专题 初高中知识衔接之因式分解 课后练习

合集下载

因式分解题库100题专题训练经典练习题(含答案)

因式分解题库100题专题训练经典练习题(含答案)

因式分解题库100题专题训练经典练习题(含答案)一、填空题(共20题)1、a ²-9b -9b²²=2、2x 2x³³-12x -12x²²+4x =2x ( )3、-27a -27a³³=( )³)³4、2xy 2xy²²-8x -8x³³ = 2x ( )()( )5、(、(x+2y x+2y x+2y)()()(y-2x y-2x y-2x))= -(x+2y x+2y)()()( )6、x (x-y x-y))+y +y((y-x y-x))=7、a-a a-a³³= a (a+1a+1)()()( )8、1600a 1600a²²-100=100-100=100(( )()( ) 9、9a 9a²²+( )+4 =( )²)²1010、(、(、(x+2x+2x+2))x-x-2= (x+2x+2)()()( )1111、、a ³-a =a ( )()( )1212、(、(、( )x ²+4x+16 =( )²)²1313、、3a 3a³³+5a +5a²²+( )=(a+ )()( +2a-4 +2a-4)1414、(、(、( )-2y -2y²² = -2( +1)²)²1515、、x ²-6x-7=-6x-7=((x )()(x x )1616、、3xy+6y 3xy+6y²²+4x +4x²²+8xy=3y( )+4x ( )=( )()( ) 1717、、a ²+3a-10=+3a-10=((a+m a+m)()()(a+n a+n a+n),则),则m= ,n= 1818、、8a 8a³³-b -b³³=(2a-b 2a-b)()()( )1919、、xy+y xy+y²²+mx+my=+mx+my=((y ²+my +my))+( )=( )()( ) 2020、(、(、(x x ²+y +y²)²²)²²)²-4x -4x -4x²²y ²=二、选择题(共32题)1、多项式2a 2a²²+3a+1因式分解等于(因式分解等于( )A 、(、(a+1a+1a+1)()()(a-1a-1a-1))B 、(、(2a+12a+12a+1)()()(2a-12a-12a-1))C 、(、(2a+12a+12a+1)()()(a+1a+1a+1))D 、(、(2a+12a+12a+1)()()(a-1a-1a-1))2、下列各式分解因式正确的是(、下列各式分解因式正确的是( )A 、3x 3x²²+6x+3= 3(x+1x+1)²)²)²B B 、2x 2x²²+5xy-2y +5xy-2y²²=(2x+y 2x+y)()()(x+2y x+2y x+2y)) C 、2x 2x²²+6xy= (2x+32x+3)()()(x+2y x+2y x+2y)) D 、a ²-6=-6=((a-3a-3)()()(a-2a-2a-2))3、下列各式中,能有平方差公式分解因式的是(、下列各式中,能有平方差公式分解因式的是( )A 、4x 4x²²+4B 、(、(2x+32x+32x+3)²)²)² -4 -4(3x 3x²²+2+2)²)²)²C 、9x 9x²²-2xD 、a ²+b +b²²4、把多项式x ²-3x-70因式分解,得(因式分解,得( ) A 、(、(x-5x-5x-5))(x+14) B 、(、(x+5x+5x+5)()()(x-14x-14x-14))C 、(、(x-7x-7x-7)()()(x+10x+10x+10))D 、(、(x+7x+7x+7)()()(x-10x-10x-10))5、已知a+b=0a+b=0,则多项式,则多项式a ³+3a +3a²²+4ab+b +4ab+b²²+b +b³的值是(³的值是(³的值是() A 、0 B 、1 C 、 -2 D 、 26、把4a 4a²²+3a-1因式分解,得(因式分解,得() A 、(、(2a+12a+12a+1)()()(2a-12a-12a-1)) B 、(、(2a-12a-12a-1)()()(a-3a-3a-3))C 、(、(4a-14a-14a-1)()()(a+1a+1a+1))D 、(、(4a+14a+14a+1)()()(a-1a-1a-1))7、下列等式中,属于因式分解的是(、下列等式中,属于因式分解的是() A 、a (1+b 1+b))+b +b((a+1a+1))= (a+1a+1)()()(b+1b+1b+1))B 、2a 2a((b+2b+2))+b +b((a-1a-1))=2ab-4a+ab-bC 、a ²-6a+10 =a (a-6a-6))+10D 、(、(x+3x+3x+3)²)²)²-2-2-2((x+3x+3))=(x+3x+3)()()(x+1x+1x+1))8、2m 2m²²+6x+2x +6x+2x²是一个完全平方公式,则²是一个完全平方公式,则m 的值是(的值是() A 、 0 B 、 ± 32 C 、 ±52 D 、949、多项式3x 3x³³-27x 因式分解正确的是()因式分解正确的是()A 、3x 3x((x ²-9-9))B 、3x 3x((x ²+9) C 、3x 3x((x+3x+3)()()(x-3x-3x-3)) D 、3x 3x((3x-13x-1)()()(3x+13x+13x+1))1010、已知、已知x >0,且多项式x ³+4x +4x²²+x-6=0+x-6=0,则,则x 的值是(的值是( ) A 、1 B 、2 C 、3 D 、41111、多项式、多项式2a 2a²²+4ab+2b +4ab+2b²²+k 分解因式后,它的一个因式是(分解因式后,它的一个因式是(a+b-2a+b-2a+b-2),则),则k 的值是(是() A 、4 B 、-4 C 、8 D 、-81212、对、对、对 a a 4 + 4进行因式分解,所得结论正确的是(进行因式分解,所得结论正确的是() A 、 (a ²+2+2)²)²)² B B 、 (a ²+2+2)) (a ²-2-2))C 、有一个因式为(、有一个因式为(a a ²+2a+2+2a+2))D 、不能因式分解、不能因式分解1313、多项式、多项式a ²(²(m-n m-n m-n))+9+9((n-m n-m)分解因式得()分解因式得()分解因式得() A 、(、(a a ²+9+9)()()(m-n m-n m-n)) B 、(、(m-n m-n m-n)()()(a+3a+3a+3)()()(a-3a-3a-3))C 、(、(a a ²+9+9)()()(m+n m+n m+n))D 、(、(m+n m+n m+n)()()(a+3a+3a+3)²)²)²1414、多项式、多项式m 4-14m -14m²²+1分解因式的结果是(分解因式的结果是() A 、(、(m m ²+4m+1+4m+1)()()(m m ²-4m+1-4m+1)) B 、(、(m m ²+3m+1+3m+1)()()(m m ²-6m+1-6m+1))C 、(、(m m ²-m+1-m+1)()()(m m ²+m+1+m+1))D 、(、(m m ²-1-1)()()(m m ²+1+1))1515、下列分解因式正确的是(、下列分解因式正确的是(、下列分解因式正确的是() A 、-x -x²²+3x = -x (x+3x+3)) B 、x ²+xy+x=x +xy+x=x((x+y x+y))C 、2m 2m((2m-n 2m-n))+n +n((n-2m n-2m))= (2m-n 2m-n)²)²)²D D 、a ²-4a+4=-4a+4=((a+2a+2)()()(a-2a-2a-2))1616、下列等式从左到右的变形,属于因式分解的是(、下列等式从左到右的变形,属于因式分解的是(、下列等式从左到右的变形,属于因式分解的是( )A 、2x 2x((a-b a-b))=2ax-2bxB 、2a 2a²²+a-1=a +a-1=a((2a+12a+1))-1C 、(、(a+1a+1a+1)()()(a+2a+2a+2))= a ²+3a+2D 、3a+6a 3a+6a²²=3a =3a((2a+12a+1))1717、下列各式、下列各式、下列各式① 2m+n 和m+2n ② 3n (a-b )和-a+b③x ³+y ³ 和x ²+xy ④a ²+b ² 和a ²-b ²其中有公因式的是( )A 、① ②B 、 ② ③C 、① ④D 、 ③ ④ 1818、下列四个多项式中,能因式分解的是(、下列四个多项式中,能因式分解的是(、下列四个多项式中,能因式分解的是( )A 、x ²+1B 、 x ²-1C 、 x ²+5yD 、x ²-5y1919、将以下多项式分解因式,结果中不含因式、将以下多项式分解因式,结果中不含因式x-1的是(的是( )A 、1 -x ³B 、x ²-2x+1C 、x (2a+32a+3))-(3-2a 3-2a))D 、2x 2x((m+n m+n))-2-2((m+n m+n))2020、若多项式、若多项式2x 2x²²+ax 可以进行因式分解,则a 不能为(不能为( )A 、0B 、-1C 、1D 、22121、已知、已知x+y= -3,xy=2 ,则x ³y+xy y+xy³的值是(³的值是(³的值是( ) A 、 2 B 、 4 C 、10 D 、202222、、多项式x a -y a 因式分解的结果是(x ²+y +y²)²)(x+y x+y))(x-y x-y)),则a 的值是() A 、2 B 、4 C 、-2 D-42323、对、对8(a ²-2b -2b²)²)²)-a -a -a((7a+b 7a+b))+ab 进行因式分解,其结果为(进行因式分解,其结果为( )A 、(、(8a-b 8a-b 8a-b)()()(a-7b a-7b a-7b))B 、(、(2a+3b 2a+3b 2a+3b)()()(2a-3b 2a-3b 2a-3b))C 、(、(a+2b a+2b a+2b)()()(a-2b a-2b a-2b))D 、(、(a+4b a+4b a+4b)()()(a-4b a-4b a-4b))2424、下列分解因式正确的是(、下列分解因式正确的是(、下列分解因式正确的是( )A 、x ²-x-4=-x-4=((x+2x+2)()()(x-2x-2x-2))B 、2x 2x²²-3xy+y -3xy+y²² =(2x-y 2x-y)()()(x-y x-y x-y))C 、x(x-y)- y(y-x)=(x-y x-y)²)²)²D D 、4x-5x 4x-5x²²+6=+6=((2x+32x+3)()()(2x+22x+22x+2))2525、多项式、多项式a=2x a=2x²²+3x+1+3x+1,,b=4x b=4x²²-4x-3-4x-3,则,则M 和N 的公因式是(的公因式是( )A 、2x+1B 、2x-3C 、x+1D 、x+32626、多项式(、多项式(、多项式(x-2y x-2y x-2y)²)²)²+8xy +8xy 因式分解,结果为(因式分解,结果为( )A 、(、(x-2y+2x-2y+2x-2y+2)()()(x-2y+4x-2y+4x-2y+4))B 、(、(x-2y-2x-2y-2x-2y-2)()()(x-2y-4x-2y-4x-2y-4))C 、(、(x+2y x+2y x+2y)²)²)²D D 、(、(x-2y x-2y x-2y)²)²)²2727、下面多项式、下面多项式、下面多项式 ① x ²+5x-50 ②x ³-1③ x ³-4x ④3x ²-12他们因式分解后,含有三个因式的是(他们因式分解后,含有三个因式的是() A 、① ② 、 B 、③ ④ C 、 ③ D 、④28、已知、已知x= 12+1,则代数式(,则代数式(x+2x+2x+2)()()(x+4x+4x+4))+x +x²²-4的值是(的值是( ) A 、4+2 2 B 、4-2 2 C 、2 2 D 、4 22929、下列各多项式中,因式分解正确的(、下列各多项式中,因式分解正确的(、下列各多项式中,因式分解正确的( ) A 、4x 4x²² -2 =(4x-24x-2))x ² B 、1-x 1-x²²=(1-x 1-x)²)²)² C 、x ²+2 = (x+2x+2)()()(x+1x+1x+1)) D 、x ²-1=-1=((x+1x+1)()()(x-1x-1x-1))3030、若、若x ²+7x-30与x ²-17x+42有共同的因式x+m x+m,则,则m 的值为(的值为() A 、-14 B 、-3 C 、3 D 、103131、下列因式分解中正确的个数为(、下列因式分解中正确的个数为(、下列因式分解中正确的个数为() ① x ²+y ²=(x+y )(x-y ) ② x ²-12x+32=(x-4)(x-8) ③ x ³+2xy+x=x (x ²+2y ) ④x 4-1=(x ²+1)(x ²-1)A 、1B 、2C 、3D 、43232、下列各式中,满足完全平方公式进行因式分解的是(、下列各式中,满足完全平方公式进行因式分解的是(、下列各式中,满足完全平方公式进行因式分解的是() A 、0.0 9- x ² B 、x ²+20x+100C 、 4x ²+4x+4D 、x ²-y -y²²-2xy三、因式分解(共42题)1、x ²(²(a-b a-b a-b))+(b-a b-a))2、x ³-xy -xy²²3、(、(a+1a+1a+1)²)²)²-9-9-9((a-1a-1)²)²)²4、x (xy+yz+xz xy+yz+xz))-xyz5、(、(x-1x-1x-1)()()(x-3x-3x-3))+16、a ²-4a+4-b -4a+4-b²²7、(、(x x ²-2x -2x)²)²)²+2x +2x +2x((x-2x-2))+18、(、(x+y+z x+y+z x+y+z)³)³)³-x -x -x³³-y -y³³-z -z³³9、x 4-5x -5x²²+41010、、5+75+7((x+1x+1))+2+2((x+1x+1)²)²)²1111、、a ²+b +b²²-a -a²²b ²-4ab-11212、、x 4+x +x²²+11313、、a 5-2a -2a³³-8a1414、、a ²(²(b-2b-2b-2))-a -a((2-b 2-b)) 1515、、a ²(²(x-y x-y x-y))+16+16((y-x y-x))1616、、x ²+6xy+9y +6xy+9y²²-x-3y-301717、(、(、(x x ²+y +y²²-z -z²)²²)²²)²-4x -4x -4x²²y ²1818、、xy xy²²-xz -xz²²+4xz-4x1919、、x ²(²(y-z y-z y-z))+y +y²(²(²(z-x z-x z-x))+z +z²(²(²(x-y x-y x-y))2020、、3x 3x²²-5x-1122121、、3m 3m²²x-4n x-4n²²y-3n y-3n²²x+4m x+4m²²y2222、、x ²(²(2-y 2-y 2-y))+(y-2y-2))2323、、x 4+x +x²²y ²+y 42424、、x 4-162525、(、(、(x-1x-1x-1)²)²)²--(y+1y+1)²)²)²2626、(、(、(x-2x-2x-2)()()(x-3x-3x-3))-202727、、2(x+y x+y)²)²)²-4-4-4((x+y x+y))-302828、、x ²+1-2x+4+1-2x+4((x-1x-1))2929、(、(、(a a ²+a +a)()()(a a ²+a+1+a+1))-123030、、5x+5y+x 5x+5y+x²²+2xy+y +2xy+y²²3131、、x ³+x +x²²-x-13232、、x (a+b a+b)²)²)²+x +x +x²(²(²(a+b a+b a+b))3333、(、(、(x+2x+2x+2)²)²)²-y -y -y²²-2x-33434、(、(、(x x ²-6-6)()()(x x ²-4-4))-15 3535、(、(、(x+1x+1x+1)²)²)²-2-2-2((x ²-1-1))3636、(、(、(ax+by ax+by ax+by)²)²)²++(ax-by ax-by)²)²)²-2-2-2((ax+by ax+by)()()(ax-by ax-by ax-by))3737、(、(、(a+1a+1a+1)()()(a+2a+2a+2))(a+3)(a+4)-33838、(、(、(a+1a+1a+1))4+(a+1a+1)²)²)²+1 +13939、、x 4+2x +2x³³+3x +3x²²+2x+14040、、4a 4a³³-31a+154141、、a 5+a+14242、、a ³+5a +5a²²+3a-9 四、求值(共10题)1、x+y=1x+y=1,,xy=2求x ²+y +y²²-4xy 的值的值2、x ²+x-1=0+x-1=0,求,求x 4+x +x³³+x 的值的值3、已知a (a-1a-1))-(a ²-b -b))+1=0+1=0,求,求a ²+b +b²²2-ab 的值的值 4、若(、若(x+m x+m x+m)()()(x+n x+n x+n))=x =x²²-6x+5-6x+5,求,求2mn 的值的值5、xy=1xy=1,求,求x ²+x x ²+2x+1 + y ²y ²+y 的值的值6、已知x >y >0,x-y=1x-y=1,,xy=2xy=2,求,求x ²-y -y²的值²的值²的值7、已知a= 2+1,b= 3-1,求,求ab+a-b-1的值的值8、已知x=m+1,y= -2m+1,z=m-2z=m-2,求,求x ²+y +y²²-z -z²²+2xy 的值。

