2018年北海市中考数学考前押题卷(1)附详细解答

合集下载

2018年中考数学押题试卷及答案(共五套)

2018年中考数学押题试卷及答案(共五套)

2018年中考数学押题试卷及答案(共五套)2018年中考数学押题试卷及答案(一)一、选择题(本部分共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的)1.(3分)下列四个数中,绝对值最小的数是()A.﹣2 B.0 C.1 D.72.(3分)据统计2017年5月深圳文博会期间,总参观人数达到了 6 660 000人次,将6 660 000用科学记数法表示应为()A.666×104B.6.66×105C.6.66×106D.6.66×1073.(3分)下列运算正确的是()A.3a+2a=5a2B.a6÷a2=a3C.(﹣3a3)2=9a6D.(a+2)2=a2+44.(3分)一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是()A.3 B.4 C.5 D.65.(3分)下列图形中,是中心对称图形的是()A.B.C. D.6.(3分)某小组同学在一周内阅读课外科普读物与人数情况如表所示:2 34劳动时间(小时)人数 3 21下列关于“课外科普读物”这组数据叙述正确的是()A.中位数是 3 B.众数是4 C.平均数是 5 D.方差是 67.(3分)已知直线a∥b,将一副三角板按如图所示放置在两条平行线之间,则∠1的度数是()A.45°B.60°C.75°D.80°8.(3分)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元9.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A.a<0 B.c>0 C.a+b+c>0 D.b2﹣4ac<010.(3分)如图,在△ABC中,AB>AC,分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD,若AB=7,AC=5,则△ACD的周长为()A.2 B.12 C.17 D.1911.(3分)如图,半径为1的⊙O与正五边形ABCDE相切于点A、C,则劣弧的长度为()A.πB.πC.πD.π12.(3分)如图,矩形纸片ABCD中,G、F分别为AD、BC的中点,将纸片折叠,使D点落在GF上,得到△HAE,再过H点折叠纸片,使B点落在直线AB上,折痕为PQ.连接AF、EF,已知HE=HF,下列结论:①△MEH为等边三角形;②AE ⊥EF;③△PHE∽△HAE;④=,其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④二、填空题(本题共4个小题,每小题3分,共12分)13.(3分)分解因式:a3b﹣9ab=.14.(3分)如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为.15.(3分)如图时小强用铜币摆放的4个图案,根据摆放图案的规律,第19个图案需要个铜币16.(3分)如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴上的正半轴上,BC=2AC,点B、C在反比例函数y=(x>0)的图象上,则△OAB的面积为.三、解答题(本题共7小题,其中第17小题5分,第18小题6分,第19小题7分,第20小题8分,第21小题8分,第22小题9分,第23小题9分,共52分)17.(5分)计算:()﹣1﹣|﹣1+|+2cos45°+(﹣1﹣)0.18.(6分)先化简:(2x﹣)÷,然后从﹣2≤x≤2中选择一个适当的整数作为x的值代入求值.19.(7分)为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题:(1)本次共调查了名市民;(2)补全条形统计图;(3)该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数.20.(8分)一轮船在P处测得灯塔A在正北方向,灯塔B在南偏东30°方向,轮船向正东航行了900m,到达Q处,测得A位于北偏西60°方向,B位于南偏西30°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A、B间的距离(结果保留根号).21.(8分)某科技有限公司准备购进A和B两种机器人来搬运化工材料,已知购进A种机器人2个和B种机器人3个共需16万元,购进A种机器人3个和B种机器人2个共需14万元,请解答下列问题:(1)求A、B两种机器人每个的进价;(2)已知该公司购买B种机器人的个数比购买A种机器人的个数的2倍多4个,如果需要购买A、B两种机器人的总个数不少于28个,且该公司购买的A、B两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?22.(9分)如图1,在正方形ABCD中,P在对角线AC上,E在AC的延长线上,PB=PM,DE=EF.(1)求证:∠CDE=∠F;(2)若AB=5,CM=1,求PB的长;(3)如图2,若BF=10,△QCF是以CF为底的等腰三角形,连接DQ,试求△CDQ 的最大面积.23.(9分)如图所示,在平面直角坐标系中,已知点R(1,0),点K(4,4),直线y=﹣x+b过点K,分别交x轴、y轴于U、V两点,以点R为圆心,以RK 为半径作⊙R,⊙R交x轴于A.(1)若二次函数的图象经过点A、B(﹣2,0)、C(0,﹣8),求二次函数的解析式.(2)判断直线UV与⊙R的位置关系,并说明理由;(3)若动点P、Q同时从A点都以相同的速度分别沿AB、AC边运动,当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A、E、Q为顶点的三角形是等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本部分共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的)1.(3分)下列四个数中,绝对值最小的数是()A.﹣2 B.0 C.1 D.7【解答】解:绝对值最小的数是0,故选:B.2.(3分)据统计2017年5月深圳文博会期间,总参观人数达到了 6 660 000人次,将6 660 000用科学记数法表示应为()A.666×104B.6.66×105C.6.66×106D.6.66×107【解答】解:将 6 660 000用科学记数法表示应为 6.66×106,故选:C.3.(3分)下列运算正确的是()A.3a+2a=5a2B.a6÷a2=a3C.(﹣3a3)2=9a6D.(a+2)2=a2+4【解答】解:A、3a+2a=5a,故A错误;B、a6÷a2=a4,故B错误;C、(﹣3a3)2=9a6,故C正确;D、(a+2)2=a2+4a+4,故D错误.故选:C.4.(3分)一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是()A.3 B.4 C.5 D.6【解答】解:由题中所给出的俯视图知,底层有3个小正方体;由左视图可知,第2层有1个小正方体.故则搭成这个几何体的小正方体的个数是3+1=4个.故选:B.5.(3分)下列图形中,是中心对称图形的是()A.B.C. D.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选C.6.(3分)某小组同学在一周内阅读课外科普读物与人数情况如表所示:劳动时间(小2 34时)人数 3 21下列关于“课外科普读物”这组数据叙述正确的是()A.中位数是 3 B.众数是4 C.平均数是 5 D.方差是 6【解答】解:由题意得,中位数是 2.5,平均数是=,众数是2,方差是=6,故选D.7.(3分)已知直线a∥b,将一副三角板按如图所示放置在两条平行线之间,则∠1的度数是()A.45°B.60°C.75°D.80°【解答】解:延长AB交直线a于C.∵a∥b,∴∠1=∠2,∵∠2=∠CDB+∠CBD,∠CDB=30°,∠CBD=45°,∴∠1=∠2=75°,故选C.8.(3分)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元【解答】解:设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=80.∴该商品的进价为80元/件.故选C.9.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A.a<0 B.c>0 C.a+b+c>0 D.b2﹣4ac<0【解答】解:∵由图象知,开口向上,∴a>0,故A错误;由图象知,与y轴的交点在负半轴,∴c<0,故B错误;令x=1,则a+b+c>0,故C正确;∵抛物线与x轴两个交点,∴△>0,故D错误;故选C.10.(3分)如图,在△ABC中,AB>AC,分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD,若AB=7,AC=5,则△ACD的周长为()A.2 B.12 C.17 D.19【解答】解:由题意知MN是BC的中垂线,∴DB=DC,则△ACD的周长=AC+AD+DC=AC+AD+DB=AC+AB=7+5=12,故选:B11.(3分)如图,半径为1的⊙O与正五边形ABCDE相切于点A、C,则劣弧的长度为()A.πB.πC.πD.π【解答】解:因为正五边形ABCDE的内角和是(5﹣2)×180=540°,则正五边形ABCDE的一个内角==108°;连接OA、OB、OC,∵圆O与正五边形ABCDE相切于点A、C,∴∠OAE=∠OCD=90°,∴∠OAB=∠OCB=108°﹣90°=18°,∴∠AOC=144°所以劣弧AC的长度为=π.故选C.12.(3分)如图,矩形纸片ABCD中,G、F分别为AD、BC的中点,将纸片折叠,使D点落在GF上,得到△HAE,再过H点折叠纸片,使B点落在直线AB上,折痕为PQ.连接AF、EF,已知HE=HF,下列结论:①△MEH为等边三角形;②AE ⊥EF;③△PHE∽△HAE;④=,其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④【解答】解:∵矩形纸片ABCD中,G、F分别为AD、BC的中点,∴GF⊥AD,由折叠可得,AH=AD=2AG,∠AHE=∠D=90°,∴∠AHG=30°,∠EHM=90°﹣30°=60°,∴∠HAG=60°=∠AED=∠MEH,∴△EHM中,∠EMH=60°=∠EHM=∠MEH,∴△MEH为等边三角形,故①正确;∵∠EHM=60°,HE=HF,∴∠HEF=30°,∴∠FEM=60°+30°=90°,即AE⊥EF,故②正确;∵∠PEH=∠MHE=60°=∠HEA,∠EPH=∠EHA=90°,∴△PHE∽△HAE,故③正确;设AD=2=AH,则AG=1,∴Rt△AGH中,GH=AG=,Rt△AEH中,EH===HF,∴GF==AB,∴==,故④正确,综上所述,正确的结论是①②③④,故选:D.二、填空题(本题共4个小题,每小题3分,共12分)13.(3分)分解因式:a3b﹣9ab=ab(a+3)(a﹣3).【解答】解:a3b﹣9ab=a(a2﹣9)=ab(a+3)(a﹣3).故答案为:ab(a+3)(a﹣3).14.(3分)如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为.【解答】解:∵四边形ABCD为正方形,点O是对角线的交点,∴∠MBO=∠NCO=45°,OB=OC,∠BOC=90°,∵∠MON=90°,∴∠MOB+∠BON=90°,∠BON+∠NOC=90°,∴∠MOB=∠NOC.在△MOB和△NOC中,有,∴△MOB≌△NOC(ASA).同理可得:△AOM≌△BON.∴S阴影=S△BOC=S正方形ABCD.∴蚂蚁停留在阴影区域的概率P==.故答案为:.15.(3分)如图时小强用铜币摆放的4个图案,根据摆放图案的规律,第19个图案需要192个铜币【解答】解:n=1时,铜币个数=2+1=3;当n=2时,铜币个数=2+1+2=5;当n=3时,铜币个数=2+1+2+3=9;当n=4时,铜币个数=2+1+2+3+4=12;…第n个图案,铜币个数=2+1+2+3+4+…+n=n(n+1)+2.当n=19时,n(n+1)+2=×19×20+2=192,故答案为:192.16.(3分)如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴上的正半轴上,BC=2AC,点B、C在反比例函数y=(x>0)的图象上,则△OAB的面积为6.【解答】解:如图,作CD⊥OA于点D,作BE⊥OA于点E,设点C(t,),∵CD∥BE,∴△ACD∽△ABE,则===,∴BE=3CD=,当y=时,x=,即点B(,),∴DE=t﹣=t,∵CD∥BE,且=,∴=,∴AD=DE=,则OA=OD+AD=t+=t,∴S△OAB=×OA?BE=?t?=6,故答案为:6.三、解答题(本题共7小题,其中第17小题5分,第18小题6分,第19小题7分,第20小题8分,第21小题8分,第22小题9分,第23小题9分,共52分)17.(5分)计算:()﹣1﹣|﹣1+|+2cos45°+(﹣1﹣)0.【解答】解:()﹣1﹣|﹣1+|+2cos45°+(﹣1﹣)0=2+1﹣+2×+1=2+1﹣++1=4.18.(6分)先化简:(2x﹣)÷,然后从﹣2≤x≤2中选择一个适当的整数作为x的值代入求值.【解答】解:(2x﹣)÷===,当x=1时,原式=.19.(7分)为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题:(1)本次共调查了2000名市民;(2)补全条形统计图;(3)该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数.【解答】解:(1)本次共调查的人数为:800÷40%=2000,故答案为:2000.(2)晚饭后选择其它的人数为:2000×28%=560,晚饭后选择锻炼的人数为:2000﹣800﹣240﹣560=400.将条形统计图补充完整,如图所示.(3)晚饭后选择锻炼的人数所占的比例为:400÷2000=20%,该市市民晚饭后1小时内锻炼的人数为:480×20%=96(万).答:该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数为96万.20.(8分)一轮船在P处测得灯塔A在正北方向,灯塔B在南偏东30°方向,轮船向正东航行了900m,到达Q处,测得A位于北偏西60°方向,B位于南偏西30°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A、B间的距离(结果保留根号).【解答】解:(1)相等,由图知∠QPB=60°、∠PQB=60°,∴△BPQ是等边三角形,∴BQ=PQ;(2)由(1)知PQ=BQ=900m,在Rt△APQ中,AQ===600,又∵∠AQB=180°﹣60°﹣30°=90°,∴在Rt△AQB中,AB===300(m),答:A、B间的距离为300m.21.(8分)某科技有限公司准备购进A和B两种机器人来搬运化工材料,已知购进A种机器人2个和B种机器人3个共需16万元,购进A种机器人3个和B种机器人2个共需14万元,请解答下列问题:(1)求A、B两种机器人每个的进价;(2)已知该公司购买B种机器人的个数比购买A种机器人的个数的2倍多4个,如果需要购买A、B两种机器人的总个数不少于28个,且该公司购买的A、B两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?【解答】解:(1)设A种机器人每个的进价是x万元,B种机器人每个的进价是y万元,依题意有,解得.故A种机器人每个的进价是2万元,B种机器人每个的进价是4万元;(2)设购买A种机器人的个数是m个,则购买B种机器人的个数是(2m+4)个,依题意有,解得8≤m≤9,∵m是整数,∴m=8或9,故有如下两种方案:方案(1):m=8,2m+4=20,即购买A种机器人的个数是8个,则购买B种机器人的个数是20个;方案(2):m=9,2m+4=22,即购买A种机器人的个数是9个,则购买B种机器人的个数是22个.22.(9分)如图1,在正方形ABCD中,P在对角线AC上,E在AC的延长线上,PB=PM,DE=EF.(1)求证:∠CDE=∠F;(2)若AB=5,CM=1,求PB的长;(3)如图2,若BF=10,△QCF是以CF为底的等腰三角形,连接DQ,试求△CDQ 的最大面积.【解答】解:(1)如图1,过E作EG⊥CF于G,EH⊥DC于H,则四边形CHEG是矩形,∵四边形ABCD是正方形,∴∠ACB=45°=∠GCE,∠ACD=45°=∠HCE,∴矩形CHEG是正方形,∴EG=EH,又∵DE=EF,∴Rt△DEH≌Rt△FEG,∴∠CDE=∠F;(2)如图1,过P作PN⊥BC于N,∵BC=AB=5,CM=1,∴BM=6,∵PB=PM,∴BN=NM=3,∴NC=3﹣1=2,在Rt△PNC中,∠PCN=45°,∴PN=NC=2,在Rt△PNM中,PM===,∴PB=;(3)如图2,作QR⊥CF于R,QK⊥CD于K,则四边形CKQR是矩形,∴KQ=CR,又∵△QCF是以CF为底的等腰三角形,∴CR=RF=CF,设BC=x,则CD=x,而BF=10,∴KQ=CR=CF=(10﹣x)=5﹣x,∴S△CDQ=CD×KQ=x(5﹣x)=﹣x2+x=﹣(x﹣5)2+,∴当x=5时,△CDQ的最大面积为.23.(9分)如图所示,在平面直角坐标系中,已知点R(1,0),点K(4,4),直线y=﹣x+b过点K,分别交x轴、y轴于U、V两点,以点R为圆心,以RK 为半径作⊙R,⊙R交x轴于A.(1)若二次函数的图象经过点A、B(﹣2,0)、C(0,﹣8),求二次函数的解析式.(2)判断直线UV与⊙R的位置关系,并说明理由;(3)若动点P、Q同时从A点都以相同的速度分别沿AB、AC边运动,当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A、E、Q为顶点的三角形是等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.