2008年1月全国自学考试试题高等数学(工本)试卷

合集下载

高等数学工本自考试题及答案

高等数学工本自考试题及答案

高等数学工本自考试题及答案1、高等数学工本自考试题及答案一、单项选择题〔共5题,共10分〕1.已知向量a={-1,3,2),b={-3,0,1),则a×b=A.{3,5,9}B.{-3,5,9)C.(3,-5,9)D.{-3,-5,-9)2.已知函数,则全微分dz=A.B.C.D.3.设积分区域D:x²+y²≤4,则二重积分A.B.C.D.4.微分方程是A.可分别变量的微分方程nB.齐次微分方程C.一阶线性齐次微分方程D.一阶线性非齐次微分方程5.无穷级数的敛散性为A.条件收敛B.肯定收敛C.发散D.敛散性无法确定二、填空题〔共5题,共10分〕6.已知无穷级数,则u1=7.已知点p〔-4,2+√3,2-√3〕和点Q〔-1,√3,2〕,则向量的模=8.已知函数f〔x,y〕=,则=9.设积分区域D:|x|2、≤1,0≤y≤a,且二重积分,则常数a=10.微分方程的特解y*=三、计算题〔共5题,共10分〕n11.求过点A(2,10,4),并且与直线x=-1+2t,y=1-3t,z=4-t平行的直线方程12.求曲线x=4cost,y=4sint,z=3t在对应于的点处的法平面方程13.已知方程x2+y2-z2+2z=5确定函数z=z(x,y),求14.计算二重积分,其中D 是由y2=x和y=x2所围成的区域.15.计算三重积分,其中积分区域16.计算对弧长的曲线积分,其中C是从点A(3,0)到点B(3,1)的直线段·17.计算对坐标的曲线积分,其中N抛物线y=x2上从点A(一1,1)到点B〔1,1〕的一段弧。

18.求微分方程的通解19.求微分方程的通解20.推断无穷级数的敛散性3、n21.已知f(x)是周期为2π的周期函数,它在[-π,π〕上的表达式为f〔x〕=x+1,求f(x)傅里叶级数中系数b22.求函数f〔x,y〕〔xgt;0,ygt;0〕的极值23.证明对坐标的曲线积分曲在整个xoy 面内与路径无关.24.将函数展开为2的幂级数.1、正确答案:C2、正确答案:D3、正确答案:A4、正确答案:A5、正确答案:B6、正确答案:n7、正确答案:6.48、正确答案:9、正确答案:8.410、正确答案:11、正确答案:12、正确答案:13、正确答案:n14、正确答案:15、正确答案:16、正确答案:17、正确答案:18、正确答案:19、正确答案:20、正确答案:n21、正确答案:22、正确答案:23、正确答案:24、正确答4、案:。

==(答案为公式)2008年数学(文科)试卷(全国1卷)(word版+详细解析)

==(答案为公式)2008年数学(文科)试卷(全国1卷)(word版+详细解析)

14. 已 知 抛 物 线 y ax 1 的 焦 点 是 坐 标 原
2
点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 【解析】同理科 14 答案为 2 由抛物线 y ax 1 的焦点坐标为 (0,
2

1 1 1) 为坐标原点得, a , 4a 4
则y
1 2 x 1 与坐标轴的交点为 (0, 1), (2, 0), (2, 0) , 则以这三点围成的三角形的面积为 4
1 4 1 2 。 2
15.在 △ ABC 中, A 90 , tan B 的离心率 e 【解析】答案为 .

3 .若以 A,B 为焦点的椭圆经过点 C ,则该椭பைடு நூலகம் 4
1 . 2 3 5 c, BC c . 2 2
本题主要考查了椭圆的定义及基本量的求法,令 AB 2c , AC 所以 2a 4c, a 2c, e
OC CD 1 知, Rt OCD Rt CDE , CD DE 2
c 1 . a 2

16.已知菱形 ABCD 中, AB 2 , A 120 ,沿对角线 BD 将 △ ABD 折起,使二面角
A BD C 为 120 ,则点 A 到 △BCD 所在平面的距离等于

【解析】 本题主要考查了立体几何问题中的折叠问题,定义法求二面角和点到平面的距离. 设 AC BD O ,则 AO BD, CO BD ,所以 AOC 即为二面角的平面角.
3 2
2008 年普通高等学校招生全国统一考试 文科数学(必修+选修 1)
第Ⅱ卷
注意事项: 1.答题前,考生先在答题卡上用直径 0.5 毫米黑色墨水签字笔将自己的姓名、准考证号填写 清楚,然后贴好条形码。请认真核准条形码上的准考证号、姓名和科目。 2.第Ⅱ卷共 7 页,请用直径 0.5 毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在 试题卷上作答无效。 3.本卷共 10 小题,共 90 分。 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中横线上. (注意:在试题卷上作答无效)

自学考试 《高等数学(工本)》历年真题全套试题

自学考试 《高等数学(工本)》历年真题全套试题

自考00023《高等数学(工本)》历年真题集电子书目录1. 目录 (2)2. 历年真题 (5)2.1 00023高等数学(工本)200404 (5)2.2 00023高等数学(工本)200410 (7)2.3 00023高等数学(工本)200504 (9)2.4 00023高等数学(工本)200507 (11)2.5 00023高等数学(工本)200510 (14)2.6 00023高等数学(工本)200604 (15)2.7 00023高等数学(工本)200607 (18)2.8 00023高等数学(工本)200610 (21)2.9 00023高等数学(工本)200701 (24)2.10 00023高等数学(工本)200704 (26)2.11 00023高等数学(工本)200707 (28)2.12 00023高等数学(工本)200710 (29)2.13 00023高等数学(工本)200801 (34)2.14 00023高等数学(工本)200804 (35)2.15 00023高等数学(工本)200807 (36)2.16 00023高等数学(工本)200810 (38)2.17 00023高等数学(工本)200901 (39)2.18 00023高等数学(工本)200904 (40)2.19 00023高等数学(工本)200907 (42)2.20 00023高等数学(工本)200910 (43)2.21 00023高等数学(工本)201001 (45)2.22 00023高等数学(工本)201004 (46)2.23 00023高等数学(工本)201007 (47)2.24 00023高等数学(工本)201010 (49)2.25 00023高等数学(工本)201101 (50)2.26 00023高等数学(工本)201104 (52)2.27 00023高等数学(工本)201107 (54)2.28 00023高等数学(工本)201110 (55)2.29 00023高等数学(工本)201204 (57)3. 相关课程 (59)1. 目录历年真题()00023高等数学(工本)200404()00023高等数学(工本)200410()00023高等数学(工本)200504()00023高等数学(工本)200507()00023高等数学(工本)200510()00023高等数学(工本)200604()00023高等数学(工本)200607()00023高等数学(工本)200610()00023高等数学(工本)200701()00023高等数学(工本)200704() 00023高等数学(工本)200707() 00023高等数学(工本)200710() 00023高等数学(工本)200801() 00023高等数学(工本)200804() 00023高等数学(工本)200807() 00023高等数学(工本)200810() 00023高等数学(工本)200901() 00023高等数学(工本)200904() 00023高等数学(工本)200907()00023高等数学(工本)200910()00023高等数学(工本)201001()00023高等数学(工本)201004()00023高等数学(工本)201007()00023高等数学(工本)201010()00023高等数学(工本)201101()00023高等数学(工本)201104()00023高等数学(工本)201107()00023高等数学(工本)201110()00023高等数学(工本)201204() 相关课程()2. 历年真题2.1 00023高等数学(工本)200404高等数学(工本)试题(课程代码0023)一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