(初升高)高一数学衔接班——因式分解课后练习

(初升高)高一数学衔接班——因式分解课后练习

因式分解课后练习(答题时间:45分钟)一、选择题:1. 一次课堂练习,小敏同学做了如下4道因式分解题,你认为做得不够完整的一题是( )A. x 3-x =x (x 2-1)B. x 2-2xy +y 2=(x -y )2C. x 2y -xy 2=xy (x -y )D. x 2-y 2=(x -y )(x +y )2. 下列各式能分解因式的个数是( )①x 2-3xy +9y 2 ②x 2-y 2-2xy ③-a 2-b 2-2ab④-x 2-16y 2 ⑤-a 2+9b 2 ⑥4x 2-2xy +14y 2 A. 5个 B. 4个 C. 3个 D. 2个3. 如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a 克,再称得剩余质量为b 克,那么原来这卷电线的总长度是( ) A.1b a +米 B. (b a +1)米 C. (a b a ++1)米 D. (a b+1)米 4. 若x -1x =7,则x 2+21x 的值是( ) A. 49 B. 48 C. 47 D. 515. 多项式22215x xy y --的一个因式为 ( )A. 25x y -B. 3x y -C. 3x y +D. 5x y -二、填空题1. 将a 3-a 分解因式,结果为________.2. 分解因式2x 2+4x +2=________________.3. 分解因式x 2-2x -1=_____________4. 分解因式4(1)(2)x y y y x -++-=__________三、解答题1. 因式分解:222456x xy y x y +--+-2. 分解因式(1)32933x x x +++; (2)2222428x xy y z ++-.3. 证明:当n 为大于2的整数时,5354n n n -+能被120整除。

4. 已知0a b c ++=,求证:32230a a c b c abc b ++-+=【试题答案】一、选择题1. A2. C3. B4. D5.B二、填空题1. a (a +1)(a -1)2. 22(1)x +3. (11x x --+4. (2)(22)y x y --+.三、解答题1. 222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.2. 解:(1)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+=2(3)(3)x x ++(2)222z 8y 2xy 4x 2-++=2222(24)x xy y z ++-=2222[(2)4]x xy y z ++-=2(2)(2)x y z x y z +-++。

因式分解习题50道及答案

因式分解习题50道及答案

因式分解习题50道及答案因式分解是数学中的一个重要概念,它在代数运算中起着关键的作用。

通过因式分解,我们可以将一个复杂的代数式简化为更简单的形式,从而更好地理解和解决问题。

下面我将给大家提供50道因式分解的习题及答案,希望对大家的学习有所帮助。

1. 将x^2 + 4x + 4因式分解。

答案:(x + 2)^22. 将2x^2 + 8x + 6因式分解。

答案:2(x + 1)(x + 3)3. 将x^2 - 9因式分解。

答案:(x - 3)(x + 3)4. 将x^2 - 4因式分解。

答案:(x - 2)(x + 2)5. 将x^2 + 5x + 6因式分解。

答案:(x + 2)(x + 3)6. 将x^2 - 7x + 12因式分解。

答案:(x - 3)(x - 4)7. 将x^2 + 3x - 4因式分解。

答案:(x + 4)(x - 1)8. 将x^2 + 2x - 3因式分解。

答案:(x + 3)(x - 1)9. 将x^2 - 5x + 6因式分解。

10. 将x^2 + 6x + 9因式分解。

答案:(x + 3)^211. 将x^2 - 8x + 16因式分解。

答案:(x - 4)^212. 将x^2 - 10x + 25因式分解。

答案:(x - 5)^213. 将x^2 + 4x - 5因式分解。

答案:(x + 5)(x - 1)14. 将x^2 - 6x - 7因式分解。

答案:(x - 7)(x + 1)15. 将x^2 + 7x - 8因式分解。

答案:(x - 1)(x + 8)16. 将x^2 - 3x - 10因式分解。

答案:(x - 5)(x + 2)17. 将x^2 - 11x + 28因式分解。

答案:(x - 4)(x - 7)18. 将x^2 + 8x + 15因式分解。

答案:(x + 3)(x + 5)19. 将x^2 - 13x + 40因式分解。

答案:(x - 5)(x - 8)20. 将x^2 + 9x + 20因式分解。

因式分解题目及答案题高中

因式分解题目及答案题高中

高中数学题解析:因式分解题目及答案在高中数学中,因式分解是一个重要的概念,也是解决各种代数问题的基础。

因式分解题目往往考查学生对代数表达式的理解和运用能力。

本文将介绍几个常见的因式分解题目,并给出详细的解答过程。

题目一对于代数表达式x2−4x+4,进行因式分解。

解答:首先,我们可以看到表达式中的三项都是平方项的系数、两倍的后一项系数、以及常数项,这种形式很有可能是一个完全平方公式。

因此,我们可以将这个代数表达式进行因式分解:$x^2 - 4x + 4 = (x - 2)^2 $所以,因式分解后的结果是(x−2)2。

题目二对于代数表达式3x2−12y2,进行因式分解。

解答:这个代数表达式看起来是两个平方项之差的形式,我们知道这种形式实际上是一个差平方公式。

因此,我们可以进行因式分解:$3x^2 - 12y^2 = 3(x^2 - 4y^2) $然后再看括号内的部分,x2−4y2可以继续分解成(x−2y)(x+2y),所以整个代数表达式的因式分解结果是3(x−2y)(x+2y)。