【解答】解:(1)由题意可知OA=6,∴A(6,0),设抛物线的解析式为y=a(x+2)(x﹣6),把C(0,﹣8)代入得到﹣8=a(0+2)(0﹣6),解得a=,∴y=(x+2)(x﹣6)=x2﹣﹣8.(2)结论:直线UV与⊙R相切.理由如下:∵K(4,4),直线y=﹣x+b经过点K,∴b=7,对于直线y=﹣x+7,当x=0时,y=7;当y=0时,x=,∴U(,0),V(0,7),∴OU=,OV=7,如图1中,连接RK,作KH⊥x轴于H,则RH=3,UH=﹣4=,KH=4,∴==,又∵∠RHK=∠KHU=90°,∴△RKH∽△KUH,∴∠KRH=∠UKH,∵∠RKH+∠KRH=90°,∴∠RKH+∠UKH=90°,即RK⊥UV,∴直线UV是⊙R的切线.(3)存在.分三种情形讨论:①若EQ=EA,作EG⊥AQ于G.则AG=GQ=AQ=AB=4,∵∠EAG=∠CAO,∠AGE=∠AOC=90°,∴△EAG∽△CAO,∴=,∵OA=6,OC=8,∴AC=10,∴=,∴AE=,∴OE=﹣6=,∴E1(﹣,0).②若AE=AQ=8,则E2(﹣2,0),E3(14,0).③若QE=QA,作QH⊥x轴于H,则QH∥y轴,∴=,∴=,∴AH=,∴EH=AH=,OH=6﹣=,∴EO=﹣=,∴E4(﹣,0),综上所述,满足条件的点E坐标有4个,E1(﹣,0),E2(﹣2,0),E3(14,0),E4(﹣,0);2018年中考数学押题试卷及答案(二)一、选择题(每小题4分,共40分)1.(4分)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3 B.﹣1 C.0 D.22.(4分)2017年3月5日,十二届全国人大五次会议顺利召开,李克强总理在政府工作报告中指出,2016年国内生产总值达到74.4亿元,比上年增长 6.7%,将74.4万亿用科学记数法表示是()A.7.44×104B.7.44×108C.74.4×1012D.7.44×10133.(4分)下列几何体中,左视图为三角形的是()A.B.C.D.4.(4分)下列计算结果等于a5的是()A.a3+a2B.a3?a2C.(a3)2D.a10÷a25.(4分)如图,PA切⊙O于点A,PB切⊙O于点B,如果∠APB=60°,⊙O半径是3,则劣弧AB的长为()A.B.πC.2πD.4π6.(4分)已知某公司10月份的销售额为500万元,如果该公司后期每月的销售额月平均增长率为x,那么第四季销售总额用代数式可表示为(单位:万元)()A.500(1+x)2 B.500+500x+500x2C.500+500(1+x)+500(1+2x)D.500+500(1+x)+500(1+x)27.(4分)已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6 B.8 C.10 D.8或108.(4分)如图,在△OAB中,OA=OB,∠AOB=15°,在△OCD中,OC=OD,∠COD=45°,且点C在边OA上,连接CB,将线段OB绕点O逆时针旋转一定角度得到线段OE,使得DE=CB,则∠BOE的度数为()A.15°B.15°或45°C.45°D.45°或60°9.(4分)如图,在△ABC中,BC=10,D、E分别为AB、AC的中点,连接BE、CD交于点O,OD=3,OE=4,则△ABC的面积为()A.36 B.48 C.60 D.7210.(4分)函数y=,当y=a时,对应的x有唯一确定的值,则a的取值范围为()A.a≤0 B.a<0 C.0<a<2 D.a≤0或a=2二、填空题(每小题5分,满分20分)11.(5分)计算: +=.12.(5分)当a=2017时,代数式的值为.13.(5分)合肥市初中毕业学业体育考试项目分必考项1项和选考项2项,在8个选考项目中,张明同学可在立定跳远、跳绳和坐位体前屈三个项目模考中基本拿满分,现计划从这三个项目中任选两项作为中考选考项,则跳绳能被选上的概率为.14.(5分)如图,点P是矩形ABCD内一点,连接PA、PB、PC、PD,已知AB=3,BC=4,设△PAB、△PBC、△PCD、△PDA的面积分别为S1、S2、S3、S4,以下判断:①PA+PB+PC+PD的最小值为10;②若△PAB≌△PDC,则△PAD≌△PBC;③若S1=S2,则S3=S4;④若△PAB∽△PDA,则PA=2.4其中正确的是.三、解答题(每小题8分,满分16分)15.(8分)解不等式:≥.16.(8分)观察下列关于自然数的等式:(1)1﹣=12×①(2)2﹣=22×②(3)3﹣=32×③…根据上述规律解决下列问题:(1)写出第4个等式:=;(2)写出你猜想的第n个等式(用含n的式子表示),并证明其正确性.四、解答题(每小题8分,满分16分)17.(8分)如图,在9×8的正方形的网格中,△ABC的三个顶点和点O都在格点上.(1)画出△ABC关于直线l成轴对称△A1B1C;(2)将△ABC以点A为旋转中心逆时针旋转90°,画出旋转后的△AB2C2.18.(8分)某品牌羽绒服按成本提高50%作为标价,由于换季,商家决定降价销售,促销措施为:买一件以八折(标价的80%)出售,买两件或两件以上七折(标价的70%)出售.已知顾客买一件商家能获利28元,若顾客同时买两件,商家每件还能获利多少元?五、(每小题10分,满分20分)19.(10分)2017年初,合肥市积极推进共享单车服务(如图1),努力创造绿色环保出行,图2是某品牌单车的车架示意图,其中ED=40cm,∠DEF=60°,∠F=45°,求传动轮轴心E到后轮轴心F的距离EF的长.(结果精确到1cm,参考数据:≈1.41,≈1.73)20.(10分)如图,矩形ABCD中,AD=5,AB=10,分别以AD、BC为斜边向矩形外作Rt△ADF≌Rt△CBE,延长FA、EB交于点G.(1)求证:△ADF∽△BAG;(2)若DF=4,请连接EF并求出EF的长.六、(本题满分12分)21.(12分)2016年合肥市初中生学业质量绿色指标综合评价在合肥12个县(市)、区312所学校进行,某校八年级根据比例被随机抽取了40名学生参与了语文、数学、英语、科学等四个科目的测试,根据这40位同学的数学成绩,绘制了如下条形统计图.(1)结合以上信息完成下表:平均成绩(分)中位数(分)众数(分)86.85(2)根据评价标准,96分以上(含96分)可评为优秀,该校八年级共有学生500名若全部参加测试,估计有多少学生的成绩能达到优秀?(3)张明同学的数学成绩为88分,他认为自己成绩超过平均分,排名应该处于中上等水平,这种说法对吗?为什么?七、(本题满分12分)22.(12分)如图,在△ABC中,AB=10,∠BAC=60°,∠B=45°,点D是BC边上一动点,连接AD,以AD为直径作⊙O交边AB、AC于点E、F,连接OE、OF、DE、DF、EF.(1)求的值;(2)当AD运动到什么位置时,四边形O EDF正好是菱形,请说明理由.(3)点D运动过程中,线段EF的最小值为(直接写出结果).八、(本题满分14分)23.(14分)【阅读理解】我们知道,在正比例函数y=ax(a>0)中y随x的增大而增大,当x取最小值时y有最小值;在反比例函数y=(k>0)中,当x>0时y随x的增大而减小,当x取最大值时y有最小值,那么当x>0时函数y=ax+(a>0,k>0)是否存在最值呢?下面以y=2x+为例进行探究:∵x>0,∴y=2x+=2(x+)=2[+]=[﹣6++6]=2[+6]=2+12∴当﹣=0,即x=3时y有最小值,这时y最小=12.【现学现用】已知x>0,当x=时,函数y=x+有最值(填“大”或“小”),最值为.【拓展应用】A、B两城市相距400千米,限速为300千米/小时的高铁从A城到B城的运行成本(万元)由可变成本和固定成本两部分构成,每小时的可变成本与行驶速度v (千米/小时)的平方成正比,且比例系数k,固定成本为每小时4万元,在试运行过程中经测算,当行驶速度为100千米/小时时,可变成本为每小时1万元.(1)试把每小时运行总成本y(万元)表示成速度v(千米/小时)的函数;(2)为了使全程运行成本z最低,高铁行驶的速度应为多少?参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3 B.﹣1 C.0 D.2【解答】解:这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A.2.(4分)2017年3月5日,十二届全国人大五次会议顺利召开,李克强总理在政府工作报告中指出,2016年国内生产总值达到74.4亿元,比上年增长 6.7%,将74.4万亿用科学记数法表示是()A.7.44×104B.7.44×108C.74.4×1012D.7.44×1013【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:D.3.(4分)下列几何体中,左视图为三角形的是()A.B.C.D.【解答】解:A.圆柱的左视图是长方形,不合题意;B.长方体的左视图是长方形,不合题意;C.圆锥的左视图是三角形,符合题意;D.三棱柱的左视图是长方形,不合题意;故选:C.4.(4分)下列计算结果等于a5的是()A.a3+a2B.a3?a2C.(a3)2D.a10÷a2【解答】解:A、不是同底数幂的乘法,故A不符合题意;B、a3?a2=a5,故B符合题意;C、(a3)2=a6,故C不符合题意;D、a10÷a2=a8,故D不符合题意;故选:B.5.(4分)如图,PA切⊙O于点A,PB切⊙O于点B,如果∠APB=60°,⊙O半径是3,则劣弧AB的长为()A.B.πC.2πD.4π【解答】解:连接OA,OB.则OA⊥PA,OB⊥PB∵∠APB=60°∴∠AOB=120°∴劣弧AB的长是:=2π.故选C.6.(4分)已知某公司10月份的销售额为500万元,如果该公司后期每月的销售额月平均增长率为x,那么第四季销售总额用代数式可表示为(单位:万元)()A.500(1+x)2 B.500+500x+500x2C.500+500(1+x)+500(1+2x)D.500+500(1+x)+500(1+x)2【解答】解:10月份的销售额为500万元,11月份的销售额为500(1+x)万元,12月份的销售额为500(1+x)2万元,则第四季销售总额用代数式可表示为:500+500(1+x)+500(1+x)2,故选:D.7.(4分)已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6 B.8 C.10 D.8或10【解答】解:把x=2代入方程x2﹣(m+4)x+4m=0得4﹣2(m+4)+4m=0,解得m=2,方程化为x2﹣6x+8=0,解得x1=4,x2=2,因为2+2=4,所以三角形三边为4、4、2,所以△ABC的周长为10.故选C.8.(4分)如图,在△OAB中,OA=OB,∠AOB=15°,在△OCD中,OC=OD,∠COD=45°,且点C在边OA上,连接CB,将线段OB绕点O逆时针旋转一定角度得到线段OE,使得DE=CB,则∠BOE的度数为()A.15°B.15°或45°C.45°D.45°或60°【解答】解:如图,当OE在∠BOD内部时,若∠DOE=∠COB=15°,则由OD=OC,∠DOE=∠COB,OB=OE可得,△ODE≌△OCB,故DE=CB,此时∠BOE=45°﹣15°﹣15°=15°;当OE'在∠BOD外部时,则由OD=OC,∠DOE'=∠COB,OB=OE可得,△ODE'≌△OCB,故DE'=CB,此时∠BOE'=45°﹣15°+15°=45°;故选:B.9.(4分)如图,在△ABC中,BC=10,D、E分别为AB、AC的中点,连接BE、CD交于点O,OD=3,OE=4,则△ABC的面积为()A.36 B.48 C.60 D.72【解答】解:∵D、E分别为AB、AC的中点,∴DE∥BC,∴△DOE∽△BOC,∴,∴OB=8,OD=6,∴BC=10,∴△BOC是直角三角形,∴△BOC的面积是24,∴△BEC的面积是36,△BDE的面积是18,∴△ABC的面积是72,故选D10.(4分)函数y=,当y=a时,对应的x有唯一确定的值,则a的取值范围为()A.a≤0 B.a<0 C.0<a<2 D.a≤0或a=2【解答】解:由题意可知:y=a时,对应的x有唯一确定的值,即直线y=a与该函数图象只有一个交点,∴a≤0或a=2故选(D)二、填空题(每小题5分,满分20分)11.(5分)计算: +=8.【解答】解: +=4+4=8.故答案为:8.12.(5分)当a=2017时,代数式的值为.【解答】解:当a=2017时,∴原式===故答案为:13.(5分)合肥市初中毕业学业体育考试项目分必考项1项和选考项2项,在8个选考项目中,张明同学可在立定跳远、跳绳和坐位体前屈三个项目模考中基本拿满分,现计划从这三个项目中任选两项作为中考选考项,则跳绳能被选上的概率为.【解答】解:画树状图如下:共有6种情况,跳绳能被选上的有4种情况,所以,P(跳绳能被选上)==.故答案为:.14.(5分)如图,点P是矩形ABCD内一点,连接PA、PB、PC、PD,已知AB=3,BC=4,设△PAB、△PBC、△PCD、△PDA的面积分别为S1、S2、S3、S4,以下判断:①PA+PB+PC+PD的最小值为10;②若△PAB≌△PDC,则△PAD≌△PBC;③若S1=S2,则S3=S4;④若△PAB∽△PDA,则PA=2.4其中正确的是①②③④.【解答】解:①当点P是矩形ABCD两对角线的交点时,PA+PB+PC+PD的值最小,根据勾股定理得,AC=BD=5,所以PA+PB+PC+PD的最小值为10,故①正确;②若△PAB≌△PCD,则PA=PC,PB=PD,所以P在线段AC、BD的垂直平分线上,即P是矩形ABCD两对角线的交点,所以△PAD≌△PBC,故②正确;③若S1=S2,易证S1+S3=S2+S4,则S3=S4,故③正确;④若△PAB~△PDA,则∠PAB=∠PDA,∠PAB+∠PAD=∠PDA+∠PAD=90°,∠APD=180°﹣(∠PDA+∠PAD)=90°,同理可得∠APB=90°,那么∠BPD=180°,B、P、D三点共线,P是直角△BAD斜边上的高,根据面积公式可得PA=2.4,故④正确.故答案为①②③④.三、解答题(每小题8分,满分16分)15.(8分)解不等式:≥.【解答】解:≥1﹣,去分母得:2(2x﹣1)≥6﹣3(5﹣x),去括号得:4x﹣2≥6﹣15+3x,移项合并得:x≥﹣7.16.(8分)观察下列关于自然数的等式:(1)1﹣=12×①(2)2﹣=22×②(3)3﹣=32×③…根据上述规律解决下列问题:(1)写出第4个等式:4﹣=42×;(2)写出你猜想的第n个等式(用含n的式子表示),并证明其正确性.【解答】解:(1)根据题意,第4个等式为4﹣=42×,故答案为:4﹣,42×;(2)第n个等式为n﹣=n2×,左边===n2?=右边,∴第n个等式成立.四、解答题(每小题8分,满分16分)17.(8分)如图,在9×8的正方形的网格中,△ABC的三个顶点和点O都在格点上.(1)画出△ABC关于直线l成轴对称△A1B1C;(2)将△ABC以点A为旋转中心逆时针旋转90°,画出旋转后的△AB2C2.【解答】解:(1)如图所示,△A1B1C即为所求;(2)如图所示,△AB2C2即为所求.18.(8分)某品牌羽绒服按成本提高50%作为标价,由于换季,商家决定降价销售,促销措施为:买一件以八折(标价的80%)出售,买两件或两件以上七折(标价的70%)出售.已知顾客买一件商家能获利28元,若顾客同时买两件,商家每件还能获利多少元?【解答】解:设该品牌羽绒服的成本价为x元,根据题意得:80%×(1+50%)x﹣x=28,解得:x=140,∴140×(1+50%)×70%﹣140=7(元).答:若顾客同时买两件,商家每件还能获利7元.五、(每小题10分,满分20分)19.(10分)2017年初,合肥市积极推进共享单车服务(如图1),努力创造绿色环保出行,图2是某品牌单车的车架示意图,其中ED=40cm,∠DEF=60°,∠F=45°,求传动轮轴心E到后轮轴心F的距离EF的长.(结果精确到1cm,参考数据:≈1.41,≈1.73)【解答】解:如图2中,作DH⊥EF于H.在Rt△EDH中,∵sin∠DEH=,∴DH=DE×sin40°=40×=20cm,∵cos∠DEH=,∴EH=DE×cos60°=40×=20cm,在Rt△DHF中,∵∠F=45°,∴HF=DH=20cm,∴EF=EH+HF=20+20≈55cm,∴传动轮轴心E到后轮轴心F的距离EF的长约为55cm.20.(10分)如图,矩形ABCD中,AD=5,AB=10,分别以AD、BC为斜边向矩形外作Rt△ADF≌Rt△CBE,延长FA、EB交于点G.(1)求证:△ADF∽△BAG;(2)若DF=4,请连接EF并求出EF的长.【解答】解:(1)∵四边形ABCD为矩形,∴∠DAB=90°,即∠DAF+∠BAG=90°,又∵∠DAF+∠ADF=90°,∴∠ADF=∠BAG,同理∠ECB=∠GBA,∵△ADF≌△CBE,∴∠ECB=∠DAF,∴∠DAF=∠GBA,∵在△ADF和△BAG中,,∴△ADF∽△BAG;(2)连接EF,如图,∵在Rt△ADF中,AD=5,DF=4,∴AF==3,∵△ADF∽△BAG,∴==,∠AGB=∠AFD=90°,∴AG=8,BG=6,∴FG=AF+AG=11,EG=EB+BG=DF+BG=4+6=10,∴在Rt△EFG中,EF==.六、(本题满分12分)21.(12分)2016年合肥市初中生学业质量绿色指标综合评价在合肥12个县(市)、区312所学校进行,某校八年级根据比例被随机抽取了40名学生参与了语文、数学、英语、科学等四个科目的测试,根据这40位同学的数学成绩,绘制了如下条形统计图.(1)结合以上信息完成下表:平均成绩(分)中位数(分)众数(分)86.85 9090(2)根据评价标准,96分以上(含96分)可评为优秀,该校八年级共有学生500名若全部参加测试,估计有多少学生的成绩能达到优秀?(3)张明同学的数学成绩为88分,他认为自己成绩超过平均分,排名应该处于中上等水平,这种说法对吗?为什么?。