2008高考数学全国卷1_带答案解析

2008高考数学全国卷1_带答案解析

2008年普通高等学校招生全国统一考试本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn nP k C P P k n -=-= ,,,一、选择题 1.函数(1)y x x x =-+的定义域为( )A .{}|0x x ≥B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD =( )st OA .st Ost OstOB .C .D .A .2133+b cB .5233-c b C .2133-b cD .1233+b c C .(1)(1)-∞-+∞ ,,D .(10)(01)- ,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b+≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B .23C .33D .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作......答无效.... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. (注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为33,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分)(注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,2CD =,AB AC =. (Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分) (注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 20.(本小题满分12分)(注意:在试..题卷上作答无效.......) CDE AB已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.左平移5π12个单位得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像.9.D .由奇函数()f x 可知()()2()0f x f x f x x x--=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或.10.D .由题意知直线1x ya b+=与圆221x y +=有交点,则2222111111a b a b++≤1,≥. 另解:设向量11(cos ,sin ),(,)a bααm =n =,由题意知cos sin 1a bαα+= 由⋅≤m n m n 可得22cos sin 11a b a b αα=++≤1 11.C .由题意知三棱锥1A ABC-为正四面体,设棱长为a ,则13A B a=,棱柱的高22221236()323AO a AO a a a =-=-⨯=(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为1123AO AB =. 另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为060长度均为a ,平面ABC 的法向量为111133OA AA AB AC =-- ,11AB AB AA =+2111126,,333OA AB a OA AB ⋅===则1AB 与底面ABC 所成角的正弦值为111123OA AB AO AB ⋅= .12.B.分三类:种两种花有24A 种种法;种三种花有342A 种种法;种四种花有44A 种种法.共有234444284A A A ++=.另解:按A B C D ---顺序种花,可分A C 、同色与不同色有43(1322)84⨯⨯⨯+⨯= 13.答案:9.如图,作出可行域,作出直线0:20l x y -=,将0l 平移至过点A 处 时,函数2z x y =-有最大值9.14. 答案:2.由抛物线21y ax =-的焦点坐标为1(0,1)4a -为坐标原点得,14a =,则2114y x =- 与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯= 15.答案:38.设1AB BC ==,7cos 18B =-则222252cos 9AC AB BC AB BC B =+-⋅⋅=53AC =,582321,21,3328c a c e a =+====. 16.答案:16.设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D --的平面角 3,cos 1CH OH CH CHO ==⋅∠=,结合等边三角形ABC与正方形ABDE 可知此四棱锥为正四棱锥,则3AN EM CH ===(3,3)A -20x y -=0x y += 30x y -+=O3x =yx13题图Ho M B DE C NA16题图(1)11(),22AN AC AB EM AC AE =+=- ,11()()22AN EM AB AC AC AE ⋅=+⋅-= 12故EM AN ,所成角的余弦值16AN EM AN EM ⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),(0,0,2)A B E C ----,112112(,,),(,,)222222M N ---,则3121321(,,),(,,),,32222222AN EM AN EM AN EM ==-⋅=== ,故EM AN ,所成角的余弦值16AN EM AN EM ⋅= .17.解析:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a Bb Ac -= 可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+ 即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.18.解:(1)取BC 中点F ,连接DF 交CE 于点O ,AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE ,∴AF ⊥面BCDE ,∴AF CE ⊥. 2tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠= ,90DOE ∴∠= ,即CE DF ⊥,CE ∴⊥面ADF ,CE AD ∴⊥.(2)在面ACD 内过C 点作AD 的垂线,垂足为G .CG AD ⊥,CE AD ⊥,AD ∴⊥面CEG ,EG AD ∴⊥, 则CGE ∠即为所求二面角的平面角.z yHo MBDECN Ax 16题图(2)F OG A C DEB 18题图233AC CD CG AD ==,63DG =,22303EG DE DG =-=, 6CE =,则22210cos 210CG GE CE CGE CG GE +-∠==- , 10πarccos 10CGE ⎛⎫∴∠=- ⎪ ⎪⎝⎭,即二面角C AD E --的大小10πarccos 10⎛⎫- ⎪ ⎪⎝⎭.19. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++ 当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a >,()0f x '=求得两根为233a a x -±-=即()f x 在233a a ⎛⎫----∞ ⎪ ⎪⎝⎭,递增,223333a a a a ⎛⎫----+- ⎪ ⎪⎝⎭,递减,233a a ⎛⎫-+-+∞⎪ ⎪⎝⎭,递增 (2)2232333133a a a a ⎧----⎪⎪⎨-+-⎪-⎪⎩≤≥,且23a>解得:74a ≥20.解:(Ⅰ)对于甲:次数 1 2 3 4 5 概率0.20.20.20.20.2对于乙:次数 2 3 4 概率0.40.40.20.20.40.20.80.210.210.64⨯+⨯+⨯+⨯=.(Ⅱ)ξ表示依方案乙所需化验次数,ξ的期望为20.430.440.2 2.8E ξ=⨯+⨯+⨯=. 21. 解:(Ⅰ)设OA m d =-,AB m =,OB m d =+ 由勾股定理可得:222()()m d m m d -+=+ 得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠==由倍角公式∴22431ba b a =⎛⎫- ⎪⎝⎭,解得12b a =,则离心率52e =. (Ⅱ)过F 直线方程为()a y x c b =--,与双曲线方程22221x y a b-=联立将2a b =,5c b =代入,化简有2215852104x x b b-+= 222121212411()4a a x x x x x x b b ⎡⎤⎛⎫⎛⎫⎡⎤=+-=++-⎢⎥ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎢⎥⎣⎦ 将数值代入,有2232528454155b b ⎡⎤⎛⎫⎢⎥=- ⎪ ⎪⎢⎥⎝⎭⎣⎦,解得3b = 211111()ln a f a a a a a ==->由函数()f x 在区间(01),是增函数,且函数()f x 在1x =处连续,则()f x 在区间(01],是增函数,21111()ln 1a f a a a a ==-<,即121a a <<成立;(ⅱ)假设当(*)x k k N =∈时,11k k a a +<<成立,即1101k k a a a +<<<≤黄牛课件网 那么当1n k =+时,由()f x 在区间(01],是增函数,1101k k a a a +<<<≤得 1()()(1)k k f a f a f +<<.而1()n n a f a +=,则121(),()k k k k a f a a f a +++==, 121k k a a ++<<,也就是说当1n k =+时,11n n a a +<<也成立; 根据(ⅰ)、(ⅱ)可得对任意的正整数n ,11n n a a +<<恒成立. (Ⅲ)证明:由()ln f x x x x =-.1()n n a f a +=可得kk k k a a b a b a ln 1--=-+11ln ki i i a b a a ==--∑ 1, 若存在某i k ≤满足i a b ≤,则由⑵知:1k i a b a b +-<-≥0 2, 若对任意i k ≤都有b a i >,则kk k k a a b a b a ln 1--=-+ 11ln k i i i a b a a ==--∑11ln k i i a b a b ==--∑11()ln ki i a b a b ==--∑b ka b a ln 11--> b ka b a ln 11--≥)(11b a b a --->0=,即1k a b +>成立.。