题目三对于代数表达式4a2−9,进行因式分解。

解答:这个代数表达式是两个平方项之差的形式,并且我们可以观察到4a2是2a的平方,9是3的平方。

因此这个表达式可以进行差平方公式分解:4a2−9=(2a)2−32=(2a+3)(2a−3)所以,代数表达式4a2−9的因式分解结果是(2a+3)(2a−3)。

总结因式分解是高中数学中的一个重要概念,通过掌握因式分解的方法和技巧,可以更好地理解和解决各种代数问题。

希望通过上面的例题,读者对因式分解有了更深入的理解和掌握。

在学习数学的过程中,不断练习代数方程的因式分解,能有效提高数学解题能力。

2020年初升高数学衔接辅导之分解因式(含答案)

2020年初升高数学衔接辅导之分解因式(含答案)

02 分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.高中必备知识点1:十字相乘法要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项2 pq c 2式x2bx c ,若存在,则x2bx c x p x q .p q b要点诠释:(1)在对x2bx c 分解因式时,要先从常数项c的正、负入手,若c 0,则p、q同号(若c 0,则p、q异号),然后依据一次项系数b 的正负再确定p、q的符号(2)若x2bx c中的b、c 为整数时,要先将c分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b ,直到凑对为止.要点二、首项系数不为 1 的十字相乘法2在二次三项式ax2bx c(a≠0中),如果二次项系数a可以分解成两个因数之积,即a a1a2 ,常数项c可以分解成两个因数之积,即c c1c2 ,把a1,a2,c1,c2 排列如下:按斜线交叉相乘,再相加,得到a1c2 a2c1 ,若它正好等于二次三项式ax2bx c 的一次项系数b ,即a1c2 a2c1 b ,那么二次三项式就可以分解为两个因式a1x c1与a2x c2之2积,即ax bx c a 1x c 1 a 2x c 2 .要点诠释:( 1)分解思路为 “看两端,凑中间 ”(2)二次项系数 a 一般都化为正数,如果是负数,则提出负号,分解里面的二次三项式,最后结果不要忘记把提出的负号添上典型考题【典型例题】阅读与思考:将式子 分解因式. 法一:整式乘法与因式分解是方向相反的变形 . 由 ,; 分析:这个式子的常数项 ,一次项系数,所以 . 解: .请仿照上面的方法,解答下列问题: (1)用两种方法分解因式: ;(2)任选一种方法分解因式:.【变式训练】阅读材料题:在因式分解中,有一类形如 x 2+(m+n )x+mn 的多项式,其常数项是两个因数 的积,而它的一次项系数恰是这两个因数的和,则我们可以把它分解成 x 2+( m+n )x+mn =(x+m )(x+n ).例如: x 2+5x+6=x 2+(2+3) x+2×3=( x+2)( x+3). 运用上述方法分解因式: (1)x2+6x+8; (2)x 2﹣x ﹣6;(3)x2﹣5xy+6y2;(4)请你结合上述的方法,对多项式x3﹣2x2﹣3x 进行分解因式.【能力提升】由多项式的乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到用“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b).实例分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).(1)尝试分解因式:x2+6x+8;(2)应用请用上述方法解方程:x2-3x-4=0.高中必备知识点2:提取公因式法与分组分解法1.提取公因式法:如果多项式的各项含有公因式,那么就可以把这个公因式提到括号外面,把多项式转化成公因式与另一个多项式的积的形,这种因式分解的方法叫做提公因式法。

3.十字相乘法·求根公式法的因式分解—初高中衔接课程知识分享

3.十字相乘法·求根公式法的因式分解—初高中衔接课程知识分享
3.十字相乘法·求根公式法的因 式分解—初高中衔接课程
ቤተ መጻሕፍቲ ባይዱ
基本训练
将下列各式因式分解 (1) x2 5x 6 (2)x2 2x 8
(3) x2 x 2 8 x2 x 12
(4)2x2 x 6 (5) 1 x2 x 2
3
议一
1、你怎样把前两小题因式分解的,他们的 二次项系数有何共同点?第三小题用到什 么思想方法,需要注意什么?
2、第四小题二次项系数是正整数,你该怎 么办?
3、第五小题二次项系数是分数,你又要如 何解决?
议二
1、 解下列方程,你可以有哪些方法?
(1) x2 5x 6 0 (2)x2 2x 8 0 (3)1 x2 x 2 0
3
2、你认为某些时候因式分解对解方程 可有帮助?反之,解方程对因式分解 可有帮助?
因式分解
1x2 3x 7 22x2 8x 1
思考
将三次多项式 x3 5x2 8x 2 因式分解
当堂检测
将下列各式进行因式分解
1x2 x 20
22x2 11x 5
3x2 7x 4
4x2 3x 4x2 3x 10 72
课堂小结
通过本节的学习, 我知道了...... 我了解了......
学生总结
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢

初中数学专项练习《因式分解》100道解答题包含答案(真题汇编)

初中数学专项练习《因式分解》100道解答题包含答案(真题汇编)