2018年广西北海市中考数学试卷

2018年广西北海市中考数学试卷

2018年广西北海市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑。

)1.(3分)﹣3的倒数是()A.﹣3B.3C.D.2.(3分)下列美丽的壮锦图案是中心对称图形的是()A.B.C.D.3.(3分)2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,其中数据81000用科学记数法表示为()A.81×103B.8.1×104C.8.1×105D.0.81×105 4.(3分)某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分5.(3分)下列运算正确的是()A.a(a+1)=a2+1B.(a2)3=a5C.3a2+a=4a3D.a5÷a2=a36.(3分)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°7.(3分)若m>n,则下列不等式正确的是()A.m﹣2<n﹣2B.>C.6m<6n D.﹣8m>﹣8n 8.(3分)从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是()A.B.C.D.9.(3分)将抛物线y x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y(x﹣8)2+5B.y(x﹣4)2+5C.y(x﹣8)2+3D.y(x﹣4)2+310.(3分)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.211.(3分)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100B.100(1﹣x)2=80C.80(1+2x)=100D.80(1+x2)=10012.(3分)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)要使二次根式在实数范围内有意义,则实数x的取值范围是.14.(3分)因式分解:2a2﹣2=.15.(3分)已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是.16.(3分)如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是m (结果保留根号)17.(3分)观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是.18.(3分)如图,矩形ABCD的顶点A,B在x轴上,且关于y轴对称,反比例函数y(x>0)的图象经过点C,反比例函数y(x<0)的图象分别与AD,CD交于点E,F,若S△BEF =7,k1+3k2=0,则k1等于.三、解答题(本大题共8小题,共66分,解答题因写出文字说明、证明过程或演算步骤) 19.(6分)计算:|﹣4|+3tan60°()﹣120.(6分)解分式方程:1.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B (4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)22.(8分)某市将开展以“走进中国数学史”为主题的知识竞赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按A,B,C,D四个等级进行统计,绘制成如下不完整的统计表和扇形统计图:(1)求m=,n=;(2)在扇形统计图中,求“C等级”所对应心角的度数;(3)成绩等级为A的4名同学中有1名男生和3名女生,现从中随机挑选2名同学代表学校参加全市比赛,请用树状图法或者列表法求出恰好选中“1男1女”的概率.23.(8分)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.24.(10分)某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元/吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.25.(10分)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切;(2)若,求的值;(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.26.(10分)如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.2018年广西北海市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分。

广西北海市2018届数学中考模拟试卷(6月份)

广西北海市2018届数学中考模拟试卷(6月份)

广西北海市2018届数学中考模拟试卷(6月份)一、单1.在0,﹣2,3,四个数中,最小的数是()A、0B、﹣2C、3D、+2.下列基本几何体中,三视图都是相同图形的是()A、B、C、D、+3.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为()A、14.4×103B、144×102C、1.44×104D、1.44×10﹣4+4.下面调查中,适合采用全面调查的是()A、对南宁市市民进行“南宁地铁1号线线路”B、对你安宁市食品安全合格情况的调查C、对南宁市电视台《新闻在线》收视率的调查D、对你所在的班级同学的身高情况的调查+5.下列运算正确的是()A、=2B、4 ﹣=1C、=9D、=2+6.不等式组的解集在数轴上可表示为()C、A、B、D、+7.一个多边形的内角和是360°,则这个多边形的边数为()A、6B、5C、4D、3+8.一元二次方程x2﹣3x+1=0的根的情况()A、有两个相等的实数根B、有两个不相等的实数根C、没有实数根D、以上答案都不对+9.已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A、点P在⊙O内B、点P在⊙O上C、点P在⊙O外D、无法判断+10.甲、乙两人分别以4m/s和5m/s的速度,同时从100m直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t(s),甲乙两人的距离为S(m),则S关于t的函数图象为()A、B、C、D、+11.如图①是半径为2的半圆,点C是弧AB的中点,现将半圆如图②方式翻折,使得点C与圆心O重合,则图中阴影部分的面积是()A 、+ B 、 C 、 D 、12.如图,在△ABC 中,AB=AC ,AD 和CE 是高,∠ACE=45°,点F 是AC 的中点,AD 与FE ,CE 分别交于点G 、H ,∠BCE=∠CAD ,有下列结论:①图中存在两个等腰 直角三角形;②△AHE ≌△CBE ;③BC?AD= 其中正确的个数有()AE 2;④S △ABC =4S △ADF. A 、1 B 、2 C 、3 D 、4+二、填空题13.分解因式:2x 2﹣2= . +14.如图,平行线AB 、CD 被直线EF 所截,若∠2=130°,则∠1= .+15.某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x,则依题意所列的方程是.+16.如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°方向航行,半小时后甲船到达C点,乙船正好到达甲船正西方向的B点,则乙船的路程(结果保留根号)+17.如图,在平面直角坐标系中,函数y=(k>0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC.若三角形ABC的面积为3,则点B的坐标为.+18.如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B 2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018 M= .+三、解答题19.计算:2﹣1+20160﹣|3tan30°+|﹣+20.解方程:+21.某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)、共抽取名学生进行问卷调查;(2)、补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;(3)、该校共有3000名学生,请估计全校学生喜欢足球运动的人数.(4)、甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.+22.已知BD平分∠ABF,且交AE于点D.(1)、求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);(2)、设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形AB CD是菱形.+23.如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CB O.(1)、请直接写出⊙M的直径,并求证BD平分∠ABO;(2)、在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.+24.甲、乙两组工人同时加工某种零件,乙组在加工过程中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍,两组各组加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)、求甲组加工零件的数量y与时间x之间的函数关系式;(2)、求乙组加工零件总量a的值;(3)、甲、乙两组加工出的零件合在一起装箱,每次生产达到150件就装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第2箱?+25.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)、如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)、如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.+26.如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D,已知A(﹣1,0).(1)、求点B的坐标和抛物线的解析式;(2)、判断△CDB的形状并说明理由;(3)、将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.+。

2018年广西北海市中考数学试卷

2018年广西北海市中考数学试卷

2018年广西北海市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑。

)1.(3分)﹣3的倒数是()A.﹣3B.3C.﹣D.2.(3分)下列美丽的壮锦图案是中心对称图形的是()A.B.C.D.3.(3分)2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,其中数据81000用科学记数法表示为()A.81×103B.8.1×104C.8.1×105D.0.81×1054.(3分)某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分5.(3分)下列运算正确的是()A.a(a+1)=a2+1B.(a2)3=a5C.3a2+a=4a3D.a5÷a2=a36.(3分)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°7.(3分)若m>n,则下列不等式正确的是()A.m﹣2<n﹣2B.C.6m<6n D.﹣8m>﹣8n 8.(3分)从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是()A.B.C.D.9.(3分)将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+310.(3分)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.211.(3分)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100B.100(1﹣x)2=80C.80(1+2x)=100D.80(1+x2)=10012.(3分)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)要使二次根式在实数范围内有意义,则实数x的取值范围是.14.(3分)因式分解:2a2﹣2=.15.(3分)已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是.16.(3分)如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是m (结果保留根号)17.(3分)观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是.18.(3分)如图,矩形ABCD的顶点A,B在x轴上,且关于y轴对称,反比例函数y=(x>0)的图象经过点C,反比例函数y=(x<0)的图象分别与AD,CD交于点E,F,若S△BEF=7,k1+3k2=0,则k1等于.三、解答题(本大题共8小题,共66分,解答题因写出文字说明、证明过程或演算步骤) 19.(6分)计算:|﹣4|+3tan60°﹣﹣()﹣120.(6分)解分式方程:﹣1=.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B (4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)22.(8分)某市将开展以“走进中国数学史”为主题的知识竞赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按A,B,C,D四个等级进行统计,绘制成如下不完整的统计表和扇形统计图:成绩等级频数(人数)频率A40.04B m0.51C nD合计1001(1)求m=,n=;(2)在扇形统计图中,求“C等级”所对应心角的度数;(3)成绩等级为A的4名同学中有1名男生和3名女生,现从中随机挑选2名同学代表学校参加全市比赛,请用树状图法或者列表法求出恰好选中“1男1女”的概率.23.(8分)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.24.(10分)某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元/吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.25.(10分)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切;(2)若=,求的值;(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.26.(10分)如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.2018年广西北海市中考数学试卷参考答案一、选择题(本大题共12小题,每小题3分,共36分。

2018年中考数学押题卷及答案(共七套)

2018年中考数学押题卷及答案(共七套)