2008年普通高等学校招生全国统一考试数学卷全国Ⅰ文含详解

2008年普通高等学校招生全国统一考试数学卷全国Ⅰ文含详解

2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k kn k n n P k C P P k n -=-=,,,一、选择题1.函数y = )A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.512x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为( )A .10B .5C .52D .14.曲线324y x x =-+在点(13),处的切线的倾斜角为( ) A .30°B .45°C .60°D .120°5.在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =( ) A .2133b c + B .5233c b -C .2133b c - D .1233b c +6.2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数7.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( ) A .64B .81C .128D .2438.若函数()y f x =的图象与函数1y =的图象关于直线y x =对称,则()f x =( ) A .22ex -B .2e xC .21ex +D .2+2ex9.为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( ) A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位 D .向右平移5π6个长度单位10.若直线1x y a b+=与圆221x y +=有公共点,则( )A .221a b +≤B .221a b +≥ C .22111a b+≤D .2211a b +≥1 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .B .C .D .A .13BCD .2312.将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( ) A .6种 B .12种 C .24种 D .48种2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 . 15.在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.已知菱形ABCD 中,2AB =,120A ∠=,沿对角线BD 将ABD △折起,使二面角A BD C --为120,则点A 到BCD △所在平面的距离等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)(注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且cos 3a B =,sin 4b A =. (Ⅰ)求边长a ;(Ⅱ)若ABC △的面积10S =,求ABC △的周长l .18.(本小题满分12分)(注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设侧面ABC 为等边三角形,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 在数列{}n a 中,11a =,122nn n a a +=+.(Ⅰ)设12nn n a b -=.证明:数列{}n b 是等差数列; (Ⅱ)求数列{}n a 的前n 项和n S . 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任CDE AB取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率. 21.(本小题满分12分)(注意:在试题...卷上作答无效......) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.2008年普通高等学校招生全国统一考试 文科数学(必修+选修Ⅰ)参考答案一、1.D 2.A 3.C 4.B 5.A 6.D 7.A 8.A 9.C 10.D 11.B 12.B二、13.9 14.12 15.1216.2三、17.解:(1)由cos 3a B =与sin 4b A =两式相除,有:3cos cos cos cot 4sin sin sin a B a B b BB b A A b B b ==== 又通过cos 3a B =知:cos 0B >,则3cos 5B =,4sin 5B =,则5a =.(2)由1sin 2S ac B =,得到5c =.由222cos 2a c b B ac+-=,解得:b =最后10l =+.18.解:(1)取BC 中点F ,连接DF 交CE 于点O , AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE , ∴AF ⊥面BCDE , ∴AF CE ⊥.tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠=,90DOE ∴∠=,即CE DF ⊥,CE ∴⊥面ADF , CE AD ∴⊥.(2)在面ACD 内过C 点做AD 的垂线,垂足为G . CG AD ⊥,CE AD ⊥, AD ∴⊥面CEG , EG AD ∴⊥,则CGE ∠即为所求二面角.233AC CD CG AD ==,3DG =,EG ==CE =则222cos 2CG GE CE CGE CG GE +-∠==,πarccos CGE ∴∠=-⎝⎭.19.解:(1)122nn n a a +=+,11122n nn n a a +-=+, 11n n b b +=+,则n b 为等差数列,11b =,n b n =,12n n a n -=.(2)01211222(1)22n n n S n n --=+++-+12121222(1)22n n n S n n -=+++-+两式相减,得01121222221n n n n n S n n -=---=-+.20.解:设1A 、2A 分别表示依方案甲需化验1次、2次。

自考高数工本试题及答案

自考高数工本试题及答案

自考高数工本试题及答案自考高等数学(工本)试题及答案一、选择题(每题2分,共10分)1. 下列函数中,不是周期函数的是()。

A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)答案:C2. 微积分基本定理指出,若函数f(x)在区间[a, b]上连续,则定积分∫[a, b] f(x) dx等于()。

A. f(a) + f(b)B. f(a) - f(b)C. f(x)在[a, b]上的最大值D. f(x)在[a, b]上的某个值答案:D3. 曲线y = x^2在点(1, 1)处的切线斜率是()。

A. 0B. 1C. 2D. 3答案:C4. 以下哪个选项不是二阶常系数线性微分方程的特征方程()。

A. r^2 + 1 = 0B. r^2 - 1 = 0C. r^2 + 4r + 3 = 0D. r^2 - 4 = 0答案:C5. 函数f(x) = ln(x)的值域是()。

A. (-∞, 0)B. (0, ∞)C. (-∞, ∞)D. [0, ∞)答案:B二、填空题(每题3分,共15分)6. 极限lim (x→0) [x^2 sin(1/x)] = _______。

答案:07. 函数f(x) = x^3 - 6x^2 + 9x + 2的拐点是_______。

答案:(3, 24)8. 根据定积分的性质,若∫[a, b] f(x) dx = 5,且f(x)在区间[a,b]上非负,则∫[a, b] x f(x) dx = _______。