初中数学专项练习《因式分解》100道解答题包含答案一、解答题(共100题)1、阅读理解题:我们知道因式分解与整式乘法是互逆的关系,那么逆用乘法公式(x+a)(x+b)=x2+(a+b)x+ab,即x2+(a+b)x+ab=(x+a)(x+b)是否可以分解因式呢?当然可以,而且也很简单.如:(1)x2+4x+3=x2+(1+3)x+1×3=(x+1)(x+3);(2)x2﹣4x﹣5=x2+(1﹣5)x+1×(﹣5)=(x+1)(x﹣5).2、化简:a2(a﹣1)﹣a3.3、阅读材料:若x2-2xy+2y2-8y+16=0,求x、y的值.解:∵x2-2xy+2y2-8y+16=0,∴(x2-2xy+y2)+(y2-8y+16)=0∴(x-y)2+(y-4)2=0,∴(x-y)2=0,(y-4)2=0,∴y=4,x=4.根据你的观察,探究下面的问题:已知a、b满足a2+b2-4a-6b+13=0.求a、b的值.4、用简便方法计算(1)(﹣0.25)11×(﹣4)12(2)20152﹣2014×2016.5、分解因式(1)4x2+4x+1(2)2x2﹣18(3)y3﹣2y2+y(4)4a2﹣(b+c)2.6、用简便方法计算(1)(﹣0.25)11×(﹣4)12(2)20152﹣2014×2016.7、已知方程x2﹣2x﹣15=0的两个根分别是a和b,求代数式(a﹣b)2+4b(a ﹣b)+4b2的值.8、10x2+3x﹣4.9、已知,求的值.10、先化简,在求值:30x (y+4)-15x(y+4), 其中x=2,y=-211、(p﹣q)4÷(q﹣p)3•(p﹣q)2.12、先化简,再求值.2(x﹣3)(x+2)﹣(3+a)(﹣a+3),其中,a=﹣2,x=1.13、因式分解:(2x+y)2﹣(x+2y)2.14、(1)填空:(a﹣b)(a+b)= ;(a﹣b)(a2+ab+b2)= ;(a﹣b)(a3+a2b+ab2+b3)= .(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)= (其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.15、已知二次函数的图象与x轴交于两点,且,求a的值.16、若a m=4,a n=2,求a2m-n17、列方程解应用题:如果一个正方形的边长增加4厘米,那么它的面积就增加40平方厘米,则这个正方形的边长是多少?18、3m3n﹣6m2n2﹣72mn3.19、利用因式分解计算:3.68×15.7-31.4+15.7×0.32.20、先将代数式因式分解,再求值:2x(a﹣2)﹣y(2﹣a),其中a=0.5,x=1.5,y=﹣2.21、己知:△ABC,AD⊥BC于点D,且AB+BD=AC+CD,求证:AB=AC.22、已知:x+y=﹣3,x﹣y=7.求:①xy的值;②x2+y2的值.23、若a+b=﹣3,ab=1.求a3b+a2b2+ab3的值.24、已知多项式与的乘积中不含有一次项和二次项,求常数的值.25、已知多项式的结果中不含项和项,求和的值.26、分解因式: 4x2-427、已知甲数为a×10n,乙数是甲数的10倍,丙数是乙数的2倍,甲、乙、丙三数的积为1.6×1012,求a,n的值.(其中1≤a≤10,n为正整数)28、有一个长方体模型,它的长为2×103cm,宽为1.5×102cm,高为1.2×102cm,它的体积是多少cm3?29、分解因式:2x2﹣8.30、解不等式:(x﹣6)(x﹣9)﹣(x﹣7)(x﹣1)<7(2x﹣5)31、已知A=2x,B是多项式,在计算B+A时,某同学把B+A看成B÷A结果得x2+x,求B+A.32、解答发现:(1)当a=3,b=2时,分别求代数式(a+b)2和a2+2ab+b2的值,并观察这两个代数式的值有什么关系?(2)再多找几组你喜欢的数试一试,从中你发现了什么规律?(3)利用你所发现的规律计算a=1. 625,b=0. 375时,a2+2ab+b2的值?33、设n为正整数,且x2n=5,求(2x3n)2﹣3(x2)2n的值.34、已知x﹣1=,求代数式(x+1)2﹣4(x+1)+4的值.35、已知x+y=2,xy=﹣1,求下列代数式的值:(1)5x2+5y2;(2)(x﹣y)2.36、已知.三角形的底边长为(2x+1)cm,高是(x﹣2)cm,若把底边和高各增加5厘米,那么三角形面积增加了多少?并求出x=3时三角形增加的面积.37、已知x2+xy﹣2y2=7,且x、y都是正整数,试求x、y的值.38、已知a-b=3,求a(a-2b)+b2的值39、先化简,再求值:.40、甲、乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a前面的符号,得到的结果为6x2+18x+12;由于乙漏抄了第二个多项中的x的系数,得到的结果为2x2+2x﹣12,请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.41、已知(x+a)(x2﹣x+c)的积中不含x2项和x项,求(x+a)(x2﹣x+c)的值是多少?42、已知a+b=﹣,求代数式(a﹣1)2+b(2a+b)+2a的值.43、因式分解:6p(p+q)﹣4q(p+q).44、(1)如果a+4=﹣3b,求3a×27b的值.(2)已知a m=2,a n=4,a k=32,求a3m+2n﹣k的值.45、先化简,再求值:{(a+b)2﹣(a﹣b)2}•a,其中a=﹣1,b=5.46、化简求值:当a=2005时,求-3a2(a2-2a-3)+3a(a3-2a2-3a)+2005的值47、“若a m=a n(a>0且a≠1,m、n是正整数),则m=n”.你能利用上面的结论解决下面的问题吗?试试看,相信你一定行!(1)如果27x=39,求x的值;(2)如果2÷8x•16x=25,求x的值;(3)如果3x+2•5x+2=153x﹣8,求x的值.48、七年级某同学做一道题:“已知两个多项式A,B,,计算”,他误将写成了,结果得到答案,请你帮助他求出正确的答案.49、已知:,,求和的值.50、已知:a m=5,a n=2,求(1)a2m+3n的值;(2)a4n﹣3m的值.51、对于任意自然数n,(n+7)2-(n-5)2能否被24整除,为什么?52、先化简,再求值:(x﹣y2)﹣(x﹣y)(x+y)+(x+y)2,其中x=3,y=﹣.53、说明代数式[(x﹣y)2﹣(x+y)(x﹣y)]÷(﹣2y)+y的值,与y的值无关.54、设x>0,试比较代数式x3和x2+x+2的值的大小.55、(1)解方程:x2﹣4x=0(2)化简:m(m+3)﹣(m+1)2,其中m=+1.56、数学课堂上,王老师给同学们出了道题:若(x2﹣px+3)(x﹣q)中不含x2项,请同学们探究一下p与q的关系.请你根据所学知识帮助同学们解决一下.57、已知:a+b=﹣1,ab=﹣6,求下列各式的值:(1)a2b+ab2(2)a2+b2.58、x4﹣13x2y2+36y4.59、分解因式:(1)6xy2﹣9x2y﹣y3;(2)(x2+4)2﹣16x2.60、设的整数部分为x,小数部分为y,求(x+y)(x﹣y)的值.61、已知a+b=3,求代数式a2﹣b2+2a+8b+5的值.62、已知:,求代数式的值.63、请利用因式分解说明能被100整除.64、已知多项式x2-4x+m分解因式的结果为(x+a)(x-6),求2a-m的值.65、若△ABC的三边长a、b、c满足6a+8b+10c﹣50=a2+b2+c2,试判断△ABC 的形状.66、已知甲数为a×10n,乙数是甲数的10倍,丙数是乙数的2倍,甲、乙、丙三数的积为1.6×1012,求a,n的值.(其中1≤a≤10,n为正整数)67、已知二次三项式x2+px+q的常数项与(x-1)(x-9)的常数项相同,而它的一次项与(x-2)(x-4)的一次项相同,试将此多项式因式分解.68、已知n是正整数,且,求的值.69、先化简,再求值:.70、当a=3,b=﹣1时(1)求代数式a2﹣b2和(a+b)(a﹣b)的值;(2)猜想这两个代数式的值有何关系?(3)根据(1)(2),你能用简便方法算出a=2008,b=2007时,a2﹣b2的值吗?71、已知三次四项式2x3﹣5x2﹣6x+k分解因式后有一个因式是x﹣3,试求k的值及另一个因式.72、阅读理解并解答:为了求1+2+22+23+24+...+22009的值,可令S=1+2+22+23+24+ (22009)则2S=2+22+23+24+…+22009+22010,因此2S﹣S=(2+22+23+…+22009+22010)﹣(1+2+22+23+…+22009)=22010﹣1.所以:S=22010﹣1.即1+2+22+23+24+…+22009=22010﹣1.请依照此法,求:1+4+42+43+44+…+42010的值.73、在日常生活中我们经常用到密码,如取款、上网购物需要密码,有一种用因式分解法产生密码,方便记忆,其原理是:将一个多项式因式分解:例如x4﹣y4=(x2+y2)(x+y)(x﹣y),当x=8,y=9时,x2+y2=145,x+y=17,x﹣y=4则可以得到密码是145174,1741454…,等等,根据上述方法当x=32,y=12时,对于多项式x2y﹣y3分解因式后可以形成哪些数字密码?74、先化简,再求值:(1)2(a2b﹣ab2)﹣3(a2b﹣1)+2ab2+1,其中a=1,b=2.(2)2a(a+b)﹣(a+b)2,其中a=3,b=5.75、已知关于x的多项式3x2+x+m因式分解以后有一个因式为(3x﹣2),试求m的值并将多项式因式分解.76、已知:a﹣b=﹣2015,ab=,求a2b﹣ab2的值.77、已知:,求78、如图,在一块边长为acm的正方形纸板四角,各剪去一个边长为bcm(b<)的正方形,利用因式分解计算当a=13.2,b=3.4时,剩余部分的面积.79、分解因式:4n2(m﹣1)+9﹣9m.80、已知3×9m×27m=321,求(﹣m2)3÷(m3•m2)的值.81、先化简,再求值:,其中a=﹣3,b= .82、已知常数a、b满足3a×32b=27,且(5a)2×(52b)2÷(53a)b=1,求a2+4b2的值.83、下面是小彬同学进行整式化简的过程,请认真阅读并完成相应任务.任务1:填空:①以上化简步骤中,第一步的依据是________;②以上化简步骤中,第________步开始出现不符合题意,这一步错误的原因是________ ;任务2:请写出该整式正确的化简过程,并计算当x=﹣1,y=﹣时该整式的值.84、因式分解:(1)x(x﹣y)﹣y(y﹣x);(2)a2x2y﹣axy2.85、(1)填空:(a﹣b)(a+b)= ;(a﹣b)(a2+ab+b2)= ;(a﹣b)(a3+a2b+ab2+b3)= .(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)= (其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.86、分解因式:(1)4x2﹣12x3(2)a2﹣ab+b2(3)x4﹣81.87、现有三个多项式:a2+a-4,a2+5a+4,a2-a,请你选择其中两个进行加法运算,并把结果因式分解。

(word完整版)因式分解过关练习题及答案

(word完整版)因式分解过关练习题及答案

因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m) (2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq; (2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x; (2)16x2﹣1;(3)6xy2﹣9x2y﹣y3; (4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m); (2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1; (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(3)x5+x+1;(4)x3+5x2+3x﹣9;(。

中考数学:第3讲《因式分解》同步练习(含答案)

中考数学:第3讲《因式分解》同步练习(含答案)

课后练习3因式分解A组1. 把x2y—2y2x+ y3分解因式正确的是()A . y(x2—2xy+ y2)2 2B . x y—y (2x—y)2C. y(x—y)D . y(x+ y)22. (2015宜宾)把代数式3x3—12x2+ 12x分解因式,结果正确的是()2 2 2A . 3x(x —4x+ 4)B. 3x(x—4) C . 3x(x+ 2)(x—2) D . 3x(x—2)3 . (2016台湾)多项式77x2—13x—30可因式分解成(7x+ a)(bx+ c),其中a、b、c均为整数,求a+ b + c之值为何?()A. 0B. 10C. 12D. 224. 若A = 101 X 9996X 10005, B= 10004 X 9997X 101,则A—B 之值为()A. 101B. —101C. 808D. —80825 . (1)(2017 丽水)分解因式:m+ 2m = ________________ .⑵(2017湖州)把多项式x2—3x因式分解,正确的结果是 ______________________ .2(3)________________________________________ (2016舟山)因式分解:a —9 = .2(4)___________________________________________ (2016 台州)因式分解:x —6x+ 9 = .2 26 . (2016杭州)若整式x + ky (k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是 _________________ (写出一个即可).7.分解因式:3 2(1)(2015 黄冈)x —2x + x;(2)(2015 深圳)3a2—3b2;2 2⑶ am —4an ;o凶(2015绵阳)xy—3y(实数范围内因式分解).& 已知:a+ b= 3, ab= 2,求下列各式的值:2 2⑴ a b+ ab ;(2) a2+ b2.B组9. 已知(19x—31)(13x—17)—(13x—17)(11x—23)可因式分解成(ax+ b)(8x+ c),其中a、b、c均为整数,则a+ b+ c=( )A . —12B . —32 C. 38 D. 7210. 已知a、b、c是厶ABC的三边长,且满足a3+ ab2+ bc2= b3+ a2b+ ac2,则厶ABC的形状是()A •等腰三角形B •直角三角形C •等腰三角形或直角三角形D •等腰直角三角形11. (3x + 2)( - x6+ 3x5)+(3x + 2)( - 2x6+ x5) +(x+ 1)(3x6- 4x5)与下列哪一个式子相同( )6 5A . (3x - 4x )(2x+ 1)6 ,5B . (3x - 4X)(2X+ 3)6C. - (3x - 4x )(2x+ 1)6 ,5D . - (3x -4x )(2x+ 3)12.(2016 •湾)已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数. 若甲与乙相乘为x2-4,乙与丙相乘为x2+ 15x- 34,则甲与丙相加的结果与下列哪一个式子相同?()A . 2x+ 19 B. 2x- 19 C . 2x+ 15 D . 2x - 1513 .分解因式:(a+ 2)(a—2) + 3a= _____________________ .14 .多项式ax2—a与多项式x2—2x+ 1的公因式是___________________ .15 . (2017 •城模拟)如图,边长为(m + 3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是第15题图C组16 . (2015 杭州市下城区模拟)若z= 3x(3y- x) - (4x- 3y)(x+ 3y).(1)若x, y均为整数,求证:当x是3的倍数时,z能被9整除;⑵若y = x+ 1,求z的最小值.参考答案课后练习3因式分解A组1. C2.D3.C4.D25. (1)m(m+ 2) (2)x(x—3) (3)(a + 3)(a—3) (4)(x—3)6. —17. (1)x(x—1)2. (2)3(a + b)(a —b). (3)a(m+ 2n)(m—2n). (4)y(x + . 3)(x —3).8. (1)6 (2)5B组9. A 10.C 11.C 12.A 13.(a—1)(a + 4)14. x—1 15.2m+ 3C组16. (1)z= 3x(3y—x)—(4x—3y)(x+ 3y) = 9xy—3x2—(4^+ 9xy—9y2)= 9xy—3x2—4x2—9xy + 9y2=—7x2+ 9y2,v x 是3 的倍数,二z 能被9 整除. (2)当y = x+ 1 时,贝U z= —7x2+ 9(x + 1)2= 2x2+ 18x+ 9 = 2 x+ 2 —63,:2 x+ 号》0,「・z 的最小值是一穿.。