2018年中考数学押题卷及答案(共七套) 2018年中考数学押题卷及答案(一)注意事项:1.答题前,务必将自己的姓名、准考证号填写在规定的位置.2.答题时,卷Ⅰ必须使用2B铅笔,卷Ⅱ必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置,字体工整、笔迹清楚.3.所有题目必须在答题卡上作答,在试卷上答题无效.4.本试题共6页,满分150分,考试用时120分钟.5.考试结束后,将试卷和答题卡一并交回.卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45分,在每小题的四个选项中,只有一个选项正确)1.在实数5,227,0,π2,36,-1.414中,有理数有( D )A.1个B.2个C.3个D.4个2.下列计算正确的是( C )A.x4+x4=x16B.(-2a)2=-4a2C.x7÷x5=x2D.m2²m3=m63.某红外线遥控器发出的红外线波长为0.00000094 m,用科学记数法表示这个数为( C )A.9.4³10-8 m B.9.4³108 mC.9.4³10-7 m D.9.4³107m4.下列说法正确的个数为( B )①两组对边分别相等的四边形是平行四边形;②对角线相等的四边形是矩形;③对角线互相垂直的平行四边形是菱形;④正方形是轴对称图形,有2条对称轴.A.1个B.2个C.3个D.4个5.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球( A ) A.16个B.20个C.25个D.30个6.下列汉字或字母中既是中心对称图形又是轴对称图形的是( C )7.某中学九年级舞蹈兴趣小组8名学生的身高分别为(单位:cm):168,165,168,166,170,170,176,170,则下列说法错误的是( C )A.这组数据的众数是170B.这组数据的中位数是169C.这组数据的平均数是169D.若从8名学生中任选1名学生参加校文艺会演,则这名学生的身高不低于170的概率为1 28.如图,在△ABC中,∠C=90°,AC=6,BC=8,将点C折叠到AB边的点E处,折痕为AD,则CD的长为( A )A.3 B.5C.4 D.3 59.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是( C )A.3个B.4个C.5个D.6个10.下列因式分解正确的是( C )A.x2+2x-1=(x-1)2B.-x2+(-2)2=(x-2)(x+2)C.x3-4x=x(x+2)(x-2) D.(x+1)2=x2+2x+111.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于( B ) A.122°B.151°C.116°D.97°,第11题图),第13题图),第14题图)12.若关于x的一元二次方程(a-1)x2-2x+2=0有实数根,则整数a的最大值为( B )A.-1 B.0 C.1 D.213.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,CD=2,则EC的长为( D )A.2 B.8 C.13 D.21314.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0;②2a +b >0;③b 2-4ac >0;④ac >0.其中正确的是( C )A .①②B .①④C .②③D .③④15.如图,在Rt △ABC 中,∠ACB =90°,将△ABC 绕顶点C 逆时针旋转得到△A ′B ′C ,M 是BC 的中点,P 是A ′B ′的中点,连接PM .若BC =2,∠BAC =30°,则线段PM 的最大值是( B )A .4B .3C .2D .1点拨:连接PC.在Rt △ABC 中,∵∠A =30°,BC =2,∴AB =4,根据旋转可知,A ′B ′=AB =4,∵P 是A ′B ′的中点,∴PC =12A ′B ′=2,∵CM=BM =1,又∵PM ≤PC +CM ,即PM ≤3,∴PM 的最大值为3(此时P ,C ,M 共线).卷Ⅱ二、填空题(本大题共5小题,每小题5分,共25分)16.已知实数a ,b 在数轴上的位置如图所示,化简|a +b|-(a -b )2的结果为__-2a __.17.若关于x 的分式方程ax a +1=4x -1的解与方程6x =3的解相同,则a =__-2__.18.如图,菱形ABCD 的对角线BD ,AC 的长分别为2,23,以点B 为圆心的弧与AD ,DC 相切,则图中阴影部分的面积是.19.我们规定:若m →=(a ,b),n →=(c ,d),则m →²n →=ac +bd.例如m →=(1,2),n →=(3,5),则m →²n →=1³3+2³5=13,已知m →=(2,4),n →=(2,-3),则m →²n →=__-8__.20.如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是__89__个.点拨:第1个图形共有小正方形的个数为2³2+1;第2个图形共有小正方形的个数为3³3+2;第3个图形共有小正方形的个数为4³4+3;…;则第n 个图形共有小正方形的个数为(n +1)2+n ,所以第8个图形共有小正方形的个数为:9³9+8=89.三、解答题(本大题共7小题,各题分值见题号后,共80分)21.(本题8分)计算:(2017-π)0-(13)-1+|3-4|+2sin 60°+27.解:原式=2+3322.(本题8分)先化简,再求值:(1-3x +1)÷x 2-4x +4x 2-1,其中x =3. 解:原式=x -1x -2,当x =3时,原式=223.(本题10分)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,3,4,7.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于5且小于8的概率. 解:(1)画树状图如下:所得两位数为11,31,41,71,13,33,43,73,14,34,44,74,17,37,47,77这16种等可能结果(2)由(1)知所得两位数算术平方根大于5且小于8,即该数大于25且小于64的有8种,∴其算术平方根大于5且小于8的概率为1224.(本题12分)如图,在平行四边形ABCD 中,AB =3 cm ,BC =5 cm ,∠B =60°,G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF.(1)求证:四边形CEDF 是平行四边形;(2)①当AE =__3.5__cm 时,四边形CEDF 是矩形;②当AE =__2__cm 时,四边形CEDF 是菱形.(直接写出答案,不需要说明理由)解:(1)∵四边形ABCD 是平行四边形,∴CF ∥ED ,∴∠FCG =∠EDG ,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,∠FCG=∠EDG,CG =DG,∠CGF=∠DGE,∴△FCG≌△EDG(ASA),∴CF=DE,∴四边形CEDF 是平行四边形(2)①当AE=3.5 cm时,四边形CEDF是矩形,理由:过点A作AM⊥BC 于点M,∵∠B=60°,∠AMB=90°,AB=3,∴BM=1.5,∵四边形ABCD 是平行四边形,∴∠B=∠CDA=60°,AB=DC=3,∵四边形CEDF是矩形,∴∠CED=∠AMB=90°.在△MBA和△EDC中,∠AMB=∠CED,∠B=∠CDE,AB=CD,∴△MBA≌△EDC(AAS),∴BM=DE=1.5.∵BC=AD=5,∴AE=CM=3.5,即当AE=3.5 cm时,四边形CEDF是矩形,故答案为:3.5;②当AE=2 cm时,四边形CEDF是菱形,理由:∵四边形CEDF是菱形,∴CE=ED,∵∠CDE=60°,∴△CDE是等边三角形,∴DE=CD=3,∵AD=5,∴AE=2,即当AE=2 cm时,四边形CEDF是菱形,故答案为:225.(本题12分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅图书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2015年至2017年的年平均增长率;(2)已知2017年该社区居民借阅图书人数有1350人,预计2018年达到1440人,如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,那么2018年的人均借阅量比2017年增长a%,求a的值至少是多少?解:(1)设该社区的图书借阅总量从2015年至2017年的年平均增长率为x,根据题意得7500(1+x )2=10800,解得x 1=0.2,x 2=-2.2(舍去)答:该社区的图书借阅总量从2015年至2017年的年平均增长率为20%(2)10800³(1+0.2)=12960(本),10800÷1350=8(本),12960÷1440=9(本),(9-8)÷8³100%=12.5%.故a 的值至少是12.5.26.(本题14分)如图,在△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F.(1)求证:AC 是⊙O 的切线;(2)已知cos A =32,⊙O 的半径为3,求图中阴影部分的面积.解:(1)连接OE ,∵BE 是∠OBC 的角平分线,∴∠OBE =∠CBE ,∵OE =OB ,∴∠OEB =∠OBE ,∴∠OEB =∠CBE ,∴OE ∥BC ,∴∠AEO =∠C =90°,∵OE 是⊙O 的半径,∴AC 是⊙O 的切线(2)连接OF ,∵cosA =32,∴∠A =30°,∴∠ABC =∠AOE =60°,∵OB=OF =3,∴∠OFB =∠ABC =60°,∴∠EOF =60°,∴扇形OEF 的面积为:60π³32360=3π2,∵OE =3,∠BAC =30°,∴AO =2OE =6,∴AB =AO +OB=9,∴BC =12AB =92.∴由勾股定理可知:AE =33,AC =923,∴CE =AC -AE =323,∵BF =OB =3,∴CF =BC -BF =32,∴梯形OFCE 的面积为(CF +OE )·CE 2=2738, ∴阴影部分面积为2738-3π227.(本题16分)如图,抛物线y =ax 2+bx +c 经过点A(5,0),B(6,-6)和原点.(1)求抛物线的函数解析式;(2)若过点B 的直线y =kx +b 与抛物线交于点C(2,m),请求出△OBC 的面积S 的值;(3)过点C 作平行于x 轴的直线交y 轴于点D ,在抛物线对称轴右侧位于直线DC 下方的抛物线上任取一点P ,过点P 作直线PF 平行于y 轴交x 轴于点F ,交直线DC 于点E ,直线PF 与直线DC 及两坐标轴围成矩形OFED ,问是否存在点P ,使得△OCD 与△CPE 相似?若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)抛物线的函数解析式为y =-x 2+5x(2)∵点C 在抛物线上,∴-22+5³2=m ,解得m =6,∴点C 的坐标为(2,6),∵点B ,C 在直线y =kx +b 上,∴⎩⎨⎧6=2k +b ,-6=6k +b ,解得⎩⎨⎧k =-3,b =12,∴直线BC 的解析式为y =-3x +12,设BC 与x 轴交于点G ,则点G 的坐标为(4,0),所以S △OBC =12³4³6+12³4³|-6|=24(3)存在点P ,使得△OCD 与△CPE 相似,设P (m ,n ),∵∠ODC =∠E =90°,故CE =m -2,EP =6-n ,若△OCD 与△CPE 相似,则OD CE =DC EP 或OD PE =DC EC ,即6m -2=26-n 或66-n =2m -2,解得m =20-3n 或n =12-3m ,又∵(m ,n )在抛物线上,∴⎩⎨⎧m =20-3n ,n =-m 2+5m 或⎩⎨⎧n =12-3m ,n =-m 2+5m ,解得⎩⎪⎨⎪⎧m 1=103,n 1=509,⎩⎨⎧m 2=2,n 2=6或⎩⎨⎧m 1=2,n 1=6,⎩⎨⎧m 2=6,n 2=-6,故点P 的坐标为(103,509)和(6,-6)2018年中考数学押题卷及答案(二)注意事项:1.答题前,务必将自己的姓名、准考证号填写在规定的位置.2.答题时,卷Ⅰ必须使用2B 铅笔,卷Ⅱ必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置,字体工整、笔迹清楚.3.所有题目必须在答题卡上作答,在试卷上答题无效.4.本试题共6页,满分150分,考试用时120分钟.5.考试结束后,将试卷和答题卡一并交回.卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45分,在每小题的四个选项中,只有一个选项正确)1.64的立方根是( C )A.8 B.±8 C.2 D.±22.下列计算错误的是( A )A.(-2x)2=-2x2B.(-2a3)2=4a6C.(-x)9÷(-x)3=x6D.-a2²a=-a33.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示是( B )A.8.5³105吨B.8.5³106吨C.8.5³107吨D.85³106吨4.如图,该几何体的俯视图是( B )5.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是( D )A.角平分线B.中位线C.高D.中线6.青蛙是人类的朋友,为了了解某地青蛙的数量,先从池塘里捕捞20只青蛙,作上标记,放回池塘,经过一段时间后,再从池塘中捞出40只青蛙,其中有标记的有4只,请你估计一下,这个池塘里有多少只青蛙( D ) A.100只B.150只C.180只D.200只7.为了解长城小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表:这40A.4小时B.4.5小时C.5小时D.5.5小时8.如图,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=65°,则∠DEF 的度数是( B )A.15°B.25°C.30°D.35°9.下列命题中,正确的是( D )A.平行四边形既是中心对称图形,又是轴对称图形B.四条边相等的四边形是正方形C.三角形的内心到三角形各顶点的距离相等D.有一个角为60°的等腰三角形是等边三角形10.若关于x的一元二次方程kx2-2x-1=0有两个实数根,则k的取值范围是( C )A.k≠0 B.k≥-1C.k≥-1且k≠0 D.k>-1且k≠011.如图,已知AB,AD是⊙O的弦,∠B=20°,点C在弦AB上,连接CO并延长CO交于⊙O于点D,∠D=15°,则∠BAD的度数是( D ) A.30°B.45°C.20°D.35°,第11题图),第12题图),第14题图)12.如图,已知双曲线y=-3x(x<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C,则△AOC的面积为( B )A.6 B.92C.3 D.213.某校组织1080名学生去外地参观,现有A,B两种不同型号的客车可供选择.在每辆车刚好满座的前提下,每辆B型客车比每辆A型客车多坐15人,单独选择B型客车比单独选择A型客车少租12辆,设A型客车每辆坐x人,根据题意列方程为( D )A.1080x=1080x-15+12 B.1080x=1080x-15-12C.1080x=1080x+15-12 D.1080x=1080x+15+1214.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列说法错误的是( C )A.abc>0 B.当x<1时,y随x的增大而减小C.a-b+c>0 D.当y>0时,x<-2或x>415.如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD 上一个动点,则下列线段的长度等于BP+EP的最小值的是( B ) A.BC B.CEC.AD D.AC点拨:如图,连接PC,∵AB=AC,BD=CD,∴AD⊥BC,∴PB=PC,∴PB+PE=PC+PE,∵PE+PC≥CE,∴当P,C,E共线时,PB+PE的值最小,最小值为CE的长度.卷Ⅱ二、填空题(本大题共5小题,每小题5分,共25分)16.分解因式:x3-4xy2=__x(x+2y)(x-2y)__.17.如图,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,若AD =6,BD=2,AE=9,则EC的长是__3__.,第17题图),第19题图) 18.为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.已知某种加密规则为:明文a,b对应的密文为a-2b,2a+b.例如,明文1,2对应的密文是-3,4.当接收方收到密文是1,7时,解密得到的明文是__3,1__.19.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为3π__.20.如图是一组有规律图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…,依此规律,第n个图案有__3n+1__个三角形.(用含n的代数式表示)解:∵第(1)个图案有3+1=4个三角形,第(2)个图案有3³2+1=7个三角形,第(3)个图案有3³3+1=10个三角形,…,∴第n 个图案有(3n +1)个三角形.三、解答题(本大题共7小题,各题分值见题号后,共80分)21.(本题8分)计算:(-1)2017-(12)-1+(π-3.14)0+|1-3|-3tan 30°.解:原式=-322.(本题8分)先化简,再求值:(a -2a 2+2a -a -1a 2+4a +4)÷a -4a +2,其中a 满足a 2+2a -7=0.解:原式=1a 2+2a ,∵a 2+2a -7=0,∴a 2+2a =7,∴原式=1723.(本题10分)某经销单位将进价为每件27.4元的商品按每件40元销售,经两次调价后调至每件32.4元.(1)若该商店两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,其销量就增加10件,若该商品原来每月可销售500件,那么两次调价后,每月销售该商品可获利多少元?解:(1)设这个降价率为x ,依题意得40(1-x )2=32.4,解得x 1=0.1=10%,x 2=1.9(舍去).答:这个降价率为10%(2)∵降价后多销售的件数为[(40-32.4)÷0.2]³10=380(件),∴两次调价后,每月可销售该商品的件数为380+500=880(件),∴每月销售该商品可获利(32.4-27.4)³880=4400(元).答:两次调价后,每月销售该商品可获利4400元24.(本题12分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A,B,C,D表示这四种不同的口味粽子)的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅不完整的统计图.请根据以上信息回答下列问题:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数?(4)若有外形完全相同的A,B,C,D粽各一个煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率?解:(1)调查的居民数有240÷40%=600(人)(2)C类的人数是600-180-60-240=120(人),A类所占百分比为180÷600=30%,C类所占百分比为120÷600=20%,补图略(3)爱吃D粽的人数是8000³40%=3200(人)(4)画树状图略,则P(第二个吃到的恰好是C粽)=312=1425.(本题12分)如图,在平行四边形ABCD 中,过B 作BE ⊥CD ,垂足为点E ,连接AE ,F 为AE 上一点,且∠BFE =∠C.(1)求证:△ABF ∽△EAD ;(2)若AB =4,∠BAE =30°,求AE 的长. 解:(1)∵AD ∥BC ,∴∠C +∠ADE =180°,∵∠BFE =∠C ,∠AFB +∠BFE =180°,∴∠AFB =∠EDA ,∵AB ∥DC ,∴∠BAE =∠AED ,∴△ABF ∽△EAD(2)∵AB ∥CD ,BE ⊥CD ,∴∠ABE =90°,∵AB =4,∠BAE =30°,∴AE =2BE ,由勾股定理可求得AE =83326.(本题14分)如图,AB 是⊙O 的直径,AB =43,点E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB.(1)求证:CB 是∠ECP 的平分线;(2)求证:CF =CE ;(3)当CF CP =34时,求劣弧BC 的长度.(结果保留π)解:(1)∵OC =OB ,∴∠OCB =∠OBC ,∵PF 是⊙O 的切线,CE ⊥AB ,∴∠OCP =∠CEB =90°,∴∠PCB +∠OCB =90°,∠BCE +∠OBC =90°,∴∠BCE =∠BCP ,∴BC 平分∠PCE(2)连接AC.∵AB 是直径,∴∠ACB =90°,∴∠BCP +∠ACF =90°,∠ACE +∠BCE =90°.∵∠BCP =∠BCE ,∴∠ACF =∠ACE ,∵∠F =∠AEC =90°,AC =AC ,∴△ACF ≌△ACE ,∴CF =CE(3)作BM ⊥PF 于M ,则CE =CM =CF ,∵CF CP =34,设CE =CM =CF =3a ,PC =4a ,PM =a ,∵△BMC ∽△PMB ,∴BM PM =CM BM ,∴BM 2=CM ·PM =3a 2,∴BM =3a ,tan ∠BCM =BM CM =33,∴∠BCM =30°,∴∠OCB =∠OBC =∠BOC =60°,∴劣弧BC 的长为60³π³23180=233π27.(本题16分)如图,在矩形OABC 中,OA =5,AB =4,点D 为边AB 上一点,将△BCD 沿直线CD 折叠,使点B 恰好落在OA 边上的点E 处,分别以OC ,OA 所在的直线为x 轴、y 轴建立平面直角坐标系.(1)求AE 的长;(2)求经过O ,D ,C 三点的抛物线的解析式;(3)若点N 在(2)中抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使得以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请求出M 点的坐标;若不存在,请说明理由.解:(1)∵CE =CB =OA =5,CO =AB =4,∴在Rt △COE 中,OE =CE 2-CO 2=3,∵OA =5,∴AE =5-3=2(2)在Rt △ADE 中,设AD =m ,则DE =BD =4-m ,由勾股定理,得AD 2+AE 2=DE 2,即m 2+22=(4-m )2,解得m =32,∴D (-32,-5),∵C (-4,0),O (0,0),∴设过O ,D ,C 三点的抛物线为y =ax (x +4),∴-5=-32a (-32+4),解得a =43,∴抛物线解析式为y =43x (x +4)=43x 2+163x(3)∵抛物线的对称轴为直线x =-2,点M 在抛物线上,∴设N (-2,n ),M (m ,43m 2+163m ),又由题意可知C (-4,0),E (0,-3),①当EN 为对角线,即四边形ECNM 是平行四边形时,则线段EN 中点的横坐标为-1,线段CM 中点的横坐标为m +(-4)2,∵EN ,CM 互相平分,∴m +(-4)2=-1,解得m =2,∵43³22+163³2=16,∴M (2,16);②当EM为对角线,即四边形ECMN 是平行四边形时,则线段EM 中点的横坐标为m 2,线段CN 中点的横坐标为-3,∵EN ,CM 互相平分,∴m 2=-3,解得m =-6,∵43³(-6)2+163³(-6)=16,∴M (-6,16);③当EC 为对角线,即四边形EMCN是平行四边形时,同理可得0+(-4)2=m +(-2)2,解得m =-2.∵43³(-2)2+163³(-2)=-163,∴M (-2,-163).综上可知,存在满足条件的点M ,其坐标为(2,16),(-6,16)或(-2,-错误!)2018年中考数学押题卷及答案(三)一、选择题(本题共6小题,第小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的) 1.(3分)|﹣2|的值是( )A .﹣2B .2C .D .﹣2.(3分)下列计算正确的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2D.(a﹣b)2=a2﹣2ab+b23.(3分)如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°4.(3分)一个几何体的三视图如图所示,这个几何体是()A.棱柱B.正方形C.圆柱D.圆锥5.(3分)有11个互不相同的数,下面哪种方法可以不改变它们的中位数()A.将每个数加倍B.将最小的数增加任意值C.将最大的数减小任意值D.将最大的数增加任意值6.(3分)关于圆的性质有以下四个判断:①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,则四个判断中正确的是()A.①③B.②③C.①④D.②④二、填空题(每小题3分,共24分)7.(3分)计算:=.8.(3分)分解因式:x3y﹣xy=.9.(3分)计算:=.10.(3分)月球与地球的平均距离约为384400千米,将数384400用科学记数法表示为.11.(3分)计算:=.12.(3分)如图,四边形ABCd为边长是2的正方形,△BPC为等边三角形,连接PD、BD,则△BDP的面积是.13.(3分)用一直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为cm2(精确到1cm2).14.(3分)已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=cm.三、解答题(共10小题,满分78分)15.(5分)解关于x的不等式组:.16.(6分)(1)操究发现:如图1,△ABC为等边三角形,点D为AB边上的一点,∠DCE=30°,∠DCF=60°且CF=CD①求∠EAF的度数;②DE与EF相等吗?请说明理由(2)类比探究:如图2,△ABC为等腰直角三角形,∠ACB=90°,点D为AB 边上的一点,∠DCE=45°,CF=CD,CF⊥CD,请直接写出下列结果:①∠EAF的度数②线段AE,ED,DB之间的数量关系17.(6分)已知:关于x的方程x2﹣(2m+1)x+2m=0(1)求证:方程一定有两个实数根;(2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值.18.(6分)甲、乙两辆汽车分别从A、B两城同时沿高速公路驶向C城,已知A、C两城的路程为500千米,B、C两城的路程为450千米,甲车比乙车的速度快10千米/时,结果两辆车同时到达C城.求两车的速度.19.(7分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有人,在扇形统计图中,“乒乓球”的百分比为%,如果学校有800名学生,估计全校学生中有人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.20.(7分)△OAB是⊙O的内接三角形,∠AOB=120°,过O作OE⊥AB于点E,交⊙O于点C,延长OB至点D,使OB=BD,连CD.(1)求证:CD是⊙O切线;(2)若F为OE上一点,BF的延长线交⊙O于G,连OG,,CD=6,.求S△GOB21.(7分)如图,已知A (﹣4,n),B (2,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式的解集(请直接写出答案).22.(8分)如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)23.(12分)月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)(1)请求出y(万件)与x(元/件)之间的函数关系式;(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值.(3)假设公司的这种电子产品第一年恰好按年利润s(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在8元以上(x>8),当第二年的年利润不低于103万元时,请结合年利润s(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.24.(14分)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y 轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.参考答案与试题解析一、选择题(本题共6小题,第小题3分,共18分.每小题给出的4个选项中,有且只有一个答案是正确的)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.D.﹣【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.2.(3分)下列计算正确的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2D.(a﹣b)2=a2﹣2ab+b2【解答】解:A、原式=a2﹣4,不符合题意;B、原式=a2﹣a﹣2,不符合题意;C、原式=a2+b2+2ab,不符合题意;D、原式=a2﹣2ab+b2,符合题意,故选D3.(3分)如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°【解答】解:如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选:B.4.(3分)一个几何体的三视图如图所示,这个几何体是()A.棱柱B.正方形C.圆柱D.圆锥【解答】解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是圆可判断出该几何体为圆柱.故选:C.5.(3分)有11个互不相同的数,下面哪种方法可以不改变它们的中位数()A.将每个数加倍B.将最小的数增加任意值C.将最大的数减小任意值D.将最大的数增加任意值【解答】解:A、将每个数加倍,则中位数加倍;B、将最小的数增加任意值,可能成为最大值,中位数将改变;C、将最大的数减小任意值,可能成为最小值,中位数将改变;D、将最大的数增加任意值,还是最大值,中位数不变.故选D.6.(3分)关于圆的性质有以下四个判断:①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,则四个判断中正确的是()A.①③B.②③C.①④D.②④【解答】解:垂直于弦的直径平分弦,所以①正确;平分弦(非直径)的直径垂直于弦,所以②错误;在同圆或等圆中,相等的弦所对的圆周角相等或互补,所以③错误;在同圆或等圆中,相等的圆周角所对的弦相等,所以④正确.故选C.二、填空题(每小题3分,共24分)7.(3分)计算:=.【解答】解:原式==,故答案为:8.(3分)分解因式:x3y﹣xy=xy(x+1)(x﹣1).【解答】解:原式=xy(x2﹣1)=xy(x+1)(x﹣1),故答案为:xy(x+1)(x﹣1)9.(3分)计算:=5.【解答】解:=(﹣1)+()+()+…+()=(﹣1)=5.10.(3分)月球与地球的平均距离约为384400千米,将数384400用科学记数法表示为 3.844³105.【解答】解:384400=3.844³105,故答案为:3.844³105.11.(3分)计算:=.【解答】解:=³³³…³³=³³³…³³==.故答案为:.12.(3分)如图,四边形ABCd为边长是2的正方形,△BPC为等边三角形,连接PD、BD,则△BDP的面积是4﹣4.【解答】解:如图,过P 作PE ⊥CD ,PF ⊥BC ,∵正方形ABCD 的边长是4,△BPC 为正三角形, ∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4, ∴∠PCE=30°∴PF=PB•sin60°=4³=2,PE=PC•sin30°=2,S △BPD =S 四边形PBCD ﹣S △BCD =S △PBC +S △PDC ﹣S △BCD =³4³2+³2³4﹣³4³4=4+4﹣8=4﹣4.故答案为:4﹣4.13.(3分)用一直径为10cm 的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如图所示,圆锥的母线AB 与⊙O 相切于点B ,不倒翁的顶点A 到桌面L 的最大距离是18cm .若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为 174 cm 2(精确到1cm 2).【解答】解:直径为10cm 的玻璃球,玻璃球半径OB=5,所以AO=18﹣5=13,由勾股定理得,AB=12,∵BD ³AO=AB ³BO ,BD==,圆锥底面半径=BD=,圆锥底面周长=2³π,侧面面积=³2³π³12=π≈174cm 2.14.(3分)已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D= 1.5cm.【解答】解:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==5cm,∵点D为AB的中点,∴OD=AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故答案为1.5.三、解答题(共10小题,满分78分)15.(5分)解关于x的不等式组:.【解答】解:∵,由①得:(a﹣1)x>2a﹣3③,由②得:x>,当a﹣1>0时,解③得:x>,若≥,即a≥时,不等式组的解集为:x>;当1≤a<时,不等式组的解集为:x≥;当a﹣1<0时,解③得:x<,若≥,即a≤时,<x<;当a<1时,不等式组的解集为:<x<.∴原不等式组的解集为:当a≥时,x>;当a<时,<x<.16.(6分)(1)操究发现:如图1,△ABC为等边三角形,点D为AB边上的一点,∠DCE=30°,∠DCF=60°且CF=CD①求∠EAF的度数;②DE与EF相等吗?请说明理由(2)类比探究:如图2,△ABC为等腰直角三角形,∠ACB=90°,点D为AB 边上的一点,∠DCE=45°,CF=CD,CF⊥CD,请直接写出下列结果:①∠EAF的度数②线段AE,ED,DB之间的数量关系【解答】解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°,∵∠DCF=60°,∴∠ACF=∠BCD,在△ACF和△BCD中,,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF;理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE,在△DCE和△FCE中,,∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°,∵∠DCF=90°,∴∠ACF=∠BCD,。

