【数学】2015-2016年山东省烟台市莱阳市七年级上学期数学期中试卷和解析答案PDF

合集下载

2015~2016学年第一学期七年级数学及答案

2015~2016学年第一学期七年级数学及答案

2015~2016学年第一学期七年级数学期中考试试卷说明:本试卷满分100分,考试时间:100分钟一、细心选一选,慧眼识金! (本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的,请把正确选项前的字母代号填在题后的括号内) 1、下列各式中结果为负数的是---------------------------------------------( ▲ )A .-(-5)B .(-5)2C .︱-5︱D .-︱-5︱ 2、下列结论正确的是-----------------------------------------------------( ▲ ) A . 有理数包括正数和负数 B . 0是最小的整数C . 无限不循环小数叫做无理数D . 数轴上原点两侧的数互为相反数3、下列代数式b, -2ab ,x 3,y x +,22y x +,-3,3221c ab 中,单项式共有-----( ▲ ) A .6个 B .5 个 C .4 个 D .3个 4、 下列计算的结果正确的是----------------------------------------------( ▲ )A .a +a=2a 2B .a 5-a 2=a 3C .3a +b=3abD .a 2-3a 2=-2a 25、 用代数式表示“x 的2倍与y 的平方的和”,正确的是-----------------------( ▲ )A .2x 2 + y 2B .2x + y 2C .2(x+y 2)D .2(x+y) 26、设a 为最小的正整数,b 是最大的负整数,c 是绝对值最小的数,则a +b +c = ( ▲ ) A .1 B .0 C .1或0 D .2或07、当x=2时,代数式ax 3+bx+1值为3,那么当x=-2时,代数式ax 3+bx+1的值是---- ( ▲ ) A .-3 B .1 C .-1 D .28、观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第8个图中共有点的个数是-------------( ▲ )A .106B . 85C .92D .109二、耐心填一填,你一定能行!(本大题共有10小题,12空,每空2分,共24分. 9、 211-的绝对值是___▲_____,倒数是___▲______。

2015-2016学年新人教版七年级上期中数学试卷3套(含答案)

2015-2016学年新人教版七年级上期中数学试卷3套(含答案)

2015-2016学年七年级(上)期中数学试卷一一、选择题(本大题共6小题,每小题3分,共18分)1.若一个数的相反数是3,则这个数是()A.﹣B.C.﹣3 D.32.计算(﹣1)2+(﹣1)3=()A.﹣2 B.﹣1 C.0 D. 23.某地一天早晨的气温是﹣7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃ B.﹣5℃ C.﹣3℃ D.﹣9℃4.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣35.比较的大小,结果正确的是()A.B.C.D.6.观察下列图形:它们是按一定规律排列的,依照此规律,第20个图形共有★个()A.63 B.57 C.68 D.60二、填空题(本大题共8小题,每小题3分,共24分)7.计算﹣2x2+3x2的结果为.8.数轴上两点A、B分别表示数﹣2和3,则A、B两点间的距离是.9.我国“钓鱼岛”周围海域面积约170000km2,该数用科学记数法可表示为.10.定义一种新运算:a⊗b=b2﹣ab,如:1⊗2=22﹣1×2=2,则(﹣1⊗2)⊗3=.11.已知2a﹣b=﹣1,则4a﹣2b+1的值为.12.已知﹣25a2m b与7b3﹣n a4的和是单项式,则m+n的值是.13.对单项式“5x”,我们可以这样解释:香蕉每千克5元,某人买了x千克,共付款5x元.请你对“5x”再给出另一个实际生活方面的合理解释:.(答案不唯一).14.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券.小明只购买了单价分别为60元、80元和120元的书包、T恤、运动鞋,在使用购物券参与购买的情况下,他的实际花费为元.三、(本大题共3小题,第15、16小题各5分,第17小题6分,共16分)15.计算:﹣22÷(﹣1)3×(﹣5)16..17.下列代数式中:3+a;;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.单项式:多项式:整式:.四、(本大题共2小题,每小题7分,共14分)18.求代数式2x3﹣5x2+x3+9x2﹣3x3﹣2的值,其中x=.19.已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)①若A与B的和中不含x2项,则a=;②在①的基础上化简:B﹣2A.五、(本大题共2个小题,每小题9分,共18分)20.10月25日,省运会在赣州隆重开幕,社会各界主动献出自己的力量,支持省运会.某一出租车这天上午以体育场为出发点在东西方向免费接送运动员,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣8、+6、﹣3、﹣6、﹣4、+12.(1)将最后一名运动员送到目的地,出租车离体育场出发点多远?在体育场的什么方向?(2)若每千米耗油a升,那么这一天共耗油多少升?21.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高,如果用a表示脚印长度,b表示身高.关系类似满足于:b=7a﹣3.07.(1)某人脚印长度为24.5cm,则他的身高约为多少?(精确到1cm)(2)在某次案件中,抓获了两可疑人员,一个身高为1.87m,另一个身高1.82m,现场测量的脚印长度为26.3cm,请你帮助侦察一下,哪个可疑人员的可能性更大?六、(本大题共10分)22.(10分)(2014秋•赣县校级期中)小红爸爸上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)星期一二三四五六每股涨跌+4 +4.5 ﹣1 ﹣2.5 ﹣6 +2(1)通过上表你认为星期三收盘时,每股是多少?(2)本周内每股最高是多少?最低是多少元?(3)已知小红爸爸买进股票时付了1.5‰的手续费,卖出时还需付成交额,1.5‰的手续费和1‰的交易税,如果小红爸爸在星期六收盘时将全部股票卖出,你对他的收益情况怎样评价?2015-2016学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.若一个数的相反数是3,则这个数是()A.﹣B.C.﹣3 D.3考点:相反数.分析:两数互为相反数,它们的和为0.解答:解:设3的相反数为x.则x+3=0,x=﹣3.故选:C.点评:本题考查的是相反数的概念,两数互为相反数,它们的和为0.2.计算(﹣1)2+(﹣1)3=()A.﹣2 B.﹣1 C.0 D. 2考点:有理数的混合运算;有理数的乘方.分析:此题比较简单.先算乘方,再算加法.解答:解:(﹣1)2+(﹣1)3=1﹣1=0.故选C.点评:此题主要考查了乘方运算,乘方的意义就是求几个相同因数积的运算.注意负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.3.某地一天早晨的气温是﹣7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃ B.﹣5℃ C.﹣3℃ D.﹣9℃考点:有理数的加减混合运算.专题:应用题.分析:在列式时要注意上升是加法,下降是减法.解答:解:根据题意可列式﹣7+11﹣9=﹣5,所以温度是﹣5℃.故选B.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.4.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣3考点:代数式求值;绝对值.专题:计算题.分析:根据a的取值范围,先去绝对值符号,再计算求值.解答:解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选:B.点评:此题考查的知识点是代数式求值及绝对值,关键是根据a的取值,先去绝对值符号.5.比较的大小,结果正确的是()A.B.C.D.考点:有理数大小比较.分析:根据有理数大小比较的方法即可求解.解答:解:∵﹣<0,﹣<0,>0,∴最大;又∵>,∴﹣<﹣;∴.故选A.点评:本题考查有理数比较大小的方法:①正数都大于0,负数都小于0,正数大于一切负数;②两个负数,绝对值大的反而小.6.观察下列图形:它们是按一定规律排列的,依照此规律,第20个图形共有★个()A.63 B.57 C.68 D.60考点:规律型:图形的变化类.专题:规律型.分析:本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.解答:解:根据题意得,第1个图中,五角星有3个(3×1);第2个图中,有五角星6个(3×2);第3个图中,有五角星9个(3×3);第4个图中,有五角星12个(3×4);∴第n个图中有五角星3n个.∴第20个图中五角星有3×20=60个.故选:D.点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题(本大题共8小题,每小题3分,共24分)7.计算﹣2x2+3x2的结果为x2.考点:合并同类项.分析:根据合并同类项,系数相加字母和字母的指数不变,可得答案.解答:解:原式=(﹣2+3)x2=x2,故答案为:x2.点评:本题考查了合并同类项,合并同类项,系数相加字母和字母的指数不变.8.数轴上两点A、B分别表示数﹣2和3,则A、B两点间的距离是5.考点:数轴.分析:数轴上两点间的距离:数轴上两点对应的数的差的绝对值.解答:解:根据数轴上两点对应的数是﹣2,3,则两点间的距离是3﹣(﹣2)=5.点评:本题考查数轴上两点间距离的求法:右边点的坐标减去左边点的坐标;或两点坐标差的绝对值.9.我国“钓鱼岛”周围海域面积约170000km2,该数用科学记数法可表示为 1.7×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将170000用科学记数法表示为:1.7×105.故答案为:1.7×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.定义一种新运算:a⊗b=b2﹣ab,如:1⊗2=22﹣1×2=2,则(﹣1⊗2)⊗3=﹣9.考点:有理数的混合运算.专题:新定义.分析:先根据新定义计算出﹣1⊗2=6,然后再根据新定义计算6⊗3即可.解答:解:﹣1⊗2=22﹣(﹣1)×2=6,6⊗3=32﹣6×3=﹣9.所以(﹣1⊗2)⊗3=﹣9.故答案为:﹣9.点评:本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.11.已知2a﹣b=﹣1,则4a﹣2b+1的值为﹣1.考点:代数式求值.专题:计算题.分析:原式变形后,将已知等式代入计算即可求出值.解答:解:∵2a﹣b=﹣1,∴原式=2(2a﹣b)+1=﹣2+1=﹣1,故答案为:﹣1点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.已知﹣25a2m b与7b3﹣n a4的和是单项式,则m+n的值是4.考点:合并同类项.分析:有题意可知,这两个式子是同类项,再根据同类项的定义可得:2m=4,3﹣n=1.解答:解:由题意可得,2m=4,3﹣n=1.解得,m=2,n=2,∴m+n=4.故答案为:4.点评:此题主要考查同类项的概念,所含字母相同,并且相同字母的指数也相同的项是同类项.13.对单项式“5x”,我们可以这样解释:香蕉每千克5元,某人买了x千克,共付款5x元.请你对“5x”再给出另一个实际生活方面的合理解释:某人以5千米/时的速度走了x小时,他走的路程是5x千米.(答案不唯一).考点:单项式.专题:开放型.分析:对单项式“5x”,是5与x的积,表示生活中的相乘计算.比如:某人以5千米/时的速度走了x小时,他走的路程是5x千米解答:解:某人以5千米/时的速度走了x小时,他走的路程是5x千米,答案不唯一.点评:本题考查了单项式在生活中的实际意义,只要计算结果为5x的都符合要求.14.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券.小明只购买了单价分别为60元、80元和120元的书包、T恤、运动鞋,在使用购物券参与购买的情况下,他的实际花费为210或200元.考点:有理数的混合运算.专题:应用题;压轴题;分类讨论.分析:分四种情况讨论:①先付60元,80元,得到50元优惠券,再去买120元的运动鞋;②先付60元,120元,得到50元的优惠券,再去买80元的T恤;③先付120元,得到50元的优惠券,再去付60元,80元的书包和T恤;④先付120元,80元,得到100元的优惠券,再去付60元的书包;分别计算出实际花费即可.解答:解:①先付60元,80元,得到50元优惠券,再去买120元的运动鞋;实际花费为:60+80﹣50+120=210元;②先付60元,120元,得到50元的优惠券,再去买80元的T恤;实际花费为:60+120﹣50+80=210元;③先付120元,得到50元的优惠券,再去付60元,80元的书包和T恤;实际花费为:120﹣50+60+80=210元;④先付120元,80元,得到100元的优惠券,再去付60元的书包;实际花费为:120+80=200元;综上可得:他的实际花费为210元或200元.点评:本题旨在学生养成仔细读题的习惯.三、(本大题共3小题,第15、16小题各5分,第17小题6分,共16分)15.计算:﹣22÷(﹣1)3×(﹣5)考点:有理数的混合运算.分析:先算乘方,再从左到右依次计算除法、乘法.解答:解:原式=﹣4÷(﹣1)×(﹣5)=4×(﹣5)=﹣20.点评:有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.本题要特别注意运算顺序以及符号的处理,如﹣22=﹣4,而(﹣2)2=4.16..考点:有理数的混合运算.专题:常规题型.分析:按照有理数混合运算的顺序,先乘除后加减,有括号的先算括号里面的,并且在计算过程中注意正负符号的变化.解答:解:原式===0答:此题答案为0.点评:有理数的运算能力是很重要的一部分,要熟练掌握.17.下列代数式中:3+a;;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.单项式:0;﹣a;;a2b2多项式:3+a;;3x2﹣2x+1;a2﹣b2整式:3+a;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.考点:整式;单项式;多项式.分析:根据单项式、整式以及多项式进行填空.解答:解:单项式:0;﹣a;;a2b2;多项式:3+a;;3x2﹣2x+1;a2﹣b2;整式:3+a;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.故答案是:0;﹣a;;a2b2;3+a;;3x2﹣2x+1;a2﹣b2;3+a;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.点评:要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.四、(本大题共2小题,每小题7分,共14分)18.求代数式2x3﹣5x2+x3+9x2﹣3x3﹣2的值,其中x=.考点:整式的加减—化简求值.分析:本题应先将原式合并同类项,再将x的值代入,即可解出本题.解答:解:原式=2x3+x3﹣3x3+9x2﹣5x2﹣2=4x2﹣2,当x=时,原式=1﹣2=﹣1.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.19.已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)①若A与B的和中不含x2项,则a=﹣3;②在①的基础上化简:B﹣2A.考点:多项式.分析:①不含x2项,即x2项的系数为0,依此求得a的值;②先将表示A与B的式子代入B﹣2A,再去括号合并同类项.解答:解:①A+B=ax2+x﹣1+3x2﹣2x+1=(a+3)x2﹣x∵A与B的和中不含x2项,∴a+3=0,解得a=﹣3.②B﹣2A=3x2﹣2x+1﹣2×(﹣3x2+x﹣1)=3x2﹣2x+1+6x2﹣2x+2=9x2﹣4x+3.点评:多项式的加减实际上就是去括号和合并同类项.多项式加减的运算法则:一般地,几个多项式相加减,如果有括号就先去括号,然后再合并同类项.合并同类项的法则:把系数相加减,字母及字母的指数不变.本题注意不含x2项,即x2项的系数为0.五、(本大题共2个小题,每小题9分,共18分)20.10月25日,省运会在赣州隆重开幕,社会各界主动献出自己的力量,支持省运会.某一出租车这天上午以体育场为出发点在东西方向免费接送运动员,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣8、+6、﹣3、﹣6、﹣4、+12.(1)将最后一名运动员送到目的地,出租车离体育场出发点多远?在体育场的什么方向?(2)若每千米耗油a升,那么这一天共耗油多少升?考点:正数和负数.分析:(1)根据有理数的加法,可得正负数,根据正数在东,负数在西,可得答案;(2)根据单位耗油量乘以行车距离,可得答案.解答:解:(1)+9﹣3﹣5+4﹣8+6﹣3﹣6﹣4+12=2km故出租车在体育场东边2 km处;(2)﹙|+9|+|﹣3|+|﹣5|+|+4|+|﹣8|+|+6|+|﹣3|+|﹣6|+|﹣4|+|+12|﹚•a=60a 升.答:这一天共耗油60a升点评:本题考查了正数和负数,利用有理数的加法运算是解题关键,注意求耗油量时要算每次行驶的绝对值.21.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高,如果用a表示脚印长度,b表示身高.关系类似满足于:b=7a﹣3.07.(1)某人脚印长度为24.5cm,则他的身高约为多少?(精确到1cm)(2)在某次案件中,抓获了两可疑人员,一个身高为1.87m,另一个身高1.82m,现场测量的脚印长度为26.3cm,请你帮助侦察一下,哪个可疑人员的可能性更大?考点:代数式求值.专题:应用题.分析:(1)将脚印长度为24.5cm代入关系式即可得;(2)借助关系式b=7a﹣3.07,求出身高,再根据概率知识推测谁的可能性大.解答:解:(1)已知如果用a表示脚印长度,b表示身高.关系类似满足于:b=7a﹣3.07.若某人脚印长度为24.5cm,即a=24.5,将其代入关系式可得,身高约为7×24.5﹣3.07=168.43≈168cm,即他的身高约为168cm;(2)根据现场测量的脚印长度为26.3cm,将这个数值代入b=7a﹣3.07中可得:罪犯身高为181.03cm≈1.81cm,比较可知:身高1.82m的可疑人员的可能性更大.点评:立意新颖,把数学知识融汇到案件侦破中,既考知识,又增加了学习的乐趣.六、(本大题共10分)22.(10分)(2014秋•赣县校级期中)小红爸爸上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)星期一二三四五六每股涨跌+4 +4.5 ﹣1 ﹣2.5 ﹣6 +2(1)通过上表你认为星期三收盘时,每股是多少?(2)本周内每股最高是多少?最低是多少元?(3)已知小红爸爸买进股票时付了1.5‰的手续费,卖出时还需付成交额,1.5‰的手续费和1‰的交易税,如果小红爸爸在星期六收盘时将全部股票卖出,你对他的收益情况怎样评价?考点:有理数的混合运算;正数和负数.专题:应用题.分析:(1)先根据表格中找出星期一,星期二及星期三所对应的涨跌情况,把这三个数字相加得到这三天的涨跌情况,与买进时每股的单价相加即可求出星期三收盘时每股的价钱;(2)根据表格中记录的正负数情况得到星期二涨幅最大,星期五跌幅最大,求出星期一与星期二两天的涨幅情况,与买进时每股的价钱相加即可得到每股的最高价;用星期一到星期五五天的涨跌情况,与买进时每股的价格相加即可求出每股的最低价;(3)根据买进时每股的单价与股数相乘,减去手续费即可得到买进时所花费的钱数,然后求出一星期七天的涨跌情况,与买进时每股的价钱相加即可求出卖出时每股的价钱,然后乘以股数,再减去手续费和交易费即可求出卖出时获得的总钱数,用获得的总钱数减去买入时花费的钱数,根据其差得正负情况即可计算出他得收益情况.解答:解:(1)(+4)+(+4.5)+(﹣1)=7.5,则星期三收盘时,每股是27+7.5=34.5元;(2)本周内最高价是27+4+4.5=35.5元;最低价是27+4+4.5﹣1﹣2.5﹣6=26元;(3)买入时,27×1000×(1+1.5‰)=27040.5元,卖出时每股:27+4+4.5﹣1﹣2.5﹣6+2=28元,所以卖出时的总钱数为28×1000×(1﹣1.5‰﹣1‰)=27930元,所以小红爸爸的收益为27930﹣27040.5=889.5元,故赚了889.5元.点评:此题考查了有理数的混合运算,以及正负数的意义.原题提供的是实际生活中常见的一个表格,它提供了多种信息,但关键是从中找出解题所需的有效信息,构造相应的数学模型,来解决问题.数学服务于生活,数学来源于生活.2015-2016学年七年级(上)期中数学试卷二一、选择题:本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的编号用铅笔涂在答题卡上.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.如图所示的图形绕虚线旋转一周,所形成的几何体是()A.B.C.D.3.代数式a2b和﹣3a2b y是同类项时,y的值为()A.0 B. 1 C. 2 D. 34.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体5.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达30 000 000个核苷酸,30 000 000用科学记数法表示为()个.A.3×108 B.3×107 C.3×106 D.0.3×1086.若|a|=2,则a=()A.2 B.﹣2C. 2 或﹣2 D.以上答案都不对7.数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能8.一个有理数的倒数是它本身,这个数是()A.0 B. 1 C.﹣1 D.1或﹣19.下列图形中,哪一个是正方体的展开图()A.B.C.D.10.下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的数C.一个有理数不是整数就是分数D.0的绝对值是011.比较﹣2,0,﹣(﹣2),﹣3的大小,下列正确的()A.0>﹣3>﹣(﹣2)>﹣2 B.﹣(﹣2)>﹣3>﹣2>0 C.﹣(﹣2)>0>﹣2>﹣3 D.﹣3>﹣(﹣2)>﹣2>012.一根绳子弯曲成如图1所示的形状.当用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+5二、填空题:本题有4小题,每小题3分,共12分.把答案填在答题卡上.13.﹣a2b的系数是.14.如果水库的水位高于标准水位3米时,记作+3米,那么低于标准水位2米时,应记米.15.菜场上西红柿每千克a元,白菜每千克b元,学校食堂买30kg西红柿,50kg白菜共需元.16.“*”是规定的一种运算法则:a*b=a2﹣b,则5*(﹣1)的值是.三、解答题:本题有6小题,共52分,解答应写出文字说明或演算步骤.17.(16分)(2014秋•深圳校级期中)计算:(1)8﹣6+(﹣9)(2)﹣24×(﹣+)(3)(﹣0.1)÷×(﹣10)(4)16÷(﹣2)3﹣(﹣)×(﹣4)18.(10分)(2014秋•深圳校级期中)先化简,再求值(1)6a+2a2﹣3a+a2+1的值,其中a=﹣1.(2)x﹣2(x+2y)+3(y﹣2x),其中x=﹣2,y=1.19.画出如图几何体的三视图.20.某一矿井的示意图如图所示:以地面为准,A点的高度是+4米,B、C两点的高度分别是﹣15米与﹣30米.A点比B点高多少?比C点呢?21.学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x的代数式表示)(2)学校要印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.22.已知a,b互为相反数,m,n互为倒数,x的绝对值等于3.①由题目可得,a+b=;mn=;x=.②求代数式x2﹣(a+b+mn)x+(a+b)2008+(﹣mn)2008的值.2015-2016学年七年级(上)期中数学试卷参考答案与试题解析一、选择题:本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的编号用铅笔涂在答题卡上.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣考点:相反数.专题:常规题型.分析:根据相反数的概念解答即可.解答:解:﹣3的相反数是3,故选:A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图所示的图形绕虚线旋转一周,所形成的几何体是()A.B.C.D.考点:点、线、面、体.分析:上面的直角三角形旋转一周后是一个圆锥,下面的长方形旋转一周后是一个圆柱.所以应是圆锥和圆柱的组合体.解答:解:根据以上分析应是圆锥和圆柱的组合体.故选:B.点评:本题考查的是点、线、面、体知识点,可把较复杂的图象进行分解旋转,然后再组合.3.代数式a2b和﹣3a2b y是同类项时,y的值为()A.0 B.1 C. 2 D. 3考点:同类项.专题:计算题.分析:根据同类项的定义计算即可:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.解答:解:∵代数式a2b和﹣3a2b y是同类项,∴y=1,故选B.点评:本题考查了同类项的定义,解题时牢记定义是关键,此题比较简单,易于掌握.4.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体考点:截一个几何体.分析:根据圆柱、圆锥、球、正方体的形状特点判断即可.解答:解:本题中,用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,无论如何,截面也不会有弧度不可能是圆,故选D.点评:本题考查几何体的截面,关键要理解面与面相交得到线.5.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达30 000 000个核苷酸,30 000 000用科学记数法表示为()个.A.3×108 B.3×107 C.3×106 D.0.3×108考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.解答:解:30 000 000=3×107.故选B.点评:把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.6.若|a|=2,则a=()A.2 B.﹣2C. 2 或﹣2 D.以上答案都不对考点:绝对值.分析:直接利用“绝对值等于一个正数的数有两个,它们互为相反数”写出答案即可.解答:解:∵|a|=2,∴a=±2,故选C.点评:本题考查了绝对值的求法,属于基础题,比较简单.7.数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能考点:数轴;有理数的加法.专题:数形结合.分析:首先根据数轴发现a,b异号,再进一步比较其绝对值的大小,然后根据有理数的加法运算法则确定结果的符号.异号两数相加,取绝对值较大的加数的符号.解答:解:由图,可知:a<0,b>0,|a|>|b|.则a+b<0.故选:C.点评:本题结合数轴,主要考查了有理数的加法法则,体现了数形结合的思想.8.一个有理数的倒数是它本身,这个数是()A.0 B. 1 C.﹣1 D.1或﹣1考点:倒数.专题:常规题型.分析:根据倒数的定义可知如果一个数的倒数等于它本身,则这个数是±1.解答:解:如果一个数的倒数等于它本身,则这个数是±1,故选:D.点评:此题考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.尤其是±1这两个特殊的数字.9.下列图形中,哪一个是正方体的展开图()A.B.C.D.考点:几何体的展开图.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:折叠后,没有上下底面,故不能折成正方体;B、C折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体;故只有D是正方体的展开图.故选D.点评:只要有“田”字格的展开图都不是正方体的表面展开图.10.下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的数C.一个有理数不是整数就是分数D.0的绝对值是0考点:绝对值;有理数.专题:常规题型.分析:先根据:0既不是正数,也不是负数;整数和分数统称为有理数;0的绝对值是0;判断出A、C、D正确;再根据绝对值最小的数是0,得出B错误.解答:解:0既不是正数,也不是负数,A正确;绝对值最小的数是0,B错误;整数和分数统称为有理数,C正确;0的绝对值是0,D正确.故选:B.点评:本题主要考查正数的绝对值是正数,负数的绝对值是正数,0的绝对值是0,熟练掌握绝对值的性质是解题的关键.11.比较﹣2,0,﹣(﹣2),﹣3的大小,下列正确的()A.0>﹣3>﹣(﹣2)>﹣2 B.﹣(﹣2)>﹣3>﹣2>0 C.﹣(﹣2)>0>﹣2>﹣3 D.﹣3>﹣(﹣2)>﹣2>0考点:有理数大小比较.分析:先化简﹣(﹣2)=2,再根据正数都大于0;负数都小于0;两个负数,绝对值大的反而小求解.解答:解:化简﹣(﹣2)=2,所以﹣(﹣2)>0>﹣2>﹣3.故选C.点评:本题考查了有理数比较大小的方法:(1)正数都大于0;(2)负数都小于0;(3)正数大于一切负数;(4)两个负数,绝对值大的其值反而小.12.一根绳子弯曲成如图1所示的形状.当用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+5考点:规律型:图形的变化类.专题:压轴题;规律型.分析:本题做为一道选择题,学生可把n=1,x=5;n=2,x=9代入选项中即可得出答案.而若作为常规题,学生则需要一一列出n=1,2,3…的能,再对x的取值进行归纳.解答:解:设段数为x则依题意得:n=0时,x=1,。

