S四边形ABCD=S△ACE =12AC·AE=12×6×6=18.16. 【答案】①②③17. 【答案】9+3 3 [解析] 将y=1代入y=-33x,解得x=- 3.∴AB=3,OA=2,且直线y=-33x与x轴所夹的锐角是30°.由图可知,在旋转过程中每3次一循环,其中OO2=O2O4=O4O6=O6O8=O8O10=O 10O 12=2+3+1=3+ 3.∴OO 12=6×(3+3)=18+6 3.∴点O 12的纵坐标=12OO 12=9+3 3.18. 【答案】(1,-3) [解析] 由题意可得点P 2(1,-1),P 3(-1,3),P 4(1,-3),P 5(1,3),P 6(-1,-1),P 7(1,1),可知6个点一个循环,2020÷6=336……4,故点P 2020的坐标与点P 4的坐标相同,为(1,-3).三、解答题(本大题共4道小题)19. 【答案】解:(1)∵将△ABD 绕点A 逆时针旋转,得到△ACD ′,∴∠DAD ′=∠BAC.∵∠BAC =90°,∴∠DAD ′=90°.(2)证明:∵△ABD 绕点A 逆时针旋转得到△ACD ′,∴AD =AD ′,∠DAD ′=∠BAC =90°.∵∠DAE =45°,∴∠D ′AE =∠DAD ′-∠DAE =90°-45°=45°,∴∠D ′AE =∠DAE.在△AED 与△AED ′中,⎩⎪⎨⎪⎧AE =AE ,∠DAE =∠D ′AE ,AD =AD ′,∴△AED ≌△AED ′(SAS),∴DE =D ′E.20. 【答案】解:(1)将△ABP 绕点B 顺时针旋转90°得到△CBQ ,连接PQ ,如图,则∠APB =∠BQC ,PB ⊥QB ,PB =QB =2a ,AP =QC =a ,∴PQ =2 2a.在△PQC 中,∵PC 2=9a 2,PQ 2+QC 2=9a 2,∴PC 2=PQ 2+QC 2,∴△PQC 为直角三角形且∠PQC =90°.∵△PBQ 是等腰直角三角形,∴∠BPQ =∠BQP =45°,故∠APB =∠CQB =90°+45°=135°.(2)连接AC.∵∠APQ =∠APB +∠BPQ =135°+45°=180°,∴A ,P ,Q 三点在同一条直线上.在Rt △AQC 中,AC 2=AQ 2+QC 2=(a +2 2a)2+a 2=(10+42)a 2, ∴正方形ABCD 的面积S =AB 2=AC 22=(5+2 2)a 2.21. 【答案】解:如图,将△BCE 绕点C 逆时针旋转90°,得到△ACF ,连接DF.由旋转的性质,得CE =CF ,AF =BE =2,∠ACF =∠BCE ,∠CAF =∠B =45°.∵∠ACB =90°,∠DCE =45°,∴∠DCF =∠ACD +∠ACF =∠ACD +∠BCE =∠ACB -∠DCE =90°-45°=45°,∴∠DCE =∠DCF.在△CDE 和△CDF 中,⎩⎪⎨⎪⎧CE =CF ,∠DCE =∠DCF ,CD =CD ,∴△CDE ≌△CDF(SAS),∴DE =DF.∵∠DAF=∠BAC+∠CAF=45°+45°=90°,∴△ADF是直角三角形,∴DF2=AD2+AF2,∴DE2=AD2+BE2=32+22=13,∴DE=13.22. 【答案】证明:如图,将△ADB绕点D顺时针旋转60°,得到△CDE,连接BE,则∠ADB=∠CDE,∠A=∠DCE,AB=CE,BD=DE.又∵∠ADC=60°,∴∠BDE=60°,∴△DBE是等边三角形,∴BD=BE.又∵∠ECB=360°-∠BCD-∠DCE=360°-∠BCD-∠A=360°-(360°-∠ADC-∠ABC)=90°,∴△ECB是直角三角形,∴BE2=CE2+BC2,即BD2=AB2+BC2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 3) 当 n 为 奇 数 时 , n 18 0 a n
当 n 为偶数时, n a.
A3
H B2
B2
A4
B4
θ5
B1
A2
A5
B5
θ6 B1
A2
α
A0
A1
α
A0
A1
图1 图 2 图3 图 4
(1)用含 的式子表示: θ3= _________, θ4= _________, θ5= _________; (2)图 1-图 4 中,连接 A0H 时,在不添加其他辅助线的情况下,是否存在与直线
6. 解 : 根 据 旋 转 的 性 质 可 得 △ABP ≌ △ ACE , AC 与 AB 是 对 应 边 , ∠ BAC= ∠ BAP+ ∠ PAC=40° +20°=60°, 故 旋 转 角 为 60°, ∠ CAE= ∠ BAP=40° , 在 △ABP 中 , 由 内 角 和 定 理 得 ∠ P=180° - ∠ BAP- ∠ B=110° , ∴ ∠ E= ∠ P=110° , ∠ BAE= ∠ BAP+ ∠ PAC+ ∠ CAE=10°0 .
7. ( 1)能,点 O1 即为所求的旋转中心;( 2)能,点 O2 即为所求的旋转中心 .
8. 解 : 由 题 意 △ABD 与 △EBD 关 于 对 角 线 BD 对 称 , 所 以 ∠ BED= ∠ A=120° , 因 为 点 E 在 BC 边 上 , 所 以 ∠ DEC=6°0 ,
因 为 AD ∥ BC , 所 以 ∠ ABC=60° , 所 以 ∠ ABC= ∠ DEC , 所 以 AB ∥ DE , 所 以 四 边 形 ABED 为 平 行 四 边 形 , 所 以 DE=AB=4cm ,
=________ °.
11.已知正方形 ABCD 中,点 E 在边 DC 上, DE 2 ,EC 1 (如图所示 ).把线段 AE 绕点 A
旋转,使点 E 落在直线 BC 上的点 F 处,则 F 、 C 两点的距离为