答案:≤59. 微分方程y'' - 2y' + y = 0的通解是_______。

答案:y = C1 * e^r1x + C2 * e^r2x,其中r1, r2是特征方程r^2 - 2r + 1 = 0的根。

10. 利用分部积分法计算∫x e^x dx的结果是_______。

答案:x e^x - e^x + C三、解答题(共75分)11. (15分)计算定积分∫[0, 1] x^2 dx,并说明其几何意义。

2008年1月高等教育自学考试全国统一命题考试题及答案

2008年1月高等教育自学考试全国统一命题考试题及答案

2008年1月高等教育自学考试全国统一命题考试国际贸易理论与实务试题(课程代码:0149)一、单项选择题(本大题共30小题,每小题1分,共30分)1.国际贸易的基础是()A.国际分工B.世界市场C.社会主义生产关系D.社会分工2.一个国家或地区在其港口或邻近港口、国际机场的地方,划出一定范围,新建和扩建码头、车站、仓库和厂房等基础设施以及提供免税等优惠待遇,鼓励外国企业在区内投资设厂,生产以出口为主的制成品的特殊加工区域是()A.自由边境区B.保税区C.过境区D.出口加工区3.发达国家单方面给予发展中国家或地区的优惠关税是()A.普惠税B.特惠税C.最惠国税D.差价税4.利用本国货币对外贬值的机会,来扩大产品在国外销售量的贸易措施是()A.复汇率制B.出口担保C.外汇倾销D.商品倾销5.主张"尽可能地多输出少输入,禁止货币出口"的理论是()A.贸易差额论B.货币差额论C.幼稚产业保护论D.对外贸易乘数论6.李斯特的幼稚产业保护理论认为,保护的最高期限是()A.10年B.20年C.30年D.40年7.主张国际贸易中按照"两优取最优,两劣取次劣"原则分工的学者是()A.马歇尔B.俄林C.亚当·斯密D.大卫·李嘉图8.普雷维什认为,发展中国家实施贸易保护政策的理论依据之一是()A.幼稚产业保护论B.贸易条件恶化论C.外贸乘数理论D.比较优势说9.在中国的某些风景点,外国旅游者的门票价格高于国内旅游者,这种做法违反了WTO的()A.普惠制待遇原则B.特惠制待遇原则C.最惠国待遇原则D.国民待遇原则10.我国设立有诸多出口加工区,则我国关境和国境的关系是()A.关境小于国境B.关境大于国境C.关境等于国境D.不确定11.国际咖啡协定的经济条款采用的规定方法是()A.出口限额B.缓冲存货C.多边合同D.出口存货和缓冲存货相结合12.成员国间仅仅取消关税和数量限制,对非成员国仍实行各自独立的贸易壁垒的区域经济一体化形式是()A.自由贸易区B.关税同盟C.共同市场D.经济同盟13.国外某进口商向我出口公司来电:"接受你方16日发盘,请降价1O%",此来电的性质是()A.询盘B.发盘C.还盘D.接受14.在有关贸易术语的国际贸易惯例中,使用最广的是()A.《1932年华沙一牛津规则》B.《美国对外贸易定义1941年修订本》C.《托收统一规则》D.《国际贸易术语解释通则》15.根据《2000年通则》的解释,采用FCA术语时,买卖双方风险划分界限是()A.出口国交货地点B.货交承运人C.货交装运港船边D.货交目的港船上16.上海出口一台设备海运至纽约,中方办理出关手续,外方办理进关手续,中方支付至目的港的运费和保险费,按以上交易条件,适用的贸易术语是()A.FOB上海B.CIF纽约C.CFR纽约D.FCA上海17.在造型上有特殊要求或具有色、香、味方面特征的商品,适用的品质表示方式是()A.凭样品买卖B.凭等级买卖C.凭规格买卖D.凭说明书买卖18.在国际贸易中,对以重量计价的商品,最常见的计重方法是()A.净重B.毛重C.理论重量D.法定重量19.具有"四固定"特点的运输方式是()A.定程租船B.定期租船C.光船租船D.班轮运输20.在国际贸易结算中,银行通常不接受的提单是()A.清洁提单B.不清洁提单C.已装船提单D.指示提单21.按惯例,速遣费一般为滞期费的()A.一半B.一倍C.两倍D.三倍22.根据我国海运货物保险条款规定,基本险的责任起讫期限采用()A.门至门条款B.港至港条款C.地至地条款D.仓至仓条款23.被保险货物完全灭失或完全变质,或者货物实际上已不可能归还被保险人的损失是()A.推定全损B.实际全损C.单独海损D.共同海损24.按出票人不同来分类,出票人是商号或个人的汇票叫()A.即期汇票B.远期汇票C.商业汇票D.银行汇票25.D/P sight指的是()A.即期付款交单B.远期付款交单C.承兑交单D.光票托收26.多用于来料加工和补偿贸易业务的信用证是()A.可撤销信用证B.假远期信用证C.对开信用证D.备用信用证27.既有自愿性的一面,又有强制性一面的争议解决方式是()A.协商B.调解C.仲裁D.诉讼28.在国际贸易中,如果采角海洋运输,则在用于结汇的各项单据中最为重要的是()A.提单B.装箱单C.保险单D.装运通知单29.对外加工装配业务实际是一种()A.资本出口B.土地出口C.商品出口D.劳务出口30.寄售货物出售之前,货物的所有权属于()A.代销人B.中间商C.寄售人D.最终消费者二、多项选择题(本大题共5小题,每小题2分,共10分)31.二战后国际分工发展的特点有()A.工业国之间分工居于主导地位B.各国工业部门内部分工日趋增强C.发达国家与发展中国家间工业分工得到发展,而工业国与农业国、矿业国分工削弱D.区域性经济集团内部分工加强E.国际分工以英国为中心32.按差别待遇和特定的实施情况划分,关税可以分为()A.进口附加税B.差价税C.特惠税D.普遍优惠税E.有效关税33.根据《2000年通则》规定,风险转移界限在装运港船舷的贸易术语有()A.EXWB.FOBC.CFRD.CIFE.CIP34.在以FOB、CFR、CIF等术语签订的外贸合同的履行过程中,买方通常要求卖方提供()A.清洁提单B.不清洁提单C.已装船提单D.记名提单E.过期提单35.下列属于不可抗力事故的有()A.水灾B.地震C.战争D.罢工E.政府禁令三、简答题(本大题共4小题,每小题5分,共20分)36.简述绝对进口配额与"自动"出口配额的区别。

00023高等数学(工本)200801

00023高等数学(工本)200801

2008年1月高等教育自学考试全国统一命题考试高等数学(工本) 试卷课程代码 0023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设函数f(x,y)=y x yx -+,则f(y 1,x 1)=( ) A. y x y x -+ B. x y yx -+ C. y x yx +- D. y x xy +-2. 设函数f (x,y) =22y x +,则点(0,0)是f ( x,y )的( )A.间断点B.连续点C.极大值点D.驻点3.设D 是由直线x+y+1=0与坐标轴所围成的区域,则二重积分=()A.0B.1C.2D.44.微分方程y ′=2y 的通解是( )A.y=Ce xB.y=e 2x +CC.y=2e CxD.y=Ce 2x5.幂级数的和函数为( )A.-e -x -1B.1-e -xC.e -x -1D.1+e -x二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6.设向量α={a,b,c},β={1,-1,1},则α×β=___________.7.设函数z = sin(x 2+y 2),则=___________.三、计算题(本大题共12小题,每小题5分,共60分)11.设平面π1:x-4y+z-4=0和平面π2:2x-2y-z-1=0求π1与π2的夹角.12.设函数z = xy+2xy ,求全微分dz. 13.设方程e xy +ysinx+z 2-2z=1确定函数z=z (x,y),求.14.求函数f (x,y) =cos ( xy ) +x 2-y 的梯度grad f (1,0).15.求曲面x 2+2y 2+z 2=7在点(2,-1,1)处的法线方程.16.计算二重积分I=,其中D 是顶点分别为(0,0),(-1,0)(-1,-1)的三角形闭区域.17.计算三重积分I=,其中 是旋转抛物面z =x 2+y 2及平面z =1所围成的闭区域.18.计算对弧长的曲线积分,其中L 是右半圆x 2 + y 2 = 1(x ≥0). 19.求对坐标的曲线积分,其中L是闭区域D:x 2 +y 2≤2x,y ≥0的正向边界曲线.20.设函数f (x)满足f ″(x)+5 f ′(x)+6 f (x)=6,求函数f (x).21.求无穷级数的和.22. 设函数f(x)=x 2sinx 的马克劳林级数为,求系数a 9. 四、综合题(本大题共3小题,每小题5分,共15分)23.欲做容积为4m 3的无盖长方体盒,如何选取长、宽和高,才能使用料最省?24.求曲面z =2x 2 +y 2和z =6-x 2-2y 2所围立体的体积.25.设f (x)是以2π为周期的周期函数,它在[-π, π)上的表达式为求f (x)的傅里叶级数展开式。

(2008—2013)自考全国卷高等数学(一)试题及部分答案大全(1)

(2008—2013)自考全国卷高等数学(一)试题及部分答案大全(1)