人教版2015-2016学年七年级(上)期中数学试卷(

人教版2015-2016学年七年级(上)期中数学试卷(
法.
3.用四舍五入法把 0.06097 精确到千分位的近似值的有效数字是( ) A.0,6,0 B.0,6,1,0 C.0,6,1 D.6,1 【考点】近似数和有效数字. 【分析】一个近似数的有效数字是从左边第一个不是 0 的数字起,后面所有的数字都是这个 数的有效数字. 精确到哪位,就是对它后边的一位进行四舍五入. 【解答】解:用四舍五入法把 0.060 97 精确到千分位的近似值是 0.061.其有效数字是从左 边第一个不为零的数字 6 开始,至精确到的数位 1 结束,共有 6、1 两位.故选 D. 【点评】本题旨在考查对基本概念的应用能力,需要同学们熟记有效数字的概念:从一个数 的左边第一个非零数字起,到精确到的数位止,所有数字都是这个数的有效数字.
A.单项式
的系数是 3,次数是 2
B.单项式 m 的次数是 1,没有系数 C.单项式﹣xy2z 的系数是﹣1,次数是 4 D.多项式 2x2+xy+3 是三次三项式
5.当 k 取何值时,多项式 x2﹣3kxy﹣3y2+ xy﹣8 中,不含 xy 项( )
A.0 B. C. D.﹣ 6.如图钟表 8 时 30 分时,时针与分针所成的角的度数为( )
1 / 12
A.2075 B.1575 C.2000 D.1500 10.下列图形中,不是正方体的展开图的是( )
A.
B.
C.
D.
11.下列四个角中,最有可能与 70°角互补的角是( )
A.
B.
C.
D.
12.已知点 A、B、P 在一条直线上,则下列等式中,能判断点 P 是线段 AB 的中点的个数 有( )
3 / 12
人教版七年级(上)期中数学试卷
参考答案与试题解析

山东省烟台市七年级(上)期中数学试卷

山东省烟台市七年级(上)期中数学试卷

七年级(上)期中数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.下列代数式书写规范的是()A. 3aB. (5÷3)aC. x5D. 212n2.下列说法正确的是()A. x2x是整式B. 单项式28mn的系数是2,次数是10C. 多项式3x2−54的常数项是−54,二次项的系数是34D. 多项式3a−abc+4c−5a+2c按字母a的降幂排列是5a+3a+2c−abc+4c3.已知5x m+2y3与14x6y n+1是同类项,则(-m)3+n2等于()A. −64B. −60C. 68D. 624.某企业今年3月份产值为m万元,4月份比3月份减少了8%,预测5月份比4月份增加9%,则5月份的产值是()A. (m−8%)(m+9%)万元B. (1−8%)(1+9%)m万元C. (m−8%+9%)万元D. (m−8%+9%)m万元5.当a=1时,a+2a+3a+4a+…+99a+100a的值为()A. 5050B. 100C. −50D. 506.如图是小明家的楼梯示意图,一只蚂蚁从A点沿着楼梯爬到B点,共爬了(3a-b)米,则蚂蚁爬完两级台阶共走了()米.A. 3a−b8B. 3a−b16C. 3(3a−b)16D. 3a−b47.如果一个多项式的次数都相等,则称该多项式为齐次多项式,例如:x3+2x2y+y3是三次齐次多项式,若x m y+3x3y2+5x2y n+y5是齐次多项式,则m n等于()A. 32B. 64C. 81D. 1258.已知(x-5)2+3|y+3|=0,则3xy-4xy-(-2xy)的值为()A. −45B. 15C. 45D. −159.当x=1时,代数式ax5+bx3+cx-5的值为m,则当x=-1时,此代数式的值为()A. −mB. −m−10C. −m−5D. −m+510.将长为40cm,宽为15cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为5cm,则n张白纸粘合后的总长度为()cm.A. 35n+5B. 35nC. 40nD. 40n+5二、填空题(本大题共5小题,共15.0分)11.下列整式中:m4n27、-12x2y、x2+y2-1、x、3x2y+3xy2+x4-1、32t3、2x-y,单项式的个数为a,多项式的个数为b,则ab=______.12.请设计一个实际背景来表示代数式2x+3y的实际意义______.13.当k=______时,多项式x2-(3k-2)xy-3y2+7xy-8中不含xy项.14.根据图中标明的尺寸,用含a,b的代数式表示图中阴影部分的面积为______(结果保留π)15.任意写一个自然数,数一数这个数中偶数的个数、奇数的个数和这个自然数的总位数,按“偶-奇-总”的顺序排列得到一个新的整数.不断重复上面的过程,你将会进入一个数学黑洞(得到一个不变的数),这个不变的数是______.三、计算题(本大题共1小题,共12.0分)16.(1)化简:12x-(-3y3-x)-3(-xy+y3)(2)化简:3(x-12y2)-2(x-12y2)-1;(3)先化简,再求值:-(a2-2a+1)-12(-2a2+a-1),其中a=1.四、解答题(本大题共5小题,共43.0分)17.已知多项式(2ax2+3x-1)-(bx-2x2-3)的值与x的取值无关,求代数式-(a-ab)-3(ab-b)+2ab的值.18.如图用一张边长为16cm的正方形纸片,在其四个角上减掉四个边长相同的小正方形可做成无盖的长方体盒子.若设减掉的小正方形的边长为xcm,做成的无盖长方体盒子的容积为Vcm3.(1)要使做成的长方体盒子底面周长为48cm,那么减掉的正方形边长为______cm;(2)用含x的式子表示V=______;(3)填表:x(cm) 1 2 3 4 5V(cm3)______ ______ ______ ______ ______观察表格中的结果,你能得到那些信息?(写出两条)19.当a=3,b=-5时,(1)求下列代数式的值:①a2-b2;②(a-b)(a+b).(2)观察两个代数式的值有什么关系?(3)当a=3,b=4时,上述结论是否仍然成立?再任选a,b的一组数据试一试,由此你能得出什么结论?(4)你能用简便方法计算20192-20182吗?20.观察下面的几个式子:3×12=3×1:3×(12+22)=5×(1+2);3×(12+22+32)=7×(1+2+3);3×(12+22+32+42)=9×(1+2+3+4);……(1)根据上面的规律,第5个式子为______;(2)根据上面的规律,第n个式子为______;(3)利用你发现的规律,写出12+22+32+…+n2=______;(4)利用你发现的规律,求出12+22+32+…+102的值,并写出过程.21.某农户去年承包荒山若干亩.投资7800元改造后,种果树2000棵.今年产量为18000千克,此水果在市场上每千克售a元,在果园每千克售b元.该农户将水果运到市场出售平均每天出售1000千克,需8人帮忙.每人每天付工资25元,农用车运费及其他各项税费平均每天100元.(1)分别用a,b表示两种方式出售水果的收人.(2)若a=1.3,b=1.1,且两种出售方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好?答案和解析1.【答案】A【解析】解:A、3a,正确;B、正确写法是a,错误;C、正确写法是5x,错误;D、正确写法是n,错误;故选:A.由代数式的基本书写格式对比,分析可知哪项正确.此题考查了对代数式的基本书写,应根据代数式的书写格式对比作答.2.【答案】C【解析】解:A、=x,条件没有说明x是整式,因此A错误;B、单项式28mn的系数是1,次数是8;D、按字母a的降幂排列是5a+3a-abc+4c+2c.故选:C.解此题时可将选项一一进行分析,找出错误的反例或原因即可.此题考查的是对多项式的含义的理解,通过对选项的排除可选出答案.3.【答案】B【解析】解:根据题意可得:m+2=6,n+1=3,解得:m=4,n=2,∴(-m)3+n2=-64+4=-60,故选:B.根据同类项的定义,字母x、y的次数分别相等,列方程求m、n的值即可.本题考查同类项的概念,解题的关键是根据同类项的概念列出方程求出m,n,本题属于基础题型.4.【答案】B【解析】解:由题意可得,5月份的产值是:m(1-8%)(1+9%)万元,故选:B.根据题意可以求得5月份的产值,列出相应的代数式.本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.5.【答案】A【解析】解:当a=1时,a+2a+3a+4a+…+99a+100a=1+2+3+4+…+99+100==5050,故选:A.将a=1代入后,利用高斯求和方法计算可得.本题主要考查整式的加减-化简求值与数字的变化规律,解题的关键是掌握高斯求和的计算方法.6.【答案】D【解析】解:由题意可得,蚂蚁爬完两级台阶共走了:=(米),故选:D.根据题意可知(3a-b)米是八级台阶的长度,从而可以得到蚂蚁爬完两级台阶共走的路程.本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.7.【答案】B【解析】解:∵x m y+3x3y2+5x2y n+y5是齐次多项式,∴它是齐五次多项式,所以m+1=5,2+n=5,解得m=4,n=3.所以m n=43=64.故选:B.根据多项式是齐次多项式,先判断该多项式的次数,再求出m、n的值,代入计算即可.本题考查了多项式的次数、乘方运算,解决本题的关键是理解齐次多项式的定义.8.【答案】D【解析】解:由题意可知:x-5=0,y+3=0,∴x=5,y=-3,∴原式=-xy+2xy=xy=-15,故选:D.根据非负数性可求出x与y的值,然后代入原式即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.9.【答案】B【解析】解:将x=1代入ax5+bx3+cx-5=m,得:a+b+c-5=m,则a+b+c=m+5,当x=-1时,原式=-a-b-c-5=-(a+b+c)-5=-m-5-5=-m-10,故选:B.依据当x=1时代数式ax5+bx3+cx的值与当x=-1时代数式ax5+bx3+cx的值互为相反数进行计算.本题主要考查了代数式求值问题,解决问题的关键是掌握整体代入法.解答求代数式的值问题的时,如果给出的代数式可以化简,要先化简再求值.10.【答案】A【解析】解:根据题意和所给图形可得出:总长度为40n-5(n-1)=35n+5(cm),故选:A.n张白纸黏合,需黏合(n-1)次,重叠5(n-1)cm,所以总长可以表示出来.本题主要考查列代数式,解题的关键是结合图形找到粘合部分的次数及代数式的表示.11.【答案】12【解析】解:单项式有、-x2y、x、32t3,即a=4,多项式有x2+y2-1、3x2y+3xy2+x4-1、2x-y,即b=3,ab=12,故答案为:12.先选出多项式和单项式,即可得出答案.本题考查了对多项式、单项式的应用,能理解多项式和单项式的定义是解此题的关键,12.【答案】本子每本x元,铅笔盒每个y元,则购买2本本子和3个铅笔盒的总钱数为(2x+3y)元(答案不唯一)【解析】解:本子每本x元,铅笔盒每个y元,则购买2本本子和3个铅笔盒的总钱数为(2x+3y)元,故答案为:本子每本x元,铅笔盒每个y元,则购买2本本子和3个铅笔盒的总钱数为(2x+3y)元(答案不唯一).结合实际问题,赋予代数式实际意义即可.此题考查的知识点是代数式,此类问题答案不唯一,只需结合实际,根据代数式的特点解答.13.【答案】3【解析】解:x2-(3k-2)xy-3y2+7xy-8=x2-3y2+(9-3k)xy-8,由于不含xy项,故9-3k=0,解得k=3.先将多项式合并同类项,不含xy项即系数为0,列出方程求得k的值.解答此题必须先合并同类项,否则极易根据-(3k-2)=0误解出k=.14.【答案】12ab+(π4-12)b2【解析】解:图中阴影部分面积为ab+πb2-(a+b)•b=ab+(-)b2,故答案是:ab+(-)b2.根据长方形的面积+圆的面积-直角三角形面积求解可得.本题主要考查列代数式与代数式求值,解题的关键是掌握代数式书写规范与求值的能力.15.【答案】123【解析】解:根据题意取数字2008经过一步之后变为404,经过第二步后变为303,再变为123,再变为123,即发现黑洞数是123.故答案为:123.根据题意,取数字2008经过一步之后变为404,经过第二步后变为303,再变为123,再变为123,再变为123,即发现不变数是123,从而求解.此题主要了数字变化规律,根据已知正确理解题意,弄清偶数和奇数的概念是解题关键.16.【答案】解:(1)原式=12x+3y3+x+3xy-3y3=32x+3xy;(2)原式=3x-32y2-2x+y2-1=x-12y2-1;(3)原式=-a2+2a-1+a2-12a+12=32a-12,当a=1时,原式=32-12=1.【解析】(1)去括号,再合并同类项即可得;(2)去括号,再合并同类项即可得;(3)先去括号、合并同类项,再代入求值.本题主要考查整式的加减-化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.17.【答案】解:原式=(2a+2)x2+(3-b)x+2,∵多项式(2ax2+3x-1)-(bx-2x2-3)的值与x的取值无关,∴2a+2=0,3-b=0,解得:a=-1,b=3,∴-(a-ab)-3(ab-b)+2ab=-a+ab-3ab+3b+2ab=-a+3b,当a=-1,b=3时,原式=1+9=10.【解析】根据题意首先得出a,b的值,再去括号进而合并同类项,把a,b的值代入求出答案.此题主要考查了整式的加减,正确合并同类项是解题关键.18.【答案】2 x(16-2x)2196 288 300 256 180【解析】解:(1)由题意得16-2x=48÷4解得x=2;(2)V=(16-2x)2•x=x(16-2x)2.故答案为:x(16-2x)2.(3)分别把x=1,2,3,4,5代入x(16-2x)2观察表格中的结果,能得到:①当x=3时,体积最大为300;②盒子的容积V随x的增大先增大,后减小.(1)由已知图形,折成的无盖的长方体的底是边长为16-2x(cm)的正方形,由周长进一步代入求得答案;(2)根据(1)底是边长为16-2x(cm)的正方形,高为x,根据长方体的体积列出代数式;(3)由(2)分别把x的值代入即可求出V.的代数式,分别把x的值代入即可求出V.比较V值,易得结论.此题考查了学生对列代数式、代数式求值的理解与掌握.解答此题的关键是通过观察先确定折成的无盖的长方体的底是边长和高.19.【答案】解:(1)当a=3,b=-5时,①a2-b2;=9-25=-14;②(a-b)(a+b)=7×(-2)=-14;(2)相等;(3)成立;当a=3,b=4时时,∵a2-b2=9-16=-7,(a-b)(a+b)=-1×7=-7.∴结论仍然成立;(4)20192-20182=(2019+2018)(2019-2018)=4037.【解析】把ab的值代入所求代数式,计算即可,通过比较结果可得出平方差公式,从而可利用平方差公式进行计算,达到简化的目的.本题考查的是平方差公式,代数式求值,注意公式的推导及利用.20.【答案】3×(12+22+32+42+52)=11×(1+2+3+4+5)3×(12+22+32+42+…+n2)=(2n+1)×(1+2+3+4+…+n);n(n+1)(2n+1)6【解析】解:(1)第5个式子为:3×(12+22+32+42+52)=11×(1+2+3+4+5),故答案为:3×(12+22+32+42+52)=11×(1+2+3+4+5);(2)根据上面的规律,第n个式子为:3×(12+22+32+42+…+n2)=(2n+1)×(1+2+3+4+…+n),故答案为:3×(12+22+32+42+…+n2)=(2n+1)×(1+2+3+4+…+n);(3)12+22+32+…+n2=(2n+1)(1+2+3+…+n)=×(2n+1)×=,故答案为:;(4)原式=×(2×10+1)(1+2+3+4+…+10)=×21×55=385.(1)根据已知等式的规律可得;(2)根据已知等式的规律可得;(3)将(2)中所得等式两边都除以3,再整理可得;(4)利用所得规律计算可得.本题考查了数字的变化类,解此题的关键是找出规律直接解答.21.【答案】解:(1)市场销售的收入为:18000a-180001000×(25×8+100)-7800=18000a-5400-7800,=18000a-13200;果园销售的收入为:18000b-7800;(2)当a=1.3,b=1.1时,市场销售收入为:18000×1.3-13200=23400-13200=10200元,果园销售收入为:18000×1.1-7800=12000元,∵10200<12000,∴选择果园出售利润较高.【解析】(1)市场销售,用单价乘以销售数量,再减去销售时的费用与人工工资和投资,整理即可得解;在果园销售,用单价乘以销售数量减去投资即可;(2)把a、b的值代入进行计算即可进行判断.本题考查了列代数式,代数式求值,读懂题目信息,理解销售收入等于总收入减去各种费用之和是解题的关键.。

【精品】2015-2016年山东省烟台市开发区七年级上学期数学期中试卷及解析答案word版

【精品】2015-2016年山东省烟台市开发区七年级上学期数学期中试卷及解析答案word版

2015-2016学年山东省烟台市开发区七年级(上)期中数学试卷一、选择题(每题3分,共33分)1.(3分)下列交通标志中是轴对称图形的是()A.B.C.D.2.(3分)已知△ABC中,∠A+∠B>∠C,则△ABC的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.以上都不对3.(3分)下列关于全等三角形的说法,其中正确的是()A.周长相等的两个等边三角形全等B.斜边相等的两个直角三角形全等C.面积相等的两个三角形全等D.腰长相等的两个等腰三角形全等4.(3分)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm5.(3分)如图,有一个边长为20cm的正方形洞口,想用一个圆盖去盖住这个洞口,则圆盖的直径(结果保留整数)至少是()A.20cm B.28cm C.29cm D.40cm6.(3分)如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形7.(3分)如图,已知∠BAC=∠DAC那么添加下列一个条件后,仍无法判定△ABC ≌△ADC的是()A.AB=AD B.CB=CD C.∠BCA=∠DCA D.∠B=∠D=90°8.(3分)下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.2,3,4 C.1.5,2,2.5 D.6,7,89.(3分)如图,下面是利用尺规作∠AOB的角平分线OC的作法:①以点O为圆心,任意长为半径作弧,交OA、OB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内部交于点C;③作射线OC,则射线OC就是∠AOB的平分线.以上用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS10.(3分)如图,长方形ABCD中,点E在边AB上,将长方形ABCD沿直线DE 折叠,点A恰好落在边BC上的点F处,若AE=5cm,BF=3cm,则CD的长度是()A.10cm B.9cm C.8cm D.7cm11.(3分)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,其直角三角形的两条直角边的长分别是2和4,则小正方形与大正方形的面积比是()A.1:2 B.1:4 C.1:5 D.1:10二、填空(每题3分,共30分)12.(3分)一个三角形三个内角度数之比为1:5:6,则这个三角形最大内角的度数是.13.(3分)有下列轴对称图形:①角,②线段,③等边三角形,④扇形,⑤圆,其中只有一条对称轴的图形的是(填序号).14.(3分)如图,已知BE、CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC的度数是.15.(3分)如图,一艘轮船从距离灯塔C处80海里的A处向正东航行,并测得C在A的北偏东60°方向,则轮船按这条路线航行过程中离灯塔的最近距离是.16.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,将其沿CD折叠,使点A落在边CB上的点A′处,则∠A′DB度数是.17.(3分)如图由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是m.18.(3分)如图,△ABC中,∠B=40°,∠C=62°,AD⊥BC于点D,AE平分∠BAC,则∠DAE的度数是.19.(3分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC 于F,△ABC的面积是27cm2,AB=10cm,AC=8cm,则DE的长为cm.20.(3分)如图,在△ABC中,∠BAC:∠B:∠C=3:1:1,AD,AE将∠BAC 三等分,则图中等腰三角形的个数是.21.(3分)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为.三、解答题(共7道题,满分57分)22.(5分)如图,已知线段a、b和∠α,用尺规作一个三角形ABC,使BC=a,AC=b,∠ACB=∠α(要求:不写已知、求作、作法、只画图,保留作图痕迹)23.(6分)如图,已知点D、B在线段AE上,AD=BE,AC=DF,AC∥DF.求证:BC∥EF.24.(6分)已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm.求BC 的长.25.(9分)如图,两根高度分别是2米和3米的直杆AB、CD竖直在水平地面MN上,相距12米,现要从A点拉一根绳索,接地后再拉到C点处,为了节省绳索材料,请问:(1)根据你学过的知识,在地面上确定绳索接地的位置(用点P表示),使绳索的长度最短,并简明扼要地说明你是怎样确定这个点P的位置的;(2)求绳索的最短长度(不计接头部分).26.(9分)操场上有一根竖直立在地面上的旗杆,绳子自然下垂到地面还剩余2米,当把绳子拉开8米后,绳子刚好斜着拉直下端接触地面(如图①)(1)请根据你的阅读理解,将题目的条件补充完整:如图②,Rt△ABC中,∠C=90°,BC=8米,.求AC的长.(2)根据(1)中的条件,求出旗杆的高度.27.(10分)如图,锐角△ABC中,BD⊥AC于点D,CE⊥AB于点E,BD,CE相交于点O,且OB=OC.(1)请你说明△ABC是等腰三角形;(2)判断点O是否在∠BAC的角平分线上,并说明理由.28.(12分)如图①,点D是等边△ABC的边BC上一点,连接AD,以AD为一边,向右作等边三角形ADE,连接CE,求证:AC=CD+CE.【类比探究】(1)如果点D在BC的延长线上,其它条件不变,请在图②的基础上画出满足条件的图形,写出线段AC,CD,CE之间的数量关系,并说明理由.(2)如果点D在CB的延长线上,请在图③的基础上画出满足条件的图形,并直接写出AC,CD,CE之间的数量关系,不需要说明理由.数量关系:.2015-2016学年山东省烟台市开发区七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共33分)1.(3分)下列交通标志中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确;故选:D.2.(3分)已知△ABC中,∠A+∠B>∠C,则△ABC的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.以上都不对【解答】解:当∠A=90°,∠B和∠C是锐角时,符合∠A+∠B>∠C;当∠A是钝角时,符合∠A+∠B>∠C;当∠A=60°,∠B=70°,∠C=50°时,符合∠A+∠B>∠C;即符合的三角形可能是钝角三角形、可能是直角三角形,也可能是锐角三角形;故选:D.3.(3分)下列关于全等三角形的说法,其中正确的是()A.周长相等的两个等边三角形全等B.斜边相等的两个直角三角形全等C.面积相等的两个三角形全等D.腰长相等的两个等腰三角形全等【解答】解:A、周长相等的两个等边三角形全等,说法正确;B、斜边相等的两个直角三角形全等,说法错误;C、面积相等的两个三角形全等,说法错误;D、腰长相等的两个等腰三角形全等,说法错误;故选:A.4.(3分)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm【解答】解:(1)当3cm为腰时,因为3+3=6cm,不能构成三角形,故舍去;(2)当6cm为腰时,符合三角形三边关系,所以其周长=6+6+3=15cm.故选:C.5.(3分)如图,有一个边长为20cm的正方形洞口,想用一个圆盖去盖住这个洞口,则圆盖的直径(结果保留整数)至少是()A.20cm B.28cm C.29cm D.40cm【解答】解:∵正方形的边长为20cm,∴正方形的对角线长为=20≈28.28(cm),∴想用一个圆盖去盖住这个洞口,则圆盖的直径(结果保留整数)至少是29cm;故选:C.6.(3分)如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【解答】解:一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是钝角三角形.故选:C.7.(3分)如图,已知∠BAC=∠DAC那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.AB=AD B.CB=CD C.∠BCA=∠DCA D.∠B=∠D=90°【解答】解:A、∵在△ABC和△ADC中,∴△ABC≌△ADC(SAS),正确,故本选项错误;B、根据CB=CD,AC=AC,∠BAC=∠DAC,不能推出△BAC和△DAC全等,错误,故本选项正确;C、∵在△ABC和△ADC中,∴△ABC≌△ADC(ASA),正确,故本选项错误;D、∵在△ABC和△ADC中,∴△ABC≌△ADC(AAS),正确,故本选项错误;故选:B.8.(3分)下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.2,3,4 C.1.5,2,2.5 D.6,7,8【解答】解:A、∵42+52≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;B、∵22+32≠42,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C、∵1.52+22=2.52,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;D、∵62+72≠82,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选:C.9.(3分)如图,下面是利用尺规作∠AOB的角平分线OC的作法:①以点O为圆心,任意长为半径作弧,交OA、OB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内部交于点C;③作射线OC,则射线OC就是∠AOB的平分线.以上用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS【解答】解:如图,连接EC、DC.根据作图的过程知,在△EOC与△DOC中,∵,∴△EOC≌△DOC(SSS).故选:A.10.(3分)如图,长方形ABCD中,点E在边AB上,将长方形ABCD沿直线DE 折叠,点A恰好落在边BC上的点F处,若AE=5cm,BF=3cm,则CD的长度是()A.10cm B.9cm C.8cm D.7cm【解答】解:由翻折的性质可知:AE=EF=5.在Rt△EFB中,BE===4.∵AB=AE+BE,∴AB=4+5=9cm.∵四边形ABCD为长方形,∴CD=AB=9cm.故选:B.11.(3分)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,其直角三角形的两条直角边的长分别是2和4,则小正方形与大正方形的面积比是()A.1:2 B.1:4 C.1:5 D.1:10【解答】解:∵直角三角形的两条直角边的长分别是2和4,∴小正方形的边长为2,根据勾股定理得:大正方形的边长==2,∴===.故选:C.二、填空(每题3分,共30分)12.(3分)一个三角形三个内角度数之比为1:5:6,则这个三角形最大内角的度数是90°.【解答】解:根据题意,设三个内角为k、5k、6k,则k+5k+6k=180°,解得k=15°.所以,最大内角度数为6k=6×15°=90°.故答案为:90.13.(3分)有下列轴对称图形:①角,②线段,③等边三角形,④扇形,⑤圆,其中只有一条对称轴的图形的是①④(填序号).【解答】解:角和扇形只有一条对称轴,线段有2条对称轴,等边三角形有3条对称轴,圆有无数条对称轴.故答案为:①④.14.(3分)如图,已知BE、CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC的度数是130°.【解答】解:∵BE为△ABC的高,∠BAC=50°,∴∠ABE=90°﹣50°=40°,∵CF为△ABC的高,∴∠BFC=90°,∴∠BHC=∠ABE+∠BFC=40°+90°=130°.故答案为:130°.15.(3分)如图,一艘轮船从距离灯塔C处80海里的A处向正东航行,并测得C在A的北偏东60°方向,则轮船按这条路线航行过程中离灯塔的最近距离是40海里.【解答】解:作CB⊥航线于B,由题意得,∠CAB=30°,∴BC=AC=40,故答案为:40海里.16.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,将其沿CD折叠,使点A落在边CB上的点A′处,则∠A′DB度数是10°.【解答】解:∵∠ACB=90°,∠A=50°,∴∠B=40°.由翻折的性质可知:∠DA′C=∠A=50°.∵∠B+∠A′DB=∠DA′C,∴∠A′DB=∠DA′C﹣∠B=50°﹣40°=10°.故答案为:10°.17.(3分)如图由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是16m.【解答】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10(米).所以大树的高度是10+6=16(米).故答案为:16.18.(3分)如图,△ABC中,∠B=40°,∠C=62°,AD⊥BC于点D,AE平分∠BAC,则∠DAE的度数是11°.【解答】解:∵△ABC中,∠B=40°,∠C=62°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣62°=78°,∵AE是∠BAC的平分线,∴∠EAC=∠BAC=39°,∵AD是BC边上的高,∴在直角△ADC中,∠DAC=90°﹣∠C=90°﹣62°=28°,∴∠DAE=∠EAC﹣∠DAC=39°﹣28°=11°,故答案为:11°19.(3分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC 于F,△ABC的面积是27cm2,AB=10cm,AC=8cm,则DE的长为3cm.【解答】解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵△ABC的面积是27cm2,AB=10cm,AC=8cm,∴×10•DE+×8•DF=27,解得DE=3cm.故答案为:3.20.(3分)如图,在△ABC中,∠BAC:∠B:∠C=3:1:1,AD,AE将∠BAC 三等分,则图中等腰三角形的个数是6.【解答】解:∵∠BAC:∠B:∠C=3:1:1,∠BAC+∠B+∠C=180°,∴∠BAC=108°,∠B=36°,∠C=36°,∵AD,AE将∠BAC三等分,∴∠BAD=∠DAE=∠EAC=36°,∴∠ADE=∠AED=∠BAE=∠CAD=72°,∴AD=BD,AD=AE,AE=CE,AB=AC,AB=BE,AC=CD,∴△ABD,△ADE,△AEC,△ABC,△ABE,△ACD是等腰三角形,∴图中等腰三角形的个数是6,故答案为:6.21.(3分)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为4.【解答】解:∵∠ABC=45°,AD⊥BC,∴AD=BD.∵∠1=∠3(同角的余角相等),∠1+∠2=90°,∠3+∠4=90°,∴∠2=∠4.在△ADC和△BDH中,∵,∴△ADC≌△BDH(AAS),∴BH=AC=4.故答案是:4.三、解答题(共7道题,满分57分)22.(5分)如图,已知线段a、b和∠α,用尺规作一个三角形ABC,使BC=a,AC=b,∠ACB=∠α(要求:不写已知、求作、作法、只画图,保留作图痕迹)【解答】解:如图所示:△ABC即为所求..23.(6分)如图,已知点D、B在线段AE上,AD=BE,AC=DF,AC∥DF.求证:BC∥EF.【解答】证明:∵AC∥DF,∴∠A=∠EDF,∵点D、B在线段AE上,AD=BE,∴AB=DE,在△ABC与△DEF中,,∴△ABC≌△DEF,∴∠ABC=∠DEF,∴BC∥EF.24.(6分)已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm.求BC 的长.【解答】解:∵AB=AC∴∠B=∠C=30°∵AB⊥AD∴BD=2AD=2×4=8(cm)∠B+∠ADB=90°,∴∠ADB=60°∵∠ADB=∠DAC+∠C=60°∴∠DAC=30°∴∠DAC=∠C∴DC=AD=4cm∴BC=BD+DC=8+4=12(cm).25.(9分)如图,两根高度分别是2米和3米的直杆AB、CD竖直在水平地面MN上,相距12米,现要从A点拉一根绳索,接地后再拉到C点处,为了节省绳索材料,请问:(1)根据你学过的知识,在地面上确定绳索接地的位置(用点P表示),使绳索的长度最短,并简明扼要地说明你是怎样确定这个点P的位置的;(2)求绳索的最短长度(不计接头部分).【解答】解:(1)作点A关于MN的对称点A′,连接A′C,交MN于P,点P即为所求,如图1所示:(2)作A′E∥MN,交CD的延长线于点E,如图2所示:由题意得:A′E=BD=12,DE=A′B=AB=2,∠A′EC=90°,∵CD=3,∴CE=CD+CE=5,在Rt△A′E中,由勾股定理得:A′C==13(米),由轴对称的性质得:PA=PA′,∴PA+PC=PA′+PC=A′C=13米.答:绳索的最短长度为13米.26.(9分)操场上有一根竖直立在地面上的旗杆,绳子自然下垂到地面还剩余2米,当把绳子拉开8米后,绳子刚好斜着拉直下端接触地面(如图①)(1)请根据你的阅读理解,将题目的条件补充完整:如图②,Rt△ABC中,∠C=90°,BC=8米,AB比AC长2米.求AC的长.(2)根据(1)中的条件,求出旗杆的高度.【解答】解:(1)AB比AC长2米.故答案为:AB比AC长2米;(2)设AC=x米,则AB=(x+2)米,在Rt△ABC中,由勾股定理得:x2+82=(x+2)2,解得:x=15,x+2=17.答:旗杆的高度为15m,升旗用的绳子的长度为17m.27.(10分)如图,锐角△ABC中,BD⊥AC于点D,CE⊥AB于点E,BD,CE相交于点O,且OB=OC.(1)请你说明△ABC是等腰三角形;(2)判断点O是否在∠BAC的角平分线上,并说明理由.【解答】解:(1)∵OB=OC,∴∠OBC=∠OCB,∵BD⊥AC于点D,CE⊥AB于点E,∴∠BCD=∠CBE,∴AB=AC,∴△ABC是等腰三角形;(2)在△BEO与△CDO中,,∴△BEO≌△CDO(AAS),∴OE=OD.又∵BD⊥AC,CE⊥AB,∴O在∠BAC的平分线上.28.(12分)如图①,点D是等边△ABC的边BC上一点,连接AD,以AD为一边,向右作等边三角形ADE,连接CE,求证:AC=CD+CE.【类比探究】(1)如果点D在BC的延长线上,其它条件不变,请在图②的基础上画出满足条件的图形,写出线段AC,CD,CE之间的数量关系,并说明理由.(2)如果点D在CB的延长线上,请在图③的基础上画出满足条件的图形,并直接写出AC,CD,CE之间的数量关系,不需要说明理由.数量关系:AC=CD﹣CE.【解答】解:∵△ABC和△ADE均为等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴CE+CD=BD+CD=BC=AC;类比探究:(1)如图②,CE﹣CD=AC;∵△ABC和△ADE均为等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴CE﹣CD=BD﹣CD=BC=AC.(2)数量关系:AC=CD﹣CE.如图③:故答案为:AC=CD﹣CE.第24页(共24页)。

