3.平面任意力系
平面任意力系的平衡条件和平衡方程
理论力学 3-2平面任意力系的平衡条件和平衡方程 图 3-8 b
理论力学 3-2平面任意力系的平衡条件和平衡方程
(2)按图示坐标列平衡方程
理论力学 3-2平面任意力系的平衡条件和平衡方程
(3)解方程 解方程,求得
负号说明图中所设方向与实际情况相反,即 MA 为顺时针转向。
理论力学 3-2平面任意力系的平衡条件和平衡方程
二、关于平面任意力系 的例题
理论力学 3-2平面任意力系的平衡条件和平衡方程
例3-2 起重机 P1 = 10 kN,可绕铅直轴AB转动;
起重机的挂钩上挂一重为 P2 = 40 kN 的重物, 如图 3-6 所示。
起重机的重心C到转动轴的距离为1.5 m, 其他尺寸如图所示。
求在止推轴承 A 和轴承 B 处的约束力。
理论力学 3-2平面任意力系的平衡条件和平衡方程
b.如果力系对另一点 B的主矩也同时为 零,则这个力系或一合力沿 A,B 两点的连 线,或者平衡(图3-9)。
c.如果再加上
,那么力系如
有合力,则此合力必与 x 轴垂直。
理论力学 3-2平面任意力系的平衡条件和平衡方程 图 3-9
理论力学 3-2平面任意力系的平衡条件和平衡方程
理论力学 3-2平面任意力系的平衡条件和平衡方程
解: (1)选梁AB为研究对象 梁 AB 所受的主动力有: 均布载荷 q,
重力 P 和矩为 M 的力偶。 梁AB所受的约束力有: 铰链 A 的两个分力 Fax 和 FAy ,滚动支
座 B 处铅直向上的约束力FB。
理论力学 3-2平面任意力系的平衡条件和平衡方程
(2)列平衡方程 取坐标系如图3-7所示,列出平衡方程:
理论力学 3-2平面任意力系的平衡条件和平衡方程
3第三章平面任意力系
固定端(插入端)约束
说明: ①认为Fi 这群力在同一平面内; ② 将Fi向A点简化得一力和一力偶; ③FA方向不定可用正交分力FAx, Fay 表示; ④ FAy, FAx, MA为固定端约束反力;
⑤ FAx, FAy限制物体平动, MA为限
制转动。
11
MO
§3-2 平面一般力系的简化结果 合力矩定理 y 简化结果:主矢 F ' R ,主矩 M O 。
∴ 力的直线方程为:
MO
x
FR '
x
O
x
670.1 x 232.9 y 2355 0
2355 当 y 0, x 3.5 m 670 .1
18
FR
§3-3 平面一般力系的平衡条件与平衡方程
F' 0 R MO 0
为力平衡,没有移动效应。 为力偶平衡,没有转动效应。
P
45
0
M A (F i ) 0 :
FC sin45 AC P AB 0
B
FAy
FAx
y
A
C
FAx 20.01kN ,
FAy 10.0kN
FC
x
FC 28.3kN
或: M C ( F i ) 0 : FAy AC P CB 0
22
o
例:求横梁A、B处的约束力。已知 M Pa, q, 解:1)AB杆 q M B A 2)受力分析
主矩MO 方向:方向规定 +
Fiy tg 方向: tg FRx Fix
1
FRy
1
大小: M O M O ( Fi ) , (与简化中心有关),(因主矩等于各力对简化中心取矩 的代数和)
平面任意力系习题
A
a
D
E
F
a
4m
B
1E
B
C
A
F
G
D
ll
6
6
a
a
题 3-28图
题3-29图
3-30.构架由杆 ACE 、DEF 、BCD 铰接而成的, 所受的力及几何尺寸如图所示,各杆的
自重不计,试求杆 BCD 在铰链 C 处给杆 ACE 的力。
D
A b
E a
C a
B
b
b
题 3-30图
3-31.如图所示的构架,起吊重物的重为 滑轮和杆的自重,几何尺寸如图,试求支座
B1
2
A
α
题 3-37图
4F 4F
F
3
a
1
F
2
a
a
a
a
a
题 3-36 图
()
3-9.桁架中的杆是二力杆。 ( )
3-10.静滑动摩擦力 F 应是一个范围值。 ( )
2. 填空题(把正确的答案写在横线上)
3-11.平面平行力系的平衡方程
n
n
M A (Fi ) 0
M B(Fi ) 0 ,
i1
i1
其限制条件
。
3-12. 题 3-12 图平面力系,已知: F1=F 2=F 3=F 4=F , M=Fa , a 为三角形边长,如以 A
C
A
l /2
l /2
l/6 B
题3-26图
3-27.均质杆 AB 重为 P1,一端用铰链 A
支与墙面上,并用滚动支座 C 维持平衡,另一端又与重为 P2 的均质杆 BD 铰接,杆 BD 靠
与光滑的台阶 E 上,且倾角为 α ,设 AC 2 AB , BE 2 BD 。试求 A 、 C 和 E 三处的约
平面任意力系的简化
附加力偶系可以合成为一个力偶,其力偶矩为
MO M1 M 2
M n MO (F1 ) MO (F2 )
MO (Fn ) MO (Fi )
称为原力系对简化中心O的主矩,主矩与简化中心的选择有关。
结论:
平面任意力系向作用面内任一点O简化,可得一个力和一个力偶,这 个力等于该力系的主矢,作用线通过简化中心O ;这力偶的矩等于该力系 对简化中心O的主矩。主矢与简化中心位置无关,而主矩一般与简化中心 位置有关。 主矢的解析表达式为