全国2008年1月高等教育自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列区间中,函数f (x)= ln (5x+1)为有界的区间是( C )A.(-1,51)B.(-51,5)C.(0,51) D.(51,+∞) 2.设函数g (x)在x = a 连续而f (x) = (x-a)g(x),则'f (a) =( D ) A.0 B.g '(a) C.f (a)D.g (a)3.设函数f (x)定义在开区间I上,∈0x I ,且点(x 0, f (x 0) )是曲线y= f (x)的拐点,则必有( B ) A.在点(x 0,f (x 0))两侧,曲线y=f (x)均为凹弧或均为凸弧. B.当x<x 0时,曲线y=f (x)是凹弧(或凸弧), 则x>x 0时,曲线y=f (x)是凸弧(或凹弧). C.x<x 0时,f (x)<f(x 0) 而x>x 0时,f(x)>f(x 0). D.x<x 0时,f (x)>f(x 0) 而x>x 0时,f(x)<f(x 0).4.设某商品的需求函数为D(P)=475-10P-P 2,则当P = 5时的需求价格弹性为( A ) A. B. C.100 D.-1005.无穷限积分⎰+∞xe -x dx =( B )21 D.21 二、填空题(本大题共10小题,每小题3分,共30分) 请在每小题的空格中填上正确答案。

错填、不填均无分。

y =x1x1-+的定义域是___________. 0lim→h h3x )h x (33-+=___________. 0x lim →2xx2cos 1-=___________. 9.已知某商品的成本函数为C(q )=20 -10q+q 2(万元),则q =15 时的边际成本为___________.10.抛物线y = x 2上点(2,4)处的切线方程是___________.⎰=+)x 1(x dx___________.331xx dx +⎰=___________.xydx+2x 1-dy = 0的通解是___________. 14.设z = arctan (xy),则xz∂∂=___________. 15.dx⎰1⎰+122x xxydy=___________.三、计算题(一)(本大题共5小题,每小题5分,共25分) 16.设y = xarctanx-ln 2x 1+,求y ''(1) 17.求极限x cos 1120x )x 1(lim -→+⎰dx xx ln19.计算定积分I=⎰π20( sin x -sin 3x )dx20.设z = z (x,y)是由方程x 2-z 2+lnzy=0确定的函数,求dz 四、计算题(二)(本大题共3小题,每小题7分,共21分) y = x 2x ,求y '' I=dx x21x21210⎰+- 23.计算二重积分I =⎰⎰σD22d y x ,其中D 是由直线x = 2,y = x 和双曲线xy = 1围城的区域 . 五、应用题(本大题共9分)24.求内接于半径为R 的半圆而周长最大的矩形的各边边长. 六、证明题(本大题共5分)25.证明:当函数y = f (x)在点 x 0 可微,则f ( x )一定在点x 0可导.全国2008年7月高等教育自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

全国2008年1月高等教育自学考试

全国2008年1月高等教育自学考试

))))))))))全国 2008 年 1 月高等教育自学考试概率论与数理统计(经管类 )试题课程代码: 04183一、单项选择题(本大题共10 小题,每题 2 分,共 20 分)在每题列出的四个备选项中只有一个是切合题目要求的,请将其代码填写在题后的括号内。

错选、多项选择或未选均无分。

1.设事件 A 与 B 互相独立 ,且 P(A)>0,P(B)>0, 则以下等式建立的是()A.AB=B.P(A B )=P(A)P( B )C.P(B)=1-P(A)D.P(B | A )=02.设 A 、 B 、C 为三事件,则事件 A BC()A.ABCB.A B CC.( A B)CD.( A B )C3.设随机变量 X 的取值范围是 (-1,1),以下函数可作为X 的概率密度的是()x, 1 x1;B.f(x)=x2 ,1x1;A. f(x) =其余 .0 ,其余 .0,1 , 1 x1;D.f(x)=2, 1 x1;C.f(x) = 2其余 .0,其余 .0,4.设随机变量 X~N(1 , 4), (1)0.8413,(0) 0.5 ,则事件 {1X 3 }的概率为()5.设随机变量( X , Y )的结合概率密度为Ae x e2y, x0, y0;)f(x,y) =0,则 A=(其余 .A.1B.13D.2 2C.26.设二维随机变量(X 、 Y )的结合散布为()Y05X011 46211 34则 P{XY=0}=()A.1B.5412))))))))))3D.1C.47.设 X~B ( 10, 1),则 E ( X ) =()3A.1B.1310D. 10C.38.设 X~N ( 1, 32 ),则以下选项中,不建立 的是()...A.E ( X )=1B.D ( X )=3C.P ( X=1 )=0D.P (X<1 )=0.50,事件 不发生100009.设 X iA(i 1,2,10000), 且 P(A)=0.8, X 1 , X 2 ,, X 10000 互相独立 ,令 Y= X i , 则由中心极限制理知1, 事件 A 发生i 1Y 近似听从的散布是( )A.N(0,1)B.N(8000,40)C.N(1600,8000)D.N(8000,1600)2)的样本 ,记 S21 nx)2 ,则以下选项中正确的选项是(10.设 X 1, ,X n 为正态整体 N(,n (x i)1i 1 (n 1)S 2 21)B. ( n 1)S 2 2A.2~( n2~(n)1)S 2~ 2(nD.S22(nC. ( n1)2~1)二、填空题(本大题共 15 小题,每题 2 分,共 30 分)请在每题的空格中填上正确答案。

高等数学(工本)00023历年试题及参考答案

高等数学(工本)00023历年试题及参考答案

高等数学(工本)历年试题及参考答案 自学考试高等数学(工本)试题一、单项选择题(本大题共5小题,每小题3分,共15分) 1.在空间直角坐标系下,方程2x 2+3y 2=6表示的图形为( ) A .椭圆 B .柱面 C .旋转抛物面D .球面2.极限021lim →→y x arcsin(x +y 2)=( )A .6πB .3π C .2π D .π3.设积分区域22:y x Ω+≤R 2,0≤z ≤1,则三重积分⎰⎰⎰=+Ωdxdydz y xf )(22( )A .⎰⎰⎰π200102)(Rdz r f drd θ B .⎰⎰⎰π20012)(Rdz r f rdrd θC .⎰⎰⎰+π20122)(Rrdz y x f dr d θD .⎰⎰⎰π102)(Rdz r f rdrd θ4.以y =sin 3x 为特解的微分方程为( ) A .0=+''y y B .0=-''y y C .09=+''y y D .09=-''y y5.设正项级数∑∞=1n nu收敛,则下列无穷级数中一定发散的是( )A .∑∞=+1100n nuB .∑∞=++11)(n n n u uC .∑∞=1)3(n nuD .∑∞=+1)1(n nu二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6.向量a ={1,1,2}与x 轴的夹角=α__________. 7.设函数22),(y x xy y x f -=,则=)1,(x yf __________.8.设∑是上半球面z =221y x --的上侧,则对坐标的曲面积分⎰⎰∑=dxdy y 3__________.9.微分方程x y y sin 3='+'''的阶数是__________.10.设)(x f 是周期为2π的函数,)(x f 在[)ππ,-上的表达式为[)[)⎪⎩⎪⎨⎧∈-∈=.π,0,23sin .0,π,0)(x x x x f )(x S 是)(x f 的傅里叶级数的和函数,则S (0) =__________.三、计算题(本大题共12小题,每小题5分,共60分)11.设平面π过点P 1(1,2,-1)和点P 2(-5,2,7),且平行于y 轴,求平面π的方程. 12.设函数22ln y x z +=,求yx z∂∂∂2.13.设函数232y x e z -=,求全微分dz .14.设函数)2,(22xy y x f z -=,其中f (u , v )具有一阶连续偏导数,求xz ∂∂和y z ∂∂. 15.求曲面x 2+y 2+2z 2=23在点(1,2,3)处的切平面方程. 16.计算二重积分⎰⎰+D dxdy y x )sin(22,其中积分区域D :x 2+y 2≤a 2.17.计算三重积分⎰⎰⎰Ωzdxdydz ,其中Ω是由曲面z =x 2+y 2,z =0及x 2+y 2=1所围区域.18.计算对弧长的曲线积分⎰Cds x 2,其中C 是圆周x 2+y 2=4的上半圆.19.计算对坐标的曲线积分⎰+-+-Cdy y x dx y )21()31(,其中C 为区域D :| x |≤1,| y |≤1 的正向边界曲线.20.求微分方程02=-+-dy e dx e y x y x 的通解. 21.判断无穷级数∑∞=--+1212)1(1n n n 的敛散性. 22.将函数51)(+=x x f 展开为x +1的幂级数. 四、综合题(本大题共3小题,每小题5分,共15分)23.设函数)(x yz ϕ=,其中)(u ϕ为可微函数.证明:0=∂∂+∂∂y zy x z x24.设曲线y =y (x )在其上点(x , y )处的切线斜率为xyx -24,且曲线过点(1,1),求该曲线的方程. 25.证明:无穷级数∑∞=-=++-+121)122(n n n n .全国2011年1月自学考试高等数学(工本)试题一、单项选择题(本大题共5小题。