【数学】2014-2015年山东省烟台市七年级上学期期中数学试卷与解析PDF

【数学】2014-2015年山东省烟台市七年级上学期期中数学试卷与解析PDF

2014-2015学年山东省烟台市七年级(上)期中数学试卷(五四学制)一、选择题(本题共10个小题,每小题3分)1.(3分)以下列各组长度的线段为边,能构成三角形的是()A.6cm、8cm、15cm B.7cm、5cm、12cm C.4cm、6cm、5cm D.8cm、4cm、3cm2.(3分)下列图形中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个3.(3分)锐角三角形中,任意两个内角之和必大于()A.120°B.100°C.90°D.60°4.(3分)如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.DB=DC D.AB=AC5.(3分)下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有()A.4个 B.3个 C.2个 D.1个6.(3分)如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形7.(3分)等腰三角形的一个内角为100°,则它的底角为()A.100°B.40°C.100°或40°D.不能确定8.(3分)如图,在Rt△ABC中,∠C=90°,它的周长为24,且AB:BC=5:3,则AC的长为()A.6 B.8 C.10 D.129.(3分)如图,在△ABC中,D、E分别是AC、BC边上的一点,AD=2DC,BE=EC,若△DBE的面积为1,则△ABC的面积等于()A.4 B.6 C.8 D.1010.(3分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A.2πB.4πC.8πD.16π二、填空题(本题共10个小题)11.(3分)三角形的三条交于一点,这点叫做三角形的重心.12.(3分)正九边形有条对称轴.13.(3分)如图是边长为1的正方形网格,点A、B、C、D都在格点上,图中阴影部分的面积等于.14.(3分)如图,∠α=.15.(3分)如图,在△ABC中,∠C=90°,AD是角平分线,点D到AB的距离为7cm,则CD=.16.(3分)如果一个三角形有两个角等于60°,那么这个三角形是三角形.17.(3分)在△ABC中,若∠C=∠B=∠A,则△ABC是三角形(按角分类)18.(3分)如图,AD与BC交于点O,△AOB≌△COD,A和C,B和D是对应顶点,若BO=5,AO=3,AB=4,则BD2=.19.(3分)如图,在△ABC中,∠A=36°,∠B=72°,CD是∠ACD的平分线,则图中共有个等腰三角形.20.(3分)如图,在△ABC中,AB=AC,AD平分∠BAC,点E、F在AD上,若△ABC的面积为16cm2,则图中阴影部分的面积是cm2.三、解答题21.(8分)尺规作图:如图,已知线段a、b和∠α用尺规作一个三角形,使其两边分别等于a、b,这两边的夹角等于2∠α.要求:不写已知、求作、作法,只画图,保留作图痕迹.22.(6分)利用一个点、一条线段、一个正三角形(或等腰三角形)、一个正方形(或长方形)设计一个轴对称图案,并说明你希望表达的含义.23.(9分)如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=10,试求△PMN的周长.24.(11分)已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm.求BC 的长.25.(11分)如图,小芳和她的同学汤秋千,秋千AB在静止时,下端B离地面0.6m,秋千荡到AB′的位置时,下端B′距静止位置的水平距离B′D等于2m,距地面1.4m,求秋千AB的长.26.(12分)如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:①AC=AD;②CF=DF.2014-2015学年山东省烟台市七年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(本题共10个小题,每小题3分)1.(3分)以下列各组长度的线段为边,能构成三角形的是()A.6cm、8cm、15cm B.7cm、5cm、12cm C.4cm、6cm、5cm D.8cm、4cm、3cm【解答】解:根据三角形的三边关系,得:A、6+8=14<15,不能组成三角形;B、7+5=12,不能组成三角形;C、4+5=9>6,能够组成三角形;D、4+3=7<8,不能组成三角形.故选:C.2.(3分)下列图形中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个图形是轴对称图形,第二个图形不是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有2个.故选:B.3.(3分)锐角三角形中,任意两个内角之和必大于()A.120°B.100°C.90°D.60°【解答】解:如果两个锐角和不大于90°,那么第三个角将大于等于90°,就不再是锐角三角形.故选:C.4.(3分)如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.DB=DC D.AB=AC【解答】解:A、加∠ADB=∠ADC,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD ≌△ACD(ASA),是正确选法;B、加∠B=∠C∵∠1=∠2,AD=AD,∠B=∠C,∴△ABD≌△ACD(AAS),是正确选法;C、加DB=DC,满足SSA,不能得出△ABD≌△ACD,是错误选法;D、加AB=AC,∵∠1=∠2,AD=AD,AB=AC,∴△ABD≌△ACD(SAS),是正确选法.故选:C.5.(3分)下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有()A.4个 B.3个 C.2个 D.1个【解答】解:①面积相等的两个三角形不一定全等,故本选项错误;②两个等边三角形一定是相似图形,但不一定全等,故本选项错误;③如果两个三角形全等,它们的形状和大小一定都相同,符合全等形的定义,正确;④边数相同的图形不一定能互相重合,故本选项错误;综上可得错误的说法有①②④共3个.故选:B.6.(3分)如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【解答】解:一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是钝角三角形.故选:C.7.(3分)等腰三角形的一个内角为100°,则它的底角为()A.100°B.40°C.100°或40°D.不能确定【解答】解:根据等腰三角形的性质得,底角度数为:(180°﹣100°)÷2=40°;故选:B.8.(3分)如图,在Rt△ABC中,∠C=90°,它的周长为24,且AB:BC=5:3,则AC的长为()A.6 B.8 C.10 D.12【解答】解:设AB=5x,BC=3x,则AC==4x,于是5x+3x+4x=24,解得x=2,故AC=4×2=8,故选:B.9.(3分)如图,在△ABC中,D、E分别是AC、BC边上的一点,AD=2DC,BE=EC,若△DBE的面积为1,则△ABC的面积等于()A.4 B.6 C.8 D.10【解答】解:如图,过点A作AM⊥BC,过点D作DN⊥BC;则AM∥DN;∴△AMC∽△DNC,∴,而AD=2DC,∴AM=3DN(设DN为λ);设BE=EC=μ,∴=6,而S=1,△BED=6,∴S△ABC故选:B.10.(3分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A.2πB.4πC.8πD.16π【解答】解:S1=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=2π.故选:A.二、填空题(本题共10个小题)11.(3分)三角形的三条中线交于一点,这点叫做三角形的重心.【解答】解:三角形的三条中线交于一点,这点叫做三角形的重心.故答案为:中线.12.(3分)正九边形有9条对称轴.【解答】解:正九边形有9条对称轴.故答案为:9.13.(3分)如图是边长为1的正方形网格,点A、B、C、D都在格点上,图中阴影部分的面积等于15.【解答】解:如图,S ABCD=S MNPQ﹣S△ABM﹣S△BCQ﹣S△CDP﹣S△ADN=6×5﹣=30﹣15=15.故答案为15.14.(3分)如图,∠α=17°.【解答】解:∵三角形内角和是180°,∴40°+32°=55°+α,解得α=17°.故答案为:17°.15.(3分)如图,在△ABC中,∠C=90°,AD是角平分线,点D到AB的距离为7cm,则CD=7cm.【解答】解:∵AD是∠BAC的平分线,BC⊥AC,点D到AB的距离为7cm,∴CD=7cm.故答案为:7cm.16.(3分)如果一个三角形有两个角等于60°,那么这个三角形是等边三角形.【解答】解:∵一个三角形有两个角等于60°,且三角之和为180°,∴第三个角的度数=180°﹣60°﹣60°=60°,∴这个三角形是等边三角形.故答案为:等边.17.(3分)在△ABC中,若∠C=∠B=∠A,则△ABC是直角三角形(按角分类)【解答】解:∠C=x°,∵∠C=∠B=∠A,∴∠B=2∠C=2x,∠A=3∠C=3x,∵∠A+∠B+∠C=180°,即:3x+2x+x=180°,解得:x=30°,∴∠C=30°,∠A=3∠C=90°,∠B=2∠C=60°,∴此三角形是直角三角形.故答案为:直角.18.(3分)如图,AD与BC交于点O,△AOB≌△COD,A和C,B和D是对应顶点,若BO=5,AO=3,AB=4,则BD2=80.【解答】解:∵AB2+AO2=42+32=25,BO2=52=25,∴AB2+AO2=BO2,∴∠A=90°,∵△AOB≌△COD,∴BO=DO=5,∵BO=5,AO=3,∴AD=AO+DO=3+5=8,在Rt△ABD中,BD2=AB2+AD2=42+82=80.故答案为:80.19.(3分)如图,在△ABC中,∠A=36°,∠B=72°,CD是∠ACD的平分线,则图中共有3个等腰三角形.【解答】解:有3个等腰三角形,理由是:∵在△ABC中,∠A=36°,∠B=72°,∴∠ACB=180°﹣∠A﹣∠B=72°,∴∠ACB=∠B,∴△ABC是等腰三角形,∵CD是∠ACD的平分线,∴∠ACD=∠BCD=∠ACB=36°,∴∠A=∠ACD=36°,∴△ACD是等腰三角形,∵∠BCD=36°,∠B=72°,∴∠CDB=180°﹣36°﹣72°=72°,∴∠B=∠CDB,∴△BCD是等腰三角形,故答案为:3.20.(3分)如图,在△ABC中,AB=AC,AD平分∠BAC,点E、F在AD上,若△ABC的面积为16cm2,则图中阴影部分的面积是8cm2.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥DC,∴S△BEF =S△CEF,∴S阴影部分=S△ABD=S△ABC=×16=8(cm2).故答案为8.三、解答题21.(8分)尺规作图:如图,已知线段a、b和∠α用尺规作一个三角形,使其两边分别等于a、b,这两边的夹角等于2∠α.要求:不写已知、求作、作法,只画图,保留作图痕迹.【解答】解:如图所示:△ABC即为所求.22.(6分)利用一个点、一条线段、一个正三角形(或等腰三角形)、一个正方形(或长方形)设计一个轴对称图案,并说明你希望表达的含义.【解答】解:如图所示.表示一个垃圾箱.23.(9分)如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=10,试求△PMN的周长.【解答】解:∵P点关于OA、OB的对称点P1,P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN,=P1M+MN+P2N,=P1P2,∵P1P2=10,∴△PMN的周长=10.24.(11分)已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm.求BC 的长.【解答】解:∵AB=AC∴∠B=∠C=30°∵AB⊥AD∴BD=2AD=2×4=8(cm)∠B+∠ADB=90°,∴∠ADB=60°∵∠ADB=∠DAC+∠C=60°∴∠DAC=30°∴∠DAC=∠C∴DC=AD=4cm∴BC=BD+DC=8+4=12(cm).25.(11分)如图,小芳和她的同学汤秋千,秋千AB在静止时,下端B离地面0.6m,秋千荡到AB′的位置时,下端B′距静止位置的水平距离B′D等于2m,距地面1.4m,求秋千AB的长.【解答】解:设AB=xm,则AB′=xm,由题意可得出:DB=1.4﹣0.6=0.8(m),则AD=AB﹣DB=x﹣0.8,在Rt△AB′D中,AD2+B′D2=AB′2,则(x﹣0.8)2+22=x2解得:x=2.9.答:秋千AB的长为2.9m.26.(12分)如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:①AC=AD;②CF=DF.【解答】证明:①∵AB=AE,BC=ED,∠B=∠E,∴△ABC≌△AED(SAS),∴AC=AD,②∵AF⊥CD,AC=AD,∴CF=FD(三线合一性质).。

2015-2016学年七年级(上)期中数学试卷(解析版)

2015-2016学年七年级(上)期中数学试卷(解析版)