3.力的平移定理是平面任意力系简化为平面汇交力系和平面力偶系
的依据。
B
d
F
=
F″ A
B
d
F′
F′
M
F
A
=
A
B
2. 平面任意力系向作用面内一点简化·主矢与主矩
F1
F2
y ′ FR j O y MO i x
O
简化 中心 Fn
F1 F1
F2 F2
Fn Fn
F1′
M1
M2 O Mn
′ F2 x
F1 C O
3m
F4
30° x
( F'Rx )2 ( F'Ry )2 4.662kN FR
y
主矢方向
F'Rx cos( F'R , i ) 0.986 FR F'Ry cos( F'R , j ) 0.165 FR
2、求主矩MO
( F'R , i ) 9.5 ( F'R , i ) 80.5
M1 M O (F1 )
M 2 M O (F2 ) M n M O (Fn )
工程力学教学课件 第3章 平面任意力系
A
MA
FAx
A
简 化
2021/7/22
FAy
11
一、简化结果分析
3.2
平
面 任
F1
A1
F2
O A n A2
M O FR'
O
意
Fn
力
系 的 简 化
1 . F R ' 0 ,M o 0
2 . F R ' 0 ,M O 0
结 果
3 . F R ' 0 ,M O 0 4 . F R ' 0 ,M O 0
的 简 化
此时主矩与简化中心的位置无关。
3、主矢不等于零,主矩等于零 (F R ' 0 ,M O 0 )
结 果
此时平面力系简化为一合力,作用在简化
中心,其大小和方向等于原力系的主矢,即
FRF
2021/7/22
13
一、简化结果分析
3.2 4、主矢和主矩均不等于零 (F R ' 0 ,M O 0 )
平
此时还可进一步简化为一合力。
面
任
FR'
FR'
FR
FR
意 力
O M O O
O
d
O
O
O
d
系 的 简 化
FR'' M O m O ( F R ) F R d F R 'd 于是
d M
F
由主矩的定义知:M O m O (F i)
O ' R
结 所以:
m O (F R ) m O (F i)
果 结论:平面任意力系的合力对作用面内任一点之矩
杆所受的力。
A
45
工程力学-平面任意力系平衡方程
4)FR=0 M0=0 力系处于平衡状态。
例3-1 图示物体平面A、B、C三点构成一等边三角形,三点分别作
用F力,试简化该力系。
解:1.求力系的主矢
F x F F cos60o F cos60o 0
Fy 0 F sin 60o F sin 60o 0
y
C
F M0 F
上作用F力,集中力偶M0=Fa,=45°,试求杆件AB的约束力。
A
M0=Fa
C
B
F
解:1.取AB杆为研究对象画受力图
2.列平衡方程求约束力
Da a
FAx
A
M0=Fa
C
FAy FC
B F
aa
M A (F ) 0 : FC sin 45 a F 2a M 0 0
FC
2Fa a
Fa 2/2
MC (F) 0:
FAx
2
3a 3
F
a
M0
0
FAy 0 FAx 3F
C aa
一 矩
MA(F) 0: Fx 0 :
二 矩
MA(F) 0: MB(F) 0:
三 矩
MA(F) 0: MB(F) 0:
2 3a
式 Fy 0 :
式 Fx 0 :
式 M C (F8) 0 :
3
本课节小结
A F
B x
FR ( Fx )2 ( Fy )2 0
2.选A点为简化中心,求力系的主矩
M0
M A (F)
F
sin 60
AB
F
AB 2
简化结果表明该力系是一平面力偶系。
4
二、平面任意力系的平衡方程
南航理论力学习题答案3(1)
第三章平 面 任 意 力 系1.平面力系向点1简化时,主矢R F ′=0,主矩 M 1≠0,如将该力系向另一点2简化,则( )。
① RF ′≠0,M 2≠M 1 ② R F ′=0,M 2≠M 1 ③ RF ′≠0,M 2=M 1 ④ R F ′=0,M 2=M 1 正确答案:④2.关于平面力系的主矢与主矩,下列表述正确的是( )。
① 主矢的大小、方向与简化中心的选择无关② 主矩的大小、转向一定与简化中心的选择有关③ 当平面力系对某点的主矩为零时,该力系向任何一点简化的结果为一合力④ 当平面力系对某点的主矩不为零时,该力系向任何一点简化的结果均不可能为一合力 正确答案:①3.关于平面力系与其平衡方程,下列表述正确的是( )。
① 任何平面力系都具有三个独立的平衡方程② 任何平面力系只能列出三个平衡方程③ 在平面力系的平衡方程的基本形式中,两个投影轴必须互相垂直④ 平面力系如果平衡,则该力系在任意选取的投影轴上投影的代数和必为零 正确答案:④4.平面内一非平衡共点力系和一非平衡共点力偶系最后可能合成的情况是( )。
① 一合力偶 ② 一合力③ 相平衡 ④ 无法进一步合成正确答案:②5.某平面平行力系诸力与y 轴平行,如图所示。
已知:F 1=10N ,F 2=4N ,F 3=8N ,F 4=8N ,F 5=10N ,长度单位以cm 计,则力系的简化结果与简化中心的位置( )。