2018年北海市初中毕业升学考试数学试卷 精品

2018年北海市初中毕业升学考试数学试卷 精品

A B C D a b1 2A B C D2018年北海市初中毕业升学考试试卷数 学(考试时间:120分钟,满分120分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10小题,每题3分,满分30分;在每个小题给出的四个选项中,有且只有一个是正确的,每小题选对得3分,选错、或不选得0分) 1. 5的相反数是A.5B.15C. -5D. 15-2. 如图,直线a ∥b ,∠1 = 50°,则∠2 的度数是A. 130°B. 50°C. 40°D. 30°3. 当x x 的取值范围是A. 0x ≥B. 0x >C. 0x ≤D. 0x < 4. 如图,正方体的俯视图是5. 在数轴上表示不等式x – 2 ≥0的解集,正确的是6. 如图,四边形ABCD 内接于⊙O ,若∠C = 36°,则∠A 的度数为A. 36°B. 56°C. 72°D. 144°7. 下列算式正确的是A. a 2 +a 3 = a 5B. (2a )3 = 6a 3C. a 6÷a 2 = a 3D. a 2·a 3 = a 58. 在一个不透明的袋子里装有2个白球和2个黑球,它们除颜色外都相同,从中随机摸出1个球记下颜色放回袋中,充分摇均后,再随机摸出1个球,两次都摸到白球的概率是A.12B.13C.14D.169. 正n 边形的一个外角为40°,则边数n 为A. 9B. 8C. 7D. 62题图6题图15题图3●● 16题图10. 如图,A 、B 是双曲线ky x=上的点,分别过A 、B 两点作x 轴、y 轴的垂线段. S 1,S 2,S 3分别表示图中三个矩形的面积,若 S 3 = 1,且124S S +=,则k 值为 A. 1B. 2C. 3D. 4第Ⅱ卷(非选择题,共90分)6小题,每题3分,满分18分)11. 计算: 2 +(– 5)= ;12. 解方程(x + 2)(x – 3) = 0 ,则x = ;13. 随着“家电下乡” 活动的推进,我市今年一季度家电销售总额高达2950万元,用科学记数法表示为 万元; 14. 如图,在Rt △ABC 中,∠ C = 90°,作AB 的垂直平分线,交AB 于D ,交AC 于E ,连接BE. 已知∠CBE = 40°, 则∠A= 度;15. 如图,已知平行四边形ABCD ,E 是BD 上的点,BE :ED = 1:2,F 、G 分别是BC 、CD 上的点,EF ∥CD ,EG ∥BC ,若1ABCD S =,则EFCG S = .16. 如图,在直角坐标系xoy 中,∠OA 0A 1 = 90°, OA 0 = A 0A 1=1,以OA 1为直角边作等腰Rt △OA 1A 2,再以OA 2为直角边作 等腰Rt △OA 2A 3,……,以此类推, 则 A 21点的坐标为 ( , ) .三、(本题共2小题,每小题5分,满分10分)17. (本题满分5分)解方程组251x y x y +=⎧⎨-=⎩18. (本题满分5分)先化简再求值:211x x -⎛⎫- ⎪⎝⎭÷2321x x x -+,其中x = 2 .A B C D ●O四、(本题共2小题,每小题6分,满分12分)19. (本题满分6分)规定: 2!= 2×1;3!= 3×2×1;4!= 4×3×2×1,……,!(1)(2)21n n n n =⨯-⨯-⨯⋅⋅⋅⨯⨯,即称!n 为n 的阶乘. (1)计算:100!98!= ; (2)当x = 7是一元二次方程28!06!x kx +-=的一个根,求k 的值. 20. (本题满分6分)在矩形ABCD 中,对角线AC 、BD 交于点O ,AE ⊥BD ,且AE 平分∠BAO.求∠AOB 度数五、(本题共2小题,每小题6分,满分12分) 21. (本题满分6分)已知,如图在小正方形组成的网格中,矩形ABCD 的顶点和点O 都在格点上,将矩形ABCD 绕点O 顺时针方向旋转90 º,得到矩形''''A B C D .(1)在网格中,画出矩形''''A B C D ,并画出旋转过程点A 和B 分别划过的痕迹(不用写作法); (2)网格每个小正方形的边长为1,请求出线段AB 旋转时扫过的图形的面积. (结果保留π)扇形统计图)22. (本题满分6分)某商场计划为学校挑选一批运动鞋供学生选购,对全校学生所穿运动鞋鞋码进行调查,现随机抽取一部分学生,对他们所穿运动鞋鞋码作为数据样本进行分析,绘出部分条形图和部分扇形统计图,如下图所示:(1)结合统计图完成下列填空,并把条形图和扇形图补充完整. 这个样本的穿26码运动鞋的人数是 ,中位数是 ,众数是 ; (2)请你为该商场提出一条挑选这批运动鞋的合理建议. 六、(本题共2小题,每小题8分,共16分)23. (本题满分8分)某水库在60天中,一段时间蓄水量随时间的增加直线上升,由于灌溉的需要,一段时间蓄水量随时间的增加直线下降, 水库的蓄水量V (万立方米)与时间t (天)的关系如图所示.(1)分别求出水库蓄水量上升期及下降期V 与t 的函数关系式; (2)求水库的蓄水量为900万立方米以上(包含 900万立方米)的时间t 的取值范围.24. (本题满分8分)已知一台挖掘机的工作效率是一名工人工作效率的160倍. 挖掘800米道路,一台挖掘机比80名工人少用10天. 问一名工人和一台挖掘机每天各挖多少米?市道路建设工程指挥部,对城市1600米道路进行改建. 原计划只用一台挖掘机完成,在挖掘2天后,为了加快进度,加入80名工人一起工作,则完成这项工作比原计划能提前几天?图2图1七、(本题满分10分)三点,∠BAC = 30°,D是OB 延长线上的点,∠BDC = 30°,⊙O(1)求证:DC 是⊙O 的切线;(2)如果AC ∥BD ,证明四边形ACDB (3)在图1中,如果AO ⊥BO ,BO 与AC 交于E ,如图2,求ABC AEB S S ∆∆:的值.八、(本题满分12分),∠OAB = 90°,点B 坐标为(10,0). 过原点O 的抛物线,又过点A 和G ,点G 坐标为(7,0).(1)求抛物线的解析式;(2)边OB 上一动点T (t ,0),(T 不与点O 、B 过点T 作OA 、AB 的垂线,垂足分别为C 、D. 设△的面积为S ,求S 的表达式(用t 表示),并求S (3)已知M (2,0),过点M 作MK ⊥OA ,垂足为作MN ⊥OB ,交点OA 于N . 在线段OA 一点Q ,使得Rt △KMN 绕点Q 旋转180°后,点M 恰好落在(1)所求抛物线上,若存在请求出点Q 物线上与M 、K2018年北海市初中毕业升学考试数学试题参考答案及评分标准11. -3 ; 12. x = - 2 或3 ;13. 2. 95×103 ;14. 25° ;15.29;16. A 211010(2,2)-- 。