2015-2016学年山东省济南市槐荫区七年级(上)期中数学试卷一、选择题:(共15个小题.每小题3分,丼45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示的图形中,是正方体展开图的是()A.①②B.②③C.③④D.①③2.在﹣(﹣8),﹣|﹣7|,﹣|0|,(﹣2)2,﹣32这四个数中,非负数共有()A.4个B.3个C.2个D.1个3.下面几何体的截面不可能是长方形的是()A.长方体B.正方体C.圆柱D.圆锥4.下列说法正确的是()A.0是最小的整数B.任何数的绝对值都是正数C.﹣a是负数D.绝对值等于它本身的数是正数和05.今年国庆黄金周,南部山区农家乐共接待15.8万游客,把15.8万用科学记数法表示为()A.1.58×105B.1.58×l04C.158×103D.0.158×1066.下列几何体中,属于棱柱的有()A.6个B.5个C.4个D.3个7.若数轴上的点A到原点的距离为7,则点A表示的数为()A.7B.﹣7C.7或﹣7D.3.5或﹣3.58.有理数a,b在数轴上的位置如图所示,则下列各式:①a+b>0;②a﹣b>0;③|b|>a;④ab<0.一定成立的是()A.①②③B.③④C.②③④D.①③④9.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.6D.10.多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3B.2,﹣3C.5,﹣3D.2,311.一个长方形周长为30,若一边长用字母x表示,则此长方形的面积()A.x(15﹣x)B.x(30﹣x)C.x(30﹣2x)D.x(15+x)12.已知a﹣7b=﹣2,则﹣2a+14b+4的值是()A.0B.2C.4D.813.若m<0,n>0,m+n<0,则m,n,﹣m,﹣n这四个数的大小关系是()A.m>n>﹣n>﹣m B.﹣m>n>﹣n>m C.m>﹣m>n>﹣n D.﹣m>﹣n>n>m 14.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算()A.甲B.乙C.丙D.一样15.有一列数a1,a2,a3,a4,…a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数差,如:a1=3,则a2=1﹣=,a3=1﹣=﹣…,请你计算当a1=2时,a2015的值是()A.2B.C.﹣1D.2015二、填空题(本大题共9个小题.每小題3分,共27分.把答案填在题后横线上)16.某地一天早晨的气温为﹣3℃,中午比早晨上升了7℃,夜间又比中午下降了8℃,则这天的夜间的气温是.17.单项式的系数是,次数是.18.小华的存款是x元,小林的存款比小华的一半少2元,小林的存款是元.19.若x2=4,|y|=9,其中x<0,y>0,则x﹣y=.20.下面是一个数值转换机的示意图.当输入x=﹣3时,则输出的结果为.21.已知非零有理数a、b满足+=﹣2.则的值为.22.己知有理数a、b、c满足a+b+c=0.则代数式(a+b)(b+c)(c+a)+abc=.23.一只跳蚤在数轴上从原点O开始,第一次向右跳一个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位…,依此规律跳下去,当它跳2016次下落时,落点处离原点O的距离是个单位.24.某种细胞开始有两个,1小时后分裂成4个并死去一个,2个小时后分裂成6个并死去一个,3小时后分裂成10个并死去1个,按此规律,请你计算经过n个小时后,细胞存活的个数为个(结果用含n的代数式表示)三、解答题(本大题共5个小题,共48分)25.计算①﹣10+8②﹣20+(﹣14)﹣(﹣18)﹣13③2﹣2÷(﹣)×3④﹣14﹣×[3﹣(﹣3)2]⑤﹣24×(﹣+﹣)⑥﹣22+3×(﹣2)﹣(﹣4)2÷(﹣8)﹣(﹣1)100.26.一个几何体由大小相同的小立方块搭成,从上面看到几何体的形状如图所示,其中小正方形中的数字表示该位置的小立方块的个数,请画出从正面和从左面看到这个几何体的形状.27.“十•一”黄金周期间,武汉东湖风景区在7天假期中每天旅游人数变化如下表(正号表示人数比前一天多,负号表示比前天少)日期1日2日3日4日5日6日7日+1.8﹣0.6+0.2﹣0.7﹣1.3+0.5﹣2.4人数变化单位:万人(1)若9月30日的旅客人数为4.2万人,则10月4日的旅客人数为万人;(2)七天中旅客人数最多的一天比最少的一天多万人(3)如果每万人带来的经济收入约为100万元,则黄金周七天的旅游总收入约为多少万元?28.出租车司机小王某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“﹣”.他这天下午行车情况如下:(单位:千米:每次行车都有乘客)﹣2,+5,﹣1,+10,﹣3,﹣2,﹣4,+6请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.那么小王这天下午收到乘客所给车费共多少元?(3)若小王的出租车每千米耗油0.3升,每升汽油6元,不计汽车的损耗,那么小王这天下午是盈利还是亏损了?盈利(或亏损)多少钱?29.如图,在数轴上,点A,B表示的数分别为5,﹣3,线段AB的中点为M.点P以1个单位长度/秒的速度从点A出发,向数轴的负方向运动.同时,动点Q以2个单位长度/秒的速度从点B出发,向数轴的正方向运动.(1)线段AB的长度为个单位长度,点M表示的数为.(2)当点Q运动到点M时,点P运动到点N,则MN的长度为个单位长度.(3)设点P运动的时间为t秒.是否存在这样的t,使PA+QA为5个单位长度?如果存在,请求出t的值和此时点P表示的数;如果不存在,请说明理由.2015-2016学年山东省济南市槐荫区七年级(上)期中数学试卷参考答案与试题解析一、选择题:(共15个小题.每小题3分,丼45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示的图形中,是正方体展开图的是()A.①②B.②③C.③④D.①③【考点】几何体的展开图.【分析】根据正方体展开图特点:①图属于正方体展开图的3﹣3型,能够折成一个正方体;③属于正方体展开图的1﹣4﹣1型,能够折成一个正方体;②④两个在正方形在折的过程中会重叠,所以不是正方体展开图.【解答】解:根据正方体展开图特点可得:①③是正方体展开图,故选:D.2.在﹣(﹣8),﹣|﹣7|,﹣|0|,(﹣2)2,﹣32这四个数中,非负数共有()A.4个B.3个C.2个D.1个【考点】有理数.【分析】先把各数化简,再根据非负数包括正数和0,即可解答.【解答】解:﹣(﹣8)=8,﹣|﹣7|=﹣7,﹣|0|=0,(﹣2)2,=4,﹣32=﹣9,非负数有:﹣(﹣8),﹣|0|,(﹣2)2,共3个,故选:B.3.下面几何体的截面不可能是长方形的是()A.长方体B.正方体C.圆柱D.圆锥【考点】截一个几何体.【分析】用一个平面截一个几何体得到的形状叫做几何体的截面.【解答】解:长方体,正方体,圆柱的截面都可能出现长方形,只有圆锥的截面只与圆、三角形有关,故选D.4.下列说法正确的是()A.0是最小的整数B.任何数的绝对值都是正数C.﹣a是负数D.绝对值等于它本身的数是正数和0【考点】有理数.【分析】根据有理数、绝对值,即可解答.【解答】解:A、0是最小的整数,错误,因为整数包括正整数、0和负整数;B、任何数的绝对值都是正数,错误,因为0的绝对值是0;C、﹣a是负数,错误,例如a=﹣2时,﹣a=2是正数;D、绝对值等于它本身的数是正数和0,正确;故选:D.5.今年国庆黄金周,南部山区农家乐共接待15.8万游客,把15.8万用科学记数法表示为()A.1.58×105B.1.58×l04C.158×103D.0.158×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:15.8万=158000=1.58×105,故选:A.6.下列几何体中,属于棱柱的有()A.6个B.5个C.4个D.3个【考点】认识立体图形.【分析】有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱,由此可选出答案.【解答】解:根据棱柱的定义可得:符合棱柱定义的有第一、三、六个几何体都是棱柱,共三个.故选D.7.若数轴上的点A到原点的距离为7,则点A表示的数为()A.7B.﹣7C.7或﹣7D.3.5或﹣3.5【考点】数轴.【分析】根据数轴上的点A到原点的距离为7,可以得到点A表示的数,本题得以解决.【解答】解:由数轴上的点A到原点的距离为7可得,点A表示的数是:﹣7或7,故选C.8.有理数a,b在数轴上的位置如图所示,则下列各式:①a+b>0;②a﹣b>0;③|b|>a;④ab<0.一定成立的是()A.①②③B.③④C.②③④D.①③④【考点】数轴.【分析】根据数轴可得a>0,b<0,|b|>|a|,从而可作出判断.【解答】解:由数轴可得,a>0,b<0,|b|>|a|,故可得:a﹣b>0,|b|>a,ab<0;即②③④正确.故选C.9.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.6D.【考点】非负数的性质:偶次方;非负数的性质:绝对值;代数式求值;解二元一次方程组.【分析】由于平方与绝对值都具有非负性,根据两个非负数的和为零,其中每一个加数都必为零,可列出二元一次方程组,解出a、b的值,再将它们代入a b中求解即可.【解答】解:由题意,得,解得.∴a b=()3=.故选D.10.多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3B.2,﹣3C.5,﹣3D.2,3【考点】多项式.【分析】根据多项式中次数最高的项的次数叫做多项式的次数可得此多项式为3次,最高次项是﹣3xy2,系数是数字因数,故为﹣3.【解答】解:多项式1+2xy﹣3xy2的次数是3,最高次项是﹣3xy2,系数是﹣3;故选:A.11.一个长方形周长为30,若一边长用字母x表示,则此长方形的面积()A.x(15﹣x)B.x(30﹣x)C.x(30﹣2x)D.x(15+x)【考点】列代数式.【分析】周长是30,则相邻两边的和是15,因而一边是x,则另一边是15﹣x,根据长方形的面积公式即可求解.【解答】解:周长是30,则相邻两边的和是15,因而一边是x,则另一边是15﹣x.则面积是:x(15﹣x).故选A.12.已知a﹣7b=﹣2,则﹣2a+14b+4的值是()A.0B.2C.4D.8【考点】代数式求值.【分析】首先化简﹣2a+14b+4,然后把a﹣7b=﹣2代入化简后的算式,求出算式的值是多少即可.【解答】解:∵a﹣7b=﹣2,∴﹣2a+14b+4=﹣2(a﹣7b)+4=﹣2×(﹣2)+4=4+4=8.故选:D.13.若m<0,n>0,m+n<0,则m,n,﹣m,﹣n这四个数的大小关系是()A.m>n>﹣n>﹣m B.﹣m>n>﹣n>m C.m>﹣m>n>﹣n D.﹣m>﹣n>n>m 【考点】有理数大小比较.【分析】根据题意,m<0,n>0,则n>m,m+n<0,则﹣m>n>﹣n,以此可做出选择.【解答】解:∵m<0,n>0,∴n>mm+n<0,∴﹣m>n,∴﹣m>n>﹣n,∴﹣m>n>﹣n>m.故选B.14.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算()A.甲B.乙C.丙D.一样【考点】列代数式.【分析】设商品原价为x,表示出三家超市降价后的价格,然后比较即可得出答案.【解答】解:设商品原价为x,甲超市的售价为:x(1﹣20%)(1﹣10%)=0.72x;乙超市售价为:x(1﹣15%)2=0.7225x;丙超市售价为:x(1﹣30%)=70%x=0.7x;故到丙超市合算.故选:C.15.有一列数a1,a2,a3,a4,…a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数差,如:a1=3,则a2=1﹣=,a3=1﹣=﹣…,请你计算当a1=2时,a2015的值是()A.2B.C.﹣1D.2015【考点】规律型:数字的变化类.【分析】根据这组数的运算规则找出该数列的前几项,能够发现a4=a1,从而得出该组数量每3项一循环的规律,结合2015÷3余2可得出结论.【解答】解:当a1=2时,a2=1﹣=,a3=1﹣=﹣1,a4=1﹣=2=a1,由此发现,该数列每3个一循环,∵2015÷3=671…2,∴a2015=a2=.故选B.二、填空题(本大题共9个小题.每小題3分,共27分.把答案填在题后横线上)16.某地一天早晨的气温为﹣3℃,中午比早晨上升了7℃,夜间又比中午下降了8℃,则这天的夜间的气温是﹣4℃.【考点】有理数的加减混合运算.【分析】根据题意列出代数式,根据有理数的加减混合运算法则计算即可.【解答】解:﹣3+(+7)+(﹣8)=﹣4,则这天的夜间的气温是﹣4℃.故答案为:﹣4℃.17.单项式的系数是﹣,次数是6.【考点】单项式.【分析】根据单项式的系数、次数的概念求解.【解答】解:单项式的系数是﹣,次数是6.故答案为:﹣,6.18.小华的存款是x元,小林的存款比小华的一半少2元,小林的存款是元.【考点】列代数式.【分析】根据小华的存款是x元,小林的存款比小华的一半少2元,可以用代数式表示小林的存款.【解答】解:由题意可得,小林的存款是:()元.故答案为:.19.若x2=4,|y|=9,其中x<0,y>0,则x﹣y=﹣5.【考点】有理数的减法;绝对值;有理数的乘方.【分析】先根据有理数的乘方法则和绝对值的定义以及x和y的正负求得x的值y,然后再利用减法法则计算.【解答】解:∵x2=4,|y|=9,∴x=±2,y=±3.∵x<0,y>0,∴x=﹣2,y=3.∴x﹣y=﹣2﹣3=﹣5.故答案为:﹣5.20.下面是一个数值转换机的示意图.当输入x=﹣3时,则输出的结果为26.【考点】有理数的混合运算.【分析】把x的值代入数值转换机中计算即可确定出输出结果.【解答】解:根据题意得:(﹣3)2×3﹣1=27﹣1=26,则输出的结果为26,故答案为:2621.已知非零有理数a、b满足+=﹣2.则的值为1.【考点】有理数的除法;绝对值.【分析】先确定a,b的正负,再根据有理数的除法,即可解答.【解答】解:∵非零有理数a、b满足+=﹣2.∴a<0,b<0,∴ab>0,∴==1,故答案为:1.22.己知有理数a、b、c满足a+b+c=0.则代数式(a+b)(b+c)(c+a)+abc=0.【考点】代数式求值.【分析】把a+b+c=0适当变形,整体代入即可求解.【解答】解:由a+b+c=0可得,a+b=﹣c,a+c=﹣b,b+c=﹣a,所以(a+b)(b+c)(c+a)+abc=(﹣c)(﹣a)(﹣b)+abc=﹣abc+abc=0.23.一只跳蚤在数轴上从原点O开始,第一次向右跳一个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位…,依此规律跳下去,当它跳2016次下落时,落点处离原点O的距离是1013个单位.【考点】规律型:图形的变化类.【分析】数轴上点的移动规律是“左减右加”.依据规律计算即可.【解答】解:1﹣2+3﹣4+5﹣6+…+99﹣100+…﹣2016=﹣1×1013=﹣1013,所以落点处离0的距离是1013个单位.故答案为:1013.24.某种细胞开始有两个,1小时后分裂成4个并死去一个,2个小时后分裂成6个并死去一个,3小时后分裂成10个并死去1个,按此规律,请你计算经过n个小时后,细胞存活的个数为2n+1个(结果用含n的代数式表示)【考点】有理数的乘方.【分析】根据细胞分裂过程,归纳总结得到一般性规律,即可得到结果.【解答】解:根据题意得:按此规律,6小时后存活的个数是26+1=65个,经过n个小时后,细胞存活的个数为(2n+1)个.故答案为:2n+1.三、解答题(本大题共5个小题,共48分)25.计算①﹣10+8②﹣20+(﹣14)﹣(﹣18)﹣13③2﹣2÷(﹣)×3④﹣14﹣×[3﹣(﹣3)2]⑤﹣24×(﹣+﹣)⑥﹣22+3×(﹣2)﹣(﹣4)2÷(﹣8)﹣(﹣1)100.【考点】有理数的混合运算.【分析】①原式利用异号两数相加的法则计算即可得到结果;②原式利用减法法则变形,计算即可得到结果;③原式先计算乘除运算,再计算加减运算即可得到结果;④原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;⑤原式利用乘法分配律计算即可得到结果;⑥原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:①原式=﹣(10﹣8)=﹣2;②原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;③原式=2+2×3×3=2+18=20;④原式=﹣1﹣×(﹣6)=﹣1+1=0;⑤原式=20﹣9+2=13;⑥原式=﹣4﹣6+2﹣1=﹣11+2=﹣9.26.一个几何体由大小相同的小立方块搭成,从上面看到几何体的形状如图所示,其中小正方形中的数字表示该位置的小立方块的个数,请画出从正面和从左面看到这个几何体的形状.【考点】作图-三视图;由三视图判断几何体.【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为3,2,4;从左面看有3列,每列小正方形数目分别为2,3,4.据此可画出图形.【解答】解:如图所示:27.“十•一”黄金周期间,武汉东湖风景区在7天假期中每天旅游人数变化如下表(正号表示人数比前一天多,负号表示比前天少)日期1日2日3日4日5日6日7日+1.8﹣0.6+0.2﹣0.7﹣1.3+0.5﹣2.4人数变化单位:万人(1)若9月30日的旅客人数为4.2万人,则10月4日的旅客人数为 4.9万人;(2)七天中旅客人数最多的一天比最少的一天多 4.3万人(3)如果每万人带来的经济收入约为100万元,则黄金周七天的旅游总收入约为多少万元?【考点】有理数的混合运算;正数和负数.【分析】(1)根据题意列得算式,计算即可得到结果;(2)根据表格找出旅客人数最多的与最少的,相减计算即可得到结果;(3)根据表格得出1日到7日每天的人数,相加后再乘以100即可得到结果.【解答】解:(1)根据题意列得:4.2+(1.8﹣0.6+0.2﹣0.7)=4.2+0.7=4.9(万人);(2)根据表格得:七天中旅客最多的是1日为6万人,最少的是7日为1.7万人,则七天中旅客人数最多的一天比最少的一天多6﹣1.7=4.3(万人);(3)根据表格得:每天旅客人数分别为6万人、5.4万人、5.6万人、4.9万人、3.6万人、4.1万人、1.7万人,则黄金周七天的旅游总收入约为(6+5.4+5.6+4.9+3.6+4.1+1.7)×100=3130(万元).故答案为:(1)4.9;(2)4.328.出租车司机小王某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“﹣”.他这天下午行车情况如下:(单位:千米:每次行车都有乘客)﹣2,+5,﹣1,+10,﹣3,﹣2,﹣4,+6请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.那么小王这天下午收到乘客所给车费共多少元?(3)若小王的出租车每千米耗油0.3升,每升汽油6元,不计汽车的损耗,那么小王这天下午是盈利还是亏损了?盈利(或亏损)多少钱?【考点】正数和负数.【分析】(1)根据题意计算行车情况的和进行判断即可;(2)根据题意求出每一乘客所付费用求和即可;(3)算出总里程求出所耗油的费用与收入进行比较即可.【解答】解:(1)﹣2+5﹣1+10﹣3﹣2﹣4+6=9(千米).所以小王在下午出车的出发地的正南方向,距下午出车的出发地9千米;(2)10+10+2(5﹣3)+10+10+2(10﹣3)+10+10+10+2(4﹣3)+10+2(6﹣3)=106(元).所以小王这天下午收到乘客所给车费共106元;(3)(2+5+1+10+3+2+4+6)×0.3×6=33×0.3×6=59.4(元),106﹣59.4=46.6(元).所以小王这天下午盈利,盈利46.6元.29.如图,在数轴上,点A,B表示的数分别为5,﹣3,线段AB的中点为M.点P以1个单位长度/秒的速度从点A出发,向数轴的负方向运动.同时,动点Q以2个单位长度/秒的速度从点B出发,向数轴的正方向运动.(1)线段AB的长度为8个单位长度,点M表示的数为1.(2)当点Q运动到点M时,点P运动到点N,则MN的长度为2个单位长度.(3)设点P运动的时间为t秒.是否存在这样的t,使PA+QA为5个单位长度?如果存在,请求出t的值和此时点P表示的数;如果不存在,请说明理由.【考点】一元一次方程的应用;数轴.【分析】(1)数轴上两点间的距离等于表示右边的数减去左边的数,据此求解;(2)求得点P到点M的时间,从而确定点N所表示的数,写出线段MN的长;(3)表示出PA、QA,根据“PA+QA=5”列出方程求解即可.【解答】解:(1)AB=5﹣(﹣3)=8,∵M为AB的中点,∴M距离A点4个单位,∴点M表示的数为1,故答案为:8,1;(2)当点P运动到点M时用时2秒,此时点P运动到3的位置,故MN=3﹣1=2,故答案为:2;(3)设存在这样的t,根据题意得:t+8﹣2t=5,解得:t=3,所以存在时间t=3,使得PA+QA=5.2016年4月26日。

2015七年级(上)期中数学试卷 附答案

2015七年级(上)期中数学试卷 附答案

七年级(上)期中数学试卷一、选择题(每题2分,共18分)1.据报道,我省西环高铁预计2015年底建成通车,计划总投资27100000000元,数据27100000000用科学记数法表示为()A. 271×108 B. 2.71×109 C. 2.71×1010 D. 2.71×10112.如果收入80元记作+80元,那么支出20元记作()A. +20元 B.﹣20元 C. +100元 D.﹣100元3.比较﹣3,1,﹣2的大小,下列判断正确的是()A.﹣3<﹣2<1 B.﹣2<﹣2<1 C.﹣2<﹣3<1 D. 1<﹣3<﹣24.下列四个实数中,是无理数的为()A. 0 B.﹣3 C.π D.5.实数a,b在数轴上的位置如图所示,以下说法正确的是()A. a+b=0 B. b<a C. ab>0 D. |b|<|a|6.下列各组是同类项的一组是()A. xy2与﹣x2y B. 3x2y与﹣4x2yz C. a3与b3 D.﹣2a3b与ba37.化简m﹣n﹣(m+n)的结果是()A. 0 B. 2m C.﹣2n D. 2m﹣2n8.已知﹣x+2y=6,则3(x﹣2y)2﹣5(x﹣2y)+6的值是()A. 84 B. 144 C. 72 D. 3609.如果M=3x2﹣2xy﹣4y2,N=4x2+5xy﹣y2,则8x2﹣13xy﹣15y2等于()A. 2M﹣3N B. 2M﹣N C. 3M﹣2N D. 4M﹣N二、填空题(每题2分,共18分)10.计算:﹣2+3= .11.若a与﹣5互为相反数,则a= ;若b的绝对值是,则b= .12.一个圆柱形蓄水池,底面半径r,高为h,如果这个蓄水池蓄满水,可蓄水.13.一个长方形的宽为x厘米,长比宽的2倍多1厘米,则长方形的周长为厘米.14.将(a+b)看作一个整体,则5(a+b)﹣3(a+b)﹣7(a+b)= .15.减去﹣3m等于5m2﹣3m﹣5的式子是.16.若(a2﹣3a﹣1)+A=a2﹣a+4,则A= .17.如图,程序运算器中,当输入﹣1时,则输出的数是.18.将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为.三、解答题(第19题20分,第20题8分,共28分)19.计算:(1)(﹣)+(﹣)﹣(﹣2)(2)﹣﹣+(3)9+5×(﹣3)﹣(﹣2)2+4(4)﹣5﹣[﹣1.5﹣(4.5﹣4)].20.计算(1)(﹣5)3×[2﹣(﹣6)]﹣300÷5(2)(﹣)÷(﹣)+(﹣2)2×(﹣14)四、解答题(第21题16分,第22题6分,共22分)21.化简或先化简求值(1)3x2y3+(﹣4x2y3)﹣(﹣x2y3)(2)ab﹣[3a2b﹣(4a2b+ab)﹣4a2b]+3a2b(3)m﹣(m﹣1)+3(4﹣m),其中m=﹣3.(4)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.22.(1)根据要求列出代数式:①m的3倍与n的一半的和;②m与3的积减去n.(2)比较所列两个代数式的大小(直接写出结果)五、解答题(第23题6分,第24-25题每题4分,共14分)23.有3张如图所示的卡片,用它们可以拼成各种形状不同的四边形.(1)画出所有可能拼成的四边形;(2)计算其中两个所拼四边形的周长和与周长差.24.阅读下列解题过程:为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+...+2100=2101﹣1,仿照以上方法计算1+3+32+33+ (32014)25.阅读理解:图1中的每相邻两条线间,有从上至下的几条横线(即“桥”),这样就构成了“天梯”规定,运算符号“+、﹣、×、÷”在“天梯”的竖线与横线上运动,它们在运动过程中按自上而下,且逢“桥”必过的规划进行,最后运动到竖线下方的“○”中,将a、b、c、d、e 连接起来,构成一个算式.如,“+”号根据规则就应该沿减号方向运动,最后向下进入“○”中,其余3个运算符号分别按规则运动到“○”中后,就得到算式a÷b×c﹣d+e.解决问题:(1)根据图2所示的“天梯”写出算式,并计算当a=﹣6,b=﹣1.52,c=﹣2,d=,c=﹣时所写算式的值;(2)添加1条横线,使图2中最后结果的“﹣”、“+”位置互换;(3)在图3中设计出一种“天梯”,使列出的算式为a×b÷c+d﹣e.参考答案与试题解析一、选择题(每题2分,共18分)1.据报道,我省西环高铁预计2015年底建成通车,计划总投资27100000000元,数据27100000000用科学记数法表示为()A. 271×108 B. 2.71×109 C. 2.71×1010 D. 2.71×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将27100000000用科学记数法表示为:2.71×1010.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.如果收入80元记作+80元,那么支出20元记作()A. +20元 B.﹣20元 C. +100元 D.﹣100元考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“正”和“负”相对,所以如果+80元表示收入80元,那么支出20元表示为﹣20元.故选:B.点评:此题考查的是正数和负数的定义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.3.比较﹣3,1,﹣2的大小,下列判断正确的是()A.﹣3<﹣2<1 B.﹣2<﹣2<1 C.﹣2<﹣3<1 D. 1<﹣3<﹣2考点:有理数大小比较.分析:本题是对有理数的大小比较,根据有理数性质即可得出答案.解答:解:有理数﹣3,1,﹣2的中,根据有理数的性质,∴﹣3<﹣2<0<1.故选:A.点评:本题主要考查了有理数大小的判定,难度较小,熟知两个负数,绝对值大的其值反而小是解答此题的关键.4.下列四个实数中,是无理数的为()A. 0 B.﹣3 C.π D.考点:无理数.分析:根据无理数是无限不循小数,可得答案.解答:解:A、是有理数,故A错误;B、是有理数,故B错误;C、是无理数,故C正确;D、是有理数,故D错误;故选:C.点评:本题考查了无理数,无理数是无限不循环小数.5.实数a,b在数轴上的位置如图所示,以下说法正确的是()A. a+b=0 B. b<a C. ab>0 D. |b|<|a|考点:实数与数轴.专题:常规题型.分析:根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.解答:解:根据图形可知:﹣2<a<﹣1,0<b<1,则|b|<|a|;故选:D.点评:此题主要考查了实数与数轴,解答此题的关键是根据数轴上的任意两个数,右边的数总比左边的数大,负数的绝对值等于它的相反数,正数的绝对值等于本身.6.下列各组是同类项的一组是()A. xy2与﹣x2y B. 3x2y与﹣4x2yz C. a3与b3 D.﹣2a3b与ba3考点:同类项.分析:本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关.解答:解:A、未知数指数不同;B、C组中未知数不同,所以错误;D、﹣2a3b与ba3符合同类项的条件.故选D.点评:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.7.化简m﹣n﹣(m+n)的结果是()A. 0 B. 2m C.﹣2n D. 2m﹣2n考点:整式的加减.分析:根据整式的加减运算法则,先去括号,再合并同类项.注意去括号时,括号前是负号,去括号时,括号里各项都要变号;合并同类项时,只把系数相加减,字母和字母的指数不变.解答:解:原式=m﹣n﹣m﹣n=﹣2n.故选C.点评:解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.8.已知﹣x+2y=6,则3(x﹣2y)2﹣5(x﹣2y)+6的值是()A. 84 B. 144 C. 72 D. 360考点:代数式求值.专题:整体思想.分析:因为﹣x+2y=6,所以x﹣2y=﹣6,可直接代入3(x﹣2y)2﹣5(x﹣2y)+6解答.解答:解:因为﹣x+2y=6,所以x﹣2y=﹣6.则3(x﹣2y)2﹣5(x﹣2y)+6=3×(﹣6)2﹣5×(﹣6)+6=144故选B.点评:代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x﹣2y=﹣6的值,然后利用“整体代入法”求代数式的值.9.如果M=3x2﹣2xy﹣4y2,N=4x2+5xy﹣y2,则8x2﹣13xy﹣15y2等于()A. 2M﹣3N B. 2M﹣N C. 3M﹣2N D. 4M﹣N考点:整式的加减.分析:本题涉及去括号法则、合并同类项两个考点,解答时根据每个考点作出回答.根据已知条件逐项算出各项的值判断即可.解答: A、原式=﹣6x2﹣19xy﹣5y2;B、原式=2x2﹣9xy﹣7y2;C、原式=x2﹣16xy﹣10y2;D、原式=8x2﹣13xy﹣15y2.故选D.点评:解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.合并同类项的时候,字母应平移下来,只对系数相加减.二、填空题(每题2分,共18分)10.计算:﹣2+3= 1 .考点:有理数的加法.分析:根据有理数的加法法则,从而得出结果.解答:解:﹣2+3=1.故答案为:1.点评:此题主要考查了有理数的加法运算,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.11.若a与﹣5互为相反数,则a= 5 ;若b的绝对值是,则b= .考点:绝对值;相反数.分析:一个数的相反数就是在这个数前面添上“﹣”号.计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:﹣5的相反数是5,如果a与﹣5互为相反数,那么a=5;||=,所以b=.故答案为:5;点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.一个圆柱形蓄水池,底面半径r,高为h,如果这个蓄水池蓄满水,可蓄水πr2h .考点:列代数式.分析:根据圆柱的体积=底面积×高列出代数式即可.解答:解:水池可畜水:πr2h.故答案是:πr2h.点评:本题考查了列代数式及圆柱体积的求法,熟记圆柱的体积公式是解题的关键.13.一个长方形的宽为x厘米,长比宽的2倍多1厘米,则长方形的周长为(6x+2)厘米.考点:整式的加减.专题:计算题.分析:由于一个长方形的宽为x厘米,长比宽的2倍多1厘米,则一个长方形的长为(2x+1)厘米,再根据长方形的周长的定义得到长方形的周长=2(x+2x+1),然后去括号,合并同类项即可.解答:解:∵一个长方形的宽为x厘米,长比宽的2倍多1厘米,∴一个长方形的长为(2x+1)厘米,∴长方形的周长=2(x+2x+1)=2x+4x+2=6x+2(厘米).故答案为(6x+2).点评:本题考查了整式的加减:整式的加减运算就是合并同类项.14.将(a+b)看作一个整体,则5(a+b)﹣3(a+b)﹣7(a+b)= ﹣5(a+b).考点:合并同类项.分析:根据合并同类项,系数相加字母部分不变,可得答案.解答:解:原式=(5﹣3﹣7)(a+b)=﹣5(a+b),故答案为:﹣5(a+b).点评:本题考查了合并同类项,把(a+b)看作一个整体是解题关键.15.减去﹣3m等于5m2﹣3m﹣5的式子是5m2﹣6m﹣5 .考点:整式的加减.分析:此题只需设这个式子为A,则A﹣(﹣3m)=5m2﹣3m﹣5,求得A的值即可.解答:解:由题意得,设这个式子为A,则A﹣(﹣3m)=5m2﹣3m﹣5,A=5m2﹣3m﹣5﹣3m=5m2﹣6m﹣5.故答案为:5m2﹣6m﹣5.点评:本题考查了整式的加减,比较简单,容易掌握.熟练掌握运算法则是解本题的关键.16.若(a2﹣3a﹣1)+A=a2﹣a+4,则A= 2a+5 .考点:整式的加减.分析:先把括号里面的整式移到等号右边,然后按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.解答:解:A=a2﹣a+4﹣(a2﹣3a﹣1)=a2﹣a+4﹣a2+3a+1=2a+5.故答案为;2a+5.点评:本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.17.如图,程序运算器中,当输入﹣1时,则输出的数是7 .考点:有理数的混合运算.专题:图表型.分析:首先理解清题意,知道此题分两种情况,且只有运算的数值大于3时才能输出结果.解答:解:(﹣1+4)×(﹣2)+(﹣3)=3×(﹣2)+(﹣3)=﹣6﹣3=﹣9<3(﹣9+4)×(﹣2)+(﹣3)=(﹣5)×(﹣2)+(﹣3)=10﹣3=7>3.故答案为:7.点评:此题的关键是知道计算顺序,明白当运算的结果小于3时要再重新计算,直到结果大于3,输出结果为止.18.将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为(45,12).考点:规律型:数字的变化类.专题:压轴题;规律型.分析:根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2014所在的位置.解答:解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同;∵45×45=2025,2014在第45行,向右依次减小,∴2014所在的位置是第45行,第12列,其坐标为(45,12).故答案为:(45,12).点评:此题主要考查了数字的规律知识,得出第一列的奇数行的数的规律与第一行的偶数列的数的规律是解决问题的关键.三、解答题(第19题20分,第20题8分,共28分)19.计算:(1)(﹣)+(﹣)﹣(﹣2)(2)﹣﹣+(3)9+5×(﹣3)﹣(﹣2)2+4(4)﹣5﹣[﹣1.5﹣(4.5﹣4)].考点:有理数的混合运算.专题:计算题.分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式结合后,相加即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(4)原式去括号,计算即可得到结果.解答:解:(1)原式=﹣﹣+2=﹣1+2=1;(2)原式=﹣+﹣=﹣+=﹣;(3)原式=9﹣15﹣1=﹣7;(4)原式=﹣5+1.5+4.5﹣4=﹣10.5+6=﹣4.5.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.计算(1)(﹣5)3×[2﹣(﹣6)]﹣300÷5(2)(﹣)÷(﹣)+(﹣2)2×(﹣14)考点:有理数的混合运算.专题:计算题.分析:(1)首先算括号里的,利用有理数的减法法则;减去一个数等于加上它的相反数,2﹣(﹣6)=2+6;再算乘方,(﹣5)3表示3个﹣5相乘得﹣125,再算乘除,两数相乘(或相除),同号得正,异号得负,首先确定好符号,然后把绝对值相乘(或相除);最后再算加减即可以得到答案.(2)首先算括号里的﹣=;再算乘方,(﹣2)2表示2个﹣2相乘得4,再算乘除,两数相乘(或相除),同号得正,异号得负,首先确定好符号,然后把绝对值相乘(或相除);最后再算加减即可以得到答案.解答:解:(1)原式=(﹣5)3×(2+6)﹣300÷5,=(﹣5)3×8﹣300÷5,=﹣125×8﹣300÷5,=﹣1000﹣60,=﹣1060.(2)原式=÷(﹣)+4×(﹣14),=﹣1+(﹣56),=﹣57.点评:此题主要考查了有理数的加减,乘除,乘方的混合运算,计算时要把握两个关键:①计算顺序,②符号的确定.四、解答题(第21题16分,第22题6分,共22分)21.化简或先化简求值(1)3x2y3+(﹣4x2y3)﹣(﹣x2y3)(2)ab﹣[3a2b﹣(4a2b+ab)﹣4a2b]+3a2b(3)m﹣(m﹣1)+3(4﹣m),其中m=﹣3.(4)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.考点:整式的加减;整式的加减—化简求值.分析:(1)(2)先去括号,然后合并同类项即可;(3)(4)先去括号、合并同类项,然后再代入求值即可.解答:解:(1)3x2y3+(﹣4x2y3)﹣(﹣x2y3)=3x2y3﹣4x2y3+x2y3=0;(2)ab﹣[3a2b﹣(4a2b+ab)﹣4a2b]+3a2b=ab﹣3a2b+4a2b+ab+4a2b+3a2b=ab+8a2b;(3)m﹣(m﹣1)+3(4﹣m),=m﹣m+1+12﹣3m,=﹣4m+13,当m=﹣3时,原式=﹣4×(﹣3)+13=12+13=25;(4)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,=2x2y+2xy2﹣2x2y+2x﹣2xy2﹣2y,=2x﹣2y,当x=﹣2,y=2时,原式=2×(﹣2)﹣2×2=﹣4﹣4=﹣8.点评:此题考查的知识点是整式的混合运算﹣化简求值,关键是先去括号、合并同类项进行化简,然后代入求值.22.(1)根据要求列出代数式:①m的3倍与n的一半的和;②m与3的积减去n.(2)比较所列两个代数式的大小(直接写出结果)考点:列代数式;整式的加减.分析:(1)①m的3倍即3m,n的一半即n,二者相加即可.②m与3的积表示为3m,然后减去n.(2)利用作差法比较它们的大小.解答:解:①依题意得 3m+n;②依题意得 3m﹣n;(2)∵(3m+n)﹣(3m﹣n)=n.∴当n>0时,3m+n>3m﹣n;当n<0时,3m+n<3m﹣n;当n=0时,3m+n=3m﹣n.点评:此题考查的知识点是列代数式,关键是能够正确运用数学语言,即代数式来表示题意.五、解答题(第23题6分,第24-25题每题4分,共14分)23.有3张如图所示的卡片,用它们可以拼成各种形状不同的四边形.(1)画出所有可能拼成的四边形;(2)计算其中两个所拼四边形的周长和与周长差.考点:整式的加减;列代数式;图形的剪拼.分析:(1)拼成各种形状不同的四边形,需让相等的边重合,可先从常见的图形等腰梯形入手,然后进行一定转换;(2)根据作出的图形求出周长,然后求出周长差.解答:解:(1)所作图形如图所示:(2)第一个四边形的周长为:4a+2b,第二个四边形的周长为:2a+4b,则周长差为:(4a+2b)﹣(2a+4b)=2a﹣2b.点评:本题考查了整式的加减,着重考察了学生的动手操作能力,让相等的边重合,构造四边形即可.24.阅读下列解题过程:为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+...+2100=2101﹣1,仿照以上方法计算1+3+32+33+ (32014)考点:有理数的乘方.专题:阅读型.分析:利用题中的方法求出原式的值即可.解答:解:设M=1+3+32+33+…+32014,①①式两边都乘以3,得3M=3+32+33+…+32015,②②﹣①得:2M=32015﹣1,即M=,则原式=.点评:此题考查了有理数的乘方,弄清题中的方法是解本题的关键.25.阅读理解:图1中的每相邻两条线间,有从上至下的几条横线(即“桥”),这样就构成了“天梯”规定,运算符号“+、﹣、×、÷”在“天梯”的竖线与横线上运动,它们在运动过程中按自上而下,且逢“桥”必过的规划进行,最后运动到竖线下方的“○”中,将a、b、c、d、e连接起来,构成一个算式.如,“+”号根据规则就应该沿减号方向运动,最后向下进入“○”中,其余3个运算符号分别按规则运动到“○”中后,就得到算式a÷b×c﹣d+e.解决问题:(1)根据图2所示的“天梯”写出算式,并计算当a=﹣6,b=﹣1.52,c=﹣2,d=,c=﹣时所写算式的值;(2)添加1条横线,使图2中最后结果的“﹣”、“+”位置互换;(3)在图3中设计出一种“天梯”,使列出的算式为a×b÷c+d﹣e.考点:有理数的混合运算.专题:阅读型.分析:(1)根据题意确定出图2所示的“天梯”表示的算式,把a,b,c,d,e代入计算即可求出值;(2)根据题意画出粗线,如图所示;(3)如图3所示,设计出一种“天梯”满足题意即可.解答:解:(1)由题意得:ab﹣c+d+e,当a=﹣6,b=﹣1.52=﹣2.25,c=﹣2,d=,e=﹣时,原式=﹣6×(﹣2.25)﹣(﹣2)÷+(﹣)=;(2)加的横线见图2中的粗线部分,该横线应该在第二栏的第二座“桥”附近,可以添加在第二座“桥”的上方或下方,但不能超过第二座“桥”相邻的其他“桥”,这样就可以使图2中最后结果的“﹣”、“+”位置互换;(3)如图3所示.点评:此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.。