① 无关 ② 有关③ 若简化中心选择在x 轴上,与简化中心的位置无关④ 若简化中心选择在y 轴上,与简化中心的位置无关正确答案:①6.图示皮带轮半径为R ,皮带拉力分别为T 1和T 2(二力的大小不变),若皮带的包角为α,则皮带使皮带轮转动的力矩( )。
① 包角α越大,转动力矩越大② 包角α越大,转动力矩越小③ 包角α越小,转动力矩越大④ 包角α变大或变小,转动力矩不变正确答案:④7.已知F、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,因此可知()。
第3章平面一般力系
第3章 平面任意力系
§3.1 力线平移定理 §3.2 平面任意力系的简化 §3.3 平面任意力系的平衡条件 和平衡方程 §3.4 物体系统的平衡静定 和静不定问题 §3.5 平面桁架
M A / FR 2375.0 / 711.5 d a = AC = = = = 3.52 m o sin ϕ sin ϕ sin 71.6
§3.2 平面任意力系的简化
四、 合力矩定理
平面任意力系的合力对于点O之矩等于原力系对简化中心 O的主矩,即:
M O = M O ( FR ) M O = ∑ M O (F )
第3章 平面任意力系
§3.1 力线平移定理 §3.2 平面任意力系的简化 §3.3 平面任意力系的平衡条件 和平衡方程 §3.4 物体系统的平衡静定 和静不定问题 §3.5 平面桁架
§3.3 平面任意力系的平衡条件和平衡方程
一、 平面任意力系的平衡方程
′ =0 保证物体移动平衡 由于 FR MO=0 为转动平衡
§3.2 平面任意力系的简化
二、主矢和主矩
建立坐标系oxy
′ = F1 x + F2 x + ⋅⋅⋅ + Fnx = ∑ Fx FRx ′ = F1 y + F2 y + ⋅⋅⋅ + Fny = ∑ Fy FRy
y
MO
r ′ FR
α
O
主矢大小 ′ = ( FR ′x )2 + ( FR ′y )2 = ( ∑ Fx )2 + ( ∑ Fy ) 2 FR 主矢方向 r r ′,i ) = cos( FR
第三章 平面任意力系和平面平行力系
X ) 0
m A ( Fi ) 0 mB ( Fi ) 0 mC ( Fi ) 0
③三矩式 条件:A、B、C 不在同一直线上
Y 0
mO ( Fi ) 0
①一矩式
mB ( Fi ) 0
②二矩式 条件:x 轴不⊥AB 连线
向一点简化
汇交力系+力偶系 (已知力系)
力 , R'(主矢) , (作用在简化中心) 力偶 ,MO (主矩) , (作用在该平面上)
5
主矢R ' F1 F2 F3 Fi
主矩 M O m1 m2 m3 mO ( F1 ) mO ( F2 ) mO ( Fi )
1
第三章
平面任意力系与平面平行力系
§3–1 平面任意力系向一点的简化
§3–2 平面任意力系的平衡问题
§3–3 平面平行力系
2
引言
平面任意力系:各力的作用线在同一平面内,既不汇交为一 点又不相互平行的力系,叫平面任意力系。 [例 ]
力系向一点简化:把未知力系(平面任意力系)变成已 知力系(平面汇交力系和平面力偶系)
3
§3-1 平面任意力系向一点简化
一、力的平移定理
作用在刚体上点A的力 F,可以平行移到任一点B,但必须
同时附加一个力偶。这个力偶的矩,等于原来的力 F 对新作
用点B的矩。 [证 ] 力 F 力系 F , F , F
力F 力偶(F,F )
4
二、平面任意力系的简化
一般力系(任意力系) (未知力系) 汇交力系 力偶系
出平衡重的最大值Wmax=375 kN 。实际工作时不允许处于
极限状态,需使其安全工作,平衡重应在这两者之间,即 Wmin<W<Wmax。
静力学:第三章-平面任意力系(1)详解
合力
合力
3.3 平面任意力系的平衡
平面任意力系平衡的充要条件:力系的主矢和对任
意点的主矩都等于零。
平面任意力系的平衡方程:
一般式
二矩式
三矩式
Fx Fy
0 0
MO 0
F x
0
M A 0
M B 0
M A 0 M B 0 M C 0
两个取矩点连线, 不得与投影轴垂直
三个取矩点, 不得共线
解得: P3max=350kN
P3
P1
P2
75kN P3 350kN A
B
FA
FB
当 P3=180kN 时(平面平行力系):
M A 0 4 P3 2 P1 14 P2 4 FB 0 P3
P1
P2
Fy 0 FA FB P1 P2 P3 0
解得: FA=210kN FB=870kN
平面任意力系的平衡方程只有三个,只能求三 个未知数。
三个特例:
平面汇交力系: Fx 0, Fy 0 平面力偶系: M o 0
平面平行力系: Fy 0, M o 0 或者 M A 0, M B 0
3.4 物体系统的平衡
静定问题:系统未知量数目等于独立的平衡方程数目。 超静定问题(静不定问题):系统未知量数目超过独
其中:M B M B (F ) Fd
3.2 平面任意力系向作用面内一点简化
主矢:矢量和 FR Fi 主矩: 代数和 M O M O (Fi )
主矢与简化中心无关,而主矩一般与简化中心有关.