广西北海市中考数学考试压轴试卷(一)

广西北海市中考数学考试压轴试卷(一)

广西北海市中考数学考试压轴试卷(一)姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分)(2018·射阳模拟) 2018的相反数是()A . 2018B .C . ﹣D . ﹣20182. (2分)估计的运算结果应在()A . 1到2之间B . 2到3之间C . 3到4之间D . 4到5之间3. (2分) (2017八上·满洲里期末) 下列计算正确的是()A . (2x)2=2x2B . x2•x3=x6C . x5÷x3=x2D . (x﹣2)3=x﹣54. (2分)(2018·寮步模拟) 下列图形中,是中心对称图形的是()A .B .C .D .5. (2分)已知+|b+3|=0,那么(a+b)2015的值为()A . -1B . 1C . 52015D . -520156. (2分) (2015八下·杭州期中) 使代数式有意义的x的取值范围是()A . x≠3B . x<7且x≠3C . x≤7且x≠2D . x≤7且x≠37. (2分) (2015九下·深圳期中) 两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A . 众数B . 中位数C . 方差D . 以上都不对8. (2分)如图所示,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是()A . 正三角形B . 正方形C . 正五边形D . 正六边形9. (2分)(2017·蓝田模拟) 如图,是一个正方体被切掉一条棱后所得的几何体,则它的左视图是()A .B .C .D .10. (2分)下列各式中从左到右的变形是因式分解的是()A . (a+3)(a-3)=a2-9B . x2+x-5=x(x+1)-5C . x2+1=(x+1)(x-1)D . a2b+ab2=ab(a+b)11. (2分)(2017·福田模拟) 如图,已知E′(2,-1),F′(,),以原点O为位似中心,按比例尺1:2把△E′F′O扩大,则E′点对应点E的坐标为()A . (-4,2)B . (4,-2)C . (-1,-1)D . (-1,4)12. (2分)方程﹣=0的解是()A . x=3B . x=﹣2C . x=2D . x=513. (2分) (2019七下·广州期中) 将一副三角板ABC如图放置,使点A在DE上,BC//DE,其中,则∠E=30°,则∠AFC的度数是()A . 45°B . 50°C . 60°D . 75°14. (2分)如图,已知第一象限内的点A在反比例函数上,第二象限的点B在反比例函数上,且OA⊥OB,,则k的值为()A . -3B . -6C . -4D .15. (2分)(2017·陕西模拟) 如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则sin∠ECB为()A .B .C .D .16. (2分)如图,市政府准备修建一座高AB=6m的过街天桥,已知天桥的坡面AC与地面BC的夹角∠ACB的正弦值为,则坡面AC的长度为()m.A . 10B . 8C . 6D . 6二、填空题 (共3题;共3分)17. (1分)=________.18. (1分)(2019·河南模拟) 如图,将边长为4的正方形ABCD绕AD的中点O按逆时针方向旋转后得到正方形A′B′C′D′,当点D的对应点D′落在对角线AC上时,点C所经过的路径与CD′,C′D′所围成图形的阴影部分面积是________.19. (1分)如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有________根小棒.三、解答题 (共7题;共83分)20. (10分)计算(1)计算:|﹣2|﹣+4sin45°;(2)化简:(a﹣b)2+b(2a+b)21. (20分)计算(1)×(2)(﹣)÷(3)()﹣1×(﹣)0+ ﹣|﹣ |(4) +2 ﹣.22. (6分)(2017·龙岩模拟) 有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是A.平行四边形,B.菱形,C.矩形,D.正方形,将这四张卡片背面朝上洗匀后.(1)随机抽取一张卡片图案是轴对称图形的概率是________;(2)随机抽取两张卡片(不放回),求两张卡片卡片图案都是轴对称图形的概率,并用树状图或列表法加以说明.23. (10分)(2018·秀洲模拟) 某农户共摘收水蜜桃1920千克,为寻求合适的销售价格,进行了6天试销,试销情况如下:第1天第2天第3天第4天第5天第6天售价20181512109x(元/千克)销售量4550607590100y(千克)由表中数据可知,试销期间这批水蜜桃的每天销售量y(千克)与售价x(元/千克)之间满足我们曾经学过的某种函数关系.若在这批水蜜桃的后续销售中,每天的销售量y(千克)与售价x(元/千克)之间都满足这一函数关系.(1)你认为y与x之间满足什么函数关系?并求y关于x的函数表达式.(2)在试销6天后,该农户决定将这批水密桃的售价定为15元/千克.① 若每天都按15元/千克的售价销售,则余下的水蜜桃预计还要多少天可以全部售完?② 该农户按15元/千克的售价销售20天后,发现剩下的水蜜桃过于成熟,必须在不超过2天内全部售完,因此需要重新确定一个售价,使后面2天都按新的售价销售且能如期全部售完,则新的售价最高可以定为多少元/千克?24. (12分)(2017·绿园模拟) 如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点P从点A出发沿边AC向点C以每秒1个单位长度的速度运动,同时点Q从点C出发沿边CB向点B以每秒a个单位长度的速度运动,过点P 作PD⊥BC,交AB于点D,连接PQ.当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)当a=2时,解答下列问题:①QB=________,PD=________.(用含t的代数式分别表示)(2)当a为某个数值时,四边形PDBQ在某一时刻为菱形,求a的值及四边形PDBQ为菱形时t的值.(3)当t=2时,在整个运动过程中,恰好存在线段PQ的中点M到△ABC三边距离相等,直接写出此刻a的值.25. (15分)(2013·南通) 如图,直线y=kx+b(b>0)与抛物线相交于点A(x1 , y1),B(x2 ,y2)两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0.(1)求b的值;(2)求证:点(y1,y2)在反比例函数的图象上;(3)求证:x1•OB+y2•OA=0.26. (10分)(2017·琼山模拟) 在平面直角坐标系中,O是坐标原点,▱ABCD的顶点A的坐标为(﹣2,0),点D的坐标为(0,2 ),点B在x轴的正半轴上,点E为线段AD的中点.(1)如图1,求∠DAO的大小及线段DE的长;(2)过点E的直线l与x轴交于点F,与射线DC交于点G.连接OE,△OEF′是△OEF关于直线OE对称的图形,记直线EF′与射线DC的交点为H,△EHC的面积为3 .①如图2,当点G在点H的左侧时,求GH,DG的长;②当点G在点H的右侧时,求点F的坐标(直接写出结果即可).参考答案一、选择题 (共16题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共3题;共3分)17-1、18-1、19-1、三、解答题 (共7题;共83分)20-1、20-2、21-1、21-2、21-3、21-4、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、。

2018年广西北海市中考数学试卷

2018年广西北海市中考数学试卷

2018年广西北海市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑。

)1.(3.00分)﹣3的倒数是()A.﹣3 B.3 C.﹣D.2.(3.00分)下列美丽的壮锦图案是中心对称图形的是()A.B.C.D.3.(3.00分)2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,其中数据81000用科学记数法表示为()A.81×103B.8.1×104C.8.1×105D.0.81×1054.(3.00分)某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分5.(3.00分)下列运算正确的是()A.a(a+1)=a2+1 B.(a2)3=a5C.3a2+a=4a3D.a5÷a2=a36.(3.00分)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°7.(3.00分)若m>n,则下列不等式正确的是()A.m﹣2<n﹣2 B.C.6m<6n D.﹣8m>﹣8n8.(3.00分)从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是()A.B.C.D.9.(3.00分)将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5C.y=(x﹣8)2+3 D.y=(x﹣4)2+310.(3.00分)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2 D.211.(3.00分)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80C.80(1+2x)=100 D.80(1+x2)=10012.(3.00分)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3.00分)要使二次根式在实数范围内有意义,则实数x的取值范围是.14.(3.00分)因式分解:2a2﹣2=.15.(3.00分)已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是.16.(3.00分)如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是m(结果保留根号)17.(3.00分)观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是.18.(3.00分)如图,矩形ABCD的顶点A,B在x轴上,且关于y轴对称,反比例函数y=(x>0)的图象经过点C,反比例函数y=(x<0)的图象分别与AD,CD交于点E,F,若S△BEF=7,k1+3k2=0,则k1等于.三、解答题(本大题共8小题,共66分,解答题因写出文字说明、证明过程或演算步骤)19.(6.00分)计算:|﹣4|+3tan60°﹣﹣()﹣120.(6.00分)解分式方程:﹣1=.21.(8.00分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)22.(8.00分)某市将开展以“走进中国数学史”为主题的知识凳赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按A,B,C,D四个等级进行统计,绘制成如下不完整的统计表和扇形统计图:(1)求m=,n=;(2)在扇形统计图中,求“C等级”所对应心角的度数;(3)成绩等级为A的4名同学中有1名男生和3名女生,现从中随机挑选2名同学代表学校参加全市比赛,请用树状图法或者列表法求出恰好选中“1男1女”的概率.23.(8.00分)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.24.(10.00分)某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元吨(10≤a ≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.25.(10.00分)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切;(2)若=,求的值;(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.26.(10.00分)如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.参考答案1.C.2.A.3.B.4.B.5.D.6.C.7.B.8.C.9.D.10.D.11.A.12.C.13.x≥5.14.2(a+1)(a﹣1).15.4.16.40.17.3.18.919.解:原式=4+3﹣2﹣2=+2.20.解:两边都乘以3(x﹣1),得:3x﹣3(x﹣1)=2x,解得:x=1.5,检验:x=1.5时,3(x﹣1)=1.5≠0,所以分式方程的解为x=1.5.21.解:(1)如图所示,△A1B1C1即为所求:(2)如图所示,△A2B2C2即为所求:(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B=,即,所以三角形的形状为等腰直角三角形.22.解:(1)参加本次比赛的学生有:4÷0.04=100(人);m=0.51×100=51(人),D组人数=100×15%=15(人),n=100﹣4﹣51﹣15=30(人)故答案为51,30;(2)B等级的学生共有:50﹣4﹣20﹣8﹣2=16(人).∴所占的百分比为:16÷50=32%∴C等级所对应扇形的圆心角度数为:360°×30%=108°.(3)列表如下:∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.∴P(选中1名男生和1名女生)==.23.(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵BE=DF,∴△AEB≌△AFD∴AB=AD,∴四边形ABCD是平行四边形.(2)连接BD交AC于O.∵四边形ABCD是菱形,AC=6,∴AC⊥BD,AO=OC=AC=×6=3,∵AB=5,AO=3,∴BO===4,∴BD=2BO=8,=×AC×BD=24.∴S平行四边形ABCD24.解:(1)设甲仓库存放原料x吨,乙仓库存放原料y吨,由题意,得,解得,甲仓库存放原料240吨,乙仓库存放原料210吨;(2)由题意,从甲仓库运m吨原料到工厂,则从乙仓库云原料(300﹣m)吨到工厂,总运费W=(120﹣a)m+100(300﹣m)=(20﹣a)m+30000;(3)①当10≤a<20时,20﹣a>0,由一次函数的性质,得W随m的增大而增大,②当a=20是,20﹣a=0,W随m的增大没变化;③当20≤a≤30时,则20﹣a<0,W随m的增大而减小.25.解:(1)如图,连接OB,则OB=OD,∴∠BDC=∠DBO,∵∠BAC=∠BDC、∠BDC=∠GBC,∴∠GBC=∠BDC,∵CD是⊙O的切线,∴∠DBO+∠OBC=90°,∴∠GBC+∠OBC=90°,∴∠GBO=90°,∴PG与⊙O相切;(2)过点O作OM⊥AC于点M,连接OA,则∠AOM=∠COM=∠AOC,∵=,∴∠ABC=∠AOC,又∵∠EFB=∠OGA=90°,∴△BEF∽△OAM,∴=,∵AM=AC,OA=OC,∴=,又∵=,∴=2×=2×=;(3)∵PD=OD,∠PBO=90°,∴BD=OD=8,在Rt△DBC中,BC==8,又∵OD=OB,∴△DOB是等边三角形,∴∠DOB=60°,∵∠DOB=∠OBC+∠OCB,OB=OC,∴∠OCB=30°,∴=,=,∴可设EF=x,则EC=2x、FC=x,∴BF=8﹣x,在Rt△BEF中,BE2=EF2+BF2,∴100=x2+(8﹣x)2,解得:x=6±,∵6+>8,舍去,∴x=6﹣,∴EC=12﹣2,∴OE=8﹣(12﹣2)=2﹣4.26.解:(1)把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c得,解得,∴抛物线解析式为y=﹣x2+x+4;∵AC=BC,CO⊥AB,∴OB=OA=3,∴B(3,0),∵BD⊥x轴交抛物线于点D,∴D点的横坐标为3,当x=3时,y=﹣×9+×3+4=5,∴D点坐标为(3,5);(2)在Rt△OBC中,BC===5,设M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1,∵∠MCN=∠OCB,∴当=时,△CMN∽△COB,则∠CMN=∠COB=90°,即=,解得m=,此时M点坐标为(0,);当=时,△CMN∽△CBO,则∠CNM=∠COB=90°,即=,解得m=,此时M点坐标为(0,);综上所述,M点的坐标为(0,)或(0,);(3)连接DN,AD,如图,∵AC=BC,CO⊥AB,∴OC平分∠ACB,∴∠ACO=∠BCO,∵BD∥OC,∴∠BCO=∠DBC,∵DB=BC=AC=5,CM=BN,∴△ACM≌△DBN,∴AM=DN,∴AM+AN=DN+AN,而DN+AN≥AD(当且仅当点A、N、D共线时取等号),∴DN+AN的最小值==,∴AM+AN的最小值为.。