高等数学(工专)自考习题答案

高等数学(工专)自考习题答案

《高等数学(工专)》自考习题答案《高等数学(工专)》真题:驻点的概念单选题1.函数f(x,y)=x2+xy+y2+x-y+1的驻点为()。

A.(1,-1)B.(-1,-1)C.(-1,1)D.(1,1)正确答案:C答案解析:本题考查驻点的概念。

对x的偏导数为2x+y+1,对y的偏导数为x+2y-1,由于求驻点,也就是偏导数为0的点,所以2x+y+1=0,x+2y-1=0,得到x=-1,y=1。

《高等数学(工专)》真题:矩阵逆的求法单选题1.如果A2=10E,则(A+3E)-1=()。

A.A-2EB.A+2EC.A+3ED.A-3E正确答案:D答案解析:本题考查矩阵逆的求法。

A2-9E=E,(A+3E)(A-3E)=E,(A+3E)-1=A-3E《高等数学(工专)》真题:连续的概念单选题A.f(x)在(-∞,1)上连续B.f(x)在(-1,+∞)上连续C.f(x)在(-∞,0)∪(0,+∞)上连续D.f(x)在(-∞,+∞)上连续正确答案:C答案解析:本题考查连续的概念。

《高等数学(工专)》真题:矩阵的计算性质单选题1.设A是k×l阶矩阵,B是m×n阶矩阵,如果A·CT·B有意义,则C是()矩阵。

A.k×nB.k×mC.l×mD.m×l正确答案:D答案解析:本题考查矩阵的计算性质。

首先我们判断CT是l×m阶矩阵,所以C是m×l阶矩阵。

《高等数学(工专)》真题:连续的定义单选题1.试确定k的值,使f(x)在x=1处连续,其中()A.k=-2B.k=-1C.k=0D.k=2正确答案:D答案解析:本题考查连续的定义。

《高等数学(工专)》真题:矩阵的性质单选题1.关于矩阵的乘法的说法,正确的是()。

A.单位矩阵与任意一个同阶方阵必不可交换。

B.一般情形下,矩阵乘法满足交换律。

C.如果AB=O,则A=O。

D.数量矩阵与任意一个同阶方阵必可交换。

2008年高等教育自学考试全国统一命题考试

2008年高等教育自学考试全国统一命题考试

2008年1月高等教育自学考试全国统一命题考试线性代数(经管类)试卷课程代码4184试卷说明:在本卷中,A T表示矩阵A的转置矩阵;A*表示A的伴随矩阵;秩(A)表示矩阵A的秩;|A|表示A的行列式;E表示单位矩阵。

一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A为三阶方阵且,2=-A则A3=()A TA.-108B.-12C.12D.1082.如果方程组有非零解,则k=()A.-2B.-1C.1D.23.设A、B为同阶方阵,下列等式中恒正确的是()A.AB=BAB.(A+B)-1=A-1+B-1C.B=+ D.(A+B)T=A T+B TA+BA4.设A为四阶矩阵,且,2A=()A则*=A.2B.4C.8D.125.设β可由向量α1 =(1,0,0)α 2 =(0,0,1)线性表示,则下列向量中β只能是A.(2,1,1)B.(-3,0,2)C.(1,1,0)D.(0,-1,0)6.向量组α1 ,α 2 ,…,αs 的秩不为s(s≥2)的充分必要条件是()A.α1 ,α 2 ,…,αs 全是非零向量B. α1 ,α2,…,αs 全是零向量C. α1 ,α2,…,αs中至少有一个向量可由其它向量线性表出D.α1 ,α2,…,αs中至少有一个零向量7.设A为m×n矩阵,方程AX=0仅有零解的充分必要条件是()A.A的行向量组线性无关B.A的行向量组线性相关C.A的列向量组线性无关D.A的列向量组线性相关8.设A与B是两个相似n阶矩阵,则下列说法错误..的是()A.BA= B.秩(A)=秩(B)C.存在可逆阵P,使P-1AP=BD.λE-A=λE-B9.与矩阵A =相似的是( )10.设有二次型,),,(232221321x x x x x x f +-=则)x ,x ,x (f 321( )A.正定B.负定C.不定D.半正定二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。