主矩简化什么情况下与简化位置无关?
平面任意力系应用:平面固定端约束
=
=
平面任意力系的简化结果
(1) FR 0, M O 0
第三章_平面任意力系..
由直角三角形OAB 可知,B 点离0点的距离为:a- COSPt第三章平面任意力系[习题3-1] x 轴与y 轴斜交成a 角,如图3-23所示。
设一力系在xy 平面内,对y轴和x 轴上的A 、B 两点有送M jA =0,送M jB = 0 ,且送F iy =0, 2 F i^ 0。
已知0A = a ,求B 点在x 轴上的位置。
解:因为M A =2 M iA =0,但S F ix H 0 ,即卩F^Q ,根据平面力系简化结果的 讨论(2)可知,力系向A 点简化的结果是:F R 是原力系的合力,合力F R 的作 用线通过简化中心A 。
又因为M B =S M iB=0,但送F ix^O ,即卩F R HQ ,根据平面力系简化结果的讨论(2)可知,力系向B 点简化的结果是:F R是原力系的合力,合力F R的 作用线通过简化中心B 0一个力系的主矢量是一个常数,与简化中心的位置无关。
因此,合力F R 的作用线同时能过A 、B 两点。
又因为F Ry =5: F iy =0,所以合力F R 与y 轴垂直。
即AB 与y 垂直。
图 3-23500[习题3-2]如图3-24所示,一平面力系(在oxy 平面内)中的各力在X 轴上投影之代数和等于零,对A 、B 两点的主矩分别为 M A =12kN .m, M B =15kN ”m,A 、B 两 点的坐标分别为(2, 3)、(4, 8),试求该力系的合力(坐标值的单位为m )。
解:由公式(3-5)可知: MO2 =M O1 中 M O2(F R ) M B =M A +M B (F R ) F RM B =M A +M B (F RX )+ M B (F Ry ) 依题意F RX =0,故有: k*---- C(-6,3)a =8mM B =M A +M B (F Ry ) 15 =12+F Ry>q 4-2) 2F Ry =3F Ry =1.5(kN) F R =F Ry =1.5kNF R 1.5故C 点的水平坐标为:X = -6m 。
第三章平面力系
(3)若FR‘≠0,MO‘≠0,这时根据力的平移定理的 逆过程,可以进一步简化成一个作用于另一点 的合力。
(4) FR‘=0,MO‘=0,则力系是平衡力系 。 综上所述,平面一般力系简化的最后结果 (即合成结果)可能是一个力偶,或者是一个合 力,或者是平衡。 3-1-3合力矩定理 当FR‘=0,MO‘≠0 时,还可进一步简化为一 M o ( FR ) FR d 合力,合力对点的矩是 / / 而 Mo mo ( F ) FR d M o 所以 Mo (FR ) mO (F )
3-1-2简化结果的分析 平面一般力系向一点简化,一般可得到一 个力和一个力偶,但这并不是最后简化结果。 根据主矢与主矩是否存在,可能出现下列几种 情况: (1)若FR‘=0,MO‘≠0,说明原力系与一个力偶等 效,而这个力偶的力偶矩就是主矩。 (2)若FR‘≠0,MO‘=0 ,则作用于简化中心的主 矢FR'就是原力系FR的合力,作用线通过简化中 心。
228 .9kN m
计算结果为正值表示是逆时针转向。
因为主矢
≠0,主矩 FR
/ Mo ,如图 0 (b)所示,
所以还可进一步合成为一个合力FR。 FR的大小、 方向与FR‘相同,它的作用线与点的距离为
M O 228.9 d 0.375m FR 612.9
因为MO正,故m0(FR)也应为正,即合力FR 应在点O左侧,
X
F F
0
二力矩形式的平衡方程 (简称二矩式)
在力系作用面内任取两点A、B及X轴,平 面一般力系的平衡方程可改写成两个力矩方程 和一个投影方程的形式,即
F m m
X
0 0 0
A
B
式中轴不与A、B两点的连线垂直。
第三章:平面任意力系
第三章平面任意力系一、要求1、掌握平面任意力系向一点简化的方法。
会应用解析法求主矢和主矩。
熟知平面任意力系简化的结果。
2、深入理解平面任意力系的平衡条件及平衡方程的三种形式。
3、能熟练地计算在平面任意力系作用下物体和物体系的平衡问题。
4、理解简单桁架的简化假设,掌握计算其杆件内力的节点法和截面法。
二、重点、难点1、本章重点:平面任意力系向作用面内任一点的简化,力系的简化结果。
平面任意力系平衡的解析条件,平衡方程的各种形式。
物体及物体系平衡问题的解法。
2、本章难点:主矢与主矩的概念。
物体系的平衡问题。
三、学习指导1、力的平移定理,是力系向一点简化的理论基础。
一个力平移后,它对物体的作用效果发生了改变,要想保持原来力的作用效果,必须附加一个力偶。