2018年广西北海市中考数学试卷

2018年广西北海市中考数学试卷

2018年广西北海市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑。

)1.(3.00分)(2018•常州)﹣3的倒数是()A.﹣3 B.3 C.﹣ D.2.(3.00分)(2018•广西)下列美丽的壮锦图案是中心对称图形的是()A.B.C.D.3.(3.00分)(2018•广西)2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,其中数据81000用科学记数法表示为()A.81×103 B.8.1×104C.8.1×105D.0.81×1054.(3.00分)(2018•广西)某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分 B.8分 C.9分 D.10分5.(3.00分)(2018•广西)下列运算正确的是()A.a(a+1)=a2+1 B.(a2)3=a5C.3a2+a=4a3D.a5÷a2=a36.(3.00分)(2018•广西)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°7.(3.00分)(2018•广西)若m>n,则下列不等式正确的是()A.m﹣2<n﹣2 B.C.6m<6n D.﹣8m>﹣8n8.(3.00分)(2018•广西)从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是()A.B.C.D.9.(3.00分)(2018•广西)将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+3 10.(3.00分)(2018•广西)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2 D.211.(3.00分)(2018•广西)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=10012.(3.00分)(2018•广西)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3.00分)(2018•广西)要使二次根式在实数范围内有意义,则实数x 的取值范围是.14.(3.00分)(2018•广西)因式分解:2a2﹣2=.15.(3.00分)(2018•广西)已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是.16.(3.00分)(2018•广西)如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是m(结果保留根号)17.(3.00分)(2018•广西)观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是.18.(3.00分)(2018•广西)如图,矩形ABCD的顶点A,B在x轴上,且关于y 轴对称,反比例函数y=(x>0)的图象经过点C,反比例函数y=(x<0)=7,k1+3k2=0,则k1等于.的图象分别与AD,CD交于点E,F,若S△BEF三、解答题(本大题共8小题,共66分,解答题因写出文字说明、证明过程或演算步骤)19.(6.00分)(2018•广西)计算:|﹣4|+3tan60°﹣﹣()﹣1 20.(6.00分)(2018•广西)解分式方程:﹣1=.21.(8.00分)(2018•广西)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)22.(8.00分)(2018•广西)某市将开展以“走进中国数学史”为主题的知识竞赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按A,B,C,D四个等级进行统计,绘制成如下不完整的统计表和扇形统计图:(1)求m=,n=;(2)在扇形统计图中,求“C等级”所对应心角的度数;(3)成绩等级为A的4名同学中有1名男生和3名女生,现从中随机挑选2名同学代表学校参加全市比赛,请用树状图法或者列表法求出恰好选中“1男1女”的概率.23.(8.00分)(2018•广西)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.24.(10.00分)(2018•广西)某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元/吨(10≤a ≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.25.(10.00分)(2018•广西)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切;(2)若=,求的值;(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.26.(10.00分)(2018•广西)如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD ⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.2018年广西北海市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分。

广西北海市中考数学模拟试卷

广西北海市中考数学模拟试卷

广西北海市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·赤峰) 2018的相反数是()A . ﹣2018B .C . 2018D .2. (2分)(2018·泰州) 下列运算正确的是()A .B .C .D .3. (2分) (2017八下·萧山期中) 下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分)若A(a1 , b1),B(a2 , b2)是反比例函数y=-图象上的两个点,且a1<a2 ,则b1与b2的大小关系是()A . b1<b2B . b1=b2C . b1>b2D . 大小不确定5. (2分)(2013·崇左) 如图所示的是三通管的立体图,则这个几何体的俯视图是()A .B .C .D .6. (2分)(2017·长安模拟) 不等式组的解集是()A . x<3B . 3<x<4C . x<4D . 无解7. (2分) (2017八下·吉安期末) 等腰三角形的底角是70°,则顶角为()A . 40°B . 70°C . 55°D . 45°8. (2分) 2016年9月28日﹣12月31日,山东临沂灯展中千万盏彩灯点亮300亩天然花海.某日,从晚上17时开始每小时进入灯展的人数约为900人(之前该灯展有游客 400人),同时每小时走出灯展的人数约为600人,已知该灯展的饱和人数约为1600人,则该灯展人数饱和时的时间约为()A . 21时B . 22时C . 23时D . 24时9. (2分)如图,已知∠1=∠2=∠3=55º,则∠4=()A . 135ºB . 125ºC . 110ºD . 无法确定10. (2分)某地修一条公路,若甲工程队单独承包要80天完成,乙工程队单独承包要120天完成.现在由甲、乙工程队合作承包,完成任务需要()A . 48天B . 60天C . 80天D . 100天二、填空题 (共10题;共10分)11. (1分)(2017·鹤岗模拟) 2016年7月11日是第二十二个世界人口日,本次世界人口日的主题是“面对74亿人的世界”,74亿人用科学记数法表示为________人.12. (1分) (2018九上·青浦期末) 函数的定义域是________.13. (1分)计算:5 ﹣2 =________.14. (1分)(2017·深圳模拟) 分解因式:ax2﹣9a=________.15. (1分) (2018九上·泰州月考) 如图,在半径为的中,劣弧的长为,则________度.16. (1分)(2018·柘城模拟) 如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为________.17. (1分) (2017八上·鄞州月考) 如图,四边形ABCD中,∠BAD=110°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为________.18. (1分)(2017·安阳模拟) 一个不透明的袋子中装有3个红球和2个白球共5个球,这些球除颜色不同外,其余均相同,从中任意摸出一个球,这个球是白球的概率为________.19. (1分) (2017九上·拱墅期中) 如图,内接于⊙ ,于点,,,,则⊙ 的直径是________.20. (1分) (2017八下·海安期中) 如图,在矩形ABCD中,AD= AB,∠BAD的平分线交BC于点E,DH⊥AE 于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②AB=HF,③BH=HF;④BC ﹣CF=2HE;⑤OE=OD;其中正确结论的序号是________三、解答题 (共7题;共70分)21. (5分) (2019九上·尚志期末) 先化简,再求代数式()÷ 的值,其中a=2sin45°+tan45°.22. (5分) (2020九上·郑州期末) 如图,已知∠ABC,求作:①∠ABC的平分线BD(写出作法,并保留作图痕迹);②在BD上任取一点P,作直线PQ,使PQ⊥AB(不写作法,保留作图痕迹).23. (12分)(2017·宜兴模拟) 学校为了解学生参加体育活动的情况,对学生“平均每天参加体育活动的时间”进行了随机抽样调查,下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题:(1)“平均每天参加体育活动的时间”“为0.5~1小时”部分的扇形统计图的圆心角为________度;(2)本次一共调查了________名学生;(3)将条形统计图补充完整;(4)若该校有2000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.24. (8分) (2019九上·无锡月考) 如图l,在中,点,分别在边和上,点,在对角线上,且, .(1)求证:四边形是平行四边形:(2)若,, .①当四边形是菱形时,的长为________;②当四边形是正方形时,的长为________;③当四边形是矩形且时,的长为________.25. (10分)(2017·南充) 学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?26. (15分) (2019九上·许昌期末) 如图1,在平面直角坐标系中,已知抛物线y=ax2+bx-5与x轴交于A(-1,0),B(5,0)两点,与y轴交与点C.(1)求抛物线的函数表达式;(2)若点D是y轴上的点,且以B、C、D为顶点的三角形与△ABC相似,求点D的坐标;(3)如图2,CE//x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC、CE分别相交于点F,G,试探求当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积.27. (15分)(2017·淄博) 如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共7题;共70分)21-1、22-1、23-1、23-2、23-3、23-4、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、。

广西北海市数学中考模拟试卷

广西北海市数学中考模拟试卷

广西北海市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·黄冈) 下列运算结果正确的是()A . 3a3·2a2=6a6B . (-2a)2= -4a2C . tan45°=D . cos30°=2. (2分)下列各组图形中,右边的图形与左边的图形成中心对称的是()A .B .C .D .3. (2分)“十二五”期间,我国将新建保障性住房36000000套,用于解决中低收入和新参加工作的大学生住房的需求,把36000000用科学记数法表示应是()A . 3.6×107B . 3.6×106C . 36×106D . 0.36×1084. (2分)(2018·哈尔滨) 已知反比例函数的图象经过点(1,1),则k的值为().A . -1B . 0C . 1D . 25. (2分)(2013·丽水) 用3个相同的立方块搭成的几何体如图所示,则它的主视图是()A .B .C .D .6. (2分)如图,△ABC内接于⊙O,∠A = 40°,则∠BOC的度数为()A . 20°B . 40°C . 60°D . 80°7. (2分)(2017·洛阳模拟) 下列各数中,最小的数是()A . 0B .C . ﹣D . ﹣38. (2分) (2017八下·邵阳期末) 如图,有一张一个角为30° ,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是()A . 8或B . 10或4+C . 10或D . 或4+9. (2分)(2020·武汉模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=BC,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BE,则∠BED的度数为()A . 100°B . 120°C . 135°D . 150°10. (2分)已知反比例函数,有下列四个结论:① 图象必经过点(-1,2);② 图像经过(x1,y1),(x2,y2)两点,若x1<x2 ,则y1<y2;③ 图象分布在第二、四象限内;④ 若x>1,则y>-2.其中正确的有()A . 1个B . 2个C . 3个D . 4个11. (2分) (2016九上·嵊州期中) 当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m 的值为()A . ﹣B . 或﹣C . 2或﹣D . 2或或﹣12. (2分)如图,在Rt△ABC中,OA=2,AB=1,把Rt△ABO绕着原点逆时针旋转90°,得△A'B'O,那么点A'的坐标为()A . (, 1)B . (1,)C . (-1,)D . (, -1)二、填空题 (共6题;共6分)13. (1分)若x+y=2,x2﹣y2=6,则x﹣y=________.14. (1分)函数的图象如图所示,则结论:①两函数图象的交点的坐标为;②当时,;③当时,;④当逐渐增大时,随着的增大而增大,随着的增大而减小.其中正确结论的序号是________.15. (1分)从-2,-1,1,2,3这五个数中随机抽取一数,作为函数y=mx2+2mx+2中的m的值,若能使函数与x轴有两个不同的交点A、B,与y轴的交点为C,且△ABC的面积大于的概率为:________16. (1分)如图,在大小为的正方形网格中,是相似三角形的是________(请填上编号).17. (1分)(2017·海曙模拟) 已知,抛物线y=ax2+bx+3满足2a+b=0,写出该抛物线上可以确定的点的坐标________.18. (1分) (2019八下·海淀期中) 如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC= ,OC= ,则另一直角边BC的长为________.三、解答题 (共7题;共53分)19. (10分)用适当的方法解下列方程:(1)(2x+1)2=(x﹣1)2(2).20. (9分)(2018·恩施) 为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1) a=________,b=________,c=________;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为________度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.21. (2分) (2017九上·湖州月考) 如图,的图像交x轴于O点和A点,将此抛物线绕原点旋转180°得图像y2 , y2与x轴交于O点和B点.(1)若y1=2x2-3x,则y2=________ .(2)设 y 1 的顶点为C,则当△ABC为直角三角形时,请你任写一个符合此条件的 y 1 的表达式________ .22. (5分)(2017·长乐模拟) 如图,电信部门计划修建一条连接B、C两地电缆,测量人员在山脚A处测得B、C两处的仰角分别是37°和45°,在B处测得C处的仰角为67°.已知C地比A地髙330米(图中各点均在同一平面内),求电缆BC长至少多少米?(精确到米,参考数据:sin37°≈ ,tan37°≈ ,sin67°≈ ,tan67°≈ )23. (15分) (2017九上·吴兴期中) 为鼓励大学生毕业后自主创业,市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给应届毕业生自主销售,成本价与出厂价之间的差价由政府承担.赵某按照相关政策投资销售本市生产的一种新型“儿童玩具枪”.已知这种“儿童玩具枪”的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)赵某在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设赵某获得的利润为W(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种“儿童玩具枪”的销售单价不得高于28元.如果赵某想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?24. (5分)(2016·张家界) 已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.25. (7分) (2016九上·岑溪期中) 如图,在平面直角坐标系中,已知抛物线y=x2﹣bx+c经过A(0,3),B (1,0)两点,顶点为M.(1)则b=________,c=________;(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共53分)19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、23-3、24-1、25-1、25-2、。