2015-2016学年新人教版七年级(上)期中数学试卷及答案

2015-2016学年新人教版七年级(上)期中数学试卷及答案

2015-2016学年七年级(上)期中数学试卷一、选择题(本题包括10小题,每小题3分,共30分)1.在1,0,﹣2,3这四个数中,比0小的数是()A.1 B.0 C.﹣2 D.32.下列化简,正确的是()A.﹣(﹣3)=﹣3 B.﹣[﹣(﹣10)]=﹣10 C.﹣(+5)=5 D.﹣[﹣(+8)]=﹣83.绝对值大于3且小于6的所有整数的和是()A.0 B.9 C. 6 D.184.下列各式2m+n,3ab,,,a,﹣8中,单项式的个数有()A.3个B.4个C.5个D.6个5.如图所示,则﹣a、﹣b的大小关系是()A.﹣a>﹣b B.﹣a<﹣b C.﹣a=﹣b D.都有可能6.下列各组是同类项的是()A.5x与xy B.﹣x2y与2xy2 C.3x2y3与﹣y3x2 D.a与b7.下列运算正确的是()A.2x+3y=5 B.4x2y﹣5xy2=﹣x2yC.a5+a6=a11 D.3ab2﹣b2a=2ab28.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.99.已知代数式3x2﹣2x+6的值是8,则代数式x2﹣x+4的值是()A.1 B. 5 C. 3 D. 410.若4<a<5时,化简|a﹣4|+|a﹣5|=()A.2a﹣9 B.2a﹣1 C.1 D.9二、填空题(每题3分,共24分)11.如果水库的水位高于标准水位6m时,记作+6m,那么低于标准水位2m,应记作m.12.﹣|﹣3|的相反数是.13.近似数1.5万精确到位.14.若(2x+1)2+|y﹣|=0,则x2+y2=.15.若单项式3x4y n与﹣2x m y3的和仍是单项式,则m﹣n=.16.地球上的海洋面积约为361000000km2,则科学记数法可表示为km2.17.在数轴上到表示﹣2的点的距离为4的点所表示的数是.18.观察下列数据,按某种规律在横线上填上适当的数:1,﹣,,﹣,,,…三、解答题(共46分)19.画一根数轴,用数轴上的点把如下的有理数﹣2,﹣0.5,0,﹣4表示出来,并用“<”把它们连接起来.20.计算:(1)(﹣40)﹣(+28)﹣(﹣19)﹣(+32)(2)﹣10+8+(﹣2)3﹣(﹣40)×(﹣3)(3)(﹣3)2﹣(1)3×+|﹣|3.21.(10分)(2014秋•蓟县期中)先化简,再求值:(1)5(3x2y﹣xy2)﹣(xy2﹣3x2y),其中x=,y=﹣1.(2)2x2y+(2y2﹣x2)﹣(x2+2y2),其中x=1,y=﹣10.22.已知a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式(a+b)•cd+|x|的值.23.下表给出了某班6名同学身高情况(单位:cm)姓名A B C D E F身高165 167 172身高与班级平均身高的差值﹣2 +2 ﹣3 +4(1)完成表中空的部分;(2)他们的最高与最矮相差多少?(3)他们的平均身高是多少?24.一汽车在东西方向公路来回行驶,约定向东为正,向西为负,某天自A地出发到达B 地,行驶记录如下:(单位:km)+8,﹣9,+4,+7,﹣2,﹣10,+18,﹣3,+7,+5.回答下列问题:(1)B地在A地的哪个方向?两地距离多远?(2)汽车行驶的路程有多少千米?若每千米耗油0.3升,这一过程共耗油多少升?25.已知A=﹣3x2﹣2mx+3x+1,B=2x2+mx﹣1,且2A+3B的值与x无关,求m的值.2015-2016学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题包括10小题,每小题3分,共30分)1.在1,0,﹣2,3这四个数中,比0小的数是()A.1 B.0 C.﹣2 D.3考点:有理数大小比较.分析:根据正数都大于0,负数都小于0即可得出结论.解答:解:∵1,3是正数,﹣2是负数,∴1>0,3>0,﹣2<0.故选C.点评:本题考查的是有理数的大小比较,熟知正数都大于0,负数都小于0,正数大于一切负数是解答此题的关键.2.下列化简,正确的是()A.﹣(﹣3)=﹣3 B.﹣[﹣(﹣10)]=﹣10 C.﹣(+5)=5 D.﹣[﹣(+8)]=﹣8考点:相反数.分析:在一个数前面放上“﹣”,就是该数的相反数,利用这个性质可化简.解答:解:A、∵﹣(﹣3)=3,∴错误;B、∵﹣[﹣(﹣10)]=﹣10,∴正确;C、∵﹣(+5)=﹣5,∴错误;D、∵﹣[﹣(+8)]=8,∴错误.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.绝对值大于3且小于6的所有整数的和是()A.0 B.9 C. 6 D.18考点:有理数的加法;绝对值.分析:大于3小于6的整数绝对值是4或5,因为互为相反数的两个数的绝对值相等,所以绝对值大于3且小于6的所有整数有±4,±5.解答:解:绝对值大于3小于6的所有整数是±4,±5.4+(﹣4)+5+(﹣5)=0+0=0.故选:A.点评:本题主要考查了绝对值的定义、有理数的加法法则,解题关键是掌握互为相反数的两个数的绝对值相等.4.下列各式2m+n,3ab,,,a,﹣8中,单项式的个数有()A.3个B.4个C.5个D.6个考点:单项式.分析:根据单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式,求解即可.解答:解:根据单项式的定义:3ab,a,﹣8,是单项式,共3个.故选:A.点评:本题考查了单项式的知识,解答本题的关键是掌握单项式的定义,属于基础题.5.如图所示,则﹣a、﹣b的大小关系是()A.﹣a>﹣b B.﹣a<﹣b C.﹣a=﹣b D.都有可能考点:有理数大小比较;数轴.专题:数形结合.分析:由数轴和相反数的定义可知﹣a、﹣b都表示正有理数,根据两个正数,绝对值大的其值就大比较大小.解答:解:观察数轴可知:a,b都表示负有理数,且|a|<|b|,∴﹣a、﹣b都表示正有理数,|﹣a|<|﹣b|,∴﹣a<﹣b.故选B.点评:本题考查了有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小;⑤两个正数,绝对值大的其值就大.6.下列各组是同类项的是()A.5x与xy B.﹣x2y与2xy2 C.3x2y3与﹣y3x2 D.a与b考点:同类项.分析:同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项,所以只要判断所含有的字母是否相同,相同字母的指数是否相同即可.解答:解:A、5x与xy中所含不相同字母的指数不同,不是同类项.故选项错误;B、﹣x2y与2xy2所含字母指数不同,不是同类项.故选项错误;C、3x2y3与﹣y3x2所含字母相同,指数也相同,所以是同类项.故选项正确;D、a与b不是同类项,故选项错误.故选:C.点评:本题考查了同类项的定义.判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.缺少其中任何一条,就不是同类项.注意所有常数项都是同类项.7.下列运算正确的是()A.2x+3y=5 B.4x2y﹣5xy2=﹣x2yC.a5+a6=a11 D.3ab2﹣b2a=2ab2考点:合并同类项.分析:直接利用合并同类项法则分析求出即可.解答:解:A、2x+3y无法计算,故此选项错误;B、4x2y﹣5xy2无法计算,故此选项错误;C、a5+a6无法计算,故此选项错误;D、3ab2﹣b2a=2ab2,正确.故选:D.点评:此题主要考查了合并同类项,正确掌握运算法则是解题关键.8.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9考点:有理数的乘方.分析:先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.解答:解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.点评:解决此类题目的关键是熟记平方数的特点,任何数的平方都是非负数,所以平方为正数的数有两个,且互为相反数.9.已知代数式3x2﹣2x+6的值是8,则代数式x2﹣x+4的值是()A.1 B. 5 C. 3 D. 4考点:代数式求值.分析:由代数式3x2﹣2x+6的值是8,得出3x2﹣2x=2,易得x2﹣x的值,再整体代入原式即可.解答:解;由题意得,3x2﹣2x+6=8,∴3x2﹣2x=2,∴x2﹣x=1,∴x2﹣x+4=1+4=5,故选B.点评:本题主要考查了代数式求值,先根据题意得出x2﹣x的值,再整体代入是解答此题的关键.10.若4<a<5时,化简|a﹣4|+|a﹣5|=()A.2a﹣9 B.2a﹣1 C.1 D.9考点:整式的加减;绝对值.分析:根据题意4<a<5,利用此条件先去掉绝对值,然后进行计算.解答:解:∵4<a<5,∴|a﹣4|=a﹣4,|a﹣5|=5﹣a,∴|a﹣4|+|a﹣5|=a﹣4+5﹣a=1.故选C.点评:本题考查了整式的加减以及绝对值的运算,根据绝对值的意义去掉绝对值符号是解题的关键.二、填空题(每题3分,共24分)11.如果水库的水位高于标准水位6m时,记作+6m,那么低于标准水位2m,应记作﹣2 m.考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“高”和“低”相对,若水库的水位高于标准水位6米时,记作+6米,则低于标准水位2米时,应记﹣2m.故答案为:﹣2.点评:本题主要考查的是正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.﹣|﹣3|的相反数是3.考点:相反数;绝对值.专题:计算题.分析:首先把﹣|﹣3|化简,再根据相反数的定义;只有符号不同的两个数叫相反数,得到答案.解答:解:﹣|﹣3|=﹣3,﹣3的相反数是:3,故答案为:3.点评:此题主要考查了绝对值与相反数,关键是把握相反数和绝对值的定义.13.近似数1.5万精确到千位.考点:近似数和有效数字.分析:根据精确值的确定方法,首先得出原数据,再从原数据找出5后面0所在数据的位置,再确定精确到了多少位.解答:解:近似数1.5万=1500,5所在数据的千位,故答案为:千.点评:此题主要考查了精确值的确定方法,必须写出原数据,确定准最后一位所在的位置是解决问题的关键.14.若(2x+1)2+|y﹣|=0,则x2+y2=.考点:代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.分析:利用非负数的性质得出x,y,代入即可.解答:解:∵(2x+1)2+|y﹣|=0,∴2x+1=0,y﹣=0,∴x=,y=,∴x2+y2==,故答案为:.点评:本题主要考查了代数式求值和非负数的性质,利用非负数的性质解的x,y是解答此题的关键.15.若单项式3x4y n与﹣2x m y3的和仍是单项式,则m﹣n=1.考点:合并同类项.分析:直接利用合并同类项法则得出x,y的次数相同,进而得出答案.解答:解:∵单项式3x4y n与﹣2x m y3的和仍是单项式,∴m=4,n=3,则m﹣n=4﹣3=1.故答案为:1.点评:此题主要考查了合并同类项,正确掌握运算法则是解题关键.16.地球上的海洋面积约为361000000km2,则科学记数法可表示为 3.61×108km2.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将361 000 000用科学记数法表示为3.61×108.故答案为3.61×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.在数轴上到表示﹣2的点的距离为4的点所表示的数是﹣6或2.考点:数轴.专题:常规题型.分析:根据数轴的特点,数轴上与表示﹣2的点的距离为4的点有两个:一个在数轴的左边,一个在数轴的右边,分两种情况讨论即可求出答案.解答:解:该点可能在﹣2的左侧,则为﹣2﹣4=﹣6;也可能在﹣2的右侧,即为﹣2+4=2.故答案为:﹣6或2.点评:此题主要考查了实数与数轴之间的对应关系,解题应该会根据距离和已知的一点的坐标确定另一点的坐标方法:左减右加.18.观察下列数据,按某种规律在横线上填上适当的数:1,﹣,,﹣,,﹣,…考点:规律型:数字的变化类.分析:分子是从1开始的连续奇数,分母是从1开始连续自然数的平方,奇数位置为正,偶数位置为负,第n个数为(﹣1)n+1,由此代入求得答案即可.解答:解:数列为:1,﹣,,﹣,,﹣,.故答案为:,﹣,.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.三、解答题(共46分)19.画一根数轴,用数轴上的点把如下的有理数﹣2,﹣0.5,0,﹣4表示出来,并用“<”把它们连接起来.考点:有理数大小比较;数轴.专题:计算题.分析:先利用数轴表示四个数,然后根据负数小于零;负数的绝对值越大,这个数反而越小即可得到它们的大小关系.解答:解:用数轴表示为:它们的大小关系为﹣4<﹣2<﹣0.5<0.点评:本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.也考查了数轴.20.计算:(1)(﹣40)﹣(+28)﹣(﹣19)﹣(+32)(2)﹣10+8+(﹣2)3﹣(﹣40)×(﹣3)(3)(﹣3)2﹣(1)3×+|﹣|3.考点:有理数的混合运算.分析:(1)先化简,再计算加减法;(2)(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解答:解:(1)(﹣40)﹣(+28)﹣(﹣19)﹣(+32)=﹣40﹣28+19﹣32=﹣81(2)﹣10+8+(﹣2)3﹣(﹣40)×(﹣3)=﹣10+8﹣8﹣120=﹣130;(3)(﹣3)2﹣(1)3×+|﹣|3.=9﹣×+=9﹣+=9.点评:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.21.(10分)(2014秋•蓟县期中)先化简,再求值:(1)5(3x2y﹣xy2)﹣(xy2﹣3x2y),其中x=,y=﹣1.(2)2x2y+(2y2﹣x2)﹣(x2+2y2),其中x=1,y=﹣10.考点:整式的加减—化简求值.专题:计算题.分析:(1)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答:解:(1)原式=15x2y﹣5xy2﹣xy2+3x2y=12x2y﹣6xy2,当x=,y=﹣1时,原式=﹣3﹣3=﹣6;(2)原式=2x2y+2y2﹣x2﹣x2﹣2y2=2x2y﹣2x2,当x=1,y=﹣10时,原式=﹣20﹣2=﹣22.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.已知a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式(a+b)•cd+|x|的值.考点:代数式求值;相反数;绝对值;倒数.分析:首先根据相反数和倒数的定义得a+b=0,cd=1,再由x的绝对值是1,代入原式即可.解答:解:∵a,b互为相反数∴a+b=0,∵c,d互为倒数∴cd=1,∵x的绝对值是1,∴原式=0×1+1=1.点评:本题主要考查了代数式求值,利用相反数和倒数的定义得出a+b=0,cd=1,然后代入是解答此题的关键.23.下表给出了某班6名同学身高情况(单位:cm)姓名A B C D E F身高165 169167 164171172身高与班级平均身高的差值﹣2 +2 0﹣3 +4 +5(1)完成表中空的部分;(2)他们的最高与最矮相差多少?(3)他们的平均身高是多少?考点:有理数的加减混合运算.专题:计算题.分析:(1)根据表格中的数据得出标准身高为167,得出空白处的数字即可;(2)找出最高的与最矮的之差即可;(3)根据表格中的数据求出他们的平均身高即可.解答:解:(1)下表给出了某班6名同学身高情况(单位:cm)姓名A B C D E F身高165 169 167 164 171 172身高与班级平均身高的差值﹣2 +2 0 ﹣3 +4 +5故答案为:169,164,171,0,+5;(2)根据题意得:172﹣164=8(cm),则他们的最高与最矮相差8cm;(3)他们的平均身高为×(﹣2+2+0﹣3+4+5)+167=1+167=168(cm).点评:此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.24.一汽车在东西方向公路来回行驶,约定向东为正,向西为负,某天自A地出发到达B 地,行驶记录如下:(单位:km)+8,﹣9,+4,+7,﹣2,﹣10,+18,﹣3,+7,+5.回答下列问题:(1)B地在A地的哪个方向?两地距离多远?(2)汽车行驶的路程有多少千米?若每千米耗油0.3升,这一过程共耗油多少升?考点:正数和负数.分析:(1)把当天记录相加,然后根据正数和负数的规定解答即可;(2)先求出行驶记录的绝对值的和,再乘以0.3计算即可得解.解答:解:(1)(+8)+(﹣9)+(+4)+(+7)+(﹣2)+(﹣10)+(+18)+(﹣3)+(+7)+(+5)=25km所以B地在A地的东边25km处;(2)8+9+4+7+2+10+18+3+7+5=73km,(8+9+4+7+2+10+18+3+7+5)×0.3=21.9升.点评:此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.已知A=﹣3x2﹣2mx+3x+1,B=2x2+mx﹣1,且2A+3B的值与x无关,求m的值.考点:整式的加减.分析:把A与B代入2A+3B中,去括号合并得到最简结果,由结果与x无关,求出m的值即可.解答:解:把A=﹣3x2﹣2mx+3x+1,B=2x2+mx﹣1代入得:2A+3B=2(﹣3x2﹣2mx+3x+1)+3(2x2+mx﹣1)=(﹣m+6)x﹣1,由结果与x无关,得到﹣m+6=0,解得:m=6.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.。