2、平面任意力系向一点简化的方法:平面任意力系向一点简化,是依据力的平移定理,将作用在物体上的各力向任一点(称为简化中心)平移,得到作用在简化中心的一个平面汇交力系和平面力偶系(附加力偶系)。
两个力系合在一起与原力系等效。
这样,一个复杂的力系就分解成了两个简单的力系。
然后,分别求平面汇交力系的合力和平面力偶系的合力偶,则原力系由作用在简化中心的一个力和一个力偶所代替,该力的大小和方向等于力系的主矢,该力偶的力偶矩等于力系的主矩。
于是,平面任意力系的简化就成了计算力系的主矢和主矩的问题。
3、主矢和主矩:平面任意力系中,各力的矢量和称为力系的主矢,即平面任意力系中,各力对于简化中心的力矩的代数和称为力系的主矩,即关于主矢和主矩,需要弄清楚以下几点:(1)主矢不是力,主矩不是力偶。
主矢和主矩是描述平面任意力系对物体作用效果的量。
(2)主矢是自由矢量,只有大小和方向,描述平面任意力系使物体平动的作用效果。
平面任意力系的主矩是代数量,只有大小和正负,描述平面任意力系使物体绕点转动的作用效果。
(3)主矢与简化中心的选择无关。
从这个意义上讲,主矢是力系的一个不变量。
主矩与简化中心的选择有关。
工程力学 第三章 平面任意力系
M O FR d
合力矩定理:
M o ( FR ) M O M O ( Fi )
3.1.5 平面任意力系的简化结果分析 ⑶平衡的情形
FR 0 M O 0
平衡
与简化中心的位置无关
例3-1 已知作用在梁AB上的 两力a=3m,求合力大小及作 用线位置。 解:
⑴大小: FR=30KN ⑵方向: 铅垂向下 ⑶作用线位置: A
Fy 0 F1 sin F2 sin F3 sin 0
平面平行力系的方程为两个,有两种形式:
Fy 0 M A 0
各力不得与投影轴垂直
M A 0 M B 0
两点连线不得与各力平行
例3-10已知: P 700kN, P2 200kN, AB=4m; 1
3.2.1 平面任意力系的平衡条件 平面任意力系平衡的充要条件是:
力系的主矢和对任意点的主矩都等于零
FR 0 M O 0
3.2.2 平面任意力系的平衡方程
FR ( Fx ) ( Fy )
2
2
M O M O ( Fi )
Fx 0 Fy 0 M O 0
d.方程要标准
例3-4 已知: AC=CB= l,P=10kN;求:铰链A和DC杆 受力。
解:取AB梁,画受力图.
Fx 0 FAx FC cos 45 0 Fy 0 FAy FC sin 45 P 0 M A 0 FC cos 45 l P 2l 0 解得: FC 28.28kN, FAx 20kN, FAy 10kN
例 3-5 已知: 1 4kN, P2 10kN, 尺寸如图; P 求:BC杆受力及铰链A受力。
3平面任意力系
R '( X )2 ( Y )20 MOmO(Fi)0
9
平衡方程:
X0
Y0
mO(Fi)0
X0 mA(Fi)0 mB(Fi)0
mA(Fi)0 mB(Fi)0 mC(Fi)0
①一矩式
②二矩式
③三矩式
条件:x 轴不AB 连线
所以增大摩擦力的途径为:①加大正压力N, ②加大摩擦系数f
28
29
3、 特征: 大小:0FFmax(平衡范围)满足 X0
静摩擦力特征:方向:与物体相对滑动趋势方向相反 定律:Fmaxf N( f 只与材料和表面情况有 关,与接触面积大小无关。)
二、动滑动摩擦力: 大小: F' f'N
动摩擦力特征:方向:与物体运动方向相反 定律: F' f'N(f '只与材料和表面情况有 关,与接触面积大小无关。)
解物系问题的一般方法: 由整体 局部(常用),由局部
整体(用较少)
17
例 试求图示静定梁在A、B、C三处的全部约束力。已 知d、q和M。注意比较和讨论图a、b、c三梁的约束力。
解:图中所示的各梁,都 是由两个刚体组成的刚体系 统。只考虑整体平衡,无法 确定全部未知约束力,因而 必须将系统拆开,选择合适 的平衡对象,才能确定全部 未知约束力。
mi 0
四、静定与静不定
独立方程数 ≥ 未知力数目—为静定 独立方程数 <未知力数目—为静不定
五、物系平衡 物系平衡时,物系中每个构件都平衡, 解物系问题的方法常是:由整体 局部
单体
39
六、解题步骤与技巧
解题步骤
解题技巧
理论力学-平面任意力系
平面任意力系可能由 多个力的叠加构成, 具有较高的复杂性。
平面任意力系的特点
多方向性
平面任意力系可以有从不同方向作用的力。
多点作用性
平面任意力系可以有多个作用点。
力的大小不同
平面任意力系中的力可以有不同的大小。
力的叠加
平面任意力系可能由多个力的叠加构成。
平面任意力系的合力和力矩求解方法
1
合力求解方法
Hale Waihona Puke 理论力学-平面任意力系通过本讲,你将深入了解平面任意力系的定义、特点、合力和力矩求解方法、 平衡条件、实际应用,以及解题步骤。准备好开始你的力学之旅吧!