12.要使正六边形旋转后能与自身重合,至少应将它绕中心逆时针方向旋转
°.
13.如图 , △ DEF 是由 △ ABC 绕着某点旋转得到的 ,则这点的坐标是 ___________.
人教版 九年级数学上册 第 23 章 旋转 巩固提升练习(含答案)
巩固练习
1. 如图,该图形围绕点 O 按下列角度旋转后,不能..与其自身重合的是(

A. 72
B. 108
C.144
D. 216
2. 如图,在 △ ABC 中 , CAB 70 . 在同一平面内 , 将 △ABC 绕点 A 旋转到
△ AB /C / 的位置 , 使得 CC / // AB , 则 BAB / (D NKຫໍສະໝຸດ FAB E
C 图①
A
B
M
C
图②
8. 如图, 在直角梯形 ABCD 中,AD ∥BC ,CD⊥ BC ,E 为 BC 边上的点, 将直角梯形 ABCD 沿对角线 BD 折叠,使△ABD 与 △EBD 重合(如图中的阴影部分) .若∠ A=120°,?AB=4cm , 求梯形 ABCD 的高 CD .

A. 30
B. 35
C. 40
D. 50
3. 如图, 将 △ ABC 绕点 C 顺利针方向旋转 40 得 △ A CB ,若 AC
于( )
A. 50
B. 60
C. 70
D. 80
AB ,则
BAC 等
4. 一个图形无论经过平移还是旋转,有以下说法:
①对应线段平行
②对应线段相等
③对应角相等
④图形的形状和大小都没有发生变化
D B
E
C
A
6. 如图所示, △ABP 是由 △ACE 绕 A 点旋转得到的,那么 △ABP 与 △ACE 是什么关系? 若∠ BAP = 40°,∠ B =30°,∠ PAC = 20°,求旋转角及∠ CAE 、∠ E、∠ BAE 的度数。
A
E
P
B
C
7. 我们学习过:在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图 形运动叫做旋转,这个定点称为旋转中心.
9. 如图,△ABC 按逆时针方向绕点 O 旋转了 60°后成为 △DEF,那么 OA =_____,OB =______ , ∠ COF = _____度 , ∠ AOD = _____度 , ∠ A = ______,∠ C= ______, AB = _____, BC = ______。
10.如图, E、F 分别是正方形 ABCD 的边 BC、CD 上的点, BE CF ,连接 AE、BF .将 △ ABE 绕正方形的中心按逆时针方向旋转到 △ BCF ,旋转角为 0° 180°,则
参考答案
培优提升
1. 如图 分别绕点 O 旋转 72°, 120° ,90°。
2. 如图
3. 如图
4.( 1)旋转中心是点 D (2)旋转了 90 度 (3)如果连接 EF,那么 △DEF 是等腰直角三角形 (4)四边形 DEBF 的周长是 22,面积是 25
5. 解 : ∵ ∠ ACB=90° , ∠ A=35°, ∴ ∠ ABC=55° , ∵ △ ABC 旋 转 θ°到 △DEC 的 位 置 , 使 点 B 恰 好 落 在 边 DE 上 , ∴ CB=CE , ∠ CEB= ∠ ACD=θ , ∠ E= ∠ ABC=55° , ∴ ∠ E= ∠ CBE=55° , ∴ ∠ BCE=18°0 -2 ×55°=70°, 即 θ=70°.
9. 课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题. 实验与论证 设旋转角∠ A1A0B1= ( <∠ A1A0B1 ), θ1, θ2, θ3,θ4, θ5, θ6 所表示的角如图所示.
B2 A2
H
θ3 α
A0
B2
B3
A3
H
A2
B1
θ4
B1
α
A1
A0
A1
B3
B3
A3
B4
A4 H
重合,
(1)旋转中心是哪一点?
( 2)旋转了多少度?
(3)如果连接 EF,那么 △DEF 是怎样的三角形? (4)四边形 DEBF 的周长和面积?
F
D
C
AE
B
5. Rt△ABC 中,∠ C=90o,∠ A = 35o,以 C 为中心将 △ABC 逆时针旋转到 △DEC 的位置, B 点恰好落在 DE 上,如图所示,求旋转的角度?(只求逆时旋转的角度)
其中都正确的说法是(