初高中数学衔接集训(一)因式分解

初高中数学衔接集训(一)因式分解

初高中数学衔接集训 (一)因式分解一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设实数满足321x x =-+,若72x ax bx c =++,则2a b c -+的值为( ) A .14-B .14C .6-D .62.已知六元方程222222a b c d e f b a d c f e +++++=-+-+-,满足a b c d e f <<<<<,且a ,b ,c ,d ,e ,f 为正整数,则下列关于这个六元方程的正整数解的说法中正确的个数为( ) ①1a =,2b =,3c =,4d =,5e =,6f =是该六元方程的一组解; ②连续的六个正整数一定是该六元方程的解;③若10a b c d e f <<<<<<,则该六元方程有20组解; ④若23a b c d e f +++++=,则该六元方程有1组解. A .1 B .2 C .3 D .4 3.已知m ,n 均为正整数且满足23200mn m n ---=,则m n +的最小值是( )A .20B .30C .32D .374.已知4322125d x x x x =-+--,则当2250x x --=时,d 的值为( ) A .25B .20C .15D .105.已知正整数a ,b ,c ,d ,e ,f 满足a b c d e f <<<<<,且222222a b c d e f b a d c f e +++++=-+-+-,关于这个六元方程下列说法正确的个数是( ) ①1a =,2b =,3c =,4d =,5e =,6f =是该六元方程的一组解; ②连续的六个正整数一定是该六元方程的解;③若10a b c d e f <<<<<<,则该六元方程有21组解; ④若53a b c d c f +++++=,则该六元方程有28组解. A .1B .2C .3D .46.已知4322125d x x x x =-+--,则当2250x x --=时,d 的值为( ) A .25B .20C .15D .107.我们知道,任意一个正整数n 都可以进行这样的分解:(n p q p =⨯,q 是正整数,且)p q ,在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p q ⨯是n 的最佳分解,并规定:()pF n q=.例如:12可以分解成112⨯,26⨯或34⨯,因为1216243->->-,所以34⨯是12的最佳分解,所以3(12)4F =.如果一个两位正整数t ,10(19t x y x y =+,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t 为“吉祥数”.根据以上新定义,下列说法正确的有( )(1)3(48)4F =; (2)15和26是“吉祥数”; (3)“吉祥数”中,()F t 的最大值为34. (4)如果一个正整数m 是另外一个正整数n 的平方,我们称正整数m 是完全平方数,则对任意一个完全平方数m ,总有()1F m =. A .1个B .2个C .3个D .4个8.设正整数a ,b ,100c >,满足2221(1)c a b -=-,则ab的最小值是( ) A .13 B .12 C .2 D .3二、多项选择题:本题共3小题,每小题6分,共18分。

因式分解的拓展(精练)(解析版)--2023届初升高数学衔接专题讲义

因式分解的拓展(精练)(解析版)--2023届初升高数学衔接专题讲义

2023年初高中衔接素养提升专题课时检测第一讲因式分解的拓展(精练)(解析版)(测试时间60分钟)一、单选题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2022·浙江金华·二模)下列多项式中,在实数范围内不能进行因式分解的是()A .24a -B .269a a ++C .216a +D .2961a a -+【答案】C解:A、()()2422,a a a -=+-故不符合题意.B、()22693,a a a ++=+故不符合题意.C、216a +,不能分解,故符合题意.D、()2296131,a a a -+=-故不符合题意.故选:C.2.(2023·甘肃二模)下列因式分解正确的是()A .22()()-=+-a b ab a a b a b B .22(21)(21)(21)--=+--+a b a b a b C .3222()-+=-a ab ab a a b D .2222244(2)-+=-a b a b a a b 【答案】B【解析】【分析】【详解】解:A 中()22()()a b ab ab a b a a b a b -=-≠+-,错误,故不符合题意;B 中22(21)(21)(21)--=+--+a b a b a b ,正确,故符合题意;C 中()32222()22a ab ab a a b b a a b -+=-+≠-,错误,故不符合题意;D 中()2222222()4422a b a b a a b ab -+=-≠-,错误,故不符合题意;故选B.3.(2022·江苏·泰州市第二中学附属初中七年级期中)将多项式2224912x y z yz ---分解成因式的积,结果是()A .(23)(23)x y z x y z +---B .(23)(23)x y z x y z ---+C .(23)(23)x y z x y z +++-D .(23)(23)x y z x y z ++--【答案】D【解析】原式)32)(32()32()1294(22222z y x z y x z y x yz z y x --++=+-=++-=.4.(2022银川一中初中七年级期中)要是二次三项式26x x m -+在整数范围内可因式分解,则正整数m 的取值可以有()A .2个B .3个C .5个D .6个【答案】B【解析】6=1+5,6=2+4,6=3+3,∴9,8,5=m .5.(2022秋·河北邢台·八年级统考期末)计算1−×1−×1−×1×1−).A .512B .12C .712D .1130【答案】C 【分析】原式各括号利用平方差公式变形,约分即可得到结果.【详解】原式=1×1+×1×1×1−×1+×1−×1+×1−×1=12×32×23×43×34×54×45×65×56×76,=12×76,=712,故选:C.二、填空题6.已知正数a 、b 、c 满足ab +a +b =bc +b +c =ac +a +c =3,则(a +1)(b +1)(c +1)=_________.【答案】8【解析】4111=+++=+++=+++c a ac c b bc b a ab ,即4)1)(1()1)(1()1)(1(=++=++=++c b c a b a ,∴2111=+=+=+c b a .7.因式分解22(34)(6)24x x x x +---+=_________.【答案】)8)(2)(3(2-+-+x x x x 【解析】原式=24)4)(3)(2)(1(24)3)(2)(1)(4(++-+-=+-+-+x x x x x x x x 24)2(10)2(24)12)(2(22222+-+--+=+-+-+=x x x x x x x x)8)(2)(3()8)(6(222-+-+=-+-+=x x x x x x x x .8.(2021·上海市第四中学八年级阶段检测)在实数范围内因式分解3x 2+6x ﹣2=____.【答案】3(x x +解:令212333620,33x x x x --++-=⇒==所以2113623()()x x x x x x +-=--⇒233333623()()3()()3333x x x x x x --+-=--=+-+三、解答题(解答时应写出文字说明、证明过程或演算步骤)9.(2020·广东·华南师范大学中山附属中学八年级期中)分解因式:(1)221632a a -+(2)22414x xy y --+【答案】(1)()224a -;(2)()()2121x y x y -+--.【解析】(1)221632a a -+,=()22816a a -+,=()224a -;(2)22414x xy y --+,()224=41x xy y -+-,()2=x-2y -1,()()=x 2121y x y -+--.10、已知a 、b 、c 是△ABC 的三条边,且满足2220a b c ab bc ac ++---=,试判断△ABC 的形状.【解析】两边同乘2,得:022*******=---++bc ac ab c b a ,即0)()()(222=-+-+-c a c b b a ,∴c b a ==.【答案】等边三角形11.(2022·江苏·泰州市第二中学附属初中七年级期中)先阅读下面的内容,再解决问题:问题:对于形如222x xa a ++,这样的二次三项式,可以用公式法将它分解成2()x a +的形式.但对于二次三项式2223x xa a +-,就不能直接运用公式了.此时,我们可以在二次三项式2223x xa a +-中先加上一项2a ,使它与22x xa +的和成为一个完全平方式,再减去2a ,整个式子的值不变,于是有:2222222323x xa a x xa a a a +-=++--()22()4x a a =+-22()(2)x a a =+-(3)()x a x a =+-像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.利用“配方法”,解决下列问题:(1)分解因式:265a a -+;(2)若2211264502a b a b m c +--++-=①当a b m ,,满足条件:248a b m ⨯=时,求m 的值;②若△ABC 的三边长是,,a b c ,且c 边的长为奇数,求ABC ∆的周长【答案】(1)(a -1)(a -5);(2)①4;②14或16【解析】(1)解:a 2﹣6a +5=a 2﹣6a +9﹣4=(a ﹣1)(a ﹣5)(2)∵2211264502a b a b m c +--++-=;∴(a 2﹣12a +36)+(b 2﹣6b +9)+|12m ﹣c |=0∴(a ﹣6)2+(b ﹣3)2+|12m ﹣c |=0∴a ﹣6=0,b ﹣3=0∴a =6,b =3①∵2a ×4b =8m∴26×43=8m ∴26×43=23m 时∴212=23m ∴12=3m ∴m =4;故答案为:4.②由①知,a =6,b =3,∵△ABC a ,b ,c ,∴3<c <9,又∵c 边的长为奇数,∴c =5,7,当a =6,b =3,c =5时,△ABC 的周长是:6+3+5=14,当a =6,b =3,c =7时,△ABC 的周长是:6+3+7=16,12.(2021·四川·成都教育科学研究院附属学校七年级期中)在二次三项式245x x +-先加上一项4,使它与24x x +成为一个完全平方式,然后再减去4,使整个式子的值不变,于是有:()22245444529x x x x x +-=++--=+-.像这种先添一适当项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.请利用“配方法”解决下列问题:(1)已知:2246130x y x y ++-+=,求x y 的值.(2)已知:2,3,a b b c -=-=求222a b c ab bc ca ++---的值.【答案】(1)8-(2)19【解析】(1)解: 2246130x y x y ++-+=2244690x x y y \+++-+=()()22230,x y \++-=20,30,x y \+=-=解得:2,3,x y =-=()328.y x \=-=-(2) 2,3,a b b c -=-=5,a c \-=∴222abc ab bc ca ++---()22212222222a b c ab bc ac =++---()22222212222a ab b a ac c b bc c =-++-++-+()142592=++19=。