平面任意力系的定义
1 什么是平面任意
力系?
平面任意力系是指位 于同一平面内的多个 力的集合。
2 力的方向和作用点 3 任意力系的复杂性
力可以有不同的方向 和不同的作用点,但 都在同一平面内。
将所有力按照矢量法则相加,求
力矩求解方法
2
得合力的大小和方向。
通过力矩定理,求得平面任意力
系的力矩。
3
力矩的方向
力矩的方向垂直于力的平面。
平面任意力系的平衡条件
力的平衡
合力为零,即所有力合成为零。
力矩的平衡
力矩的合力为零。
平面任意力系的实际应用
1 桥梁结构分析
分析桥梁结构的受力 情况。
2 机械设计
设计和优化机械系统 中的力的分布。
3 建筑结构设计
分析建筑结构的静力 平衡。
案例分析:平面任意力系的解题步骤
1
Step 1
分析力的大小和方向。
2
Step 2
计算合力和合力矩。
3
Step 3
第3章 平面任意力系
,i
FRx FR
0.614,
FR , i 52.1
A
cosFR
,
j
FRy FR
0.789,
2. 求主矩MO
FR , j 37.9
MO O
FRF R
MO MO F
2F2 cos 60 2F3 3F4 sin 30 0.5 kN m
由于主矢和主矩都不为零,所以最后合
成结果是一个合力FR。如右图所示。
M
F
q
45
B
A
l
24
例题3-6
A
y
FAx
A
MA FAy
解: 取梁为研究对象,受力分析如图
由平衡方程
M
F
Fx 0, FAx F cos 45 0
q
45
B
Fy 0, FAy ql F sin 45 0
l
M AF 0,
MA
ql 2 2
Fl cos
45
M
0
解方程得
q
M 45 F FAx F cos 45 0.707 F
FR FR
合力FR到O点的距离
d MO 0.51 m FR
B x
C
12
例题3-2
水平梁AB受三角形分布的载荷作用,如图所示。
载荷的最大集度为q, 梁长l。试求合力作用线的位置。
A l
解:
q
在梁上距A端为x的微段dx
B x 上,作用力的大小为q'dx,其
中q'为该处的载荷集度 ,由相
似三角形关系可知
F
A
B
C
D
20
例题3-4
A
工程力学第三章:平面任意力系
水平尾翼的约束。
车刀
利用平面任意力系的简化讨论固定端约束(以雨搭为例):
Fi
A
雨搭
雨搭
简化为一个平面任意力系
MA
A
FA
雨搭
FAy
MA
A
FAx
雨搭
向A处简化,简化结果是 一个主矢加一个主矩
主矢方向待定,用两正交分 量表示
例1:已知F1=150N,F2=200N,F3=300N,F=F ́=200N。求此力 系向原点O简化的结果,并求力系的合力。
2
M=0
FR′≠0
3
M=0
合力
合力
合力作用线通过简化中心
合力作用线距离简化中心距离
4
M≠0
d M O / FR
第三种和第四种结果属于同一种情形。是简化中心选择的不同 引起的。
四、合力矩定理
可以证明,M O ( FR ) M O ( Fi )
i 1
n
由于简化中心可任取,因此上式有普遍意义,可描述为:平 面任意力系的合力对作用面内任一点之矩等于力系中各分力 对于同一点之矩的代数和。
4、在列平衡方程时,最好将力矩方程的矩心取为两个未知力的 交点,而对投影方程的投影轴的选取,应尽可能使其与某些未知 力垂直,为什么? 答:避免解联立方程,使方程尽量简单。
5、在等腰直角三角形上的A、B、C三点分别作用三个力,各力 的大小和方向如图所示。问该力系是否平衡?为什么?
问题引入:平面任意力系研究物体或物系在受到相关力系作用
下的平衡问题。
吊车:工程中吊车的
起重载荷如何进行计
算?
破碎机:鄂式破碎机是矿山机械中常见的机械设备,颚板作用 给矿石的作用力应如何进行计算?