2015—2016学年度第一学期七年级数学期中试卷

2015—2016学年度第一学期七年级数学期中试卷

2015—2016学年度第一学期七年级数学期中试卷注意事项:全卷满分100分,考试时间100分钟.考生答题全部答在答题卡上,答在本试卷上无效.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.答选择题必须用2B 钢笔将答题卡上对应的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定地,在其他位置答题一律无效. 作图必须用2B 钢笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.2-的相反数是( )A .12 B .2 C .12- D .2- 2.2008年我国的国民生产总值约130800亿元,那么130800用科学记数法表示正确的是( ) A .51.30810⨯ B .413.0810⨯ C .41.30810⨯D .21.30810⨯3.下列各组是同类项的一组是( ) A .5xy 与2xyzB .2与7-C .22x y -与25y xD .3ac 与7bc4.下列各组数中,数值相等的是( ) A .23和32B .23-和()23-C .()32-和32-D .()2--和2--5.单项式222x yz -的系数和次数分别是( )A .2-,2B .2-,5C .12-,2D .12-,56.以下各正方形的边长是无理数的是( ) A .面积为3的正方形 B .面积为1.44的正方形 C .面积为25的正方形 D .面积为16的正方形二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答.题卡相应位置......上) 7.112-的倒数是__________;()20151-=__________. 8.比较大小:234⎛⎫- ⎪⎝⎭__________12-)(填“<”、“=”、“>”).9.在数轴上将点A 向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是__________.10.多项式232x x -+-的次数为__________,项数为__________.11.钢笔每支2元,钢笔每支0.5元,n 支钢笔和m 支钢笔共__________元. 12.有理数a 、b 、c 在数轴上的位置如图,化简a b c b +--的结果为__________.13.如图所示的阴影部分面积用代数式表示为__________.14.长方形的周长为53a b +,其中一边长为2a b -,则这个长方形的另一边长为__________.(写出化简后的结果)15.已知2235x x -+的值为9,则代数式2468x x -+的值为__________.16.观察下列图形,它们是按一定规律排列的,依照此规律,第n 个图形有__________个太阳.(图4)(图3)(图2)(图1)三、解答题(本大题共8小题,共68分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(4分)画出数轴并标出表示下列各数的点,并用“<”把下列各数连接起来.132-,4,2.5,1,7,5- 18.计算:((1)(2)每题4分,(3)(4)每题5分,共18分) (1)24+(-14)+(-16)+8;(2)()142722449-÷⨯÷-;(3)()357124468⎛⎫-+-⨯- ⎪⎝⎭;(4)()()341110.5243⎡⎤---÷⨯--⎣⎦.19.计算:(第(1)题4分,第(2)(3)题5分,共14分)(1)3257x y x y -+--(2)()()5322a a b a b +---(3)()()22222222x y xy x y x xy y +---- 20.(6分)先化简再求值:222214332332x y xy xy x y xy xy ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦,其中34x =,1y =-.21.(6分)出租车司机小王某天下午营运全是东西走向的玄武大道进行的,如果规定向东为正,向西为负,他这天下午的行驶记录如下:(单位:千米)(1)将最后一名乘客送到目的地时,小王距下午出车地点的距离是多少千米? (2)若汽车耗油量为a 升/千米,这天下午汽车共耗油多少升?(3)出租车油箱内原有5升油,请问:当0.05a =时,小王途中是否需要加油?若需要加油,至少需要加多少升油?若不需要加油,说明理由. 22.(5分)如图,两摞规格完全相同的课本整齐叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:(1)每本课本的厚度为__________cm ;(2)若有一摞上述规格的课本x 本,整齐叠放在讲台上,请用含x 的代数式表示出这一摞数学课本的顶部距离地面的高度;(3)当56x =时,若从中取走14本,求余下的课本的顶部距离地面的高度.23.(5分)从2开始的连续偶数相加,它们和的情况如下表:(1)根据表中的规律,直接写出24681012+++++=__________.(2)根据表中的规律猜想:24682S n =+++++=__________(用n 的代数式表示) (3)利用上题中的公式计算102104106200++++的值(要求写出计算过程). 24.(10分) 【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,()()()()3333-÷-÷-÷-等.类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”,()()()()3333-÷-÷-÷-记作()3-④,读作“3-的圈4次方”,一般地,把n aa a a a ÷÷÷÷个(0a ≠)记作n a ,读作“a 的圈n 次方”. 【初步探究】(1)直接写出计算结果:2=█__________,12⎛⎫-= ⎪⎝⎭█__________.(2)关于除方,下列说法错误的是( ) A .任何非零数的圈2次方都等于1B .对于任何正整数n ,1=1█C .3=4██D .负数的圈奇数次方结果是负数,负数的圈子偶数次方结果是正数 【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?=(12)2=2×122④=2÷2÷2÷2除方(1)试一试:依照上面的算式,将下列运算结果直接写成幂.的形式. ()3=-█__________; 5=█__________;1=2⎛⎫- ⎪⎝⎭█__________. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于__________; (3)算一算:23111123423⎛⎫⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭███.。

2015-2016学年度第一学期七年级期中数学试卷(含答案)

2015-2016学年度第一学期七年级期中数学试卷(含答案)

2015-2016学年度第一学期七年级期中试卷数学一、选择题:(共8小题,每小题3分,共24分) 1.6-的绝对值是( )A 6-B 6C 16D 16-2.如果30+m 表示向东走30m ,那么向西走40m 表示为( ) A 40+m B 40-m C 30+m D 30-m3.国家提倡“低碳减排”,某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为( )A 610213⨯B 71013.2⨯C 81013.2⨯D 91013.2⨯ 4.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A 3,3- B 3,2- C 3,5- D 3,25.根据《国家中长期教育改革和发展规划纲要》,教育经费投入应占当年GDP 的4%.若设2012年GDP 的总值为n 亿元,则2012年教育经费投入可表示为( )亿元. A n %4 B ()n %41+ C ()n %41- D n +%4 6.把方程2113332x x x -++=-去分母正确的是( ) A ()()131812218+-=-+x x x B ()()13123+-=-+x x x C ()()1181218+-=-+x x x D ()()1331223+-=-+x x x7.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y =( ) A 2 B 3 C 6 D 3x +8.已知关于x 的方程540x a -+=无解,430x b -+=有两个解,320x c -+=只有一个解,则化简a c c b a b -+---的结果是( )A 2aB 2bC 2cD 0二.填空题:(共4小题,每小题3分,共12分)9.圆周率 3.1415926π= ,取近似值3.142,是精确到 位. 10.如果单项式13a x y +与32b x y 是同类项,那么b a = .11.若2x =是关于x 的方程2310x m +-=的解,则m 的值等于 .12.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是 .三.解答题:(共10小题,其中13、14题每题12分,其余每题5分,共64分) 13.计算题:(每小题3分) (1)()234-⨯⨯- (2)()()232524-⨯--÷(3)()()32233103104b b a b b a +-+- (4)⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛---22232153x x x x14.解下列方程:(每小题3分) (1)x x 312-=+- (2)0.50.7 6.5 1.3x x -=-(3)()1236365x x -=- (4)1231337x x -+=-15.先化简,再求值:()()4231x y x y --++,其中1x =,13y =-.16.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a 升,这一天上午共耗油多少升?17.根据下图的数值转换器,当输入的x 与y 满足21102x y ⎛⎫++-= ⎪⎝⎭时,请列式求出输出的结果.18.已知:21A ax x =+-,2321B x x =-+(a 为常数) (1)若A 与B 的和中不含2x 项,求a 的值; (2)在(1)的条件下化简:2B A -.19.我们定义一种新的运算“⊗”,并且规定:22a b a b ⊗=-.例如:2232232⊗=-⨯=-,()()222242a a a ⊗-=--=+.(1)()32-⊗= ;(2)若()37x ⊗-=,求x 的值;(3)若()()()2242x x -⊗⊗=⊗,求x 的值.20.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数,求m 的值.21.(1)比较下列各式的大小:23-+ 23-+;35-+- ()()35-+-;05+-()05+-;…(2)通过(1)的比较,请你分析,归纳出当a ,b 为有理数时,a b +与a b +的大小关系. (3)根据(2)中你得出的结论,求当55x x +=-时,x 的取值范围.22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+¼+n =n n +1()2.如果图3、图4中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,…,求图4中所有圆圈中各数的绝对值之和.附加题:(每小题4分,共20分)1.对任意有理数,,,a b c d ,规定一种新运算:bc ad d c b a -=,已知2132=-x ,则x = .2.若,,a b c 为整数,且1=-+-a c b a ,则=-+-+-a c c b b a .3.如图,化简=--++---+b a c c b a c b a .b a 0 c4.是否存在整数k ,使关于x 的方程()4615k x x -+=-有整数解?若存在,请求出k 的值,并求出此方程的解;若不存在,请说明理由.5. 将1,2,…,2014这2014个正整数任意分成1007组,每组两个数,分别记作a 1,b 1{},a 2,b 2{},a 3,b 3{},¼,a 1007,b 1007{}.若()1111112c a b a b =-++,()2222212c a b a b =-++,()3333312c a b a b =-++…, ()1007100710071007200721b a b ac ++-=.设1231007S c c c c =++++…,求S 的最大值和最小值,并给出相应的分组方案.2015-2016学年度第一学期七年级期中数学试卷答案 一、 选择题: BBCAABAD 二、 填空题:9. 0.001(或千分位) 10. 8 11. 1- 12. 2213n n -+三、解答题:13.(1)24 (2)22 (3)32243a b a b - (4)2932x x --14.(1)1x =- (2)4x = (3)20x =- (4)6723x =15.原式=126126113-=---+=x y ⎛⎫-+⨯ ⎪⎝⎭16.(1)A 处在岗亭南方6km (2)34a 升17.()()2213212121222x y ⎡⎤++÷=-+⨯+÷=⎢⎥⎣⎦18.(1)3a =- (2)2943x x -+ 19.(1)5 (2)1x =- (3)52x =20.83m =-21.(1),,>==(2)≥a b a b ++ 当0≥ab 时,a b a b +=+(3)0≤x22.(1)67 (2)1761 附加题:1. 8-2. 23.3a b c --+4.当6k =-时,1x =;当4k =时,1x =-;当2k =-时,5x =;当0k =时,5x =-5.()max100820141007100810091010201415215772…S +⨯=++++==此时的分组为{}{}{}{}{}1,1008,2,1009,3,10101006,20131007,2014…,()min 2201410072462012201410150562…S +⨯=+++++==此时的分组为{}{}{}{}{}1,2,3,4,5,62011,20122013,2014…,。

2016年 山东省 七年级数学 期中测试卷1

2016年 山东省 七年级数学 期中测试卷1

2016年山东省七年级数学期中测试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的代号填在下面的表格内.1.2016的相反数是()A.﹣2016 B.2016 C.﹣D.2.从棱长为2a的正方体零件的一角,挖去一个棱长为a的小正方体,得到一个如图所示的零件,则这个零件的俯视图是()A.B.C.D.3.2016年第一季度,我市“蓝天白云、繁星闪烁”天数持续增加,获得山东省环境空气质量生态补偿资金408万元,408万用科学记数法表示正确的是()A.408×104B.4.08×104C.4.08×105D.4.08×1064.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0 B.a+b<0 C.|a|<|b|D.a﹣b>05.若x2﹣3y﹣5=0,则6y﹣2x2﹣6的值为()A.﹣4 B.4 C.﹣16 D.166.小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校C.书店D.不在上述地方7.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a﹣10%)(a+15%)万元B.a(1﹣90%)(1+85%)万元C.a(1﹣10%)(1+15%)万元D.a(1﹣10%+15%)万元8.下列去括号正确的是()A.a+(b﹣c)=a+b+c B.a﹣(b﹣c)=a﹣b﹣c C.a﹣(﹣b+c)=a﹣b﹣c D.a﹣(﹣b﹣c)=a+b+c9.下列各组的两个数中,运算后的结果相等的是()A.﹣33与(﹣3)3 B.与()3C.﹣|﹣2|与﹣(﹣2)D.﹣12与(﹣1)210.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.3011.下列计算中不正确的是()A.(﹣1)4×(﹣1)3=﹣1 B.﹣(﹣3)3=27 C.÷(﹣)3=9 D.﹣3÷(﹣)=912.一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11 B.12 C.13 D.14二、填空题:本题共6小题,每小题填对得4分,共24分.只要求填最后结果.13.如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2015=.14.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.15.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1分米的正方体摆成如图所示的形式,然后把露出的表面涂上不同的颜色,则被涂上颜色部分的面积为分米2.16.已知|x+|+(y﹣2)2=0,则x y=.17.规定“⊗”是一种运算且a⊗b=a b﹣b a,则4⊗(3⊗2)=.18.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为.三.解答题:解答要写出必要的文字说明或演算步骤.19.如图是由几个小立方块所搭成几何体的从上面看到的形状图,小正方形中的数字表示在该位置小立方块的个数,请画出这个几何体的从正面、从左面看到的形状图.20.你来算一算!千万别出错!(1)18÷(﹣3)2﹣6÷(﹣2)×(﹣)(2)﹣14﹣|﹣53|×(﹣)2﹣18÷|﹣2|(3)﹣23×0.5﹣(﹣1.6)2÷(﹣2)2(4)(﹣+﹣)÷﹣8÷(﹣2)3.21.小明家买了一辆小轿车,小明连续记录了一周每天行驶的路程:星期星期二星期三星期四星期五星期六星期日一路程(千米)30332737355330请你用学过的知识解决下面的问题:(1)小明家的轿车每月(按30天计算)要行驶多少千米?(2)若每行驶100千米需汽油8升,汽油每升6.70元,请你算出小明家一年(按12个月计算)的汽油费用大约是多少元.22.化简求值:(1)2(ab2+3b3﹣a2b)﹣(﹣2a2b+b3+ab2)﹣4b3(2)(3m﹣5n+4mn)﹣2(m﹣2n+3mn),其中m﹣n=7,mn=﹣5(3)﹣a﹣2(a﹣b2)﹣(a﹣b2),其中a=﹣2,b=.23.食品厂销售一种蔬菜,如果不加工直接出售,每千克可卖y元;如果经过加工,质量将减少20%,每千克价格则增加40%.(1)x千克这种蔬菜加工后可卖多少钱?(2)如果这种蔬菜1000千克,不加工直接出售每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱?比加工前多卖多少钱?2016-2017学年山东省枣庄市台儿庄区七年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的代号填在下面的表格内.1.2016的相反数是()A.﹣2016 B.2016 C.﹣D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:2016的相反数是﹣2016.故选:A.2.从棱长为2a的正方体零件的一角,挖去一个棱长为a的小正方体,得到一个如图所示的零件,则这个零件的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看是一个正方形,正方形的左下角是一个小正方形,故选:B.3.2016年第一季度,我市“蓝天白云、繁星闪烁”天数持续增加,获得山东省环境空气质量生态补偿资金408万元,408万用科学记数法表示正确的是()A.408×104B.4.08×104C.4.08×105D.4.08×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于408万有7位,所以可以确定n=7﹣1=6.【解答】解:408万用科学记数法表示正确的是4.08×106.故选:D.4.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0 B.a+b<0 C.|a|<|b|D.a﹣b>0【考点】实数与数轴.【分析】根据点a、b在数轴上的位置可判断出a、b的取值范围,然后即可作出判断.【解答】解:根据点a、b在数轴上的位置可知1<a<2,﹣1<b<0,∴ab<0,a+b>0,|a|>|b|,a﹣b>0,.故选:D.5.若x2﹣3y﹣5=0,则6y﹣2x2﹣6的值为()A.﹣4 B.4 C.﹣16 D.16【考点】代数式求值.【分析】把(x2﹣3y)看作一个整体并求出其值,然后代入代数式进行计算即可得解.【解答】解:∵x2﹣3y﹣5=0,∴x2﹣3y=5,则6y﹣2x2﹣6=﹣2(x2﹣3y)﹣6=﹣2×5﹣6=﹣16,故选C.6.小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校C.书店D.不在上述地方【考点】坐标确定位置.【分析】以家为坐标原点建立坐标系,根据题意即可确定小明的位置.【解答】解:根据题意:小明从家出来向北走了50米,又向北走了﹣70米,即向南走了20米,而学校在家南边20米.故此时,小明的位置在学校.故选B.7.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a﹣10%)(a+15%)万元B.a(1﹣90%)(1+85%)万元C.a(1﹣10%)(1+15%)万元D.a(1﹣10%+15%)万元【考点】列代数式.【分析】由题意可得:4月份的产值为:a(1﹣10%),5月份的产值为:4月的产值×(1+15%),进而得出答案.【解答】解:由题意可得:4月份的产值为:a(1﹣10%),5月份的产值为:a (1﹣10%)(1+15%),故选:C.8.下列去括号正确的是()A.a+(b﹣c)=a+b+c B.a﹣(b﹣c)=a﹣b﹣c C.a﹣(﹣b+c)=a﹣b﹣c D.a﹣(﹣b﹣c)=a+b+c【考点】去括号与添括号.【分析】直接利用去括号法则,分别分析得出答案.【解答】解:A、a+(b﹣c)=a+b﹣c,故此选项错误;B、a﹣(b﹣c)=a﹣b+c,故此选项错误;C、a﹣(﹣b+c)=a+b﹣c,故此选项错误;D、a﹣(﹣b﹣c)=a+b+c,故此选项正确.故选:D.9.下列各组的两个数中,运算后的结果相等的是()A.﹣33与(﹣3)3 B.与()3C.﹣|﹣2|与﹣(﹣2)D.﹣12与(﹣1)2【考点】有理数的乘方;绝对值.【分析】根据有理数的乘方,以及绝对值的含义和求法,求出每个选项中的两个数各是多少,判断出运算后的结果相等的是哪两个数即可.【解答】解:∵﹣33=﹣27,(﹣3)3=﹣27,∴﹣33=(﹣3)3,∴选项A正确;∵=,()3=,∴≠()3,∴选项B不正确;∵﹣|﹣2|=﹣2,﹣(﹣2)=2,∴﹣|﹣2|≠﹣(﹣2),∴选项C不正确;∵﹣12=﹣1,(﹣1)2=1,∴﹣12≠(﹣1)2,∴选项D不正确.故选:A.10.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.30【考点】规律型:图形的变化类.【分析】仔细观察图形,找到图形中圆形个数的通项公式,然后代入n=7求解即可.【解答】解:观察图形得:第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…第n个图形有3+3n=3(n+1)个圆圈,当n=7时,3×(7+1)=24,故选B.11.下列计算中不正确的是()A.(﹣1)4×(﹣1)3=﹣1 B.﹣(﹣3)3=27 C.÷(﹣)3=9 D.﹣3÷(﹣)=9【考点】有理数的乘方;相反数;有理数的除法.【分析】根据有理数的乘方,以及有理数的乘法、有理数的除法的运算方法,逐项判断即可.【解答】解:∵(﹣1)4×(﹣1)3=1×(﹣1)=﹣1,∴选项A正确;∵﹣(﹣3)3=﹣(﹣27)=27,∴选项B正确;∵÷(﹣)3=÷(﹣)=﹣9,∴选项C不正确;∵﹣3÷(﹣)=9,∴选项D正确.故选:C.12.一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11 B.12 C.13 D.14【考点】由三视图判断几何体.【分析】从俯视图可得:碟子共有3摞,结合主视图和左视图,可得每摞碟子的个数,相加可得答案.【解答】解:由俯视图可得:碟子共有3摞,由几何体的主视图和左视图,可得每摞碟子的个数,如下图所示:故这张桌子上碟子的个数为3+4+5=12个,故选:B.二、填空题:本题共6小题,每小题填对得4分,共24分.只要求填最后结果.13.如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2015=1.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得:a﹣2=1,b+1=3,解方程即可求得a、b的值,再代入(a﹣b)2015即可求解.【解答】解:由同类项的定义可知a﹣2=1,解得a=3,b+1=3,解得b=2,所以(a﹣b)2015=1.故答案为:1.14.根据如图所示的程序计算,若输入x的值为1,则输出y的值为4.【考点】代数式求值.【分析】观察图形我们可以得出x和y的关系式为:y=2x2﹣4,因此将x的值代入就可以计算出y的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y的值.【解答】解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.15.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1分米的正方体摆成如图所示的形式,然后把露出的表面涂上不同的颜色,则被涂上颜色部分的面积为33分米2.【考点】几何体的表面积.【分析】解此类题首先要计算表面积即从上面看到的面积+四个侧面看到的面积.【解答】解:根据分析其表面积=4×(1+2+3)+9=33dm2,即涂上颜色的为33dm2.故答案为33.16.已知|x+|+(y﹣2)2=0,则x y=.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+=0,y﹣2=0,解得x=﹣,y=2,所以,x y=(﹣)2=.故答案为:.17.规定“⊗”是一种运算且a⊗b=a b﹣b a,则4⊗(3⊗2)=3.【考点】有理数的乘方.【分析】根据规定“⊗”的运算方法列式计算即可得解.【解答】解:4⊗(3⊗2)=4⊗(32﹣23),=4⊗(9﹣8),=4⊗1,=41﹣14,=4﹣1,=3.故答案为:3.18.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为4a﹣8b.【考点】列代数式.【分析】剪下的两个小矩形的长为a﹣b,宽为(a﹣3b),所以这两个小矩形拼成的新矩形的长为a﹣b,a﹣3b,然后计算这个新矩形的周长.【解答】解:新矩形的周长为2(a﹣b)+2(a﹣3b)=4a﹣8b.故答案为4a﹣8b.三.解答题:解答要写出必要的文字说明或演算步骤.19.如图是由几个小立方块所搭成几何体的从上面看到的形状图,小正方形中的数字表示在该位置小立方块的个数,请画出这个几何体的从正面、从左面看到的形状图.【考点】作图﹣三视图;由三视图判断几何体.【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为3,1,4;从左面看有3列,每列小正方形数目分别为2,4,2.据此可画出图形.【解答】解:如图所示:20.你来算一算!千万别出错!(1)18÷(﹣3)2﹣6÷(﹣2)×(﹣)(2)﹣14﹣|﹣53|×(﹣)2﹣18÷|﹣2|(3)﹣23×0.5﹣(﹣1.6)2÷(﹣2)2(4)(﹣+﹣)÷﹣8÷(﹣2)3.【考点】有理数的混合运算.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣1=1;(2)原式=﹣1﹣20﹣9=﹣30;(3)原式=﹣4﹣=﹣4;(4)原式=(﹣+﹣)×36+1=﹣25+1=﹣24.21.小明家买了一辆小轿车,小明连续记录了一周每天行驶的路程:星期星期二星期三星期四星期五星期六星期日一路程(千米)30332737355330请你用学过的知识解决下面的问题:(1)小明家的轿车每月(按30天计算)要行驶多少千米?(2)若每行驶100千米需汽油8升,汽油每升6.70元,请你算出小明家一年(按12个月计算)的汽油费用大约是多少元.【考点】正数和负数.【分析】(1)先利用平均数的计算公式求出每天行驶的路程,再乘以总天数即可.(2)根据每月要行驶的距离求出每年要行驶的距离,再乘以耗油量和价格就可求出一年的汽油费用.【解答】解:(1)根据题意得:(30+35+27+37+35+53+30)=35(千米),35×30=1050(千米),答:此人的轿车每月(按30天计算)约行驶1050千米;(2)根据题意得:1050×12÷100×6.70=6753.6(元)答:此人一年(按12个月计算)的汽油费用大约是6753.6元.22.化简求值:(1)2(ab2+3b3﹣a2b)﹣(﹣2a2b+b3+ab2)﹣4b3(2)(3m﹣5n+4mn)﹣2(m﹣2n+3mn),其中m﹣n=7,mn=﹣5(3)﹣a﹣2(a﹣b2)﹣(a﹣b2),其中a=﹣2,b=.【考点】整式的加减—化简求值.【分析】(1)首先去括号,然后再合并同类项;(2)首先去括号,合并同类项,进行化简后,再代入m﹣n=7,mn=﹣5即可求值;(3)首先去括号,合并同类项,进行化简后,再代入a、b的值即可求值.【解答】解:(1)原式=2ab2+6b3﹣2a2b+2a2b﹣b3﹣ab2﹣4b3,=ab2+b3;(2)原式=3m﹣5n+4mn﹣2m+4n﹣6mn,=m﹣n﹣2mn,当m﹣n=7,mn=﹣5时,原式=7﹣2×(﹣5)=17;(3)原式=﹣a﹣2a+b2﹣a+b2,=﹣4a+b2;当a=﹣2,b=时原式=﹣4×(﹣2)+×()2=8+3=11.23.食品厂销售一种蔬菜,如果不加工直接出售,每千克可卖y元;如果经过加工,质量将减少20%,每千克价格则增加40%.(1)x千克这种蔬菜加工后可卖多少钱?(2)如果这种蔬菜1000千克,不加工直接出售每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱?比加工前多卖多少钱?【考点】列代数式.【分析】(1)求出加工后的蔬菜重量和价格,即可求出代数式;(2)将数字代入(1)中代数式,再进行计算,即可得出答案.【解答】解:(1)根据题意得:y(1+40%)x(1﹣20%)=1.12xy(元);答:x千克这种蔬菜加工后可卖1.12xy(元);(2)根据题意得:1000×(1﹣20%)×1.50×(1+40%)=1680(元),1680﹣1.50×1000=180(元),答:加工后原1000千克这种蔬菜可卖1680元,比加工前多卖180元.2017年3月6日。

人教版七年级上册试卷2015-2016期中测试答案.docx

人教版七年级上册试卷2015-2016期中测试答案.docx

北京市第五十六中学2015-2016学年度第一学期期中考试初一年级数学参考答案及评分标准二. 11. 水位下降5m 12. 13 ,-3 13. 3-2,3 14.m=1,n=1 15. 10m+n 16. 2 17. 0 18. 619. 17-,18,1(1)-n n三.用心算一算:(本题共24分,每小题4分)20. 原式=12+18-7-15 ------------------------2分=30-22=8 ------------------------4分21. 原式=721272-⨯⨯ ------------------------2分 =12- ------------------------4分 22. 原式=-4-4-8-8 ------------------------2分=-24 ------------------------4分23. 原式=12-52--1 ------------------------2分 =-4 ------------------------4分 四. 化简:(本题共8分,每小题4分)24. 原式=26x - ------------------------4分 25. 原式=222243+-+-x x x x -----------------------2分 =229-+x ------------------------4分 五.先化简,再求值:(本题共5分)26. 原式=224a 2a 64a 4a 10---++ ----------2分= 2a+4 ----------------------------------------4分当a=-1 时,原式= 2 ----------------------------5分六.(本题共23分)27. (1)总收入130万元,总支出35万元?-----------------2分(2)总收入+130万元,总支出-35万元 ---------------4分(3)95万元---------------5分28.215(2) 2.50352-<--<-<<-<----------------2分画图----------------3分29(1)剩余部分的面积24-x ab,二次二项式,二次项系数的和是-3.----------------2分(2)22-x ab----------------2分(3)22-x rπ----------------3分30(1)5 ----------------2分(2)x=-1 ----------------2分(3)x=2,x=-5----------------3分初中数学试卷桑水出品。

2015-2016学年度第一学期七年级期中数学试卷(含答案)

2015-2016学年度第一学期七年级期中数学试卷(含答案)