因式分解知识点训练及答案

因式分解知识点训练及答案

因式分解知识点训练及答案一、选择题1.下列因式分解中:①32(2)x xy x x x y ++=+;②2244(2)x x x ++=+;③22()()x y x y y x -+=+-;④329(3)x x x x -=-,正确的个数为( )A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】将各项分解得到结果,即可作出判断.【详解】①322(2+1)x xy x x x y ++=+,故①错误;②2244(2)x x x ++=+,故②正确;③2222()()x y y x x y y x -+=-=+-,故③正确;④39(+3)(3)x x x x x -=-故④错误.则正确的有2个.故选:B.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.2.将多项式4x 2+1再加上一项,使它能分解因式成(a+b )2的形式,以下是四位学生所加的项,其中错误的是( )A .2xB .﹣4xC .4x 4D .4x【答案】A【解析】【分析】分别将四个选项中的式子与多项式4x 2+1结合,然后判断是否为完全平方式即可得答案.【详解】A 、4x 2+1+2x ,不是完全平方式,不能利用完全平方公式进行因式分解,故符合题意;B 、4x 2+1-4x=(2x-1)2,能利用完全平方公式进行因式分解,故不符合题意;C 、4x 2+1+4x 4=(2x 2+1)2,能利用完全平方公式进行因式分解,故不符合题意;D 、4x 2+1+4x=(2x+1)2,能利用完全平方公式进行因式分解,故不符合题意,故选A.【点睛】本题考查了完全平方式,熟记完全平方式的结构特征是解题的关键.3.下列各式中,由等式的左边到右边的变形是因式分解的是( )A .(x +3)(x -3)=x 2-9B .x 2+x -5=(x -2)(x +3)+1C .a 2b +ab 2=ab(a +b)D .x 2+1=x 1()x x+ 【答案】C【解析】【分析】 根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、没有把一个多项式转化成几个整式积的形式,故B 错误;C 、把一个多项式转化成了几个整式积的形式,故C 正确;D 、没有把一个多项式转化成几个整式积的形式,故D 错误;故选:C .【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.4.下列各式中不能用平方差公式进行计算的是( )A .(m -n )(m +n )B .(-x -y )(-x -y )C .(x 4-y 4)(x 4+y 4)D .(a 3-b 3)(b 3+a 3)【答案】B【解析】A.(m -n)(m +n),能用平方差公式计算;B.(-x -y)(-x -y),不能用平方差公式计算;C.(x 4-y 4)(x 4+y 4),能用平方差公式计算;D. (a 3-b 3)(b 3+a 3),能用平方差公式计算.故选B.5.已知2021201920102010201020092011x -=⨯⨯,那么x 的值为( )A .2018B .2019C .2020D .2021.【答案】B【解析】【分析】将2021201920102010-进行因式分解为2019201020092011⨯⨯,因为左右两边相等,故可以求出x 得值.【详解】解:2021201920102010-()()()2019220192019220192019=201020102010=20102010120102010120101201020092011⨯-⨯-=⨯-⨯+=⨯⨯∴2019201020092011201020092011x ⨯⨯=⨯⨯∴x=2019故选:B .【点睛】本题主要考查的是因式分解中提取公因式和平方差公式,正确的掌握因式分解的方法是解题的关键.6.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( )A .2B .4C .6D .8【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4.故选:B .【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.7.将3a b ab 进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 【答案】C【解析】【分析】多项式3a b ab 有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】()()()32111a b ab ab a ab a a -=-=+-,故选:C .【点睛】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;8.下列各式分解因式正确的是( )A .2112(12)(12)22a a a -=+-B .2224(2)x y x y +=+C .2239(3)x x x -+=-D .222()x y x y -=- 【答案】A【解析】【分析】根据因式分解的定义以及平方差公式,完全平方公式的结构就可以求解.【详解】 A. 2112(12)(12)22a a a -=+-,故本选项正确; B. 2222224(2)(2)=+44x y x y x y x xy y +≠+++,,故本选项错误;C. 222239(3)(3)=69x x x x x x -+≠---+,,故本选项错误;D. ()22()x y x y x y -=-+,故本选项错误. 故选A.【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握平方差公式,完全平方公式.9.已知a 、b 、c 是ABC 的三条边,且满足22a bc b ac +=+,则ABC 是( ) A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c ≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.10.下列从左边到右边的变形,属于因式分解的是( )A .2(1)(1)1x x x +-=-B .221(2)1x x x x -+=-+C .224(4)(4)x y x y x y -=+-D .26(2)(3)x x x x --=+-【答案】D【解析】A. 和因式分解正好相反,故不是分解因式;B. 结果中含有和的形式,故不是分解因式;C. 22x 4y -=(x+2y)(x−2y),解答错误;D. 是分解因式。

第2讲因式分解配套练习及答案(训练篇)-2020年数学初高中衔接讲与练

第2讲因式分解配套练习及答案(训练篇)-2020年数学初高中衔接讲与练

第2讲 因式分解练习(A )一.选择题:1. 下列各式从左到右的变形中,是正确的因式分解的是 ( )2222)()(b ab a b a A +-=- )11()(22mm m m B -=- 4)3(43)(2--=--a a a a C )13(3393)(223--=--x x x x x x D 2. )2)(2(b a b a +--是下列多项式( )的分解结果(A )224b a - (B )224b a + (C )224b a -- (D )224b a +-3. 下列分解不正确的是 ( )(A )22)4(168+=++x x x (B )222)32(9124b a b ab a -=-+-(C )22)61(36131-=+-x x x (D )222)12(144+=++ab ab b a 4. 下列各式中,能用平方差公式分解因此的是 ( )(A )-a 2+b 2 (B )-a 2-b 2 (C )a 2+b 2 (D )a 3-b 25. 已知m +n=-4,mn=5,关于x 的二次三项式x 2-mnx -m -n 分解因式的结果是( ) (A )(x -1) (x -4)(B )(x +1) (x +4) (C )(x +1) (x -4) (C )(x -1) (x +4)6. 下列由左到右的变形是正确的因式分解的是( ) A .a 2-b 2+1=(a +b )(a -b )+1;B .(m +3)2=m 2+6m +9;C .x 5y -xy 5=xy (x 2+y 2)(x +y )(x -y );D . 224224)()(2b a b a b b a a -+=--二.填空题:7. 分解因式:=---)(9)(182b a m b a m .8. 分解因式:22)23()2(n m n m +--= . .9. 分解因式:=---a a x x 2222 .10. 分解因式: x 2+3xy +2y 2+2x +4y =_______.11. 分解因式:=--6542a a .12. 分解因式:m n m n y x y x 3121246+-- = .13. 已知ABC ∆的三边a 、b 、c 满足bc b ac a -=-22,判断ABC ∆的形状._________..14. 已知012=++x x ,求++20062007x x ……+123+++x x x =_________. _________.三.简答题:15. 因式分解: (x 2+x)2−14(x 2+x )+24.16. 因式分解: (x +1)(x +3)(x +5)(x +7)+15.17. 因式分解: (x +5)4+(x +3)4−82.18. 因式分解: (x 2+xy +y 2)2−4xy(x 2+y 2).19. 因式分解:6148222-----y x y xy x .20. 因式分解:x 3−9x +8.21. 因式分解:18++x x .22. 如果多项式x 2−(a +5)x +5a −1能分解成两个一次因式(x +b )(x +c )的乘积,b ,c 为整数,则a 的值为多少?23.已知多项式k x x x ++-223能够进行因式分解,请求出k 的值,并将此多项式因式分解.24.如果2533222+-++-y x y xy kx 能分解成两个一次因式乘积,求25.052++k k 的值.因式分解测试(B )一.选择题:1. 把多项式4 x 2y -4x y 2- x 3分解因式得结果是 ( )A. 4xy(x -y)-x 2B. –x(x -2y)2C. x(4xy -4y 2- x 2)D. –x(-4xy+4y 2+ x 2)2. 下列分解因式错误的是 ( )A .a 2-5a +6=(a -2)(a -3)B .1-4m 2+4m =(1-2m )2C .-4x 2+y 2=-(2x +y)(2x -y )D .3ab +41a 2b 2+9=(3+21ab )2 3. 在多项式-a 2-b 2-2ab ,2ab―a 2―b 2,a 2-b 2+2ab ,(a +b)2-10(a +b)+25中,能用完全平方公式分解因式的有( ) (A )1个 (B )2个 (C )3个 (D )4个4. 已知a 、b 、c 是三角形ABC 的三边长,且满足a 2+2b 2+c 2-2b (a+c )=0,则此三角形是( )A 等腰三角形B 等边三角形C 直角三角形D 不能确定5. 已知x 2+ax -12能分解成两个整系数的一次因式的乘积,则符合条件的整数a 的个数是( )A. 3个B. 4个C. 6个D. 8个6. 实数m= 20203-2020,下列各数中不能整除m 的是( )A.2018B. 2019C. 2020D.2021二.填空题:7. 因式分解:yz xz xy x -+-2=________ .8. 因式分解:44244++-x y x =_________.9. 因式分解:x 2(x -2)-16(x -2)=_________.10. 因式分解:6 y 2 -11y -10=_________.11. 因式分解:4x 2-4x -y 2+4y -3=_________.12. 如果正整数x 、y 满足方程x 2-y 2=64,则这样的正整数对(x ,y )的个数是 _________.13. 若x 2+x+m=(x -3)(x+n )对x 恒成立,则n=_________.14. 已知x -1是多项式x 3-3x+k 的一个因式,那么k=_________.三.简答题:15. 因式分解: (x 2+x +4)2+8x (x 2+x +4)+15x 216. 因式分解:(x 2+x +1)(x 2+x ++2)−1217. 因式分解:2023265622-++--y x y xy x .18. 因式分解:443234---+x x x x .19. 如果b a ,是整数,且12--x x 是123++bx ax 的因式,求a 、b 的值.20. 已知 :c b a ,,为三角形的三条边,且027334222=+--++b bc ab c ac a . 求证:c a b +=2.21. 如果x2+7xy+ay2−5x+43y−24可分解为两个一次因式的积,求a的值.22. 已知x3+x2+x+1=0,求x2008+2x2000+5x1996.23. 正数a、b、c满足ab+a+b=bc+b+c=ca+c+a=3,求:(a+1)(b+1)(c+1)的值.24.若代数式x(x+1)(x+2)(x+3)+p恰好能分解为两个二次整式的乘积(其中二次项系数均为1且一次项系数相同),求p的最大值.测试A一选择题:1. D 提示:因式分解的概念是把一个多项式写成整式的乘积的形式;2. D3. B 提示:完成平方公式的运用:a2+2ab+b2=(a+b)24. A 提示:平方差公式的运用:a2-b2=(a+b)(a-b)5. A 提示:十字相乘法6.C二填空题:7.9m(a-b)(2m-1)提示:提取公因式9m(a-b);8.-(5m+n)(m+3n)提示:利用平方差公式;9.(x+a)(x-a-2)提示:利用分组分解法(两两分组);10.(x+2y)(x+y+2)提示:利用分组分解法(前三项与后两组)11.(a-2)(4a+3)提示:利用十字相乘法;12.2x2n−1y m(3x2−2y2m)提示:提取公因式2x2n−1y m;13.等腰三角形提示:因式分解得:(a-b)(a+b-c)=0,因为a、b、c为三角形得三边,所以a+b-c为非零数,所以a=b;14.0 提示:三个一分组,每组都有因式x2+x+1三简答题:15.(x+2)(x-1)(x+4)(x-3)提示:(x2+x-2)(x2+x-12)=(x+2)(x-1)(x+4)(x-3)16.( x2+8x+10)(x+2)(x+6)提示:(x2+8x+7)(x2+8x+15)+15=(x2+8x)2+22(x2+8x)+120=(x2+8x+10)( x2+8x +12) =( x2+8x+10)(x+2)(x+6)17.2(x+2)(x+6)(x2+8x+26)提示:原式=(x+4+1)4+(x+4−1)4−82令t=x+4,所以(t+1)4−1+(t−1)4−81=((t+1)2−1)((t+1)2+1)+((t−1)2+9)((t−1)2−9)=2(t2+10)(t2-4)=2(x2+8x+26)(x2+8x+12)=2(x+2)(x+6)(x2+8x+26)18.(x2-xy+y2)2提示:令x+y=u,xy=v所以原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2-xy+y2)219.(x-4y-3)(x+2y+2)提示:x2-2xy-8y2-x-14y-6=(x-4y)(x+2y)+(2x-8y)-3x-6y-6=(x-4y)(x+2y)+2(x-4y)-3(x+2y+2)=(x-4y)(x+2y+2)-3(x+2y+2)=(x-4y-3)(x+2y+2)20.(x-1)(x2+x-8)提示:令x3- 9x+ 8=0则当x=1时,x3- 9x+ 8=1-9+8=0 则可将多项式分解为x3- 9x+ 8=(x-1)(x2 +bx+c)展开,得(x-1)( x2 +bx+c)X3 +bx2 +cx-x2- bx-c=x3+(b-1)x2+(c-b)x-c= x3- 9x+ 8则可得,b-1=0, c-b=-9, -c=8解得b=1,C=-8则多项式为x3- 9x+ 8=(x- 1)(x2+x-8)21.(x2+x+1)(x2-x+1)(x4-x2+1)提示:原式=x8+2x4+1-x4,=(x4+1)2- (x2)2=(x4+x2+1)( x4-x2+1),=[( x4+2x2+1)-x2]( x4-x2+1),=(x2+x+1)(x2-x+1)( x4+x2+1).22.a=5提示:x2-(a+5)x+5a-1=(x+b)(x+c)= x2+(b+c)x=bc所以:-(a+5)=b+c,且5a-1=bc,即c=−5−15+b因为b、c为整数,所以b=-4,代入得c=-6,则a=5。