A .①、②、③
B.①、②、④
C .①、③、④
D .②、③、④
5. 在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称

。这个定点称为
,转动的角称为

6. 旋转的基本性质
(1)旋转不改变图形的

(2)图形上的每一点都绕旋转中心沿相同方向转动了

(3)任意一对对应点与旋转中心的连线所成的角度都是

(4)对应点到旋转中心的距离

7. 绕着某一定点转动一定的角度后能与
的图形叫旋转对称图形 .
8. 如图,正方形 ABCD 中,∠ BAD =∠ ABC= ∠C=∠D = 90°,AB = BC = CD=DA 边 DC 上有一点 E,将 △ADE 旋转后得到了 △ABG ;旋转中心是 ________,旋转了 _______度。
180 ).
n
(3)设 θn 与上述 “θ3,θ4, …”的意义一样,请直接写出 θn 的度数;
(4)试猜想在正 n 边形且不添加其他辅助线的情形下,是否存在与直线
A0H 垂直且被它平
分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,
请说明理由.
巩固练习 1-4 BCAD 5. 旋转 旋转中心 旋转角 6. 形状 相同的度数 旋转角 相等 7. 自身重合 8. A 90 ° 9. OD OE 60 60 ∠ D ∠ F OE EF 10. 90 11. 1 或 5 12. 60 13. ( 0,1)
( 1)如图①, △ ABC ≌△ DEF . △DEF 能否由 △ ABC 通过一次旋转得到?若能,请
用直尺和圆规画出旋转中心,若不能,试简要说明理由;
( 2)如图②, △ ABC ≌△ MNK .△MNK 能否由 △ ABC 通过一次旋转得到?若能,
请用直尺和圆规画出旋转中心,若不能,试简要说明理由. (保留必要的作图痕迹)
A0H 垂
直且被它平分的线段?若存在, 请选择期中的一个图给出证明; 若不存在,请说明理由;
归纳与猜想
设正 n 边形 A0A1 A2 …An-1 与正 n 边形 A0B1B2… Bn-1 重合(其中, A1 与 B1 重合),现将正
n 边形 A0B1B2… Bn -1 绕顶点 A0 逆时针旋转 ( 0
培优提升
1. 如下图所示绕哪一点旋转多少度后能与自身重合
?
2. 试画出四边形 A /B /C/D/,使它与四边形 ABCD 关于点 P 成中心对称。
3. 如图,不用量角器,将方格纸中的四边形绕着点 四边形。
O 逆时针方向旋转 90°,画出旋转后的
4. 如图,点 E 为正方形 ABCD 的边 CD 上一点, AB=5 , DE=6 。 △DAE 旋转后能与 △DCF
所 以 CD=sin60° ×DE= 3 4 2 3 ( 厘 米 ) 2
9. 解 : ( 1 ) 60°-α, α, 36°- α. α; ( 2) 是 图 中 直 线 A 0H 垂 直 平 分 A 2B 1, 证 明 如 下 :
相关文档
最新文档