广西北海市中考数学模拟考试试卷

广西北海市中考数学模拟考试试卷

广西北海市中考数学模拟考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列计算,正确的是A .B .C .D .2. (2分)下列运算正确的是()A . x2+x2=x4B . ( a-1)2=a2-1C . 3x+2y=5xyD . a2·a3=a53. (2分) (2018七上·孝义期中) 一个数的平方和它的倒数相等,则这个数是()A . ±1和0B . ±1C . ﹣1D . 14. (2分) (2018七上·大石桥期末) 下列展开图中,不能围成几何体的是().A .B .C .D .5. (2分)下列式子成立的是()A .B . =3C .D .6. (2分)下列计算正确的是()A . 2a+3a=6aB . a2•a3=a6C . a8÷a4=a2D . (﹣2a3)2=4a67. (2分)下列调查中,适宜采用普查方式的是()A . 了解一批圆珠笔的寿命B . 了解全国九年级学生身高的现状C . 检查一枚用于发射卫星的运载火箭的各零部件D . 考察人们保护海洋的意识8. (2分)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB,AD的中点,则△AEF与多边形BCDFE的面积之比为A .B .C .D .9. (2分)反比例函数y= 的图象与x轴的交点有()A . 3个B . 2个C . 1个D . 0个10. (2分) (2017九上·东台月考) 如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD长()A . 4 cmB . 3 cmC . 5 cmD . 4 cm二、填空题: (共4题;共4分)11. (1分) (2019九上·偃师期中) 已知实数a、b、c在数轴上的位置如图所示,化简﹣|a﹣c|+﹣|﹣b|=________.12. (1分)分解因式:ab﹣b=________.13. (1分) (2017九上·台州月考) 现有一个圆心角为90°,半径为4cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为________14. (1分)我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等腰三角形的腰长为2,“内角正度值”为45°,那么该三角形的面积等于________ .三、计算题: (共2题;共15分)15. (5分)(2018·遵义模拟) 计算:()-1--2sin45°+(3-π)0.16. (10分) (2018九上·辽宁期末) 解方程:(1)(x﹣2)2-4=0(2) x2-4x-5=0四、作图题: (共1题;共10分)17. (10分) (2016八下·蓝田期中) △ABC和点S都在正方形网格的格点上.(1)画出△ABC绕点S顺时针旋转90°后得到的△A1B1C1;(2)以S点对称中心,画出与△ABC成中心对称的△A2B2C2.五、解答题: (共4题;共45分)18. (10分) (2016九上·岳池期末) 张师傅准备用长为8cm的铜丝剪成两段,以围成两个正方形的线圈,设剪成的两段铜丝中的一段的长为xcm,围成的两个正方形的面积之和为Scm2 .(1)求S与x的函数关系式,并写出自变量的取值范围;(2)当x取何值时,S取得最小值,并求出这个最小值.19. (5分)(2016·河南) 如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)20. (10分)(2016·西城模拟) 在平面直角坐标系xOy中,反比例函数y1= 的图象与一次函数y2=ax+b 的图象交于点A(1,3)和B(﹣3,m).(1)求反比例函数y1= 和一次函数y2=ax+b的表达式;(2)点C 是坐标平面内一点,BC∥x 轴,AD⊥BC 交直线BC 于点D,连接AC.若AC= CD,求点C的坐标.21. (20分) (2017·邢台模拟) 近年来,为加强生态城市建设,邢台市大力发展绿色交通,构建公共、绿色交通体系,2016年11月28日公共自行车陆续放置在车桩中,琪琪随机调查了若干市民租用公共自行车的骑车时间:(单位:h),将获得的数据分成五组,绘制了如下统计图,请根据图中信息,解答下列问题.(1)这次被调查的总人数是多少?(2)试求表示D组的扇形圆心角的度数,并补全条形统计图;(3)公共自行车系统投入使用后,按规定市民借车1小时内免费,1小时至2小时收费1元,2小时至3小时收费3元,3小时以上,在3元的基础上,每小时加收3元(不足1小时均按1小时计算)请估算,在租用公共自行车的市民中,缴费超过3元的人数所占的百分比.(4) A组5人中3女2男,从中随机抽取2人,则恰好是一男一女的为事件A,用列表法或者树状图法求出事件A的概率P.六、综合题: (共2题;共25分)22. (15分)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为yc,求yc的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.23. (10分)(2017·徐州模拟) 如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题: (共4题;共4分)11-1、12-1、13-1、14-1、三、计算题: (共2题;共15分)15-1、16-1、16-2、四、作图题: (共1题;共10分) 17-1、17-2、五、解答题: (共4题;共45分) 18-1、18-2、19-1、20-1、20-2、21-1、21-2、21-3、21-4、六、综合题: (共2题;共25分) 22-1、22-2、22-3、23-1、23-2、。

(广西北海)中考真题数学压轴题解析练习(含答案)

(广西北海)中考真题数学压轴题解析练习(含答案)

(广西北海)中考真题数学压轴题解析练习
试卷简介:本试卷共一道解答题,检测大家解决压轴题的能力。

学习建议:学习解决中考压轴题问题的解题套路和技巧,并学会灵活运用。

一、解答题(共1道,每道100分)
1.如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD 的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线的函数关系式;(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时
间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).① 当t=时,判断点P 是否在直线ME上,并说明理由;②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理
由.
答案:(1)y=-x2+4x
(2)①点P不在直线ME上
②依题意可知:P(,),N(,)

0△PCD+S△PNC=CD&middot;AD+=+==
∵0<<3
∴当=时,=.
当时,点P、N都重合,此时以P、N、C、D为顶点的多边形是三角形,依题意可得,==3
综上所述,以P、N、C、D为顶点的多边形面积S存在最大值,最大值为
解题思路:(1)先计算出函数解析式;
(2)计算出t=时P点坐标,从而验证是否在ME上;(3)画出一般情况下图形,从而
选取合适的方法(分割、补形)计算面积;
易错点:一般状态下如何表达多边形的面积?
试题难度:三颗星知识点:坐标与图形变化-平移。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中考考前押题卷二数学试题温馨提示:1、你拿到的试卷满分为150分,考试时间为120分钟。

2、本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页。

3、请务必在“答题卷”上答题,在“试题卷”上答题是无效的。

4、考试结束后,请将“试题卷”和“答题卷”一并交回。

一、选择题:(本题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个正确的,请把正确选项的代号写在题后的括号内。

每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是 ℃ A.-2 B.5 C.-10 D.-52.下列分式是最简分式的是A.b a a 232B.a a a 32-C.22b a ba ++ D.222b a ab a --3.估计327-的值在A.1和2之间B.2和3之间C.3和4之间D.4和5之间 4.如图是某物体的三视图,则这个物体的形状是 A.四面体 B.直三棱柱 C.直四棱柱 D.直五棱柱5. 3月12日为法定植树节。

某校团委这天组成20名团员同学共种了52棵树苗,其中男团员每人种树3棵,女团员每人种树2棵。

设男团员有x 人,女团员有y 人,根据题意,下列方程组正确的是 A.{522023=+=+y x y x B.{522032=+=+y x y x C.{205223=+=+y x y x D.{205232=+=+y x y x6.某市初中毕业生进行一项技能测试,有4万名考生的得分都是不小于70的两位数,从中随机抽取3000个数据,统计如下表:请根据表格中的信息,估计这4万个数据的平均数约为 A.92 B.85 C.83 D.787.关于x 的一元二次方程0122=-+x ax 有两个不相等的实数根,则a 的取值范围是 A.a>-1 B.1-≥a C.0≠a D.a>-1且0≠a 8.下列语句中,其中正确的个数是①将多项式()()x y b y x a ---2因式分解,则原式=()()b ay ax y x +--②将多项式xy y x 4422-+因式分解,则原式=()22y x -;③90o的圆周角所对的弦是直径;④半圆(或直径)所对的圆周角是直角。

A.1 B.2 C.3 D.49.如图,将半径为12的⊙O 沿AB 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D,则折痕AB 长为A.153B.154C. 156D.1210.如图,△ABC 为等边三角形,AB=2,点D 为边AB 上一点,过点D 作DE//AC ,交BC 于E 点;过E 点作EF ⊥DE ,交AB 的延长线于F 点,设AD=x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是二、填空题:(本题共4小题,每小题5分,满分20分)11.据安徽省旅游局信息,2017年五一小长假期间全省旅游总收入约为262亿元,262亿用科学记数法表示为;12.如图,在平面直角坐标系中,正六边形ABCDEF 的对称中心与原点O 重合, 点A 在x 轴上,点B 在反比例函数xy 39=位于第一象限的图象上,则正六边形ABCDEF 的边长为; 13.已知正实数a ,满足71=-a a ,则=+aa 1;14.已知,如图,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A.C 的坐标分别为A(1O ,0),C(0,4),点D 是OA 的中点,点P 在BC 边上运动。

当△ODP 是腰长为5的等腰三角形时,则点P 的坐标是;三、(本题共2小题,每小题8分,满分16分)15.先化简:再求值:()()(),2222y x x x -+-+其中1,1=-=y x 。

16.“雄安新区”是中共中央作出“千年大计、国家大事”的重大决策。

雄安新区位于北京、天津和保定构成的一个等边三角形腹地,距离北京、天津和保定市分别为105公里、105公里、30公里,如图所示。

现拟一列高铁列车从北京经雄安新区到天津比北京与天津的城际特快列车还少用25分,己知高铁速度是城际特快列车的速度2.5倍,高铁列车行驶的里程为225km ,北京与天津的里程为135km,求城际特快列车的速度是多少km/h ?四、(本题共2小题,每小题8分,满分16分) 17.如图,在边长为1个单位长度的小正方形网格中. (1)画出△ABC 关于直线x=l 对称的△A 1B l C 1. (2)画出△ABC 关于C 点顺时针旋转90o的△A 2B 2C 2. (3)设P 、Q 两点分别是△ABC 和△A 1B l C 1两对应点, 已知P 点坐标为(m,n),写出点Q 的坐标.18.如图,我国巡逻舰在南海B 处例行巡逻,测得小岛A 在舰艇的北偏东60o的方向,巡逻舰从B 地继续向正东方向航行200海里到达C 处时,测得小岛A 在舰艇的北偏东30o的方向。

已知在小岛周围170海里内有暗礁,若舰艇不改变航向继续向前行驶,试问舰艇有无触礁的危险?(732.13 )五、(本题共2小题,每小题10分,满分20分)19.合肥市打造世界级国家旅游中心,精心设计12个千年古镇。

如图1是某明清小院围墙中的精美图案,它是两个形状大小相同的菱形与一个圆组成,且A 、C 、E 、G 在其对称轴AG 上。

已知菱形的边长和圆的直径都是1dm ,∠A= 60O。

(1)求图案中AG 的长;(2)假设小院的围墙一侧用上述图案如图2排列,其中第二块图案左边菱形一个顶点正好经过第一块图案的右边菱形的对称中心,....,以此类推,第101块这种图案这样排列长为多少m ?(不考虑缝隙及拼接处)20.为了考查学生的综合素质,九年级毕业生统一参加理化生实践操作科目考试。

根据我市实际情况,市教育局决定:理化生实践考查科目命制24题,分4个试题单元,每个单元内含6道理化生实验操作题。

即:物理3题;化学2题;生物1题。

小聪与小明是某实验中学九年级的同班同学,在三月份举行的理化生考试中,他们同时抽到同一个试题单元,且每个同学都是同一个试题单元里随机抽取一题。

(1)小聪抽到物理学科科目可能性有多大?(2)用列表法或树状图,求他俩同时抽到生物的概率是多少?六、(本题满分12分)21.已知B 、C 、E 、三点在同一条直线上,△ABC 与△DCE 都是等边三角形,其中线段BD 交AC 于点G,线段AE 交CD 于点F. 求证:(1)△ACE ≌△BCD ;(2)FE AFGC AG =.七、(本题满分12分)22.如图,已知点O (0,0),A(2,1),抛物线ι:()12+--=h x y (h 为常数)与y 轴的交点为B 。

(1)若ι经过点A,求它的解析式,并写出此时ι的对称轴及顶点坐标;(2)设点B 的纵坐标B y ,求B y 的最大值,此时ι上有两点(11,y x ),(22,y x ),其中1x >02≥x ,比较1y 与2y 的大。

八、(本题满分14分)23.数学课堂探究性活动蔚然成风。

张老师在课堂上设置一道习题:(1)已知矩形ABCD 和点P ,当点P 在BC 上任一位置(如图1所示)时,探究PA 2、PB 2、PC 2、PD 2,之间的关系?直接写出结论,不必证明; 当P 点在其它位置时,请同学们分组探究:(2)当点P 在矩形内部,如图2时,探究PA 2、PB 2、PC 2、PD 2之间的数量关系,请你把探竞出的结论写出来,并给予证明。

(3)当点P 在矩形外部,如图3时,继续探完PA 2、PB 2、PC 2、PD 2之间的数量关系,请你把探究出的结论直接写出来,不必证明。

安徽省2017年初中毕业班十校联考最后一卷数学参考答案及评分标准一.选择题 (本题共10小题,每小题4分,满分40分)11、2.62×1010; 12、6 ; 13 14、(2,4),(3,4)或(8,4) 三、(本题共2小题,每小题8分,满分16分) 15.解:原式=4-x 2+x 4y ;………………………………4分当x=-1,y=1时, 原式=4-(-1)2+(-1)4×1=4……………8分 16.解:设城际特快列车的速度是xkm/h ,…………………1分根据题意:xx 1351255,2225=+, 解得:x=108, …………………………………………6分 经检验,x=108是原方程的解.所以, 城际特快列车的速度是108xkm/h ………………8分 四、(本题共2小题,每小题8分,满分16分)17. (1)图略;3分(2)图略3分(3)Q (2-m ,n )2分,共计8分 18.解:作AD ⊥BC ,D 为垂足,在Rt △ABD 中, ∵∠B=300,BC=200,∴tan300=BD AD 即33=CDAD +200;① ……………3分 在Rt △ACD ,∵∠CAD=300,∴tan300=AD CD ,即CD=33AD ,②………………………5分 把②代入①解得:AD=100≈173.2>170,所以,继续航行,无触礁危险。

…………………………………………………………8分 (方法不唯一,亦可先得AC=BC=200,再在Rt △ACD 中求解) 五、(本题共2小题,每小题10分,满分20分)19. 解:(1)连BD 、AC 交于O 点,∵菱形ABCD ,∴BD ⊥AC , ∵AB=1,∠A=600∴AO=23,∴AC=3;……4分,∴AG=(23+1)dm …………………5分(2)根据题意,得A G=2+1,而围墙一侧排列n 块的总长:23+1+(n-1)(323+1),所以, 101块图案排列的长度为:23+1+(101-1)(323+1)=(1523+101)dm=101013152+m …………………10分20.解:(1)P (小聪抽到物理学科)=21………………………4分(2)分别用W 1、W 2、W 3表示物理3题,H 1、H 2表示化学2题,S 表示生物,列表如下:由表中数据可知,共有36种等可能结果,两人同时抽到生物的概率36……10分六、(本题满分12分)21. 证明:(1)∵△ABC 与△DCE 都是等边三角形,∴AC=BC ,CD=CE ,∠BCD=∠ACE ,∴△A C E ≌△BCD …………………5分(2)由(1)知:∠ACD=600,∵∠AEC=∠BDC ,CD=CE ,∴△DGC ≌△EFC ,∴CG=CF ,连GF ,∴△CGF 为等边三角形,∴∠GFC=∠DCE ∴GF ∥CE ,∴FEAFGC AG =…………………12分 (方法不唯一,正确即得分)七、(本题满分12分)22. 解:(1)把A (2,1)代入y=-(x-h )2+1,得h=2,∴y=-(x-2)2+1或y=-x 2+4x-3,对称轴x=2,顶点A (2,1)………6分;(2)点B 的横坐标为0,则y B =-h 2+1,∴当h=0,y B 有最大值为1;……………10分; 此时,y=-x 2+1,对称轴为y 轴,当x ≥0,y 随着x 的增大而减小,∴x 1 >x 2 ≥0时,y 1<y 2…………………………………12分八、(本题满分14分)23、证明:(1)PA2+PC2=PB2+PD2. ……………………………4分(2)过P点作PE⊥AB,并延长EP交CD于F,E、F为垂足,∵矩形ABCD,∴矩形ABFE、矩形CDEF,∴AE=BF,DE=CF在直角三角形中,由勾股定理知:PA2=AE2EP2,PC2=PF2+CF2,PD2=PE2+ED2,PB2=BF2+PF2, ∴PA2+PC2=PB2+PD2. ……………………12分(3)结论仍然成立。

相关文档
最新文档