21.2.3因式分解法课后练「含答案」

21.2.3因式分解法课后练「含答案」

1.一元二次方程(1)2(1)x x x -=-的解完全正确的是( )A .2x =B .122,1x x ==C .122,1x x =-=D .123,1x x ==-2.方程23x x =的解是( )A .0x =B .13x =C .113x =-,20x =D .113x =,20x =3.已知a b c ,,满足0,420a b c a b c ++=++=,则关于x 的一元二次方程20(0)ax bx c a ++=¹的解的情况为( )A .121,2x x ==B .121,2x x =-=-C .方程的解与a b ,的取值有关D .方程的解与a b c ,,的取值有关4.若实数x 满足方程()()22280x x x x +×+--=,那么2x x +的值为( )A .2-B .4C .2-或4D .2或4-5.如图,在ABCD Y 中,AE BC ^于点E ,BE a =,2AE CE a ==,且a 是一元二次方程2340x x +-=的根,则ABCD Y 的周长为( )A .6+B .8C .10D .4+6.如果2368x x +-的值与221x -的值相等,则x = .7.一元二次方程()()240x x --=的较大的根是 .8.定义:如果关于x 的一元二次方程20ax bx c ++=有两个实数根为a b ,,且满足2a b =,则称这样的方程为“倍根方程”.(1)方程 29180x x -+= (选填“是”或“不是”)“倍根方程”.(2)若()()50x x a --=是“倍根方程”,则=a9.一个菱形的边长是方程29180x x -+=的一个根其中一条对角线长为6,则该菱形的面积为 .10.解方程.(1)220x -=(公式法);(2)22330x x +-=(配方法);(3)()()22221y y +=+(因式分解法).11.已知关于x 的一元二次方程()22210x k x k k -+++=.(1)求证:方程有两个不相等的实数根;(2)若ABC V 的两边,AB AC 的长是这个方程的两个实数根,第三边BC 的长为5,当ABC V 是直角三角形时,求k 的值.12.阅读下面的材料,回答问题:解方程42540x x -+=,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设2x y =,那么42x y =,于是原方程可变为2540y y -+=①,解得11y =,24y =.当1y =时,21x =,1x \=±;当4y =时,24x =,2x \=±;\原方程有四个根:11x =,21x =-,32x =,42x =-.这一方法,在由原方程得到方程①的过程中,利用“换元法”达到降次的目的,体现了数学的转化思想.(1)方程4260x x --=的解为________.(2)仿照材料中的方法,尝试解方程()()2224120x x x x +-+-=.【分析】此题考查了解一元二次方程,利用因式分解法解一元二次方程即可得到答案.【详解】解:∵(1)2(1)x x x -=-,∴(1)(2)0x x --=,∴20x -=或10x -=,∴1221x x ==,,故选:B .2.D【分析】本题考查了一元二次方程的解法,熟悉其解法是解决问题的关键.利用因式分解法解一元二次方程即可.【详解】解:Q 23x x =,\ 230x x -=,即(31)0x x -=,\ 113x =,20x =,故选:D .3.A【分析】根据已知条件求出a b c 、、之间的关系,代入方程即可解答.本题考查了一元二次方程的概念及利用因式分解法解一元二次方程,理解一元二次方程的概念是解题的关键.【详解】解:∵0a b c ++=,420a b c ++=,∴a c b +=-①,42a c b +=-②,∴-②①得3b a =-,将3b a =-代入0a b c ++=得:30a a c -+=,∴2c a =,将3b a =-,2c a =代入20(0)ax bx c a ++=¹得:()2320a x x -+=,∵0a ¹,∴2320x x -+=,∴()()120x x --=,解得121,2x x ==,故选A .【分析】此题考查了换元法解一元二次方程.设2y x x =+,则原方程转化为关于y 的新方程,通过解新方程来求y 的值,即2x x +的值.【详解】解:设2y x x =+,原方程变形为()280y y --=,整理得:2280y y --=,解得:1242y y ==-,,当14y =时,24x x +=,即240x x +-=,此时()21414170D =-´´-=>;当22y =-时,22x x +=-,即220x x ++=,此时2141270D =´´=-<-;此时方程220x x ++=无解;∴24x x +=.故选:B5.A【分析】本题考查了平行四边形的性质,勾股定理,以及用因式分解法解一元二次方程,是基础知识要熟练掌握.先解方程求得a ,再根据勾股定理求得AB ,从而计算出ABCD Y 的周长即可.【详解】解:a Q 是一元二次方程2340x x +-=的根,2340a a \+-=,即()()140a a -+=,解得,1a =或4a =-(不合题意,舍去).∴1BE =,2AE CE ==,在Rt ABE △中,AB ===,3BC EB EC \=+=,ABCD \Y 的周长())2236AB BC =+==+故选:A .6.7-或1【分析】本题主要考查解一元二次方程,解一元一次方程,等式的性质等知识,根据题意得到方程2236821x x x +-=-,求出方程的解即可.【详解】解:根据题意得:2236821x x x +-=-,∴2670x x +-=,分解因式得:(7)(1)0x x +-=,∴70x +=,10x -=,解方程得:17x =-,21x =.故答案为:7-或1.7.4x =【分析】本题主要考查了用因式分解法解一元二次方程,先运用因式分解法解一元二次方程,再根据两根的大小得到较大的根,这种方法简便易用,是解一元二次方程最常用的方法.【详解】解:(2)(4)0x x --=20x \-=或40x -=,解得12x =,24x =,\较大的根是4x =,故答案为:4x =.8. 是 10或52【分析】本题主要考查了解一元二次方程,新定义:(1)利用因式分解法求出方程的两个根,再根据“倍根方程”的定义求解即可;(2)先解方程得到125x a x ==,,再根据“倍根方程”的定义求解即可.【详解】解:(1)∵29180x x -+=,∴()()360x x --=,解得1236x x ==,,∴212x x =,∴方程 29180x x -+=是 “倍根方程”.故答案为:是;(2)解方程()()50x x a --=得125x a x ==,,∵()()50x x a --=是“倍根方程”,∴2510a =´=或15522a =´=,故答案为:10或52.9.【分析】本题考查了因式分解法解一元二次方程、菱形的性质、勾股定理,先解方程得出16x =,23x =,结合一条对角线长为6得出菱形的边长为6,利用勾股定理得出菱形的另一条对角线为=,再由面积公式计算即可.【详解】解:29180x x -+=Q ,()()630x x \--=,解得:16x =,23x =,Q 菱形一条对角线长为6,\菱形的边长为6,\菱形的另一条对角线为=\菱形的面积为162´´=故答案为:10.(1)12x x ==(2)1x =2x =(3)11y =-,21y =.【分析】本题考查解一元二次方程,(1)根据公式法直接求解即可;(2)先将二次项系数化为1,再移项,再进行配方,最后开平方即可求解;(3)先进行移项,再利用平方差公式进行因式分解即可求解.【详解】(1)解:220x -=,1a =,b =-2c =,∵2244120b ac -=--´´=,∴x ==,∴12x x ==(2)解:22330x x +-=两边都除以2,得233022x x +-=.移项,得23322x x +=.配方,得22233332424x x æöæö++=+ç÷ç÷èøèø,即2333416x æö+=ç÷èø,开平方,得34x +=即x x ∴1x =2x (3)解:原方程可变形为()()222210y y +-+=.∴()()2212210y y y y ++++--=.∴330y +=,10y -=,∴11y =-,21y =.11.(1)见解析(2)k 的值为12或3【分析】本题考查一元二次方程综合,涉及一元二次方程根的情况与判别式关系,一元二次方程根与直角三角形结合等,熟练掌握一元二次方程相关定义与性质是解决问题的关键.(1)根据方程的系数结合根的判别式,可得出10D =>进而可证出方程有两个不相等的实数根;(2)利用因式分解法可求出,AB AC 的长,分BC 为直角边及BC 为斜边两种情况,利用勾股定理可得出关于k 的一元一次方程或一元二次方程解之即可得出k 值,取其正值(利用三角形的三边关系判定其是否构成三角形)即可得出结论.【详解】(1)由题意得:22[(21)]4()10k k k D =-+-´+=>∴方程有两个不相等的实数根(2)∵()22210x k x k k -+++=,即()[(1)]0x k x k --+=解得:12,1x k x k ==+当BC 为直角边时,2225(1)k k +=+,解得:12k =当BC 为斜边时,222(1)5k k ++=,解得:123,4k k ==-(不合题意,舍)综上:k 的值为12或312.(1)1x =2x =(2)13x =-,22x =;【分析】本题考查了根的判别式,换元法解一元二次方程,能够正确换元是解此题的关键.(1)结合材料,利用2x m =,再换元,求出m 的值,再代入求出x 即可;(2)结合材料,利用2x x n +=,再换元,求出n 的值,再代入求出x 即可.【详解】(1)解:设2x m =,则原方程变为260m m --=,解得:13m =,22m =-,当3m =时,23x =,解得x =当2m =-时,22x =-,方程无解;故原方程的解为:1x =2x =,故答案为:1x =2x =.(2)解:设2x x n +=,则原方程变为24120--=n n ,解得:16n =,22n =-,当6n =时,26x x +=,解得:13x =-,22x =;当2n =-时,22x x +=-,即220x x ++=,Q 2141270D =´´=-<-,\方程无解;故原方程的解为:13x =-,22x =.。

2025年初升高衔接数学强化训练-衔接点01-十字相乘法因式分解(含解析)

2025年初升高衔接数学强化训练-衔接点01-十字相乘法因式分解(含解析)