自考高数工本所有试卷

自考高数工本所有试卷

全国2007年4月高等教育自学考试月高等教育自学考试高等数学(工本)试题课程代码:00023 一、单项选择题(本大题共5小题,每小题3分,共15分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.函数f(x,y)=4y x )y x 9ln(2222-+--的定义域是(的定义域是( )A{(x,y )|2<x 2+y 2<3B .{(x,y)|4<x 2+y 2<9}C .{(x,y)|4<x 2+y 2≤9}D{(x,y )|2<x 2+y 2≤3} 2.设函数f(x,y)=x+y ,则f(x,y)在点(0,0)处()处( ) A .取得极大值为0 B .取得极小值为0 C .连续.连续D .间断.间断3.设积分区域D:x 2+y 2≤3,则二重积分òò=-Ddxdy )3(( )A .-9πB .-3πC .3πD .9π4.微分方程y ″-2y ′+3y=5e 2x 的一个特解为(的一个特解为() A .x 2e 95 B .x 2e 35 C .x 2e 2 D .x 2e 255.设无穷级数å¥=-1n p 3n 1收敛,则(收敛,则() A .p>1 B .p<3 C .p>2 D .p<2 二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6.已知向量α={k,2,-1}和β={2,-1,-1}垂直,则常数k=_________. 7.设函数z=e =¶¶-+y z 22y xy x 2则_________. 8.设二次积分I=òò1xdy )y ,x (f dx ,则交换积分次序后得I=_________. 9.微分方程1x 3dxdy =-的通解为_________. 10.设f(x)是周期为2π的周期函数,它在[-π,π]上表达式为上表达式为îíìp <£<£p -=x 0,10x ,x )x (f则f(x)的傅里叶级数的和函数在x=0处的值为_________. 三、计算题(本大题共12小题,每小题5分,共60分)11.设平面π经过点P 1(4,2,1)和P 2(-2,-3,4),且平行于y 轴,求平面π的方程. 12.已知平面π:2x+y+z=3和直线L :îíì=++=++4z 2y x 1z y 2x(1)写出直线L 的对称式方程;的对称式方程; (2)求平面π与直线L 的交点. 13.求椭球面x 2+2y 2+z 2=4在点(1,-1,1)处的切平面方程和法线方程. 14.已知方程x 2+y 2-4y+z2=3确定函数z=z(x,y),求.x z x z 22¶¶¶¶和 15.设积分区域D 是由坐标轴及直线x+y=1所围成,求二重积分òò+D.dxdy )y 3x 2(16.设积分区域Ω由上半球面z=22y x 1--及平面z=0所围成,求三重积分所围成,求三重积分òòòWzdxdydz . 17.设L 为折线OAB ,其中O (0,0),A (1,1),B (1,0),求曲线积分.xyds Lò18.设∑为坐标面及平面x=1,y=1,z=1所围成的正方体表面的外侧,计算曲面积分òòS-+.dxdy )z y xz 2(2219.求微分方程x 0y ln y dx dy =-的通解. 20.求微分方程.e y 2dxdy x 的通解=+21.判断无穷级数å¥=1n nn!n 的敛散性. 22.求幂级数å¥=-1n 2nn )3x (的收敛半径和收敛域. 四、综合题(本大题共3小题,每小题5分,共15分) 23.求函数f(x,y)=4(x-y)-x 2-2y 2的极值. 24.验证在整个oxy 平面内平面内(4x 3y 3-3y 2+5)dx+(3x 4y 2-6xy-4)dy 是某个二元函数u(x,y)的全微分,并求这样的一个u(x,y). 25.将函数f(x)=xarctanx 展开为x 的幂级数. 全国2007年10月高等教育自学考试月高等教育自学考试高等数学(工本)试题课程代码:00023 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

高等教育自学考试_全国2008年1月自考试卷

高等教育自学考试_全国2008年1月自考试卷

高等教育自学考试_全国2008年1月自考试卷全国2008年1月高等教育自学考试劳动关系学试题课程代码:03325一、单项选择题(本大题共20小题,每小题1分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.正统多元主义劳动关系理论学派特别强调工会的()A.经济职能B.民主职能C.整合职能D.阶级革命职能2.早期的雇主组织就其职能而言主要是()A.协商谈判B.稳定行业价格C.反对工会D.抵御政府3.认为其他学派提出的“和谐的劳动关系”只是一种假象的学派是()A.新保守学派B.管理主义学派C.正统多元论学派D.激进学派4.我国工会帮助职工不断提高思想道德、技术业务和科学文化素质,体现了工会的()A.教育职能B.建设职能C.维护职能D.参与职能5.管理者充分考虑雇员福利,实施各种计划以赢得员工对企业的忠诚,培养员工对企业的献身精神,具有这种管理理念的管理模式是()A.剥削型模式B.宽容型模式C.合作型模式D.自主型模式6.认为高级管理人员的任务就是在正式组织内尽力维护好一个协作系统的理论是()A.工业心理学理论B.社会系统理论C.权变管理理论D.决策过程理论7.在我国,法律规定属于全体劳动者的法定休假日共有()A.7天B.8天C.9天D.10天8.调解委员会调解劳动争议不能久拖不决,调解的最长期限为()A.15日B.30日C.60日D.90日9.我国在计划经济体制时期,建立劳动关系的方式主要为()A.劳动合同制B.统包统配C.市场配置D.三方原则10.我国《劳动法》规定的最低就业年龄为()A.15周岁B.16周岁C.17周岁D.18周岁11.在我国,企业拖欠劳动者最低工资,欠付1个月以内的应当向劳动者支付赔偿金,其比例是所欠工资的()A.20%B.50%C.80%D.100%12.黄某与某食品厂签订了1年的劳动合同,但是黄某利用工作之便私吞食品销售款,严重违反劳动纪律,被食品厂单方解除合同,这种劳动合同的解除叫()A.过失性解除B.非过失性解除C.经济性裁员D.随时解除13.认为集体谈判主要体现为一种经济功能的学者是()A.韦布夫妇B.艾伦·弗兰德斯C.张伯伦D.库恩14.“共谋”是指()A.劳资双方以对话、协商、谈判的形式签订协议B.二人或二人以上合谋侵犯他人权益或损害社会的行为C.雇主拥有的禁止某些工会运动的法定权力,包括罢工和联合行动D.劳资双方共同签订的,禁止以个人名义参加工会及其活动15.在劳动合同的特征中,建立劳动合同的目的是()A.实现劳动成果B.完成劳动过程C.获取劳动报酬D.支付劳动代价16.我国法律规定集体协商双方的代表人数应当对等,每方至少()A.1人B.2人C.3人D.5人17.认为工会的存在使企业成本增加,同时也考虑工会建立绩效考核的程序与规则的要求。

2008年成人高考专升本高等数学真题

2008年成人高考专升本高等数学真题

2008年全国成人高考专升本高等数学(一)、高等数学(二)试卷以教育部考试中心颁布的《全国各类成人高等学校招生复习考试大纲》为依据,充分考虑到成人考生不同学习背景的实际情况与成人考生的基本特点,力求贯彻《复习考试大纲》的思想与原则,与前两年试卷相比较,体现出较好地延续性和稳定性。

试卷的题型结构没有变化,仍然是选择题10个小题,共40分,填空题10个小题,共40分,解答题8个小题,共70分。

试卷的知识内容结构基本合理,知识点的分布相对均匀,重点考查高等数学中的基础知识、基本理论、基本技能和基本方法,兼顾考查各种能力,特别是考查考生运用所学过的数学知识和方法,分析问题与解决问题的能力。

试卷适当程度地降低了难度,可以说,2008年成人高考专升本高等数学(一)、(二)的考试实际上是一种达标性质的水平测试,即考查考生是否具有从专科教育毕业后进一步接受本科教育时,应当具备的基本数学知识与数学能力。

试卷主要特点如下:一、试卷知识内容比例基本上与《复习考试大纲》相吻合高等数学(一):极限和连续:共3个小题,计12分,占总分值8%,大纲规定约13%;一元函数微分学:共9个小题,计50分,占总分值33.3%,大纲规定约25%;一元函数积分学:共6个小题,计32分,占总分值21.3%,大纲规定约25%;多元函数微积分学:共6个小题,计30分,占总分值20%,大纲规定约20%;无穷级数:共1个小题,计10分,占总分值6.7%,大纲规定约7%;常微分方程:共3个小题,计16分,占总分值10.7%,大纲规定约10%.高等数学(二):极限和连续:共4个小题,计20分,占总分值13.3%,大纲规定约15%;一元函数微分学:共10个小题,计56分,占总分值37.3%,大纲规定约30%;一元函数积分学:共7个小题,计38分,占总分值25.3%,大纲规定约32%;多元函数微分学:共5个小题,计24分,占总分值16%,大纲规定约15%;概率论初步:共2个小题,计12分,占总分值8%,大纲规定约8%.二、强调基础,突出主线试卷强调考查高等数学中的基础知识、基本理论、基本技能和基本方法,试题所涉及到的都是高等数学中最基本的、最主要的、最突出的知识点,是学完高等数学必须掌握而且极易掌握的知识点。