2015-2016学年度第一学期七年级期中试卷数学一、选择题:(共8小题,每小题3分,共24分) 1.6-的绝对值是( )A 6-B 6C 16D 16-2.如果30+m 表示向东走30m ,那么向西走40m 表示为( ) A 40+m B 40-m C 30+m D 30-m3.国家提倡“低碳减排”,某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为( )A 610213⨯B 71013.2⨯C 81013.2⨯D 91013.2⨯ 4.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A 3,3- B 3,2- C 3,5- D 3,25.根据《国家中长期教育改革和发展规划纲要》,教育经费投入应占当年GDP 的4%.若设2012年GDP 的总值为n 亿元,则2012年教育经费投入可表示为( )亿元. A n %4 B ()n %41+ C ()n %41- D n +%4 6.把方程2113332x x x -++=-去分母正确的是( ) A ()()131812218+-=-+x x x B ()()13123+-=-+x x x C ()()1181218+-=-+x x x D ()()1331223+-=-+x x x7.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y =( )A 2B 3C 6D 3x +8.已知关于x 的方程540x a -+=无解,430x b -+=有两个解,320x c -+=只有一个解,则化简a c c b a b -+---的结果是( )A 2aB 2bC 2cD 0二.填空题:(共4小题,每小题3分,共12分)9.圆周率 3.1415926π=,取近似值3.142,是精确到 位. 10.如果单项式13a x y +与32b x y 是同类项,那么b a = .11.若2x =是关于x 的方程2310x m +-=的解,则m 的值等于 .12.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是 .三.解答题:(共10小题,其中13、14题每题12分,其余每题5分,共64分) 13.计算题:(每小题3分) (1)()234-⨯⨯- (2)()()232524-⨯--÷(3)()()32233103104b b a b b a +-+- (4)⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛---22232153x x x x14.解下列方程:(每小题3分)(1)x x 312-=+- (2)0.50.7 6.5 1.3x x -=- (3)()1236365x x -=- (4)1231337x x -+=-15.先化简,再求值:()()4231x y x y --++,其中1x =,13y =-.16.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a 升,这一天上午共耗油多少升?17.根据下图的数值转换器,当输入的x 与y 满足21102x y ⎛⎫++-= ⎪⎝⎭时,请列式求出输出的结果.18.已知:21A ax x =+-,2321B x x =-+(a 为常数) (1)若A 与B 的和中不含2x 项,求a 的值; (2)在(1)的条件下化简:2B A -.19.我们定义一种新的运算“⊗”,并且规定:22a b a b ⊗=-.例如:2232232⊗=-⨯=-,()()222242a a a ⊗-=--=+.(1)()32-⊗= ;(2)若()37x ⊗-=,求x 的值;(3)若()()()2242x x -⊗⊗=⊗,求x 的值.20.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数,求m 的值.21.(1)比较下列各式的大小:23-+23+;35-+-)()35-+-;05+-()5+-;…(2)通过(1)的比较,请你分析,归纳出当a ,b 为有理数时,a b +与a b +的大小关系. (3)根据(2)中你得出的结论,求当55x x +=-时,x 的取值范围.22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+¼+n =n n +1()2.如果图3、图4中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,…,求图4中所有圆圈中各数的绝对值之和.附加题:(每小题4分,共20分) 1.对任意有理数,,,a b c d ,规定一种新运算:bc ad dc b a -=,已知2132=-x ,则x = .2.若,,a b c 为整数,且1=-+-a c b a ,则=-+-+-a c c b b a .3.如图,化简=--++---+b a c c b a c b a .b a 0 c4.是否存在整数k ,使关于x 的方程()4615k x x -+=-有整数解?若存在,请求出k 的值,并求出此方程的解;若不存在,请说明理由.5. 将1,2,…,2014这2014个正整数任意分成1007组,每组两个数,分别记作a 1,b 1{},a 2,b 2{},a 3,b 3{},¼,a 1007,b 1007{}.2015-2016学年度第一学期七年级期中数学试卷答案 一、 选择题: BBCAABAD 二、 填空题:9. 0.001(或千分位) 10. 8 11. 1- 12. 2213n n -+三、解答题:13.(1)24 (2)22 (3)32243a b a b - (4)2932x x --14.(1)1x =- (2)4x = (3)20x =- (4)6723x =15.原式=126126113-=---+=x y ⎛⎫-+⨯ ⎪⎝⎭16.(1)A 处在岗亭南方6km (2)34a 升17.()()2213212121222x y ⎡⎤++÷=-+⨯+÷=⎢⎥⎣⎦18.(1)3a =- (2)2943x x -+ 19.(1)5 (2)1x =- (3)52x =20.83m =-21.(1),,>== (2)≥a b a b ++ 当0≥ab 时,a b a b +=+(3)0≤x22.(1)67 (2)1761 附加题:1. 8-2. 23.3a b c --+4.当6k =-时,1x =;当4k =时,1x =-;当2k =-时,5x =;当0k =时,5x =-5.()max 100820141007100810091010201415215772…S +⨯=++++==此时的分组为{}{}{}{}{}1,1008,2,1009,3,10101006,20131007,2014…,()min 2201410072462012201410150562…S +⨯=+++++==此时的分组为{}{}{}{}{}1,2,3,4,5,62011,20122013,2014…,。

2016年山东省烟台市莱阳市七年级上学期数学期中试卷带解析答案

2016年山东省烟台市莱阳市七年级上学期数学期中试卷带解析答案

2015-2016学年山东省烟台市莱阳市七年级(上)期中数学试卷一、选择题:本大题共12小题,36个评价点。

每小题均给出标号为A、B、C、D四个备选答案,其中只有一个是正确的,请将正确答案的标号填在下列表中相应的位置上。

1.(3分)下列几何体中,属于棱柱的是()A.①③B.①C.①③⑥D.①⑥2.(3分)用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是()A.正方形B.圆锥C.圆柱D.球3.(3分)|﹣|的相反数是()A.B.﹣ C.3 D.﹣34.(3分)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.5.(3分)如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A.相对B.相邻C.相隔D.重合6.(3分)如图,矩形绕它的一条边MN所在的直线旋转一周形成的几何体是()A. B.C.D.7.(3分)如图下面的图形中,是三棱柱的侧面展开图的为()A.B.C.D.8.(3分)如图,将直角三角形绕直角边AB旋转一周,所得的几何体从正面看到的图形是()A.B.C.D.9.(3分)4月20日《情系玉树大爱无疆──抗震救灾大型募捐活动》在中央电视台现场直播,截至当晚11时30分特别节目结束,共募集善款21.75亿元.将21.75亿元用科学记数法表示(保留两位有效数字)为()A.21×108元B.22×108元C.2.2×109元D.2.1×109元10.(3分)有理数a、b在数轴上的位置如图所示,则下列结论正确的是()A.a+b>0 B.a﹣b<0 C.|b|>|a|D.ab<011.(3分)下列各组数中,数值相等的是()A .和B .﹣12013和(﹣1)2015C .﹣32和(﹣3)2D .﹣和 12.(3分)小明做了以下几道计算题:①﹣12014=1;②(﹣2)2=﹣8;③﹣22÷(﹣2)2=1;④﹣+=﹣;⑤3×=﹣32.5;⑥﹣5+=﹣25.请你帮他检查一下,他一共做对了( ) A .2道题 B .3道题 C .4道题 D .5道题二、填空题:本题共18个评价点。

烟台市七年级上学期期中数学试卷

烟台市七年级上学期期中数学试卷

烟台市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共13题;共26分)1. (2分)(2017·杭州) 太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A . 1.5×108B . 1.5×109C . 0.15×109D . 15×1072. (2分)(2017·烟台) 下列实数中的无理数是()A .B . πC . 0D .3. (2分) (2016七下·濮阳开学考) 单项式﹣3πxy2z3的系数和次数分别是()A . ﹣π,5B . ﹣1,6C . ﹣3π,6D . ﹣3,74. (2分) (2016七上·武胜期中) 下列计算中,错误的是()A . ﹣62=﹣36B . (﹣1)100+(﹣1)1000=0C . (﹣4)3=﹣64D .5. (2分) (2016七上·武胜期中) 下列格式:﹣(﹣3);﹣|﹣3|;﹣32;﹣(﹣3)2 ,计算结果为负数的有()A . 4个B . 3个C . 2个D . 1个6. (2分) (2016七上·武胜期中) 冬季某天我国三个城市的最高气温分别是﹣10℃,1℃,﹣7℃,它们任意两城市中最大的温差是()A . 11℃B . 17℃C . 8℃D . 3℃7. (2分) (2016七上·武胜期中) 下列各对数中互为相反数的是()A . ﹣(+3)和+(﹣3)B . ﹣(﹣3)和+(﹣3)C . ﹣(﹣3)和+|﹣3|D . +(﹣3)和﹣|﹣3|8. (2分) (2016七上·武胜期中) 下列语句:①一个数的绝对值一定是正数;②﹣a一定是一个负数;③没有绝对值为﹣3的数;④若|a|=a,则a是一个正数;⑤在原点左边离原点越远的数就越小;正确的有()个.A . 0B . 3C . 2D . 49. (2分)下列去括号中,正确的是()A . a﹣(b﹣c)=a﹣b﹣cB . c+2(a﹣b)=c+2a﹣bC . a﹣(b﹣c)=a+b﹣cD . a﹣(b﹣c)=a﹣b+c10. (2分) (2016七上·武胜期中) x2y3﹣3xy2﹣2次数和项数分别是()A . 5,3B . 5,2C . 2,3D . 3,311. (2分)下列说法正确的是()A . 0.720精确到百分位B . 5.078×104精确到千分位C . 36万精确到个位D . 2.90×105精确到千位12. (2分) (2016七上·武胜期中) 如果|a+2|+(b﹣1)2=0,那么(a+b)2007的值是()A . ﹣2007B . 2007C . ﹣1D . 113. (2分) (2016七上·武胜期中) 方程2x﹣6=0的解是()A . 3B . ﹣3C . ±3D .二、填空题 (共10题;共11分)14. (1分)(2020·阿城模拟) 据报道,疫情期间自2020年3月1日至4月30日,我国共验放出口主要防疫物资价值71200000000元,请将71200000000用科学记数法表示为________.15. (1分) (2016七上·武胜期中) 在﹣42,+0.01,π,0,120,这5个数中正有理数是________.16. (1分) (2016七上·武胜期中) 若单项式3x2yn与﹣2xmy3是同类项,则m+n=________.17. (1分) (2016七上·武胜期中) 绝对值不大于2的整数有________.18. (1分) (2016七上·武胜期中) 近似数1.50精确到________位.19. (1分) (2016七上·武胜期中) 温度由﹣4℃上升7℃,达到的温度是________℃.20. (1分) (2016七上·武胜期中) 地球的半径约为6400000米,这个数用科学记数法可以表示为:________米.21. (2分) (2016七上·武胜期中) 在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是________,最小的积是________.22. (1分) (2016七上·武胜期中) 一个多项式M减去多项式2x2+5x﹣3,马虎同学将减号抄成了加号,运算结果得﹣x2+3x﹣7,多项式M是________.23. (1分) (2016七上·武胜期中) 规定一种新的运算:A★B=A×B﹣A÷B,如4★2=4×2﹣4÷2=6,则6★(﹣3)的值为________.三、计算或化简 (共2题;共8分)24. (3分) (2020七下·北京月考) 阅读理解:我们把对非负实数“四舍五入”到个位的值记为,即当为非负整数时,若,则.例如:,,….请解决下列问题:(1) ________;(2)若,则实数的取值范围是________;(3)① ;②当为非负整数时,;③满足的非负实数只有两个.其中结论正确的是________(填序号)25. (5分) (2016七上·武胜期中) 化简求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=﹣1,y=1.四、解答题 (共1题;共9分)26. (9分) (2020七上·兴安盟期末) 观察下列每一列数,按规律填空(1) ________,________,……(2) ________,________,……(3) ________,________,……(4)在(1)列数中第100个数是________,在(2)列数中第200个数是________,在(3)列数中第199个数是________。

山东初一初中数学期中考试带答案解析

山东初一初中数学期中考试带答案解析

山东初一初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.﹣2的相反数是()A.﹣2B.﹣C.D.22.(﹣2)×3的结果是()A.﹣5B.1C.﹣6D.63.下列式子中,不是单项式的是()A.B.C.D.4.计算3a﹣2a的结果正确的是()A.1B.a C.-a D.-5a5.下列各式计算正确的是()A.2(a+1)=2a+1B.a3+a3=a6C.﹣3a+2a=﹣a D.a2+a3=a56.在﹣13,0,2,11这四个数中,最小的数是()A.-13B.0C.2D.117.若 |a|=﹣a,则有理数a在数轴上的对应点一定在()A.原点左侧B.原点或原点左侧C.原点右侧D.原点或原点右侧8.若﹣2与5可以合并成一项,则n m的值是()A.12B.24C.36D.649.多项式的次数及最高次项的系数分别是()A.B.C.D.10.有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A.+2B.-3C.+3D.+4二、填空题1.﹣(﹣3)2= .2.化简:3.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,数据50000000000千克用科学记数法表示为.4.若单项式与合并后的结果为,则.5.一个数在数轴上表示的点距原点8个单位长度,且在原点的左边,则这个数的相反数是______.6.按照如图所示的操作步骤,若输入x的值为2,则输出的值为.7.观察一列单项式:1x,3x2,5x2,7x,9x2,11x2,…,则第2015个单项式是.8.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是.三、计算题1.计算:(1)---(-1(2)2.合并同类项:(1)(2)4x3 - [ -x2 + 2( x3 -x2)]四、解答题1.先化简,后求值:(1)先化简,后求值:,其中(2)求的值,其中负数的绝对值是2,正数的倒数是它的本身,负数的平方等于9;2.一辆货车从超市出发,向东走了3千米到达小彬家,继续向东走了1.5千米到达小颖家,然后向西走了9.5千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明家,小彬家和小颖家的位置.(2)小明家距小彬家多远?(3)如果货车耗油量是每千米0.02升,那么在上述过程中共耗油多少升?3.读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为,这里“”是求和符号.例如:“1+3+5+7+9+…+99”(即从1开始的100以内连续奇数的和)可表示为;又如“13+23+33+43+53+63+73+83+93+103”可表示为.同学们,通过对以上材料的阅读,请解答下列问题:(1)“2+4+6+8+10+…+100”(即从2开始的100以内的连续偶数的和)用求和符号可表示为.(2)计算:的值4.观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”:①52×= ×25;② ×396=693×.(2)设这类等式左边两位数的十位数字为,个位数字为,且2≤≤9,写出表示“数字对称等式”一般规律的式子(含、),并说明理由.山东初一初中数学期中考试答案及解析一、选择题1.﹣2的相反数是()A.﹣2B.﹣C.D.2【答案】D【解析】当两数只有符号不同时,则我们称这两个数互为相反数.【考点】相反数的定义2.(﹣2)×3的结果是()A.﹣5B.1C.﹣6D.6【答案】C【解析】两数相乘,同号得正,异号得负.【考点】有理数的计算3.下列式子中,不是单项式的是()A.B.C.D.【答案】D【解析】单项式是指字母和数字之间用乘号或除号连接的整式,本题中D为分式.【考点】单项式的定义4.计算3a﹣2a的结果正确的是()A.1B.a C.-a D.-5a【答案】B【解析】系数与系数的差作为差的系数,字母和字母的指数不变.则原式=(3-2)a=a.【考点】合并同类项计算5.下列各式计算正确的是()A.2(a+1)=2a+1B.a3+a3=a6C.﹣3a+2a=﹣a D.a2+a3=a5【答案】C【解析】A、去括号法则,括号里面的每一项都要与括号外面的相乘,原式=2a+2;B、原式=2;C、正确;D、不是同类项,无法计算.【考点】代数式的计算6.在﹣13,0,2,11这四个数中,最小的数是()A.-13B.0C.2D.11【答案】A【解析】正数大于一切负数,零大于负数,零小于正数.【考点】有理数的大小比较7.若 |a|=﹣a,则有理数a在数轴上的对应点一定在()A.原点左侧B.原点或原点左侧C.原点右侧D.原点或原点右侧【答案】B【解析】非负数的绝对值等于它本身,非正数的绝对值等于它的相反数,非正数在数轴上是指:原点及原点左侧的点.【考点】绝对值的性质8.若﹣2与5可以合并成一项,则n m的值是()A.12B.24C.36D.64【答案】C【解析】根据同类项的定义可得:m=2,n-1=5,则m=2,n=6,即=36.【考点】同类项的定义9.多项式的次数及最高次项的系数分别是()A.B.C.D.【答案】A【解析】多项式中各单项式的最高次数作为多项式的次数.则本题中多项式的次数为3次,最高次项的系数为-3.【考点】多项式的次数10.有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A.+2B.-3C.+3D.+4【答案】A【解析】绝对值越小,则说明实际克数越接近标准克数,本题中绝对值最小的数为+2.【考点】绝对值的应用二、填空题1.﹣(﹣3)2= .【答案】-9【解析】平方表示两个相同的数相乘,则原式=-9.【考点】有理数的计算2.化简:【答案】a+2【解析】首先进行去括号,然后进行合并同类项计算.原式=2a+2-a=a+2.【考点】多项式的化简3.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,数据50000000000千克用科学记数法表示为.【答案】5×1010千克【解析】科学计数法是指:a×,且1≤<10,n为原数的整数位数减一.【考点】科学计数法4.若单项式与合并后的结果为,则.【答案】7【解析】根据同类项的定义可得:2x=2,y+1=4,则x=1,y=3,即原式==7.【考点】同类项的定义5.一个数在数轴上表示的点距原点8个单位长度,且在原点的左边,则这个数的相反数是______.【答案】8【解析】根据题意可得这个数为-8,则它的相反数为8.【考点】数轴6.按照如图所示的操作步骤,若输入x的值为2,则输出的值为.【答案】20【解析】根据题意可得操作方法为:,将x=2代入可得:原式=20.【考点】有理数的计算7.观察一列单项式:1x,3x2,5x2,7x,9x2,11x2,…,则第2015个单项式是.【答案】4029x2【解析】根据题意可得前面的系数为2n+1,x的指数1、2、2三个进行循环.【考点】规律题8.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是.【答案】4n﹣2【解析】第一个为4-2=2个,第二个为4×2-2=6个,第三个为:4×3-2=10个,依次类推,则第n个图案中有(4n-2)个阴影小三角形.【考点】规律题三、计算题1.计算:(1)---(-1(2)【答案】-6;12【解析】根据有理数混合运算的计算法则进行计算就可以得到答案.试题解析:(1)原式==(2)原式===9+3=12【考点】有理数的计算2.合并同类项:(1)(2)4x3 - [ -x2 + 2( x3 -x2)]【答案】-;【解析】首先找到同类项,然后将同类项的系数进行相加减作为和的系数,字母和字母的指数不变.试题解析:(1)原式==(2)原式==【考点】合并同类项四、解答题1.先化简,后求值:(1)先化简,后求值:,其中(2)求的值,其中负数的绝对值是2,正数的倒数是它的本身,负数的平方等于9;【答案】-xy、1;-6.【解析】(1)首先根据合并同类项的法则进行合并同类项,然后代入进行求值;(2)根据合并同类项法则进行合并,然后根据题意求出x、y、z的值,从而得出答案.试题解析:(1)原式==当时,原式=(2)原式=由题意,得:代入,得:【考点】化简求值.2.一辆货车从超市出发,向东走了3千米到达小彬家,继续向东走了1.5千米到达小颖家,然后向西走了9.5千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明家,小彬家和小颖家的位置.(2)小明家距小彬家多远?(3)如果货车耗油量是每千米0.02升,那么在上述过程中共耗油多少升?【答案】(1)见解析;(2)8千米;(3)0.38升.【解析】根据数轴的画法以及具体情况得出数轴;根据数轴上两点之间的距离计算公式得出距离;将各数的绝对值进行相加,然后得出答案.试题解析:(1)位置如图所示.(2)小明家距小彬家有:(千米)(3)货车从超市出发,最后回到超市走的路程是:(千米)19×0.02=0.38(升)答:货车从超市出发,最后回到超市共耗油0.38升.【考点】数轴.3.读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为,这里“”是求和符号.例如:“1+3+5+7+9+…+99”(即从1开始的100以内连续奇数的和)可表示为;又如“13+23+33+43+53+63+73+83+93+103”可表示为.同学们,通过对以上材料的阅读,请解答下列问题:(1)“2+4+6+8+10+…+100”(即从2开始的100以内的连续偶数的和)用求和符号可表示为.(2)计算:的值【答案】;50.【解析】首先根据题意得出新定义的含义,然后根据含义得出一般性的规律,最后根据规律进行计算.试题解析:(1)(2)==0+3+8+15+24=50【考点】新定义型4.观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”:①52×= ×25;② ×396=693×.(2)设这类等式左边两位数的十位数字为,个位数字为,且2≤≤9,写出表示“数字对称等式”一般规律的式子(含、),并说明理由.【答案】①275,572; ②63,36;(10a+b)[100b+10(a+b)+a]=[100a+10(a+b)+b](10b+a)【解析】根据题意可得三位数中间的数等于两数的和,根据这一规律然后进行填空,从而得出答案;根据题意得出一般性的规律,然后根据多项式的计算法则进行说明理由.试题解析:(1)①275,572; ②63,36;(2)(10a+b)[100b+10(a+b)+a]=[100a+10(a+b)+b](10b+a)说明:因为:左边=(10a+b)[100b+10(a+b)+a]=11(10a+b)(10b+a)右边=[100a+10(a+b)+b](10b+a)=11(10a+b)(10b+a)所以:左边=右边, 原等式成立.【考点】规律题。