衔接点01十字相乘法因式分解的强化训练(原卷版)【基础内容与方法】二次三项式的概念(1)多项式c bx ax ++2,称为字母的二次三项式,其中称为二次项,为一次项,为常数项.例如:322--x x 和652++x x 都是关于x 的二次三项式.(2)在多项式2286y xy x +-中,如果把看作常数,就是关于的二次三项式;如果把看作常数,就是关于的二次三项式.(3)在多项式37222+-ab b a 中,把看作一个整体,即,就是关于的二次三项式.同样,多项式12)(7)(2++++y x y x ,把看作一个整体,就是关于的二次三项式.类型一:对于二次项系数为1的二次三项式))(()(2q x p x pq x q p x ++=+++例1:分解因式:652++x x .例2:分解因式:672+-x x .考点练习:分解因式1.24142++x x2.36152+-a a3.542-+x x 4.2524x x +- 5.22-+x x 6.1522--y y 7.24102--x x 8.2422-+x x类型二:对于二次项系数不是1的二次三项式c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=如:二次项系数不为1的二次三项式cbx ax ++2条件:(1)21a a a =1a 1c (2)21c cc =2a2c(3)1221c a c a b +=1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例3:分解因式101132+-x x 考点练习:分解因式1.6752-+x x2.2732+-x x 3.317102+-x x 4.101162++-y y 5.yxy x 121752-- 6.224715y xy x -+7.22254341y xy x --8.ax a x ++-)12(229.5)6(11)6(222++-+x x x x类型三:十字相乘法的进阶(一)换元法与十字相乘法综合例4:分解因式262234+---x x x x 考点练习:选用适当的方法分解因式1.673676234+--+x x x x2.)(2122234x x x x x +++++3.144234+++-x x x x (二)待定系数法例5:如果823+++bx ax x 有两个因式为1+x 和2+x ,求b a +的值.例6:分解因式613622-++-+y x y xy x .考点练习:1.选用适当的方法分解因式(1)2910322-++--y x y xy x ;(2)6752322+++++y x y xy x .2.当m 为何值时,多项式6522-++-y mx y x 能分解因式,并分解此多项式.3.已知:p y x y xy x +-+--1463222能分解成两个一次因式之积,求常数p 并且分解因式.衔接点01十字相乘法因式分解的强化训练(解析版)【基础内容与方法】二次三项式的概念(1)多项式c bx ax ++2,称为字母x 的二次三项式,其中ax 2称为二次项,bx 为一次项,c 为常数项.例如:322--x x 和652++x x 都是关于x 的二次三项式.(2)在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式.(3)在多项式37222+-ab b a 中,把ab 看作一个整体,即2(ab)2-7(ab)+3,就是关于ab 的二次三项式.同样,多项式12)(7)(2++++y x y x ,把x+y 看作一个整体,就是关于x+y 的二次三项式.类型一:对于二次项系数为1的二次三项式))(()(2q x p x pq x q p x ++=+++例1:分解因式:652++x x 【答案】)3)(2(++x x 【解析】将6分成两个数相乘,且这两个数的和要等于5.由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5.解:652++x x =32)32(2⨯+++x x =)3)(2(++x x 例2:分解因式:672+-x x 【答案】)6)(1(--x x【解析】解:原式=)6)(1()]6()1[(2--+-+-+x x =)6)(1(--x x 考点练习:分解因式1.24142++x x2.36152+-a a3.542-+x x 解:原式=)2)(12(++x x 原式=)3)(12(--a a 原式=)1)(5(-+x x 4.2524x x +- 5.22-+x x 6.1522--y y 原式=)3)(8(-+x x 原式=)1)(2(-+x x 原式=)3)(5(+-x y7.24102--x x 8.2422-+x x 原式=)2)(12(+-x x 原式=)4)(6(-+x x 类型二:对于二次项系数不是1的二次三项式如:二次项系数不为1的二次三项式c bx ax ++2.条件:(1)21a a a =1a 1c ,(2)21c c c =2a 2c ,(3)1221c a c a b +=1221c a c a b +=.分解结果:c bx ax ++2=))((2211c x a c x a ++.例3:分解因式101132+-x x .分析:解:101132+-x x =)53)(2(--x x .考点练习:分解因式1.6752-+x x 2.2732+-x x 3.317102+-x x 解:原式=)2)(35(+-x x 原式=)2)(13(--x x 原式=)32)(15(--x x 4.101162++-y y 5.2212175y xy x -- 6.224715y xy x -+原式=)52)(23(+-+x x 原式=)4)(35(y x y x -+原式=)45)(3(y x y x +-7.22254341y xy x --8.a x a x ++-)12(22原式=)2)(5(41y x y x +-原式=))(12(a x x --9.5)6(11)6(222++-+x x x x 原式=)1)(56)(1212(2+--+x x x x 类型三:十字相乘法的进阶(一)换元法与十字相乘法综合例4:分解因式262234+---x x x x 解:原式=)2162(222x x x x x +---=[]61(1(2222-+-+x x x x x 设t x x =+1,则21222-=+t xx∴原式=[]6)2222---t t x (=()10222--t t x =()()2522+-t t x =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+215222x x x x x =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+21··522·x x x x x x =()()1225222+++-x x x x =)2)(12()1(2--+x x x 考点练习:选用适当的方法分解因式1.673676234+--+x x x x 解:原式=)673676(222xx x x x +--+=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+3617)1(6222x x x x x 设y x x =-1,则21222+=+y x x ∴原式=)2476(22--y y x =)32)(83(2+-y y x =)322)(833(2+---x x x x x =()()23238322-+--x x x x =()()3)(212)(13-+-+x x x x 2.)(2122234x x x x x +++++解:原式=1232(222x x x x x ++++=⎥⎦⎤⎢⎣⎡++++3)1(2)1(222x x x x x 设t x x =+1,则21222-=+t x x ∴原式=[]32)222++-t t x (=()1222++t t x =()221+t x =2211⎪⎭⎫ ⎝⎛++x x x =()221++x x 3.144234+++-x x x x 解:原式=22241(41)x x x x x -+++=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+1141222x x x x x设y x x =-1,则21222+=+y x x ∴原式=22(43)x y y -+=2(1)(3)x y y --=)31)(11(2----x x x x x =()()13122----x x x x (二)待定系数法例5:如果823+++bx ax x 有两个因式为1+x 和2+x ,求b a +的值.【答案】解:设823+++bx ax x =))(2)(1(c x x x +++,则823+++bx ax x =c x c x c x 2)32()3(23+++++.∴⎪⎩⎪⎨⎧=+=+=82323c c b c a 解得⎪⎩⎪⎨⎧===4147c b a ,∴b a +=21.【解析】823+++bx ax x 是一个三次式,所以它应该分成三个一次式相乘,因此第三个因式必为形如c x +的一次二项式.例6:分解因式613622-++-+y x y xy x .【答案】解:设613622-++-+y x y xy x =)2)(3(n y x m y x +-++,∵)2)(3(n y x m y x +-++=mn y m n x n m y xy x --+++-+)23()(622,∴613622-++-+y x y xy x =mn y m n x n m y xy x --+++-+)23()(622,对比左右两边相同项的系数可得⎪⎩⎪⎨⎧-==-=+613231mn m n n m ,解得⎩⎨⎧=-=32n m .∴原式=)32)(23(+--+y x y x .【解析】原式的前3项226y xy x -+可以分为)2)(3(y x y x -+,则原多项式必定可分为)2)(3(n y x m y x +-++.考点练习:1.选用适当的方法分解因式(1)2910322-++--y x y xy x ;(2)6752322+++++y x y xy x .解:原式=)12)(25(-++-y x y x 原式=)2)(32(++++y x y x 2.当m 为何值时,多项式6522-++-y mx y x 能分解因式,并分解此多项式.【答案】解:设6522-++-y mx y x =))((b y x a y x +-++,∵))((b y x a y x +-++=ab y a b x b a y x +-+++-)()(22,∴6522-++-y mx y x =ab y a b x b a y x +-+++-)()(22,对比左右两边相同项的系数可得⎪⎩⎪⎨⎧-==-=+65ab a b m b a ,解得⎪⎩⎪⎨⎧-==-=123m b a 或⎪⎩⎪⎨⎧==-=132m b a .∴当m =-1时,)2)(3(65652222+--+=-+--=-++-y x y x y x y x y mx y x ;当m =1时,)3)(2(65652222+--+=-++-=-++-y x y x y x y x y mx y x .【解析】原式的前2项22y x -可以分为))((y x y x -+,则原多项式必定可分为))((b y x a y x +-++.3.已知:p y x y xy x +-+--1463222能分解成两个一次因式之积,求常数p 并且分解因式.【答案】解:设p y x y xy x +-+--1463222=)3)((b y x a y x +-++,∵)3)((b y x a y x +-++=ab y a b x b a y xy x +-+++--)3()(3222,∴p y x y xy x +-+--1463222=ab y a b x b a y x +-+++-)3()(22,对比左右两边相同项的系数可得⎪⎩⎪⎨⎧=-=-=+p ab a b b a 1436,解得⎪⎩⎪⎨⎧===515p b a .∴当p =5时,=+-+--p y x y xy x 1463222)13)(5(+-++y x y x .【解析】原式的前3项2232y xy x --可以分为)3)((y x y x -+,则原多项式必定可分为)13)(5(+-++y x y x .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初高中知识衔接之因式分解课后练习
主讲教师:王晨 北京某重点中学数学教师
题一:因式分解:a 3+a 2b -ab 2-b 3.
题二:求方程m 3-2m 2-4m +8=0的解.
题三:在实数范围内分解因式:22x x +-+
0=的根.
初高中知识衔接之因式分解
课后练习参考答案
题一:(a-b)(a+b)2.
详解:当被分解的式子是四项时,应考虑运用分组分解法进行分解.此题可把一二项结合一组,三四项结合一组;还可把一三项结合一组,二四项结合一组,进行分解因式,两种解法.
解法一:
原式=(a3+a2b)-(ab2+b3)=a2(a+b)-b2(a+b)=(a+b)(a2-b2)=(a+b)(a+b)(a-b)=(a+b)2(a-b).
解法二:
原式=(a3-ab2)+(a2b-b3)=a(a2-b2)+b(a2-b2)=(a2-b2)(a+b)=(a+b)(a-b)(a+b)=(a-b)(a+b)2.
题二:±2.
详解:此题可把一二项结合一组,三四项结合一组;首先分别将一二项、三四项提取公因式,然后进一步提取公因式,再运用平方差公式进行分解.
m3-2m2-4m+8=m2(m-2)-4(m-2)=(m-2)(m2-4)=(m-2)(m-2)(m+2)=(m+2)(m-2)2=0
于是m=±2.
题三:(1)
x x+.
题四:
1
2 m=.
详解:原式
2
1
()0
2
m
==-=∴
1
2
m=.。

相关文档
最新文档