平面任意力系三矩式平衡方程限制条件
平面任意力系三矩式平衡方程限制条件平面任意力系三矩式平衡方程是力学中用于求解平面力系平衡问题的重要工具。
在应用平面任意力系三矩式平衡方程求解问题时,需要遵循一定的限制条件。
1. 限制条件一:平面任意力系平面任意力系是指力系中的力都在同一个平面内。
平面任意力系三矩式平衡方程适用于平面内力的平衡问题,而对于空间力系,则需要使用空间力系平衡方程。
2. 限制条件二:力的合成与分解在使用平面任意力系三矩式平衡方程时,需要将力按照水平和垂直方向进行合成与分解。
这是因为平面力系的特点是力只有两个方向的分量,即水平方向和垂直方向,所以需要将力分解为水平和垂直方向的分量。
3. 限制条件三:力的平行四边形法则平面任意力系三矩式平衡方程的求解基于力的平行四边形法则。
根据力的平行四边形法则,平面力系中两个力的合力等于这两个力构成的平行四边形的对角线。
因此,在使用平面任意力系三矩式平衡方程时,需要根据力的平行四边形法则进行合力的计算。
4. 限制条件四:矩的计算平面任意力系三矩式平衡方程中的矩是力与某一点之间的乘积。
在计算矩时,需要确定参考点,并根据参考点的选择不同,矩的计算结果也会不同。
常用的参考点有力的作用点、力的垂直投影点等。
5. 限制条件五:力的正负方向在使用平面任意力系三矩式平衡方程时,需要明确力的正负方向。
通常约定力的方向与坐标轴正方向一致时为正方向,与坐标轴正方向相反时为负方向。
在计算矩时,需要根据力的正负方向确定正负号。
6. 限制条件六:力的单位在使用平面任意力系三矩式平衡方程时,需要保持力的单位一致。
通常使用国际单位制中的牛顿(N)作为力的单位。
平面任意力系三矩式平衡方程的限制条件包括平面任意力系、力的合成与分解、力的平行四边形法则、矩的计算、力的正负方向和力的单位。
只有在满足这些限制条件的情况下,才能正确地应用平面任意力系三矩式平衡方程解决平面力系的平衡问题。
通过合理选择参考点、正确确定力的正负方向、准确计算矩以及合理应用力的平行四边形法则,我们可以利用平面任意力系三矩式平衡方程解决各种平面力系的平衡问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[例] 已知:OA=R, AB= l , 当OA水平时,冲压力为 P时,求:①M=?②O点的约束反力?③AB杆内力? ④冲头给导轨的侧压力? 解:研究B
由 X 0
N S B sin 0 Y 0
P S B cos 0
P S B , N P tg cos
mO ( Fi ) 0
①一矩式
mB ( Fi ) 0
②二矩式 条件:x 轴不 AB 连线
上式有三个独立方程,只能求出三个未知数。
14
[例] 已知:P, a , 求:A、B两点的支座反力? 解:①选AB梁研究 ②画受力图(以后注明 解除约束,可把支反 力直接画在整体结构 的原图上)
解除约束
由 mA ( Fi ) 0
P2a N B 3a 0, N B
X 0
XA 0
2P 3
Y 0 YA N B P 0,
P YA 3
15
[例] 已知:P=20kN, m=16kN· m, q=20kN/m, a=0.8m 求:A、B的支反力。 解:研究AB梁
② 将Fi向A点简化得一 力和一力偶;
③RA方向不定可用正交 分力YA, XA表示; ④ YA, XA, MA为固定端 约束反力; ⑤ YA, XA限制物体平动, MA为限制转动。
9
§3-3
平面任意力系的简化结果 合力矩定理
简化结果: 主矢 R,主矩 MO ,下面分别讨论。 ① R =0, MO =0,则力系平衡,下节专门讨论。 ② R =0,MO≠0,即简化结果为一合力偶, MO=M 此时刚体等效于只有一个力偶的作用,因为力偶可 以在刚体平面内任意移动,故这时,主矩与简化中 心O无关。 ③ R ≠0,MO =0,即简化为一个作用于简化中心的 合力。这时,简化结果就是合力(这个力系的合 力), R R 。(此时与简化中心有关,换个简化 中心,主矩不为零) 10
' YD 6 YG 1 0 50 YD 8.33( kN ) 6
③ 再 研 究 整 体
mA 0,YB 3 YD 12 P 10 Q 6 0 YB 100(kN)
Y 0,YA YB YD Q P 0 YA 48.33(kN) 32
简化中心 (与简化中心位置无关) [因主矢等于各力的矢量和]
7
大小: M O mO ( Fi )
主矩MO 方向: 方向规定 + — (转动效应) 简化中心: (与简化中心有关) (因主矩等于各力对简化中心取矩的 代数和) 固定端(插入端)约束 在工程中常见的
雨搭
车刀
8
固定端(插入端)约束
说明 ①认为Fi这群力在同一 平面内;
M O ( R ) mO ( Fi ) ———合力矩定理
i 1
n
由于简化中心是任意选取的,故此式有普遍意义。 即:平面任意力系的合力对作用面内任一点之矩 等于力系中各力对于同一点之矩的代数和。
12
§3-4
平面一般力系的平衡条件与平衡方程
由于 R =0 为力平衡 MO =0 为力偶也平衡 所以平面任意力系平衡的充要条件为: 力系的主矢 R和主矩 MO 都等于零,即:
[例2] 已知:P=100N,AC=1.6m,BC=0.9m,CD= EC =1.2m,AD=2m且AB水平,ED铅垂,BD垂直于 斜面; 求 S BD ?和A点的支座反力?