高等数学(工专)考试试题及答案

高等数学(工专)考试试题及答案

1全国2010年10月自学考试高等数学(工专)试题课程代码:00022一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.函数y=ln x 1在(0,1)内( )A.是无界的B.是有界的C.是常数D.是小于零的2.极限=-+∞→x x e lim ( )A.∞B.0C.e -1D.-∞3.设f (x )=1+x xsin ,则以下说法正确的是( )A.x =0是f (x )的连续点B.x =0是f (x )的可去间断点C.x =0是f (x )的跳跃间断点D.x =0是f (x )的第二类间断点 4.[]⎰+dx x x dx d)sin (cos =( )A.cos x +sin x +CB.cos x -sin xC.cos x +sin xD.cos x -sin x +C5.矩阵⎥⎦⎤⎢⎣⎡=1021A 的逆矩阵是( )A.⎥⎦⎤⎢⎣⎡--1021 B.⎥⎦⎤⎢⎣⎡-1021 C.⎥⎦⎤⎢⎣⎡-1021 D.⎥⎦⎤⎢⎣⎡-1021 二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

26.如果级数的一般项恒大于0.06,则该级数的敛散性为__________.7.若20)(lim x x f x →=2,则x x f x cos 1)(lim 0-→=____________.8.设f (x )=e x +ln4,则)(x f '=____________.9.函数f (x )=(x +2)(x -1)2的极小值点是________________。

10.行列式10011y x yx =_________________________.11.设⎪⎩⎪⎨⎧==3232t y t x ,则=dx dy___________________.12.如果在[a ,b ]上f (x )≡2,则⎰ba dx x f )(2=_______________________.13.若F (x )为f (x )在区间I 上的一个原函数,则在区间I 上,⎰dx x f )(=_______.14.无穷限反常积分⎰+∞e x x dx2ln =_____________________.15.设A 是一个3阶方阵,且|A |=3,则|-2A |_________________.三、计算题(本大题共8小题,每小题6分,共48分)16.求极限200coslim x tdtt xx ⎰→.17.求微分方程y xdx dy=的通解.18.设y =y (x )是由方程e y +xy =e 确定的隐函数,求0=x dx dy.19.求不定积分⎰dx xe x .20.求曲线y =ln(1+x 2)的凹凸区间和拐点.21.设f (x )=x arctan x -)1ln(212x +,求)1(f '.22.计算定积分dx x x x ⎰-+++012241133.23.求解线性方程组3⎪⎩⎪⎨⎧=++-=++=++.02315,9426,323321321321x x x x x x x x x四、综合题(本大题共2小题,每小题6分,共12分)24.求函数f (x )=x 4-8x 2+5在闭区间[0,3]上的最大值和最小值.25.计算由曲线y =x 2,y =0及x =1所围成的图形绕x 轴旋转而成的旋转体的体积.2010年10月自考高等数学(工专)参考答案45678。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

俱乐部名称:自考乐园;俱乐部id :5346389(请牢记它哦~在百度贴吧的搜索框中输入俱乐部id ,可以直接进入俱乐部);俱
乐部url 地址:/club/5346389(您也可以通过此url 进入俱乐部。


1
全国2008年1月高等教育自学考试
高等数学(工本)试题
课程代码:00023
一、单项选择题(本大题共5小题,每小题3分,共15分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设函数f(x,y)=y x y x -+,则f(y 1,x
1)=( ) A.y x y x -+ B.x
y y x -+ C.y x y x +- D.y
x x y +- 2. 设函数f (x,y) =22y x +,则点(0,0)是f ( x,y )的( )
A.间断点
B.连续点
C.极大值点
D.驻点
3.设D 是由直线x+y+1=0与坐标轴所围成的区域,则二重积分
⎰⎰D
dxdy 4=( ) A.0
B.1
C.2
D.4 4.微分方程y '=2y 的通解是( )
A.y=Ce x
B.y=e 2x +C
C.y=2e Cx
D.y=Ce 2x 5.幂级数n 1n 1n x !n )1(∑∞
=+-的和函数为( ) A.-e -x -1
B.1-e -x
C.e -x -1
D.1+e -x
二、填空题(本大题共5小题,每小题2分,共10分)
请在每小题的空格中填上正确答案。

错填、不填均无分。

6.设向量α={},,,c b a β={1,-1,1},则α⨯β=___________.
7.设函数z = sin(x 2+y 2),则x
z ∂∂=___________.
俱乐部名称:自考乐园;俱乐部id :5346389(请牢记它哦~在百度贴吧的搜索框中输入俱乐部id ,可以直接进入俱乐部);俱
乐部url 地址:/club/5346389(您也可以通过此url 进入俱乐部。


2 8.二次积分I=⎰⎰-10x 10dy )y ,x (f dx 交换积分次序后,I=___________.
9.微分方程y ''=cosx 的通解y=___________.
10.设无穷级数∑∞=0n n u
收敛,则极限∞
→n lim u n =___________. 三、计算题(本大题共12小题,每小题5分,共60分)
11.设平面04z y 4x :1=-+-π和平面,01z y 2x 2:2=---π求1π与2π的夹角.
12.设函数z = xy+2x
y ,求全微分dz. 13.设方程e xy +ysinx+z 2-2z=1确定函数z=z (x,y),求
y z ,x z ∂∂∂∂. 14.求函数f (x,y) =cos ( xy ) +x 2-y 的梯度grad f (1,0).
15.求曲面x 2+2y 2+z 2=7在点(2,-1,1)处的法线方程.
16.计算二重积分I=
dxdy )y x 2(D ⎰⎰-,其中D 是顶点分别为(0,0),(-1,0)(-1,-1)的三角形闭区域. 17.计算三重积分I=dxdydz z 32
⎰⎰⎰Ω,其中Ω是旋转抛物面z =x 2+y 2
及平面z =1所围成的闭区域. 18.计算对弧长的曲线积分ds x L
2⎰,其中L 是右半圆x 2 + y 2 = 1(x )0≥. 19.求对坐标的曲线积分⎰-L ydx xdy ,其中L是闭区域D:x 2 +0y ,x 2y 2≥≤的正向边界曲线.
20.设函数f (x)满足6)x (f 6)x (f 5)x (f =+'+'',求函数f (x).
21.求无穷级数∑∞=+1
n )1n (n 1的和. 22. 设函数f(x)=x 2sinx 的马克劳林级数为,x a
n 0n n ∑∞=求系数a 9.
四、综合题(本大题共3小题,每小题5分,共15分)
23.欲做容积为4m 3的无盖长方体盒,如何选取长、宽和高,才能使用料最省?
24.求曲面z =2x 2 +y 2和z =6-x 2-2y 2所围立体的体积.
25.设f (x)是以2π为周期的周期函数,它在[)ππ-,上的表达式为
f (x)=⎩
⎨⎧<≤-<≤-,0,1,0,1ππx x
俱乐部名称:自考乐园;俱乐部id :5346389(请牢记它哦~在百度贴吧的搜索框中输入俱乐部id ,可以直接进入俱乐部);俱
乐部url 地址:/club/5346389(您也可以通过此url 进入俱乐部。

) 3 求f (x)的傅里叶级数展开式.。

相关文档
最新文档