【解析版】烟台市莱州市七年级上期中数学试卷

【解析版】烟台市莱州市七年级上期中数学试卷

2014-2015学年山东省烟台市莱州市七年级(上)期中数学试卷(五四学制)一、选择题:(本题共10个小题,每小题均给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号填在表中)1.以下列各组长度的线段为边,能构成三角形的是()A. 6cm、8cm、15cm B. 7cm、5cm、12cm C. 4cm、6cm、5cm D. 8cm、4cm、3cm2.下列图形中,是轴对称图形的有()A. 1个 B. 2个 C. 3个 D. 4个3.锐角三角形中,任意两个内角之和必大于()A. 120° B. 100° C. 90° D. 60°4.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C. DB=DC D. AB=AC5.下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有() A. 4个 B. 3个 C. 2个 D. 1个6.如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形7.等腰三角形的一个内角为100°,则它的底角为()A. 100° B. 40° C. 100°或40° D.不能确定8.如图,在Rt△ABC中,∠C=90°,它的周长为24,且AB:BC=5:3,则AC的长为()A. 6 B. 8 C.10 D. 129.如图,在△ABC中,D、E分别是AC、BC边上的一点,AD=2DC,BE=EC,若△DBE的面积为1,则△ABC的面积等于()A. 4 B. 6 C. 8 D. 1010.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A. 2π B. 4π C. 8π D. 16π二、填空题(本题共10个小题)11.三角形的三条交于一点,这点叫做三角形的重心.12.正九边形有条对称轴.13.如图是边长为1的正方形网格,点A、B、C、D都在格点上,图中阴影部分的面积等于.14.如图,∠α= .15.如图,在△ABC中,∠C=90°,AD是角平分线,点D到AB的距离为7cm,则CD= .16.如果一个三角形有两个角等于60°,那么这个三角形是三角形.17.在△ABC中,若∠C=∠B=∠A,则△ABC是三角形(按角分类)18.如图,AD与BC交于点O,△AOB≌△COD,A和C,B和D是对应顶点,若BO=5,AO=3,AB=4,则BD2= .19.如图,在△ABC中,∠A=36°,∠B=72°,CD是∠ACD的平分线,则图中共有个等腰三角形.20.如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F在AD上,若△ABC的面积为16cm2,则图中阴影部分的面积为cm2.三、解答题21.尺规作图:如图,已知线段a、b和∠α用尺规作一个三角形,使其两边分别等于a、b,这两边的夹角等于2∠α.要求:不写已知、求作、作法,只画图,保留作图痕迹.22.利用一个点、一条线段、一个正三角形(或等腰三角形)、一个正方形(或长方形)设计一个轴对称图案,并说明你希望表达的含义.23.如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=10,试求△PMN的周长.24.已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm.求BC的长.25.如图,小芳和她的同学汤秋千,秋千AB在静止时,下端B离地面0.6m,秋千荡到AB′的位置时,下端B′距静止位置的水平距离B′D等于2m,距地面1.4m,求秋千AB的长.26.如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:①AC=AD;②CF=DF.2014-2015学年山东省烟台市莱州市七年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题:(本题共10个小题,每小题均给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号填在表中)1.以下列各组长度的线段为边,能构成三角形的是()A. 6cm、8cm、15cm B. 7cm、5cm、12cm C. 4cm、6cm、5cm D. 8cm、4cm、3cm考点:三角形三边关系.分析:根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.解答:解:根据三角形的三边关系,得:A、6+8=14<15,不能组成三角形;B、7+5=12,不能组成三角形;C、4+5=9>6,能够组成三角形;D、4+3=7<8,不能组成三角形.故选:C.点评:此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.2.下列图形中,是轴对称图形的有()A. 1个 B. 2个 C. 3个 D. 4个考点:轴对称图形.分析:根据轴对称图形的概念对各图形判断即可.解答:解:第一个图形是轴对称图形,第二个图形不是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有2个.故选B.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.锐角三角形中,任意两个内角之和必大于()A. 120° B. 100° C. 90° D. 60°考点:三角形内角和定理.分析:根据三角形的内角和是180度和锐角三角形的定义可知:锐角三角形中任意两个锐角的和必大于90°.解答:解:如果两个锐角和不大于90°,那么第三个角将大于等于90°,就不再是锐角三角形.故选C.点评:本题考查的是三角形内角和定理,及锐角三角形的定义,求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.4.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C. DB=DC D. AB=AC考点:全等三角形的判定.分析:先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.本题中C、AB=AC与∠1=∠2、AD=AD组成了SSA是不能由此判定三角形全等的.解答:解:A、加∠ADB=∠ADC,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD(ASA),是正确选法;B、加∠B=∠C∵∠1=∠2,AD=AD,∠B=∠C,∴△ABD≌△ACD(AAS),是正确选法;C、加DB=DC,满足SSA,不能得出△ABD≌△ACD,是错误选法;D、加AB=AC,∵∠1=∠2,AD=AD,AB=AC,∴△ABD≌△ACD(SAS),是正确选法.故选C.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.5.下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有() A. 4个 B. 3个 C. 2个 D. 1个考点:全等图形.专题:常规题型.分析:根据能够完全重合的两个图形叫做全等形即可作出判断.解答:解:①面积相等的两个三角形不一定全等,故本选项错误;②两个等边三角形一定是相似图形,但不一定全等,故本选项错误;③如果两个三角形全等,它们的形状和大小一定都相同,符合全等形的定义,正确;④边数相同的图形不一定能互相重合,故本选项错误;综上可得错误的说法有①②④共3个.故选B.点评:本题考查全等形的概念,属于基础题,掌握全等形的定义是关键.6.如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形考点:三角形的角平分线、中线和高.分析:根据高的概念,知三角形的三条高所在直线的交点在外部的三角形是钝角三角形.钝角三角形的三条高所在的直线的交点在三角形的外部;锐角三角形的三条高的交点在三角形的内部;直角三角形的三条高的交点是三角形的直角顶点.解答:解:一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是钝角三角形.故选C.点评:通过三角形的形状可以判断三角形高线的位置,反之,通过三条高线交点的位置可以判断三角形的形状.7.等腰三角形的一个内角为100°,则它的底角为()A. 100° B. 40° C. 100°或40° D.不能确定考点:等腰三角形的性质.专题:计算题.分析:由等腰三角形的两底角相等可得,内角为100°的角只能是顶角,解答出即可;解答:解:根据等腰三角形的性质得,底角度数为:(180°﹣100°)÷2=40°;故选B.点评:本题主要考查等腰三角形的性质,注意等腰三角形的底角必为锐角.8.如图,在Rt△ABC中,∠C=90°,它的周长为24,且AB:BC=5:3,则AC的长为()A. 6 B. 8 C. 10 D. 12考点:勾股定理.分析:设AB=5x,BC=3x,求出AC=4x,然后根据周长为24,列出等式5x+3x+4x=24,求出x的值,然后得到AC的长.解答:解:设AB=5x,BC=3x,则AC==4x,于是5x+3x+4x=24,解得x=2,故AC=4×2=8,故选B.点评:本题考查了勾股定理,熟悉勾股定理和三角形的面积是解题的关键.9.如图,在△ABC中,D、E分别是AC、BC边上的一点,AD=2DC,BE=EC,若△DBE的面积为1,则△ABC的面积等于()A. 4 B. 6 C. 8 D. 10考点:三角形的面积.分析:如图,作辅助线;首先证明AM=3DN,此为解题的关键性结论;运用运用三角形的面积公式,即可解决问题.解答:解:如图,过点A作AM⊥BC,过点D作DN⊥BC;则AM∥DN;∴△AMC∽△DNC,∴,而AD=2DC,∴AM=3DN(设DN为λ);设BE=EC=μ,∴=6,而S△BED=1,∴S△ABC=6,故选B.点评:该题主要考查了三角形的面积公式、相似三角形的判定及其性质等几何知识点及其应用问题;解题的关键是作辅助线,灵活运用三角形的面积公式来分析、判断、解答.10.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A. 2π B. 4π C. 8π D. 16π考点:勾股定理.分析:根据半圆面积公式结合勾股定理,知S1+S2等于以斜边为直径的半圆面积.解答:解:S1=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=2π.故选A.点评:此题根据半圆的面积公式以及勾股定理证明:以直角三角形的两条直角边为直径的半圆面积和等于以斜边为直径的半圆面积,重在验证勾股定理.二、填空题(本题共10个小题)11.三角形的三条中线交于一点,这点叫做三角形的重心.考点:三角形的重心.分析:运用三角形重心的定义,即可解决问题.解答:解:三角形的三条中线交于一点,这点叫做三角形的重心.故答案为:中线.点评:该题主要考查了三角形重心的定义问题.应牢固掌握三角形重心的定义,这是解决有关三角形重心问题的基础.12.正九边形有9 条对称轴.考点:轴对称的性质.分析:根据正九边形的轴对称性解答即可.解答:解:正九边形有9条对称轴.故答案为:9.点评:本题考查了轴对称的性质,熟练掌握正多边形的对称轴的条数是解题的关键.13.如图是边长为1的正方形网格,点A、B、C、D都在格点上,图中阴影部分的面积等于15 .考点:三角形的面积.专题:网格型.分析:如图,观察图形容易发现:直接求出阴影部分的面积比较困难,故将其转化为:求矩形MNPQ的面积减去四个小三角形的面积之差,即可解决问题.解答:解:如图,S ABCD=S MNPQ﹣S△ABM﹣S△BCQ﹣S△CDP﹣S△ADN=6×5﹣=30﹣15=15.故答案为15.点评:该题主要考查了三角形的面积公式及其应用问题;解题的方法是牢固掌握三角形的面积公式,这是灵活运用的基础和关键.14.如图,∠α= 17°.考点:三角形内角和定理;对顶角、邻补角.分析:先根据三角形内角和定理得出关于α的方程,求出α的值即可.解答:解:∵三角形内角和是180°,∴40°+32°=55°+α,解得α=17°.故答案为:17°.点评:本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.15.如图,在△ABC中,∠C=90°,AD是角平分线,点D到AB的距离为7cm,则C D= 7cm .考点:角平分线的性质.分析:直接根据角平分线的性质即可得出结论.解答:解:∵AD是∠BAC的平分线,BC⊥AC,点D到AB的距离为7cm,∴CD=7cm.故答案为:7cm.点评:本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.16.如果一个三角形有两个角等于60°,那么这个三角形是等边三角形.考点:三角形内角和定理.分析:先根据三角形的内角和定理求出第三角的度数,然后即可判断三角形的形状.解答:解:∵一个三角形有两个角等于60°,且三角之和为180°,∴第三个角的度数=180°﹣60°﹣60°=60°,∴这个三角形是等边三角形.故答案为:等边.点评:此题考查了三角形内角和定理,及等边三角形的判定,解题的关键是:根据三角形的内角和定理求出第三角的度数.17.在△ABC中,若∠C=∠B=∠A,则△ABC是直角三角形(按角分类)考点:三角形内角和定理.分析:设∠C=x°,由∠C=∠B=∠A,可得:∠B=2∠C=2x,∠A=3∠C=3x,然后由三角形内角和定理即可求出∠A、∠B、∠C的度数,即可判断三角形的形状.解答:解:∠C=x°,∵∠C=∠B=∠A,∴∠B=2∠C=2x,∠A=3∠C=3x,∵∠A+∠B+∠C=180°,即:3x+2x+x=180°,解得:x=30°,∴∠C=30°,∠A=3∠C=90°,∠B=2∠C=60°,∴此三角形是直角三角形.故答案为:直角.点评:此题考查了三角形内角和定理及直角三角形的判定,解题的关键是:由∠C=∠B=∠A,得到:∠B=2∠C,∠A=3∠C.18.如图,AD与BC交于点O,△AOB≌△COD,A和C,B和D是对应顶点,若BO=5,AO=3,AB=4,则BD2= 80 .考点:全等三角形的性质.分析:利用勾股定理逆定理求出∠A=90°,再根据全等三角形对应边相等可得BO=DO,然后求出AD,再利用勾股定理列式计算即可得解.解答:解:∵AB2+AO2=42+32=25,BO2=52=25,∴AB2+AO2=BO2,∴∠A=90°,∵△AOB≌△COD,∴BO=DO=5,∵BO=5,AO=3,∴AD=AO+DO=3+5=8,在Rt△ABD中,BD2=AB2+AD2=42+82=80.故答案为:80.点评:本题考查了全等三角形的性质,勾股定理逆定理,勾股定理,熟记性质与定理并求出∠A=90°是解题的关键.19.如图,在△ABC中,∠A=36°,∠B=72°,CD是∠ACD的平分线,则图中共有 3 个等腰三角形.考点:等腰三角形的判定.分析:根据三角形的内角和定理求出∠ACB,根据角平分线求出∠ACD=∠BCD=36°,求出∠BDC=72°,再根据等腰三角形的判定得出即可.解答:解:有3个等腰三角形,理由是:∵在△ABC中,∠A=36°,∠B=72°,∴∠ACB=180°﹣∠A﹣∠B=72°,∴∠ACB=∠B,∴△ABC是等腰三角形,∵CD是∠ACD的平分线,∴∠ACD=∠BCD=∠ACB=36°,∴∠A=∠ACD=36°,∴△ACD是等腰三角形,∵∠BCD=36°,∠B=72°,∴∠CDB=180°﹣36°﹣72°=72°,∴∠B=∠CDB,∴△BCD是等腰三角形,故答案为:3.点评:本题考查了三角形的内角和定理,等腰三角形的判定的应用,解此题的关键是能求出各个角的度数,注意:有两角相等的三角形是等腰三角形.20.如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F在AD上,若△ABC的面积为16cm2,则图中阴影部分的面积为8 cm2.考点:轴对称的性质;等腰三角形的性质.分析:根据等腰三角形的性质由AB=AC,AD⊥DC得出BD=CD,利用同底等高得到S△BEF=S△CEF,则S阴影部分=S△ABD=S△ABC,利用△ABC的面积为16cm2即可得到阴影部分的面积.解答:解:∵AB=AC,AD⊥DC,∴BD=CD,∴S△BEF=S△CEF,∴S阴影部分=S△ABD=S△ABC=×16=8(cm2).故答案为:8.点评:本题考查了等腰三角形的性质:等腰三角形顶角的角平分线垂直平分底边.也考查了三角形的面积公式.三、解答题21.尺规作图:如图,已知线段a、b和∠α用尺规作一个三角形,使其两边分别等于a、b,这两边的夹角等于2∠α.要求:不写已知、求作、作法,只画图,保留作图痕迹.考点:作图—复杂作图.分析:作∠A BC=2α,截取BC=a,AB=b,进而求出即可.解答:解:如图所示:△ABC即为所求.点评:此题主要考查了复杂作图,正确掌握作一角等于已知角的作法是解题关键.22.利用一个点、一条线段、一个正三角形(或等腰三角形)、一个正方形(或长方形)设计一个轴对称图案,并说明你希望表达的含义.考点:利用轴对称设计图案.分析:根据轴对称的性质画出图形即可.解答:解:如图所示.表示一个垃圾箱.点评:本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.23.如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=10,试求△PMN的周长.考点:轴对称的性质.分析:根据轴对称的性质可得PM=P1M,PN=P2N,再求出△PMN的周长=P1P2,从而得解.解答:解:∵P点关于OA、OB的对称点P1,P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN,=P1M+MN+P2N,=P1P2,∵P1P2=10,∴△PMN的周长=10.点评:本题考查了轴对称的性质,熟记对称轴上的任何一点到两个对应点之间的距离相等是解题的关键.24.已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm.求BC的长.考点:含30度角的直角三角形;三角形内角和定理;等腰三角形的性质.分析:等腰△ABC中,根据∠B=∠C=30°,∠BAD=90°;易证得∠DAC=∠C=30°,即CD=AD=4cm.Rt△ABD中,根据30°角所对直角边等于斜边的一半,可求得BD=2AD=8cm;由此可求得BC的长.解答:解:∵AB=AC∴∠B=∠C=30°∵AB⊥AD∴BD=2AD=2×4=8(cm)∠B+∠ADB=90°,∴∠ADB=60°∵∠ADB=∠DAC+∠C=60°∴∠DAC=30°∴∠DAC=∠C∴DC=AD=4cm∴BC=BD+DC=8+4=12(cm).点评:主要考查:等腰三角形的性质、三角形内角和定理、直角三角形的性质.25.如图,小芳和她的同学汤秋千,秋千AB在静止时,下端B离地面0.6m,秋千荡到AB′的位置时,下端B′距静止位置的水平距离B′D等于2m,距地面1.4m,求秋千AB的长.考点:勾股定理的应用.分析:利用已知表示出AD的长,再利用勾股定理得出即可.解答:解:设AB=xm,则AB′=xm,由题意可得出:DB=1.4﹣0.6=0.8(m),则AD=AB﹣DB=x﹣0.8,在Rt△AB′D中,AD2+B′D2=AB′2,则(x﹣0.8)2+22=x2解得:x=2.9.答:秋千AB的长为2.9m.点评:本题考查了勾股定理的应用,善于观察题目的信息是解题以及学好数学的关键.26.如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:①AC=AD;②CF=DF.考点:等腰三角形的判定;全等三角形的判定与性质.专题:证明题.分析:由已知可利用SAS判定△ABC≌△AED,根据全等三角形的对应边相等可得到AC=AD,即△ACD是等腰三角形,已知AF⊥CD,则根据等腰三角形三线合一的性质即可推出CF=DF.解答:证明:①∵AB=AE,BC=ED,∠B=∠E,∴△ABC≌△AED(SAS),∴AC=AD,②∵AF⊥CD,AC=AD,∴CF=FD(三线合一性质).点评:此题主要考查等腰三角形的判定及全等三角形的判定与性质的综合运用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年山东省烟台市莱阳市七年级(上)期中数学试卷一、选择题:本大题共12小题,36个评价点。

每小题均给出标号为A、B、C、D四个备选答案,其中只有一个是正确的,请将正确答案的标号填在下列表中相应的位置上。

1.(3分)下列几何体中,属于棱柱的是()A.①③B.①C.①③⑥D.①⑥2.(3分)用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是()A.正方形B.圆锥C.圆柱D.球3.(3分)|﹣|的相反数是()A.B.﹣ C.3 D.﹣34.(3分)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.5.(3分)如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A.相对B.相邻C.相隔D.重合6.(3分)如图,矩形绕它的一条边MN所在的直线旋转一周形成的几何体是()A. B.C.D.7.(3分)如图下面的图形中,是三棱柱的侧面展开图的为()A.B.C.D.8.(3分)如图,将直角三角形绕直角边AB旋转一周,所得的几何体从正面看到的图形是()A.B.C.D.9.(3分)4月20日《情系玉树大爱无疆──抗震救灾大型募捐活动》在中央电视台现场直播,截至当晚11时30分特别节目结束,共募集善款21.75亿元.将21.75亿元用科学记数法表示(保留两位有效数字)为()A.21×108元B.22×108元C.2.2×109元D.2.1×109元10.(3分)有理数a、b在数轴上的位置如图所示,则下列结论正确的是()A.a+b>0 B.a﹣b<0 C.|b|>|a|D.ab<011.(3分)下列各组数中,数值相等的是()A .和B .﹣12013和(﹣1)2015C .﹣32和(﹣3)2D .﹣和 12.(3分)小明做了以下几道计算题:①﹣12014=1;②(﹣2)2=﹣8;③﹣22÷(﹣2)2=1;④﹣+=﹣;⑤3×=﹣32.5;⑥﹣5+=﹣25.请你帮他检查一下,他一共做对了( ) A .2道题 B .3道题 C .4道题 D .5道题二、填空题:本题共18个评价点。

13.(3分)﹣|﹣3|的倒数是 .14.(3分)近似数42.3万是精确到 位.15.(3分)数轴上离开原点2个单位长的点所表示的数是 .16.(3分)若|a |=3,|b |=5,且a <b ,则a +b= .17.(3分)由n 个相同的小正方体组成的几何体,从正面和上面看到的几何体的形状如图所示,则n 的最小值是 .18.(3分)a 为有理数,定义运算符号△:当a >﹣2时,△a=﹣a ;当a <﹣2时,△a=a ;当a=﹣2时,△a=0.根据这种运算,则△[4+△(2﹣5)]的值为 .三、解答题:要写出必要的文字说明、证明过程或演算步骤,共66个评价点。

19.(6分)画一条数轴,在数轴上表示﹣4,3.5,0,2,﹣1,并用“<”把它们连接起来.20.(6分)请把下列各数填入相应的集合中:﹣(﹣),﹣4,﹣|﹣9|,,|0|,|﹣2013|.正数集合:{ …};整数集合:{ …}.21.(9分)下图的几何体是由7个相同的立方块搭成的.请画出它从正面、左面、上面看到的形状图.22.(8分)如图,这是一个由若干个同样大小的小立方体搭成的几何体从上面看到的形状图,小正方形中的数字表示在该位置小立方体的个数,请你分别画出从正面、左面看到的这个几何体的形状图.23.(7分)一个粮库至8月31日有存粮122吨,从9月1日至9月7日,该粮库粮食进出情况如下表(记进库为正):(1)至9月7日运粮结束时,仓库内存粮为多少吨?(2)9月1日至9月7日平均每天进出粮食多少吨?(精确到0.1)24.(18分)计算题:(1)8﹣(﹣15)+(﹣2)×5(2)﹣18﹣32(3)3+(﹣0.5)+(﹣5)+2.75(4)(﹣4)2×(5)﹣12﹣()×24(6)(﹣2)3+[2×(﹣2)]﹣24×(﹣)25.(12分)在一条南北方向的公路上,有一辆出租车停在A地,乘车的第一位客人向南走3千米下车;该车继续向南开,又走了2千米后,上来第二位客人,第二位客人乘车向北走7千米下车,此时恰好有第三位客人上车,先向北走3千米,又调头向南走,结果下车时出租车恰好到了A地.(1)如果以A地为原点,向北方向为正方向,用1个单位表示1千米,在数轴上表示出第一位客人和第二位客人下车的位置;(2)第三位客人乘车走了多少千米?(3)规定出租车的收费标准是4千米内付7元,超过4千米的部分每千米加付1元(不足1千米按1千米算),那么该出租车司机在这三位客人中共收了多少钱?2015-2016学年山东省烟台市莱阳市七年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,36个评价点。

每小题均给出标号为A、B、C、D四个备选答案,其中只有一个是正确的,请将正确答案的标号填在下列表中相应的位置上。

1.(3分)下列几何体中,属于棱柱的是()A.①③B.①C.①③⑥D.①⑥【解答】解:①棱柱;②圆柱;③棱柱;④棱锥;⑤圆锥;⑥棱柱.故选:C.2.(3分)用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是()A.正方形B.圆锥C.圆柱D.球【解答】解:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,因为截面与正方体各面的交线为直线,故此截面的形状不可能是圆.故选:A.3.(3分)|﹣|的相反数是()A.B.﹣ C.3 D.﹣3【解答】解:∵|﹣|=,∴的相反数是﹣.故选:B.4.(3分)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.【解答】解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C.5.(3分)如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A.相对B.相邻C.相隔D.重合【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“国”是相对面,“我”与“祖”是相对面,“爱”与“的”是相对面.故原正方体上两个“我”字所在面的位置关系是相邻.故选:B.6.(3分)如图,矩形绕它的一条边MN所在的直线旋转一周形成的几何体是()A. B.C.D.【解答】解:矩形绕一边所在的直线旋转一周得到的是圆柱.故选:C.7.(3分)如图下面的图形中,是三棱柱的侧面展开图的为()A.B.C.D.【解答】解:三棱柱的侧面展开图是一个三个小长方形组合成的矩形.故选:A.8.(3分)如图,将直角三角形绕直角边AB旋转一周,所得的几何体从正面看到的图形是()A.B.C.D.【解答】解:将直角三角形绕直角边AB旋转一周,所得的几何体是圆锥,从正面看到的图形是等腰三角形,故选:D.9.(3分)4月20日《情系玉树大爱无疆──抗震救灾大型募捐活动》在中央电视台现场直播,截至当晚11时30分特别节目结束,共募集善款21.75亿元.将21.75亿元用科学记数法表示(保留两位有效数字)为()A.21×108元B.22×108元C.2.2×109元D.2.1×109元【解答】解:21.75亿=2 175 000 000=2.175×109≈2.2×109.故选:C.10.(3分)有理数a、b在数轴上的位置如图所示,则下列结论正确的是()A.a+b>0 B.a﹣b<0 C.|b|>|a|D.ab<0【解答】解:由点在数轴上的位置可知:a<0,b<0,|a|>|b|,A、∵a<0,b<0,|,∴a+b<0,故A错误;B、∵a<b,∴a﹣b<0,故B正确;C、|a|>|b|,故C错误;D、ab>0,故D错误.故选:B.11.(3分)下列各组数中,数值相等的是()A.和B.﹣12013和(﹣1)2015C.﹣32和(﹣3)2D.﹣和【解答】解:A、=,()2=,数值不相等;B、﹣12013=(﹣1)2015=﹣1,数值相等;C、﹣32=﹣9,(﹣3)2=9,数值不相等;D、﹣=﹣,=,数值不相等.故选:B.12.(3分)小明做了以下几道计算题:①﹣12014=1;②(﹣2)2=﹣8;③﹣22÷(﹣2)2=1;④﹣+=﹣;⑤3×=﹣32.5;⑥﹣5+=﹣25.请你帮他检查一下,他一共做对了()A.2道题B.3道题C.4道题D.5道题【解答】解:①﹣12014=﹣1,原题计算错误;②(﹣2)2=,原题计算错误;③﹣22÷(﹣2)2=﹣4÷4=﹣1,原题计算错误;④﹣+=﹣,原题计算正确;⑤原式=﹣3.25×(3+6)=﹣32.5,原题计算正确;⑥﹣5+=﹣5+=﹣,原题计算错误.正确的有2道.故选:A.二、填空题:本题共18个评价点。

13.(3分)﹣|﹣3|的倒数是﹣.【解答】解:﹣|﹣3|=﹣3,则﹣|﹣3|的倒数是﹣,故答案为:﹣14.(3分)近似数42.3万是精确到千位.【解答】解:42.3万是精确到千位.故答案为千.15.(3分)数轴上离开原点2个单位长的点所表示的数是±2.【解答】解:数轴上离开原点2个单位长的点所表示的数是±2,故答案为:±216.(3分)若|a|=3,|b|=5,且a<b,则a+b=2或8.【解答】解:∵|a|=3,|b|=5,∴a=±3,b=±5.∵a<b,∴当a=3时,b=5,a+b=3+5=8,当a=﹣3时,b=5,a+b=﹣3+5=2.故本题的答案是2或8.17.(3分)由n个相同的小正方体组成的几何体,从正面和上面看到的几何体的形状如图所示,则n的最小值是12.【解答】解:从俯视图中可以看出最底层小正方体的个数为7,从主视图可以看出每一层小正方体的层数为3层和中间一层至少3个,最上面至少2个,故n的最小值是:7+3+2=12.故答案为:12.18.(3分)a为有理数,定义运算符号△:当a>﹣2时,△a=﹣a;当a<﹣2时,△a=a;当a=﹣2时,△a=0.根据这种运算,则△[4+△(2﹣5)]的值为﹣1.【解答】解:根据题中的新定义得:△(2﹣5)=△(﹣3)=﹣3,则原式=△(4﹣3)=△1=﹣1,故答案为:﹣1三、解答题:要写出必要的文字说明、证明过程或演算步骤,共66个评价点。

19.(6分)画一条数轴,在数轴上表示﹣4,3.5,0,2,﹣1,并用“<”把它们连接起来.【解答】解:如图所示,,故﹣4<﹣1<0<2<3.5.20.(6分)请把下列各数填入相应的集合中:﹣(﹣),﹣4,﹣|﹣9|,,|0|,|﹣2013|.正数集合:{ ﹣(﹣),,|﹣2013| …};整数集合:{ ﹣4,﹣|﹣9|,|0|,|﹣2013| …}.【解答】解:正数集合:{﹣(﹣),,|﹣2013|.…};整数集合:{﹣4,﹣|﹣9|,|0|,|﹣2013|.…}.故答案为:﹣(﹣),,|﹣2013|;﹣4,﹣|﹣9|,|0|,|﹣2013|.21.(9分)下图的几何体是由7个相同的立方块搭成的.请画出它从正面、左面、上面看到的形状图.【解答】解:如图所示:22.(8分)如图,这是一个由若干个同样大小的小立方体搭成的几何体从上面看到的形状图,小正方形中的数字表示在该位置小立方体的个数,请你分别画出从正面、左面看到的这个几何体的形状图.【解答】解:如图所示:23.(7分)一个粮库至8月31日有存粮122吨,从9月1日至9月7日,该粮库粮食进出情况如下表(记进库为正):(1)至9月7日运粮结束时,仓库内存粮为多少吨?(2)9月1日至9月7日平均每天进出粮食多少吨?(精确到0.1)【解答】解:(1)122+30﹣11﹣21+41﹣28+0+49=182(吨),答:至11月7日运粮结束时,仓库内存粮为182吨;(2)(30+11+21+41+28+0+49)÷7=180÷7≈25.7(吨)答:9月1日至9月7日平均每天进出粮食25.7吨.24.(18分)计算题:(1)8﹣(﹣15)+(﹣2)×5(2)﹣18﹣32(3)3+(﹣0.5)+(﹣5)+2.75(4)(﹣4)2×(5)﹣12﹣()×24(6)(﹣2)3+[2×(﹣2)]﹣24×(﹣)【解答】解:(1)原式=8+15﹣10=13;(2)原式=﹣18+4=﹣14;(3)原式=(3+2.75)+(﹣0.5﹣5)=6﹣6=0;(4)原式=16×(+)﹣3=12+10﹣3=19;(5)原式=﹣1﹣8+6﹣3=﹣6;(6)原式=﹣8﹣4+10﹣21=﹣23.25.(12分)在一条南北方向的公路上,有一辆出租车停在A地,乘车的第一位客人向南走3千米下车;该车继续向南开,又走了2千米后,上来第二位客人,第二位客人乘车向北走7千米下车,此时恰好有第三位客人上车,先向北走3千米,又调头向南走,结果下车时出租车恰好到了A地.(1)如果以A地为原点,向北方向为正方向,用1个单位表示1千米,在数轴上表示出第一位客人和第二位客人下车的位置;(2)第三位客人乘车走了多少千米?(3)规定出租车的收费标准是4千米内付7元,超过4千米的部分每千米加付1元(不足1千米按1千米算),那么该出租车司机在这三位客人中共收了多少钱?【解答】解:(1)如图所示,第一位客人在点B处下车,第二位客人在点C处下车;(2)3+(2+3)=3+5=8千米;(3)第一位客人共走3千米,付7元,第二位客人共走7千米,付7+1×(7﹣4)=7+3=10元,第三位客人共走8千米,付7+1×(8﹣4)=11元,7+10+11=28元,∴该出租车司机在这三位客人中共收了28元钱.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

相关文档
最新文档