解:研究整体,画受力图, 选坐标列方程 mB 0,YA 2.5 P1.20
' X 0,
解得: X A 136N; YA 48N
由 X 0, X A 0
m A ( F ) 0 ;
a R B a q a m P 2 a 0 2 Y 0 YA RB qa P 0
解得: qa m 200.8 16 RB 2 P 22012( kN) 2 a 2 0.8 YA P qa RB 20 200.81224(kN)
1
第三章
平面任意力系
平面任意力系:各力的作用线在同一平面内,既不 汇交为一点又不相互平行的力系叫平面任意力系。 [例 ]
力系向一点简化:把未知力系(平面任意力系)变 成已知力系(平面汇交力系和平面力偶系)
2
第三章
平面任意力系
§3–1 力的平移
§3–2 平面任意力系向一点简化
§3–3 平面任意力系的简化结果 • 合力矩定理
21
再研究轮
mO ( F ) 0
S A cos R M 0
X 0
X O S A sin 0
Y 0 S A cos YO 0
M PR X O P tg
YO P
22
[负号表示力的方向与图中所设方向相反]
《平面一般力系习题课》
本章小结:
④ R ≠0,MO ≠0,为最一般的情况。此种情况还可
以继续简化为一个合力 R 。
合力 R 的大小等于原力系的主矢
合力 R的作用线位置
MO d R
11
结论: 平面任意力系的简化结果 : ①合力偶MO ; ②合力 R n 合力矩定理:由于主矩 M O mO ( Fi )
i 1
而合力对O点的矩 mO ( R ) Rd M O (主矩)
16
§3-5 静定与静不定问题的概念 物体系统的平衡 一、静定与静不定问题的概念 我们学过: X 0 平面汇交力系 两个独立方程,只能求两个 Y 0 独未知数。 力偶系 mi 0 一个独立方程,只能求一个独立未 知数。 X 0 Y 0 平面任意力系 三个独立方程,只能求三 mO ( Fi ) 0 个独立未知数。 独立方程数目≥未知数数目时,是静定问题 独立方程数目<未知数数目时,是静不定问题 17
[ 例]
静定(未知数三个)
静不定(未知数四个)
静不定问题在强度力学(材力,结力,弹力)中 用位移谐调条件来求解。
18
二、物体系统的平衡问题 物体系统(物系):由若干个物体通过约束所组成 的系统叫∼。 [例 ]
外力:外界物体作用于系统上的力叫外力。
内力:系统内部各物体之间的相互作用力叫内力。
19
物系平衡的特点: ①物系静止 ②物系中每个单体也是平衡的。每个单体可列3个 平衡方程,整个系统可列3n个方程(设物系中 有n个物体) 解物系问题的一般方法: 由整体 局部,由局部 整体
6
主矢R ' F1 F2 F3 Fi
主矩 M O m1 m2 m3 mO ( F1 ) mO ( F2 ) mO ( Fi )
2 2 R ' R ' R ' ( X ) ( Y ) 大小: x y 2 2
Ry Y 1 1 R 主矢 方向: tg tg Rx X (移动效应)
平面平行力系的平衡方程 X 0 成为恒等式 一矩式 二矩式 Y 0 m A ( F ) 0 A B 连线不平行于 力线 m A ( F ) 0 mB ( F ) 0
24
平面汇交力系的平衡方程 平面力偶系的平衡方程
X 0 m A ( F ) 0 成为恒等式 Y 0
30
[例3] 已知:连续梁上,P=10kN, Q=50kN, CE 铅垂, 不计梁重。求:A ,B和D点的反力(看出未知数多 余三个,不能先整体求出,要拆开)
解:①研究起重机
由mF 0
YG 2 Q 1 P 5 0
50 510 YG 50( kN ) 2
31
② 再研究梁CD 由mC 0
M B 100011000( Nm)
④ 解方程得
27
① 再研究CD杆 ② 受力如图
mE 0,SCA sin 45o CE PED 0
P ED 10001 1414( N ) o sin 45 CE 0.7071
28
③ 取E为矩心,列方程 ④ 解方程求未知数 SCA
2 2 R ' ( X ) ( Y ) 0 M o mo ( Fi ) 0
13
X
0 Y 0
X 0
mA ( Fi ) 0
mA ( Fi ) 0 mB ( Fi ) 0 mC ( Fi ) 0
③三矩式 条件:A,B,C不在 同一直线上
力F 力偶 ( F,F )
4
说明: ①力线平移定理揭示了力与力偶的关系: 力 力+力偶
②力平移的条件是附加一个力偶m,且m与d有关, m=F•d ③力线平移定理是力系简化的理论基础。
5
§3-2 平面任意力系向一点简化
一般力系(任意力系)向一点简化 汇交力系+力偶系 (未知力系) (已知力系) 汇交力系 力 , R'(主矢) , (作用在简化中心) 力偶系 力偶 ,MO (主矩) , (作用在该平面上)
八、例题分析 [例1] 已知各杆均铰接,B端插入地内,P=1000N, AE=BE=CE=DE=1m,杆重不计。 求AC 杆内力?B 点的反力? 解: ① 选整体研究 ② 受力如图 ③ 选坐标、取矩点、Bxy, B点列方程为:
X 0 X B 0; Y 0 YB P 0; YB P mB 0 M B P DE 0
§3–4 平面任意力系的平衡条件和平衡方程 §3–5 静定与静不定问题的概念 •物体系统的平衡 平面一般力系习题课
3
§3-1
力的平移
力的平移定理:可以把作用在刚体上点A的力 F 平行 移到任一点B,但必须同时附加一个力偶。这个力偶 的矩等于原来的力 F 对新作用点B的矩。 [证 ] 力 F 力系 F , F , F
一、力线平移定理是力系简化的理论基础 力 力+力偶 二、平面一般力系的合成结果 ① 合力(主矢) R ' 0,M O 0;或R ' 0,M O 0; ② 合力偶(主矩) R ' 0,M O 0; ③ 平衡